WO2020050278A1 - 電子機器、電子機器の制御方法、及び電子機器の制御プログラム - Google Patents

電子機器、電子機器の制御方法、及び電子機器の制御プログラム Download PDF

Info

Publication number
WO2020050278A1
WO2020050278A1 PCT/JP2019/034649 JP2019034649W WO2020050278A1 WO 2020050278 A1 WO2020050278 A1 WO 2020050278A1 JP 2019034649 W JP2019034649 W JP 2019034649W WO 2020050278 A1 WO2020050278 A1 WO 2020050278A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
electronic device
signal
transmission
wave
Prior art date
Application number
PCT/JP2019/034649
Other languages
English (en)
French (fr)
Inventor
徹 佐原
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2019570579A priority Critical patent/JP6746017B2/ja
Priority to EP19856548.3A priority patent/EP3848723A4/en
Priority to US17/272,962 priority patent/US12038529B2/en
Priority to CN201980057372.9A priority patent/CN112654888A/zh
Publication of WO2020050278A1 publication Critical patent/WO2020050278A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/44Monopulse radar, i.e. simultaneous lobing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna
    • G01S2013/0263Passive array antenna
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Definitions

  • the present disclosure relates to an electronic device, a control method for the electronic device, and a control program for the electronic device.
  • RADAR Radio Detecting and Ranging
  • Various techniques have been studied. The importance of technologies for measuring such distances will become more and more important in the future with the development of technologies that assist drivers in driving and technologies related to automatic driving that automates part or all of driving. is expected.
  • Patent Literature 1 and Patent Literature 2 propose radar technologies that can accurately estimate the direction of an incoming wave.
  • Patent Literature 3 and Patent Literature 4 propose a radar technique that can reduce the amount of data or calculation when estimating the direction of an incoming wave.
  • An electronic device includes a transmission antenna that transmits a transmission wave, a reception antenna that receives a reflected wave of the transmission wave, and a control unit.
  • the control unit generates a first sample based on a result of performing a first fast Fourier transform process on a beat signal generated based on a transmission signal based on the transmission wave and a reception signal based on the reflection wave.
  • the control unit generates a second sample based on a result of performing a second fast Fourier transform process on the first sample, and estimates an arrival direction of the reflected wave based on the second sample.
  • the control unit may be configured such that a peak in a result of performing the first fast Fourier transform processing on the first sample in the beat signal is equal to or larger than a first threshold.
  • An electronic device includes a transmission antenna that transmits a transmission wave, a reception antenna that receives a reflected wave of the transmission wave, and a control unit.
  • the control unit generates a sample based on a result of performing a Fourier transform process on a beat signal generated based on a transmission signal based on the transmission wave and a reception signal based on the reflection wave.
  • the control unit estimates an arrival direction of the reflected wave based on the sample.
  • the control unit selects the sample from the beat signals whose peak in a result of performing the Fourier transform processing is equal to or larger than a predetermined threshold.
  • An electronic device includes a transmission antenna that transmits a transmission wave, a reception antenna that receives a reflected wave of the transmission wave, and a control unit.
  • the control unit generates a first sample based on a result of performing a first fast Fourier transform process on a beat signal generated based on a transmission signal based on the transmission wave and a reception signal based on the reflection wave.
  • the control unit generates a second sample based on a result of performing a second fast Fourier transform process on the first sample.
  • the control unit estimates a direction of arrival of the reflected wave based on the second sample.
  • the control unit selects the second sample from the beat signals whose peak in the result of performing the second fast Fourier transform processing is equal to or greater than a second threshold.
  • a method for controlling an electronic device includes the following steps. (1) transmitting a transmission signal as a transmission wave from a transmission antenna; (2) receiving a reception signal from a reception antenna as a reflected wave of the transmission wave; and (3) based on the transmission signal and the reception signal.
  • a control program for an electronic device causes a computer to execute the above steps (1) to (6).
  • FIG. 9 is a diagram illustrating a usage mode of the electronic device according to the embodiment.
  • FIG. 2 is a functional block diagram schematically illustrating a configuration of the electronic device according to the embodiment.
  • FIG. 3 is a diagram illustrating a configuration of a transmission signal according to one embodiment.
  • 9 is a flowchart illustrating an operation of the electronic device according to the embodiment.
  • 9 is a flowchart illustrating an operation of the electronic device according to the embodiment.
  • FIG. 4 is a diagram illustrating thresholds set in one embodiment.
  • 9 is a flowchart illustrating an operation of the electronic device according to the embodiment.
  • FIG. 4 is a diagram illustrating thresholds set in one embodiment.
  • An object of the present disclosure is to provide an electronic device, a control method for an electronic device, and a control program for an electronic device that improve the accuracy of measuring the arrival direction of a reflected wave. According to one embodiment, it is possible to provide an electronic device, a control method for an electronic device, and a control program for an electronic device that improve the accuracy of measuring the arrival direction of a reflected wave.
  • the electronic device is mounted on a vehicle (moving body) such as an automobile, for example, so that it is possible to measure (estimate) the direction of a predetermined object existing around the moving body. .
  • the electronic device can transmit a transmission wave around the moving object from the transmitting antenna installed on the moving object.
  • the electronic device can receive a reflected wave in which a transmitted wave is reflected from a receiving antenna provided on a moving object. At least one of the transmitting antenna and the receiving antenna may be provided in, for example, a radar sensor or the like installed on a mobile object.
  • the electronic device according to an embodiment is not limited to an automobile.
  • the electronic device according to one embodiment is an agricultural vehicle such as an autonomous driving car, a bus, a truck, a motorcycle, a bicycle, a ship, an aircraft, a tractor, a fire truck, an ambulance, a police car, a snowplow, a cleaning car for cleaning a road, a drone. , And pedestrians.
  • the electronic device according to the embodiment is not necessarily limited to a mobile object that moves with its own power.
  • the moving body on which the electronic device according to the embodiment is mounted may be a trailer portion towed by a tractor.
  • FIG. 1 is a diagram illustrating a usage mode of an electronic device according to an embodiment.
  • FIG. 1 illustrates an example in which a sensor including a transmitting antenna and a receiving antenna according to one embodiment is installed on a moving body.
  • a sensor 5 including a transmission antenna and a reception antenna according to one embodiment is installed in the mobile object 100 shown in FIG.
  • the sensor 5 may include, for example, at least one of a transmitting antenna and a receiving antenna. Further, the sensor 5 may appropriately include at least one of other functional units such as the control unit 10 (FIG. 3) included in the electronic device 1.
  • the moving body 100 shown in FIG. 1 may be an automobile such as a passenger car, but may be any type of moving body. In FIG. 1, the moving body 100 may be moving (running or slowing down) in the positive Y-axis direction (traveling direction), for example, may be moving in another direction, or may be moving. It may be stationary without it.
  • a sensor 5 having a plurality of transmitting antennas is installed on the moving body 100.
  • only one sensor 5 including a transmitting antenna and a receiving antenna is installed in front of the moving body 100.
  • the position where the sensor 5 is installed on the moving body 100 is not limited to the position shown in FIG. 1, and may be another position as appropriate.
  • the sensor 5 as shown in FIG. 1 may be installed on the left side, right side, and / or rear side of the moving body 100.
  • the number of such sensors 5 may be one or more arbitrary numbers in accordance with various conditions (or requirements) such as the range and / or accuracy of the measurement in the moving body 100.
  • the sensor 5 transmits an electromagnetic wave as a transmission wave from the transmission antenna. For example, when a predetermined target (for example, the target 200 shown in FIG. 1) exists around the moving body 100, at least a part of the transmission wave transmitted from the sensor 5 is reflected by the target and becomes a reflected wave. Become. Then, by receiving such a reflected wave by, for example, the receiving antenna of the sensor 5, the electronic device 1 mounted on the moving body 100 can detect the target object.
  • a predetermined target for example, the target 200 shown in FIG. 1
  • the sensor 5 having a transmitting antenna may be a radar (RADAR (Radio Detecting and Ranging)) sensor that transmits and receives radio waves.
  • RADAR Radio Detecting and Ranging
  • the sensor 5 is not limited to a radar sensor.
  • the sensor 5 according to an embodiment may be, for example, a sensor based on the technology of LIDAR (Light Detection and Ranging, Laser Imaging and Detection and Ranging) using light waves.
  • LIDAR Light Detection and Ranging, Laser Imaging and Detection and Ranging
  • Such sensors can be configured to include, for example, a patch antenna. Since techniques such as RADAR and LIDAR are already known, the detailed description may be simplified or omitted as appropriate.
  • the electronic device 1 mounted on the mobile unit 100 shown in FIG. 1 receives a reflected wave of a transmission wave transmitted from the transmission antenna of the sensor 5 from the reception antenna.
  • the electronic device 1 can detect the predetermined target 200 existing within a predetermined distance from the moving body 100.
  • the electronic device 1 can measure a distance L between a moving object 100 that is a host vehicle and a predetermined target 200.
  • the electronic device 1 can also measure the relative speed between the moving object 100, which is the host vehicle, and the predetermined target 200.
  • the electronic device 1 can also measure the direction (the angle of arrival ⁇ ) at which the reflected wave from the predetermined target 200 arrives at the mobile object 100 that is the host vehicle.
  • the target object 200 is, for example, at least one of an oncoming vehicle running in a lane adjacent to the moving body 100, a car running in parallel with the moving body 100, and a car before and after running in the same lane as the moving body 100. It may be.
  • the target object 200 is any object existing around the moving body 100 such as a motorcycle, a bicycle, a stroller, a pedestrian, a guardrail, a median strip, a road sign, a sidewalk step, a wall, a manhole, and an obstacle.
  • the target object detected by the sensor 5 includes an organism such as a human or an animal in addition to an inanimate object.
  • the target detected by the sensor 5 of the present disclosure includes a target including a person, an object, an animal, and the like, which is detected by the radar technology.
  • FIG. 1 shows a state in which the sensor 5 is installed outside the moving body 100.
  • the sensor 5 may be installed at various positions of the moving body 100.
  • the sensor 5 may be installed inside a bumper of the moving body 100 so as not to appear on the appearance of the moving body 100.
  • the position where the sensor 5 is installed on the moving body 100 may be either outside or inside the moving body 100 or both.
  • the inside of the moving body 100 includes, for example, the inside of the body of the moving body 100, the inside of a bumper, the inside of a headlight, or the inside of a vehicle.
  • the outside of the moving body 100 includes, for example, the surface of the body of the moving body 100, the surface of a bumper, or the surface of a headlight.
  • the transmitting antenna of the sensor 5 transmits a radio wave in a frequency band such as a millimeter wave (30 GHz or more) or a quasi-millimeter wave (for example, around 20 GHz to 30 GHz).
  • the transmitting antenna of the sensor 5 may transmit a radio wave having a frequency bandwidth of 4 GHz, such as 77 GHz to 81 GHz.
  • the transmitting antenna of the sensor 5 may transmit radio waves in a frequency band other than a millimeter wave (30 GHz or more) or a quasi-millimeter wave (for example, around 20 GHz to 30 GHz).
  • FIG. 2 is a functional block diagram schematically showing a configuration example of the electronic device 1 according to one embodiment.
  • FIG. 2 is a functional block diagram schematically showing a configuration example of the electronic device 1 according to one embodiment.
  • an example of a configuration of the electronic device 1 according to the embodiment will be described.
  • FMCW radar Frequency Modulated Continuous Wave
  • the FMCW radar generates a transmission signal by sweeping the frequency of a radio wave to be transmitted. Therefore, for example, in a millimeter-wave FMCW radar that uses radio waves in a frequency band of 79 GHz, the frequency of the radio waves used has a frequency bandwidth of 4 GHz, such as 77 GHz to 81 GHz.
  • the radar of the 79 GHz frequency band is characterized in that the usable frequency bandwidth is wider than other millimeter / quasi-millimeter wave radars such as the 24 GHz, 60 GHz, and 76 GHz frequency bands.
  • millimeter / quasi-millimeter wave radars such as the 24 GHz, 60 GHz, and 76 GHz frequency bands.
  • the electronic device 1 includes a sensor 5 and an ECU (Electronic Control Unit) 50.
  • the ECU 50 controls various operations of the moving body 100. It may be constituted by at least one or more ECUs.
  • the electronic device 1 according to one embodiment includes a control unit 10. Further, the electronic device 1 according to one embodiment may appropriately include other functional units such as at least one of the transmission unit 20, the reception units 30A to 30D, and the storage unit 40.
  • the electronic device 1 may include a plurality of receiving units, such as the receiving units 30A to 30D.
  • the receiving unit 30A, the receiving unit 30B, the receiving unit 30C, and the receiving unit 30D are simply referred to as the “receiving unit 30”.
  • the control unit 10 may include a distance FFT processing unit 12, a speed FFT processing unit 14, an arrival angle estimation unit 16, and a determination processing unit 18, as shown in FIG. These functional units included in the control unit 10 will be further described later.
  • the transmission unit 20 may include a signal generation unit 21, a synthesizer 22, phase control units 23A and 23B, amplifiers 24A and 24B, and transmission antennas 25A and 25B.
  • transmission antenna 25 when the transmission antenna 25A and the transmission antenna 25B are not distinguished, they are simply referred to as “transmission antenna 25”.
  • functional units when not distinguishing a plurality of functional units of the same type, such as the phase control units 23A and 23B, by omitting symbols such as A and B, Functional units may be referred to collectively.
  • the receiving unit 30 may include the corresponding receiving antennas 31A to 31D as shown in FIG.
  • each of the plurality of receiving units 30 may include an LNA 32, a mixer 33, an IF unit 34, and an AD conversion unit 35, as shown in FIG.
  • the receiving units 30A to 30D may have the same configuration.
  • FIG. 2 schematically shows a configuration of only the receiving unit 30A as a representative example.
  • the sensor 5 described above may include, for example, the transmission antenna 25 and the reception antenna 31.
  • the sensor 5 may appropriately include at least one of other functional units such as the control unit 10.
  • the control unit 10 included in the electronic device 1 can control the operation of the entire electronic device 1 including the control of each functional unit included in the electronic device 1.
  • the control unit 10 may include at least one processor such as a CPU (Central Processing Unit) to provide control and processing capability for performing various functions.
  • the control unit 10 may be realized by a single processor, may be realized by several processors, or may be realized by individual processors.
  • the processor may be implemented as a single integrated circuit. An integrated circuit is also called an IC (Integrated Circuit).
  • the processor may be implemented as a plurality of communicatively connected integrated circuits and discrete circuits.
  • the processor may be implemented based on various other known technologies.
  • the control unit 10 may be configured as, for example, a CPU and a program executed by the CPU.
  • the control unit 10 may appropriately include a memory required for the operation of the control unit 10.
  • the storage unit 40 may store a program executed by the control unit 10, a result of a process executed by the control unit 10, and the like. Further, the storage unit 40 may function as a work memory of the control unit 10.
  • the storage unit 40 can be configured by, for example, a semiconductor memory or a magnetic disk, but is not limited thereto, and can be an arbitrary storage device. Further, for example, the storage unit 40 may be a storage medium such as a memory card inserted into the electronic device 1 according to the embodiment. Further, the storage unit 40 may be an internal memory of the CPU used as the control unit 10 as described above.
  • the control unit 10 can control at least one of the transmission unit 20 and the reception unit 30.
  • the control unit 10 may control at least one of the transmission unit 20 and the reception unit 30 based on various information stored in the storage unit 40. Further, in the electronic device 1 according to the embodiment, the control unit 10 may instruct the signal generation unit 21 to generate a signal, or control the signal generation unit 21 to generate a signal.
  • the signal generation unit 21 generates a signal (transmission signal) transmitted as the transmission wave T from the transmission antenna 25 under the control of the control unit 10.
  • the signal generation unit 21 may assign the frequency of the transmission signal based on, for example, control by the control unit 10.
  • the signal generator 21 generates a signal of a predetermined frequency in a frequency band such as 77 to 81 GHz by receiving frequency information from the controller 10.
  • the signal generator 21 may include a functional unit such as a voltage controlled oscillator (VCO).
  • VCO voltage controlled oscillator
  • the signal generation unit 21 may be configured as hardware having the function, may be configured as a microcomputer, for example, or may be configured as a processor such as a CPU and a program executed by the processor. Is also good.
  • Each functional unit described below may be configured as hardware having the function, or, if possible, may be configured with, for example, a microcomputer, or may be configured with a processor such as a CPU and executed by the processor. It may be configured as a program to be executed.
  • the signal generation unit 21 may generate a transmission signal (a transmission chirp signal) such as a chirp signal.
  • the signal generator 21 may generate a signal whose frequency periodically changes linearly (linear chirp signal).
  • the signal generation unit 21 may be a chirp signal whose frequency periodically linearly increases from 77 GHz to 81 GHz as time passes.
  • the signal generation unit 21 may generate a signal whose frequency periodically repeats linearly increasing (up-chirp) and decreasing (down-chirp) from 77 GHz to 81 GHz over time.
  • the signal generated by the signal generation unit 21 may be set in the control unit 10 in advance, for example.
  • the signal generated by the signal generation unit 21 may be stored in advance in, for example, the storage unit 40 or the like. Since a chirp signal used in a technical field such as radar is known, a more detailed description will be simplified or omitted as appropriate.
  • the signal generated by the signal generator 21 is supplied to the synthesizer 22.
  • the ECU 50 included in the electronic device 1 can control the operation of the entire moving body 100, including the control of each functional unit included in the moving body 100.
  • the ECU 50 may include at least one processor, such as a CPU (Central Processing Unit), for example, to provide control and processing capabilities for performing various functions.
  • the ECU 50 may be implemented by a single processor, may be implemented by several processors, or may be implemented by individual processors.
  • the processor may be implemented as a single integrated circuit. An integrated circuit is also called an IC (Integrated Circuit).
  • the processor may be implemented as a plurality of communicatively connected integrated circuits and discrete circuits.
  • the processor may be implemented based on various other known technologies.
  • the ECU 50 may be configured as, for example, a CPU and a program executed by the CPU.
  • the ECU 50 may appropriately include a memory required for the operation of the ECU 50.
  • at least a part of the function of the control unit 10 may be a function of the ECU 50, or at least a part of the function of the ECU 50 may be a function of the control unit 10.
  • FIG. 3 is a diagram illustrating an example of a chirp signal generated by the signal generation unit 21.
  • the horizontal axis represents elapsed time
  • the vertical axis represents frequency.
  • the signal generation unit 21 generates a linear chirp signal whose frequency periodically changes linearly.
  • each chirp signal is shown as c1, c2,..., C8.
  • the frequency linearly increases with time.
  • one subframe is included including eight chirp signals such as c1, c2,..., C8. That is, the subframe 1 and the subframe 2 shown in FIG. 3 each include eight chirp signals, such as c1, c2,..., C8.
  • one frame including 16 subframes such as subframe 1 to subframe 16 is included. That is, each of the subframes includes 16 subframes such as the frame 1 and the frame 2 shown in FIG.
  • a frame interval having a predetermined length may be included between frames.
  • the same configuration may be applied to frame 2 and subsequent frames. Further, in FIG. 3, the same configuration may be applied to the frame 3 and subsequent frames.
  • the signal generation unit 21 may generate the transmission signal as an arbitrary number of frames. In FIG. 3, some chirp signals are omitted. Thus, the relationship between the time and the frequency of the transmission signal generated by the signal generation unit 21 may be stored in, for example, the storage unit 40 or the like.
  • the electronic device 1 may transmit a transmission signal including a subframe including a plurality of chirp signals.
  • the electronic device 1 according to an embodiment may transmit a transmission signal including a frame including a predetermined number of subframes.
  • the electronic device 1 transmits a transmission signal having a frame structure as shown in FIG.
  • the frame structure as shown in FIG. 3 is an example, and for example, the number of chirp signals included in one subframe is not limited to eight.
  • the signal generator 21 may generate a subframe including an arbitrary number (for example, an arbitrary plurality) of chirp signals.
  • the subframe structure as shown in FIG. 3 is also an example, and for example, the number of subframes included in one frame is not limited to 16.
  • the signal generation unit 21 may generate a frame including an arbitrary number (for example, an arbitrary plurality) of subframes.
  • the synthesizer 22 raises the frequency of the signal generated by the signal generator 21 to a frequency in a predetermined frequency band.
  • the synthesizer 22 may increase the frequency of the signal generated by the signal generator 21 up to the frequency selected as the frequency of the transmission wave T transmitted from the transmission antenna 25.
  • the frequency selected as the frequency of the transmission wave T transmitted from the transmission antenna 25 may be set by the control unit 10, for example. Further, the frequency selected as the frequency of the transmission wave T transmitted from the transmission antenna 25 may be stored in the storage unit 40, for example.
  • the signal whose frequency has been increased by the synthesizer 22 is supplied to the phase controller 23 and the mixer 33. When there are a plurality of receivers 30, the signal whose frequency has been raised by the synthesizer 22 may be supplied to each mixer 33 in the plurality of receivers 30.
  • the phase control unit 23 controls the phase of the transmission signal supplied from the synthesizer 22. Specifically, the phase control unit 23 may adjust the phase of the transmission signal by appropriately advancing or delaying the phase of the signal supplied from the synthesizer 22 based on the control of the control unit 10, for example. In this case, the phase control unit 23 may adjust the phase of each transmission signal based on the path difference between the transmission waves T transmitted from the plurality of transmission antennas 25. By appropriately adjusting the phase of each transmission signal by the phase control unit 23, the transmission waves T transmitted from the plurality of transmission antennas 25 reinforce each other in a predetermined direction to form a beam (beam forming).
  • the correlation between the direction of beamforming and the amount of phase to be controlled of the transmission signal transmitted by each of the plurality of transmission antennas 25 may be stored in the storage unit 40, for example.
  • the transmission signal whose phase has been controlled by the phase control unit 23 is supplied to the amplifier 24.
  • the amplifier 24 amplifies the power of the transmission signal supplied from the phase control unit 23 based on, for example, control by the control unit 10. Since the technology itself for amplifying the power of the transmission signal is already known, a more detailed description will be omitted.
  • the amplifier 24 is connected to the transmission antenna 25.
  • the transmission antenna 25 outputs (transmits) the transmission signal amplified by the amplifier 24 as a transmission wave T.
  • the sensor 5 may be configured to include a plurality of transmission antennas, for example, the transmission antenna 25A and the transmission antenna 25B. Since the transmitting antenna 25 can be configured in the same manner as the transmitting antenna used for the known radar technology, a more detailed description is omitted.
  • the electronic device 1 can transmit a transmission signal (for example, a transmission chirp signal) as the transmission wave T from the transmission antenna 25.
  • a transmission signal for example, a transmission chirp signal
  • at least one of the functional units constituting the electronic device 1 may be housed in a casing that cannot be easily opened in one casing.
  • the transmitting antenna 25, the receiving antenna 31, the amplifier 24A, and the amplifier 24B are housed in one housing, and that the housing cannot be easily opened.
  • the transmitting antenna 25 transmits the transmission wave T to the outside of the moving body 100 via a member such as a radar cover. Is also good.
  • the radar cover may be made of a material that allows electromagnetic waves to pass, such as a synthetic resin or rubber.
  • This radar cover may be, for example, a housing for the sensor 5.
  • the electronic device 1 shown in FIG. 2 includes two transmission antennas 25 like the transmission antenna 25A and the transmission antenna 25B, and transmits the transmission wave T by the two transmission antennas 25. Therefore, the electronic device 1 illustrated in FIG. 2 includes two functional units required to transmit the transmission wave T from the two transmission antennas 25, respectively. Specifically, the electronic device 1 includes two phase control units 23 like a phase control unit 23A and a phase control unit 23B. The electronic device 1 shown in FIG. 2 includes two amplifiers 24, such as an amplifier 24A and an amplifier 24B.
  • the number of the transmission antennas 25 included in the electronic device 1 according to an embodiment may be an arbitrary plurality, such as three or more.
  • the electronic device 1 according to one embodiment may include the same number of amplifiers 24 as the plurality of transmission antennas 25.
  • the electronic device 1 according to one embodiment may include the same number of phase control units 23 as the plurality of transmission antennas 25.
  • the receiving antenna 31 receives the reflected wave R.
  • the reflected wave R is obtained by reflecting the transmitted wave T on a predetermined target 200.
  • the receiving antenna 31 may include a plurality of antennas such as the receiving antennas 31A to 31D.
  • the receiving antenna 31 can be configured in the same manner as a receiving antenna used for a known radar technology, and thus a more detailed description is omitted.
  • the receiving antenna 31 is connected to the LNA 32. A reception signal based on the reflected wave R received by the reception antenna 31 is supplied to the LNA 32.
  • a transmission wave T transmitted as a transmission signal (a transmission chirp signal) such as a chirp signal from a plurality of reception antennas 31 is a reflected wave R reflected by a predetermined target 200. Can be received.
  • a transmission chirp signal as the transmission wave T
  • a reception signal based on the received reflected wave R is referred to as a reception chirp signal. That is, the electronic device 1 receives a reception signal (for example, a reception chirp signal) from the reception antenna 31 as the reflected wave R.
  • the receiving antenna 31 may receive the reflected wave R from outside the moving body 100 via a member such as a radar cover.
  • the radar cover may be made of a material that allows electromagnetic waves to pass, such as a synthetic resin or rubber.
  • This radar cover may be, for example, a housing for the sensor 5.
  • one sensor 5 may include, for example, at least one transmitting antenna 25 and at least one receiving antenna 31.
  • one sensor 5 may include a plurality of transmitting antennas 25 and a plurality of receiving antennas 31.
  • one radar sensor may be covered with a member such as one radar cover.
  • the LNA 32 amplifies a received signal based on the reflected wave R received by the receiving antenna 31 with low noise.
  • the LNA 32 may be a low noise amplifier (Low Noise Amplifier), and amplifies the reception signal supplied from the reception antenna 31 with low noise.
  • the received signal amplified by the LNA 32 is supplied to the mixer 33.
  • the mixer 33 generates a beat signal by mixing (multiplying) the reception signal of the RF frequency supplied from the LNA 32 with the transmission signal supplied from the synthesizer 22.
  • the beat signal mixed by the mixer 33 is supplied to the IF unit 34.
  • the IF unit 34 performs frequency conversion on the beat signal supplied from the mixer 33 to reduce the frequency of the beat signal to an intermediate frequency (IF (Intermediate Frequency)).
  • IF Intermediate Frequency
  • the AD converter 35 digitizes the analog beat signal supplied from the IF unit 34.
  • the AD conversion unit 35 may be configured by an arbitrary analog-to-digital conversion circuit (Analog to Digital Converter (ADC)).
  • ADC Analog to Digital Converter
  • the beat signal digitized by the AD conversion unit 35 is supplied to the distance FFT processing unit 12 of the control unit 10.
  • the beat signals digitized by the plurality of AD conversion units 35 may be supplied to the distance FFT processing unit 12.
  • the distance FFT processing unit 12 estimates the distance between the moving object 100 on which the electronic device 1 is mounted and the object 200 based on the beat signal supplied from the AD conversion unit 35.
  • the distance FFT processing unit 12 may include, for example, a processing unit that performs fast Fourier transform.
  • the distance FFT processing unit 12 may be configured by an arbitrary circuit or chip for performing a fast Fourier transform (Fast Fourier Transform (FFT)) process.
  • FFT Fast Fourier Transform
  • the distance FFT processing unit 12 and the speed FFT processing unit 14 may perform discrete Fourier transform or Fourier transform.
  • the distance FFT processing unit 12 performs FFT processing on the beat signal digitized by the AD conversion unit 35 (hereinafter, appropriately referred to as “first FFT processing”).
  • first FFT processing FFT processing on the complex signal supplied from the AD conversion unit 35.
  • the beat signal digitized by the AD converter 35 can be represented as a time change in signal strength (power).
  • the distance FFT processing unit 12 performs the FFT processing on such a beat signal, so that the beat signal can be represented as a signal strength (power) corresponding to each frequency. If the peak obtained by the first FFT processing is equal to or larger than a predetermined threshold, the distance FFT processing unit 12 may determine that the predetermined target 200 is located at a distance corresponding to the peak.
  • the distance FFT processing unit 12 can estimate the distance to a predetermined target based on one chirp signal (for example, c1 shown in FIG. 3). That is, the electronic device 1 can measure (estimate) the distance L illustrated in FIG. 1 by performing the first FFT processing. Since a technique for measuring (estimating) a distance from a predetermined object by performing FFT processing on a beat signal is known, a more detailed description is appropriately simplified or omitted. The result of performing the first FFT processing by the distance FFT processing unit 12 may be supplied to the speed FFT processing unit 14.
  • the speed FFT processing unit 14 estimates the relative speed between the moving object 100 on which the electronic device 1 is mounted and the object 200 based on the beat signal on which the first FFT processing has been performed by the distance FFT processing unit 12.
  • the speed FFT processing unit 14 may include a processing unit that performs fast Fourier transform, for example.
  • the speed FFT processing unit 14 may be configured by an arbitrary circuit or chip that performs fast Fourier transform (Fast Transform (FFT)) processing.
  • FFT Fast Fourier transform
  • the speed FFT processing unit 14 further performs FFT processing on the beat signal on which the first FFT processing has been performed by the distance FFT processing unit 12 (hereinafter, appropriately referred to as “second FFT processing”).
  • the speed FFT processing unit 14 may perform FFT processing on the complex signal supplied from the distance FFT processing unit 12.
  • the speed FFT processing unit 14 can estimate the relative speed with respect to a predetermined target based on the subframe of the chirp signal (for example, subframe 1 shown in FIG. 3).
  • a plurality of vectors can be generated.
  • the electronic device 1 can measure (estimate) the relative speed between the moving object 100 and the predetermined target object 200 illustrated in FIG. 1 by performing the second FFT processing. Since the technology itself for measuring (estimating) the relative speed with respect to a predetermined object by performing the speed FFT process on the result of performing the distance FFT process is publicly known, a more detailed description will be simplified as appropriate. Or omit it.
  • the result of the second FFT processing performed by the speed FFT processing unit 14 may be supplied to the arrival angle estimation unit 16.
  • the arrival angle estimation unit 16 estimates the direction in which the reflected wave R arrives from the predetermined target 200 based on the result of the FFT processing performed by the speed FFT processing unit 14.
  • the electronic device 1 can estimate the direction in which the reflected waves R arrive.
  • the plurality of receiving antennas 31 are arranged at predetermined intervals.
  • the transmission wave T transmitted from the transmission antenna 25 is reflected by a predetermined target 200 to be a reflected wave R, and the plurality of receiving antennas 31 arranged at predetermined intervals receive the reflected waves R, respectively.
  • the electronic device 1 estimates the direction in which the reflected waves R arrive at the receiving antenna 31 based on the phases of the reflected waves R received by the plurality of receiving antennas 31 and the path difference between the respective reflected waves R. Can be. That is, the electronic device 1 can measure (estimate) the arrival angle ⁇ illustrated in FIG. 1 based on the result of the second FFT processing.
  • Various techniques have been proposed for estimating the direction in which the reflected wave R arrives based on the result of the speed FFT processing. Accordingly, a more detailed description of known techniques will be simplified or omitted as appropriate.
  • the information on the angle of arrival ⁇ (angle information) estimated by the angle of arrival estimating unit 16 may be output from, for example, the control unit 10 to the ECU 50 or the like. In this case, when the moving body 100 is a car, communication may be performed using a communication interface such as CAN (Controller Area Network).
  • the determination processing unit 18 performs a process of determining whether each value used in the arithmetic processing is equal to or greater than a predetermined threshold. For example, the determination processing unit 18 may determine whether or not the peaks in the results of the processing performed by the distance FFT processing unit 12 and the speed FFT processing unit 14 are each equal to or greater than a predetermined threshold.
  • the determination processing unit 18 may determine whether the peak in the result of the first FFT processing performed by the distance FFT processing unit 12 is equal to or greater than a first threshold. That is, the determination processing unit 18 may determine whether the peak in the result of performing the first FFT processing on the beat signal generated based on the transmission signal and the reception signal is equal to or more than the first threshold. . The setting of the first threshold will be further described later. In this manner, when it is determined that the peak in the result of performing the first FFT processing on the beat signal is equal to or greater than the first threshold, the beat signal may be counted as a “first sample”. Counting the beat signal as a “first sample” means that the determination processing unit 18 selects a sample whose peak in the result of performing the first FFT processing on the beat signal is equal to or larger than a first threshold.
  • the determination processing unit 18 may determine whether the peak in the result of the second FFT processing performed by the speed FFT processing unit 14 is equal to or more than a second threshold. That is, the determination processing unit 18 may determine whether or not the peak in the result of performing the second FFT processing on the first sample is equal to or larger than the second threshold. The setting of the second threshold will be further described later. In this manner, when it is determined that the peak in the result of performing the second FFT processing on the first sample is equal to or larger than the second threshold, the first sample may be counted as the “second sample”. Counting the beat signal as a “second sample” means that the determination processing unit 18 selects a sample whose peak in the result of performing the second FFT processing on the beat signal is equal to or larger than a second threshold.
  • the arrival angle estimation unit 16 estimates the direction in which the reflected wave R arrives from the predetermined target 200 based on the result of the FFT processing performed by the speed FFT processing unit 14.
  • the speed FFT processing unit 14 performs the second FFT processing on the beat signal on which the first FFT processing has been performed by the distance FFT processing unit 12.
  • the distance FFT processing unit 12 divides the first sample based on the result of performing the first FFT processing on the beat signal generated based on the transmission signal and the reception signal according to the determination processing by the determination processing unit 18. May be generated.
  • the speed FFT processing unit 14 may generate the second sample according to the determination processing by the determination processing unit 18 based on the result of performing the second FFT processing on the first sample.
  • the arrival angle estimation unit 16 may estimate the arrival direction (arrival angle ⁇ ) of the reflected wave R based on the generated second sample.
  • the electronic device 1 may estimate the arrival direction (the arrival angle ⁇ ) of the reflected wave R based on the covariance matrix obtained from the second sample.
  • the electronic device 1 shown in FIG. 2 includes two transmitting antennas 25 and four receiving antennas 31. By providing the plurality of transmitting antennas 25 and the plurality of receiving antennas 31 as described above, the electronic device 1 may use these antennas as, for example, eight virtual antenna arrays. As described above, the electronic device 1 may transmit and receive the reflected waves R of the 16 sub-frames illustrated in FIG. 3 by using the eight virtual antennas.
  • FIGS. 4 to 7 are diagrams illustrating an example of the operation of the electronic device 1 according to the embodiment.
  • an example of the operation of the electronic device 1 according to the embodiment will be described.
  • an example in which the electronic device 1 is configured as a millimeter-wave type FMCW radar will be described.
  • FIG. 4 is a flowchart illustrating the operation of the electronic device 1 according to the embodiment.
  • the electronic device 1 detects a predetermined target 200 existing around the moving body 100 and estimates a direction (arrival angle ⁇ ) from which the reflected wave R arrives. You may start when.
  • the control unit 10 of the electronic device 1 controls the transmission antenna 25 of the transmission unit 20 to transmit a chirp signal (step S1). Specifically, the control unit 10 instructs the signal generation unit 21 to generate a transmission signal (chirp signal). Then, the control unit 10 obtains the synthesizer 22, the phase control unit 23, and the amplifier 24, and controls the chirp signal to be transmitted as the transmission wave T from the transmission antenna 25.
  • step S1 the control unit 10 controls to receive the chirp signal from the receiving antenna 31 of the receiving unit 30 (step S2).
  • the control unit 10 controls the receiving unit 30 to generate a beat signal by multiplying the transmission chirp signal and the reception chirp signal (step S3).
  • the control unit 10 controls so that the chirp signal received from the reception antenna 31 is amplified by the LNA 32 and is multiplied by the mixer 33 with the transmission chirp signal.
  • the processing from step S1 to step S3 may be performed by employing, for example, a known millimeter-wave type FMCW radar technology.
  • step S3 When the beat signal is generated in step S3, the control unit 10 generates the above-described first sample from each generated chirp signal (step S4).
  • FIG. 5 is a flowchart illustrating the process of step S4 in FIG. 4 in more detail.
  • step S11 the distance FFT processing unit 12 performs the first FFT processing on the beat signal generated in step S3 as shown in FIG. 5 (step S11). As described above, when the processing in step S11 is performed, signal strength (power) corresponding to each frequency is obtained. In step S11, the distance FFT processing unit 12 may perform the first FFT processing on the digital beat signal supplied from the AD conversion unit 35.
  • the determination processing unit 18 determines whether the peak of the generated beat signal in the result of the first FFT processing is equal to or greater than the first threshold. It is determined whether or not it is (step S12).
  • FIG. 6 is a diagram illustrating an example of setting the first threshold.
  • FIG. 6 is a diagram illustrating an example of a result of performing the first FFT processing on the beat signal in step S11, for example.
  • the horizontal axis represents frequency f
  • the vertical axis represents signal strength (power) P.
  • the signal strength indicates a value close to Pa.
  • the signal intensity indicates a peak value P (f1).
  • the determination processing unit 18 sets the power threshold value Pth so that, for example, the peak value P (f1) of the power can be detected.
  • the threshold value Pth may be set, for example, based on the average value of the power in the region fr1 and / or the region fr2 other than the peripheral region including the frequency f1 when the power reaches the peak value P (f1). .
  • the average of the signal intensity indicates a value almost close to Pa. Therefore, the average value of the power in the region fr1 and / or the region fr2 other than the peripheral region including the frequency f1 when the power reaches the peak value P (f1) is set to Pa, for example.
  • a value obtained by adding a predetermined value to the power average value Pa may be set as the power threshold value Pth.
  • the guard band may be removed in a peripheral region including the frequency f1 when the power reaches the peak value P (f1).
  • the determination processing unit 18 can determine whether the peak in the result of performing the first FFT processing on the beat signal is equal to or more than the first threshold value.
  • step S12 shown in FIG. 5 it is determined whether or not the peak in the result of performing the first FFT processing on the beat signal is equal to or greater than a first threshold. If it is determined in step S12 that the peak is equal to or greater than the first threshold, the determination processing unit 18 performs the operation in step S13, and ends the processing illustrated in FIG. On the other hand, when it is determined in step S12 that the peak is less than the first threshold, the determination processing unit 18 ends the processing illustrated in FIG. 5 without performing the operation in step S13.
  • step S13 the determination processing unit 18 counts, as a first sample, a beat signal determined to have a peak equal to or greater than a first threshold as a result of performing the first FFT processing.
  • the determination processing unit 18 may store the first sample in the storage unit 40 or the internal memory of the control unit 10 for the subsequent processing.
  • the beat signal on which the first FFT processing is performed may be, for example, one chirp signal (for example, c1 shown in FIG. 3) as a unit. Therefore, in step S13, one chirp signal may be counted as the first sample.
  • the distance FFT processing unit 12 may generate the first sample from one chirp signal in step S4 shown in FIG.
  • step S5 the determination processing unit 18 determines whether or not the processing of step S4 has been performed on all of the chirp signals included in one subframe (step S5).
  • step S5 the determination processing unit 18 performs the process of step S4 on, for example, eight chirp signals (for example, c1 to c8 shown in FIG. 3) included in one subframe (for example, subframe 1 shown in FIG. 3). You may decide whether or not it was done
  • step S5 If it is determined in step S5 that there is a chirp signal included in one subframe that has not been subjected to the processing in step S4, the control unit 10 returns to step S1 and continues the processing.
  • step S6 means, for example, that the first FFT processing has been performed on all eight chirp signals (c1 to c8) included in subframe 1 shown in FIG. Then, when proceeding to step S6, of the eight chirp signals (c1 to c8) described above, the one whose peak in the result of the first FFT processing is equal to or more than the first threshold is counted as the first sample. You.
  • step S5 When it is determined in step S5 that the processing in step S4 has been performed on all the chirp signals included in one subframe, the control unit 10 generates the above-described second sample from the generated first sample. (Step S6).
  • FIG. 7 is a flowchart illustrating the process of step S6 in FIG. 4 in more detail.
  • step S6 the speed FFT processing unit 14 performs a second FFT process on the first sample generated in step S4 as shown in FIG. 7 (step S21).
  • step S21 the speed FFT processing unit 14 may perform the second FFT processing on the result of the first FFT processing performed by the distance FFT processing unit 12.
  • the determination processing unit 18 determines that the peak in the result of the second FFT processing performed in the first sample subjected to the second FFT processing is the second threshold value. It is determined whether or not the above is achieved (step S22).
  • FIG. 8 is a diagram illustrating an example of setting the second threshold.
  • FIG. 8 is a diagram illustrating an example of a result of performing the second FFT processing on the first sample in step S21, for example.
  • the horizontal axis indicates the speed v
  • the vertical axis indicates the signal strength (power) P.
  • the signal strength indicates a value close to P'a.
  • the signal intensity indicates a peak value P '(v1).
  • the determination processing unit 18 sets the power threshold value P′th so that, for example, a peak value P ′ (v1) of power can be detected.
  • the threshold value P'th is set based on, for example, the average value of the power in the region vr1 and / or the region vr2 other than the peripheral region including the speed v1 when the power reaches the peak value P '(v1). May do it. For example, in FIG. 8, when the speed is in the region vr ⁇ b> 1 and / or the region vr ⁇ b> 2, the average of the signal strength shows a value substantially close to P′a.
  • the average value of the power in the region vr1 and / or the region vr2 other than the peripheral region including the speed v1 when the power reaches the peak value P '(v1) is set to, for example, P'a.
  • a value obtained by adding a predetermined value to the average value P'a of the power may be set as the threshold value P'th of the power.
  • the guard band may be removed in a peripheral region including the speed v1 when the power reaches the peak value P '(v1).
  • the determination processing unit 18 determines whether the peak in the result of performing the second FFT processing on the first sample is equal to or larger than the second threshold value. be able to.
  • step S22 shown in FIG. 7 it is determined whether or not the peak in the result of performing the second FFT processing on the first sample is equal to or greater than a second threshold. If it is determined in step S22 that the peak is equal to or greater than the second threshold, the determination processing unit 18 performs the operation in step S23 and ends the processing illustrated in FIG. On the other hand, when it is determined in step S22 that the peak is less than the second threshold, the determination processing unit 18 ends the processing illustrated in FIG. 7 without performing the operation in step S23.
  • step S23 the determination processing unit 18 counts, as a second sample, the first sample for which it has been determined that the peak in the result of performing the second FFT processing is equal to or greater than the second threshold.
  • the determination processing unit 18 may store the second sample in the storage unit 40 or the internal memory of the control unit 10 for the subsequent processing.
  • the first sample on which the second FFT processing is performed may be based on, for example, a chirp signal (for example, c1 to c8 shown in FIG. 3) included in one subframe. Therefore, in step S23, what is counted as the second sample may be a chirp signal included in one subframe as a unit.
  • the speed FFT processing unit 14 generates the second sample from the chirp signal included in one subframe in step S6 illustrated in FIG.
  • step S6 determines whether the processing in step S6 has been performed on the chirp signals of all the subframes included in one frame (step S7). .
  • step S7 the determination processing unit 18 determines the chirp signals of all 16 subframes (subframe 1 to subframe 16 shown in FIG. 3) included in one frame (for example, frame 1 shown in FIG. 3). It may be determined whether or not the processing in step S6 has been performed.
  • step S7 If it is determined in step S7 that there is a chirp signal included in one frame that has not been subjected to the processing in step S6, the control unit 10 returns to step S1 and continues the processing.
  • step S8 means that the second FFT processing has been performed on, for example, 16 subframes (subframe 1 to subframe 16) included in frame 1 shown in FIG.
  • step S8 among the first samples included in the above-described 16 subframes, those whose peaks in the result of the second FFT processing performed are equal to or larger than the second threshold are counted as the second samples. Is done.
  • step S8 the arrival angle estimation unit 16 estimates the arrival direction (arrival angle ⁇ ) of the reflected wave R based on the generated second sample (step S8).
  • the arrival angle estimation unit 16 may estimate the arrival direction of the reflected wave R based on, for example, a covariance matrix obtained from the second sample.
  • the incoming signal is obtained using the complex signal (cx) of the peak of the second sample in which the peak in the result of the second FFT processing performed in one frame (16 subframes) of the transmission signal is equal to or larger than the second threshold.
  • a covariance matrix for estimating the direction (angle of arrival ⁇ ) may be obtained.
  • the calculation of the covariance matrix cr may be performed, for example, according to the following equation (1).
  • cx represents the complex signal of the peak after velocity Fourier transform
  • conj (cx) represents the conjugate complex number of cx
  • k and l represent the number of the antenna
  • N represents the number of samples of the covariance matrix
  • the electronic device 1 estimates the arrival direction (arrival angle ⁇ ) of the reflected wave R based on the transmission signal and the reception signal.
  • the electronic device 1 may generate a first sample based on a result of performing a first FFT process on a beat signal generated based on a transmission signal and a reception signal.
  • the first sample may be, for example, a set of chirp signals.
  • the electronic device 1 according to an embodiment may generate the second sample based on a result of performing the second FFT processing on the first sample.
  • the second sample may be, for example, a set of subframes.
  • the electronic device 1 can estimate the arrival direction (the arrival angle ⁇ ) of the reflected wave R based on the second sample.
  • the electronic device 1 may estimate the arrival direction of the reflected wave R based on the covariance matrix obtained from the second sample.
  • the electronic device 1 according to an embodiment may estimate the arrival direction (the arrival angle ⁇ ) of the reflected wave R based on the covariance matrix obtained from the second sample.
  • the first sample may be such that the peak in the result of performing the first FFT processing is equal to or more than the first threshold among the beat signals generated based on the transmission signal and the reception signal.
  • the first threshold value may be set based on an average of power (power) corresponding to a region excluding a predetermined region including a peak in a result of performing the first FFT processing.
  • the second sample may be such that the peak of the first sample obtained by performing the second FFT processing is equal to or larger than the second threshold.
  • the second threshold value may be set based on an average of power (power) corresponding to a region excluding a predetermined region including a peak in a result of performing the second FFT processing.
  • the electronic device 1 performs the Fourier transform of the speed using a plurality of (for example, eight) chirp signals for the distance at which the peak of the Fourier transform of the distance is equal to or larger than the threshold. Then, the electronic device 1 according to the embodiment counts how many subframes the speed at which the peak of the Fourier transform processing of the speed is equal to or more than the threshold value. In this way, the electronic device 1 according to one embodiment estimates the arrival direction of the reflected wave by obtaining the correlation matrix using the complex signal of the peak of the Fourier transform at a speed equal to or higher than the threshold.
  • the accuracy of measuring the arrival direction (the arrival angle ⁇ ) of the reflected wave R can be improved.
  • the angle estimation error may increase.
  • the angle estimation error of the arrival angle ⁇ increases.
  • MUSIC MUltiple SIgnal Classification
  • noise can be removed before calculation using an algorithm such as MUSIC. Therefore, according to the electronic device 1 according to the embodiment, the estimation error of the arrival direction of the reflected wave R can be reduced.
  • the electronic device 1 when the peak in the result of performing the second FFT processing for obtaining the relative speed is equal to or more than the second threshold, the electronic device 1 is adopted as the second sample. Therefore, according to the electronic device 1 according to the embodiment, it is possible to reduce interference waves from objects other than the object having the same distance and the same relative speed.
  • ⁇ Circle around (1) ⁇ a plurality of samples are used for the covariance matrix calculated when estimating the arrival direction of the reflected wave R. Therefore, according to the electronic device 1 according to the embodiment, even if a plurality of objects are simultaneously present in the same distance and the same relative speed range, the arrival directions of the reflected waves R from each are estimated. be able to.
  • the object when estimating the arrival direction of the reflected wave R from an object having a relatively high relative velocity using radar technology, the object is transmitted and received while transmitting and receiving a chirp signal for obtaining a covariance matrix. It does not always exist in the range of the distance.
  • the arrival direction of the reflected wave R from the target is estimated by using only the signal in the range of the distance. Therefore, according to the electronic device 1 according to the embodiment, it is possible to reduce the influence of noise and / or interference in estimating the arrival direction of the reflected wave R.
  • the “the distance” is the distance indicated in the step of the distance FFT.
  • the distance step may be moved from the distance step to the next distance step within all subframe times.
  • the target object does not exist in the range of the distance while transmitting and receiving the chirp signal for obtaining the covariance matrix.
  • the beat signal generated based on the transmission signal and the reception signal whose peak in the result of performing the first FFT processing is equal to or more than the first threshold is used as the first sample.
  • only the first sample having a peak equal to or more than the second threshold as a result of performing the second FFT processing is defined as the second sample.
  • the beat signal is generated. The beat signal of all subframes included may be used as the first sample.
  • the first sample is generated. All the first samples in the frame including the samples may be used as the second samples.
  • the first frame when there is a beat signal in which the peak in the result of performing the first FFT processing is equal to or more than the first threshold, the first frame includes the subframe including the beat signal. May be all beat signals. Further, in one embodiment, if there is a first sample in which the peak in the result of performing the second FFT processing is equal to or more than the second threshold value among the first samples, a frame including the first sample is used. All the first samples may be used.
  • each functional unit, each means, each step, and the like are added to another embodiment so as not to be logically inconsistent, or each functional unit, each means, each step, and the like in another embodiment are used. It is possible to replace Further, in each embodiment, a plurality of functional units, each means, each step, and the like can be combined into one or divided. Further, each embodiment of the present disclosure described above is not limited to being faithfully implemented in each of the embodiments described above, and may be implemented by appropriately combining the features or omitting some of them. You can also.
  • the embodiments described above are not limited only to the implementation as the electronic device 1.
  • the above-described embodiment may be implemented as a control method for a device such as the electronic device 1.
  • the above-described embodiment may be implemented as a control program for a device such as the electronic device 1.
  • the electronic device 1 may include, for example, only the control unit 10.
  • the electronic device 1 according to one embodiment includes, in addition to the control unit 10, at least one of a signal generation unit 21, a synthesizer 22, a phase control unit 23, an amplifier 24, and a transmission antenna 25 as illustrated in FIG. May be included as appropriate.
  • the electronic device 1 according to one embodiment includes at least one of the reception antenna 31, the LNA 32, the mixer 33, the IF unit 34, and the AD conversion unit 35 instead of or in addition to the above-described function unit. It may be configured to include it as appropriate.
  • the electronic device 1 according to one embodiment may include a storage unit 40.
  • the electronic device 1 according to the embodiment can adopt various configurations. Further, when the electronic device 1 according to an embodiment is mounted on the moving body 100, for example, at least one of the above-described functional units may be installed at an appropriate place such as inside the moving body 100. On the other hand, in one embodiment, for example, at least one of the transmission antenna 25 and the reception antenna 31 may be installed outside the moving body 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

電子機器は、送信波を送信する送信アンテナと、送信波が反射された反射波を受信する受信アンテナと、制御部とを備える。制御部は、送信波に基づく送信信号及び反射波に基づく受信信号に基づいて生成されたビート信号に第1の高速フーリエ変換処理を行った結果に基づいて第1サンプルを生成する。制御部は、第1サンプルに第2の高速フーリエ変換処理を行った結果に基づいて第2サンプルを生成し、第2サンプルに基づいて、反射波の到来方向を推定する。制御部は、第1サンプルを、ビート信号のうち、第1の高速フーリエ変換処理を行った結果におけるピークが第1閾値以上になるものとする。

Description

電子機器、電子機器の制御方法、及び電子機器の制御プログラム 関連出願の相互参照
 本出願は、2018年9月5日に日本国に特許出願された特願2018-165795の優先権を主張するものであり、この先の出願の開示全体を、ここに参照のために取り込む。
 本開示は、電子機器、電子機器の制御方法、及び電子機器の制御プログラムに関する。
 例えば自動車に関連する産業などの分野において、自車両と対象物との間の距離などを測定する技術が重要視されている。特に、近年、ミリ波のような電波を送信し、障害物などの対象物に反射した反射波を受信することで、対象物との間の距離などを測定するレーダ(RADAR(Radio Detecting and Ranging))の技術が、種々研究されている。このような距離などを測定する技術の重要性は、運転者の運転をアシストする技術、及び、運転の一部又は全部を自動化する自動運転に関連する技術の発展に伴い、今後ますます高まると予想される。
 また、送信した電波が反射された反射波を受信することで、反射波が到来する方向を測定(推定)する技術も、種々提案されている。例えば特許文献1及び特許文献2は、到来波方向の推定を精度良く行い得るレーダの技術を提案している。また、例えば特許文献3及び特許文献4は、到来波方向の推定を行う際のデータ又は演算量を低減し得るレーダの技術を提案している。
特開2009-162688号公報 特開2011-137650号公報 特開2009-162689号公報 特開2012-163403号公報
 一実施形態に係る電子機器は、送信波を送信する送信アンテナと、当該送信波が反射された反射波を受信する受信アンテナと、制御部と、を備える。
 前記制御部は、前記送信波に基づく送信信号及び前記反射波に基づく受信信号に基づいて生成されたビート信号に第1の高速フーリエ変換処理を行った結果に基づいて第1サンプルを生成する。
 前記制御部は、前記第1サンプルに第2の高速フーリエ変換処理を行った結果に基づいて第2サンプルを生成し、前記第2サンプルに基づいて、前記反射波の到来方向を推定する。
 前記制御部は、前記第1サンプルを、前記ビート信号のうち、前記第1の高速フーリエ変換処理を行った結果におけるピークが第1閾値以上になるものとする。
 一実施形態に係る電子機器は、送信波を送信する送信アンテナと、当該送信波が反射された反射波を受信する受信アンテナと、制御部と、を備える。
 前記制御部は、前記送信波に基づく送信信号及び前記反射波に基づく受信信号に基づいて生成されたビート信号にフーリエ変換処理を行った結果に基づいてサンプルを生成する。
 前記制御部は、前記サンプルに基づいて、前記反射波の到来方向を推定する。
 前記制御部は、前記サンプルを、前記ビート信号のうち、前記フーリエ変換処理を行った結果におけるピークが所定の閾値以上になるものから選択する。
 一実施形態に係る電子機器は、送信波を送信する送信アンテナと、当該送信波が反射された反射波を受信する受信アンテナと、制御部と、を備える。
 前記制御部は、前記送信波に基づく送信信号及び前記反射波に基づく受信信号に基づいて生成されたビート信号に第1の高速フーリエ変換処理を行った結果に基づいて第1サンプルを生成する。
 前記制御部は、前記第1サンプルに第2の高速フーリエ変換処理を行った結果に基づいて第2サンプルを生成する。
 前記制御部は、前記第2サンプルに基づいて、前記反射波の到来方向を推定する。
 前記制御部は、前記第2サンプルを、前記ビート信号のうち、前記第2の高速フーリエ変換処理を行った結果におけるピークが第2閾値以上になるものから選択する。
 一実施形態に係る電子機器の制御方法は、以下のステップを含む。
 (1)送信アンテナから送信波として送信信号を送信するステップ
 (2)前記送信波が反射された反射波として受信アンテナから受信信号を受信するステップ
 (3)前記送信信号及び前記受信信号に基づいて生成されたビート信号に第1の高速フーリエ変換処理を行った結果に基づいて第1サンプルを生成するステップ
 (4)前記ビート信号のうち、前記第1の高速フーリエ変換処理を行った結果におけるピークが第1閾値以上になるものを前記第1サンプルから選択するステップ
 (5)前記選択された第1サンプルに第2の高速フーリエ変換処理を行った結果に基づいて第2サンプルを生成するステップ
 (6)前記第2サンプルに基づいて前記反射波の到来方向を推定するステップ
 一実施形態に係る電子機器の制御プログラムは、コンピュータに、上記のステップ(1)乃至(6)を実行させる。
一実施形態に係る電子機器の使用態様を説明する図である。 一実施形態に係る電子機器の構成を概略的に示す機能ブロック図である。 一実施形態に係る送信信号の構成を説明する図である。 一実施形態に係る電子機器の動作を説明するフローチャートである。 一実施形態に係る電子機器の動作を説明するフローチャートである。 一実施形態において設定される閾値を説明する図である。 一実施形態に係る電子機器の動作を説明するフローチャートである。 一実施形態において設定される閾値を説明する図である。
 上述のように反射波の到来方向を測定する技術において、測定の精度を向上させることが望ましい。本開示の目的は、反射波の到来方向を測定する精度を向上させる電子機器、電子機器の制御方法、及び電子機器の制御プログラムを提供することにある。一実施形態によれば、反射波の到来方向を測定する精度を向上させる電子機器、電子機器の制御方法、及び電子機器の制御プログラムを提供することができる。以下、一実施形態について、図面を参照して詳細に説明する。
 一実施形態に係る電子機器は、例えば自動車などのような乗り物(移動体)に搭載されることで、当該移動体の周囲に存在する所定の対象物の方向を測定(推定)することができる。このために、一実施形態に係る電子機器は、移動体に設置した送信アンテナから、移動体の周囲に送信波を送信することができる。また、一実施形態に係る電子機器は、移動体に設置した受信アンテナから、送信波が反射された反射波を受信することができる。送信アンテナ及び受信アンテナの少なくとも一方は、例えば移動体に設置されたレーダセンサ等に備えられてもよい。
 以下、典型的な例として、一実施形態に係る電子機器が、移動体の例として乗用車のような自動車に搭載される構成について説明する。しかしながら、一実施形態に係る電子機器が搭載されるのは、自動車に限定されない。一実施形態に係る電子機器は、自動運転自動車、バス、トラック、オートバイ、自転車、船舶、航空機、トラクターなどの農作業車、消防車、救急車、警察車両、除雪車、道路を清掃する清掃車、ドローン、及び歩行者など、種々の移動体に搭載されてよい。また、一実施形態に係る電子機器が搭載されるのは、必ずしも自らの動力で移動する移動体にも限定されない。例えば、一実施形態に係る電子機器が搭載される移動体は、トラクターにけん引されるトレーラー部分などとしてもよい。
 まず、一実施形態に係る電子機器による物体の検出の例を説明する。
 図1は、一実施形態に係る電子機器の使用態様を説明する図である。図1は、一実施形態に係る送信アンテナ及び受信アンテナを備えるセンサを、移動体に設置した例を示している。
 図1に示す移動体100には、一実施形態に係る送信アンテナ及び受信アンテナを備えるセンサ5が設置されている。また、図1に示す移動体100は、一実施形態に係る電子機器1を搭載(例えば内蔵)しているものとする。電子機器1の具体的な構成については後述する。センサ5は、例えば送信アンテナ及び受信アンテナの少なくとも一方を備えるものとしてよい。また、センサ5は、電子機器1に含まれる制御部10(図3)などの他の機能部の少なくともいずれかを、適宜含んでもよい。図1に示す移動体100は、乗用車のような自動車の車両としてよいが、任意のタイプの移動体としてよい。図1において、移動体100は、例えば図に示すY軸正方向(進行方向)に移動(走行又は徐行)していてもよいし、他の方向に移動していてもよいし、また移動せずに静止していてもよい。
 図1に示すように、移動体100には、複数の送信アンテナを備えるセンサ5が設置されている。図1に示す例において、送信アンテナ及び受信アンテナを備えるセンサ5は、移動体100の前方に1つだけ設置されている。ここで、センサ5が移動体100に設置される位置は、図1に示す位置に限定されるものではなく、適宜、他の位置としてもよい。例えば、図1に示すようなセンサ5を、移動体100の左側、右側、及び/又は、後方などに設置してもよい。また、このようなセンサ5の個数は、移動体100における測定の範囲及び/又は精度など各種の条件(又は要求)に応じて、1つ以上の任意の数としてよい。
 センサ5は、送信アンテナから送信波として電磁波を送信する。例えば移動体100の周囲に所定の対象物(例えば図1に示す対象物200)が存在する場合、センサ5から送信された送信波の少なくとも一部は、当該対象物によって反射されて反射波となる。そして、このような反射波を例えばセンサ5の受信アンテナによって受信することにより、移動体100に搭載された電子機器1は、当該対象物を検出することができる。
 送信アンテナを備えるセンサ5は、典型的には、電波を送受信するレーダ(RADAR(Radio Detecting and Ranging))センサとしてよい。しかしながら、センサ5は、レーダセンサに限定されない。一実施形態に係るセンサ5は、例えば光波によるLIDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)の技術に基づくセンサとしてもよい。これらのようなセンサは、例えばパッチアンテナなどを含んで構成することができる。RADAR及びLIDARのような技術は既に知られているため、詳細な説明は、適宜、簡略化又は省略することがある。
 図1に示す移動体100に搭載された電子機器1は、センサ5の送信アンテナから送信された送信波の反射波を受信アンテナから受信する。このようにして、電子機器1は、移動体100から所定の距離内に存在する所定の対象物200を検出することができる。例えば、図1に示すように、電子機器1は、自車両である移動体100と所定の対象物200との間の距離Lを測定することができる。また、電子機器1は、自車両である移動体100と所定の対象物200との相対速度も測定することができる。さらに、電子機器1は、所定の対象物200からの反射波が、自車両である移動体100に到来する方向(到来角θ)も測定することができる。
 ここで、対象物200とは、例えば移動体100に隣接する車線を走行する対向車、移動体100に並走する自動車、及び移動体100と同じ車線を走行する前後の自動車などの少なくともいずれかとしてよい。また、対象物200とは、オートバイ、自転車、ベビーカー、歩行者、ガードレール、中央分離帯、道路標識、歩道の段差、壁、マンホール、障害物など、移動体100の周囲に存在する任意の物体としてよい。本開示において、センサ5が検出する対象物は、無生物の他に、人又は動物などの生物も含む。本開示のセンサ5が検出する対象物は、レーダ技術により検知される、人、物及び動物などを含む物標を含む。
 図1において、センサ5の大きさと、移動体100の大きさとの比率は、必ずしも実際の比率を示すものではない。また、図1において、センサ5は、移動体100の外部に設置した状態を示してある。しかしながら、一実施形態において、センサ5は、移動体100の各種の位置に設置してよい。例えば、一実施形態において、センサ5は、移動体100のバンパーの内部に設置して、移動体100の外観に現れないようにしてもよい。また、センサ5が移動体100に設置される位置は、移動体100の外部及び内部のいずれか、若しくは双方でよい。移動体100の内部とは、例えば、移動体100のボディの内側、バンパーの内側、ヘッドライトの内部、又は車内の空間内などがある。移動体100の外部とは、例えば、移動体100のボディの表面、バンパーの表面、又はヘッドライトの表面などがある。
 以下、典型的な例として、センサ5の送信アンテナは、ミリ波(30GHz以上)又は準ミリ波(例えば20GHz~30GHz付近)などのような周波数帯の電波を送信するものとして説明する。例えば、センサ5の送信アンテナは、77GHz~81GHzのように、4GHzの周波数帯域幅を有する電波を送信してもよい。センサ5の送信アンテナは、ミリ波(30GHz以上)又は準ミリ波(例えば20GHz~30GHz付近)以外の周波数帯の電波を送信するとしてもよい。
 図2は、一実施形態に係る電子機器1の構成例を概略的に示す機能ブロック図である。以下、一実施形態に係る電子機器1の構成の一例について説明する。
 ミリ波方式のレーダによって距離などを測定する際、周波数変調連続波レーダ(以下、FMCWレーダ(Frequency Modulated Continuous Wave radar)と記す)が用いられることが多い。FMCWレーダは、送信する電波の周波数を掃引して送信信号が生成される。したがって、例えば79GHzの周波数帯の電波を用いるミリ波方式のFMCWレーダにおいて、使用する電波の周波数は、例えば77GHz~81GHzのように、4GHzの周波数帯域幅を持つものとなる。79GHzの周波数帯のレーダは、例えば24GHz、60GHz、76GHzの周波数帯などの他のミリ波/準ミリ波レーダよりも、使用可能な周波数帯域幅が広いという特徴がある。以下、このような実施形態について説明する。
 図2に示すように、一実施形態に係る電子機器1は、センサ5とECU(Electronic Control Unit)50とから構成される。ECU50は、移動体100の様々な動作を制御する。少なくとも1以上のECUにより構成されるとしてよい。一実施形態に係る電子機器1は、制御部10を備えている。また、一実施形態に係る電子機器1は、送信部20、受信部30A~30D、及び記憶部40などの少なくともいずれかのような、他の機能部を適宜含んでもよい。図2に示すように、電子機器1は、受信部30A~30Dのように、複数の受信部を備えてよい。以下、受信部30Aと、受信部30Bと、受信部30Cと、受信部30Dとを区別しない場合、単に「受信部30」と記す。
 制御部10は、図2に示すように、距離FFT処理部12、速度FFT処理部14、到来角推定部16、及び判定処理部18を備えてよい。制御部10に含まれるこれらの機能部については、さらに後述する。
 送信部20は、図2に示すように、信号生成部21、シンセサイザ22、位相制御部23A及び23B、増幅器24A及び24B、並びに送信アンテナ25A及び25Bを備えてよい。以下、送信アンテナ25Aと送信アンテナ25Bとを区別しない場合、単に「送信アンテナ25」と記す。また、送信部20における他の機能部についても、例えば位相制御部23A及び23Bのように、同種の複数の機能部を特に区別しない場合、A及びBのような記号を省略することにより、当該機能部を総称することがある。
 受信部30は、図2に示すように、それぞれ対応する受信アンテナ31A~31Dを備えてよい。以下、受信アンテナ31Aと、受信アンテナ31Bと、受信アンテナ31Cと、受信アンテナ31Dとを区別しない場合、単に「受信アンテナ31」と記す。また、複数の受信部30は、それぞれ、図2に示すように、LNA32、ミキサ33、IF部34、及びAD変換部35を備えてよい。受信部30A~30Dは、それぞれ同様の構成としてよい。図2においては、代表例として、受信部30Aのみの構成を概略的に示してある。
 上述のセンサ5は、例えば送信アンテナ25及び受信アンテナ31を備えるものとしてよい。また、センサ5は、制御部10などの他の機能部の少なくともいずれかを適宜含んでもよい。
 一実施形態に係る電子機器1が備える制御部10は、電子機器1を構成する各機能部の制御をはじめとして、電子機器1全体の動作の制御を行うことができる。制御部10は、種々の機能を実行するための制御及び処理能力を提供するために、例えばCPU(Central Processing Unit)のような、少なくとも1つのプロセッサを含んでよい。制御部10は、まとめて1つのプロセッサで実現してもよいし、いくつかのプロセッサで実現してもよいし、それぞれ個別のプロセッサで実現してもよい。プロセッサは、単一の集積回路として実現されてよい。集積回路は、IC(Integrated Circuit)ともいう。プロセッサは、複数の通信可能に接続された集積回路及びディスクリート回路として実現されてよい。プロセッサは、他の種々の既知の技術に基づいて実現されてよい。一実施形態において、制御部10は、例えばCPU及び当該CPUで実行されるプログラムとして構成してよい。制御部10は、制御部10の動作に必要なメモリを適宜含んでもよい。
 記憶部40は、制御部10において実行されるプログラム、及び、制御部10において実行された処理の結果などを記憶してよい。また、記憶部40は、制御部10のワークメモリとして機能してよい。記憶部40は、例えば半導体メモリ又は磁気ディスク等により構成することができるが、これらに限定されず、任意の記憶装置とすることができる。また、例えば、記憶部40は、本実施形態に係る電子機器1に挿入されたメモリカードのような記憶媒体としてもよい。また、記憶部40は、上述のように、制御部10として用いられるCPUの内部メモリであってもよい。
 一実施形態に係る電子機器1において、制御部10は、送信部20及び受信部30の少なくとも一方を制御することができる。この場合、制御部10は、記憶部40に記憶された各種情報に基づいて、送信部20及び受信部30の少なくとも一方を制御してよい。また、一実施形態に係る電子機器1において、制御部10は、信号生成部21に信号の生成を指示したり、信号生成部21が信号を生成するように制御したりしてもよい。
 信号生成部21は、制御部10の制御により、送信アンテナ25から送信波Tとして送信される信号(送信信号)を生成する。信号生成部21は、送信信号を生成する際に、例えば制御部10による制御に基づいて、送信信号の周波数を割り当ててよい。例えば、信号生成部21は、制御部10から周波数情報を受け取ることにより、例えば77~81GHzのような周波数帯域の所定の周波数の信号を生成する。信号生成部21は、例えば電圧制御発振器(VCO)のような機能部を含んで構成してよい。
 信号生成部21は、当該機能を有するハードウェアとして構成してもよいし、例えばマイコンなどで構成してもよいし、例えばCPUのようなプロセッサ及び当該プロセッサで実行されるプログラムなどとして構成してもよい。以下説明する各機能部も、当該機能を有するハードウェアとして構成してもよいし、可能な場合には、例えばマイコンなどで構成してもよいし、例えばCPUのようなプロセッサ及び当該プロセッサで実行されるプログラムなどとして構成してもよい。
 一実施形態に係る電子機器1において、信号生成部21は、例えばチャープ信号のような送信信号(送信チャープ信号)を生成してよい。特に、信号生成部21は、周波数が周期的に線形に変化する信号(線形チャープ信号)を生成してもよい。例えば、信号生成部21は、周波数が時間の経過に伴って77GHzから81GHzまで周期的に線形に増大するチャープ信号としてもよい。また、例えば、信号生成部21は、周波数が時間の経過に伴って77GHzから81GHzまで線形の増大(アップチャープ)及び減少(ダウンチャープ)を周期的に繰り返す信号を生成してもよい。信号生成部21が生成する信号は、例えば制御部10において予め設定されていてもよい。また、信号生成部21が生成する信号は、例えば記憶部40などに予め記憶されていてもよい。レーダのような技術分野で用いられるチャープ信号は既知であるため、より詳細な説明は、適宜、簡略化又は省略する。信号生成部21によって生成された信号は、シンセサイザ22に供給される。
 一実施形態に係る電子機器1が備えるECU50は、移動体100を構成する各機能部の制御をはじめとして、移動体100全体の動作の制御を行うことができる。ECU50は、種々の機能を実行するための制御及び処理能力を提供するために、例えばCPU(Central Processing Unit)のような、少なくとも1つのプロセッサを含んでよい。ECU50は、まとめて1つのプロセッサで実現してもよいし、いくつかのプロセッサで実現してもよいし、それぞれ個別のプロセッサで実現してもよい。プロセッサは、単一の集積回路として実現されてよい。集積回路は、IC(Integrated Circuit)ともいう。プロセッサは、複数の通信可能に接続された集積回路及びディスクリート回路として実現されてよい。プロセッサは、他の種々の既知の技術に基づいて実現されてよい。一実施形態において、ECU50は、例えばCPU及び当該CPUで実行されるプログラムとして構成してよい。ECU50は、ECU50の動作に必要なメモリを適宜含んでもよい。また、制御部10の機能の少なくとも一部がECU50の機能とされてもよいし、ECU50の機能の少なくとも一部が制御部10の機能とされてもよい。
 図3は、信号生成部21が生成するチャープ信号の例を説明する図である。
 図3において、横軸は経過する時間を表し、縦軸は周波数を表す。図3に示す例において、信号生成部21は、周波数が周期的に線形に変化する線形チャープ信号を生成する。図3においては、各チャープ信号を、c1,c2,…,c8のように示してある。図3に示すように、それぞれのチャープ信号において、時間の経過に伴って周波数が線形に増大する。
 図3に示す例において、c1,c2,…,c8のように8つのチャープ信号を含めて、1つのサブフレームとしている。すなわち、図3に示すサブフレーム1及びサブフレーム2などは、それぞれc1,c2,…,c8のように8つのチャープ信号を含んで構成されている。また、図3に示す例において、サブフレーム1~サブフレーム16のように16のサブフレームを含めて、1つのフレームとしている。すなわち、図3に示すフレーム1及びフレーム2など、それぞれ16のサブフレームを含んで構成されている。また、図3に示すように、フレーム同士の間には、所定の長さのフレームインターバルを含めてもよい。
 図3において、フレーム2以降も同様の構成としてよい。また、図3において、フレーム3以降も同様の構成としてよい。一実施形態に係る電子機器1において、信号生成部21は、任意の数のフレームとして送信信号を生成してよい。また、図3においては、一部のチャープ信号は省略して示している。このように、信号生成部21が生成する送信信号の時間と周波数との関係は、例えば記憶部40などに記憶しておいてよい。
 このように、一実施形態に係る電子機器1は、複数のチャープ信号を含むサブフレームから構成される送信信号を送信してよい。また、一実施形態に係る電子機器1は、サブフレームを所定数含むフレームから構成される送信信号を送信してよい。
 以下、電子機器1は、図3に示すようなフレーム構造の送信信号を送信するものとして説明する。しかしながら、図3に示すようなフレーム構造は一例であり、例えば1つのサブフレームに含まれるチャープ信号は8つに限定されない。一実施形態において、信号生成部21は、任意の数(例えば任意の複数)のチャープ信号を含むサブフレームを生成してよい。また、図3に示すようなサブフレーム構造も一例であり、例えば1つのフレームに含まれるサブフレームは16に限定されない。一実施形態において、信号生成部21は、任意の数(例えば任意の複数)のサブフレームを含むフレームを生成してよい。
 シンセサイザ22は、信号生成部21が生成した信号の周波数を、所定の周波数帯の周波数まで上昇させる。シンセサイザ22は、送信アンテナ25から送信する送信波Tの周波数として選択された周波数まで、信号生成部21が生成した信号の周波数を上昇させてよい。送信アンテナ25から送信する送信波Tの周波数として選択される周波数は、例えば制御部10によって設定されてもよい。また、送信アンテナ25から送信する送信波Tの周波数として選択される周波数は、例えば記憶部40に記憶されていてもよい。シンセサイザ22によって周波数が上昇された信号は、位相制御部23及びミキサ33に供給される。受信部30が複数の場合、シンセサイザ22によって周波数が上昇された信号は、複数の受信部30におけるそれぞれのミキサ33に供給されてよい。
 位相制御部23は、シンセサイザ22から供給された送信信号の位相を制御する。具体的には、位相制御部23は、例えば制御部10による制御に基づいて、シンセサイザ22から供給された信号の位相を適宜早めたり遅らせたりすることにより、送信信号の位相を調整してよい。この場合、位相制御部23は、複数の送信アンテナ25から送信されるそれぞれの送信波Tの経路差に基づいて、それぞれの送信信号の位相を調整してもよい。位相制御部23がそれぞれの送信信号の位相を適宜調整することにより、複数の送信アンテナ25から送信される送信波Tは、所定の方向において強め合ってビームを形成する(ビームフォーミング)。この場合、ビームフォーミングの方向と、複数の送信アンテナ25がそれぞれ送信する送信信号の制御すべき位相量との相関関係は、例えば記憶部40に記憶しておいてよい。位相制御部23によって位相制御された送信信号は、増幅器24に供給される。
 増幅器24は、位相制御部23から供給された送信信号のパワー(電力)を、例えば制御部10による制御に基づいて増幅させる。送信信号のパワーを増幅させる技術自体は既に知られているため、より詳細な説明は省略する。増幅器24は、送信アンテナ25に接続される。
 送信アンテナ25は、増幅器24によって増幅された送信信号を、送信波Tとして出力(送信)する。上述のように、センサ5は、例えば送信アンテナ25A及び送信アンテナ25Bのように、複数の送信アンテナを含んで構成してよい。送信アンテナ25は、既知のレーダ技術に用いられる送信アンテナと同様に構成することができるため、より詳細な説明は省略する。
 このようにして、一実施形態に係る電子機器1は、送信アンテナ25から送信波Tとして送信信号(例えば送信チャープ信号)を送信することができる。ここで、電子機器1を構成する各機能部のうちの少なくとも1つは、1つの筐体において容易に開けられない構造の筐体に収められているとしてもよい。例えば送信アンテナ25、受信アンテナ31、増幅器24A及び増幅器24Bが1つの筐体に収められ、かつ、この筐体が容易に開けられない構造となっているとよい。さらに、ここで、センサ5が自動車のような移動体100に設置される場合、送信アンテナ25は、例えばレーダカバーのような部材を介して、移動体100の外部に送信波Tを送信してもよい。この場合、レーダカバーは、例えば合成樹脂又はゴムのような、電磁波を通過させる物質で構成してよい。このレーダカバーは、例えばセンサ5のハウジングとしてもよい。レーダカバーのような部材で送信アンテナ25を覆うことにより、送信アンテナ25が外部との接触により破損したり不具合が発生したりするリスクを低減することができる。
 図2に示す電子機器1は、送信アンテナ25A及び送信アンテナ25Bのように2つの送信アンテナ25を備え、この2つの送信アンテナ25によって送信波Tを送信する。したがって、図2に示す電子機器1は、2つの送信アンテナ25から送信波Tを送信するのに必要な機能部も、それぞれ2つずつ含んで構成される。具体的には、電子機器1は、位相制御部23A及び位相制御部23Bのように2つの位相制御部23を含んで構成される。また、図2に示す電子機器1は、増幅器24A及び増幅器24Bのように2つの増幅器24を含んで構成される。
 図2に示す電子機器1は、2つの送信アンテナ25を備えているが、一実施形態に係る電子機器1が備える送信アンテナ25の数は、例えば3つ以上のように、任意の複数としてよい。この場合、一実施形態に係る電子機器1は、複数の送信アンテナ25と同じ数の増幅器24を備えてよい。また、この場合、一実施形態に係る電子機器1は、複数の送信アンテナ25と同じ数の位相制御部23を備えてよい。
 受信アンテナ31は、反射波Rを受信する。反射波Rは、送信波Tが所定の対象物200に反射したものである。受信アンテナ31は、例えば受信アンテナ31A~受信アンテナ31Dのように、複数のアンテナを含んで構成してよい。受信アンテナ31は、既知のレーダ技術に用いられる受信アンテナと同様に構成することができるため、より詳細な説明は省略する。受信アンテナ31は、LNA32に接続される。受信アンテナ31によって受信された反射波Rに基づく受信信号は、LNA32に供給される。
 一実施形態に係る電子機器1は、複数の受信アンテナ31から、例えばチャープ信号のような送信信号(送信チャープ信号)として送信された送信波Tが所定の対象物200によって反射された反射波Rを受信することができる。このように、送信波Tとして送信チャープ信号を送信する場合、受信した反射波Rに基づく受信信号は、受信チャープ信号と記す。すなわち、電子機器1は、受信アンテナ31から反射波Rとして受信信号(例えば受信チャープ信号)を受信する。ここで、センサ5が自動車のような移動体100に設置される場合、受信アンテナ31は、例えばレーダカバーのような部材を介して、移動体100の外部から反射波Rを受信してもよい。この場合、レーダカバーは、例えば合成樹脂又はゴムのような、電磁波を通過させる物質で構成してよい。このレーダカバーは、例えばセンサ5のハウジングとしてもよい。レーダカバーのような部材で受信アンテナ31を覆うことにより、受信アンテナ31が外部との接触により破損又は不具合が発生するリスクを低減することができる。
 また、受信アンテナ31が送信アンテナ25の近くに設置される場合、これらをまとめて1つのセンサ5に含めて構成してもよい。すなわち、1つのセンサ5には、例えば少なくとも1つの送信アンテナ25及び少なくとも1つの受信アンテナ31を含めてもよい。例えば、1つのセンサ5は、複数の送信アンテナ25及び複数の受信アンテナ31を含んでもよい。このような場合、例えば1つのレーダカバーのような部材で、1つのレーダセンサを覆うようにしてもよい。
 LNA32は、受信アンテナ31によって受信された反射波Rに基づく受信信号を低ノイズで増幅する。LNA32は、低雑音増幅器(Low Noise Amplifier)としてよく、受信アンテナ31から供給された受信信号を低雑音で増幅する。LNA32によって増幅された受信信号は、ミキサ33に供給される。
 ミキサ33は、LNA32から供給されるRF周波数の受信信号を、シンセサイザ22から供給される送信信号に混合する(掛け合わせる)ことにより、ビート信号を生成する。ミキサ33によって混合されたビート信号は、IF部34に供給される。
 IF部34は、ミキサ33から供給されるビート信号に周波数変換を行うことにより、ビート信号の周波数を中間周波数(IF(Intermediate Frequency)周波数)まで低下させる。IF部34によって周波数を低下させたビート信号は、AD変換部35に供給される。
 AD変換部35は、IF部34から供給されたアナログのビート信号をデジタル化する。AD変換部35は、任意のアナログ-デジタル変換回路(Analog to Digital Converter(ADC))で構成してよい。AD変換部35によってデジタル化されたビート信号は、制御部10の距離FFT処理部12に供給される。受信部30が複数の場合、複数のAD変換部35によってデジタル化されたそれぞれのビート信号は、距離FFT処理部12に供給されてよい。
 距離FFT処理部12は、AD変換部35から供給されたビート信号に基づいて、電子機器1を搭載した移動体100と、対象物200との間の距離を推定する。距離FFT処理部12は、例えば高速フーリエ変換を行う処理部を含んでよい。この場合、距離FFT処理部12は、高速フーリエ変換(Fast Fourier Transform(FFT))処理を行う任意の回路又はチップなどで構成してよい。距離FFT処理部12及び速度FFT処理部14は、離散フーリエ変換、又はフーリエ変換を行うとしてもよい。
 距離FFT処理部12は、AD変換部35によってデジタル化されたビート信号に対してFFT処理を行う(以下、適宜「第1のFFT処理」と記す)。例えば、距離FFT処理部12は、AD変換部35から供給された複素信号にFFT処理を行ってよい。AD変換部35によってデジタル化されたビート信号は、信号強度(電力)の時間変化として表すことができる。距離FFT処理部12は、このようなビート信号にFFT処理を行うことにより、各周波数に対応する信号強度(電力)として表すことができる。距離FFT処理部12は、第1のFFT処理によって得られた結果においてピークが所定の閾値以上である場合、そのピークに対応する距離に、所定の対象物200があると判断してもよい。距離FFT処理部12は、1つのチャープ信号(例えば図3に示すc1)に基づいて、所定の対象物との間の距離を推定することができる。すなわち、電子機器1は、第1のFFT処理を行うことにより、図1に示した距離Lを測定(推定)することができる。ビート信号にFFT処理を行うことにより、所定の物体との間の距離を測定(推定)する技術自体は公知のため、より詳細な説明は、適宜、簡略化又は省略する。距離FFT処理部12によって第1のFFT処理が行われた結果は、速度FFT処理部14に供給されてよい。
 速度FFT処理部14は、距離FFT処理部12によって第1のFFT処理が行われたビート信号に基づいて、電子機器1を搭載した移動体100と、対象物200との相対速度を推定する。速度FFT処理部14は、例えば高速フーリエ変換を行う処理部を含んでよい。この場合、速度FFT処理部14は、高速フーリエ変換(Fast Fourier Transform(FFT))処理を行う任意の回路又はチップなどで構成してよい。
 速度FFT処理部14は、距離FFT処理部12によって第1のFFT処理が行われたビート信号に対してさらにFFT処理を行う(以下、適宜「第2のFFT処理」と記す)。例えば、速度FFT処理部14は、距離FFT処理部12から供給された複素信号にFFT処理を行ってよい。速度FFT処理部14は、チャープ信号のサブフレーム(例えば図3に示すサブフレーム1)に基づいて、所定の対象物との相対速度を推定することができる。上述のようにビート信号に第1のFFT処理を行うと、複数のベクトルを生成することができる。これら複数のベクトルに対して第2のFFT処理を行った結果におけるピークの位相を求めることにより、所定の物体との相対速度を推定することができる。すなわち、電子機器1は、第2のFFT処理を行うことにより、図1に示した移動体100と所定の対象物200との相対速度を測定(推定)することができる。距離のFFT処理を行った結果に対して速度のFFT処理を行うことにより、所定の物体との相対速度を測定(推定)する技術自体は公知のため、より詳細な説明は、適宜、簡略化又は省略する。速度FFT処理部14によって第2のFFT処理が行われた結果は、到来角推定部16に供給されてよい。
 到来角推定部16は、速度FFT処理部14によってFFT処理が行われた結果に基づいて、所定の対象物200から反射波Rが到来する方向を推定する。電子機器1は、複数の受信アンテナ31から反射波Rを受信することで、反射波Rが到来する方向を推定することができる。例えば、複数の受信アンテナ31は、所定の間隔で配置されているものとする。この場合、送信アンテナ25から送信された送信波Tが所定の対象物200に反射されて反射波Rとなり、所定の間隔で配置された複数の受信アンテナ31はそれぞれ反射波Rを受信する。そして、電子機器1は、複数の受信アンテナ31がそれぞれ受信した反射波Rの位相、及びそれぞれの反射波Rの経路差に基づいて、反射波Rが受信アンテナ31に到来する方向を推定することができる。すなわち、電子機器1は、第2のFFT処理が行われた結果に基づいて、図1に示した到来角θを測定(推定)することができる。速度のFFT処理が行われた結果に基づいて、反射波Rが到来する方向を推定する技術は各種提案されている。したがって、公知の技術についてのより詳細な説明は、適宜、簡略化又は省略する。到来角推定部16によって推定された到来角θの情報(角度情報)は、例えば制御部10からECU50などに出力されてよい。この場合、移動体100が自動車である場合、例えばCAN(Controller Area Network)のような通信インタフェースを用いて通信を行ってもよい。
 判定処理部18は、演算処理に用いる各値が、所定の閾値以上であるか否かを判定する処理を行う。例えば、判定処理部18は、距離FFT処理部12及び速度FFT処理部14において処理が行われた結果におけるピークが、それぞれ所定の閾値以上であるか否かを判定してよい。
 例えば、判定処理部18は、距離FFT処理部12によって第1のFFT処理が行われた結果におけるピークが、第1閾値以上になるか否かを判定してもよい。すなわち、判定処理部18は、送信信号及び受信信号に基づいて生成されたビート信号について第1のFFT処理を行った結果におけるピークが、第1閾値以上になるか否かを判定してもよい。第1閾値の設定については、さらに後述する。このようにして、ビート信号について第1のFFT処理を行った結果におけるピークが第1閾値以上であると判定される場合、当該ビート信号を「第1サンプル」としてカウントしてもよい。当該ビート信号を「第1サンプル」としてカウントするとは、判定処理部18が、ビート信号について第1のFFT処理を行った結果におけるピークが第1閾値以上であるサンプルを選択することを意味する。
 また、例えば、判定処理部18は、速度FFT処理部14によって第2のFFT処理が行われた結果におけるピークが、第2閾値以上になるか否かを判定してもよい。すなわち、判定処理部18は、上述の第1サンプルについて第2のFFT処理を行った結果におけるピークが、第2閾値以上になるか否かを判定してもよい。第2閾値の設定については、さらに後述する。このようにして、第1サンプルについて第2のFFT処理を行った結果におけるピークが第2閾値以上であると判定される場合、当該第1サンプルを「第2サンプル」としてカウントしてもよい。当該ビート信号を「第2サンプル」としてカウントするとは、判定処理部18が、ビート信号について第2のFFT処理を行った結果におけるピークが第2閾値以上であるサンプルを選択することを意味する。
 上述のように、到来角推定部16は、速度FFT処理部14によってFFT処理が行われた結果に基づいて、所定の対象物200から反射波Rが到来する方向を推定する。また、速度FFT処理部14は、距離FFT処理部12によって第1のFFT処理が行われたビート信号に対して第2のFFT処理を行う。この場合、距離FFT処理部12は、送信信号及び受信信号に基づいて生成されたビート信号に第1のFFT処理を行った結果に基づいて、判定処理部18による判定処理に従って、第1サンプルを生成してよい。また、速度FFT処理部14は、第1サンプルに第2のFFT処理を行った結果に基づいて、判定処理部18による判定処理に従って、第2サンプルを生成してよい。そして、到来角推定部16は、生成された第2サンプルに基づいて、反射波Rの到来方向(到来角θ)を推定してもよい。例えば、電子機器1は、第2サンプルから求める共分散行列に基づいて、反射波Rの到来方向(到来角θ)を推定してもよい。
 図2に示す電子機器1は、2つの送信アンテナ25及び4つの受信アンテナ31を備えている。このように複数の送信アンテナ25及び複数の受信アンテナ31を備えることにより、電子機器1は、これらのアンテナを例えば8本の仮想アンテナアレイとしてよい。このように、電子機器1は、仮想8本のアンテナを用いることにより、図3に示す16のサブフレームの反射波Rを送受信してよい。
 図4~図7は、一実施形態に係る電子機器1の動作の例を説明する図である。以下、一実施形態に係る電子機器1の動作の例を説明する。以下、電子機器1は、ミリ波方式のFMCWレーダとして構成される例について説明する。
 図4は、一実施形態に係る電子機器1の動作を説明するフローチャートである。図4に示す動作は、例えば電子機器1が、移動体100の周囲に存在する所定の対象物200を検出し、当該対象物200から反射波Rが到来する方向(到来角θ)を推定する際に開始してよい。
 図4に示す動作が開始すると、電子機器1の制御部10は、送信部20の送信アンテナ25からチャープ信号を送信するように制御する(ステップS1)。具体的には、制御部10は、信号生成部21に送信信号(チャープ信号)の生成を指示する。そして、制御部10は、チャープ信号が、シンセサイザ22、位相制御部23、及び増幅器24を得て、送信アンテナ25から送信波Tとして送信されるように制御する。
 ステップS1においてチャープ信号が送信されると、制御部10は、受信部30の受信アンテナ31からチャープ信号を受信するように制御する(ステップS2)。ステップS2においてチャープ信号が受信されると、制御部10は、送信チャープ信号と受信チャープ信号を掛け合わせることにより、ビート信号を生成するように受信部30を制御する(ステップS3)。具体的には、制御部10は、受信アンテナ31から受信されたチャープ信号が、LNA32により増幅され、ミキサ33によって送信チャープ信号と掛け合わされるように制御する。ステップS1からステップS3までの処理は、例えば既知のミリ波方式のFMCWレーダの技術を採用することで行ってよい。
 ステップS3においてビート信号が生成されると、制御部10は、生成された各チャープ信号から、上述の第1サンプルを生成する(ステップS4)。
 以下、ステップS4の処理について、さらに説明する。図5は、図4におけるステップS4の処理をより詳細に説明するフローチャートである。
 図4に示すステップS4の処理が開始すると、距離FFT処理部12は、図5に示すように、ステップS3で生成されたビート信号に第1のFFT処理を行う(ステップS11)。上述のように、ステップS11の処理が行われると、各周波数に対応する信号強度(電力)が得られる。ステップS11において、距離FFT処理部12は、AD変換部35から供給されるデジタルのビート信号に、第1のFFT処理を行ってよい。
 ステップS11においてビート信号に第1のFFT処理が行われたら、判定処理部18は、生成されたビート信号のうち、第1のFFT処理が行われた結果におけるピークが第1閾値以上になるか否かを判定する(ステップS12)。
 ここで、第1閾値の設定について説明する。図6は、第1閾値の設定の一例について説明する図である。
 図6は、例えばステップS11においてビート信号に第1のFFT処理を行った結果の一例を示す図である。図6において、横軸は周波数fを示し、縦軸は信号強度(電力)Pを示している。図6に示す例において、周波数がfr1の領域及び周波数がfr2の領域にあるとき、信号強度はPaに近い値を示している。また、図6に示す例において、周波数がf1のとき、信号強度はピークの値P(f1)を示している。
 一実施形態において、判定処理部18は、例えば電力のピーク値P(f1)を検出することができるように、電力の閾値Pthを設定する。ここで、閾値Pthは、例えば電力がピークの値P(f1)になるときの周波数f1を含む周辺領域以外の領域fr1及び/又は領域fr2のときの電力の平均値に基づいて設定してよい。例えば、図6において、周波数が領域fr1及び/又は領域fr2のとき、信号強度の平均はほぼPaに近い値を示している。そこで、電力がピークの値P(f1)になるときの周波数f1を含む周辺領域以外の領域fr1及び/又は領域fr2のときの電力の平均値を例えばPaとする。この場合、電力の平均値Paに所定の値を加えたものを、電力の閾値Pthとして設定してよい。また、電力の閾値Pthを設定する際には、電力がピークの値P(f1)になるときの周波数f1を含む周辺領域において、ガードバンドを除くようにしてもよい。
 このように、電力の閾値Pthを設定することにより、判定処理部18は、ビート信号について第1のFFT処理を行った結果におけるピークが第1閾値以上であるか否かを判定することができる。
 図5に示すステップS12においては、ビート信号について第1のFFT処理を行った結果におけるピークが第1閾値以上であるか否かが判定される。ステップS12においてピークが第1閾値以上であると判定される場合、判定処理部18は、ステップS13における動作を行って、図5に示す処理を終了する。一方、ステップS12においてピークが第1閾値未満であると判定される場合、判定処理部18は、ステップS13における動作を行わずに、図5に示す処理を終了する。
 ステップS13において、判定処理部18は、第1のFFT処理を行った結果におけるピークが第1閾値以上であると判定されたビート信号を、第1サンプルとしてカウントする。例えば、ステップS13において、判定処理部18は、後の処理のため、第1サンプルを、記憶部40又は制御部10の内部メモリなどに記憶してもよい。ステップS11において、第1のFFT処理が行われるビート信号は、例えば1つのチャープ信号(例えば図3に示すc1など)を単位としてよい。したがって、ステップS13において、第1サンプルとしてカウントされるのは、1つのチャープ信号を単位としてよい。
 以上のようにして、距離FFT処理部12は、図4に示すステップS4において、1つのチャープ信号から、第1サンプルを生成してよい。
 ステップS4において第1サンプルが生成されたら、判定処理部18は、1つのサブフレームに含まれるチャープ信号の全てに対してステップS4の処理が行われたか否かを判定する(ステップS5)。ステップS5において、判定処理部18は、例えば1つのサブフレーム(例えば図3に示すサブフレーム1)に含まれる8つのチャープ信号(例えば図3に示すc1~c8)に対してステップS4の処理が行われたか否かを判定してよい
 ステップS5において1つのサブフレームに含まれるチャープ信号のうち未だステップS4の処理が行われていないものがあると判定される場合、制御部10は、ステップS1に戻って処理を続行する。
 一方、ステップS5において1つのサブフレームにおけるチャープ信号が全てに対してステップS4の処理が行われたと判定される場合、制御部10は、ステップS6の処理を行う。ステップS6に進む場合とは、例えば図3に示すサブフレーム1に含まれる8つのチャープ信号(c1~c8)の全てに対して第1のFFT処理が行われたことを意味する。そして、ステップS6に進む場合、前述の8つのチャープ信号(c1~c8)のうち、第1のFFT処理が行われた結果におけるピークが第1閾値以上となるものが、第1サンプルとしてカウントされる。
 ステップS5において1つのサブフレームに含まれるチャープ信号の全てに対してステップS4の処理が行われたと判定される場合、制御部10は、生成された第1サンプルから、上述の第2サンプルを生成する(ステップS6)。
 以下、ステップS6の処理について、さらに説明する。図7は、図4におけるステップS6の処理をより詳細に説明するフローチャートである。
 図4に示すステップS6の処理が開始すると、速度FFT処理部14は、図7に示すように、ステップS4において生成された第1サンプルに第2のFFT処理を行う(ステップS21)。ステップS21において、速度FFT処理部14は、距離FFT処理部12によって第1のFFT処理が行われた結果に、第2のFFT処理を行ってよい。
 ステップS21において第2のFFT処理が行われたら、判定処理部18は、第2のFFT処理が行われた第1サンプルのうち、第2のFFT処理が行われた結果におけるピークが第2閾値以上になるか否かを判定する(ステップS22)。
 ここで、第2閾値の設定について説明する。図8は、第2閾値の設定の一例について説明する図である。
 図8は、例えばステップS21において第1サンプルに第2のFFT処理を行った結果の一例を示す図である。図8において、横軸は速度vを示し、縦軸は信号強度(電力)Pを示している。図8に示す例において、速度がvr1の領域及び速度がvr2の領域にあるとき、信号強度はP’aに近い値を示している。また、図8に示す例において、速度がv1のとき、信号強度はピークの値P’(v1)を示している。
 一実施形態において、判定処理部18は、例えば電力のピーク値P’(v1)を検出することができるように、電力の閾値P’thを設定する。ここで、閾値P’thは、例えば電力がピークの値P’(v1)になるときの速度v1を含む周辺領域以外の領域vr1及び/又は領域vr2のときの電力の平均値に基づいて設定してよい。例えば、図8において、速度が領域vr1及び/又は領域vr2のとき、信号強度の平均はほぼP’aに近い値を示している。そこで、電力がピークの値P’(v1)になるときの速度v1を含む周辺領域以外の領域vr1及び/又は領域vr2のときの電力の平均値を例えばP’aとする。この場合、電力の平均値P’aに所定の値を加えたものを、電力の閾値P’thとして設定してよい。また、電力の閾値P’thを設定する際には、電力がピークの値P’(v1)になるときの速度v1を含む周辺領域において、ガードバンドを除くようにしてもよい。
 このように、電力の閾値P’thを設定することにより、判定処理部18は、第1サンプルについて第2のFFT処理を行った結果におけるピークが第2閾値以上であるか否かを判定することができる。
 図7に示すステップS22においては、第1サンプルについて第2のFFT処理を行った結果におけるピークが第2閾値以上であるか否かが判定される。ステップS22においてピークが第2閾値以上であると判定される場合、判定処理部18は、ステップS23における動作を行って、図7に示す処理を終了する。一方、ステップS22においてピークが第2閾値未満であると判定される場合、判定処理部18は、ステップS23における動作を行わずに、図7に示す処理を終了する。
 ステップS23において、判定処理部18は、第2のFFT処理を行った結果におけるピークが第2閾値以上であると判定された第1サンプルを、第2サンプルとしてカウントする。例えば、ステップS23において、判定処理部18は、後の処理のため、第2サンプルを、記憶部40又は制御部10の内部メモリなどに記憶してもよい。ステップS21において、第2のFFT処理が行われる第1サンプルは、例えば1つのサブフレームに含まれるチャープ信号(例えば図3に示すc1~c8)を単位としてよい。したがって、ステップS23において、第2サンプルとしてカウントされるのは、1つのサブフレームに含まれるチャープ信号を単位としてよい。
 以上のようにして、速度FFT処理部14は、図4に示すステップS6において、1つのサブフレームに含まれるチャープ信号から、第2サンプルを生成する。
 ステップS6において第2サンプルが生成されたら、判定処理部18は、1つのフレームに含まれる全てのサブフレームのチャープ信号に対してステップS6の処理が行われたか否かを判定する(ステップS7)。ステップS7において、判定処理部18は、1つのフレーム(例えば図3に示すフレーム1)に含まれる16のサブフレーム(図3に示すサブフレーム1~サブフレーム16)のチャープ信号の全てに対してステップS6の処理が行われたか否かを判定してよい。
 ステップS7において1つのフレームに含まれるチャープ信号のうち未だステップS6の処理を行っていないものがあると判定される場合、制御部10は、ステップS1に戻って処理を続行する。
 一方、ステップS7において1つのフレームに含まれる全てのサブフレームのチャープ信号に対してステップS6の処理が行われたと判定される場合、制御部10は、ステップS8の処理を行う。ステップS8に進む場合とは、例えば図3に示すフレーム1に含まれる16のサブフレーム(サブフレーム1~サブフレーム16)について第2のFFT処理が行われたことを意味する。そして、ステップS8に進む場合、前述の16のサブフレームに含まれる第1サンプルのうち、第2のFFT処理が行われた結果におけるピークが第2閾値以上となるものが、第2サンプルとしてカウントされる。
 ステップS8において、到来角推定部16は、生成された第2サンプルに基づいて、反射波Rの到来方向(到来角θ)を推定する(ステップS8)。ステップS8において、到来角推定部16は、例えば第2サンプルから求める共分散行列に基づいて、反射波Rの到来方向を推定してもよい。
 例えば、上述した送信信号の1フレーム(16サブフレーム)において第2のFFT処理が行われた結果におけるピークが第2閾値以上となる第2サンプルのピークの複素信号(cx)を使って、到来方向(到来角θ)を推定するための共分散行列を求めてよい。この場合、共分散行列crの演算は、例えば以下の式(1)に従って行ってもよい。
Figure JPOXMLDOC01-appb-M000001
 ここで、cxは速度フーリエ変換後のピークの複素信号を表し、conj(cx)はcxの共役複素数を表す。また、k,lはアンテナの番号を表し、Nは共分散行列のサンプル数を表すものとする。
 以上説明したように、一実施形態に係る電子機器1は、送信信号及び受信信号に基づいて、反射波Rの到来方向(到来角θ)を推定する。一実施形態に係る電子機器1は、送信信号及び受信信号に基づいて生成されたビート信号に第1のFFT処理を行った結果に基づいて、第1サンプルを生成してよい。ここで、第1サンプルは、例えばチャープ信号の集合としてよい。また、一実施形態に係る電子機器1は、第1サンプルに第2のFFT処理を行った結果に基づいて、第2サンプルを生成してよい。ここで、第2サンプルは、例えばサブフレームの集合としてよい。そして、一実施形態に係る電子機器1は、第2サンプルに基づいて、反射波Rの到来方向(到来角θ)を推定することができる。ここで、電子機器1は、第2サンプルから求める共分散行列に基づいて、反射波Rの到来方向を推定してもよい。また、一実施形態に係る電子機器1は、第2サンプルから求める共分散行列に基づいて、反射波Rの到来方向(到来角θ)を推定してもよい。
 また、上述のように、第1サンプルは、送信信号及び受信信号に基づいて生成されたビート信号のうち、第1のFFT処理を行った結果におけるピークが第1閾値以上になるものとしてもよい。ここで、第1閾値は、第1のFFT処理を行った結果におけるピークを含む所定の領域を除く領域に対応するパワー(電力)の平均に基づいて設定されてもよい。
 また、上述のように、第2サンプルは、第1サンプルのうち、第2のFFT処理を行った結果におけるピークが第2閾値以上になるものとしてもよい。ここで、第2閾値は、第2のFFT処理を行った結果におけるピークを含む所定の領域を除く領域に対応するパワー(電力)の平均に基づいて設定されてもよい。
 すなわち、一実施形態に係る電子機器1は、距離のフーリエ変換処理のピークが閾値以上になる距離について、複数(例えば8つ)のチャープ信号を使って速度のフーリエ変換処理を行う。そして、一実施形態に係る電子機器1は、速度のフーリエ変換処理のピークが閾値以上になる速度が何サブフレーム続くかをカウントする。このようにして、一実施形態に係る電子機器1は、その閾値以上になる速度のフーリエ変換のピークの複素信号を使って相関行列を求めることにより、反射波の到来方向を推定する。
 一実施形態に係る電子機器1によれば、反射波Rの到来方向(到来角θ)を測定する精度を向上させることができる。
 従来のレーダ技術によって、送信された送信波Tが所定の対象物に反射した反射波Rの到来方向(到来角θ)を推定する場合、角度推定の誤差が大きくなることがある。特に、同一の距離かつ同一の相対速度の範囲に複数の反射物体が存在する場合、到来角θの角度推定誤差が大きくなってしまう。また、近年、高い角度分解能でアレーアンテナに入射する到来波の方向を推定するMUSIC(MUltiple SIgnal Classification)のような固有空間解析をアレイレーダに適用する研究が行われている。しかしながら、このような方法によれば、ノイズが大きくなると、検出誤差が大きくなってしまう。
 これに対し、一実施形態に係る電子機器1によれば、例えばMUSICのようなアルゴリズムを用いて計算する前に、ノイズを除去することができる。したがって、一実施形態に係る電子機器1によれば、反射波Rの到来方向の推定誤差を低減することができる。
 また、一実施形態に係る電子機器1によれば、相対速度を求める第2のFFT処理を行った結果におけるピークが第2閾値以上になる場合に、第2サンプルとして採用する。したがって、一実施形態に係る電子機器1によれば、同一の距離かつ同一の相対速度の対象物以外からの干渉波を低減することができる。
 また、一実施形態に係る電子機器1によれば、反射波Rの到来方向を推定する際に演算する共分散行列に複数のサンプルを使用する。したがって、一実施形態に係る電子機器1によれば、同一の距離かつ同一の相対速度となる範囲に、同時に複数の対象物が存在しても、それぞれからの反射波Rの到来方向を推定することができる。
 また、一般的に、レーダの技術を用いて、相対速度が速い対象物からの反射波Rの到来方向を推定する場合、当該対象物は、共分散行列を求めるチャープ信号を送受信する間、その距離の範囲に存在するとは限らない。一実施形態に係る電子機器1によれば、その距離の範囲における信号のみを採用して、対象物からの反射波Rの到来方向を推定する。したがって、一実施形態に係る電子機器1によれば、反射波Rの到来方向の推定においてノイズ及び/又は干渉の影響を低減することができる。ここで、上記の「その距離」とは、距離FFTのステップで示される距離になる。対象物200とセンサ5との相対速度が速い場合、全てのサブフレーム時間内に、その距離ステップからとなりの距離ステップに移動してしまう場合がある。この場合、当該対象物は、共分散行列を求めるチャープ信号を送受信する間、その距離の範囲に存在しないこととなる。
 次に、他の実施形態について説明する。
 上述した実施形態において、送信信号及び受信信号に基づいて生成されたビート信号のうち、第1のFFT処理を行った結果におけるピークが第1閾値以上になるもののみを、第1サンプルとした。また、上述した実施形態において、第1サンプルのうち、第2のFFT処理を行った結果におけるピークが第2閾値以上になるもののみを、第2サンプルとした。しかしながら、一実施形態において、例えば、生成されたビート信号のうち、第1のFFT処理を行った結果におけるピークが第1閾値以上になるものが1つ以上の所定数あれば、当該ビート信号を含むサブフレーム全てのビート信号を第1サンプルとしてもよい。また、一実施形態において、例えば、生成された第1サンプルのうち、第2のFFT処理を行った結果におけるピークが第2閾値以上になるものが1つ以上の所定数あれば、当該第1サンプルを含むフレームにおける全ての第1サンプルを第2サンプルとしてもよい。
 このように、一実施形態において、第1サンプルは、ビート信号のうち、第1のFFT処理を行った結果におけるピークが第1閾値以上になるものが存在する場合、そのビート信号を含むサブフレームにおける全てのビート信号としてもよい。また、一実施形態において、第2サンプルは、第1サンプルのうち、第2のFFT処理を行った結果におけるピークが第2閾値以上になるものが存在する場合、その第1サンプルを含むフレームにおける全ての第1サンプルとしてもよい。
 本開示を諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。したがって、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。例えば、各機能部に含まれる機能などは論理的に矛盾しないように再配置可能である。複数の機能部等は、1つに組み合わせられたり、分割されたりしてよい。上述した本開示に係る各実施形態は、それぞれ説明した各実施形態に忠実に実施することに限定されるものではなく、適宜、各特徴を組み合わせたり、一部を省略したりして実施され得る。つまり、本開示の内容は、当業者であれば本開示に基づき種々の変形および修正を行うことができる。したがって、これらの変形および修正は本開示の範囲に含まれる。例えば、各実施形態において、各機能部、各手段、各ステップなどは論理的に矛盾しないように他の実施形態に追加し、若しくは、他の実施形態の各機能部、各手段、各ステップなどと置き換えることが可能である。また、各実施形態において、複数の各機能部、各手段、各ステップなどを1つに組み合わせたり、或いは分割したりすることが可能である。また、上述した本開示の各実施形態は、それぞれ説明した各実施形態に忠実に実施することに限定されるものではなく、適宜、各特徴を組み合わせたり、一部を省略したりして実施することもできる。
 上述した実施形態は、電子機器1としての実施のみに限定されるものではない。例えば、上述した実施形態は、電子機器1のような機器の制御方法として実施してもよい。さらに、例えば、上述した実施形態は、電子機器1のような機器の制御プログラムとして実施してもよい。
 一実施形態に係る電子機器1は、最小の構成としては、例えば制御部10のみを備えるものとしてよい。一方、一実施形態に係る電子機器1は、制御部10の他に、図3に示すような、信号生成部21、シンセサイザ22、位相制御部23、増幅器24、及び送信アンテナ25の少なくともいずれかを、適宜含んで構成してもよい。また、一実施形態に係る電子機器1は、上述の機能部に代えて、又は上述の機能部とともに、受信アンテナ31、LNA32、ミキサ33、IF部34、AD変換部35の少なくともいずれかを、適宜含んで構成してもよい。さらに、一実施形態に係る電子機器1は、記憶部40を含んで構成してもよい。このように、一実施形態に係る電子機器1は、種々の構成態様を採ることができる。また、一実施形態に係る電子機器1が移動体100に搭載される場合、例えば上述の各機能部の少なくともいずれかは、移動体100内部などの適当な場所に設置されてよい。一方、一実施形態においては、例えば送信アンテナ25及び受信アンテナ31の少なくともいずれかは、移動体100の外部に設置されてもよい。
 1 電子機器
 5 センサ
 10 制御部
 12 距離FFT処理部
 14 速度FFT処理部
 16 到来角推定部
 18 判定処理部
 20 送信部
 21 信号生成部
 22 シンセサイザ
 23 位相制御部
 24 増幅器
 25 送信アンテナ
 30 受信部
 31 受信アンテナ
 32 LNA
 33 ミキサ
 34 IF部
 35 AD変換部
 40 記憶部
 50 ECU
 100 移動体
 200 対象物(物体)
 

Claims (13)

  1.  送信波を送信する送信アンテナと、
     当該送信波が反射された反射波を受信する受信アンテナと、
     前記送信波に基づく送信信号及び前記反射波に基づく受信信号に基づいて生成されたビート信号に第1の高速フーリエ変換処理を行った結果に基づいて第1サンプルを生成し、
     前記第1サンプルに第2の高速フーリエ変換処理を行った結果に基づいて第2サンプルを生成し、
     前記第2サンプルに基づいて、前記反射波の到来方向を推定する制御部と、を備え、
     前記制御部は、
     前記第1サンプルを、前記ビート信号のうち、前記第1の高速フーリエ変換処理を行った結果におけるピークが第1閾値以上になるものとする、電子機器。
  2.  前記送信信号は、複数のチャープ信号を含むサブフレームから構成される、請求項1に記載の電子機器。
  3.  前記送信信号は、前記サブフレームを所定数含むフレームから構成される、請求項2に記載の電子機器。
  4.  前記第1サンプルは、前記ビート信号のうち、前記第1の高速フーリエ変換処理を行った結果におけるピークが第1閾値以上になるものが存在する場合、当該ビート信号を含むサブフレームにおける全てのビート信号とする、請求項1から3のいずれかに記載の電子機器。
  5.  前記第1閾値は、前記ピークを含む所定の領域を除く領域に対応するパワーの平均に基づいて設定される、請求項1から4のいずれかに記載の電子機器。
  6.  前記第2サンプルは、前記第1サンプルのうち、前記第2の高速フーリエ変換処理を行った結果におけるピークが第2閾値以上になるものとする、請求項1から5のいずれかに記載の電子機器。
  7.  前記第2サンプルは、前記第1サンプルのうち、前記第2の高速フーリエ変換処理を行った結果におけるピークが第2閾値以上になるものが存在する場合、当該第1サンプルを含むフレームにおける全ての第1サンプルとする、請求項1から5のいずれかに記載の電子機器。
  8.  前記第2閾値は、前記ピークを含む所定の領域を除く領域に対応するパワーの平均に基づいて設定される、請求項6又は7に記載の電子機器。
  9.  前記制御部は、前記第2サンプルから求める共分散行列に基づいて、前記反射波の到来方向を推定する、請求項1から8のいずれかに記載の電子機器。
  10.  送信アンテナから送信波として送信信号を送信するステップと、
     前記送信波が反射された反射波として受信アンテナから受信信号を受信するステップと、
     前記送信信号及び前記受信信号に基づいて生成されたビート信号に第1の高速フーリエ変換処理を行った結果に基づいて第1サンプルを生成するステップと、
     前記ビート信号のうち、前記第1の高速フーリエ変換処理を行った結果におけるピークが第1閾値以上になるものを前記第1サンプルから選択するステップと、
     前記選択された第1サンプルに第2の高速フーリエ変換処理を行った結果に基づいて第2サンプルを生成するステップと、
     前記第2サンプルに基づいて前記反射波の到来方向を推定するステップと、
     を含む、電子機器の制御方法。
  11.  コンピュータに、
     送信アンテナから送信波として送信信号を送信するステップと、
     前記送信波が反射された反射波として受信アンテナから受信信号を受信するステップと、
     前記送信信号及び前記受信信号に基づいて生成されたビート信号に第1の高速フーリエ変換処理を行った結果に基づいて第1サンプルを生成するステップと、
     前記ビート信号のうち、前記第1の高速フーリエ変換処理を行った結果におけるピークが第1閾値以上になるものを前記第1サンプルから選択するステップと、
     前記選択された第1サンプルに第2の高速フーリエ変換処理を行った結果に基づいて第2サンプルを生成するステップと、
     前記第2サンプルに基づいて前記反射波の到来方向を推定するステップと、
     を実行させる、電子機器の制御プログラム。
  12.  送信波を送信する送信アンテナと、
     当該送信波が反射された反射波を受信する受信アンテナと、
     前記送信波に基づく送信信号及び前記反射波に基づく受信信号に基づいて生成されたビート信号にフーリエ変換処理を行った結果に基づいてサンプルを生成し、
     前記サンプルに基づいて、前記反射波の到来方向を推定する制御部と、を備え、
     前記制御部は、
     前記サンプルを、前記ビート信号のうち、前記フーリエ変換処理を行った結果におけるピークが所定の閾値以上になるものから選択する、電子機器。
  13.  送信波を送信する送信アンテナと、
     当該送信波が反射された反射波を受信する受信アンテナと、
     前記送信波に基づく送信信号及び前記反射波に基づく受信信号に基づいて生成されたビート信号に第1の高速フーリエ変換処理を行った結果に基づいて第1サンプルを生成し、
     前記第1サンプルに第2の高速フーリエ変換処理を行った結果に基づいて第2サンプルを生成し、
     前記第2サンプルに基づいて、前記反射波の到来方向を推定する制御部と、を備え、
     前記制御部は、
     前記第2サンプルを、前記ビート信号のうち、前記第2の高速フーリエ変換処理を行った結果におけるピークが第2閾値以上になるものから選択する、電子機器。
     
PCT/JP2019/034649 2018-09-05 2019-09-03 電子機器、電子機器の制御方法、及び電子機器の制御プログラム WO2020050278A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019570579A JP6746017B2 (ja) 2018-09-05 2019-09-03 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
EP19856548.3A EP3848723A4 (en) 2018-09-05 2019-09-03 ELECTRONIC DEVICE, METHOD FOR CONTROLLING ELECTRONIC DEVICE AND CONTROL PROGRAM FOR ELECTRONIC DEVICE
US17/272,962 US12038529B2 (en) 2018-09-05 2019-09-03 Electronic device, method for controlling electronic device, and electronic device control program
CN201980057372.9A CN112654888A (zh) 2018-09-05 2019-09-03 电子设备、电子设备的控制方法、以及电子设备的控制程序

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-165795 2018-09-05
JP2018165795 2018-09-05

Publications (1)

Publication Number Publication Date
WO2020050278A1 true WO2020050278A1 (ja) 2020-03-12

Family

ID=69722344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034649 WO2020050278A1 (ja) 2018-09-05 2019-09-03 電子機器、電子機器の制御方法、及び電子機器の制御プログラム

Country Status (5)

Country Link
US (1) US12038529B2 (ja)
EP (1) EP3848723A4 (ja)
JP (3) JP6746017B2 (ja)
CN (1) CN112654888A (ja)
WO (1) WO2020050278A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11377112B2 (en) * 2019-11-13 2022-07-05 Baidu Usa Llc Low-speed, backward driving vehicle controller design

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3620810B1 (en) * 2018-09-05 2022-07-13 Nxp B.V. Radar interference detection
CN113050041B (zh) * 2019-12-27 2024-03-26 华为技术有限公司 一种频带的状态判断方法以及相关设备
CN113485200A (zh) * 2021-07-30 2021-10-08 蔚来汽车科技(安徽)有限公司 用于电子器件的控制装置、方法、移动装备和存储介质
US20230341530A1 (en) * 2022-04-23 2023-10-26 Silc Technologies, Inc. Data refinement in optical imaging systems
CN115166681B (zh) * 2022-09-07 2022-12-06 武汉新朗光电科技有限公司 调频连续波信号体制穿墙雷达目标检测快速方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311260A (ja) * 1994-05-20 1995-11-28 Fujitsu Ten Ltd 車間距離測定装置
JP2009162688A (ja) 2008-01-09 2009-07-23 Honda Elesys Co Ltd 電子走査型レーダ装置、受信波方向推定方法及び受信波方向推定プログラム
JP2009162689A (ja) 2008-01-09 2009-07-23 Honda Elesys Co Ltd 電子走査型レーダ装置、受信波方向推定方法及び受信波方向推定プログラム
JP2011013018A (ja) * 2009-06-30 2011-01-20 Mitsubishi Electric Corp 高分解能信号処理装置および高分解能信号処理方法
JP2011137650A (ja) 2009-12-25 2011-07-14 Honda Elesys Co Ltd 電子走査型レーダ装置、受信波方向推定方法及び受信波方向推定プログラム
JP2012163403A (ja) 2011-02-04 2012-08-30 Honda Elesys Co Ltd 電子走査型レーダ装置、受信波方向推定方法及び受信波方向推定プログラム
JP2016109678A (ja) * 2014-11-11 2016-06-20 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag レーダ信号を処理するための方法および装置
US20180164423A1 (en) * 2016-12-09 2018-06-14 GM Global Technology Operations LLC Method for computationally simple range-doppler-angle tracking using goerzel filter

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3491418B2 (ja) * 1995-12-01 2004-01-26 株式会社デンソー Fmcwレーダ装置
JP3460453B2 (ja) * 1995-12-11 2003-10-27 株式会社デンソー Fmcwレーダ装置
JP2001242240A (ja) * 2000-02-28 2001-09-07 Aisin Seiki Co Ltd 障害物検出方法、レーダ装置及び車載用レーダ装置
JP2009014405A (ja) 2007-07-02 2009-01-22 Hitachi Ltd 車載用レーダ装置
JP4415040B2 (ja) 2007-09-18 2010-02-17 三菱電機株式会社 レーダ装置
JP2009156807A (ja) 2007-12-27 2009-07-16 Toshiba Corp 測角装置
JP4889662B2 (ja) * 2008-01-29 2012-03-07 三菱電機株式会社 パルス諸元検出装置
JP2010066179A (ja) 2008-09-12 2010-03-25 Mitsubishi Electric Corp 高分解能信号処理装置および高分解能信号処理方法
JP5851752B2 (ja) * 2011-07-30 2016-02-03 富士通テン株式会社 信号処理装置、レーダ装置、および、信号処理方法
DE102012008350A1 (de) * 2012-04-19 2013-10-24 S.M.S Smart Microwave Sensors Gmbh Verfahren und Vorrichtung zur Abstimmung von Abstand und Radialgeschwindigkeit eines Objekts mittels Radarsignalen
JP2014001943A (ja) 2012-06-15 2014-01-09 Honda Elesys Co Ltd 方向推定装置、及び方向推定装置に対する閾値設定方法
US9383442B2 (en) * 2014-05-12 2016-07-05 Autoliv Asp, Inc. Radar system and method for determining range, relative velocity and bearing of an object using continuous-wave and chirp signals
JP5992574B1 (ja) * 2015-04-23 2016-09-14 三菱電機株式会社 物体検出装置
FR3055049B1 (fr) * 2016-08-11 2018-07-27 Thales Procede de detection radar fmcw a resolution multiple et radar mettant en oeuvre un tel procede
JP6853047B2 (ja) * 2017-01-17 2021-03-31 株式会社デンソーテン レーダ装置および物標検出方法
JP6832167B2 (ja) 2017-01-17 2021-02-24 株式会社デンソーテン レーダ装置および物標検出方法
DE102017204496A1 (de) * 2017-03-17 2018-09-20 Robert Bosch Gmbh Verfahren und Radarvorrichtung zum Ermitteln von radialer relativer Beschleunigung mindestens eines Zieles
US11047970B2 (en) * 2017-05-05 2021-06-29 Texas Instruments Incorporated Multi-mode radar systems, signal processing methods and configuration methods using pushing windows
US10630249B2 (en) * 2017-08-04 2020-04-21 Texas Instruments Incorporated Low power mode of operation for mm-wave radar
JP7067974B2 (ja) * 2018-03-16 2022-05-16 株式会社デンソーテン レーダ装置およびレーダ装置の制御方法
US11119185B2 (en) * 2018-06-07 2021-09-14 GM Global Technology Operations LLC Resolving doppler ambiguity in multi-input multi-output radar using digital multiple pulse repetition frequencies
US10914819B2 (en) * 2018-08-02 2021-02-09 GM Global Technology Operations LLC Mitigating vibration in a radar system on a moving platform

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311260A (ja) * 1994-05-20 1995-11-28 Fujitsu Ten Ltd 車間距離測定装置
JP2009162688A (ja) 2008-01-09 2009-07-23 Honda Elesys Co Ltd 電子走査型レーダ装置、受信波方向推定方法及び受信波方向推定プログラム
JP2009162689A (ja) 2008-01-09 2009-07-23 Honda Elesys Co Ltd 電子走査型レーダ装置、受信波方向推定方法及び受信波方向推定プログラム
JP2011013018A (ja) * 2009-06-30 2011-01-20 Mitsubishi Electric Corp 高分解能信号処理装置および高分解能信号処理方法
JP2011137650A (ja) 2009-12-25 2011-07-14 Honda Elesys Co Ltd 電子走査型レーダ装置、受信波方向推定方法及び受信波方向推定プログラム
JP2012163403A (ja) 2011-02-04 2012-08-30 Honda Elesys Co Ltd 電子走査型レーダ装置、受信波方向推定方法及び受信波方向推定プログラム
JP2016109678A (ja) * 2014-11-11 2016-06-20 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag レーダ信号を処理するための方法および装置
US20180164423A1 (en) * 2016-12-09 2018-06-14 GM Global Technology Operations LLC Method for computationally simple range-doppler-angle tracking using goerzel filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11377112B2 (en) * 2019-11-13 2022-07-05 Baidu Usa Llc Low-speed, backward driving vehicle controller design

Also Published As

Publication number Publication date
JP2023073522A (ja) 2023-05-25
CN112654888A (zh) 2021-04-13
JPWO2020050278A1 (ja) 2020-09-10
EP3848723A4 (en) 2022-06-08
JP2020144128A (ja) 2020-09-10
JP7257348B2 (ja) 2023-04-13
EP3848723A1 (en) 2021-07-14
US12038529B2 (en) 2024-07-16
US20210190907A1 (en) 2021-06-24
JP6746017B2 (ja) 2020-08-26

Similar Documents

Publication Publication Date Title
WO2020050278A1 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
JP6887066B1 (ja) 電子機器、電子機器の制御方法、及びプログラム
WO2020217921A1 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
US20220146625A1 (en) Electronic device, and method and program for controlling the same
JP2022065171A (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
JP7441807B2 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
JP2024023926A (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
WO2020241235A1 (ja) 電子機器、電子機器の制御方法、及びプログラム
JP7011729B2 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム
WO2020241233A1 (ja) 電子機器、電子機器の制御方法、及びプログラム
WO2020241234A1 (ja) 電子機器、電子機器の制御方法、及びプログラム
JP6925568B1 (ja) 電子機器、電子機器の制御方法、及びプログラム
WO2020071242A1 (ja) 電子機器、電子機器の制御方法、及び電子機器の制御プログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019570579

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19856548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019856548

Country of ref document: EP

Effective date: 20210406