WO2020049940A1 - 除菌方法及び除菌装置 - Google Patents

除菌方法及び除菌装置 Download PDF

Info

Publication number
WO2020049940A1
WO2020049940A1 PCT/JP2019/031098 JP2019031098W WO2020049940A1 WO 2020049940 A1 WO2020049940 A1 WO 2020049940A1 JP 2019031098 W JP2019031098 W JP 2019031098W WO 2020049940 A1 WO2020049940 A1 WO 2020049940A1
Authority
WO
WIPO (PCT)
Prior art keywords
mist
amount
period
chemical
mist amount
Prior art date
Application number
PCT/JP2019/031098
Other languages
English (en)
French (fr)
Inventor
博子 池嶋
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019136958A external-priority patent/JP2020039862A/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020049940A1 publication Critical patent/WO2020049940A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases

Definitions

  • the present disclosure relates to a bacteria elimination method and a bacteria elimination device for spraying a chemical mist onto an object to sterilize the object.
  • the structure is similar to a humidifier.
  • the spray amount and the intermittent spray condition are adjusted based on the measured value of the dew point or the relative humidity.
  • the present disclosure provides a disinfection method and a disinfection device capable of efficiently disinfecting an object.
  • a disinfecting method for spraying a chemical mist containing a chemical solution onto a target from a spray unit to sterilize the target. And a control circuit that controls the spraying of the spraying unit to spray the chemical mist in which the mist amount per unit time of the chemical mist is the first mist amount during the first period. Performing the first step, and during the second period after the first period, the chemical mist in which the mist amount per unit time is a second mist amount smaller than the first mist amount is applied to the object.
  • a second step of performing a spraying control and, during a third period after the second period, the chemical mist in which the mist amount per unit time is a third mist amount larger than the second mist amount. No. that controls spraying on the target Including the step, the.
  • the disinfection device includes a spraying unit that sprays a chemical mist containing a chemical solution for removing bacteria from a target, and a control circuit that controls spraying of the spraying unit, The control circuit controls the spraying of the chemical mist in which the mist amount per unit time of the chemical mist per unit time is the first mist amount to the object during the first period, and performs the second control after the first period.
  • control is performed to spray the chemical mist having the second mist amount, which is the second mist amount smaller than the first mist amount, to the target object, and the third period after the second period During the control, the control is performed to spray the chemical mist having the third mist amount, which is the third mist amount larger than the second mist amount per unit time, onto the object.
  • FIG. 5 is a diagram for explaining the effect of sterilization when the sterilization apparatus according to the first embodiment sprays under different conditions.
  • FIG. 6 is a diagram for explaining the principle of improving the disinfection effect by performing the intermittent spraying by the disinfection device according to the first embodiment.
  • FIG. 7 is a diagram for explaining the principle that the sterilization apparatus according to the first embodiment sprays a small amount of a chemical mist to improve the sterilization effect.
  • FIG. 8 is a block diagram illustrating a configuration of a sterilization apparatus according to a modification of the first embodiment.
  • FIG. 9 is a block diagram showing a configuration of a sterilization apparatus according to the second embodiment.
  • FIG. 10 is a diagram for explaining differences in spraying conditions by the sterilization apparatus according to Embodiment 2 due to humidity.
  • FIG. 10 is a diagram for explaining differences in spraying conditions by the sterilization apparatus according to Embodiment 2 due to humidity.
  • the disinfection method includes a step of spraying a chemical mist containing a chemical for removing the target object, and in the spraying step, the mist amount of the chemical mist is the The first mist amount, the second mist amount smaller than the first mist amount, and the third mist amount larger than the second mist amount are changed in this order.
  • the first mist amount, the second mist amount, and the third mist amount are determined based on a humidity measured by a humidity sensor that measures a humidity in a space where the object exists.
  • At least one condition may be determined.
  • At least one of the mist amount, the spray period and the concentration can be adjusted to a more appropriate value based on the humidity. Therefore, the bacteria can be more efficiently removed.
  • the first mist amount and the first mist amount are lower than when the humidity is the first humidity.
  • the third mist amount, the first period and the third period may be increased, and the concentration of the chemical solution and the second period may be decreased.
  • the spraying step when the humidity is the second humidity lower than the first humidity, the first mist amount and the first mist amount are higher than when the humidity is the first humidity.
  • the third mist amount, and the spray period at the first mist amount and the spray period at the third mist amount are increased, and the concentration of the chemical solution and the second mist amount are increased. May be reduced.
  • the first mist amount, the second mist amount, and the third mist amount are based on a moisture amount measured by a moisture meter that measures moisture of the object. And at least one of the first period, the second period, and the third period, and the concentration of the liquid medicine contained in the liquid medicine mist in each of the first step, the second step, and the third step. Conditions may be determined. Further, for example, in the step of spraying, the mist amount, the spray period of the chemical mist for each mist amount, and the chemical solution based on a moisture amount measured by a moisture meter for measuring moisture of the object. At least one condition of the concentration of the liquid medicine contained in the mist may be determined, and the liquid medicine mist may be sprayed under the determined conditions.
  • At least one of the mist amount, the spray period and the concentration can be adjusted to a more appropriate value based on the moisture amount. Therefore, the bacteria can be more efficiently removed.
  • the moisture content when the moisture content is the second moisture content that is larger than the first moisture content, the moisture content is more than the first moisture content.
  • the first mist amount and the third mist amount, the first period and the third period may be decreased, and the concentration of the chemical solution and the second period may be increased.
  • the water amount when the water amount is the second water amount larger than the first water amount, the water amount is more than the first water amount.
  • the first mist amount and the third mist amount, and the spray period at the first mist amount and the spray period at the third mist amount are reduced, and the concentration of the chemical solution and the The spray period at the mist amount of 2 may be increased.
  • the amount of the substance in the measurement region including the target object which is measured by an optical sensor that measures the substance attached to the target object or the substance included in the target object, Based on the first mist amount, the second mist amount, and the third mist amount, the first period, the second period, the third period, the first step, the second At least one of the condition and the concentration of the chemical contained in the chemical mist in each of the third step and the third step may be determined.
  • At least one of the mist amount, the spraying period, and the concentration can be adjusted to an appropriate value according to the amount of the substance attached to the target or the amount of the substance contained in the target. Therefore, waste of the mist amount of the chemical mist can be suppressed, and the bacteria can be efficiently removed.
  • the eradication of the object is to reduce the bacteria attached to the object or the bacteria contained in the object by 99% or more.
  • eradication means to reduce the number of bacteria by two orders of magnitude.
  • the chemical mist may be sprayed in a spiral shape.
  • control is performed to generate the chemical mist, store the generated chemical mist in a container, and spray the chemical mist stored in the container. May go.
  • the chemical mist may be generated, the generated chemical mist may be stored in a container, and the chemical mist stored in the container may be sprayed.
  • control for spraying while generating the chemical mist may be performed.
  • the chemical liquid mist may be sprayed while being generated.
  • the disinfection device includes a spraying unit that sprays a chemical mist containing a chemical solution for removing bacteria from a target, and a control circuit that controls spraying of the spraying unit, The control circuit controls the spraying of the chemical mist in which the mist amount per unit time of the chemical mist per unit time is the first mist amount to the object during the first period, and performs the second control after the first period.
  • the device is a spraying unit that sprays a chemical mist containing a chemical for removing a target, and a mist amount of the chemical mist, a first mist amount, A control circuit for changing the order of a second mist amount smaller than the first mist amount and a third mist amount larger than the second mist amount.
  • the sterilization apparatus further includes a humidity sensor that measures the humidity of the space in which the target object is provided, and the control circuit is configured to control the humidity measured by the humidity sensor.
  • the mist amount, the spray period of the chemical mist for each mist amount, and at least one condition of the concentration of the chemical contained in the chemical mist are determined, and the spray unit is determined by the control circuit.
  • the chemical mist may be sprayed under the set conditions.
  • the second mist amount may be zero.
  • the spray unit may spray the chemical mist in a spiral shape.
  • the sterilization apparatus further includes a moisture meter that measures the moisture of the object, and the control circuit is configured to perform the control based on the moisture amount measured by the moisture meter.
  • the mist amount, the spray period of the chemical mist for each mist amount, and at least one condition of the concentration of the chemical solution contained in the chemical mist are determined, and the spraying unit is configured under the conditions determined by the control circuit.
  • the chemical mist may be sprayed.
  • control circuit may be configured such that, when the amount of moisture is the second amount of moisture greater than the first amount of moisture, the first amount of moisture is greater than that when the amount of moisture is the first amount of moisture.
  • the mist amount and the third mist amount, and the spray period at the first mist amount and the spray period at the third mist amount are reduced, and the concentration of the chemical solution and the second The spraying period with the mist amount may be increased.
  • control circuit may further control the dehumidifying device to dehumidify the space where the object exists.
  • the sterilization apparatus further includes a chemical liquid supply unit that supplies the chemical liquid to the spray unit, and the spray unit includes a container, and is supplied from the chemical liquid supply unit.
  • the liquid chemical mist may be generated from the liquid chemical, the generated liquid chemical mist may be stored in the container, and the liquid chemical mist stored in the container may be sprayed.
  • the sterilization apparatus further includes a chemical liquid supply unit that supplies the chemical liquid to the spray unit, and the spray unit is configured to convert the chemical liquid supplied from the chemical liquid supply unit into the chemical liquid. You may spray while generating a mist.
  • the generated chemical mist can be sprayed in an effective state before being extinguished by vaporization or the like.
  • each drawing is a schematic diagram and is not necessarily strictly illustrated. Further, in each of the drawings, substantially the same configuration is denoted by the same reference numeral, and redundant description will be omitted or simplified.
  • FIG. 1 is a block diagram showing a configuration of a sterilization apparatus 100 according to the present embodiment.
  • the sterilization apparatus 100 includes a spray unit 110, a chemical solution supply unit 120, and a control circuit 130.
  • the sterilization apparatus 100 according to the present embodiment sterilizes the target 104 by spraying the chemical mist 102 onto the target 104.
  • the chemical mist 102 is a mist-like chemical.
  • the chemical is a solution for removing bacteria from the object 104.
  • the drug solution has, for example, a bacteria elimination function.
  • the chemical is hypochlorous acid water.
  • the chemical solution may be another aqueous solution such as ozone water.
  • the drug solution may be an alcohol solution.
  • the object 104 is an object to be sterilized by the sterilization apparatus 100.
  • the object 104 is a door knob or the like that is often touched by a person, but may be a desk, a chair back, or the like.
  • the object 104 may be a structural material of a building, such as a wall, a floor, or a ceiling.
  • the target object 104 may be furniture, home appliances, water facilities, or the like.
  • the spraying unit 110 sprays the chemical mist 102 containing a chemical for sterilizing the object 104. Specifically, the spray unit 110 sprays the chemical mist 102 while generating the chemical mist 102 from the chemical supplied from the chemical supply unit 120. That is, the spraying unit 110 simultaneously performs the generation of the chemical mist 102 and the spraying.
  • the spray unit 110 includes an ultrasonic generator and a blower fan.
  • the spray unit 110 generates the chemical mist 102 by mist-forming the chemical supplied from the chemical supply unit 120 by ultrasonic vibration.
  • the spraying unit 110 sprays the generated chemical mist 102 toward the object 104 by a blowing fan.
  • the spray unit 110 may include an electrostatic atomizer instead of the ultrasonic generator.
  • the spray unit 110 may generate the chemical mist 102 by electrostatically atomizing the chemical.
  • spraying section 110 sprays chemical mist 102 under the spraying conditions determined by control circuit 130.
  • the spraying conditions include at least one of the mist amount, the spraying period, and the concentration of the drug solution.
  • the mist amount is a mist amount per unit time, and is an amount of the chemical mist 102 sprayed per unit time. In the following description, the mist amount means the mist amount per unit time unless otherwise specified.
  • the control circuit 130 may continuously change the first mist amount, the second mist amount, and the third mist amount in this order over time. That is, the first period, the second period, and the third period may be continuous. Alternatively, the control circuit 130 may change the first mist amount, the second mist amount, and the third mist amount in this order at intervals. That is, the first period and the second period need not be continuous. Further, the second period and the third period do not have to be continuous. Spraying of the chemical mist 102 at a fourth mist amount different from at least one of the first mist amount, the second mist amount, and the third mist amount may be performed in the empty interval.
  • the control circuit 130 may further determine at least one condition of the mist amount of the chemical mist 102, the spray period of the chemical mist 102 for each mist amount, and the concentration of the chemical contained in the chemical mist 102. Specifically, the control circuit 130 sets the conditions including (a) the first mist amount, the second mist amount, and the third mist amount, and (b) the first period, the second period, and the third period. Even if at least one condition selected from the group consisting of the condition including the concentration of the liquid medicine contained in the liquid medicine mist 102 in each of the first step, the second step and the third step is determined. Good. For example, the spraying period and the concentration of the chemical solution may be changed for each mist amount. A specific example will be described later.
  • FIG. 2 is a flowchart showing the operation of the sterilization apparatus 100 according to the present embodiment.
  • the sterilization apparatus 100 periodically and repeatedly sterilizes an object 104 such as a door knob, for example. After the eradication of the last time is over and a predetermined waiting period has elapsed, the operation shown in FIG. 2 is executed. Further, the sterilization apparatus 100 may perform the sterilization at the timing when the instruction from the user is received.
  • the control circuit 130 sets the mist amount per unit time to a third mist amount larger than the second mist amount, and the spraying unit 110 sets the third mist amount.
  • the chemical mist 102 is sprayed with the mist amount (step S14).
  • the spray unit 110 increases the amount of mist to be generated by increasing the power of the ultrasonic vibration as compared with the spray in step S12.
  • the third mist amount may be equal to the first mist amount. Spraying at the third mist amount is performed continuously during the third period.
  • the third period is, for example, the same as the first period, but may be different.
  • FIGS. 3A to 3F are diagrams showing first to sixth examples of changes in the mist amount of the chemical mist 102 sprayed by the sterilization apparatus 100 according to the present embodiment.
  • the horizontal axis represents time
  • the vertical axis represents the mist amount of the chemical mist 102.
  • the vertical axis represents the ratio to the maximum mist amount assuming that the maximum mist amount that the spraying unit 110 can spray per unit time is 100%. For example, if the maximum mist volume is 5 mL / min, the 50% mist volume will be 2.5 mL / min.
  • the first mist amount M1 and the third mist amount M3 may be equal. Further, the spray period for each mist amount may be equal. Further, the spraying may be performed after the spraying with the third mist amount M3, that is, after the step S14 shown in FIG.
  • mist amount M1 is, for example, 100%
  • mist amounts M6 and M7 are, for example, 50%.
  • the mist amount changes in the order of M4, M1, M5, M6, M2, M3, and M7.
  • the mist amounts M4 and M3 are, for example, 100%, and the mist amounts M5 and M7 are, for example, 50%.
  • the mist amount changes in the order of M1, M4, M2, M5, M3, and M6.
  • the second period that is, the period T2 during which spraying is not performed may be longer than the first period T1 and the third period T3. Further, after the spraying with the first mist amount M1, the spraying with a mist amount smaller than the first mist amount M1 may be performed before the mist amount is reduced to zero. Further, after the mist amount is set to 0, spraying with a mist amount smaller than the third mist amount M3 may be performed before performing spraying with the third mist amount M3.
  • the sterilization apparatus 100 periodically repeats the change in the amount of mist shown in any of FIGS. 3A to 3F as one cycle. For each repetition, a different change in the amount of mist may be used.
  • the mist amounts of the mist amounts M4 to M7 and the spray periods T4 to T7 are merely examples, and are not limited to the examples described above.
  • at least one of the mist amounts M4 to M7 may be equal to, equal to, or larger than any of the first mist amount M1 to the third mist amount M3.
  • At least one of the mist amounts M4 to M7 may be zero.
  • at least one of the spray periods T4 to T7 may be equal to one of the spray periods T1 to T3, may be longer, or may be smaller.
  • the concentrations of the chemicals contained in the chemical mist 102 are the same, but may be different.
  • the meaning that the mist amount is 0 means that control is performed to spray the chemical mist having the mist amount of 0 onto the target.
  • the inventors of the present application first performed intermittent spraying and continuous spraying of the chemical mist 102, and measured the infectious titer of the object 104, thereby confirming the eradication effect. Hypochlorous acid water was used as the chemical mist 102.
  • Continuous spraying is to continuously spray the chemical mist 102 with a constant mist amount for a fixed period. That is, in the continuous spraying, the mist amount is not changed during the spraying period.
  • the sterilization effect is higher in intermittent spraying than in continuous spraying, regardless of the spraying period.
  • the disinfection effect of the continuous spraying for 15 seconds and the disinfection effect of the intermittent spraying for 5 seconds are almost the same. Therefore, in order to obtain a disinfection effect equivalent to continuous spraying for 15 seconds, intermittent spraying may be performed for 5 seconds, and the usage amount of the chemical mist 102 can be reduced to about one third. Further, the disinfection effect of continuous spraying for 30 seconds and the disinfection effect of intermittent spraying for 15 seconds are almost the same. Therefore, in order to obtain a disinfection effect equivalent to continuous spraying for 30 seconds, intermittent spraying may be performed for 15 seconds, and the usage amount of the chemical mist 102 can be reduced to about half.
  • the amount of the chemical mist 102 required to obtain the same sterilization effect can be reduced.
  • the target object 104 can be sterilized by spraying continuously at a fourth mist amount per unit time during the fourth period.
  • the eradication means that the number of bacteria attached to the object 104 or the bacteria contained in the object 104 is reduced by 99% or more.
  • the first usage amount which is the product of the first period and the first mist amount, and the second usage amount which is the product of the second period and the second mist amount is smaller than the fourth usage amount that is the product of the fourth period and the fourth mist amount.
  • the case of intermittent spraying that is, the case where the second mist amount is 0 is shown, but the same applies to the case where the second mist amount is not 0 and smaller than the first mist amount and the third mist amount. The tendency is obtained, and the bacteria can be efficiently removed.
  • the inventors of the present application confirmed the effect of bacteria elimination by changing the concentration and the liquid property of the chemical mist 102.
  • FIG. 5 is a diagram for explaining the effect of sterilization when the sterilization apparatus 100 according to the present embodiment sprays under different conditions.
  • the vertical axis represents a standardized infection titer, as in FIG.
  • both the continuous spraying and the intermittent spraying shown in FIG. 5 have a spraying period of 30 seconds. Specifically, the intermittent spraying was performed five times in six seconds each, with a non-spraying period of 30 seconds interposed.
  • ““ Low mist concentration ”shown in FIG. 5 indicates the result when spraying was performed using the chemical mist 102 having a concentration lower than the concentration of the chemical mist 102 used for“ normal spraying ”. Specifically, the concentration of the chemical mist 102 used at a low mist concentration is in the range of 60% to 70% of the concentration of the chemical mist 102 used for normal spraying.
  • both the continuous spraying and the intermittent spraying have a higher germicidal effect than the spraying with a low mist concentration. That is, the higher the concentration of the chemical mist 102, the higher the bactericidal effect.
  • the sterilization effect of the intermittent spraying at a low mist concentration is higher than the sterilization effect of the continuous spraying of the normal spraying. From this, it can be seen that by performing intermittent spraying, a high sterilization effect can be obtained even if the concentration of the chemical mist 102 is reduced.
  • ““ Alkaline ”shown in FIG. 5 indicates the result when spraying was performed using the chemical mist 102 whose liquidity was alkaline. Specifically, a chemical mist 102 containing a large amount of sodium hypochlorite and having a pH of 9 was used. The “normal spray” chemical mist 102 has a neutral pH of 7.
  • the sterilization effect is greatly reduced in the continuous spraying as compared with the normal spraying, whereas the same removal rate is obtained in the intermittent spraying. Bacterial effect has been obtained.
  • the alkaline chemical mist 102 is sprayed, the hypochlorous acid is vaporized, so that the vaporized hypochlorous acid is taken into the chemical mist 102 to facilitate the sterilization.
  • a disinfection effect equivalent to that when the liquid property of the chemical mist 102 is neutral can be obtained.
  • FIG. 5 shows the result of performing intermittent spraying in a high humidity environment.
  • the relative humidity was in the range of 70% to 80%.
  • the other results shown in FIGS. 4 and 5 were performed in an environment where the relative humidity was about 30%.
  • the sterilization effect is higher in the case of intermittent spraying than in the case of continuous spraying. Therefore, even when the humidity in the space cannot be adjusted and the high humidity is maintained, a high sterilization effect can be obtained by performing the intermittent spraying.
  • FIG. 6 is a schematic diagram for explaining the principle of improving the disinfection effect by the intermittent spraying performed by the disinfection device 100 according to the present embodiment.
  • FIG. 6 shows a plurality of fine droplets 103 constituting the chemical mist 102.
  • the microdroplets 103 are finely divided chemicals, and include water 103a and chemicals components 103b.
  • FIG. 7 is a diagram for explaining the principle of improving the disinfection effect by spraying a small amount of the chemical mist 102 by the disinfection device 100 according to the present embodiment.
  • the sterilization apparatus 100 it is possible to efficiently sterilize the target object 104 while suppressing the amount of the chemical mist 102 used.
  • FIG. 8 is a block diagram showing a configuration of a sterilization apparatus 101 according to the present modification. As shown in FIG. 8, the sterilization apparatus 101 is different from the sterilization apparatus 100 shown in FIG. 1 in that a spray unit 111 is provided instead of the spray unit 110.
  • a spray unit 111 is provided instead of the spray unit 110.
  • the spraying unit 111 includes a generating unit 112 and a container 114, as shown in FIG.
  • the generating unit 112 generates the chemical mist 102 from the chemical supplied from the chemical supply unit 120, and stores the generated chemical mist 102 in the container 114.
  • the generation unit 112 is an ultrasonic generator, and generates the chemical mist 102 by applying ultrasonic vibration to the chemical.
  • the generated chemical mist 102 can be stored in the container 114. Accordingly, the bacteria can be quickly removed at a time when the bacteria need to be removed. In addition, by storing in advance the mist amount of the chemical solution mist necessary for the spraying, the possibility that the chemical solution mist 102 runs short during the spraying can be reduced, and stable spraying can be performed.
  • the humidity sensor 240 measures the humidity of the space where the object 104 exists.
  • the space where the object 104 exists is, for example, a closed space such as an indoor space, but is not limited to this.
  • the space where the object 104 exists may be a predetermined range centered on the object 104.
  • the predetermined range is, for example, a range within 30 m from the object 104.
  • the space where the target object 104 exists may not include the entire target object 104 but may include only a part of the target object 104.
  • the space where the target object 104 exists may be a space surrounded by a wall that is the target object 104. In this case, only a part of the target object 104, specifically, the surface of the wall exists in the space.
  • FIG. 10 is a diagram for explaining a difference in spraying conditions by the sterilization apparatus 200 according to the present embodiment depending on humidity.
  • the horizontal axis represents time
  • the vertical axis represents the mist amount of the chemical mist 102, as in FIG. 3A and the like.
  • an example of a change in the mist amount when the humidity is the first humidity, that is, when the humidity is high is represented by a broken-line graph.
  • An example of a change in the amount of mist when the humidity is the second humidity lower than the first humidity, that is, when the humidity is low is represented by a solid line graph.
  • the first humidity is 100% and the second humidity is 50%.
  • the first mist amount M21 in the case of low humidity is larger than the first mist amount M11 in the case of high humidity.
  • the second mist amount M22 in the case of low humidity is larger than the second mist amount M12 in the case of high humidity.
  • the third mist amount M23 in the case of low humidity is larger than the third mist amount M13 in the case of high humidity. Note that the second mist amounts M22 and M12 may be 0 irrespective of the humidity.
  • the spray period T21 of the first mist amount M21 in the case of low humidity is longer than the spray period T11 of the first mist amount M11 in the case of high humidity.
  • the spray period T23 of the third mist amount M23 in the case of low humidity is longer than the spray period T13 of the third mist amount M13 in the case of high humidity.
  • the spray period T22 of the second mist amount M22 in the case of low humidity is shorter than the spray period T12 of the second mist amount M12 in the case of high humidity.
  • the concentration of the chemical mist 102 in the case of low humidity is lower than the concentration of the chemical mist 102 in the case of high humidity.
  • FIG. 13 is a block diagram showing a configuration of a sterilization apparatus 400 according to the present embodiment.
  • sterilization apparatus 400 is different from sterilization apparatus 300 according to the third embodiment in that a new moisture meter 450 is provided and control circuit 430 is provided instead of control circuit 230.
  • the point is different.
  • the following description focuses on differences from the third embodiment, and description of common points is omitted or simplified.
  • the control circuit 430 determines at least one condition of the mist amount, the spray period of the chemical mist 302 for each mist amount, and the concentration of the chemical contained in the chemical mist 302, based on the moisture amount measured by the moisture meter 450. May be. For example, the control circuit 430 sets the first mist amount and the third mist amount when the moisture amount is the second moisture amount larger than the first humidity, than when the moisture amount is the first moisture amount. The mist amount and at least one of the first period and the third period are reduced. Further, for example, when the water amount is the second water amount, the control circuit 430 may control the concentration of the liquid medicine in the liquid mist 302 and the concentration of the liquid medicine in the second period more than when the water amount is the first water amount. Decrease at least one.
  • the spraying period T11 of the first mist amount M11 when the moisture amount is large is shorter than the spraying period T21 of the first mist amount M21 when the moisture amount is small.
  • the spraying period T13 of the third mist amount M13 when the moisture amount is large is shorter than the spraying period T23 of the third mist amount M23 when the moisture amount is small.
  • the spray period T12 of the second mist amount M12 when the amount of water is large is longer than the spray period T22 of the second mist amount M22 when the amount of water is large.
  • the concentration of the chemical mist 302 when the amount of water is large is higher than the concentration of the chemical mist 302 when the amount of water is small.
  • the chemical mist 302 is unlikely to vaporize. For this reason, the mist amount of the chemical mist 302 is reduced, and the spray period with the second mist amount is lengthened. Thereby, vaporization can be promoted and the bactericidal effect can be enhanced.
  • the density may be changed for each mist amount.
  • the moisture meter 450 may be a contact moisture sensor. In this case, by communicating with the moisture meter 450, the control circuit 430 acquires moisture amount information indicating the moisture amount measured by the moisture meter 450. Communication between the control circuit 430 and the moisture meter 450 may be wire communication or wireless communication.
  • FIG. 15 is a block diagram showing a configuration of a sterilization apparatus 500 according to the present embodiment.
  • sterilization apparatus 500 is different from sterilization apparatus 300 according to the third embodiment in that a control circuit 530 is provided instead of control circuit 230.
  • a dehumidifier 501 is provided near the object 104. The following description focuses on differences from the third embodiment, and description of common points is omitted or simplified.
  • the dehumidifying device 501 is a device for dehumidifying the space where the object 104 is provided.
  • the dehumidifying device 501 is provided in the same space as the object 104.
  • the dehumidifying device 501 may be provided so as to be in contact with the object 104.
  • the control circuit 530 controls the dehumidifier 501 to dehumidify the space in which the object 104 is provided. Specifically, the control circuit 530 transmits a control signal such as a dehumidification start instruction to the dehumidifier 501 by communicating with the dehumidifier 501, for example. Communication between the control circuit 530 and the dehumidifying device 501 may be wire communication or wireless communication.
  • control circuit 530 controls the dehumidifier 501 so that the spray period with the second mist amount, that is, the second period, or the period in which the chemical mist 302 is not sprayed, is performed. Dehumidify. The control circuit 530 does not need to perform the dehumidification in the spray period other than the second period.
  • the second period is a period in which the vaporization of the chemical mist 302 is promoted. Therefore, vaporization of the chemical mist 302 is further promoted by performing dehumidification during this period. Thereby, the disinfection effect can be further enhanced.
  • control circuit 530 may always perform dehumidification by controlling the dehumidification device 501. That is, the control circuit 530 may perform the dehumidification not only in the second period but also in at least one of the first period and the third period.
  • the optical sensor 660 includes, for example, a light source that emits irradiation light toward the target object 104, and a light receiving element that receives light returning from the target object 104.
  • the light source is, for example, a laser element or an LED (Light Emitting Diode) element, but is not limited thereto.
  • the irradiation light is, for example, visible light such as blue light, but may be infrared light or ultraviolet light.
  • the irradiation light may be excitation light that excites the substance 605.
  • the control circuit 630 determines at least one condition of the mist amount, the spray period of the chemical mist 102 for each mist amount, and the concentration of the chemical contained in the chemical mist 102 based on the amount of the substance 605 in the measurement region.
  • the measurement area is, for example, an irradiation range of light by the optical sensor 660. Note that the light emission range of the optical sensor 660 may be variable.
  • control circuit 630 determines that the concentration of the chemical in the chemical mist 102 is higher when the amount of the substance 605 is the second amount than when the amount of the substance 605 is the first amount. At least one of the time periods is reduced.
  • the sterilization apparatus 600 it is possible to adjust at least one of the mist amount, the spray period, and the concentration to an appropriate value according to the substance 605 attached to the target object 104. it can. Therefore, waste of the mist amount of the chemical mist 102 can be suppressed, and the bacteria can be efficiently removed.
  • the target object 104 is a structural material of a building is shown, but the present invention is not limited to this.
  • the object 104 may be an aerosol 604, as shown in FIG.
  • FIG. 18 is a block diagram showing a configuration of a sterilization apparatus 700 according to the present embodiment.
  • the sterilization apparatus 700 is different from the sterilization apparatus 100 according to the first embodiment in that a new human detection sensor 770 is provided and a control circuit 730 is used instead of the control circuit 130. It is different from the point provided.
  • the following description focuses on differences from the first embodiment, and description of common points is omitted or simplified.
  • the control circuit 730 can perform spraying with an appropriate mist amount by setting the degree of contamination possibility high. Specifically, the control circuit 730 sets the first mist to a higher value when the degree of contamination possibility is the second value higher than the first value than when the degree of contamination possibility is the first amount. The amount and the third mist amount and at least one of the first period and the third period are increased. In addition, for example, the control circuit 730 determines that the concentration of the chemical in the chemical mist 102 is higher when the degree of contamination is the second value than when the degree of contamination is the first value. At least one of the time periods is reduced.
  • the sterilization apparatus 700 according to the present embodiment, at least one of the mist amount, the spray period, and the concentration can be adjusted to an appropriate value according to the degree of contamination possibility. Therefore, waste of the mist amount of the chemical mist 102 can be suppressed, and the bacteria can be efficiently removed.
  • the human detection sensor 770 may be a sound detection sensor such as a microphone.
  • the control circuit 730 determines the possibility of contamination based on the detection result of the microphone. Specifically, control circuit 730 determines whether or not a person has sneezed or coughed based on the detection result of the microphone. For example, when a sneezing or coughing is performed by a sick person, there is a high possibility that a pathogen such as a virus is contained in droplets scattered from the sneezing or coughing mouth. Therefore, when sneezing or coughing is detected, the possibility of contamination increases. When determining that the person has sneezed or coughed, the control circuit 730 sets the possibility of contamination to a high value. At this time, the degree of contamination in the case of sneezing may be higher than the degree of contamination in the case of cough.
  • the human detection sensor 770 is a microphone having directivity in a plurality of directions, and may detect a position of a sound source. Accordingly, the human detection sensor 770 can detect, for example, a sound accompanying the sneezing or coughing of a person, and detect a source of the detected sound. In the vicinity of the sound source, there are droplets that have been scattered with sneezing or coughing, and the droplets are likely to contain bacteria or viruses.
  • control circuit 730 causes the spray unit 110 to spray the chemical mist 102 toward the source of the sound detected by the human detection sensor 770.
  • the chemical mist 102 can be sprayed in a direction in which there is a high possibility that bacteria or viruses are present, so that the bacteria can be removed more efficiently.
  • the human detection sensor 770 may be any sensor that can detect a human.
  • the human detection sensor 770 may be, for example, a thermal image sensor or a human sensor.
  • the spray period and the concentration may be always constant.
  • each of the first mist amount, the second mist amount, and the third mist amount may be a fixed value set in advance irrespective of the humidity or the moisture amount. That is, the step of determining the spray need not be performed.
  • the communication method between the devices described in the above embodiment is not particularly limited.
  • the wireless communication method is, for example, ZigBee (registered trademark), Bluetooth (registered trademark), or short-range wireless communication such as wireless LAN (Local Area Network).
  • the wireless communication method may be communication via a wide area communication network such as the Internet. Wired communication may be performed between the devices instead of wireless communication.
  • the wired communication is power line communication (PLC) or communication using a wired LAN.
  • another processing unit may execute the process executed by the specific processing unit. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel.
  • the distribution of components included in the sterilization apparatus to a plurality of apparatuses is an example. For example, components included in one device may be included in another device.
  • the processing described in the above embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. Good.
  • the number of processors that execute the program may be one or more. That is, centralized processing or distributed processing may be performed.
  • the components such as the control unit may be configured by one or a plurality of electronic circuits.
  • Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit.
  • the one or more electronic circuits may include, for example, a semiconductor device, an integrated circuit (IC), or a large scale integration (LSI).
  • the IC or LSI may be integrated on one chip, or may be integrated on a plurality of chips.
  • the term is referred to as an IC or an LSI, but the term varies depending on the degree of integration, and may be called a system LSI, a VLSI (Very Large Scale Integration), or a ULSI (Ultra Large Scale Integration).
  • an FPGA Field Programmable Gate Array programmed after manufacturing the LSI can be used for the same purpose.
  • general or specific aspects of the present disclosure may be realized by a system, an apparatus, a method, an integrated circuit, or a computer program.
  • the present invention may be realized by a non-transitory computer-readable recording medium such as an optical disk, an HDD, or a semiconductor memory in which the computer program is stored.
  • the present invention may be realized by an arbitrary combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

本開示の一態様に係る除菌方法は、噴霧部110から薬液を含む薬液ミスト102を対象物104に噴霧して、対象物104の除菌を行うための除菌方法であって、噴霧部110の噴霧を制御する制御回路130によって行われる、第1期間中、薬液ミスト102の単位時間当たりのミスト量が第1のミスト量である薬液ミスト102を対象物104に噴霧する制御を行う第1ステップと、第1期間の後の第2期間中、単位時間当たりのミスト量が第1のミスト量より少ない第2のミスト量である薬液ミスト102を対象物104に噴霧する制御を行う第2ステップと、第2期間の後の第3期間中、単位時間当たりのミスト量が第2のミスト量より多い第3のミスト量である薬液ミスト102を対象物104に噴霧する制御を行う第3ステップと、を含む。

Description

除菌方法及び除菌装置
 本開示は、薬液ミストを対象物に噴霧して、対象物の除菌を行うための除菌方法及び除菌装置に関する。
 ミストを噴霧することによる除菌を行う場合、その構造は加湿装置と類似する。例えば、特許文献1に開示された加湿装置では、露点又は相対湿度の測定値に基づいて、噴霧量と間欠噴霧条件とを調整している。
特開2016-20808号公報
 しかしながら、上記従来の加湿装置をそのまま除菌に利用したとしても、効率良く除菌することができない。
 そこで、本開示は、対象物の除菌を効率良く行うことができる除菌方法及び除菌装置を提供する。
 上記課題を解決するため、本開示の一態様に係る除菌方法は、噴霧部から薬液を含む薬液ミストを対象物に噴霧して、前記対象物の除菌を行うための除菌方法であって、前記噴霧部の噴霧を制御する制御回路によって行われる、第1期間中、前記薬液ミストの単位時間当たりのミスト量が第1のミスト量である前記薬液ミストを前記対象物に噴霧する制御を行う第1ステップと、前記第1期間の後の第2期間中、前記単位時間当たりのミスト量が前記第1のミスト量より少ない第2のミスト量である前記薬液ミストを前記対象物に噴霧する制御を行う第2ステップと、前記第2期間の後の第3期間中、前記単位時間当たりのミスト量が前記第2のミスト量より多い第3のミスト量である前記薬液ミストを前記対象物に噴霧する制御を行う第3ステップと、を含む。
 また、本開示の一態様に係る除菌装置は、対象物の除菌を行うための薬液を含む薬液ミストを噴霧する噴霧部と、前記噴霧部の噴霧を制御する制御回路とを備え、前記制御回路は、第1期間中、前記薬液ミストの単位時間当たりのミスト量が第1のミスト量である前記薬液ミストを前記対象物に噴霧する制御を行い、前記第1期間の後の第2期間中、前記単位時間当たりのミスト量が前記第1のミスト量より少ない第2のミスト量である前記薬液ミストを前記対象物に噴霧する制御を行い、前記第2期間の後の第3期間中、前記単位時間当たりのミスト量が前記第2のミスト量より多い第3のミスト量である前記薬液ミストを前記対象物に噴霧する制御を行う。
 これらの包括的又は具体的な態様は、システム、集積回路、コンピュータプログラム又は記録媒体で実現されてもよい。あるいは、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 本開示によれば、対象物の除菌を効率良く行うことができる。
図1は、実施の形態1に係る除菌装置の構成を示すブロック図である。 図2は、実施の形態1に係る除菌装置の動作を示すフローチャートである。 図3Aは、実施の形態1に係る除菌装置が噴霧する薬液ミストのミスト量の時間変化の第1例を示す図である。 図3Bは、実施の形態1に係る除菌装置が噴霧する薬液ミストのミスト量の時間変化の第2例を示す図である。 図3Cは、実施の形態1に係る除菌装置が噴霧する薬液ミストのミスト量の時間変化の第3例を示す図である。 図3Dは、実施の形態1に係る除菌装置が噴霧する薬液ミストのミスト量の時間変化の第4例を示す図である。 図3Eは、実施の形態1に係る除菌装置が噴霧する薬液ミストのミスト量の時間変化の第5例を示す図である。 図3Fは、実施の形態1に係る除菌装置が噴霧する薬液ミストのミスト量の時間変化の第6例を示す図である。 図4は、実施の形態1に係る除菌装置が間欠噴霧を行った場合の除菌の効果を説明するための図である。 図5は、実施の形態1に係る除菌装置が異なる条件で噴霧を行った場合の除菌の効果を説明するための図である。 図6は、実施の形態1に係る除菌装置が間欠噴霧を行うことによる除菌効果が向上する原理を説明するための図である。 図7は、実施の形態1に係る除菌装置が少量の薬液ミストの噴霧を行うことによる除菌効果が向上する原理を説明するための図である。 図8は、実施の形態1の変形例に係る除菌装置の構成を示すブロック図である。 図9は、実施の形態2に係る除菌装置の構成を示すブロック図である。 図10は、実施の形態2に係る除菌装置による噴霧条件の、湿度による違いを説明するための図である。 図11は、実施の形態2に係る除菌装置の別の構成を示すブロック図である。 図12は、実施の形態3に係る除菌装置の構成を示すブロック図である。 図13は、実施の形態4に係る除菌装置の構成を示すブロック図である。 図14は、実施の形態4に係る除菌装置による噴霧条件の、水分量による違いを説明するための図である。 図15は、実施の形態5に係る除菌装置の構成を示すブロック図である。 図16は、実施の形態6に係る除菌装置の構成を示すブロック図である。 図17は、実施の形態6に係る除菌装置の別の適用例を示す図である。 図18は、実施の形態7に係る除菌装置の構成を示すブロック図である。
 (本開示の概要)
 上記課題を解決するために、本開示の一態様に係る除菌方法は、噴霧部から薬液を含む薬液ミストを対象物に噴霧して、前記対象物の除菌を行うための除菌方法であって、前記噴霧部の噴霧を制御する制御回路によって行われる、第1期間中、前記薬液ミストの単位時間当たりのミスト量が第1のミスト量である前記薬液ミストを前記対象物に噴霧する制御を行う第1ステップと、前記第1期間の後の第2期間中、前記単位時間当たりのミスト量が前記第1のミスト量より少ない第2のミスト量である前記薬液ミストを前記対象物に噴霧する制御を行う第2ステップと、前記第2期間の後の第3期間中、前記単位時間当たりのミスト量が前記第2のミスト量より多い第3のミスト量である前記薬液ミストを前記対象物に噴霧する制御を行う第3ステップと、を含む。
 また、本開示の一態様に係る除菌方法は、対象物の除菌を行うための薬液を含む薬液ミストを噴霧するステップを含み、前記噴霧するステップでは、前記薬液ミストのミスト量を、第1のミスト量、前記第1のミスト量より少ない第2のミスト量、前記第2のミスト量より多い第3のミスト量の順に変更する。
 これにより、第1のミスト量で薬液ミストの噴霧を制御した後に、当該第1のミスト量より少ない第2のミスト量で薬液ミストの噴霧を制御するので、対象物の周辺に湿度が低い環境が形成される。このため、第2期間中に、第1のミスト量の噴霧時に除菌に用いられなかった薬液の気化が促進される。その後に、第2のミスト量より多い第3のミスト量で薬液ミストが噴霧されるので、気化した薬液は、噴霧された薬液ミストに取り込まれ、薬液ミストに含まれる薬液の濃度が高くなる。このように、一度除菌に用いられなかった薬液を再利用することができる。したがって、本態様に係る除菌方法によれば、薬液ミストのミスト量を少なくすることができるので、効率良く除菌を行うことができる。
 また、例えば、前記制御回路によって行われる、(a)前記第1のミスト量、前記第2のミスト量及び前記第3のミスト量を含む条件と、(b)前記第1期間、前記第2期間及び前記第3期間を含む条件と、(c)前記第1ステップ、前記第2ステップ及び前記第3ステップの各々における前記薬液ミストに含まれる前記薬液の濃度を含む条件とからなる群から選択される少なくとも1つの条件を決定するステップを含み、前記第1ステップ、前記第2ステップ及び前記第3ステップでは、決定した条件で前記薬液ミストを噴霧する制御を行ってもよい。また、例えば、前記噴霧するステップでは、前記ミスト量毎の前記薬液ミストの噴霧期間、及び、前記薬液ミストに含まれる前記薬液の濃度の少なくとも一方の条件を決定し、決定した条件で前記薬液ミストを噴霧してもよい。
 これにより、噴霧期間及び濃度の少なくとも一方を適切に調整することができるので、更に効率良く除菌を行うことができる。なお、本明細書において、“噴霧期間”は、ミスト量が一定に保たれている期間を意味し、所定のミスト量で噴霧を行っている期間だけでなく、ミスト量が0である期間、すなわち、噴霧が行われていない期間も含まれる。
 また、例えば、前記決定するステップでは、前記対象物が存在する空間の湿度を測定する湿度センサによって測定された湿度に基づいて、前記第1のミスト量、前記第2のミスト量及び前記第3のミスト量と、前記第1期間、前記第2期間及び前記第3期間と、前記第1ステップ、前記第2ステップ及び前記第3ステップの各々における前記薬液ミストに含まれる前記薬液の濃度との少なくとも1つの条件を決定してもよい。また、例えば、前記噴霧するステップでは、前記対象物が存在する空間の湿度を測定する湿度センサによって測定された湿度に基づいて、前記ミスト量、前記ミスト量毎の前記薬液ミストの噴霧期間、及び、前記薬液ミストに含まれる前記薬液の濃度の少なくとも1つの条件を決定し、決定した条件で前記薬液ミストを噴霧してもよい。
 これにより、ミスト量、噴霧期間及び濃度の少なくとも1つを湿度に基づいて、より適切な値に調整することができる。したがって、更に効率良く除菌を行うことができる。
 また、例えば、前記決定するステップでは、前記湿度が第1の湿度よりも低い第2の湿度である場合において、前記湿度が前記第1の湿度である場合よりも、前記第1のミスト量及び前記第3のミスト量、並びに、前記第1期間及び前記第3期間を増加させ、かつ、前記薬液の濃度、及び、前記第2期間を減少させてもよい。また、例えば、前記噴霧するステップでは、前記湿度が第1の湿度よりも低い第2の湿度である場合において、前記湿度が前記第1の湿度である場合よりも、前記第1のミスト量及び前記第3のミスト量、並びに、前記第1のミスト量での噴霧期間及び前記第3のミスト量での噴霧期間を増加させ、かつ、前記薬液の濃度、及び、前記第2のミスト量での噴霧期間を減少させてもよい。
 これにより、更に効率良く除菌を行うことができる。
 また、例えば、前記決定するステップでは、前記対象物の水分を測定する水分計によって測定された水分量に基づいて、前記第1のミスト量、前記第2のミスト量、前記第3のミスト量と、前記第1期間、前記第2期間及び前記第3期間と、前記第1ステップ、前記第2ステップ及び前記第3ステップの各々における前記薬液ミストに含まれる前記薬液の濃度との少なくとも1つの条件を決定してもよい。また、例えば、前記噴霧するステップでは、前記対象物の水分を測定する水分計によって測定された水分量に基づいて、前記ミスト量、前記ミスト量毎の前記薬液ミストの噴霧期間、及び、前記薬液ミストに含まれる前記薬液の濃度の少なくとも1つの条件を決定し、決定した条件で前記薬液ミストを噴霧してもよい。
 これにより、ミスト量、噴霧期間及び濃度の少なくとも1つを水分量に基づいて、より適切な値に調整することができる。したがって、更に効率良く除菌を行うことができる。
 また、例えば、前記決定するステップでは、前記水分量が第1の水分量よりも多い第2の水分量である場合において、前記水分量が前記第1の水分量である場合よりも、前記第1のミスト量及び前記第3のミスト量、並びに、前記第1期間及び前記第3期間を減少させ、かつ、前記薬液の濃度、及び、前記第2期間を増加させてもよい。また、例えば、前記噴霧するステップでは、前記水分量が第1の水分量よりも多い第2の水分量である場合において、前記水分量が前記第1の水分量である場合よりも、前記第1のミスト量及び前記第3のミスト量、並びに、前記第1のミスト量での噴霧期間及び前記第3のミスト量での噴霧期間を減少させ、かつ、前記薬液の濃度、及び、前記第2のミスト量での噴霧期間を増加させてもよい。
 これにより、更に効率良く除菌を行うことができる。
 また、例えば、前記決定するステップでは、前記対象物に付着した物質、又は、前記対象物に含まれる物質を測定する光センサによって測定された、前記対象物を含む測定領域内の前記物質の量に基づいて、前記第1のミスト量、前記第2のミスト量及び前記第3のミスト量と、前記第1期間、前記第2期間及び前記第3期間と、前記第1ステップ、前記第2ステップ及び前記第3のステップの各々における前記薬液ミストに含まれる前記薬液の濃度との少なくとも一方の条件を決定してもよい。
 これにより、ミスト量、噴霧期間及び濃度の少なくとも1つを、対象物に付着した物質、又は、対象物に含まれる物質の量に応じて適切な値に調整することができる。したがって、薬液ミストのミスト量の無駄を抑制し、効率良く除菌を行うことができる。
 また、例えば、前記決定するステップでは、前記対象物と同一空間内に存在する人を検知するセンサによる検知結果に基づいて決定される汚染可能性度に基づいて、前記第1のミスト量、前記第2のミスト量及び前記第3のミスト量と、前記第1期間、前記第2期間及び前記第3期間と、前記第1ステップ、前記第2ステップ及び前記第3のステップの各々における前記薬液ミストに含まれる前記薬液の濃度との少なくとも一方の条件を決定してもよい。
 例えば、人がくしゃみをした場合には、菌が空間内に増えた可能性があり、汚染可能性度が高くなる。また、人が病人である場合には、当該人が触った場所に菌が付着した可能性があり、汚染可能性度が高くなる。逆に、このような人の動きがない場合には、汚染可能性度が低くなる。本態様によれば、ミスト量、噴霧期間及び濃度の少なくとも1つを、人の動きに応じた汚染可能性度に基づいて適切な値に調整することができる。
 また、例えば、前記対象物の除菌のために、第4期間中、単位時間当たり第4ミスト量で連続して噴霧を行う必要がある場合に、前記第1期間と前記第1のミスト量との積である第1使用量、前記第2期間と前記第2ミスト量との積である第2使用量、及び、前記第3期間と前記第3ミスト量との積である第3使用量との合計量は、前記第4期間と前記第4ミスト量との積である第4使用量より少なくてもよい。
 これにより、単位時間当たりのミスト量を一定に保った状態で連続的に噴霧を行った場合に対象物の除菌に要する第4使用量よりも少ない使用量で、対象物の除菌を行うことができる。したがって、効率良く除菌を行うことができる。
 また、例えば、前記対象物の除菌は、前記対象物に付着した菌、又は、前記対象物に含まれる菌を99%以上減らすことである。つまり、除菌とは、菌数を2桁減少させることである。
 また、例えば、前記対象物は、建築物の構造材である。
 これにより、例えば室内の壁又は柱などに付着した菌を効率良く除菌することができる。
 また、例えば、前記対象物は、エアロゾルであってもよい。
 これにより、例えば空間を浮遊するエアロゾルに含まれる菌を効率良く除菌することができる。
 また、例えば、前記第2期間は、1秒以上、1分以下であってもよい。
 これにより、第1期間中に噴霧した薬液ミストのうち除菌に用いられなかった薬液が帰化するのに十分な時間を確保しつつ、短期間で除菌を行うことができる。
 また、例えば、前記第2のミスト量は、0であってもよい。
 これにより、薬液ミストを間欠的に噴霧することができる。したがって、第1のミスト量での噴霧と第3のミスト量での噴霧との間で薬液ミストの気化が更に促進される。これにより、薬液の再利用も促進され、かつ、薬液ミストのミスト量も少なくなるので、更に効率良く除菌を行うことができる。
 また、例えば、前記噴霧するステップでは、前記薬液ミストを渦輪状にして噴霧してもよい。
 これにより、薬液ミストの広がりを抑え、目的とする対象物に噴霧されやすくなる。したがって、対象物に噴霧されない薬液ミストを減らすことができるので、効率良く除菌を行うことができる。また、より遠くまで薬液ミストを搬送することができるので、離れた対象物の除菌を行うことができる。
 また、例えば、本開示の一態様に係る除菌方法は、さらに、前記対象物が存在する空間の除湿を行うステップを含んでもよい。
 これにより、対象物が存在する空間の湿度を低くすることができる。湿度が低くなることにより、薬液の気化が促進されるので、更に効率良く除菌を行うことができる。
 また、例えば、前記第1ステップ、前記第2ステップ及び前記第3ステップでは、前記薬液ミストを生成し、生成した薬液ミストを容器に貯め、前記容器に貯められた前記薬液ミストを噴霧する制御を行ってもよい。また、例えば、前記噴霧するステップでは、前記薬液ミストを生成し、生成した薬液ミストを容器に貯め、前記容器に貯められた前記薬液ミストを噴霧してもよい。
 これにより、予め薬液ミストが生成されて容器に貯められているので、除菌が必要なタイミングで速やかに除菌を行うことができる。
 また、例えば、前記第1ステップ、前記第2ステップ及び前記第3ステップでは、前記薬液ミストを生成しながら噴霧する制御を行ってもよい。また、例えば、前記噴霧するステップでは、前記薬液ミストを生成しながら噴霧してもよい。
 これにより、気化などにより消滅する前に、生成した薬液ミストを有効な状態で噴霧することができる。
 また、本開示の一態様に係る除菌装置は、対象物の除菌を行うための薬液を含む薬液ミストを噴霧する噴霧部と、前記噴霧部の噴霧を制御する制御回路とを備え、前記制御回路は、第1期間中、前記薬液ミストの単位時間当たりのミスト量が第1のミスト量である前記薬液ミストを前記対象物に噴霧する制御を行い、前記第1期間の後の第2期間中、前記単位時間当たりのミスト量が前記第1のミスト量より少ない第2のミスト量である前記薬液ミストを前記対象物に噴霧する制御を行い、前記第2期間の後の第3期間中、前記単位時間当たりのミスト量が前記第2のミスト量より多い第3のミスト量である前記薬液ミストを前記対象物に噴霧する制御を行う。
 また、例えば、本開示の一態様に係る装置は、対象物の除菌を行うための薬液を含む薬液ミストを噴霧する噴霧部と、前記薬液ミストのミスト量を、第1のミスト量、前記第1のミスト量より少ない第2のミスト量、前記第2のミスト量より多い第3のミスト量の順に変更する制御回路とを備える。
 これにより、上述した除菌方法と同様に、薬液ミストのミスト量を抑えることができるので、効率良く除菌を行うことができる。
 また、例えば、前記制御回路は、さらに、前記ミスト量毎の前記薬液ミストの噴霧期間、及び、前記薬液ミストに含まれる前記薬液の濃度の少なくとも一方の条件を決定し、前記噴霧部は、前記制御回路によって決定された条件で前記薬液ミストを噴霧してもよい。
 これにより、噴霧期間及び濃度の少なくとも一方を適切に調整することができるので、更に効率良く除菌を行うことができる。
 また、例えば、本開示の一態様に係る除菌装置は、さらに、前記対象物が設けられた空間の湿度を測定する湿度センサを備え、前記制御回路は、前記湿度センサによって測定された湿度に基づいて、前記ミスト量、前記ミスト量毎の前記薬液ミストの噴霧期間、及び、前記薬液ミストに含まれる前記薬液の濃度の少なくとも1つの条件を決定し、前記噴霧部は、前記制御回路によって決定された条件で前記薬液ミストを噴霧してもよい。
 これにより、ミスト量、噴霧期間及び濃度の少なくとも1つを湿度に基づいて、より適切な値に調整することができる。したがって、更に効率良く除菌を行うことができる。
 また、例えば、前記制御回路は、前記湿度が第1の湿度よりも低い第2の湿度である場合において、前記湿度が前記第1の湿度である場合よりも、前記第1のミスト量及び前記第3のミスト量、並びに、前記第1のミスト量での噴霧期間及び前記第3のミスト量での噴霧期間を増加させ、かつ、前記薬液の濃度、及び、前記第2のミスト量での噴霧期間を減少させてもよい。
 これにより、更に効率良く除菌を行うことができる。
 また、例えば、前記第2のミスト量は、0であってもよい。
 これにより、薬液ミストを間欠的に噴霧することができる。したがって、第1のミスト量での噴霧と第3のミスト量での噴霧との間で薬液ミストの気化が更に促進される。これにより、薬液の再利用も促進され、かつ、薬液ミストのミスト量も少なくなるので、更に効率良く除菌を行うことができる。
 また、例えば、前記噴霧部は、前記薬液ミストを渦輪状にして噴霧してもよい。
 これにより、薬液ミストの広がりを抑え、目的とする対象物に噴霧されやすくなる。したがって、対象物に噴霧されない薬液ミストを減らすことができるので、効率良く除菌を行うことができる。また、より遠くまで薬液ミストを搬送することができるので、離れた対象物の除菌を行うことができる。
 また、例えば、本開示の一態様に係る除菌装置は、さらに、前記対象物の水分を測定する水分計を備え、前記制御回路は、前記水分計によって測定された水分量に基づいて、前記ミスト量、前記ミスト量毎の前記薬液ミストの噴霧期間、及び、前記薬液ミストに含まれる前記薬液の濃度の少なくとも1つの条件を決定し、前記噴霧部は、前記制御回路によって決定された条件で前記薬液ミストを噴霧してもよい。
 これにより、ミスト量、噴霧期間及び濃度の少なくとも1つを水分量に基づいて、より適切な値に調整することができる。したがって、更に効率良く除菌を行うことができる。
 また、例えば、前記制御回路は、前記水分量が第1の水分量よりも多い第2の水分量である場合において、前記水分量が前記第1の水分量である場合よりも、前記第1のミスト量及び前記第3のミスト量、並びに、前記第1のミスト量での噴霧期間及び前記第3のミスト量での噴霧期間を減少させ、かつ、前記薬液の濃度、及び、前記第2のミスト量での噴霧期間を増加させてもよい。
 これにより、更に効率良く除菌を行うことができる。
 また、例えば、前記制御回路は、さらに、除湿装置を制御することで、前記対象物が存在する空間の除湿を行ってもよい。
 これにより、除湿装置を制御することで、対象物が設けられた空間の湿度を低くすることができる。湿度が低くなることにより、薬液の気化が促進されるので、更に効率良く除菌を行うことができる。
 また、例えば、本開示の一態様に係る除菌装置は、さらに、前記薬液を前記噴霧部に供給する薬液供給部を備え、前記噴霧部は、容器を有し、前記薬液供給部から供給された薬液から前記薬液ミストを生成し、生成した薬液ミストを前記容器に貯め、前記容器に貯められた薬液ミストを噴霧してもよい。
 これにより、予め薬液ミストが生成されて容器に貯められているので、除菌が必要なタイミングで速やかに除菌を行うことができる。
 また、例えば、本開示の一態様に係る除菌装置は、さらに、前記薬液を前記噴霧部に供給する薬液供給部を備え、前記噴霧部は、前記薬液供給部から供給された薬液から前記薬液ミストを生成しながら噴霧してもよい。
 これにより、気化などにより消滅する前に、生成した薬液ミストを有効な状態で噴霧することができる。
 以下では、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。
 (実施の形態1)
 [1.構成]
 まず、実施の形態1に係る除菌装置の構成について、図1を用いて説明する。図1は、本実施の形態に係る除菌装置100の構成を示すブロック図である。
 図1に示されるように、除菌装置100は、噴霧部110と、薬液供給部120と、制御回路130とを備える。本実施の形態に係る除菌装置100は、薬液ミスト102を対象物104に噴霧することにより、対象物104を除菌する。
 薬液ミスト102は、霧状の薬液である。薬液は、対象物104の除菌を行うための溶液である。薬液は、例えば、除菌機能を有する。具体的には、薬液は、次亜塩素酸水である。なお、薬液は、オゾン水などの他の水溶液であってもよい。あるいは、薬液は、アルコール溶液であってもよい。
 対象物104は、除菌装置100による除菌の対象物である。例えば、対象物104は、人がよく触るドアノブなどであるが、机の上、椅子の背もたれなどでもよい。対象物104は、壁、床又は天井などの建築物の構造材であってもよい。あるいは、対象物104は、家具、家電、水廻り設備などでもよい。
 噴霧部110は、対象物104の除菌を行うための薬液を含む薬液ミスト102を噴霧する。具体的には、噴霧部110は、薬液供給部120から供給された薬液から薬液ミスト102を生成しながら噴霧する。つまり、噴霧部110は、薬液ミスト102の生成と噴霧とを同時に行う。
 例えば、噴霧部110は、超音波発生機及び送風ファンを備える。噴霧部110は、薬液供給部120から供給された薬液を超音波振動によってミスト化することで、薬液ミスト102を生成する。噴霧部110は、生成した薬液ミスト102を、送風ファンによって対象物104に向けて噴霧する。なお、噴霧部110は、超音波発生機の代わりに、静電霧化装置を有してもよい。噴霧部110は、薬液を静電霧化させることで、薬液ミスト102を生成してもよい。
 本実施の形態では、噴霧部110は、制御回路130によって決定された噴霧条件で薬液ミスト102を噴霧する。噴霧条件には、ミスト量、噴霧期間及び薬液の濃度の少なくとも1つが含まれる。ミスト量は、単位時間当たりのミスト量であり、単位時間当たりに噴霧される薬液ミスト102の量である。以下の説明において、特に断りのない限り、ミスト量とは、単位時間当たりのミスト量を意味する。
 噴霧部110は、ミスト量を一定に保った状態で、薬液ミスト102の噴霧を一定期間維持する。ミスト量が制御回路130によって変更された場合、噴霧部110は、変更後のミスト量を一定に保った状態で、薬液ミスト102の噴霧を一定期間維持する。ミスト量毎の噴霧期間は、例えば1秒以上の時間である。
 薬液供給部120は、薬液を噴霧部110に供給する。薬液供給部120は、具体的には、薬液を生成して噴霧部110に供給する。薬液が次亜塩素酸水である場合、薬液供給部120は、食塩水の電気分解によって薬液を生成する。例えば、薬液供給部120は、液体を入れるための容器と、当該容器に水が入れられた場合に容器内に食塩(塩化ナトリウム)を供給する供給部とを有する。これにより、ユーザは、容器に水道水を入れるだけで、簡単かつ安全に次亜塩素酸水を生成することができる。なお、薬液供給部120は、食塩の供給部を有しなくてもよい。この場合、ユーザは、容器内に食塩水を入れればよい。また、薬液供給部120は、薬液を生成しなくてもよい。この場合、ユーザは、薬液を容器に入れればよい。なお、容器は、着脱自在で容易に取り外し可能であってもよい。
 制御回路130は、薬液ミスト102のミスト量を制御する。具体的には、制御回路130は、薬液ミスト102のミスト量を、第1のミスト量、第2のミスト量、第3のミスト量の順に変更する。このとき、第2のミスト量は、第1のミスト量より少ない。第3のミスト量は、第2のミスト量より多い。
 具体的には、制御回路130は、第1ステップと、第2ステップと、第3ステップとを順に行う。第1のステップでは、第1期間中、単位時間当たりのミスト量が第1のミスト量である薬液ミスト102を対象物104に噴霧する制御を行う。第2のステップでは、第2期間中、単位時間当たりのミスト量が第2のミスト量である薬液ミスト102を対象物104に噴霧する制御を行う。第3のステップでは、第3期間中、単位時間当たりのミスト量が第3のミスト量である薬液ミスト102を対象物104に噴霧する制御を行う。第2期間は、第1期間以降の期間である。第3期間は、第2期間以降の期間である。
 制御回路130は、第1のミスト量、第2のミスト量、第3のミスト量をこの順で時間連続的に変更してもよい。つまり、第1期間と第2期間と第3期間とは、連続していてもよい。あるいは、制御回路130は、第1のミスト量、第2のミスト量、第3のミスト量を、間隔を空けてこの順で変更してもよい。つまり、第1期間と第2期間とは、連続していなくてもよい。また、第2期間と第3期間とは、連続していなくてもよい。空いた間隔には、第1のミスト量、第2のミスト量及び第3のミスト量の少なくとも1つと異なる第4のミスト量での薬液ミスト102の噴霧が行われてもよい。
 制御回路130は、さらに、薬液ミスト102のミスト量と、ミスト量毎の薬液ミスト102の噴霧期間と、薬液ミスト102に含まれる薬液の濃度との少なくとも1つの条件を決定してもよい。具体的には、制御回路130は、(a)第1のミスト量、第2のミスト量及び第3のミスト量を含む条件と、(b)第1期間、第2期間及び第3期間を含む条件と、(c)第1ステップ、第2ステップ及び第3ステップの各々における薬液ミスト102に含まれる薬液の濃度を含む条件とからなる群から選択される少なくとも1つの条件を決定してもよい。例えば、噴霧期間、及び、薬液の濃度は、ミスト量毎に変更されてもよい。具体的な例については、後で説明する。
 制御回路130は、例えば、マイクロコントローラである。制御回路130は、例えば、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどで実現される。制御回路130が実行する機能は、プロセッサによって実行されるソフトウェアで実現される。あるいは、制御回路130が実行する機能は、複数の回路素子を含む電子回路などのハードウェアで実現されてもよい。
 [2.動作及び噴霧の具体例]
 続いて、除菌装置100の動作と、薬液ミスト102の噴霧の具体例とについて説明する。
 図2は、本実施の形態に係る除菌装置100の動作を示すフローチャートである。除菌装置100は、例えば、ドアノブなどの対象物104を定期的に繰り返し除菌する。前回の除菌が終わって、予め定められた待機期間を経過した後、図2に示される動作が実行される。また、除菌装置100は、ユーザからの指示を受け付けたタイミングで除菌を行ってもよい。
 まず、図2に示されるように、制御回路130は、単位時間当たりのミスト量を第1のミスト量に設定し、噴霧部110は、設定された第1のミスト量で薬液ミスト102の噴霧を行う(ステップS10)。第1のミスト量での噴霧は、第1期間中、継続して行われる。第1期間は、例えば、1分以下の期間であり、一例として1秒、3秒又は6秒などであるが、これに限らない。
 次に、第1期間の経過後に、制御回路130は、単位時間当たりのミスト量を、第1のミスト量より少ない第2のミスト量に設定し、噴霧部110は、設定された第2のミスト量で薬液ミスト102の噴霧を行う(ステップS12)。例えば、噴霧部110は、ステップS10での噴霧よりも超音波振動のパワーを弱めることで、生成するミスト量を少なくする。第2のミスト量での噴霧は、第2期間中、継続して行われる。第2期間は、例えば第1期間と同じであるが、異なっていてもよい。例えば、第2期間は、1秒以上、1分以下の期間である。
 次に、第2期間の経過後に、制御回路130は、単位時間当たりのミスト量を、第2のミスト量より多い第3のミスト量に設定し、噴霧部110は、設定された第3のミスト量で薬液ミスト102の噴霧を行う(ステップS14)。例えば、噴霧部110は、ステップS12での噴霧よりも超音波振動のパワーを強めることで、生成するミスト量を多くする。なお、第3のミスト量は、第1のミスト量と等しくてもよい。第3のミスト量での噴霧は、第3期間中、継続して行われる。第3期間は、例えば第1期間と同じであるが、異なっていてもよい。
 第3期間の経過後、噴霧部110は、薬液ミスト102の噴霧を終了する。なお、図2に示される動作は一例に過ぎない。例えば、制御回路130による薬液ミスト102の噴霧条件には、様々な例が含まれる。以下では、図3Aから図3Fを用いて6つの例を説明する。
 図3Aから図3Fはそれぞれ、本実施の形態に係る除菌装置100が噴霧する薬液ミスト102のミスト量の変化の第1例から第6例を示す図である。各図において、横軸は時間を表し、縦軸は薬液ミスト102のミスト量を表している。なお、縦軸は、噴霧部110が単位時間当たりに噴霧可能な最大のミスト量を100%として、当該最大のミスト量に対する割合を表している。例えば、最大のミスト量が5mL/分である場合、50%のミスト量は、2.5mL/分になる。
 図3Aから図3Fの各図において、期間T1が第1期間に相当し、ミスト量M1が第1のミスト量に相当する。つまり、期間T1が、図2に示されるステップS10を実行する期間である。同様に、期間T2が第2期間に相当し、ミスト量M2が第2のミスト量に相当する。期間T2が、図2に示されるステップS12を実行する期間である。期間T3が第3期間に相当し、ミスト量M3が第3のミスト量に相当する。期間T3が、図2に示されるステップS14を実行する期間である。
 図3Aに示される第1例では、期間T0でミスト量がM1にまで増大した後、ミスト量がM1、M2、M3及びM4の順で変化している。ミスト量M1とミスト量M3とは等しく、例えば100%である。ミスト量M2とミスト量M4とは等しく、例えば50%である。また、ミスト量がM1、M2、M3及びM4の各々の噴霧期間である期間T1、T2、T3及びT4は、互いに等しい期間である。
 このように、第1のミスト量M1と第3のミスト量M3とは等しくてもよい。また、各ミスト量での噴霧期間は等しくてもよい。また、第3のミスト量M3での噴霧の後、すなわち、図2に示されるステップS14の後に、噴霧が行われてもよい。
 図3Bに示される第2例では、期間T0でミスト量がM4にまで増大した後、ミスト量がM4、M5、M1、M6、M2、M3及びM7の順で変化している。ミスト量の大小関係は、M1>M5=M3>M6=M7>M4=M2を満たしている。ミスト量M1は、例えば100%であり、ミスト量M6及びM7は、例えば50%である。また、ミスト量がM1からM7の各々の噴霧期間である期間T1から期間T7は、T4=T5=T1=T3=T7>T6=T2を満たしている。
 このように、第3のミスト量M3は、第1のミスト量M1より少なくてもよい。また、第2期間T2は、第1期間T1より短くてもよく、第3期間T3より短くてもよい。また、第1のミスト量M1での噴霧の前に、すなわち、図2に示されるステップS10の前に、第1のミスト量M1より少ない複数のミスト量での噴霧が行われてもよい。また、第1のミスト量M1での噴霧の後で第2のミスト量M2での噴霧の前に、すなわち、図2に示されるステップS10とステップS12との間に、第2のミスト量M2より多い噴霧が行われてもよい。
 図3Cに示される第3例では、期間T0でミスト量がM4にまで増大した後、ミスト量がM4、M1、M5、M6、M2、M3及びM7の順で変化している。ミスト量の大小関係は、M4=M3>M1>M2>M5=M7>M6を満たしている。ミスト量M4及びM3は、例えば100%であり、ミスト量M5及びM7は、例えば50%である。また、期間T1から期間T7は、T3>T4=T1=T7>T5=T6=T2を満たしている。
 このように、第3のミスト量M3は、第1のミスト量M1より多くてもよい。つまり、第1のミスト量M1は、最大値でなくてもよい。また、第2のミスト量M2より低いミスト量での噴霧が行われてもよい。つまり、第2のミスト量M2は、最小値でなくてもよい。また、第1期間T1は、第2期間T2より長くてもよく、第3期間T3よりも短くてもよい。また、第1のミスト量M1での噴霧より前に、第1のミスト量M1よりも多いミスト量での噴霧が行われてもよい。また、第1のミスト量M1での噴霧の後で、かつ、第2のミスト量M2での噴霧の前に、複数のミスト量での噴霧での噴霧が行われてもよい。
 図3Dに示される第4例では、図3Aに示される第1例と比較して、第2のミスト量M2が0である点が相違している。つまり、第2のミスト量での噴霧期間である期間T2において、噴霧が行われなくてもよい。言い換えると、ミスト量の噴霧が間欠的に行われてもよい。
 図3Eに示される第5例では、期間T0でミスト量がM1にまで増大した後、ミスト量がM1、M4、M2、M5、M3及びM6の順で変化している。ミスト量の大小関係は、M1=M3>M6>M4>M5>M2を満たしている。ミスト量M1及びM3は、例えば100%であり、ミスト量M6は、例えば50%であり、ミスト量M2は、0である。また、期間T1から期間T6は、T2>T1=T4=T5=T3=T6を満たしている。
 このように、第2期間、すなわち、噴霧を行わない期間T2は、第1期間T1及び第3期間T3より長くてもよい。また、第1のミスト量M1での噴霧の後、ミスト量を0にする前に、第1のミスト量M1より少ないミスト量での噴霧を行ってもよい。また、ミスト量を0にした後、第3のミスト量M3での噴霧を行う前に、第3のミスト量M3より少ないミスト量での噴霧を行ってもよい。
 図3Fに示される第6例では、ミスト量がM1、M2、M3の順で変化した後、M2とM3とを繰り返している。各ミスト量の噴霧期間T1からT3は、互いに等しい期間である。ミスト量の大小関係は、M1=M3>M2を満たしている。また、ミスト量M2は0である。つまり、第3のミスト量M3での噴霧が間欠的に繰り返し行われている。繰り返し回数は、特に限定されない。また、第6例では、ミスト量を増大させる期間T0が設けられていない。つまり、最初からミスト量を最大量で噴霧してもよい。
 本実施の形態に係る除菌装置100は、図3Aから図3Fのいずれかに示されるミスト量の変化を1サイクルとして、定期的に繰り返し行う。繰り返しの度に、異なるミスト量の変化を利用してもよい。
 なお、図3Aから図3Eで示される例において、ミスト量M4からM7の各々のミスト量及び噴霧期間T4からT7は、一例に過ぎず、上述した例に限られない。例えば、ミスト量M4からM7の少なくとも1つは、第1のミスト量M1から第3のミスト量M3のいずれかと等しくてもよく、多くてもよく、少なくてもよい。ミスト量M4からM7の少なくとも1つは、0であってもよい。また、噴霧期間T4からT7の少なくとも1つは、噴霧期間T1からT3のいずれかと等しくてもよく、長くてもよく、少なくてもよい。また、各ミスト量での噴霧において、薬液ミスト102に含まれる薬液の濃度は等しいが、異なっていてもよい。ミスト量が0であるという意味は、ミスト量が0である薬液ミストを対象物に噴霧する制御を行うという意味である。
 [3.効果及び原理など]
 次に、本実施の形態に係る除菌装置100による除菌の効果とその想定される原理とについて説明する。
 本願発明者らは、まず、薬液ミスト102の間欠噴霧と連続噴霧とをそれぞれ行い、対象物104の感染価を測定することで、除菌の効果を確認した。薬液ミスト102としては、次亜塩素酸水を用いた。
 図4は、本実施の形態に係る除菌装置100が間欠噴霧を行った場合の除菌の効果を説明するための図である。図4では、比較例として連続噴霧を行った場合の除菌結果も示している。図4において、縦軸は規格化された感染価を表している。数値が小さい程、除菌効果が高いことを意味する。例えば、縦軸の“1.0E-02”は、感染価が1/100になったことを示しており、99%の除菌が行えたこと、すなわち、対象物104に付着した菌を99%減らすことを意味している。
 連続噴霧は、一定期間、一定のミスト量で薬液ミスト102を連続で噴霧することである。つまり、連続噴霧では、噴霧期間中、ミスト量の変更を行っていない。
 一方で、間欠噴霧は、図3Fに示される第6例に基づく噴霧である。ここでは、噴霧回数を5回とした。すなわち、第1のミスト量M1での1回の噴霧と、第1のミスト量M1に等しい第3のミスト量M3での4回の噴霧とを行った。1回の噴霧期間は、合計の噴霧期間を5等分した時間である。図4に示される5秒噴霧、15秒噴霧、30秒噴霧ではそれぞれ、1回の噴霧期間が1秒、3秒、6秒である。噴霧を行わない期間T2の長さは、30秒とした。
 図4に示されるように、噴霧期間によらずに、連続噴霧よりも間欠噴霧の方が、除菌効果が高まっていることが分かる。また、15秒の連続噴霧の除菌効果と、5秒の間欠噴霧の除菌効果とがほぼ同じである。このため、15秒の連続噴霧と同等の除菌効果を得るには、5秒の間欠噴霧を行えばよく、薬液ミスト102の使用量を約3分の1に減らすことができる。また、30秒の連続噴霧の除菌効果と、15秒の間欠噴霧の除菌効果とがほぼ同じである。このため、30秒の連続噴霧と同等の除菌効果を得るには、15秒の間欠噴霧を行えばよく、薬液ミスト102の使用量を約半分に減らすことができる。
 このように、本実施の形態に係る除菌装置100によれば、同じ除菌効果を得るために必要な薬液ミスト102の使用量を減らすことができる。例えば、第4期間中、単位時間当たり第4ミスト量で連続して噴霧を行うことで、対象物104の除菌が行うことができる場合を想定する。なお、除菌とは、対象物104に付着した菌、又は、対象物104に含まれる菌を99%以上減らすことである。この場合において、本実施の形態に係る除菌装置100では、第1期間と第1のミスト量との積である第1使用量、第2期間と第2ミスト量との積である第2使用量、及び、第3期間と第3ミスト量との積である第3使用量との合計量は、第4期間と第4ミスト量との積である第4使用量よりも少ない。
 ここでは、間欠噴霧、すなわち、第2のミスト量が0である場合を示したが、第2のミスト量が0ではなく、第1のミスト量及び第3のミスト量より少ない場合も同様の傾向が得られ、効率良く除菌を行うことができる。
 また、本願発明者らは、薬液ミスト102の濃度及び液性を変えて除菌の効果を確認した。
 図5は、本実施の形態に係る除菌装置100が異なる条件で噴霧を行った場合の除菌の効果を説明するための図である。図5において、縦軸は、図4と同様に、規格化された感染価を表している。また、図5に示される連続噴霧及び間欠噴霧はいずれも、噴霧期間が30秒である。具体的には、間欠噴霧は、6秒ずつの噴霧を5回、30秒の噴霧しない期間を挟みながら行われた。
 図5に示される“低ミスト濃度”は、“通常噴霧”に用いた薬液ミスト102の薬液の濃度より低い濃度の薬液ミスト102を用いて噴霧を行った場合の結果を示している。具体的には、低ミスト濃度で用いた薬液ミスト102の濃度は、通常噴霧に用いた薬液ミスト102の濃度の60%から70%の範囲である。
 図5に示されるように、低ミスト濃度の噴霧に比べて通常噴霧では、連続噴霧及び間欠噴霧のいずれも除菌効果は高い。つまり、薬液ミスト102の濃度が高い程、除菌効果が高い。また、低ミスト濃度の間欠噴霧の除菌効果は、通常噴霧の連続噴霧の除菌効果よりも高くなっている。このことから、間欠噴霧を行うことで、薬液ミスト102の濃度を低くしても、高い除菌効果が得られることが分かる。
 図5に示される“アルカリ”は、液性がアルカリ性である薬液ミスト102を用いて噴霧を行った場合の結果を示している。具体的には、次亜塩素酸ナトリウムを多く含むpHが9の薬液ミスト102を用いた。なお、“通常噴霧”の薬液ミスト102は、pHが7の中性である。
 図5に示されるように、アルカリ性の薬液ミスト102を用いた場合には、通常噴霧と比較して、連続噴霧では大きく除菌効果が低くなっているのに対して、間欠噴霧では同等の除菌効果が得られている。アルカリ性の薬液ミスト102を噴霧した場合、次亜塩素酸が気化するので、気化した次亜塩素酸が薬液ミスト102に取り込まれて除菌を行いやすくなる。これにより、間欠噴霧の場合は、薬液ミスト102の液性が中性のときと同等の除菌効果を得ることができる。
 また、本願発明者らは、対象物104が設けられた空間、すなわち、薬液ミスト102を噴霧する空間の湿度を変えて除菌の効果を確認した。図5には、間欠噴霧を高湿度環境下で行った結果を示している。なお、高湿度環境下は、相対湿度が70%から80%の範囲であった。図4及び図5に示される他の結果は、相対湿度が約30%である環境下で行った。
 図5に示されるように、湿度が高い場合、湿度が低い場合よりも除菌効果が低下していることが分かる。このことから、薬液ミスト102の噴霧による除菌は、湿度が低い環境下で行われることにより、高い除菌効果を発揮できることが分かる。
 なお、図5に示されるように、高湿度環境下においても、連続噴霧の場合よりは間欠噴霧の場合の方が除菌効果は高い。このため、空間の湿度が調節できずに、高い湿度が維持されたままである場合であっても、間欠噴霧を行うことで、高い除菌効果を得ることができる。
 図6は、本実施の形態に係る除菌装置100が間欠噴霧を行うことによる除菌効果が向上する原理を説明するための模式図である。図6には、薬液ミスト102を構成する複数の微小液滴103を示している。微小液滴103は、薬液が微細化されたものであり、水分103aと、薬液成分103bとを含んでいる。
 図6に示されるように、期間T1では、第1のミスト量で薬液ミスト102が対象物104に向けて噴霧される。微小液滴103に含まれる薬液成分103bが対象物104に付着した菌などを分解することで、対象物104の除菌が行われる。
 この間、対象物104の近傍には水分103aが多数存在し、局所的に湿度が高くなる。湿度が高くなった場合、水分103aの蒸発、すなわち、薬液の気化が行われにくくなる。このため、水分103aに捕らわれたまま、除菌に利用されずに残留する薬液成分103bが多くなる。
 これに対して、本実施の形態では、期間T1に続く期間T2では、噴霧されるミスト量が0、すなわち、薬液ミスト102が対象物104に噴霧されない。薬液ミスト102が噴霧されないので、対象物104の近傍の高湿度化が抑制され、未反応の薬液の気化が促進される。
 さらに、期間T2に続く期間T3では、第2のミスト量より多い第3のミスト量の薬液ミスト102が対象物104に噴霧される。期間T2において気化した薬液成分103bの多くが、微小液滴103に取り込まれて溶解する。このため、期間T3において対象物104に接触する微小液滴103内の薬液濃度が高くなる。薬液濃度が高くなることで、除菌効果をより高めることができる。
 期間T2において、薬液ミスト102を噴霧する場合も同様である。図7は、本実施の形態に係る除菌装置100が少量の薬液ミスト102の噴霧を行うことによる除菌効果が向上する原理を説明するための図である。
 図7に示されるように、期間T2においてミスト量が少なくなるので、間欠噴霧の場合と同様に、対象物104の近傍の高湿度化が抑制され、未反応の薬液の気化が促進される。気化した薬液の一部は、期間T2において噴霧された薬液ミスト102の微小液滴103に取り込まれて溶解する。このため、期間T2においても、対象物104の除菌が行われる。
 以上のように、本実施の形態に係る除菌装置100によれば、薬液ミスト102の使用量を抑えながら、効率良く対象物104の除菌を行うことができる。
 [4.変形例]
 ここで、本実施の形態に係る除菌装置100の変形例について説明する。
 図8は、本変形例に係る除菌装置101の構成を示すブロック図である。図8に示されるように、除菌装置101は、図1に示される除菌装置100と比較して、噴霧部110の代わりに噴霧部111を備える点が相違する。以下では、相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 噴霧部111は、図8に示されるように、生成部112と、容器114とを備える。生成部112は、薬液供給部120から供給された薬液から薬液ミスト102を生成し、生成した薬液ミスト102を容器114に貯める。具体的には、生成部112は、超音波発生機であり、超音波振動を薬液に与えることで、薬液ミスト102を生成する。
 容器114は、生成部112によって生成された薬液ミスト102を貯めるための空間を有する容器である。容器114は、生成部112によって生成された薬液ミスト102を一時的に貯めておくことができる。容器114には、例えば、開閉可能な蓋(図示せず)などが設けられている。噴霧部111は、制御回路130からの制御に基づいて蓋が開けられた場合に、容器114に貯められた薬液ミスト102を噴霧する。このとき、蓋の開閉量が変更可能であってもよい。蓋を大きく開けることで、多いミスト量での噴霧を行うことができ、蓋を小さく開けることで、少ないミスト量での噴霧を行うことができる。
 このように、本変形例に係る除菌装置101では、生成した薬液ミスト102を容器114に貯めておくことができる。これにより、除菌が必要なタイミングで速やかに除菌を行うことができる。また、噴霧に必要なミスト量の薬液ミスト102を前もって貯めておくことで、噴霧の途中で薬液ミスト102が足りなくなる可能性を低減し、安定した噴霧を行うことができる。
 (実施の形態2)
 続いて、実施の形態2について説明する。
 図9は、本実施の形態に係る除菌装置200の構成を示すブロック図である。図9に示されるように、除菌装置200は、実施の形態1に係る除菌装置100と比較して、新たに湿度センサ240を備える点と、制御回路130の代わりに制御回路230を備える点とが相違する。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 湿度センサ240は、対象物104が存在する空間の湿度を測定する。対象物104が存在する空間は、例えば、室内空間などと閉じられた空間であるが、これに限らない。対象物104が存在する空間は、対象物104を中心とした所定の範囲であってもよい。所定の範囲は、例えば、対象物104から30m以内の範囲である。
 なお、対象物104が存在する空間には、対象物104の全てが含まれていなくてもよく、対象物104の一部のみが含まれていてもよい。例えば、対象物104が存在する空間は、対象物104である壁によって囲まれた空間であってもよい。この場合、当該空間には、対象物104の一部のみ、具体的には、壁の表面が存在している。
 制御回路230は、湿度センサ240によって測定された湿度に基づいて、ミスト量、ミスト量毎の薬液ミスト102の噴霧期間、及び、薬液ミスト102に含まれる薬液の濃度の少なくとも1つの条件を決定してもよい。例えば、制御回路230は、湿度が第1の湿度よりも低い第2の湿度である場合において、湿度が第1の湿度である場合よりも、第1のミスト量及び第3のミスト量、並びに、第1期間及び第3期間の少なくとも1つを増加させる。また、例えば、制御回路230は、湿度が第2の湿度である場合において、湿度が第1の湿度である場合よりも、薬液ミスト102の薬液の濃度、及び、第2期間の少なくとも1つを減少させる。
 図10は、本実施の形態に係る除菌装置200による噴霧条件の、湿度による違いを説明するための図である。図10において、図3Aなどと同様に、横軸は時間を表し、縦軸は薬液ミスト102のミスト量を表している。図10では、湿度が第1の湿度である場合、すなわち、高湿度である場合のミスト量の変化の一例を破線のグラフで表している。湿度が、第1の湿度より低い第2の湿度である場合、すなわち、低湿度である場合のミスト量の変化の一例を実線のグラフで表している。例えば、第1の湿度は100%であり、第2の湿度は50%である。
 例えば、図10に示されるように、低湿度の場合の第1のミスト量M21は、高湿度の場合の第1のミスト量M11より多い。低湿度の場合の第2のミスト量M22は、高湿度の場合の第2のミスト量M12より多い。低湿度の場合の第3のミスト量M23は、高湿度の場合の第3のミスト量M13より多い。なお、第2のミスト量M22及びM12は、湿度によらずに0であってもよい。
 また、例えば、低湿度の場合の第1のミスト量M21の噴霧期間T21は、高湿度の場合の第1のミスト量M11の噴霧期間T11より長い。低湿度の場合の第3のミスト量M23の噴霧期間T23は、高湿度の場合の第3のミスト量M13の噴霧期間T13より長い。低湿度の場合の第2のミスト量M22の噴霧期間T22は、高湿度の場合の第2のミスト量M12の噴霧期間T12より短い。
 また、図10に示されるように、低湿度の場合の薬液ミスト102の濃度は、高湿度の場合の薬液ミスト102の濃度よりも低い。
 低湿度である場合には、上述したように、薬液ミスト102の気化が促進されやすい。このため、多量の薬液ミスト102を長い期間、供給しても有効に除菌に利用される。また、低湿度の場合には、ミスト量を多くすることができるので、濃度を低くすることができる。
 一方で、高湿度である場合には、薬液ミスト102の気化が起こりにくい。このため、薬液ミスト102のミスト量を減少させ、かつ、第2期間を長くする。これにより、気化を促進し、除菌効果を高めることができる。
 なお、図10に示される例では、ミスト量によらずに濃度が一定である例を示したが、ミスト量毎に濃度が変更されてもよい。例えば、第1のミスト量M21、及び、第3のミスト量M23の少なくとも一方で噴霧される薬液ミスト102の濃度は、第2のミスト量M22で噴霧される薬液ミスト102の濃度より低くてもよい。また、例えば、第1のミスト量M11、及び、第3のミスト量M13の少なくとも一方で噴霧される薬液ミスト102の濃度は、第2のミスト量M12で噴霧される薬液ミスト102の濃度より低くてもよい。
 また、対象物104に近い位置の湿度を測定することで、噴霧条件の決定の精度が高まり、より効率良く除菌を行うことができる。このため、図11に示されるように、湿度センサ240は、対象物104の近傍に設けられていてもよい。湿度センサ240は、例えば対象物104に接触して設けられている。なお、図11は、本実施の形態の変形例に係る除菌装置201の構成を示すブロック図である。
 除菌装置201の制御回路230は、例えば、湿度センサ240と通信することにより、湿度センサ240によって測定された湿度を示す湿度情報を取得する。制御回路230と湿度センサ240との通信は、有線通信でもよく、無線通信でもよい。例えば、制御回路230は、Wi-Fi(登録商標)、Bluetooth(登録商標)又はZigBee(登録商標)などの無線通信規格に基づいた無線通信を行う。
 (実施の形態3)
 続いて、実施の形態3について説明する。
 図12は、本実施の形態に係る除菌装置300の構成を示すブロック図である。図12に示されるように、除菌装置300は、実施の形態2に係る除菌装置201と比較して、噴霧部110の代わりに噴霧部310を備える点が相違する。以下では、実施の形態2との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 噴霧部310は、薬液ミスト302を渦輪状にして噴霧する。つまり、噴霧部310は、薬液ミスト302の渦流を生成して放出する。例えば、噴霧部310は、薬液ミスト302を生成し、生成した薬液ミスト302を容器内に貯める。容器は、薬液ミスト302を放出するための開口を有する。また、容器は、瞬間的に容積を減らすことができるように構成されている。例えば、容器の一部には、変形可能な膜が張られており、当該膜に対して瞬間的な打撃を与えることにより、容器の容積が減少する。容積が減少することにより、容器内に貯められた薬液ミスト302が開口から押し出されて渦輪を形成し、押し出された方向に進行する。なお、渦輪の形成方法は、特に限定されない。
 渦輪状の薬液ミスト302は、直進的にミスト量を維持しながら長距離を進むことができる。これにより、除菌装置300と対象物104との距離が離れている場合であっても、多くの薬液ミスト302を対象物104まで輸送することができる。これにより、対象物104の除菌を効率良く行うことができる。
 (実施の形態4)
 続いて、実施の形態4について説明する。
 図13は、本実施の形態に係る除菌装置400の構成を示すブロック図である。図13に示されるように、除菌装置400は、実施の形態3に係る除菌装置300と比較して、新たに水分計450を備える点と、制御回路230の代わりに制御回路430を備える点とが相違する。以下では、実施の形態3との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 水分計450は、対象物104の水分を測定する。水分計450は、非接触式の水分計であり、例えば光学式の水分量センサである。具体的には、水分計450は、近赤外光などの水に吸収される波長成分の光を対象物104に向けて出射し、出射した光の対象物104による反射光を受光し、受光した反射光の強度に基づいて対象物104の表面に付着した水分量を計測する。
 制御回路430は、水分計450によって測定された水分量に基づいて、ミスト量、ミスト量毎の薬液ミスト302の噴霧期間、及び、薬液ミスト302に含まれる薬液の濃度の少なくとも1つの条件を決定してもよい。例えば、制御回路430は、水分量が第1の湿度よりも多い第2の水分量である場合において、水分量が第1の水分量である場合よりも、第1のミスト量及び第3のミスト量、並びに、第1期間及び第3期間の少なくとも1つを減少させる。また、例えば、制御回路430は、水分量が第2の水分量である場合において、水分量が第1の水分量である場合よりも、薬液ミスト302の薬液の濃度、及び、第2期間の少なくとも1つを減少させる。
 図14は、本実施の形態に係る除菌装置400による噴霧条件の、水分量による違いを説明するための図である。図14において、図10などと同様に、横軸は時間を表し、縦軸は薬液ミスト302のミスト量を表している。図14では、水分量が第1の水分量である場合、すなわち、水分量が少ない場合のミスト量の変化の一例を破線のグラフで表している。水分量が、第1の水分量より多い第2の水分量である場合、すなわち、水分量が多い場合のミスト量の変化の一例を実線のグラフで表している。例えば、第1の水分量は0、すなわち、対象物104が乾燥状態である。第2の水分量は、例えば、所定の水分量であって、対象物104が濡れた状態である。
 例えば、図14に示されるように、水分量が多い場合の第1のミスト量M11は、水分量が少ない場合の第1のミスト量M21より少ない。水分量が多い場合の第2のミスト量M12は、水分量が少ない場合の第2のミスト量M22より少ない。水分量が多い場合の第3のミスト量M13は、水分量が少ない場合の第3のミスト量M12より少ない。なお、第2のミスト量M12及びM22は、水分量によらずに0であってもよい。
 また、例えば、水分量が多い場合の第1のミスト量M11の噴霧期間T11は、水分量が少ない場合の第1のミスト量M21の噴霧期間T21より短い。水分量が多い場合の第3のミスト量M13の噴霧期間T13は、水分量が少ない場合の第3のミスト量M23の噴霧期間T23より短い。水分量が多い場合の第2のミスト量M12の噴霧期間T12は、水分量が多い場合の第2のミスト量M22の噴霧期間T22より長い。
 また、図14に示されるように、水分量が多い場合の薬液ミスト302の濃度は、水分量が少ない場合の薬液ミスト302の濃度よりも高い。
 水分量が少ない場合には、湿度が低い場合と同様に、薬液ミスト302の気化が促進されやすい。このため、多量の薬液ミスト302を長い期間、供給しても有効に除菌に利用される。また、水分量が少ない場合には、ミスト量を多くすることができるので、濃度を低くすることができる。
 一方で、水分量が多い場合には、薬液ミスト302の気化が起こりにくい。このため、薬液ミスト302のミスト量を減少させ、かつ、第2のミスト量での噴霧期間を長くする。これにより、気化を促進し、除菌効果を高めることができる。
 また、本実施の形態によれば、薬液ミスト302の噴霧によって対象物104に付着した水分量の変化を測定することができる。これにより、水分量の変化に基づいて適切な噴霧条件を決定することができる。
 なお、図14に示される例においても、ミスト量毎に濃度が変更されてもよい。また、水分計450は、接触式の水分量センサであってもよい。この場合、制御回路430は、水分計450と通信することにより、水分計450によって測定された水分量を示す水分量情報を取得する。制御回路430と水分計450との通信は、有線通信でもよく、無線通信でもよい。
 (実施の形態5)
 続いて、実施の形態5について説明する。
 図15は、本実施の形態に係る除菌装置500の構成を示すブロック図である。図15に示されるように、除菌装置500は、実施の形態3に係る除菌装置300と比較して、制御回路230の代わりに制御回路530を備える点が相違する。また、対象物104の近傍には、除湿装置501が設けられている。以下では、実施の形態3との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 除湿装置501は、対象物104が設けられた空間の除湿を行う装置である。例えば、除湿装置501は、対象物104と同じ空間に設けられている。除湿装置501は、対象物104に接するように設けられていてもよい。
 制御回路530は、除湿装置501を制御することで、対象物104が設けられた空間の除湿を行う。具体的には、制御回路530は、例えば、除湿装置501と通信することにより、除湿の開始指示などの制御信号を除湿装置501に送信する。制御回路530と除湿装置501との通信は、有線通信でもよく、無線通信でもよい。
 本実施の形態では、制御回路530は、除湿装置501を制御することで、第2のミスト量での噴霧期間、すなわち、第2期間、又は、薬液ミスト302の噴霧が行われていない期間に除湿を行う。制御回路530は、第2期間以外の噴霧期間では、除湿を行わなくてもよい。
 第2期間は、薬液ミスト302の気化が促進される期間である。このため、この期間に除湿が行われることで、薬液ミスト302の気化が更に促進される。これにより、除菌効果を更に高めることができる。
 なお、制御回路530は、除湿装置501を制御することで、常に除湿を行ってもよい。つまり、制御回路530は、第2期間だけでなく、第1期間及び第3期間の少なくとも一方でも除湿を行ってもよい。
 (実施の形態6)
 続いて、実施の形態6について説明する。
 図16は、本実施の形態に係る除菌装置600の構成を示すブロック図である。図16に示されるように、除菌装置600は、実施の形態1に係る除菌装置100と比較して、新たに光センサ660を備える点と、制御回路130の代わりに制御回路630を備える点とが相違する。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 光センサ660は、対象物104に付着した物質605を測定する。物質605は、例えば、細菌若しくはウイルス、又は、カビなどの真菌などである。物質605は、嘔吐物などを拭き取った後に残った残滓であってもよい。物質605は、例えば、有機物を含んでいる。
 光センサ660は、例えば、対象物104に向けて照射光を出射する光源と、対象物104から戻ってくる光を受光する受光素子とを備える。光源は、例えば、レーザ素子又はLED(Light Emitting Diode)素子であるが、これに限らない。照射光は、例えば、青色光などの可視光であるが、赤外光であってもよく、紫外光であってもよい。照射光は、物質605を励起させる励起光であってもよい。
 受光素子は、対象物104に照射光が照射された場合に対象物104から戻ってくる光を受光する。対象物104から戻ってくる光は、例えば、物質605によって反射された反射光、物質605によって散乱された散乱光、又は、物質605が励起されて出射する蛍光である。受光素子は、入射する光の強度に応じた信号レベルの電気信号を出力する光電変換素子を含んでいる。光電変換素子は、例えば、フォトダイオードであるが、アバランシェフォトダイオード又は光電子増倍管であってもよい。受光素子は、複数の光電変換素子が二次元アレイ状に並んだイメージセンサであってもよい。
 例えば、光センサ660は、紫外光を対象物104に向けて出射する。対象物104に付着した物質605は、照射された紫外光によって励起され、蛍光を発する。光センサ660は、物質605が発する蛍光を受光し、受光強度に基づいて物質605の量を算出する。例えば、受光強度が高い程、物質605の量が多く、受光強度が低い程、物質605の量が少ない。光センサ660は、受光強度と物質605との対応関係を表す情報又は関数を記憶するメモリを有する。光センサ660は、メモリに記憶された情報又は関数に基づいて、物質605の量を算出する。光センサ660は、物質605の励起蛍光マトリクス(Excitation Emission Matrix)を取得するセンサであってもよい。励起蛍光マトリクスは、蛍光指紋とも呼ばれる。
 制御回路630は、測定領域内の物質605の量に基づいて、ミスト量、ミスト量毎の薬液ミスト102の噴霧期間、及び、薬液ミスト102に含まれる薬液の濃度の少なくとも1つの条件を決定する。測定領域は、例えば、光センサ660による光の照射範囲である。なお、光センサ660の光の出射範囲は、可変であってもよい。
 例えば、物質605の量が多い程、除菌しなければならない菌数が多いので、多くのミスト量が必要になる。物質605が少ない程、除菌しなければならない菌数が少ないので、ミスト量が少なくてもよい。したがって例えば、制御回路630は、物質605の量が第1の量よりも多い第2の量である場合において、物質605の量が第1の量である場合よりも、第1のミスト量及び第3のミスト量、並びに、第1期間及び第3期間の少なくとも1つを増加させる。また、例えば、制御回路630は、物質605の量が第2の量である場合において、物質605の量が第1の量である場合よりも、薬液ミスト102の薬液の濃度、及び、第2期間の少なくとも1つを減少させる。
 このように、本実施の形態に係る除菌装置600によれば、ミスト量、噴霧期間及び濃度の少なくとも1つを、対象物104に付着した物質605に応じて適切な値に調整することができる。したがって、薬液ミスト102のミスト量の無駄を抑制し、効率良く除菌を行うことができる。
 なお、本実施の形態及び他の実施の形態1から5では、対象物104は、建築物の構造材である例を示したが、これに限らない。対象物104は、図17に示されるように、エアロゾル604であってもよい。
 図17は、本実施の形態に係る除菌装置600の別の適用例を示す図である。図17に示される例では、除菌装置600は、対象物であるエアロゾル604の除菌を行う。エアロゾル604は、例えば、人のくしゃみ又は咳によって飛散する飛沫である。例えば、飛沫には、菌又はウイルスなどの除菌の対象となる物質が含まれる。なお、エアロゾル604は、PM2.5などの微小粒子状物質、又は、花粉などであってもよい。
 本変形例では、光センサ660は、例えば、ライダー(LIDAR:Light Detection and Ranging)装置であってもよい。光センサ660は、測定領域を照射光でスキャンするように、複数の方向に向けて照射光を出射する。測定領域は、例えばエアロゾル604が存在する空間である。エアロゾル604は照射光を散乱させるので、エアロゾル604が存在する場合には、光センサ660は、その散乱光を受光することができる。光センサ660は、散乱光の強度に基づいてエアロゾル604の量を、除菌の対象である物質の量として算出する。
 なお、エアロゾル604は、対象物104とは異なり、空間中で検出される位置が変化しうる。このため、制御回路630は、エアロゾル604の除菌を適切に行うため、噴霧部110による薬液ミスト102の噴霧方向を変更してもよい。具体的には、制御回路630は、エアロゾル604が検出された方向に向かって薬液ミスト102が噴霧されるように噴霧方向を変更する。
 このように、対象物104は、空間中に固定された物質でなくてもよく、空間中を浮遊するエアロゾル604であってもよい。この場合であっても、制御回路630は、ミスト量、噴霧期間及び濃度の少なくとも1つを、エアロゾル604に含まれる物質の量に応じて適切な値に調整することができる。したがって、薬液ミスト102のミスト量の無駄を抑制し、効率良く除菌を行うことができる。
 (実施の形態7)
 続いて、実施の形態7について説明する。
 図18は、本実施の形態に係る除菌装置700の構成を示すブロック図である。図18に示されるように、除菌装置700は、実施の形態1に係る除菌装置100と比較して、新たに人検知センサ770を備える点と、制御回路130の代わりに制御回路730を備える点とが相違する。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 人検知センサ770は、対象物104と同一空間内に存在する人を検知する。人検知センサ770は、例えば、イメージセンサを含むカメラであり、人の動きを検知する。具体的には、人検知センサ770は、対象物104を含む範囲を撮像することにより、動画像を生成する。
 制御回路730は、人検知センサ770による検知結果に基づいて汚染可能性度を決定し、決定した汚染可能性度に基づいて、ミスト量、ミスト量毎の薬液ミスト102の噴霧期間、及び、薬液ミスト102に含まれる薬液の濃度の少なくとも1つの条件を決定する。汚染可能性度は、対象物104が汚染された可能性の度合いを示す数値である。例えば、汚染可能性度が高い程、対象物104が汚染されている可能性が高く、汚染可能性度が低い程、対象物104が汚染されている可能性が低い。汚染可能性度は、例えば、「高い」と「低い」との2値であってもよい。あるいは、汚染可能性度は、3段階以上の値であってもよい。
 本実施の形態では、制御回路730は、人検知センサ770によって生成された動画像を取得し、人が対象物104に触れたか否かを判定する。具体的には、制御回路730は、動画像に画像処理を行うことで、人の存否を検出し、人が存在する場合には、人が対象物104に触れたか否かを判定する。人が対象物104に触れたと判定した場合、制御回路730は、汚染可能性度を高い値に設定する。対象物104に対する接触回数が多い程、汚染可能性度を高くしてもよく、1回でも接触した場合に汚染可能性度を最高値に設定してもよい。
 例えば、図18に示されるように、病人の手706が対象物104に触れた場合、ウイルスなどの病原体が対象物104に付着した可能性がある。このため、制御回路730は、汚染可能性度を高く設定することで、適切なミスト量で噴霧を行わせることができる。具体的には、制御回路730は、汚染可能性度が第1の値よりも高い第2の値である場合において、汚染可能性度が第1の量である場合よりも、第1のミスト量及び第3のミスト量、並びに、第1期間及び第3期間の少なくとも1つを増加させる。また、例えば、制御回路730は、汚染可能性度が第2の値である場合において、汚染可能性度が第1の値である場合よりも、薬液ミスト102の薬液の濃度、及び、第2期間の少なくとも1つを減少させる。
 このように、本実施の形態に係る除菌装置700によれば、ミスト量、噴霧期間及び濃度の少なくとも1つを、汚染可能性度に応じて適切な値に調整することができる。したがって、薬液ミスト102のミスト量の無駄を抑制し、効率良く除菌を行うことができる。
 なお、人検知センサ770は、マイクロフォンなどの音検知センサであってもよい。
 制御回路730は、マイクロフォンの検知結果に基づいて汚染可能性度を決定する。具体的には、制御回路730は、マイクロフォンの検知結果に基づいて、人がくしゃみ又は咳を行ったか否かを判定する。例えば、病人がくしゃみ又は咳を行った場合には、くしゃみ又は咳とともに病人の口から飛散する飛沫にウイルスなどの病原体が含まれている可能性が高い。このため、くしゃみ又は咳が検出された場合には、汚染可能性度が高くなる。制御回路730は、人がくしゃみ又は咳を行ったと判定した場合、汚染可能性度を高い値に設定する。このとき、咳の場合の汚染可能性度よりも、くしゃみの場合の汚染可能性度を高くしてもよい。
 また、人検知センサ770は、複数の方向に対して指向性を有するマイクロフォンであり、音の発生源の位置を検出してもよい。これにより、人検知センサ770は、例えば、人がくしゃみ又は咳を行った時に付随して生じる音を検出し、検出した音の発生源を検出することができる。音の発生源の近傍には、くしゃみ又は咳と共に飛散した飛沫が存在し、当該飛沫には菌又はウイルスが含まれている可能性が高い。
 したがって、制御回路730は、人検知センサ770によって検出された音の発生源に向かって、噴霧部110に薬液ミスト102を噴霧させる。これにより、菌又はウイルスが存在する可能性が高い方向に向けて薬液ミスト102を噴霧させることができるので、より効率良く除菌を行うことができる。
 このように、人検知センサ770は、人を検出できるセンサであればよい。人検知センサ770は、例えば、熱画像センサ又は人感センサなどであってもよい。
 (他の実施の形態)
 以上、1つ又は複数の態様に係る除菌方法及び除菌装置について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、及び、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。
 例えば、薬液ミスト102の噴霧条件のうち、噴霧期間及び濃度は常に一定であってもよい。また、湿度又は水分量によらず、第1のミスト量、第2のミスト量及び第3のミスト量の各々は、予め設定された固定値であってもよい。つまり、噴霧を決定するステップは行われなくてもよい。
 例えば、上記実施の形態で説明した装置間の通信方法については特に限定されるものではない。装置間で無線通信が行われる場合、無線通信の方式(通信規格)は、例えば、ZigBee(登録商標)、Bluetooth(登録商標)、又は、無線LAN(Local Area Network)などの近距離無線通信である。あるいは、無線通信の方式(通信規格)は、インターネットなどの広域通信ネットワークを介した通信でもよい。また、装置間においては、無線通信に代えて、有線通信が行われてもよい。有線通信は、具体的には、電力線搬送通信(PLC:Power Line Communication)又は有線LANを用いた通信などである。
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよく、あるいは、複数の処理が並行して実行されてもよい。また、除菌装置が備える構成要素の複数の装置への振り分けは、一例である。例えば、一の装置が備える構成要素を他の装置が備えてもよい。
 例えば、除湿装置501が湿度センサ240及び水分計450の少なくとも一方を備えてもよい。また、例えば、除菌装置500が除湿装置501を備えてもよい。
 例えば、上記実施の形態において説明した処理は、単一の装置(システム)を用いて集中処理することによって実現してもよく、又は、複数の装置を用いて分散処理することによって実現してもよい。また、上記プログラムを実行するプロセッサは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、又は分散処理を行ってもよい。
 また、上記実施の形態において、制御部などの構成要素の全部又は一部は、専用のハードウェアで構成されてもよく、あるいは、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU(Central Processing Unit)又はプロセッサなどのプログラム実行部が、HDD(Hard Disk Drive)又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、制御部などの構成要素は、1つ又は複数の電子回路で構成されてもよい。1つ又は複数の電子回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。
 1つ又は複数の電子回路には、例えば、半導体装置、IC(Integrated Circuit)又はLSI(Large Scale Integration)などが含まれてもよい。IC又はLSIは、1つのチップに集積されてもよく、複数のチップに集積されてもよい。ここでは、IC又はLSIと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、又は、ULSI(Ultra Large Scale Integration)と呼ばれるかもしれない。また、LSIの製造後にプログラムされるFPGA(Field Programmable Gate Array)も同じ目的で使うことができる。
 また、本開示の全般的又は具体的な態様は、システム、装置、方法、集積回路又はコンピュータプログラムで実現されてもよい。あるいは、当該コンピュータプログラムが記憶された光学ディスク、HDD若しくは半導体メモリなどのコンピュータ読み取り可能な非一時的記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 また、上記の各実施の形態は、特許請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、対象物の除菌を効率良く行うことができる除菌方法及び除菌装置として利用でき、例えば、介護施設又は病院などの除菌設備などに利用することができる。
100、101、200、201、300、400、500、600、700 除菌装置
102、302 薬液ミスト
103 微小液滴
103a 水分
103b 薬液成分
104 対象物
110、111、310 噴霧部
112 生成部
114 容器
120 薬液供給部
130、230、430、530、630、730 制御回路
240 湿度センサ
450 水分計
501 除湿装置
604 エアロゾル
605 物質
660 光センサ
706 手
770 人検知センサ

Claims (19)

  1.  噴霧部から薬液を含む薬液ミストを対象物に噴霧して、前記対象物の除菌を行うための除菌方法であって、
     前記噴霧部の噴霧を制御する制御回路によって行われる、
      第1期間中、前記薬液ミストの単位時間当たりのミスト量が第1のミスト量である前記薬液ミストを前記対象物に噴霧する制御を行う第1ステップと、
      前記第1期間の後の第2期間中、前記単位時間当たりのミスト量が前記第1のミスト量より少ない第2のミスト量である前記薬液ミストを前記対象物に噴霧する制御を行う第2ステップと、
      前記第2期間の後の第3期間中、前記単位時間当たりのミスト量が前記第2のミスト量より多い第3のミスト量である前記薬液ミストを前記対象物に噴霧する制御を行う第3ステップと、を含む、
     除菌方法。
  2.  前記制御回路によって行われる、
     (a)前記第1のミスト量、前記第2のミスト量及び前記第3のミスト量を含む条件と、(b)前記第1期間、前記第2期間及び前記第3期間を含む条件と、(c)前記第1ステップ、前記第2ステップ及び前記第3ステップの各々における前記薬液ミストに含まれる前記薬液の濃度を含む条件とからなる群から選択される少なくとも1つの条件を決定するステップを含み、
     前記第1ステップ、前記第2ステップ及び前記第3ステップでは、決定した条件で前記薬液ミストを噴霧する制御を行う、
     請求項1に記載の除菌方法。
  3.  前記決定するステップでは、前記対象物が存在する空間の湿度を測定する湿度センサによって測定された湿度に基づいて、前記第1のミスト量、前記第2のミスト量及び前記第3のミスト量と、前記第1期間、前記第2期間及び前記第3期間と、前記第1ステップ、前記第2ステップ及び前記第3ステップの各々における前記薬液ミストに含まれる前記薬液の濃度との少なくとも1つの条件を決定する、
     請求項2に記載の除菌方法。
  4.  前記決定するステップでは、前記湿度が第1の湿度よりも低い第2の湿度である場合において、前記湿度が前記第1の湿度である場合よりも、前記第1のミスト量及び前記第3のミスト量、並びに、前記第1期間及び前記第3期間を増加させ、かつ、前記薬液の濃度、及び、前記第2期間を減少させる、
     請求項3に記載の除菌方法。
  5.  前記決定するステップでは、前記対象物の水分を測定する水分計によって測定された水分量に基づいて、前記第1のミスト量、前記第2のミスト量、前記第3のミスト量と、前記第1期間、前記第2期間及び前記第3期間と、前記第1ステップ、前記第2ステップ及び前記第3ステップの各々における前記薬液ミストに含まれる前記薬液の濃度との少なくとも1つの条件を決定する、
     請求項1から4のいずれか1項に記載の除菌方法。
  6.  前記決定するステップでは、前記水分量が第1の水分量よりも多い第2の水分量である場合において、前記水分量が前記第1の水分量である場合よりも、前記第1のミスト量及び前記第3のミスト量、並びに、前記第1期間及び前記第3期間を減少させ、かつ、前記薬液の濃度、及び、前記第2期間を増加させる、
     請求項5に記載の除菌方法。
  7.  前記決定するステップでは、前記対象物に付着した物質、又は、前記対象物に含まれる物質を測定する光センサによって測定された、前記対象物を含む測定領域内の前記物質の量に基づいて、前記第1のミスト量、前記第2のミスト量及び前記第3のミスト量と、前記第1期間、前記第2期間及び前記第3期間と、前記第1ステップ、前記第2ステップ及び前記第3のステップの各々における前記薬液ミストに含まれる前記薬液の濃度との少なくとも一方の条件を決定する、
     請求項2から6のいずれか1項に記載の除菌方法。
  8.  前記決定するステップでは、前記対象物と同一空間内に存在する人を検知するセンサによる検知結果に基づいて決定される汚染可能性度に基づいて、前記第1のミスト量、前記第2のミスト量及び前記第3のミスト量と、前記第1期間、前記第2期間及び前記第3期間と、前記第1ステップ、前記第2ステップ及び前記第3のステップの各々における前記薬液ミストに含まれる前記薬液の濃度との少なくとも一方の条件を決定する、
     請求項2から7のいずれか1項に記載の除菌方法。
  9.  前記対象物の除菌のために、第4期間中、単位時間当たり第4ミスト量で連続して噴霧を行う必要がある場合に、前記第1期間と前記第1のミスト量との積である第1使用量、前記第2期間と前記第2ミスト量との積である第2使用量、及び、前記第3期間と前記第3ミスト量との積である第3使用量との合計量は、前記第4期間と前記第4ミスト量との積である第4使用量より少ない、
     請求項1から8のいずれか1項に記載の除菌方法。
  10.  前記対象物の除菌は、前記対象物に付着した菌、又は、前記対象物に含まれる菌を99%以上減らすことである、
     請求項9に記載の除菌方法。
  11.  前記対象物は、建築物の構造材である、
     請求項1から10のいずれか1項に記載の除菌方法。
  12.  前記対象物は、エアロゾルである、
     請求項1から10のいずれか1項に記載の除菌方法。
  13.  前記第2期間は、1秒以上、1分以下である、
     請求項1から12のいずれか1項に記載の除菌方法。
  14.  前記第2のミスト量は、0である、
     請求項1から13のいずれか1項に記載の除菌方法。
  15.  前記第1ステップ、前記第2ステップ及び前記第3ステップでは、前記薬液ミストを渦輪状にして噴霧する制御を行う、
     請求項1から14のいずれか1項に記載の除菌方法。
  16.  さらに、前記対象物が存在する空間の除湿を行うステップを含む、
     請求項1から15のいずれか1項に記載の除菌方法。
  17.  前記第1ステップ、前記第2ステップ及び前記第3ステップでは、前記薬液ミストを生成し、生成した薬液ミストを容器に貯め、前記容器に貯められた前記薬液ミストを噴霧する制御を行う、
     請求項1から16のいずれか1項に記載の除菌方法。
  18.  前記第1ステップ、前記第2ステップ及び前記第3ステップでは、前記薬液ミストを生成しながら噴霧する制御を行う、
     請求項1から16のいずれか1項に記載の除菌方法。
  19.  対象物の除菌を行うための薬液を含む薬液ミストを噴霧する噴霧部と、
     前記噴霧部の噴霧を制御する制御回路とを備え、
     前記制御回路は、
      第1期間中、前記薬液ミストの単位時間当たりのミスト量が第1のミスト量である前記薬液ミストを前記対象物に噴霧する制御を行い、
      前記第1期間の後の第2期間中、前記単位時間当たりのミスト量が前記第1のミスト量より少ない第2のミスト量である前記薬液ミストを前記対象物に噴霧する制御を行い、
      前記第2期間の後の第3期間中、前記単位時間当たりのミスト量が前記第2のミスト量より多い第3のミスト量である前記薬液ミストを前記対象物に噴霧する制御を行う、
     除菌装置。
PCT/JP2019/031098 2018-09-05 2019-08-07 除菌方法及び除菌装置 WO2020049940A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018166219 2018-09-05
JP2018-166219 2018-09-05
JP2019136958A JP2020039862A (ja) 2018-09-05 2019-07-25 除菌方法及び除菌装置
JP2019-136958 2019-07-25

Publications (1)

Publication Number Publication Date
WO2020049940A1 true WO2020049940A1 (ja) 2020-03-12

Family

ID=69721775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031098 WO2020049940A1 (ja) 2018-09-05 2019-08-07 除菌方法及び除菌装置

Country Status (1)

Country Link
WO (1) WO2020049940A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112023086A (zh) * 2020-09-23 2020-12-04 东风汽车集团有限公司 一种车内消毒系统及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052355A (ja) * 2000-08-08 2002-02-19 Hayashi Seiko:Kk 微小ミスト発生装置
JP2002095728A (ja) * 2000-09-26 2002-04-02 Matsushita Electric Works Ltd 脱臭・殺菌・徐菌・防カビ装置
JP2007524444A (ja) * 2003-07-15 2007-08-30 ステリス インク 滅菌剤の濃度を決定するシステムおよび方法
JP2011045300A (ja) * 2009-08-27 2011-03-10 Sharp Corp 微生物検出装置
JP2011526161A (ja) * 2008-06-30 2011-10-06 サバン ベンチャーズ ピーティーワイ リミテッド サブサイクルベースのエアロゾル消毒システム
JP2015148600A (ja) * 2014-01-07 2015-08-20 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 成分計測装置および移動体
WO2018143186A1 (ja) * 2017-01-31 2018-08-09 Sdバイオシステム株式会社 除染装置及び当該除染装置を使用した除染方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052355A (ja) * 2000-08-08 2002-02-19 Hayashi Seiko:Kk 微小ミスト発生装置
JP2002095728A (ja) * 2000-09-26 2002-04-02 Matsushita Electric Works Ltd 脱臭・殺菌・徐菌・防カビ装置
JP2007524444A (ja) * 2003-07-15 2007-08-30 ステリス インク 滅菌剤の濃度を決定するシステムおよび方法
JP2011526161A (ja) * 2008-06-30 2011-10-06 サバン ベンチャーズ ピーティーワイ リミテッド サブサイクルベースのエアロゾル消毒システム
JP2011045300A (ja) * 2009-08-27 2011-03-10 Sharp Corp 微生物検出装置
JP2015148600A (ja) * 2014-01-07 2015-08-20 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 成分計測装置および移動体
WO2018143186A1 (ja) * 2017-01-31 2018-08-09 Sdバイオシステム株式会社 除染装置及び当該除染装置を使用した除染方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112023086A (zh) * 2020-09-23 2020-12-04 东风汽车集团有限公司 一种车内消毒系统及其控制方法

Similar Documents

Publication Publication Date Title
JP7359718B2 (ja) 紫外線放電ランプ装置
JP6062040B2 (ja) 冷ミスト汚染除去ユニットおよびその操作方法
KR101900029B1 (ko) 살균 장치의 내측 및 외측의 상이한 소독 모드들을 선택적으로 수행하기 위한 구성을 갖는 살균 장치
US11000615B2 (en) Support structures, cabinets and methods for disinfecting objects
US20170312379A1 (en) Systems Which Determine Operating Parameters And Disinfection Schedules For Germicidal Devices And Germicidal Lamp Apparatuses Including Lens Systems
US8877124B2 (en) Apparatus, system, and method for evaluating and adjusting the effectiveness of ultraviolet light disinfection of areas
KR101640617B1 (ko) 서브-사이클계 에어로졸 살균 시스템
JP2013150814A (ja) 空間の消毒
US20180043044A1 (en) Disinfecting method and disinfecting apparatus
JP6661905B2 (ja) 除菌処理方法及び除菌処理装置
CN111246892A (zh) 净化方法、净化装置以及净化系统
WO2020049940A1 (ja) 除菌方法及び除菌装置
JP2022166802A (ja) 消毒機能付き高清浄環境システムおよびその使用方法
JP2020039862A (ja) 除菌方法及び除菌装置
JP2021531941A (ja) 殺菌システム
KR101910152B1 (ko) 습도 반응형 분사 제어 장치를 부착한 과산화수소연무발생장치
JP3229539U (ja) 噴霧装置
JP2015136371A (ja) 空気浄化装置
JP7148156B2 (ja) 環境殺菌装置
JP2004130006A (ja) オゾン殺菌方法とその装置
JP3156288U (ja) ウイルス感染拡大予防対策噴霧殺菌装置
WO2019167594A1 (ja) 浄化方法、浄化装置及び浄化システム
WO2022092069A1 (ja) 高速ナノミストおよびその生成方法と生成装置、処理方法と処理装置および計測方法と計測装置
KR102477068B1 (ko) 플라즈마를 이용한 에어샤워용 위생용 출입소독장치
Buhr et al. Ultraviolet dosage and decontamination efficacy were widely variable across 14 UV devices after testing a dried enveloped ribonucleic acid virus surrogate for SARS-CoV-2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857816

Country of ref document: EP

Kind code of ref document: A1