WO2020049878A1 - 調湿システム - Google Patents

調湿システム Download PDF

Info

Publication number
WO2020049878A1
WO2020049878A1 PCT/JP2019/028197 JP2019028197W WO2020049878A1 WO 2020049878 A1 WO2020049878 A1 WO 2020049878A1 JP 2019028197 W JP2019028197 W JP 2019028197W WO 2020049878 A1 WO2020049878 A1 WO 2020049878A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
storage tank
unit
moisture
absorbent
Prior art date
Application number
PCT/JP2019/028197
Other languages
English (en)
French (fr)
Inventor
井出 哲也
豪 鎌田
洋香 濱田
奨 越智
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2020049878A1 publication Critical patent/WO2020049878A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air

Definitions

  • the present invention relates to a humidity control system.
  • Priority is claimed on Japanese Patent Application No. 2018-165939, filed Sep. 5, 2018, the content of which is incorporated herein by reference.
  • a liquid column is formed by irradiating an ultrasonic wave to a liquid hygroscopic material discharged from a hygroscopic part, and a moisture contained in the liquid hygroscopic material is atomized and separated, thereby regenerating the liquid hygroscopic material. It has been known.
  • a moisture absorbing section and an atomizing and regenerating section are separately provided, and a liquid feed pump for circulating a liquid absorbent is required between these sections.
  • the liquid feed pump has increased power consumption due to its weight, and has been a noise source and a vibration source.
  • Patent Literature 1 describes an ultrasonic atomization separation device, in which a droplet that drips from the tip of a liquid column is separated as a new stock solution by a separation device, and atoms having different masses or ionic radii, or The ions can be separated to increase purity.
  • Patent Document 1 does not include a liquid feed pump such as a humidity control system due to the configuration of the separation device alone.
  • the separation target is limited to metal ions and isotopes, and does not include organic liquid hygroscopic materials such as glycerin.
  • One aspect of the present invention has been made in view of the above-described problems of the related art, and achieves high atomization efficiency, and realizes lightening, low noise, and low vibration of the entire system. It is intended to provide a humidity control system.
  • the humidity control system is a moisture absorbing section that causes the liquid moisture absorbent to absorb at least a part of the moisture contained in the air by contacting the liquid moisture absorbent containing a moisture absorbent and air.
  • a moisture absorbing section that causes the liquid moisture absorbent to absorb at least a part of the moisture contained in the air by contacting the liquid moisture absorbent containing a moisture absorbent and air.
  • An atomizing regeneration unit that regenerates the liquid absorbent, a first transfer mechanism that sends the liquid absorbent regenerated in the atomization regeneration unit to the moisture absorbent, and at least a part of the moisture contained in the air.
  • a second transfer mechanism that sends the absorbed liquid hygroscopic material from the hygroscopic unit to the atomizing and regenerating unit, wherein the atomizing and regenerating unit includes at least one storage tank that stores the liquid hygroscopic material, Installed in the tank An ultrasonic generator for oscillating ultrasonic waves for generating the mist droplets to form a liquid column on the liquid surface of the liquid absorbent in the storage tank; The transfer mechanism moves the liquid absorbent from the atomizing and regenerating unit to the moisture absorbent using the potential energy of the liquid absorbent changed by the liquid column.
  • the second transfer mechanism transfers the liquid desiccant from the moisture absorption unit to the atomization regeneration unit due to a water level difference between the moisture absorption unit and the atomization regeneration unit. It may be configured to have a reverse siphon function.
  • the second transfer mechanism includes a flow path that connects the bottom of the moisture absorption unit and the bottom of the atomization regeneration unit, and a check valve disposed in the flow path. May be provided.
  • the first transfer mechanism includes a collection unit that collects the liquid absorbent regenerated by the liquid column, and the collection unit includes the moisture absorption unit in the storage tank.
  • a configuration in which the side is inclined so as to be lower may be adopted.
  • the atomization regeneration unit includes a plurality of storage tanks arranged in a stepwise manner in one direction, and the ultrasonic generation unit provided at least one for each storage tank, May be provided.
  • the steps of the adjacent storage tanks are the same or different depending on the concentration of the liquid absorbent in the plurality of storage tanks, and the liquid in the adjacent storage tanks is different.
  • the configuration may be such that the greater the density difference between the moisture absorbents, the smaller the step.
  • the number of the ultrasonic generators provided for each storage tank is the same or different depending on the concentration of the liquid absorbent in the plurality of storage tanks, and
  • the configuration may be such that the greater the difference in concentration between the liquid absorbent materials in the matching storage tank, the greater the number of the ultrasonic generators.
  • At least one of the plurality of storage tanks is provided with an opening for suppressing overflow of the liquid absorbent, and the opening is provided in the adjacent lower storage tank. It may be configured to communicate.
  • the humidity control system may be configured to include a control unit that controls a frequency and an output of the ultrasonic generation unit according to a required amount of atomization.
  • the control unit includes a measurement unit that measures the concentration or viscosity of the liquid absorbent in each storage tank, and performs the control based on a measurement result by the measurement unit. It may be configured.
  • a humidity control system that achieves high atomization efficiency and achieves weight reduction, low noise, and low vibration of the entire system.
  • FIG. 1 is a schematic configuration diagram of a humidity control system 10 according to the first embodiment.
  • FIG. 2 is a plan view showing the configuration of the perforated plate 113.
  • FIG. 3 is a sectional view taken along line AA of FIG.
  • FIG. 4 is a schematic diagram illustrating a schematic configuration of the humidity control system 20 of the second embodiment.
  • FIG. 5 is a plan view showing the overall configuration of the humidity control system 30 of the third embodiment.
  • the humidity control system 10 is configured such that the liquid desiccant W containing an absorbent substance is brought into contact with air to absorb the moisture contained in the air into the liquid desiccant W, and then the liquid desiccant W1 that has absorbed the moisture.
  • This is a system that separates and regenerates water from water.
  • FIG. 1 is a schematic configuration diagram of a humidity control system 10 according to the first embodiment.
  • FIG. 2 is a plan view showing the configuration of the perforated plate 113.
  • FIG. FIG. 3 is a sectional view taken along line AA of FIG.
  • the humidity control system 10 of the present embodiment includes at least a moisture absorbing unit 11, an atomizing and regenerating unit 14, a first transfer mechanism 12, a second transfer mechanism 16, and a control unit 42.
  • the humidity control system 10 includes a housing 201, and the moisture absorbing unit 11, the atomizing / regenerating unit 14, the first transfer mechanism 12, and the second transfer mechanism 16 are housed in an internal space 201 c of the housing 201.
  • the moisture absorbing section 11 makes the liquid absorbent W absorb at least a part of the water contained in the air A1 by bringing the liquid absorbent W containing the hygroscopic substance into contact with the air A1 existing outside the housing 201. Let it. In the moisture absorbing section 11, it is desirable that the liquid moisture absorbent W be absorbed by the liquid moisture absorbent W by bringing the liquid moisture absorbent W containing the moisture absorbent into contact with the air A1 existing outside the housing 201.
  • the liquid absorbent W may absorb at least a part of the moisture contained in the air A1.
  • the liquid absorbent W1 containing moisture is transferred from the moisture absorbing unit 11 to the atomizing and regenerating unit 14 via the second transfer mechanism 16.
  • the atomization / regeneration unit 14 atomizes at least a part of the moisture contained in the liquid absorbent W1 supplied from the moisture absorbent 11 via the second transfer mechanism 16, and removes at least a part of the moisture from the liquid absorbent W1. Thereby, the liquid absorbent W is regenerated.
  • the liquid absorbent W regenerated in the atomization regenerating unit 14 is sent to the moisture absorbing unit 11 via the first transfer mechanism 12. As described above, by circulating the liquid absorbent W between the moisture absorbent 11 and the atomizing / regenerating unit 14, the humidity of the external space of the housing 201 is adjusted.
  • the moisture absorbing section 11 includes a moisture absorbing storage tank 111, a perforated plate 113, and a mesh member 115.
  • the liquid absorbent W is stored in the internal space 111c of the moisture storage tank 111.
  • the liquid absorbent W will be described later.
  • the moisture-absorbing storage tank 111 is provided with a moisture-absorbing-tank-side liquid supply port 111A for supplying the liquid moisture-absorbing material W regenerated in the atomization regenerating section 14.
  • the first transfer channel 121 of the first transfer mechanism 12 is connected to the liquid supply port 111A on the moisture absorption tank side.
  • the moisture-absorbing storage tank 111 is provided with a moisture-absorbing storage tank-side drain port 111B for discharging the stored liquid absorbent material W1.
  • a drain port 111B on the moisture storage tank side is provided at the bottom 111d of the moisture storage tank 111.
  • the second transfer flow path (flow path) 162 of the second transfer mechanism 16 is connected to the liquid drain port 111B on the moisture storage tank side.
  • the moisture storage tank 111 is provided with a first air supply port 111a and a first air discharge port 111b.
  • the first air supply port 111a is connected to a first air supply passage 31a for supplying air A1 outside the housing 201 to the inside of the moisture storage tank 111.
  • the first air outlet 111b is connected to a first air discharge channel 31b for discharging air in the internal space 111c of the moisture storage tank 111 to the outside of the housing 201.
  • the first air supply passage 31a and the first air discharge passage 31b are provided at a position higher than the liquid surface 8 of the liquid absorbent W1 stored in the moisture storage tank 111.
  • the number of the first air supply ports 111a provided in the moisture storage tank 111 is not limited to one, and a plurality of the first air supply ports 111a may be provided.
  • a plurality of first air supply ports 111a are provided at positions opposed to the mesh member 115 to generate an airflow passing through the mesh member 115, so that the liquid absorbent W flowing along the mesh member 115 can be increased. Since it can be exposed to air, improvement in moisture absorption efficiency can be expected.
  • the first air supply port 111a, the first air discharge port 111b, the first air supply flow path 31a, and the first air discharge flow path 31b for the moisture absorption storage tank 111 are not limited to the illustrated positions and numbers. , Can be changed as appropriate.
  • a blower 133 is provided in the middle of the first air supply passage 31a.
  • the blower 133 sends air A1 from the external space of the housing 201 to the internal space 111c of the moisture storage tank 111 via the first air supply flow path 31a, and the first air discharge flow path from the internal space 111c of the moisture storage tank 111.
  • An airflow for sending out the dried air A3 is generated in the external space of the housing 201 via the base 31b.
  • the perforated plate 113 has a large number of through holes 113c penetrating in the thickness direction.
  • the porous plate 113 is arranged above the internal space 111c of the moisture storage tank 111.
  • the porous plate 113 is provided, for example, immediately below the moisture-absorbing tank-side liquid supply port 111A provided in the moisture-absorbing storage tank 111, and receives all the liquid absorbent W flowing from the moisture-absorbing tank-side liquid supply port 111A.
  • the porous plate 113 is preferably inclined obliquely with respect to the bottom 111d of the moisture storage tank 111. As shown in FIG. 1, the end on the moisture absorption tank side liquid supply port 111A side is raised. Thus, the liquid absorbent W flowing out of the moisture-absorbing tank-side liquid supply port 111A onto the porous plate 113 can be guided to the through hole 113c at a position away from the moisture-absorbing tank-side liquid supply port 111A. The liquid absorbent W flows along the upper surface 113a of the perforated plate 113 shown in FIGS. 1 and 2, and flows down from each through hole 113c.
  • the mesh member 115 is a rectangular plate-shaped member having a mesh structure.
  • the mesh member 115 is provided below the porous plate 113 and substantially perpendicular to the porous plate 113 and the bottom 111 d of the moisture storage tank 111.
  • At least one mesh member 115 is provided in the moisture storage tank 111, and a plurality of mesh members 115 are preferably provided.
  • the mesh member 115 guides the liquid hygroscopic material W flowing out of each through hole 113c of the perforated plate 113 to the bottom 111d side of the hygroscopic storage tank 111.
  • the liquid absorbent W that has flowed down from the perforated plate 113 flows downward along the mesh of the mesh member 115.
  • the second transfer mechanism 16 moves water from the moisture absorbing unit 11 toward the atomizing and regenerating unit 14 due to a water level difference between the liquid absorbent W1 stored by the moisture absorbing unit 11 and the liquid and the moisture absorbing material W1 stored by the atomizing and regenerating unit 14. Has a reverse siphon function to transfer the liquid absorbent W1 containing
  • the second transfer mechanism 16 includes a second transfer flow path 162 that connects the moisture absorbing section 11 and the atomizing and regenerating section 14, and a check valve 163 arranged in the middle of the second transfer flow path 162.
  • the second transfer flow path 162 has one end connected to the moisture storage tank-side drain port 111B provided on the bottom 111d of the moisture storage tank 111, and the other end connected to the bottom 141d of a regeneration storage tank (storage tank) 141 described later. It is connected to the provided regenerating storage tank side liquid supply port 141A.
  • the check valve 163 prevents the liquid absorbent W1 stored in the atomizing and regenerating unit 14 from returning to the moisture absorbing unit 11, and the liquid level 8 of the liquid absorbent W1 stored in the moisture absorbent 11
  • the liquid level is adjusted so that it is always higher than the liquid level 9 of the liquid absorbent W1 stored in the chemical regeneration unit 14.
  • the atomization / regeneration unit 14 includes one regeneration storage tank 141 and a plurality of ultrasonic transducers (ultrasonic generators) 142.
  • the regenerating storage tank 141 stores the liquid absorbent W1 to be regenerated.
  • the regenerating storage tank 141 is provided with a regenerating storage tank side liquid supply port 141A and a regenerating storage tank side drainage port 141B.
  • the regenerating storage tank side liquid supply port 141A is provided at the bottom 141d of the regenerating storage tank 141, and is connected to the second transfer channel 162 of the second transfer mechanism 16.
  • the regenerating storage tank-side drain port 141B is provided, for example, on the upper part of the side wall of the regenerating storage tank 141, and is connected to the first transfer channel 121 of the first transfer mechanism 12.
  • the regeneration storage tank 141 is provided with a second air supply port 141a and a second air discharge port 141b.
  • the second air supply port 141a is connected to a second air supply channel 32a for supplying the air A1 outside the housing 201 to the internal space 141c of the regeneration storage tank 141.
  • a second air discharge channel 32b for discharging the air A4 including the mist droplet W3 in the regenerating storage tank 141 to the outside of the housing 201 is connected to the second air discharge port 141b.
  • the second air supply port 141a, the second air discharge port 141b, the second air supply flow path 32a, and the second air discharge flow path 32b for the regeneration storage tank 141 are not limited to the illustrated positions and numbers, and may be appropriately changed. Is possible.
  • a blower 134 is provided in the middle of the second air supply passage 32a.
  • the blower 134 sends air A1 from the outside of the housing 201 to the inside of the regeneration storage tank 141 via the second air supply flow path 32a, and also from the inside of the regeneration storage tank 141 via the second air discharge flow path 32b.
  • an airflow for sending out the air A4 including the mist droplet W3 is generated outside the housing 201.
  • the plurality of ultrasonic transducers 142 oscillate ultrasonic waves for generating the liquid column S.
  • the number of the ultrasonic transducers 142 is set according to the required amount of atomization.
  • a liquid column S is formed on the water surface of the liquid absorbent W1, and water is separated from the surface of the liquid column S to form a mist.
  • Droplets W3 are generated.
  • the ultrasonic wave is applied from the ultrasonic vibrator 142 to the liquid absorbent W1, the conditions (output, frequency, etc.) of the ultrasonic wave are adjusted so that the liquid surface 9 of the liquid absorbent W1 has a predetermined height.
  • the liquid column S of the liquid absorbent W1 can be generated.
  • Each ultrasonic transducer 142 is provided to be inclined with respect to the bottom 141 d of the regenerating storage tank 141.
  • the ultrasonic vibrator 142 is inclined in a direction in which the side on which the regenerating storage tank side drain port 141B is provided, that is, the end of the ultrasonic irradiation surface 142a on the moisture absorbing part 11 side becomes lower.
  • An axis perpendicular to the ultrasonic irradiation surface 142a from the center of the ultrasonic irradiation surface 142a of the ultrasonic transducer 142 is defined as an ultrasonic radiation axis J.
  • the ultrasonic transducer 142 Since the ultrasonic transducer 142 is inclined with respect to the bottom 141d of the regenerating storage tank 141, the ultrasonic waves are irradiated on the ultrasonic irradiation surface so that the radiation axis J is inclined with respect to the liquid surface 9 of the liquid absorbent W1.
  • the light is propagated from 142a toward the liquid surface 9. This makes it difficult for the ultrasonic wave reflected on the liquid surface 9 to return to the ultrasonic vibrator 142, and the ultrasonic vibrator 142 is hardly damaged by the ultrasonic wave.
  • the liquid column S is generated so as to be inclined with respect to the liquid surface 9 as the radiation axis J is inclined.
  • the region surrounded by the surface is referred to as an ultrasonic wave propagation region R.
  • the ultrasonic irradiation surface 142a is circular
  • a columnar region extending from the periphery of the ultrasonic irradiation surface 142a in a direction perpendicular to the ultrasonic irradiation surface 142a is the ultrasonic wave propagation region R.
  • a plurality of second air supply ports 141a provided in the regeneration storage tank 141 may be provided.
  • the second air supply port 141a it is preferable to provide the second air supply port 141a at a position where air can be sent around each liquid column S formed by the ultrasonic transducer 142. Thereby, the atomization efficiency from the surface of the liquid column S can be improved.
  • the first transfer mechanism 12 moves the regenerated liquid desiccant W from the atomizing and regenerating unit 14 to the moisture absorbing unit 11 using the potential energy of the liquid desiccant W1 changed by the liquid column S. Specifically, the first transfer mechanism 12 connects the recovery unit 17 that collects the water droplet W4 that is dropped from the tip of the liquid column S as a droplet, and the first transfer flow that connects the regeneration storage tank 141 and the moisture absorption storage tank 111. Road 121.
  • the liquid hygroscopic material W1 is not atomized but concentrated. That is, the regenerated liquid hygroscopic material W after the water is separated.
  • the recovery unit 17 is provided above the internal space 141c of the regenerating storage tank 141.
  • the recovery unit 17 is provided to be inclined with respect to the bottom 141d of the regeneration storage tank 141.
  • the recovery unit 17 is inclined in a direction in which the end on the regenerating storage tank side drain port 141B side provided in the regenerating storage tank 141 is lowest. Thereby, the water droplets S4 collected in the collecting unit 17 can be guided to the drainage port 141B on the regeneration storage tank side.
  • the recovery unit 17 is formed of a rectangular plate material having an area smaller than a cross-sectional area intersecting the height direction of the regenerative storage tank 141, that is, an area of the bottom 141d of the regenerative storage tank 141 (FIG. , One side 17f is biased at a position distant from the wall 141f of the regenerating storage tank 141. In this way, a gap F is generated between the recovery unit 17 and the wall 141f of the regeneration storage tank 141, and air can flow through the entire regeneration storage tank 141.
  • the collection unit 17 has a plurality of through holes 17c penetrating in the thickness direction.
  • three ultrasonic vibrators 142 are formed in accordance with the number of the ultrasonic vibrators 142, and the size of the liquid column S formed by each ultrasonic vibrator 142 is large. Thereby, the front end side of the liquid column S passes through the through-hole 17 c of the collection unit 17 to the upper surface 17 a side of the collection unit 17.
  • an annular convex portion 17D is provided around each through hole 17c.
  • the height of the convex portion 17D is desirably set to a height that prevents the liquid absorbent W collected in the collecting portion 17 from flowing downward from the through hole 17c beyond the convex portion 17D.
  • the first transfer passage 121 is connected to the regenerating storage tank-side drain port 141B provided in the regenerating storage tank 141, and the other end is connected to the moisture-absorbing tank-side liquid supply port 111A provided in the moisture-absorbing storage tank 111.
  • the first transfer channel 121 has one end connected to the atomization / regeneration unit 14 (regeneration tank side drainage port 141B) at a high end, and the other end connected to the moisture absorption unit 11 (humidity tank side liquid supply port 111A). It is provided to be inclined so as to be lower.
  • the first transfer flow path 121 is inclined at substantially the same angle as the inclined recovery unit 17, and the flow path bottom surface 121 a is preferably continuous with the upper surface 17 a of the recovery unit 17. This allows the liquid absorbent W to flow naturally from the regeneration storage tank 141 to the moisture absorption storage tank 111.
  • the porous plate 113 provided in the moisture storage tank 111 is inclined at the same angle as that of the recovery unit 17 and the first transfer channel 121. Further, it is preferable that the upper surface 113a of the porous plate 113 is continuous with the upper surface 17a of the collection unit 17 and the channel bottom surface 121a of the first transfer channel 121.
  • the recovery unit 17, the first transfer mechanism 12, and the perforated plate 113 do not necessarily have to have a continuous structure, but each of the inclination angles is determined by the amount of the liquid absorbent W regenerated in the atomization regeneration unit 14. It is preferable that the angle be at least such that it can be smoothly transferred to the moisture absorbing section 13 via the first transfer mechanism 12.
  • the liquid absorbent W is a liquid exhibiting a property of absorbing moisture (hygroscopicity). For example, a liquid exhibiting moisture absorbency at a temperature of 25 ° C., a relative humidity of 50% and an atmospheric pressure is preferable.
  • the liquid hygroscopic material W contains a hygroscopic substance described later. Further, the liquid hygroscopic material W may include a hygroscopic substance and a solvent. Examples of this type of solvent include a solvent that dissolves the hygroscopic substance or a solvent that is miscible with the hygroscopic substance, such as water.
  • the hygroscopic substance may be an organic material or an inorganic material.
  • Examples of the organic material used as the hygroscopic substance include known materials used as raw materials for divalent or higher-valent alcohols, ketones, organic solvents having an amide group, saccharides, moisturizing cosmetics, and the like. Among them, organic materials that are preferably used as a hygroscopic substance because of their high hydrophilicity include divalent or higher-valent alcohols, organic solvents having an amide group, saccharides, and known materials used as raw materials for moisturizing cosmetics and the like. Is mentioned.
  • dihydric or higher alcohol examples include glycerin, propanediol, butanediol, pentanediol, trimethylolpropane, butanetriol, ethylene glycol, diethylene glycol, and triethylene glycol.
  • organic solvent having a amide group examples include formamide and acetamide.
  • saccharides include sucrose, pullulan, glucose, xylol, fructose, mannitol, sorbitol and the like.
  • Known materials used as raw materials for moisturizing cosmetics include, for example, 2-methacryloyloxyethyl phosphorylcholine (MPC), betaine, hyaluronic acid, collagen and the like.
  • MPC 2-methacryloyloxyethyl phosphorylcholine
  • betaine betaine
  • hyaluronic acid collagen and the like.
  • Examples of the inorganic material used as a hygroscopic substance include calcium chloride, lithium chloride, magnesium chloride, potassium chloride, sodium chloride, zinc chloride, aluminum chloride, lithium bromide, calcium bromide, potassium bromide, sodium hydroxide, and pyrrolidone. And sodium carboxylate.
  • the hygroscopic substance has high hydrophilicity, for example, when a material of the hygroscopic substance and water are mixed, the proportion of water molecules adsorbed near the surface (liquid level) of the liquid hygroscopic material W increases.
  • the atomizing / regenerating unit 14 described later generates mist droplets W3 near the surface of the liquid hygroscopic material W formed as the liquid column S, and separates water from the liquid hygroscopic material W. Therefore, it is preferable that the ratio of water molecules adsorbed in the vicinity of the surface of the liquid absorbent W be large, since water can be efficiently separated.
  • the ratio of the hygroscopic substance in the vicinity of the surface of the liquid hygroscopic material W becomes relatively small, it is preferable in that the loss of the hygroscopic substance in the atomization / regeneration unit 14 can be suppressed.
  • the concentration of the hygroscopic substance contained in the liquid absorbent W1 used for the treatment in the moisture absorbing section 11 is not particularly limited, but is preferably 40% by mass or more.
  • the concentration of the hygroscopic substance is 40% by mass or more, the liquid hygroscopic material W1 can efficiently absorb moisture.
  • the viscosity of the liquid absorbent W is preferably 25 mPa ⁇ s or less. Accordingly, in the atomizing / regenerating unit 14 described later, the liquid column S of the liquid absorbent W is easily generated on the liquid surface of the liquid absorbent W. Therefore, water can be efficiently separated from the liquid absorbent W.
  • the control unit 42 drives each of the ultrasonic vibrators 142 to irradiate the liquid absorbent W1 stored in the regeneration storage tank 141 with ultrasonic waves to irradiate the liquid column S. Is formed, and the liquid absorbent W1 to be regenerated is lifted high.
  • control unit 42 drives the blower 134 disposed in the middle of the second air supply flow path 32a, thereby causing the air A1 outside the housing 201 to pass through the second air supply flow path 32a. It is supplied into the regeneration storage tank 141.
  • the plurality of liquid columns S formed by the respective ultrasonic transducers 142 pass through the respective through holes 17c of the recovery unit 17 provided at the upper part of the regenerating storage tank 141 at the respective ends. Then, on the tip end side of the liquid column S that has passed through the through-hole 17c, water droplets W4 of the liquid absorbent W which is separated and regenerated due to the separation of water are generated.
  • the water droplets W4 that fall as water droplets from the front end side of the liquid column S are collected by dropping on the upper surface 17a of the collection unit 17 of the first transfer mechanism 12, and are absorbed through the collection unit 17 and the first transfer channel 121. It is transferred into the storage tank 111.
  • the collection unit 17 and the first transfer channel 121 are inclined toward the moisture absorption unit 11 side, and can allow the collected liquid moisture absorption material W to naturally flow toward the moisture absorption storage tank 111.
  • the liquid absorbent W transferred into the moisture storage tank 111 flows down through the through holes 113c while flowing on the upper surface 113a of the porous plate 113 inclined at substantially the same angle as the first transfer passage 121, and further falls.
  • the water flows down the mesh member 115 and flows down toward the bottom 111d of the moisture-absorbing storage tank 111.
  • the control unit 42 drives the blower 133 disposed in the middle of the first air supply flow path 31a, thereby causing the air A1 outside the housing 201 to flow through the first air supply flow path 31a.
  • the air A1 flowing in the moisture storage tank 111 passes through the mesh of the mesh member 115, the air A1 comes into contact with the liquid hygroscopic material W flowing down the mesh member 115, so that the moisture in the air A1 is absorbed by the liquid hygroscopic material W. Is removed.
  • the air A1 dehumidified by the blower 133 is discharged to the external space of the housing 201 via the first air discharge flow path 31b.
  • the liquid absorbent W1 that has absorbed the moisture is stored in the internal space 111c of the moisture storage tank 111.
  • the liquid absorbent W1 in the moisture storage tank 111 is transferred to the atomizing and regenerating unit 14 by the reverse siphon function of the second transfer mechanism 16.
  • the liquid absorbent W1 transferred to the atomization regeneration unit 14 is stored in the internal space 141c of the regeneration storage tank 141.
  • the liquid column S is formed in the atomization / regeneration unit 14 to lift the liquid absorbent W1 high, and use the potential energy of the liquid absorbent W1 that has been raised high. Then, the liquid absorbent W is transferred from the atomizing / regenerating unit 14 to the moisture absorbing unit 11.
  • the liquid absorbent W regenerated in the regeneration storage tank 141 is transferred to the moisture storage tank 111 via the recovery unit 17 of the first transfer mechanism 12 and the first transfer channel 121.
  • the collection unit 17 and the first transfer channel 121 of the first transfer mechanism 12 are not horizontal but are inclined toward the moisture storage tank 111 side, the liquid absorbent W collected in the collection unit 17 is in the first position.
  • the water is supplied into the moisture storage tank 111 via the transfer channel 121.
  • the pump conventionally used for transferring the liquid absorbent W between the atomizing / regenerating unit 14 and the moisture absorbing unit 11 becomes unnecessary, and the equipment cost can be reduced. Further, even if a pump is arranged in the middle of the first transfer passage 121 of the first transfer mechanism 12, the output of the pump can be suppressed low, and power can be saved.
  • the first transfer mechanism 12 that performs the liquid feeding using the inclination prevents the regenerated liquid absorbent W from returning to the regenerating storage tank 141, and increases the atomization efficiency in the atomization / regeneration unit 14. Can be realized.
  • the liquid absorbent W1 is transferred from the moisture absorbent 11 to the atomizing / regenerating unit 14 using the reverse siphon function. Due to the water level difference between the moisture storage tank 111 and the regeneration storage tank 141, the liquid absorbent W1 stored in the moisture absorption storage tank 111 naturally flows into the regeneration storage tank 141, and the check valve 163 causes the liquid moisture absorption. Since it is possible to prevent the material W1 from flowing back to the moisture storage tank 111, it is possible to maintain the difference in water level between the two. Accordingly, the liquid column S having a predetermined height can be formed in the atomization regeneration unit 14, and the atomization efficiency can be maintained for a long time.
  • the height of the liquid column S contributes to atomization efficiency.
  • the surface of the liquid column S is exposed (contacted) to an air flow flowing in the regeneration storage tank 141, atomization occurs from the surface of the liquid column S. Therefore, the height of the liquid column S is set as high as possible. By increasing the surface area, the atomization efficiency in the atomization regeneration unit 14 can be improved.
  • the contact form between the liquid absorbent W and the air A1 in the moisture absorbing section 11 is not limited to the flow-down method, and other methods can be used.
  • a method of supplying air A1 in the form of bubbles into the liquid absorbent W stored in the moisture storage tank 111, a so-called bubbling method can be used.
  • FIG. 4 is a schematic diagram illustrating a schematic configuration of the humidity control system 20 according to the second embodiment.
  • the humidity control system 20 of the present embodiment includes an atomizing / regenerating unit 24, a moisture absorbing unit 21, the first transfer mechanism 12, the second transfer mechanism 16, and a control unit 42. ing.
  • the basic configuration of the moisture absorbing section 21 is substantially the same as the configuration of the first embodiment described above.
  • the atomization / regeneration unit 24 of the present embodiment includes a regeneration storage tank main body 242 and a plurality of regeneration storage tanks 241A, 241B, 241C, 241D arranged in the internal space 242c of the regeneration storage tank main body 242.
  • four regeneration storage tanks 241A, 241B, 241C, 241D are provided, but the number of regeneration storage tanks is not limited to this.
  • the regeneration storage tanks 241A, 241B, 241C, and 241D are simply referred to as the regeneration storage tank 241.
  • the plurality of regenerating storage tanks 241A, 241B, 241C, and 241D are arranged side by side in one direction with no gap therebetween, and the regenerating storage tank main body 242 in adjacent regenerating storage tanks 241 is provided.
  • the regeneration storage tank 241A furthest from the moisture absorbing section 21 is arranged at the lowest position, and the regeneration storage tank 241D closest to the moisture absorption section 11 is arranged at the highest position.
  • the relationship between the height of each regenerating storage tank 241 from the bottom 242d of the regenerating storage tank main body 242 can be expressed by h1 ⁇ h2 ⁇ h3.
  • the level difference t between the adjacent regenerating storage tanks 241 is constant.
  • each regenerating storage tank 241 The capacity of each regenerating storage tank 241 is equal to each other.
  • an opening 244 for suppressing the overflow of the liquid absorbent W1 to be stored is provided in the regeneration storage tank 241 arranged at a higher position among the adjacent regeneration storage tanks 241.
  • the opening 244 formed in the upper regeneration storage tank 241 communicates with the internal space of the lower regeneration storage tank 241.
  • the ultrasonic vibrator 142 disposed in each of the regeneration storage tanks 241 is inclined in a direction in which the end of the ultrasonic irradiation surface 142a on the side where the regeneration storage tank side drainage port 141B is provided becomes lower. That is, in the present embodiment, of the adjacent regenerating storage tanks 241, the regenerating storage tank 241 is inclined toward the regenerating storage tank 241 arranged at a higher position. Thereby, the water droplet W4 which is formed as a droplet from the tip of the liquid column S in the regeneration storage tank 241 at a lower position can be collected and stored in the regeneration storage tank 241 at a higher position.
  • a recovery unit 27 of the first transfer mechanism 12 is provided above the regeneration storage tank main body 242.
  • the recovery unit 27 of the present embodiment has at least a through hole 17c corresponding to the liquid column S formed in the regeneration storage tank 241D.
  • the first transfer passage 121 of the first transfer mechanism 22 is inclined such that the end on the moisture absorbing section 11 side is lower than the end on the atomization regeneration section 24 side, as in the above embodiment. Is preferred.
  • the moisture absorbing section 21 includes a moisture absorbing storage tank 211, a mesh member 115, and a porous plate 113, as in the above embodiment.
  • the second transfer mechanism 16 has a second transfer passage 162 and a check valve 163 as in the above embodiment.
  • One end of the second transfer channel 162 is connected to the bottom 211d of the moisture storage tank 211, and the other end is connected to the bottom 241d of the lowermost regeneration storage tank 241A in the regeneration storage tank main body 242.
  • the control unit 42 includes a measuring unit 43 for measuring the concentration or viscosity of the liquid absorbent W1 and controls the frequency and output of the ultrasonic vibrator 142 based on the measurement result of the measuring unit 43.
  • the liquid absorbent W1 stored in the moisture absorbing section 21 is transferred to the atomizing and regenerating section 24 through the second transfer mechanism 16 by the reverse siphon function.
  • the control unit 42 forms the liquid column S in each of the regeneration storage tanks 241 by driving the ultrasonic transducer 142 in each of the regeneration storage tanks 241.
  • the liquid absorbent W1 is sequentially transferred from the regeneration storage tank 241A to the regeneration storage tank 241D.
  • the liquid absorbent W1 is atomized by the liquid column S formed in each of the regenerating storage tanks 241. Each time, the water is separated from the vicinity of the surface of the liquid absorbent W1 that has become the liquid column S, The ratio of water in the liquid absorbent W1 decreases and the concentration or viscosity increases.
  • the control unit 42 measures the concentration or viscosity of the liquid absorbent W1 stored in each of the regeneration storage tanks 241 and controls the frequency and output of the ultrasonic vibrator 142 according to the result.
  • the amount of liquid transfer between the regenerating storage tanks 241 can be made equal by the feedback control in the control unit 42.
  • the air A4 including the atomized droplets W3 atomized in each of the regenerating storage tanks 241 becomes an airflow flowing in the internal space 242c through the gap F formed between the regenerating storage tank main body 242 and the collection unit 27. Thus, the air is discharged to the external space via the second air discharge flow path 32b.
  • the front end side of the liquid column S passes through the through hole 17c of the collecting unit 27, and water droplets W4 of the liquid absorbent W, which is separated and regenerated, is collected in the collecting unit 27. Collected. In this way, the liquid absorbent W regenerated in the atomization regenerating unit 24 is transferred to the moisture absorbing unit 21 via the first transfer mechanism 12.
  • a plurality of the regeneration storage tanks 241A, 241B, and 241C having different heights are provided, and the liquid column S is formed in each of the regeneration storage tanks 241.
  • the liquid absorbent W1 can be moved to the upper-side regeneration storage tank 241 by raising the liquid absorbent W1 toward the regeneration storage tank 241 arranged at a higher position.
  • the maximum height of the liquid column S that can be formed in the atomization / regeneration unit 24 is determined by the concentration or viscosity of the stored liquid absorbent W1, the frequency and output of the ultrasonic vibrator 142, and the like.
  • the size of the moisture storage tank 211 can be selected according to the maximum height of the liquid column S that can be formed by each ultrasonic transducer 142.
  • the moisture absorption storage tank 211 having a larger capacity may be required.
  • a liquid column S is formed in each of the plurality of regeneration storage tanks 241 having different heights, and the potential energy of each of the liquid columns S is used, so that the regeneration storage tank 241 at a higher position is used.
  • the liquid absorbent W1 can be moved up to. Therefore, the position of the first transfer mechanism 12 that connects the atomization regeneration unit 24 and the moisture absorption unit 21 can be set high, and the moisture absorption storage tank 211 having a larger capacity can be selected. As a result, the necessary amount of moisture absorption can be sufficiently ensured.
  • the collection unit 27 and the first transfer channel 121 of the first transfer mechanism 12 are provided to be inclined so that the moisture absorption unit 21 side is lower. Therefore, it is possible to prevent the regenerated liquid absorbent W from returning to the atomizing and regenerating unit 24, and to realize high atomizing efficiency.
  • the liquid absorbent W1 exceeding the specified amount in each regeneration storage tank 241 can be stored in the lower regeneration storage tank 241. It can be discharged to the tank 241. Therefore, even when the liquid transfer amount by the liquid column S is different in each of the regenerating storage tanks 241, the liquid absorbent W1 leaks out through the opening 244, thereby causing the liquid absorbent W1 in the uppermost regeneration storage tank 241 ⁇ / b> D to leak. And the liquid absorbent W1 in the lowermost regeneration storage tank 241A can be prevented from being mixed.
  • a pump-less configuration can be adopted, and energy saving, reduction in size and weight, and reduction in noise and vibration can be realized.
  • FIG. 5 is a plan view showing the overall configuration of the humidity control system 30 of the third embodiment.
  • the humidity control system 30 of the present embodiment includes a plurality of regeneration storage tanks 241 and one or more ultrasonic transducers 142 provided for each of the regeneration storage tanks 241.
  • a reproducing unit 34 is provided.
  • the steps t1, t2, and t3 between the adjacent regeneration storage tanks 241 are not fixed to each other.
  • t2 and t3 are small.
  • the relationship between the steps of the regenerating storage tanks 241 can be represented by t1> t2> t3.
  • the concentration C or the viscosity of the liquid absorbent W1 stored in the adjacent regenerating storage tank 241 is greatly different. As the water is transferred between the regenerating storage tanks 241 and the atomization process proceeds, the concentration C or the viscosity of the liquid absorbent W1 sequentially increases.
  • the relationship between the concentration differences of the regenerative storage tanks 241A, 241B, 241C, 241D can be represented by C1 ⁇ C2 ⁇ C3 ⁇ C4.
  • the level difference between the adjacent regenerating storage tanks 241 is reduced toward the upper side according to the concentration or viscosity of the liquid absorbent W1 to be stored.
  • the load on the ultrasonic vibrator 142 on the upper stage side can be reduced.
  • the output and the frequency of the ultrasonic vibrator 142 provided for each of the regeneration storage tanks 241 are different for each of the regeneration storage tanks 241.
  • the number of the ultrasonic vibrators 142 may be different for each regeneration storage tank 241.
  • the number of the ultrasonic transducers 142 provided in the upper regeneration storage tank is set to be larger than the number of the ultrasonic transducers 142 provided in the lower regeneration storage tank 241. ing.
  • the relationship of the number N of the ultrasonic transducers 142 provided in each of the regeneration storage tanks 241A, 241B, 241C, 241D can be represented by N0 ⁇ N1 ⁇ N2 ⁇ N3.
  • the liquid transfer amount between adjacent regeneration storage tanks 241 can be adjusted by appropriately changing the output and frequency or the number of ultrasonic transducers 142 provided in each regeneration storage tank 241. Therefore, by increasing the output and the frequency or the number of the ultrasonic vibrators 142 toward the upper side of the plurality of regeneration storage tanks 241, the liquid transfer amount between the adjacent regeneration storage tanks 241 is increased. Can be fixed.
  • the ultrasonic vibration is used.
  • the load on the transducer 142 can be reduced, and the life of the ultrasonic transducer 142 can be extended.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Drying Of Gases (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

高い霧化効率を実現でするとともに、システム全体の軽量化、低騒音、低振動化を実現する、調湿システムを提供する。調湿システムは、吸湿部と、霧化再生部と、霧化再生部において再生された液体吸湿材を吸湿部に送る第1移送機構と、空気に含まれる水分の少なくとも一部を吸収した液体吸湿材を吸湿部から霧化再生部に送る第2移送機構と、を備え、霧化再生部は、液体吸湿材を貯留する少なくとも1つの貯留槽と、貯留槽に設けられ、霧状液滴を発生させるための超音波を発振することで貯留槽内の液体吸湿材の液面に液柱を形成する超音波発生部と、を有し、第1移送機構は、液柱によって変化する液体吸湿材の位置エネルギーを利用して霧化再生部から吸湿部へと液体吸湿材を移動させる。

Description

調湿システム
 本発明は、調湿システムに関するものである。
 本願は、2018年9月5日に、日本に出願された特願2018-165939号に基づき優先権を主張し、その内容をここに援用する。
 従来、吸湿部から排出された液体吸湿材に超音波を照射することによって液柱を形成し、液体吸湿材に含まれる水分を霧化して分離することにより、液体吸湿材を再生する調湿システムが知られている。
 液柱による調湿システムでは、吸湿部と霧化再生部とが別々に設けられ、これらの間で液体吸湿材を循環させる液送ポンプが必要である。しかしながら、液送ポンプは、重量があるため消費電力が増すとともに、騒音源および振動源となっていた。
 超音波を利用して特定の物質を分離する装置としては、例えば特許文献1に記載の超音波霧化分離装置が挙げられる。特許文献1には、超音波霧化分離装置が記載されており、液柱の先端から垂れる液滴を新たな原液として分離装置で分離を行うことで、質量、またはイオン半径の異なる原子、またはイオンを、純度が高くなるように分離することができる。
特開平08-010501号公報
 特許文献1では、分離装置単体の構成のため、調湿システムのような液送ポンプを備えていない。また、分離対象物が、金属イオン、同位体に限定されており、グリセリン等の有機系の液体吸湿材は対象になっていない。
 本発明の一つの態様は、上記従来技術の問題点に鑑み成されたものであって、高い霧化効率を実現でするとともに、システム全体の軽量化、低騒音、低振動化を実現する、調湿システムを提供することを目的とする。
 本発明の一態様における調湿システムは、吸湿性物質を含む液体吸湿材と空気とを接触させることにより、前記空気に含まれる水分の少なくとも一部を前記液体吸湿材に吸収させる吸湿部と、前記吸湿部から供給された前記液体吸湿材に含まれる水分の少なくとも一部を霧化して霧状液滴を発生させ、前記液体吸湿材から前記霧状液滴の少なくとも一部を分離することによって前記液体吸湿材を再生する霧化再生部と、前記霧化再生部において再生された前記液体吸湿材を前記吸湿部に送る第1移送機構と、前記空気に含まれる前記水分の少なくとも一部を吸収した前記液体吸湿材を前記吸湿部から前記霧化再生部に送る第2移送機構と、を備え、前記霧化再生部は、前記液体吸湿材を貯留する少なくとも1つの貯留槽と、前記貯留槽に設けられ、前記霧状液滴を発生させるための超音波を発振することで前記貯留槽内の前記液体吸湿材の液面に液柱を形成する超音波発生部と、を有し、前記第1移送機構は、前記液柱によって変化する前記液体吸湿材の位置エネルギーを利用して前記霧化再生部から前記吸湿部へと前記液体吸湿材を移動させる。
 本発明の一態様における調湿システムにおいて、前記第2移送機構は、前記吸湿部と前記霧化再生部との水位差により前記吸湿部から前記霧化再生部に向けて前記液体吸湿材を移送する逆サイフォン機能を有する構成としてもよい。
 本発明の一態様における調湿システムにおいて、前記第2移送機構は、前記吸湿部の底部と前記霧化再生部の底部と繋ぐ流路と、前記流路内に配置された逆止弁と、を有する構成としてもよい。
 本発明の一態様における調湿システムにおいて、前記第1移送機構は、前記液柱によって再生された前記液体吸湿材を回収する回収部を備え、前記回収部は、前記貯留槽内において前記吸湿部側が低くなるように傾けて設けられている構成としてもよい。
 本発明の一態様における調湿システムにおいて、前記霧化再生部は、一方向に階段状に並ぶ複数の貯留槽と、各貯留槽に対し少なくとも一つずつ設けられた前記超音波発生部と、を備えている構成としてもよい。
 本発明の一態様における調湿システムにおいて、前記複数の貯留槽内の前記液体吸湿材の濃度に応じて隣り合う前記貯留槽の段差が同じもしくは異なっており、隣り合う前記貯留槽内の前記液体吸湿材どうしの濃度差が大きいほど前記段差が小さい構成としてもよい。
 本発明の一態様における調湿システムにおいて、前記複数の貯留槽内の前記液体吸湿材の濃度に応じて各貯留槽に対して設けられる前記超音波発生部の数が同じもしくは異なっており、隣り合う前記貯留槽内の前記液体吸湿材どうしの濃度差が大きいほど前記超音波発生部の数が多い構成としてもよい。
 本発明の一態様における調湿システムにおいて、前記複数の貯留槽のうち少なくとも一つに前記液体吸湿材のオーバーフローを抑制する開口が設けられており、前記開口は、隣り合う下段の前記貯留槽に通じている構成としてもよい。
 本発明の一態様における調湿システムにおいて、必要霧化量に応じて前記超音波発生部の周波数および出力を制御する制御部を備える構成としてもよい。
 本発明の一態様における調湿システムにおいて、前記制御部は、各貯留槽内の前記液体吸湿材の濃度もしくは粘度を測定する測定部を備え、前記測定部による測定結果に基づいて前記制御を行う構成としてもよい。
 本発明の一態様によれば、高い霧化効率を実現でするとともに、システム全体の軽量化、低騒音、低振動化を実現する、調湿システムを提供することができる。
図1は、第1実施形態の調湿システム10の概略構成図である。 図2は、多孔プレート113の構成を示す平面図である。 図3は、図1のA-A線に沿う断面図である。 図4は、第2実施形態の調湿システム20の概略構成を示す模式図である。 図5は、第3実施形態の調湿システム30の全体構成を示す平面図である。
[第1実施形態]
 以下、本発明の第1実施形態の調湿システムについて説明する。
 なお、以下の各図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
 本実施形態の調湿システム10は、吸収性物質を含む液体吸湿材Wを空気に接触させて当該空気に含まれる水分を液体吸湿材Wに吸収させた後、水分を吸収した液体吸湿材W1から水分を分離して再生するシステムである。
 図1は、第1実施形態の調湿システム10の概略構成図である。図2は、多孔プレート113の構成を示す平面図である。図3は、図1のA-A線に沿う断面図である。
 図1に示すように、本実施形態の調湿システム10は、吸湿部11と、霧化再生部14と、第1移送機構12と、第2移送機構16と、制御部42と、を少なくとも備えている。調湿システム10は、筐体201を備えており、吸湿部11、霧化再生部14、第1移送機構12および第2移送機構16は、筐体201の内部空間201cに収容されている。
 吸湿部11は、吸湿性物質を含む液体吸湿材Wと、筐体201の外部に存在する空気A1とを接触させることにより、空気A1に含まれる水分の少なくとも一部を液体吸湿材Wに吸収させる。吸湿部11では、吸湿性物質を含む液体吸湿材Wと筐体201の外部に存在する空気A1とを接触させることにより、空気A1に含まれる水分を液体吸湿材Wに吸収させることが望ましいが、空気A1に含まれる水分のうちの少なくとも一部の水分を液体吸湿材Wに吸収させればよい。
 水分を含んだ液体吸湿材W1は、第2移送機構16を介して吸湿部11から霧化再生部14へと移送される。霧化再生部14では、第2移送機構16を介して吸湿部11から供給された液体吸湿材W1に含まれる水分の少なくとも一部を霧化し、液体吸湿材W1から水分の少なくとも一部を除去することにより、液体吸湿材Wを再生する。霧化再生部14において再生された液体吸湿材Wは、第1移送機構12を介して吸湿部11へと送られる。このように、吸湿部11と霧化再生部14との間で液体吸湿材Wを循環させることにより、筐体201の外部空間の調湿を行う。
 以下、各構成要素について詳しく説明する。
(吸湿部)
 吸湿部11は、吸湿貯留槽111と、多孔プレート113と、メッシュ部材115と、を備えている。
 吸湿貯留槽111の内部空間111cには、液体吸湿材Wが貯留されている。液体吸湿材Wについては後述する。吸湿貯留槽111には、霧化再生部14において再生された液体吸湿材Wを供給するための吸湿槽側給液口111Aが設けられている。吸湿槽側給液口111Aには、第1移送機構12の第1移送流路121が接続されている。
 吸湿貯留槽111には、貯留している液体吸湿材W1を排出するための吸湿貯留槽側排液口111Bが設けられている。本実施形態では、吸湿貯留槽111の底部111dに吸湿貯留槽側排液口111Bが設けられている。吸湿貯留槽側排液口111Bには、第2移送機構16の第2移送流路(流路)162が接続されている。
 また、吸湿貯留槽111には、第1空気供給口111a、第1空気排出口111bが設けられている。第1空気供給口111aには、筐体201の外部の空気A1を吸湿貯留槽111の内部へ供給するための第1空気供給流路31aが接続されている。第1空気排出口111bには、吸湿貯留槽111の内部空間111cの空気を筐体201の外部へと排出するための第1空気排出流路31bが接続されている。第1空気供給流路31aおよび第1空気排出流路31bは、吸湿貯留槽111内に貯留される液体吸湿材W1の液面8よりも、高い位置に設けられている。
 本実施形態において、吸湿貯留槽111に設けられる第1空気供給口111aの数は一つに限られず、複数設けられていてもよい。例えば、メッシュ部材115に対向する位置に複数の第1空気供給口111aを設けて、メッシュ部材115を通過する気流を発生させることにより、メッシュ部材115を伝わって流れる液体吸湿材Wをより多くの空気に晒すことができるので吸湿効率の向上が見込める。
 本実施形態において、吸湿貯留槽111に対する第1空気供給口111a、第1空気排出口111b、第1空気供給流路31a、および第1空気排出流路31bは、図示した位置、数に限られず、適宜変更が可能である。
 第1空気供給流路31aの途中には、ブロア133が設けられている。ブロア133は、筐体201の外部空間から第1空気供給流路31aを介して吸湿貯留槽111の内部空間111cに空気A1を送り込み、吸湿貯留槽111の内部空間111cから第1空気排出流路31bを介して筐体201の外部空間に、乾燥した空気A3を送り出す気流を発生させる。
 多孔プレート113には、図1および図2に示すように、厚さ方向に貫通する貫通孔113cが多数形成されている。多孔プレート113は、吸湿貯留槽111の内部空間111cの上部に配置されている。多孔プレート113は、例えば、吸湿貯留槽111に設けられた吸湿槽側給液口111Aの直下に設けられ、吸湿槽側給液口111Aから流入してきた全ての液体吸湿材Wを受ける。
 多孔プレート113は、吸湿貯留槽111の底部111dに対して斜めに傾いていることが好ましく、図1に示すように、吸湿槽側給液口111A側の端部を高くしてある。これにより、吸湿槽側給液口111Aから多孔プレート113上に流出した液体吸湿材Wを、吸湿槽側給液口111Aから離れた位置にある貫通孔113cにまで誘導することができる。液体吸湿材Wは、図1および図2に示す多孔プレート113の上面113aを伝わって流れていき、各貫通孔113cから下方へ流れ落ちる。
 メッシュ部材115は、網目構造をなす矩形板状の部材である。メッシュ部材115は、多孔プレート113よりも下方であって、多孔プレート113および吸湿貯留槽111の底部111dに対して略垂直に設けられている。メッシュ部材115は、吸湿貯留槽111内に少なくとも一つ設けられ、複数設けられていることが好ましい。メッシュ部材115は、多孔プレート113の各貫通孔113cから流れ出た液体吸湿材Wを吸湿貯留槽111の底部111d側へ誘導する。多孔プレート113から流れ落ちた液体吸湿材Wは、メッシュ部材115の網目を伝わって下方へ流れていく。
(第2移送機構)
 第2移送機構16は、吸湿部11が貯留する液体吸湿材W1と、霧化再生部14が貯留する液体吸湿材W1との水位差により、吸湿部11から霧化再生部14に向けて水分を含んだ液体吸湿材W1を移送する、逆サイフォン機能を有している。
 第2移送機構16は、吸湿部11と霧化再生部14とを繋ぐ第2移送流路162と、第2移送流路162の途中に配置された逆止弁163と、を備える。
 第2移送流路162は、一端側が吸湿貯留槽111の底部111dに設けられた吸湿貯留槽側排液口111Bに接続され、他端側が後述する再生貯留槽(貯留槽)141の底部141dに設けられた再生貯留槽側給液口141Aに接続されている。
 逆止弁163は、霧化再生部14に貯留されている液体吸湿材W1が、吸湿部11へ戻ることを阻止し、吸湿部11において貯留される液体吸湿材W1の液面8が、霧化再生部14において貯留される液体吸湿材W1の液面9よりも常に高くなるように調整する。
(霧化再生部)
 霧化再生部14は、1つの再生貯留槽141と、複数の超音波振動子(超音波発生部)142と、を備えている。
 再生貯留槽141は、再生すべき液体吸湿材W1を貯留する。
 再生貯留槽141には、再生貯留槽側給液口141Aおよび再生貯留槽側排液口141Bが設けられている。再生貯留槽側給液口141Aは、再生貯留槽141の底部141dに設けられており、第2移送機構16の第2移送流路162が接続されている。再生貯留槽側排液口141Bは、例えば、再生貯留槽141の側壁の上部に設けられており、第1移送機構12の第1移送流路121が接続されている。
 また、再生貯留槽141には、第2空気供給口141aおよび第2空気排出口141bが設けられている。第2空気供給口141aには、筐体201の外部の空気A1を再生貯留槽141の内部空間141cへ供給するための第2空気供給流路32aが接続されている。第2空気排出口141bには、再生貯留槽141内の霧状液滴W3を含む空気A4を筐体201の外部に排出するための第2空気排出流路32bが接続されている。
 なお、再生貯留槽141に対する第2空気供給口141a、第2空気排出口141b、第2空気供給流路32a、および第2空気排出流路32bは、図示した位置、数に限られず、適宜変更が可能である。
 第2空気供給流路32aの途中には、ブロア134が設けられている。ブロア134は、筐体201の外部から、第2空気供給流路32aを介して再生貯留槽141の内部に空気A1を送り込むとともに、再生貯留槽141の内部から第2空気排出流路32bを介して筐体201の外部に、霧状液滴W3を含む空気A4を送り出す気流を発生させる。
 複数の超音波振動子142は、液柱Sを発生させるための超音波を発振する。本実施形態では、例えば3つの超音波振動子142を備えているが、超音波振動子142の数は、必要霧化量により設定する。
 再生貯留槽141内に貯留されている液体吸湿材W1に超音波が照射されると、液体吸湿材W1の水面に液柱Sが形成され、液柱Sの表面から水分が分離されて霧状液滴W3が発生する。超音波振動子142から液体吸湿材W1に超音波が照射される際、超音波の発生条件(出力、周波数等)を調整することにより、液体吸湿材W1の液面9に所定の高さの液体吸湿材W1の液柱Sを生じさせることができる。
 各超音波振動子142は、再生貯留槽141の底部141dに対してそれぞれ傾斜して設けられている。超音波振動子142は、再生貯留槽側排液口141Bが設けられている側、つまり吸湿部11側の超音波照射面142aの端部が低くなる方向に傾斜している。超音波振動子142の超音波照射面142aの中心から超音波照射面142aに対して垂直な軸を超音波の放射軸Jと定義する。超音波振動子142が再生貯留槽141の底部141dに対して傾斜していることにより、超音波は、放射軸Jが液体吸湿材W1の液面9に対して傾くように、超音波照射面142aから液面9に向けて伝搬される。これにより、液面9で反射した超音波が超音波振動子142に戻りにくく、超音波振動子142が超音波によるダメージを受けにくい。また、放射軸Jが傾くことに伴って、液柱Sは液面9に対して傾くように生成される。
 図1に示すように、再生貯留槽141に貯留された液体吸湿材W1のうち、超音波振動子142の超音波照射面142aの周縁から超音波照射面142aに垂直な方向に延びる仮想的な面によって囲まれた領域を超音波伝播領域Rと称する。例えば超音波照射面142aが円形であったとすると、超音波照射面142aの周縁から超音波照射面142aに垂直な方向に延びる円柱状の領域が超音波伝播領域Rである。
 なお、本実施形態において、再生貯留槽141に設けられる第2空気供給口141aは、複数設けられていてもよい。例えば、超音波振動子142によって形成される各液柱Sの周囲に空気を送り込むことができる位置に、第2空気供給口141aを設けることが好ましい。これにより、液柱Sの表面からの霧化効率を向上させることができる。
(第1移動機構)
 第1移送機構12は、液柱Sによって変化する液体吸湿材W1の位置エネルギーを利用して、再生した液体吸湿材Wを霧化再生部14から吸湿部11へと移動させる。具体的に、第1移送機構12は、液柱Sの先端から液滴になって落ちる水滴W4を回収する回収部17と、再生貯留槽141と吸湿貯留槽111とを接続する第1移送流路121と、を備えている。
 水滴W4には超音波が伝播していないため、霧化された状態ではなく、液体吸湿材W1が濃縮されたものである。つまり、水分が分離した後の、再生された液体吸湿材Wである。
 回収部17は、再生貯留槽141の内部空間141cの上部に設けられている。回収部17は、再生貯留槽141の底部141dに対して傾斜して設けられている。回収部17は、再生貯留槽141に設けられた再生貯留槽側排液口141B側の端部が最も低くなる方向に傾斜している。これにより、回収部17において回収した水滴S4を再生貯留槽側排液口141Bへと誘導することができる。
 回収部17は、図3に示すように、再生貯留槽141の高さ方向に交差する横断面積、つまり再生貯留槽141の底部141d(図1)の面積よりも、小さい面積の矩形板材からなり、一辺17fが再生貯留槽141の壁部141fから離れた位置に偏って配置されている。こうすることで、回収部17と再生貯留槽141の壁部141fとの間に隙間Fが生じることとなり、再生貯留槽141の全体に空気を流動させることができる。
 回収部17は、厚さ方向に貫通する複数の貫通孔17cを有している。本実施形態では、超音波振動子142の数に応じて3つ形成されており、各超音波振動子142によって形成される液柱Sの先端が通る大きさを有している。これにより、回収部17の貫通孔17cを通じて、液柱Sの先端側が回収部17の上面17a側に抜けるようになる。
 回収部17の上面17a側には、各貫通孔17cの周囲に環状の凸部17Dがそれぞれ設けられている。凸部17Dの高さは、回収部17において回収した液体吸湿材Wが、凸部17Dを超えて貫通孔17cから下方へ流れ落ちるのを防ぐ高さに設定することが望ましい。
 第1移送流路121は、一端側が再生貯留槽141に設けられた再生貯留槽側排液口141Bに接続され、他端側が吸湿貯留槽111に設けられた吸湿槽側給液口111Aに接続されている。第1移送流路121は、霧化再生部14(再生貯留槽側排液口141B)に接続された一端側が高く、吸湿部11(吸湿槽側給液口111A)に接続された他端側が低くなるように傾斜して設けられている。第1移送流路121は、傾斜した回収部17とほぼ同様の角度で傾斜しており、流路底面121aが回収部17の上面17aに連続していることが好ましい。これにより、再生貯留槽141から吸湿貯留槽111へ向かって、液体吸湿材Wを自然と流動させることができる。
 また、吸湿貯留槽111内に設けられた多孔プレート113においても、回収部17および第1移送流路121と同様の角度で傾斜していることが好ましい。さらに、多孔プレート113の上面113aが、回収部17の上面17aおよび第1移送流路121の流路底面121aに連続していることが好ましい。
 なお、これら回収部17、第1移送機構12および多孔プレート113は、必ずしも連続した構造となっている必要はないが、それぞれの傾斜角度は、霧化再生部14において再生した液体吸湿材Wを、少なくとも、第1移送機構12を介して吸湿部13へスムーズに移送できる角度であることが好ましい。
(液体吸湿材)
 液体吸湿材Wは、水分を吸収する性質(吸湿性)を示す液体であり、例えば、温度が25℃、相対湿度が50%、大気圧下の条件で吸湿性を示す液体が好ましい。液体吸湿材Wは、後述する吸湿性物質を含んでいる。また、液体吸湿材Wは、吸湿性物質と溶媒とを含んでいてもよい。この種の溶媒としては、吸湿性物質を溶解させる溶媒、または吸湿性物質と混和する溶媒があげられ、例えば水が挙げられる。吸湿性物質は、有機材料であってもよいし、無機材料であってもよい。
 吸湿性物質として用いられる有機材料としては、例えば2価以上のアルコール、ケトン、アミド基を有する有機溶媒、糖類、保湿化粧品などの原料として用いられる公知の材料などが挙げられる。それらの中でも、親水性が高いことから、吸湿性物質として好適に用いられる有機材料としては、2価以上のアルコール、アミド基を有する有機溶媒、糖類、保湿化粧品等の原料として用いられる公知の材料が挙げられる。
 2価以上のアルコールとしては、例えばグリセリン、プロパンジオール、ブタンジオール、ペンタンジオール、トリメチロールプロパン、ブタントリオール、エチレングリコール、ジエチレングリコール、トリエチレングリコールなどが挙げられる。
 アミド基を有する有機溶媒としては、例えばホルムアミド、アセトアミドなどが挙げられる。
 糖類としては、例えばスクロース、プルラン、グルコース、キシロール、フラクトース、マンニトール、ソルビトールなどが挙げられる。
 保湿化粧品などの原料として用いられる公知の材料としては、例えば2-メタクリロイルオキシエチルホスホリルコリン(MPC)、ベタイン、ヒアルロン酸、コラーゲンなどが挙げられる。
 吸湿性物質として用いられる無機材料としては、例えば塩化カルシウム、塩化リチウム、塩化マグネシウム、塩化カリウム、塩化ナトリウム、塩化亜鉛、塩化アルミニウム、臭化リチウム、臭化カルシウム、臭化カリウム、水酸化ナトリウム、ピロリドンカルボン酸ナトリウムなどが挙げられる。
 吸湿性物質の親水性が高いと、例えば吸湿性物質の材料と水とを混合させたときに、液体吸湿材Wの表面(液面)近傍に吸着される水分子の割合が多くなる。後述する霧化再生部14では、液柱Sとされた液体吸湿材Wの表面近傍から霧状液滴W3を発生させ、液体吸湿材Wから水分を分離する。そのため、液体吸湿材Wの表面近傍に吸着される水分子の割合が多いと、水分を効率的に分離できる点で好ましい。また、液体吸湿材Wの表面近傍における吸湿性物質の割合が相対的に少なくなるため、霧化再生部14での吸湿性物質の損失を抑えられる点で好ましい。
 液体吸湿材Wのうち、吸湿部11での処理に用いられる液体吸湿材W1に含まれる吸湿性物質の濃度は、特に限定されないが、40質量%以上であることが好ましい。吸湿性物質の濃度が40質量%以上である場合、液体吸湿材W1は、効率良く水分を吸収することができる。
 液体吸湿材Wの粘度は、25mPa・s以下であることが好ましい。これにより、後述する霧化再生部14において、液体吸湿材Wの液面に液体吸湿材Wの液柱Sを生じさせやすい。そのため、液体吸湿材Wから効率良く水分を分離することができる。
(調湿システムの作用)
 本実施形態の調湿システム10では、制御部42により、各超音波振動子142を駆動することで、再生貯留槽141内に貯留された液体吸湿材W1に超音波を照射して液柱Sを形成し、再生すべき液体吸湿材W1を高く持ち上げる。
 これと同時に、制御部42は、第2空気供給流路32aの途中に配置されたブロア134を駆動させることで、筐体201の外部の空気A1を、第2空気供給流路32aを介して再生貯留槽141内に供給する。
 ブロア134によって、再生貯留槽141の内部空間141cに供給した空気A1により第2空気排出口141bへ向かう気流を形成することで、超音波振動子142ごとに形成される複数の液柱Sが空気A1と接触し、霧状液滴W3が生じる。これにより、空気A1に、液体吸湿材W1の液柱Sから分離した霧状液滴W3が吸収される。そして、ブロア134によって、加湿した空気A4を、第2空気排出流路32bを介して筐体201の外部空間へ排出する。
 各超音波振動子142によって形成した複数の液柱Sは、それぞれの先端が再生貯留槽141の上部に設けられた回収部17の各貫通孔17cを通過する。そして、貫通孔17cを通過した液柱Sの先端側において、水分が分離して再生された液体吸湿材Wの水滴W4が生じることとなる。
 液柱Sの先端側から水滴となって落ちる水滴W4は、第1移送機構12の回収部17の上面17aに滴下することで回収され、回収部17および第1移送流路121を介して吸湿貯留槽111内に移送される。回収部17および第1移送流路121は、吸湿部11側へ向かって傾斜しており、回収した液体吸湿材Wを吸湿貯留槽111へ向かって自然と流動させることができる。
 吸湿貯留槽111内へ移送された液体吸湿材Wは、第1移送流路121とほぼ同様の角度で傾斜した多孔プレート113の上面113aを流動しながら、各貫通孔113cから下方へ流れ落ち、さらにメッシュ部材115を伝わって、吸湿貯留槽111の底部111d側へ向かって流れ落ちていく。
 制御部42は、第1空気供給流路31aの途中に配置されたブロア133を駆動させることで、筐体201の外部の空気A1を、第1空気供給流路31aを介して吸湿貯留槽111内に供給し、第1空気排出口111bへ向かう気流を形成する。吸湿貯留槽111内を流動する空気A1がメッシュ部材115の網目を通過する際、メッシュ部材115を伝わって流れ落ちる液体吸湿材Wに接触することで、空気A1中の水分が液体吸湿材Wに吸収されて除去される。そして、ブロア133によって、除湿された空気A1を、第1空気排出流路31bを介して筐体201の外部空間へ排出する。
 水分を吸収した液体吸湿材W1は、吸湿貯留槽111の内部空間111cに貯留される。吸湿貯留槽111内の液体吸湿材W1は、第2移送機構16の逆サイフォン機能によって霧化再生部14へ移送される。霧化再生部14に移送された液体吸湿材W1は、再生貯留槽141の内部空間141cに貯留される。
 以上述べたように、本実施形態の調湿システム10では、霧化再生部14において液柱Sを形成することによって液体吸湿材W1を高く持ち上げ、高く持ち上げた液体吸湿材W1の位置エネルギーを利用して、霧化再生部14から吸湿部11へ液体吸湿材Wを移送させている。
 具体的には、再生貯留槽141内において再生した液体吸湿材Wを、第1移送機構12の回収部17および第1移送流路121を介して吸湿貯留槽111へと移送する構成となっている。第1移送機構12の回収部17および第1移送流路121は、水平ではなく、吸湿貯留槽111側へ向かって傾斜しているため、回収部17において回収した液体吸湿材Wは、第1移送流路121を介して吸湿貯留槽111内へ供給される。
 このため、従来、霧化再生部14と吸湿部11との間で液体吸湿材Wの移送に用いていたポンプが不要となり、設備コストを削減することができる。また、仮に、第1移送機構12の第1移送流路121の途中にポンプを配置した場合であっても、ポンプの出力を低く抑えることができ、省電力化を図ることができる。
 このように、ポンプレスの構造あるいはポンプの出力を抑えた構造とすることで、システム全体の軽量化、小型化を実現できるとともに、低騒音化、低振動化を実現することもできる。
 また、傾斜を利用して液送を行う第1移送機構12により、再生した液体吸湿材Wが再生貯留槽141へ逆戻りしてしまうのが防止され、霧化再生部14における高い霧化効率を実現することができる。
 また、本実施形態の調湿システム10では、逆サイフォン機能を利用して、吸湿部11から霧化再生部14への液体吸湿材W1の移送を行っている。吸湿貯留槽111と再生貯留槽141との水位差によって、吸湿貯留槽111内に貯留されている液体吸湿材W1が再生貯留槽141へと自然と流れていき、逆止弁163によって、液体吸湿材W1が吸湿貯留槽111へ逆流してしまうのを防止することができるため、双方の水位差を保持することが可能である。これにより、霧化再生部14において所定の高さの液柱Sを形成することができ、霧化効率を長期的に維持することができる。
 また、液柱Sの高さは、霧化効率に寄与する。つまり、再生貯留槽141内を流動する気流に液柱Sの表面が晒される(接触)することで、液柱Sの表面から霧化が生じるため、液柱Sの高さをできるだけ高くしてその表面積を増やすことで、霧化再生部14における霧化効率を向上させることができる。
 なお、吸湿部11における液体吸湿材Wと空気A1との接触形態は、流下方式に限らず、他の方式を用いることができる。例えば、吸湿貯留槽111に貯留された液体吸湿材Wの中に空気A1を泡状にして供給する方式、いわゆるバブリング方式を用いることもできる。
[第2実施形態]
 次に、本発明の第2実施形態の調湿システム20について説明する。
 以下に示す本実施形態の調湿システム20の基本構成は、上記第1実施形態と略同様であるが、霧化再生部24の構成が異なる。よって、以下の説明では、霧化再生部24について詳しく説明し、共通な箇所の説明は省略する。また、説明に用いる各図面において、図1~図3と共通の構成要素には同一の符号を付すとする。
 図4は、第2実施形態の調湿システム20の概略構成を示す模式図である。
 本実施形態の調湿システム20は、図4に示すように、霧化再生部24と、吸湿部21と、第1移送機構12と、第2移送機構16と、制御部42と、を備えている。吸湿部21の基本的な構成は、上述した第1実施形態の構成とほぼ同様である。
 本実施形態の霧化再生部24は、再生貯留槽本体242と、再生貯留槽本体242の内部空間242cに配置される複数の再生貯留槽241A、241B、241C、241Dと、を備えている。本実施形態では、4つの再生貯留槽241A、241B、241C、241Dを備えているが、再生貯留槽の数はこれに限らない。なお、以下に説明において、再生貯留槽241A、241B、241C、241Dを区別しない場合は、単に再生貯留槽241と呼ぶ。
 図4に示すように、複数の再生貯留槽241A、241B、241C、241Dは、互いに隙間なく一方向に階段状に並べて配置されており、隣り合う再生貯留槽241どうしにおける、再生貯留槽本体242の底部242dからの高さがそれぞれ異なっている。吸湿部21から最も離れた再生貯留槽241Aが最も低い位置に配置され、吸湿部11に最も近い再生貯留槽241Dが最も高い位置に配置されている。再生貯留槽本体242の底部242dからの各再生貯留槽241の高さの関係は、h1<h2<h3で表すことができる。また、隣り合う再生貯留槽241どうしの段差tは互いに一定である。
 各再生貯留槽241の容積は、互いに等しい。本実施形態では、隣り合う再生貯留槽241のうち、高い位置に配置された再生貯留槽241には、貯留すべき液体吸湿材W1のオーバーフローを抑制するための開口244が設けられている。上段側の再生貯留槽241に形成された開口244は、下段側の再生貯留槽241の内部空間に通じている。
 各再生貯留槽241に配置される超音波振動子142は、再生貯留槽側排液口141Bが設けられている側の超音波照射面142aの端部が低くなる方向に傾斜している。つまり、本実施形態では、隣り合う再生貯留槽241のうち、高い位置に配置された再生貯留槽241側に向かって傾斜している。これにより、低い位置の再生貯留槽241の液柱Sの先端から液滴になって落ちる水滴W4を、高い位置の再生貯留槽241において回収し、貯留することができる。
 再生貯留槽本体242の上部には、第1移送機構12の回収部27が設けられている。本実施形態の回収部27は、少なくとも、再生貯留槽241Dにおいて形成される液柱Sに対応した貫通孔17cを有する。第1移送機構22の第1移送流路121は、上記実施形態と同様に、霧化再生部24側の端部よりも吸湿部11側の端部の方が低くなるように傾斜していることが好ましい。
 吸湿部21は、上記実施形態と同様に、吸湿貯留槽211と、メッシュ部材115と、多孔プレート113と、を有している。
 第2移送機構16は、上記実施形態と同様に、第2移送流路162と、逆止弁163と、を有している。第2移送流路162の一端側は、吸湿貯留槽211の底部211dに接続され、他端側は、再生貯留槽本体242における最下段の再生貯留槽241Aの底部241dに接続されている。
 制御部42は、液体吸湿材W1の濃度あるいは粘度を測定する測定部43を備えており、測定部43の測定結果に基づいて、超音波振動子142の周波数および出力の制御を行う。
 本実施形態の調湿システム20では、吸湿部21に貯留された液体吸湿材W1を、逆サイフォン機能により、第2移送機構16を通じて霧化再生部24へと移送する。制御部42は、各再生貯留槽241における超音波振動子142を駆動することで、各再生貯留槽241に液柱Sをそれぞれ形成する。各再生貯留槽241A、241B,241C,241Dにおいて液柱Sを形成することによって、再生貯留槽241Aから再生貯留槽241Dへ液体吸湿材W1を順次移送する。
 液体吸湿材W1は、各再生貯留槽241において形成される液柱Sによって霧化されるが、その度に、液柱Sとなった液体吸湿材W1の表面近傍から水分が分離されるため、液体吸湿材W1における水分の比率が減って濃度あるいは粘度が高くなっていく。各再生貯留槽241に対応する超音波振動子142の周波数および出力が同じ場合、上段側の再生貯留槽241へ行くにしたがって、形成できる液柱Sの高さが低くなることがある。そのため、制御部42は、各再生貯留槽241内に貯留される液体吸湿材W1の濃度あるいは粘度を測定し、その結果に応じて、超音波振動子142の周波数および出力の制御を行う。本実施形態では、制御部42におけるフィードバック制御により、各再生貯留槽241間における液移送量を同一にすることができる。
 各再生貯留槽241において霧化された霧状液滴W3を含む空気A4は、再生貯留槽本体242と回収部27との間に形成される隙間Fを通じて内部空間242c内を流動する気流となって、第2空気排出流路32bを介して外部空間へ排出される。
 最上段に位置する再生貯留槽241Dでは、液柱Sの先端側が、回収部27の貫通孔17cを通過し、水分が分離して再生された液体吸湿材Wの水滴W4が、回収部27において回収される。このようにして、霧化再生部24において再生された液体吸湿材Wが第1移送機構12を介して吸湿部21へ移送される。
 本実施形態の調湿システム20によれば、高さが異なる各再生貯留槽241A,241B,241Cを複数設け、各再生貯留槽241におい液柱Sを形成することにより、隣り合う再生貯留槽241のうち、高い位置に配置された再生貯留槽241へ向かって液体吸湿材W1を高く持ち上げることによって、上段側の再生貯留槽241へ液体吸湿材W1を移すことができる。
 霧化再生部24において形成できる液柱Sの最大の高さは、貯留される液体吸湿材W1の濃度あるいは粘度や、超音波振動子142の周波数および出力等によって決まってくる。上記実施形態では、例えば、各超音波振動子142によって形成できる液柱Sの最大高さに合わせて、吸湿貯留槽211のサイズを選択することができる。しかしながら、必要な吸湿量を十分に確保するために、より容量の大きい吸湿貯留槽211が必要となる場合がある。
 本実施形態の調湿システム20では、高さの異なる複数の再生貯留槽241においてそれぞれ液柱Sを形成し、各液柱Sの位置エネルギーを利用することで、より高い位置の再生貯留槽241にまで液体吸湿材W1を移動させることができる。そのため、霧化再生部24と吸湿部21とを繋ぐ第1移送機構12の位置を高く設定することができ、より容量の大きい吸湿貯留槽211を選択することができる。これにより、必要な吸湿量を十分に確保することができる。
 本実施形態の調湿システム20では、上記実施形態と同様に、第1移送機構12の回収部27および第1移送流路121が、吸湿部21側が低くなるように傾斜して設けられているため、再生した液体吸湿材Wが霧化再生部24に逆戻りするのを防止でき、高い霧化効率を実現できる。
 また、複数の再生貯留槽241を多段に配置することによって、水分の分離効率および分離度をさらに向上させることができる。
 また、隣り合う再生貯留槽241のうち、上段側の再生貯留槽241に開口244を設けておくことにより、各再生貯留槽241における規定量を超えた液体吸湿材W1を、下段側の再生貯留槽241へ流出させることができる。このため、各再生貯留槽241で液柱Sによる液移送量が異なる状況であっても、液体吸湿材W1が開口244を通じて漏れ出すことにより、最上段の再生貯留槽241D内の液体吸湿材W1と、最下段の再生貯留槽241A内の液体吸湿材W1との混合を防ぐことができる。再生貯留槽241ごとに超音波振動子142の周波数および出力が設定されていた場合、濃度の異なる液体吸湿材W1が漏れ出て下段の再生貯留槽241内に流入してしまうと、所定量の液移送を行うことができなくなるおそれがあるからである。そのため、上段側の再生貯留槽241から下段側の再生貯留槽241へのオーバーフローを抑制することが好ましい。
 また、本実施形態においても、ポンプレスの構成とすることができ、省エネ化、小型・軽量化、低騒音・低振動化を実現することができる。
[第3実施形態]
 次に、本発明の第3実施形態の調湿システム30について説明する。
 以下に示す本実施形態の調湿システム30の基本構成は、上記第2実施形態と略同様であるが、霧化再生部34の構成が一部異なる。よって、以下の説明では、霧化再生部34について詳しく説明し、共通な箇所の説明は省略する。また、説明に用いる各図面において、図4と共通の構成要素には同一の符号を付すものとする。
 図5は、第3実施形態の調湿システム30の全体構成を示す平面図である。
 本実施形態の調湿システム30は、図5に示すように、複数の再生貯留槽241と、再生貯留槽241ごとに一つまたは複数ずつ設けられた超音波振動子142と、を有する霧化再生部34を備えている。
 多段配置された4つの再生貯留槽241(241A、241B,241C,241D)のうち、隣り合う再生貯留槽241どうしの段差t1、t2、t3が互いに一定ではなく、上段側へ行くに従って段差t1、t2、t3が小さくなっている。各再生貯留槽241の段差の関係は、t1>t2>t3で表すことができる。
 本実施形態では、隣り合う再生貯留槽241に貯留される液体吸湿材W1の濃度Cあるいは粘度が、大きく異なっている。再生貯留槽241間を移送されて霧化処理が進むにつれて、液体吸湿材W1の濃度Cあるいは粘度が順次高くなっていく。各再生貯留槽241A、241B,241C,241Dの濃度差の関係は、C1<C2<C3<C4で表すことができる。再生貯留槽241内に貯留されている液体吸湿材W1の濃度あるいは粘度に勾配が生じる場合、形成する液柱Sの高さを高くしようとすると、超音波振動子142への負荷が大きくなってしまう。
 そこで、本実施形態では、貯留する液体吸湿材W1の濃度あるいは粘度に応じて、隣り合う再生貯留槽241どうしの段差を上段側へ行くにしたがって小さくしてある。これにより、上段側における超音波振動子142の負荷を軽減することができる。
 また、本実施形態では、各再生貯留槽241に対して設けられる超音波振動子142の出力および周波数を、再生貯留槽241ごとに異ならせている。あるいは、再生貯留槽241ごとに、超音波振動子142の数を異ならせてもよい。具体的には、上段側の再生貯留槽に設けられる超音波振動子142の数の方が、下段側の再生貯留槽241に設けられる超音波振動子142の数よりも多くなるように設定されている。各再生貯留槽241A、241B,241C,241Dに設けられる超音波振動子142の数Nの関係は、N0≦N1≦N2≦N3で表すことができる。
 隣り合う再生貯留槽241どうしの間における液移送量は、各再生貯留槽241に設ける超音波振動子142の出力および周波数、あるいは数を適宜変更することによって、調整することができる。そのため、複数の再生貯留槽241のうち、上段側へ行くほど、超音波振動子142の出力および周波数、あるいは数を増加しておくことで、隣り合う再生貯留槽241どうしの間における液移送量を一定量にすることができる。
 本実施形態の調湿システム30によれば、隣り合う複数の再生貯留槽241A、241B,241C,241Dに貯留される液体吸湿材W1の濃度あるいは粘度が大きく異なる場合であっても、超音波振動子142の負荷を軽減することができ、超音波振動子142の長寿命化が可能になる。
 以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。

Claims (10)

  1.  吸湿性物質を含む液体吸湿材と空気とを接触させることにより、前記空気に含まれる水分の少なくとも一部を前記液体吸湿材に吸収させる吸湿部と、
     前記吸湿部から供給された前記液体吸湿材に含まれる水分の少なくとも一部を霧化して霧状液滴を発生させ、前記液体吸湿材から前記霧状液滴の少なくとも一部を分離することによって前記液体吸湿材を再生する霧化再生部と、
     前記霧化再生部において再生された前記液体吸湿材を前記吸湿部に送る第1移送機構と、
     前記空気に含まれる前記水分の少なくとも一部を吸収した前記液体吸湿材を前記吸湿部から前記霧化再生部に送る第2移送機構と、を備え、
     前記霧化再生部は、
     前記液体吸湿材を貯留する少なくとも1つの貯留槽と、
     前記貯留槽に設けられ、前記霧状液滴を発生させるための超音波を発振することで前記貯留槽内の前記液体吸湿材の液面に液柱を形成する超音波発生部と、を有し、
     前記第1移送機構は、
     前記液柱によって変化する前記液体吸湿材の位置エネルギーを利用して前記霧化再生部から前記吸湿部へと前記液体吸湿材を移動させる、調湿システム。
  2.  前記第2移送機構は、前記吸湿部と前記霧化再生部との水位差により前記吸湿部から前記霧化再生部に向けて前記液体吸湿材を移送する逆サイフォン機能を有する、
    請求項1に記載の調湿システム。
  3.  前記第2移送機構は、前記吸湿部の底部と前記霧化再生部の底部と繋ぐ流路と、
     前記流路内に配置された逆止弁と、を有する、
    請求項2に記載の調湿システム。
  4.  前記第1移送機構は、前記液柱によって再生された前記液体吸湿材を回収する回収部を備え、前記回収部は、前記貯留槽内において前記吸湿部側が低くなるように傾けて設けられている、
    請求項1から3のいずれか一項に記載の調湿システム。
  5.  前記霧化再生部は、
     一方向に階段状に並ぶ複数の貯留槽と、
     各貯留槽に対し少なくとも一つずつ設けられた前記超音波発生部と、を備えている、
    請求項1から3のいずれか一項に記載の調湿システム。
  6.  前記複数の貯留槽内の前記液体吸湿材の濃度に応じて隣り合う前記貯留槽の段差が同じもしくは異なっており、隣り合う前記貯留槽内の前記液体吸湿材どうしの濃度差が大きいほど前記段差が小さい、
    請求項5に記載の調湿システム。
  7.  前記複数の貯留槽内の前記液体吸湿材の濃度に応じて各貯留槽に対して設けられる前記超音波発生部の数が同じもしくは異なっており、隣り合う前記貯留槽内の前記液体吸湿材どうしの濃度差が大きいほど前記超音波発生部の数が多い、
    請求項5または6に記載の調湿システム。
  8.  前記複数の貯留槽のうち少なくとも一つに前記液体吸湿材のオーバーフローを抑制する開口が設けられており、前記開口は、隣り合う下段の前記貯留槽に通じている、
    請求項5から7のいずれか一項に記載の調湿システム。
  9.  必要霧化量に応じて前記超音波発生部の周波数および出力を制御する制御部を備える、請求項1から8のいずれか一項に記載の調湿システム。
  10.  前記制御部は、各貯留槽内の前記液体吸湿材の濃度もしくは粘度を測定する測定部を備え、前記測定部による測定結果に基づいて前記制御を行う、
    請求項9に記載の調湿システム。
PCT/JP2019/028197 2018-09-05 2019-07-18 調湿システム WO2020049878A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018165939A JP2021183296A (ja) 2018-09-05 2018-09-05 調湿システム
JP2018-165939 2018-09-05

Publications (1)

Publication Number Publication Date
WO2020049878A1 true WO2020049878A1 (ja) 2020-03-12

Family

ID=69721769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028197 WO2020049878A1 (ja) 2018-09-05 2019-07-18 調湿システム

Country Status (2)

Country Link
JP (1) JP2021183296A (ja)
WO (1) WO2020049878A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103260A (ja) * 1989-09-18 1991-04-30 Matsushita Electric Ind Co Ltd 低温スチームバス発生装置
JPH0456417U (ja) * 1990-09-14 1992-05-14
JPH06322A (ja) * 1992-06-19 1994-01-11 Osaka Gas Co Ltd 開放型吸収式空調機
JP2012096206A (ja) * 2010-11-05 2012-05-24 Ebara Corp 熱輸送媒体の再生装置
JP6046294B1 (ja) * 2016-04-15 2016-12-14 ダイナエアー株式会社 処理機および再生機
WO2018235773A1 (ja) * 2017-06-20 2018-12-27 シャープ株式会社 調湿装置および調湿方法
WO2019097961A1 (ja) * 2017-11-15 2019-05-23 シャープ株式会社 空調装置
WO2019138794A1 (ja) * 2018-01-10 2019-07-18 シャープ株式会社 調湿装置および分離装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103260A (ja) * 1989-09-18 1991-04-30 Matsushita Electric Ind Co Ltd 低温スチームバス発生装置
JPH0456417U (ja) * 1990-09-14 1992-05-14
JPH06322A (ja) * 1992-06-19 1994-01-11 Osaka Gas Co Ltd 開放型吸収式空調機
JP2012096206A (ja) * 2010-11-05 2012-05-24 Ebara Corp 熱輸送媒体の再生装置
JP6046294B1 (ja) * 2016-04-15 2016-12-14 ダイナエアー株式会社 処理機および再生機
WO2018235773A1 (ja) * 2017-06-20 2018-12-27 シャープ株式会社 調湿装置および調湿方法
WO2019097961A1 (ja) * 2017-11-15 2019-05-23 シャープ株式会社 空調装置
WO2019138794A1 (ja) * 2018-01-10 2019-07-18 シャープ株式会社 調湿装置および分離装置

Also Published As

Publication number Publication date
JP2021183296A (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
JP6878583B2 (ja) 調湿装置および調湿方法
JP5494902B2 (ja) 溶液の超音波分離装置
KR101722232B1 (ko) 선박 엔진의 배기가스 정화장치
JP6932237B2 (ja) 霧化装置および調湿装置
JP6994109B2 (ja) 霧化装置および調湿装置
WO2020049878A1 (ja) 調湿システム
WO2019202940A1 (ja) 超音波霧化分離装置および調湿装置
JP7169443B2 (ja) 超音波霧化装置および調湿装置
US20210053010A1 (en) Humidity control device and separation device
WO2019235411A1 (ja) 調湿装置
JP2009202066A (ja) 超音波アルコール分離装置
RU2016114625A (ru) Способ абсорбции газов и устройство для его осуществления
WO2019116986A1 (ja) 調湿装置および調湿方法
WO2020059284A1 (ja) 調湿システム
US20210113958A1 (en) Air conditioner
JP5678916B2 (ja) 超音波霧化機
US11376549B2 (en) Humidity conditioning device and humidity conditioning method
WO2022190670A1 (ja) 超音波霧化分離装置及び調湿システム
WO2022059428A1 (ja) 調湿装置
CN212188493U (zh) 一种燃煤废气的脱硫脱硝装置
CN202315690U (zh) 折流式吸收塔浆液池
JP2022190809A (ja) 超音波霧化分離装置
JP2023009315A (ja) 超音波霧化分離装置
RU2394125C1 (ru) Отвал снегоуборочной машины

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19857390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP