WO2020049370A1 - Press device, terminal device, estimated-ball-screw-lifespan calculation method, and program - Google Patents

Press device, terminal device, estimated-ball-screw-lifespan calculation method, and program Download PDF

Info

Publication number
WO2020049370A1
WO2020049370A1 PCT/IB2019/052943 IB2019052943W WO2020049370A1 WO 2020049370 A1 WO2020049370 A1 WO 2020049370A1 IB 2019052943 W IB2019052943 W IB 2019052943W WO 2020049370 A1 WO2020049370 A1 WO 2020049370A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball screw
load value
load
average
calculation unit
Prior art date
Application number
PCT/IB2019/052943
Other languages
French (fr)
Japanese (ja)
Inventor
岩崎安希子
Original Assignee
蛇の目ミシン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蛇の目ミシン工業株式会社 filed Critical 蛇の目ミシン工業株式会社
Priority to DE112019004468.0T priority Critical patent/DE112019004468T5/en
Priority to CN201980047393.2A priority patent/CN112639429B/en
Priority to KR1020217001101A priority patent/KR102591896B1/en
Publication of WO2020049370A1 publication Critical patent/WO2020049370A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/18Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by screw means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/28Arrangements for preventing distortion of, or damage to, presses or parts thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/007Subject matter not provided for in other groups of this subclass by applying a load, e.g. for resistance or wear testing

Definitions

  • the present invention relates to a press device, a terminal device, a ball screw estimated life calculation method, and a program.
  • a press device such as an electric press that applies a load by moving a ram up and down with respect to a work is known.
  • the rotation of the motor is converted into linear motion to operate the ram up and down.
  • a ball screw is an important mechanical component for realizing such up and down operation of the ram.
  • the ball screw is subjected to an impact by the load operation, so that the ball screw is deteriorated. In order to operate with an appropriate load, it is required to estimate the life as accurately as possible.
  • Patent Document 1 describes a means for storing in advance the relationship between the axial load of the ball screw and the motor current value, the basic dynamic load rating of the ball screw, and the sampling interval and time. Means for recording the amount of use of the ball screw, a coefficient of variation is measured at each sampling interval, and the rated fatigue life value calculated based on the measured value is rewritable. A ball screw life monitoring device that displays the remaining life of each ball screw is disclosed (for example, see Patent Document 1).
  • the average axial load F m applied to the ball screw, the average rotational speed N m of the ball screw, on the basis of the load factor f w is determined by the kinetic state, the estimated lifetime of the ball screw Is disclosed.
  • load factor f w is greater the larger the operation of the impact on the ball screw, the more the value is large, the estimated life time is shortened.
  • Patent Document 1 the vibration and shock "fine”, “small”, “medium”, and divided into four “large”, only load coefficient f w are defined, above the load It cannot be said that the magnitude of the influence of the coefficient fw on the estimated lifetime is sufficiently considered.
  • the estimated life time of the ball screw is obtained from the magnitude of the fluctuation of the motor current, that is, the fluctuation of the torque, but the fluctuation of the torque is more accurate than the fluctuation value of the load cell load value.
  • the shock magnitude is clearly related to the life of the ball screw, and the verification until the ball screw actually breaks is performed in various environments and operating patterns. Since it is difficult to perform until the magnitude of the load coefficient can be clearly defined, there is a problem that the method for estimating the life time of the ball screw cannot be said to be a simple and highly accurate method.
  • the present invention has been made in view of the above-described problems, and provides a press device, a terminal device, a ball screw estimated life calculation method, and a program that easily and accurately estimate the life time of a ball screw. With the goal.
  • One or more embodiments of the present invention provide a load value detecting unit that detects an axial load value applied to a ball screw, and an average value based on the load value detected by the load value detecting unit.
  • An average axial load value calculating unit that calculates an axial load value
  • an average rotational speed calculating unit that calculates an average rotational speed of the ball screw, a load coefficient of the ball screw, and the average axial load value calculating unit.
  • a press device Based on the calculated average axial load value and the average rotation speed of the ball screw calculated by the average rotation speed calculation unit, a press device that calculates an estimated life according to a use mode of the ball screw.
  • a differential value calculation unit that calculates an amount of change in the axial load value detected by the load value detection unit; and a differential value calculation unit that calculates a change amount of the axial load value. Based on the amount of change in the load value, proposes a press apparatus characterized in that and a load coefficient adjusting unit that adjusts the weighting factor of the ball screw.
  • the load coefficient adjusted by the load coefficient adjustment unit is the average axial load value calculated by the average axial load value calculation unit, and the average rotation.
  • the present invention proposes a press device that is calculated based on an average rotation speed of the ball screw calculated by a speed calculation unit and an actual life period of an arbitrary ball screw.
  • the load coefficient adjusted by the load coefficient adjustment unit may include the calculated estimated life and the actual life of the ball screw from which the estimated life is calculated.
  • the axial load value applied to the ball screw is a load value applied to the ball screw measured by a load cell, or the load value measured by the load cell.
  • a press device is proposed, which is a sum of a load value applied to a ball screw and a load value generated by acceleration and deceleration of the ball screw when the ram moves up and down.
  • One or more embodiments of the present invention include a load value detection unit that detects an axial load value applied to a ball screw, and an average value based on the load value detected by the load value detection unit.
  • An average axial load value calculating unit that calculates an axial load value, an average rotational speed calculating unit that calculates an average rotational speed of the ball screw, a load coefficient of the ball screw, and the average axial load value calculating unit.
  • a calculating unit that calculates an estimated life according to a usage mode of the ball screw based on the calculated average axial load value and the average rotation speed of the ball screw calculated by the average rotation speed calculation unit.
  • a differential value calculation unit that calculates an amount of change in the axial load value detected by the load value detection unit; and the differential value calculation unit. Based on the variation of the load value calculated Oite proposes a terminal device, characterized in that it and a load coefficient adjusting unit that adjusts the weighting factor of the ball screw.
  • One or more embodiments of the present invention include a load value detection unit that detects an axial load value applied to a ball screw, and an average value based on the load value detected by the load value detection unit.
  • An average axial load value calculating unit that calculates an axial load value
  • an average rotational speed calculating unit that calculates an average rotational speed of the ball screw, a load coefficient of the ball screw, and the average axial load value calculating unit.
  • a second step of adjusting the estimated life of the ball screw is
  • One or more embodiments of the present invention provide a load value detecting unit that detects an axial load value applied to a ball screw, and an average value based on the load value detected by the load value detecting unit.
  • An average axial load value calculating unit that calculates an axial load value
  • an average rotational speed calculating unit that calculates an average rotational speed of the ball screw, a load coefficient of the ball screw, and the average axial load value calculating unit.
  • FIG. 1 is a diagram illustrating an electrical configuration of a central processing unit according to an embodiment of the present invention.
  • a press device 100 includes a press ram 1 that applies a desired pressure to a work W (a processing target) by a lifting operation, and a lifting operation (a straight line) on the ram 1. ), which are provided in the press body 3.
  • a servomotor 4 such as an AC servomotor serving as a driving source is also housed in a head frame of a casing 5 connected to the press body 3. The drive of the servo motor 4 is transmitted to the ball screw 2 via a pulley and a belt.
  • the ram 1 is formed in a cylindrical body as shown in FIG. Specifically, a hollow portion is formed along the axial direction inside a cylindrical main body 1a formed in a cylindrical shape, and the screw shaft 2a of the ball screw 2 can be inserted into the hollow portion. Has become. A nut 2b of the ball screw 2 is fixed to an end of the cylindrical main body 1a of the ram 1 in the axial direction.
  • a strain-flexing column 9 is configured to be freely attachable. Actually, the strain-flexing column 9 comes into contact with the work W and appropriately applies pressure. .
  • the strain column 9 is configured such that a strain gauge can be attached thereto, and the strain gauge can detect a pressure applied to the workpiece W. In addition, a similar load is applied to the ball screw moving the ram 1 as a reaction of the load applied to the workpiece W by the strain-flexing column 9.
  • a cylindrical guide 6 is provided so as to wrap the outer peripheral side surface of the cylindrical main body 1a.
  • the cylindrical guide 6 is fixed in the casing 5, and the ram 1 can move up and down along the cylindrical guide 6.
  • the press device 100 includes a servo motor driver 13, an encoder 14, a circuit unit 15, a drive command pulse generation unit 16, an encoder position counter 17, a control program storage unit 21, a display unit 22, an operation unit 23, a temporary storage unit 24, an initial load coefficient storage unit 25, a load value storage unit 26, a rotation speed storage unit 27, a CPU (central processing unit) 30, It is composed of
  • the control program storage unit 21 stores a control program for the CPU (central processing unit) 30 to control the operation and processing of the entire press apparatus 100.
  • a program for calculating a differential value or a calculated differential value based on time-series data of a load value stored in a load value A program for calculating an adjustment amount of the load coefficient based on an initial load coefficient stored in an initial load coefficient storage unit 25 described later, and a load value stored in a load value storage unit 26 described later.
  • a program for calculating the average axial load value a program for calculating the average rotational speed of the ball screw based on the rotational speed of the ball screw stored in the rotational speed storage unit 27 described below, the adjusted load coefficient described above, Based on the calculated average axial load value and the average rotation speed of the ball screw, the estimated life time of the ball screw is calculated. For storing programs and the like to be out.
  • the display unit 22 is, for example, a display device in which a liquid crystal panel and a touch panel are stacked and various types of information are displayed.
  • the display unit 22 may be provided in the press device 100, or may be another device or an independent device. In the present embodiment, for example, information such as the calculated estimated life time of the ball screw is displayed.
  • the operation unit 23 includes a touch panel, a tact switch, and the like for setting operation conditions and the like.
  • the temporary storage unit 24 includes, for example, a RAM or the like, and stores temporary data.
  • the basic dynamic load rating and the like are stored.
  • the initial load coefficient storage unit 25 stores an arbitrary load coefficient of the ball screw.
  • the stored initial load coefficient is used as an initial value in the processing of the load coefficient adjustment unit 32 described later.
  • the load value storage unit 26 stores time-series data in which the pressing position of the pressing unit detected by the circuit unit 15 as the load value detecting unit or the encoder 14 is associated with the load value at the pressing position.
  • the rotation speed storage unit 27 calculates, for example, a rotation speed of a ball screw having a certain relationship with the motor current from a motor current obtained from a drive command pulse generated from a drive command pulse generation unit 16 described later.
  • the rotational speed obtained by a functional block (not shown) is stored.
  • the circuit unit 15 as a detection unit for detecting a load amplifies a signal corresponding to a change in resistance of a strain gauge attached to the strain-giving column 9 and converts an analog signal into a digital signal by A / D conversion processing. (Central processing unit) 30.
  • the drive command pulse generator 16 generates a desired drive command pulse based on a command from a CPU (central processing unit) 30 and generates the drive command pulse via the CPU (central processing unit) 30.
  • the signal is output to the servo motor driver 13. Then, by driving the servo motor 4 under the control of the servo motor driver 13, the ram sliding mechanism 11 slides the ram 1 up and down.
  • the encoder 14 serving as a detecting unit for detecting the position is for detecting the rotation angle of the servomotor 4 and is used for detecting the position of the ram 1.
  • the information of the encoder 14 gives position information to the servo motor driver 13 for performing feedback control. Further, the position information of the encoder 14 can be read by a CPU (Central Processing Unit) 30 via an encoder position counter 29, whereby the movement amount of the ram 1 is detected.
  • a CPU Central Processing Unit
  • the CPU (central processing unit) 30 controls the operation of the entire press device 100 according to a control program stored in the control program storage unit 21. In the present embodiment, particularly, processing for estimating the life time of the ball screw is mainly performed.
  • the central processing unit 30 includes a differential value calculation unit 31, a load coefficient adjustment unit 32, an average axial load value calculation unit 33, and an average rotation speed calculation unit 34. , A ball screw estimated life calculation unit 35.
  • the differential value calculation unit 31 calculates the amount of change in the axial load value.
  • the variation of the load value of the axial, the change amount per unit time of the load values of the axial, the load value f m is less, as shown in Equation 1, measured by the load cell is calculated by the value of the sum of the load values f m2 caused by acceleration and deceleration of the ball screw when the load force value f m1 and the press ram according to the ball screw to move up and down.
  • the differential value d is a variation of the load value f m according to the ball screw [N / S] is a unit of time is taken as t [S], the slope of the linear regression line shown in the equation (2) below It can be obtained by the formula.
  • the load coefficient adjustment unit 32 adjusts an arbitrary load coefficient of the ball screw stored in the initial load coefficient storage unit 25 based on the amount of change in the load value calculated by the differential value calculation unit 31.
  • the arbitrary load coefficient is an average axial load value calculated by an average axial load value calculation unit 33 described later, an average rotation speed of the ball screw calculated by the average rotation speed calculation unit 34, and an arbitrary rotation coefficient.
  • the estimated life calculation unit 35 calculates the life of the ball screw.
  • the load coefficient f w conventionally, as shown in FIG. 4, the vibration or shock, "fine”, “small”, “medium”, divided into four “large”, and a width And the load coefficient fw was determined.
  • the differential value calculation unit 31 calculates the load coefficient adjustment unit 32 based on the ball screw initial load coefficient stored in the initial load coefficient storage unit 25. based on the amount of change in load value, using a load factor f w adjusted for the initial weighting factors to estimate the life expectancy of the ball screw.
  • the average axial load value calculation unit 33 calculates the average axial load value based on the load values stored in the load value storage unit 26 that stores the load values detected by the circuit unit 15 as the load value detection unit. I do.
  • the average rotation speed calculator 34 calculates the average rotation speed of the ball screw.
  • the ball screw estimated life calculation unit 35 calculates the load coefficient adjusted by the load coefficient adjustment unit 32, the average axial load value calculated by the average axial load value calculation unit 33, and the average rotation speed calculation unit 34. Based on the average rotation speed of the ball screw, an estimated life corresponding to the usage mode of the ball screw is calculated. Specifically, the basic dynamic load rating C [N], the load coefficient f w, the average axial load value F m [N], the average rotational speed of the ball screw and N m [min -1], The life rotation speed L [rev] is obtained by the equation shown in Equation 4, and the estimated life time L h [h] is obtained by the equation shown in Equation 5.
  • the average axial load value F m [N] is obtained from Equation 6 where the rotational speed of the ball screw sampled at a constant interval at the same timing as f mi and the sampling number is 1 and n mi are obtained by Equation 6, and the average rotational speed is N m [min ⁇ 1 ] is obtained by Expression 7.
  • the obtained estimated life time is displayed on the display unit 22.
  • the number 4, the number 5, f w is the basic dynamic load rating C [N] and the load factor is a constant, of which, C [N] the basic dynamic load rating is used in the press apparatus 100 It depends on the type of ball screw used, and is a numerical value published by a ball screw manufacturer in a catalog or the like.
  • the average axial load value F m [N] and the average rotation speed N m [min ⁇ 1 ] of the ball screw are variables, and the operating environment (workpiece) of the press device 100 during sampling (simultaneously with differential sampling). (The difference in the load and the speed due to the individual difference of W).
  • ⁇ Processing of press machine> performs estimation life calculation of the ball screw using a load factor f w multiple patterns simultaneously, the load coefficient f w in fact estimated life calculation nearest ball screw and timing in broken ball screw, when the The following describes a process of making the press device 100 learn the differential value of the above, and thereby highly accurately predicting the life of the ball screw that further matches the user's unique use environment. Specifically, when the ball screw is not corrupted is replaced, it is determined the user has determined that the optimal replacement time, the best lifetime learning close load factor f w. Also, if you replace the broken got a ball screw, the most life is near, and life than broken timing to learn the load coefficient f w becomes shorter. In the following, a case where the learning is performed in two processes of a first stage and a second stage will be described with reference to FIGS. 5 and 6.
  • step S101 it is confirmed that the ball screw is replaced or the press is in the initial state.
  • step S101 the average axial load F m and the average rotational speed N m and a predetermined assumed value of the ball screw (for example, press the design of the device 100, the average rotational speed of the average axial load F m and a ball screw is assumed as N m), between a load factor f w from 1.0 to 2.0, in increments of 0.1
  • the estimated life of the ball screw is calculated by the estimated life calculation unit 35 using the above equations (4) and (5) (step S102).
  • Step S103 the average axial load value F m [N] calculated by the average axial load value calculation unit 33 and the average rotation speed N m [min ⁇ 1 ] of the ball screw are sampled (Step S103), and the differential value is calculated.
  • the differential value d [N / S] calculated by the calculator 31 is sampled (step S104).
  • step S103 the estimated life of the ball screw is calculated using the sampled average axial load value F m [N], the average rotation speed N m [min ⁇ 1 ] of the ball screw, and the above equations (4) and (5).
  • the calculation unit 35 recalculates the estimated life of the ball screw (step S105).
  • step S106 determines whether the ball screw is actually broken. If it is determined in step S106 that the ball screw is broken by the user ("YES" in step S106), the calculated estimated life time is the longest among the calculated estimated life times shorter than the actual life time. learns the load factor f w corresponding to the time as a true value (step S108), in step S104, and calculates the time average value of the sampled differential value d (step S110), and ends the learning processing in the first stage .
  • step S106 determines whether or not the ball screw is not broken by the user ("NO" in step S106). If the user determines that the ball screw need not be replaced ("NO" in step S107), the process returns to step S103.
  • step S107 When the user determines in step S107 that the ball screw needs to be replaced (“YES” in step S107), the time when the determination is made is regarded as the actual life time, and the actual life time of the ball screw is determined.
  • learning closest load factor f w as a true value step S109
  • step S104 learning closest load factor f w as a true value
  • step S110 calculates the time average value of the sampled differential value d
  • the user determines whether or not the environment of the ball screw has changed significantly (for example, the work W has been changed to a completely different one, etc.) as compared with the time of the first-stage learning process (step S201). At this time, if the user determines that the environment of the ball screw has changed significantly ("YES" in step S201), the second stage is terminated and learning is restarted from the first stage.
  • step S201 when the user determines that the environment of the ball screw has not changed significantly (“NO” in step S201), the user replaces the ball screw (step S202), and at regular time intervals, the average axial direction is changed. A time average value of the load value, the average rotation speed of the ball screw, and the differential value d is obtained (step S203).
  • the replacement of the ball screw is performed by using a ball screw whose specifications and the like do not differ before and after the replacement.
  • the CPU (central processing unit) 30 compares the time average value of the differential value d acquired in step S203 with the time average value of the differential value d acquired in step S110 of the first stage (step S204). ).
  • the CPU (central processing unit) 30 determines that the time average of the differential value d obtained in step S203 is larger than the time average of the differential value d obtained in step S110 of the first stage. case ( "YES" in step S204), it is determined to have been subjected to high operating shock than in the first stage, by changing the load factor f w to a value smaller than the previous load coefficient f w (Step S206), the process proceeds to Step S207. In the step S206, for example, to reduce by 0.1 intervals than the previous load factor f w Load Factor f w.
  • the CPU (central processing unit) 30 determines that the time average value of the differential value d obtained in step S203 is smaller than the time average value of the differential value d obtained in step S110 of the first stage. If it is determined that the ( "NO" in step S204), it is determined to have been subjected to less operating shock than in the first stage, a load factor f w to a value greater than the previous load coefficient f w After the change (step S205), the process proceeds to step S207. In the step S205, for example, increased at 0.1 intervals than the previous load factor f w Load Factor f w.
  • Step S207 Calculating CPU (central processing unit) 30, in step S207, to operate the ball screw life expectancy calculator 35, in step S205 or step S206, using a load factor f w was changed, the estimated life time of the ball screw (Step S207).
  • step S208 the user determines whether or not the ball screw has been damaged earlier than the estimated life time of the ball screw calculated in step S207, and the ball screw is sooner than the estimated life time of the ball screw calculated in step S207. If it is determined that damaged the ( "YES" in step S208), CPU (central processing unit) 30, by changing the load factor f w to a value greater than the previous load coefficient f w (step S210) The process returns to step S202. In the step S210, for example, increased at 0.1 intervals than the previous load factor f w Load Factor f w.
  • step S207 when the user determines that the ball screw is not damaged earlier than the estimated life time of the ball screw calculated in step S207 (“NO” in step S208), the ball screw is completely damaged. However, it is determined whether or not replacement is necessary due to severe deterioration (step S209). If the user determines that replacement of the ball screw is necessary (“YES” in step S209), CPU (central processing unit) 30, by changing the load factor f w to a value greater than the previous load coefficient f w (step S210), the process returns to step S202.
  • CPU central processing unit
  • step S209 the CPU (central processing unit) 30 transmits the ball screw before the ball screw needs to be replaced. It is determined whether or not the estimated life time has been reached (step S211).
  • step S211 the CPU 30 determines that the estimated life time of the ball screw has not been reached before the ball screw needs to be replaced (“NO” in step S211), the CPU 30 executes the processing. It returns to step S203.
  • step S211 when the CPU (central processing unit) 30 determines that the estimated life time of the ball screw has been reached before the ball screw needs to be replaced (“YES” in step S211), the CPU (central processing unit) 30 changes the weighting factor f w to a value smaller than the previous load coefficient f w (step S212), the process returns to step S203.
  • step S211 for example, to reduce by 0.1 intervals than the previous load factor f w Load Factor f w.
  • the press device 100 includes an initial load coefficient storage unit 25 that stores an arbitrary load coefficient of a ball screw, and a load value that detects an axial load value applied to the ball screw.
  • the detection unit (circuit unit 15) and the load value detection unit (circuit unit 15) calculate the amount of change in the detected load value in the axial direction, and the differential value calculation unit 31 calculates the difference.
  • a load coefficient adjustment unit 32 that adjusts an arbitrary load coefficient of the ball screw stored in the initial load coefficient storage unit 25 based on the change amount of the load value, and a load detected by the load value detection unit (the circuit unit 15).
  • the estimated life time of the ball screw is calculated using a value obtained by adjusting an arbitrary load coefficient of the ball screw stored in the initial load coefficient storage unit 25 based on the calculated amount of change in the load value. From this, it becomes possible to more accurately adjust the load coefficient stored in advance using the differential value (the amount of change in the load value). Specifically, the load coefficient is increased or decreased by comparing a differential value in a certain usage method with a differential value in another usage method. According to this method, when the use of the ball screw changes, it is possible to obtain the load coefficient according to the use mode. Further, the estimated life of the ball screw according to the use mode can be calculated from the load coefficient. Therefore, the life time of the ball screw can be easily and accurately estimated.
  • the press device 100 calculates the average axial load value calculated by the average axial load value calculation unit 33 and the average of the ball screw calculated by the average rotation speed calculation unit 34. It is calculated based on the rotation speed and the life time of an arbitrary ball screw. From this, it is possible to determine a rough load coefficient by actually using an arbitrary ball screw up to the life and comparing the life expected from the axial load value and the rotation speed with the actual life. Becomes Using the load coefficient obtained by this method, the estimated life when a ball screw having the same type and size as those used up to that time is used in a similar usage method is roughly determined. Therefore, the life time of the ball screw can be easily and accurately estimated.
  • the axial load value applied to the ball screw is determined by comparing the load value applied to the ball screw measured by the load cell, or the load value applied to the ball screw measured by the load cell to the press value. And the load value generated by the acceleration and deceleration of the ball screw when the ram moves up and down. Therefore, the value of the axial load applied to the ball screw is the load value applied to the ball screw measured by the load cell, or the load value applied to the ball screw measured by the load cell and the ball screw when the press ram moves up and down.
  • the processing of the press device 100 is recorded on a computer system or a computer-readable recording medium, and the program recorded on the recording medium is read and executed by the press device 100, thereby realizing the press device 100 of the present invention.
  • the computer system or the computer includes an OS and hardware such as peripheral devices.
  • ⁇ "Computer system or computer also includes a homepage providing environment (or display environment) if a WWW (World Wide Web) system is used.
  • the above program may be transmitted from a computer system or computer storing this program in a storage device or the like to another computer system or computer via a transmission medium or by a transmission wave in the transmission medium.
  • the "transmission medium” for transmitting a program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement
  • the embodiments of the present invention have been described in detail with reference to the drawings.
  • the specific configuration is not limited to the embodiments, and includes a design and the like without departing from the gist of the present invention.
  • the function of estimating the life of the ball screw is included as a part of the function of the press device 100.
  • the present invention is not limited to this. May be provided separately from the press device 100.
  • the server on the cloud may have the function of estimating the life of the ball screw.
  • the example has been described in which the life estimation of the ball screw is mainly performed only by the unique press device 100.
  • the learning data can be obtained by using a plurality of the same press devices 100 at the same time. May be shared. In this case, since a large amount of learning data can be obtained from a plurality of the same press devices 100, the learning time can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Press Drives And Press Lines (AREA)
  • Control Of Presses (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

This invention is for simply and highly accurately estimating the lifetime of a ball screw. A device according to this invention comprises an initial load coefficient storage unit for storing a load coefficient for a ball screw, a load value detection unit, a differential value calculation unit, an average axial-direction-load-value calculation unit, an average rotation speed calculation unit, and an estimated-ball-screw-lifespan calculation unit. The load value detection unit detects values for the axial-direction load applied to the ball screw. The differential value calculation unit calculates the amount of variation in the detected axial-direction-load values. A load coefficient adjustment unit adjusts the load coefficient for the ball screw stored by the initial load coefficient storage unit on the basis of the calculated amount of load value variation. The average axial-direction-load-value calculation unit calculates an average axial-direction-load value on the basis of the detected load values. The average rotation speed calculation unit calculates the average rotation speed of the ball screw. The estimated-ball-screw-lifespan calculation unit uses the adjusted load coefficient, the calculated average axial-direction-load value, and the calculated average rotation speed of the ball screw to calculate an estimated lifespan corresponding to how the ball screw is used.

Description

プレス装置、端末装置、ボールねじ推定寿命算出方法およびプログラムPress device, terminal device, ball screw estimated life calculation method and program
 本発明は、プレス装置、端末装置、ボールねじ推定寿命算出方法およびプログラムに関する。The present invention relates to a press device, a terminal device, a ball screw estimated life calculation method, and a program.
 ワークに対して、ラムを上下運転させて、荷重を加える電動プレスのようなプレス装置が知られている。
 この種のプレス装置では、モータの回転を直線運動に変換して、ラムを上下運転させているが、このようなラムの上下運転を実現するための重要な機構部品としてボールねじがある。
 このボールねじには、荷重運転により、衝撃が加わることから、劣化が進む。適切な荷重による運転を行うためには、寿命をできるだけ精度よく推定することが求められる。
2. Description of the Related Art A press device such as an electric press that applies a load by moving a ram up and down with respect to a work is known.
In this type of press device, the rotation of the motor is converted into linear motion to operate the ram up and down. A ball screw is an important mechanical component for realizing such up and down operation of the ram.
The ball screw is subjected to an impact by the load operation, so that the ball screw is deteriorated. In order to operate with an appropriate load, it is required to estimate the life as accurately as possible.
 このような要求に対して、特許文献1には、ボールねじの軸方向荷重とモータ電流値との関係、及び該ボールねじの基本動定格荷重を予め記憶させる手段と、サンプリング間隔と時間を設定する手段と、前記ボールねじの使用量を記録する手段を具え、前記サンプリング間隔毎に変動係数を測定し、該測定値に基づいて計算された定格疲れ寿命値を書換え可能に構成し、該間隔毎の残寿命を表示するボールねじの寿命監視装置が開示されている(例えば、特許文献1参照)。In response to such a demand, Patent Document 1 describes a means for storing in advance the relationship between the axial load of the ball screw and the motor current value, the basic dynamic load rating of the ball screw, and the sampling interval and time. Means for recording the amount of use of the ball screw, a coefficient of variation is measured at each sampling interval, and the rated fatigue life value calculated based on the measured value is rewritable. A ball screw life monitoring device that displays the remaining life of each ball screw is disclosed (for example, see Patent Document 1).
特開平5-187965号公報JP-A-5-187965
 ここで、特許文献1では、ボールねじにかかる平均軸方向荷重Fと、前記ボールねじの平均回転速度N、運動状態によって決定される荷重係数fに基づいて、ボールねじの推定寿命時間を算出することが開示されている。Here, in Patent Document 1, the average axial load F m applied to the ball screw, the average rotational speed N m of the ball screw, on the basis of the load factor f w is determined by the kinetic state, the estimated lifetime of the ball screw Is disclosed.
 しかしながら、一般に、荷重係数fは、ボールねじにかかる衝撃の大きい運転ほど大きくなり、この値が大きくなるほど、推定寿命時間は短くなる。
 また、荷重係数fの取り得る値の範囲は、一般に、1.0~2.0であり、標準の運転状態では、f=1.3、衝撃を伴う運転の場合には、f=1.8程度とされている。
However, in general, load factor f w is greater the larger the operation of the impact on the ball screw, the more the value is large, the estimated life time is shortened.
Further, the range of possible values of load factor f w is generally 1.0 to 2.0, the standard operating conditions, f w = 1.3, in the case of driving with shock, f w = 1.8.
 ここで、荷重係数が、f=1.8の場合の寿命は、計算上、f=1.3の場合の寿命の約38%となり、荷重係数fをどのように決定するのかによって、推定寿命時間の長さに大きな影響を与える。
 つまり、予測より早く、ボールねじが壊れてしまうことを防ぐために、荷重係数を大きな値にして予測寿命を短く算出することも考えられるが、この場合には、ボールねじの寿命までにまだ余裕があるにもかかわらず、ボールねじを交換してしまい、その結果ボールねじやその交換にかかる工数が無駄になってしまう可能性がある。
Here, a load factor, the life in the case of f w = 1.8, the computational becomes about 38% of the life of the case of f w = 1.3, depending determine how the load coefficient f w Greatly affects the length of the estimated lifetime.
In other words, in order to prevent the ball screw from breaking earlier than expected, it is conceivable to calculate the predicted life shorter by increasing the load coefficient, but in this case, there is still room for the life of the ball screw. Despite this, the ball screw is replaced, and as a result, the ball screw and the man-hour required for the replacement may be wasted.
 ところが、特許文献1には、振動や衝撃を「微」、「小」、「中」、「大」の4つに区分して、荷重係数fが定義されているのみで、上記の荷重係数fが推定寿命時間与える影響の大きさが十分に考慮されているとは言えない。However, Patent Document 1, the vibration and shock "fine", "small", "medium", and divided into four "large", only load coefficient f w are defined, above the load It cannot be said that the magnitude of the influence of the coefficient fw on the estimated lifetime is sufficiently considered.
 また、特許文献1の技術では、モータ電流の変動の大きさ、つまり、トルクの変動によって、ボールねじの推定寿命時間を求めているが、トルクの変動は、ロードセル荷重値の変動値よりも精度が低く、また、衝撃の大きさと、ボールねじの寿命と、を明確に関連付けた検証は、一般に、困難であり、ボールねじが、実際に壊れるまでの検証を様々な環境や動作のパターンにおいて、荷重係数の大きさを明確に定義できるまで行うのは困難であることから、ボールねじの推定寿命時間の手法としては、簡便かつ高精度な手法とは言えないという問題がある。Further, in the technique of Patent Document 1, the estimated life time of the ball screw is obtained from the magnitude of the fluctuation of the motor current, that is, the fluctuation of the torque, but the fluctuation of the torque is more accurate than the fluctuation value of the load cell load value. In general, it is difficult to verify that the shock magnitude is clearly related to the life of the ball screw, and the verification until the ball screw actually breaks is performed in various environments and operating patterns. Since it is difficult to perform until the magnitude of the load coefficient can be clearly defined, there is a problem that the method for estimating the life time of the ball screw cannot be said to be a simple and highly accurate method.
 そこで、本発明は、上述の課題に鑑みてなされたものであり、簡便かつ高精度に、ボールねじの寿命時間を推定するプレス装置、端末装置、ボールねじ推定寿命算出方法およびプログラムを提供することを目的とする。In view of the above, the present invention has been made in view of the above-described problems, and provides a press device, a terminal device, a ball screw estimated life calculation method, and a program that easily and accurately estimate the life time of a ball screw. With the goal.
 形態1;本発明の1またはそれ以上の実施形態は、ボールねじに加えられる軸方向の荷重値を検出する荷重値検出部と、前記荷重値検出部において検出される荷重値に基づいて、平均軸方向荷重値を算出する平均軸方向荷重値算出部と、前記ボールねじの平均回転速度を算出する平均回転速度算出部と、前記ボールねじの荷重係数と、前記平均軸方向荷重値算出部において算出される平均軸方向荷重値と、前記平均回転速度算出部において算出される前記ボールねじの平均回転速度と、に基づいて、前記ボールねじの使用態様に応じた推定寿命を算出するプレス装置であって、前記荷重値検出部において検出される前記軸方向の荷重値の変化量を算出するディファレンシャル値算出部と、前記ディファレンシャル値算出部において算出される荷重値の変化量に基づいて、前記ボールねじの荷重係数を調整する荷重係数調整部と、を備えたことを特徴とするプレス装置を提案している。Mode 1: One or more embodiments of the present invention provide a load value detecting unit that detects an axial load value applied to a ball screw, and an average value based on the load value detected by the load value detecting unit. An average axial load value calculating unit that calculates an axial load value, an average rotational speed calculating unit that calculates an average rotational speed of the ball screw, a load coefficient of the ball screw, and the average axial load value calculating unit. Based on the calculated average axial load value and the average rotation speed of the ball screw calculated by the average rotation speed calculation unit, a press device that calculates an estimated life according to a use mode of the ball screw. A differential value calculation unit that calculates an amount of change in the axial load value detected by the load value detection unit; and a differential value calculation unit that calculates a change amount of the axial load value. Based on the amount of change in the load value, proposes a press apparatus characterized in that and a load coefficient adjusting unit that adjusts the weighting factor of the ball screw.
 形態2;本発明の1またはそれ以上の実施形態は、前記荷重係数調整部により調整される荷重係数は、前記平均軸方向荷重値算出部で算出される平均軸方向荷重値と、前記平均回転速度算出部で算出される前記ボールねじの平均回転速度と、任意のボールねじの実際の寿命期間と、に基づいて算出されることを特徴とするプレス装置を提案している。 Mode 2; In one or more embodiments of the present invention, the load coefficient adjusted by the load coefficient adjustment unit is the average axial load value calculated by the average axial load value calculation unit, and the average rotation. The present invention proposes a press device that is calculated based on an average rotation speed of the ball screw calculated by a speed calculation unit and an actual life period of an arbitrary ball screw.
 形態3;本発明の1またはそれ以上の実施形態は、前記荷重係数調整部において調整された荷重係数は、前記算出された推定寿命と、該推定寿命を算出したボールねじの実際の寿命期間と、に基づいてさらに調整されることを特徴とするプレス装置を提案している。Mode 3: In one or more embodiments of the present invention, the load coefficient adjusted by the load coefficient adjustment unit may include the calculated estimated life and the actual life of the ball screw from which the estimated life is calculated. , A press apparatus characterized by being further adjusted based on the following.
 形態4;本発明の1またはそれ以上の実施形態は、前記ボールねじに加えられる前記軸方向の荷重値は、ロードセルで計測された前記ボールねじにかかる荷重値、又は該ロードセルで計測された前記ボールねじにかかる荷重値とラムが上下運動する際の前記ボールねじの加減速により生じる荷重値との合算の値であることを特徴とするプレス装置を提案している。 Mode 4; In one or more embodiments of the present invention, the axial load value applied to the ball screw is a load value applied to the ball screw measured by a load cell, or the load value measured by the load cell. A press device is proposed, which is a sum of a load value applied to a ball screw and a load value generated by acceleration and deceleration of the ball screw when the ram moves up and down.
 形態5;本発明の1またはそれ以上の実施形態は、ボールねじに加えられる軸方向の荷重値を検出する荷重値検出部と、前記荷重値検出部において検出される荷重値に基づいて、平均軸方向荷重値を算出する平均軸方向荷重値算出部と、前記ボールねじの平均回転速度を算出する平均回転速度算出部と、前記ボールねじの荷重係数と、前記平均軸方向荷重値算出部において算出される平均軸方向荷重値と、前記平均回転速度算出部において算出される前記ボールねじの平均回転速度と、に基づいて、前記ボールねじの使用態様に応じた推定寿命を算出する算出部と、を備えた端末装置であって、前記荷重値検出部において検出される前記軸方向の荷重値の変化量を算出するディファレンシャル値算出部と、前記ディファレンシャル値算出部において算出される荷重値の変化量に基づいて、前記ボールねじの荷重係数を調整する荷重係数調整部と、を備えたことを特徴とする端末装置を提案している。Mode 5: One or more embodiments of the present invention include a load value detection unit that detects an axial load value applied to a ball screw, and an average value based on the load value detected by the load value detection unit. An average axial load value calculating unit that calculates an axial load value, an average rotational speed calculating unit that calculates an average rotational speed of the ball screw, a load coefficient of the ball screw, and the average axial load value calculating unit. A calculating unit that calculates an estimated life according to a usage mode of the ball screw based on the calculated average axial load value and the average rotation speed of the ball screw calculated by the average rotation speed calculation unit. A differential value calculation unit that calculates an amount of change in the axial load value detected by the load value detection unit; and the differential value calculation unit. Based on the variation of the load value calculated Oite proposes a terminal device, characterized in that it and a load coefficient adjusting unit that adjusts the weighting factor of the ball screw.
 形態6;本発明の1またはそれ以上の実施形態は、ボールねじに加えられる軸方向の荷重値を検出する荷重値検出部と、前記荷重値検出部において検出される荷重値に基づいて、平均軸方向荷重値を算出する平均軸方向荷重値算出部と、前記ボールねじの平均回転速度を算出する平均回転速度算出部と、前記ボールねじの荷重係数と、前記平均軸方向荷重値算出部において算出される平均軸方向荷重値と、前記平均回転速度算出部において算出される前記ボールねじの平均回転速度と、前記ボールねじの使用態様に応じた推定寿命を算出する算出部と、ディファレンシャル値算出部と、荷重係数調整部と、を含む端末装置におけるボールねじ推定寿命算出方法であって、前記ディファレンシャル値算出部が、前記荷重値検出部において検出される前記軸方向の荷重値の変化量を算出する第1の工程と、前記荷重係数調整部が、前記ディファレンシャル値算出部において算出される荷重値の変化量に基づいて、前記ボールねじの荷重係数を調整する第2の工程と、を備えたことを特徴とするボールねじ推定寿命算出方法を提案している。Mode 6: One or more embodiments of the present invention include a load value detection unit that detects an axial load value applied to a ball screw, and an average value based on the load value detected by the load value detection unit. An average axial load value calculating unit that calculates an axial load value, an average rotational speed calculating unit that calculates an average rotational speed of the ball screw, a load coefficient of the ball screw, and the average axial load value calculating unit. A calculating section for calculating an average axial load value to be calculated, an average rotation speed of the ball screw calculated by the average rotation speed calculation section, and an estimated life according to a use mode of the ball screw; and a differential value calculation A ball screw estimated life calculation method in a terminal device including a unit and a load coefficient adjustment unit, wherein the differential value calculation unit detects the life of the ball screw by the load value detection unit. A first step of calculating the amount of change in the axial load value, and the load coefficient adjustment unit determines a load coefficient of the ball screw based on the amount of change in the load value calculated by the differential value calculation unit. And a second step of adjusting the estimated life of the ball screw.
 形態7;本発明の1またはそれ以上の実施形態は、ボールねじに加えられる軸方向の荷重値を検出する荷重値検出部と、前記荷重値検出部において検出される荷重値に基づいて、平均軸方向荷重値を算出する平均軸方向荷重値算出部と、前記ボールねじの平均回転速度を算出する平均回転速度算出部と、前記ボールねじの荷重係数と、前記平均軸方向荷重値算出部において算出される平均軸方向荷重値と、前記平均回転速度算出部において算出される前記ボールねじの平均回転速度と、前記ボールねじの使用態様に応じた推定寿命を算出する算出部と、ディファレンシャル値算出部と、荷重係数調整部と、を含む端末装置におけるボールねじ推定寿命算出方法をコンピュータに実行させるためのプログラムであって、前記ディファレンシャル値算出部が、前記荷重値検出部において検出される前記軸方向の荷重値の変化量を算出する第1の工程と、前記荷重係数調整部が、前記ディファレンシャル値算出部において算出される荷重値の変化量に基づいて、前記ボールねじの荷重係数を調整する第2の工程と、をコンピュータに実行させるためのプログラムを提案している。Mode 7: One or more embodiments of the present invention provide a load value detecting unit that detects an axial load value applied to a ball screw, and an average value based on the load value detected by the load value detecting unit. An average axial load value calculating unit that calculates an axial load value, an average rotational speed calculating unit that calculates an average rotational speed of the ball screw, a load coefficient of the ball screw, and the average axial load value calculating unit. A calculating section for calculating an average axial load value to be calculated, an average rotation speed of the ball screw calculated by the average rotation speed calculation section, and an estimated life according to a use mode of the ball screw; and a differential value calculation A program for causing a computer to execute a method of calculating a life expectancy of a ball screw in a terminal device, the method comprising: A first step of calculating a change amount of the axial load value detected by the load value detecting section, and a load value calculated by the differential value calculating section by the load coefficient adjusting section. And a second step of adjusting the load coefficient of the ball screw based on the change amount of the ball screw.
 本発明の1またはそれ以上の実施形態によれば、簡便かつ高精度に、ボールねじの寿命時間を推定することができるという効果がある。According to one or more embodiments of the present invention, there is an effect that the life time of a ball screw can be easily and accurately estimated.
本発明の実施形態に係るプレス装置の構造を示す図である。 It is a figure showing the structure of the press device concerning the embodiment of the present invention.
本発明の実施形態に係るプレス装置の電気的構成を示す図である。 It is a figure showing the electric composition of the press device concerning the embodiment of the present invention.
本発明の実施形態に係る中央演算処理装置の電気的構成を示す図である。 FIG. 1 is a diagram illustrating an electrical configuration of a central processing unit according to an embodiment of the present invention.
従来の荷重係数の決め方を示した図である。 It is a figure showing how to determine a conventional load coefficient.
本発明の実施形態に係る処理フロー図である。 It is a processing flow figure concerning an embodiment of the present invention.
本発明の実施形態に係る処理フロー図である。 It is a processing flow figure concerning an embodiment of the present invention.
<実施形態>
 以下、本発明の実施形態について、図1から図5を用いて説明する。
<Embodiment>
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 5.
<プレス装置の構造>
 図1を用いて、本実施形態に係るプレス装置100の構造を説明する。
<Press device structure>
The structure of the press device 100 according to the present embodiment will be described with reference to FIG.
 本実施形態に係るプレス装置100は、図1に示すように、昇降動作により、ワークW(加工対象)に対して所望の圧力を与えるプレス用のラム1と、該ラム1に昇降動作(直線運動)を与えるボールねじ2とからなり、これらが、プレス本体3内に設けられている。
 また、駆動源となるACサーボモータ等のサーボモータ4もプレス本体3に接続されたケーシング5の頭部枠体内に収納されている。そして、サーボモータ4の駆動は、プーリ、ベルトを介してボール螺子2に伝達される。
As shown in FIG. 1, a press device 100 according to the present embodiment includes a press ram 1 that applies a desired pressure to a work W (a processing target) by a lifting operation, and a lifting operation (a straight line) on the ram 1. ), Which are provided in the press body 3.
In addition, a servomotor 4 such as an AC servomotor serving as a driving source is also housed in a head frame of a casing 5 connected to the press body 3. The drive of the servo motor 4 is transmitted to the ball screw 2 via a pulley and a belt.
 ラム1は、図1に示すように、筒状体に形成されている。具体的には、円筒状に形成された筒状本体1aの内部に軸方向に沿って中空状部が形成されており、該中空状部の内部にボール螺子2の螺子軸2aが挿入可能となっている。
 また、ラム1の筒状本体1aの軸長方向端部箇所には、ボール螺子2のナット体2bが固着されている。
The ram 1 is formed in a cylindrical body as shown in FIG. Specifically, a hollow portion is formed along the axial direction inside a cylindrical main body 1a formed in a cylindrical shape, and the screw shaft 2a of the ball screw 2 can be inserted into the hollow portion. Has become.
A nut 2b of the ball screw 2 is fixed to an end of the cylindrical main body 1a of the ram 1 in the axial direction.
 筒状本体1aの先端部には、起歪柱9が装着自在となるように構成されており、実際には、起歪柱9がワークWに当接して、適宜、圧力を与えるものである。
 また、起歪柱9は、歪ゲージが取り付け可能に構成され、この歪ゲージによって、ワークWに与える圧力を検出することができるようになっている。
 また、起歪柱9がワークWにかける荷重の反作用として、ラム1を動かしているボールねじに同様の荷重がかかる。
At the tip end of the tubular main body 1a, a strain-flexing column 9 is configured to be freely attachable. Actually, the strain-flexing column 9 comes into contact with the work W and appropriately applies pressure. .
The strain column 9 is configured such that a strain gauge can be attached thereto, and the strain gauge can detect a pressure applied to the workpiece W.
In addition, a similar load is applied to the ball screw moving the ram 1 as a reaction of the load applied to the workpiece W by the strain-flexing column 9.
 筒状本体1aの外周側面を包むようにして筒状ガイド6が設けられている。
 筒状ガイド6は、ケーシング5内に固定され、該筒状ガイド6に沿ってラム1が昇降移動可能に構成されている。
A cylindrical guide 6 is provided so as to wrap the outer peripheral side surface of the cylindrical main body 1a.
The cylindrical guide 6 is fixed in the casing 5, and the ram 1 can move up and down along the cylindrical guide 6.
<プレス装置の電気的構成>
 図2に示すように、本実施形態に係るプレス装置100は、サーボモータドライバー13と、エンコーダ14と、回路部15と、駆動指令パルス発生部16と、エンコーダ位置カウンタ17と、制御プログラム記憶部21と、表示部22と、操作部23と、一時記憶部24と、初期荷重係数記憶部25と、荷重値記憶部26と、回転速度記憶部27と、CPU(中央演算処理装置)30とから構成されている。
<Electrical configuration of press device>
As shown in FIG. 2, the press device 100 according to the present embodiment includes a servo motor driver 13, an encoder 14, a circuit unit 15, a drive command pulse generation unit 16, an encoder position counter 17, a control program storage unit 21, a display unit 22, an operation unit 23, a temporary storage unit 24, an initial load coefficient storage unit 25, a load value storage unit 26, a rotation speed storage unit 27, a CPU (central processing unit) 30, It is composed of
 制御プログラム記憶部21は、CPU(中央演算処理装置)30がプレス装置100全体の動作や処理を制御するための制御プログラムを記憶する。
 例えば、本実施形態においては、プレス作業に関するメインプログラムはもとより、後述する荷重値記憶部26に記憶された荷重値の時系列データに基づいて、ディファレンシャル値を算出するプログラムや算出されたディファレンシャル値と、後述する初期荷重係数記憶部25に記憶されている初期荷重係数と、に基づいて、荷重係数の調整量を算出するプログラム、後述する荷重値記憶部26に記憶された荷重値に基づいて、平均軸方向荷重値を算出するプログラム、後述する回転速度記憶部27に記憶されたボールねじの回転速度に基づいて、ボールねじの平均回転速度を算出するプログラム、前述の調整された荷重係数と、算出された平均軸方向荷重値およびボールねじの平均回転速度と、に基づいて、ボールねじの推定寿命時間を算出するプログラム等を記憶する。
The control program storage unit 21 stores a control program for the CPU (central processing unit) 30 to control the operation and processing of the entire press apparatus 100.
For example, in the present embodiment, a program for calculating a differential value or a calculated differential value based on time-series data of a load value stored in a load value A program for calculating an adjustment amount of the load coefficient based on an initial load coefficient stored in an initial load coefficient storage unit 25 described later, and a load value stored in a load value storage unit 26 described later. A program for calculating the average axial load value, a program for calculating the average rotational speed of the ball screw based on the rotational speed of the ball screw stored in the rotational speed storage unit 27 described below, the adjusted load coefficient described above, Based on the calculated average axial load value and the average rotation speed of the ball screw, the estimated life time of the ball screw is calculated. For storing programs and the like to be out.
 表示部22は、例えば、液晶パネルとタッチパネルとが積層され、各種情報を表示する表示装置である。
 当該表示部22は、プレス装置100に設けられていてもよいし、他の装置あるいは、独立の装置であってもよい。
 本実施形態では、例えば、算出されたボールねじの推定寿命時間等の情報を表示する。
The display unit 22 is, for example, a display device in which a liquid crystal panel and a touch panel are stacked and various types of information are displayed.
The display unit 22 may be provided in the press device 100, or may be another device or an independent device.
In the present embodiment, for example, information such as the calculated estimated life time of the ball screw is displayed.
 操作部23は、運転条件件等を設定するためのタッチパネル、タクトスイッチ等で構成されている。The operation unit 23 includes a touch panel, a tact switch, and the like for setting operation conditions and the like.
 一時記憶部24は、例えば、RAM等で構成され、一時的なデータを記憶する。
 本実施形態では、基本動定格荷重等を記憶する。
The temporary storage unit 24 includes, for example, a RAM or the like, and stores temporary data.
In the present embodiment, the basic dynamic load rating and the like are stored.
 初期荷重係数記憶部25は、ボールねじの任意の荷重係数を記憶する。
 ここに、記憶された初期荷重係数は、後述する荷重係数調整部32の処理において、初期値として用いられる。
The initial load coefficient storage unit 25 stores an arbitrary load coefficient of the ball screw.
Here, the stored initial load coefficient is used as an initial value in the processing of the load coefficient adjustment unit 32 described later.
 荷重値記憶部26は、荷重値検出部としての回路部15やエンコーダ14において検出された加圧部の加圧位置とその加圧位置における荷重値とを対応づけた時系列データを記憶する。The load value storage unit 26 stores time-series data in which the pressing position of the pressing unit detected by the circuit unit 15 as the load value detecting unit or the encoder 14 is associated with the load value at the pressing position.
 回転速度記憶部27は、例えば、後述する駆動指令パルス発生部16から発生される駆動指令パルスから求められるモータ電流から、このモータ電流とある種の関連性を有するボールねじの回転速度を算出する図示しない機能ブロックにより得られた回転速度を記憶する。The rotation speed storage unit 27 calculates, for example, a rotation speed of a ball screw having a certain relationship with the motor current from a motor current obtained from a drive command pulse generated from a drive command pulse generation unit 16 described later. The rotational speed obtained by a functional block (not shown) is stored.
 荷重を検出する検出部としての回路部15は、起歪柱9に取り付けられた歪みゲージの抵抗変化に対する信号を増幅し、A/D変換処理によりアナログ信号をデジタル信号に変換した後に、CPU(中央演算処理装置)30へ出力する。The circuit unit 15 as a detection unit for detecting a load amplifies a signal corresponding to a change in resistance of a strain gauge attached to the strain-giving column 9 and converts an analog signal into a digital signal by A / D conversion processing. (Central processing unit) 30.
 駆動指令パルス発生部16は、CPU(中央演算処理装置)30からの指令に基づいて、所望の駆動指令パルスを発生し、CPU(中央演算処理装置)30を介して、発生させた駆動指令パルス信号をサーボモータドライバー13に出力する。
 そして、サーボモータドライバー13の制御によりサーボモータ4を駆動することにより、ラム摺動機構11がラム1を上下に摺動する。
The drive command pulse generator 16 generates a desired drive command pulse based on a command from a CPU (central processing unit) 30 and generates the drive command pulse via the CPU (central processing unit) 30. The signal is output to the servo motor driver 13.
Then, by driving the servo motor 4 under the control of the servo motor driver 13, the ram sliding mechanism 11 slides the ram 1 up and down.
 位置を検出する検出部としてのエンコーダ14は、サーボモータ4の回転角度を検知するためのものであり、ラム1の位置を検出するために利用される。
 また、エンコーダ14の情報は、フィードバック制御を行うために、サーボモータドライバー13に位置情報を与えている。
 また、エンコーダ14の位置情報は、エンコーダ位置カウンタ29を介して、CPU(中央演算処理装置)30において読み取ることができ、これによってラム1の移動量を検出する。
The encoder 14 serving as a detecting unit for detecting the position is for detecting the rotation angle of the servomotor 4 and is used for detecting the position of the ram 1.
The information of the encoder 14 gives position information to the servo motor driver 13 for performing feedback control.
Further, the position information of the encoder 14 can be read by a CPU (Central Processing Unit) 30 via an encoder position counter 29, whereby the movement amount of the ram 1 is detected.
 CPU(中央演算処理装置)30は、制御プログラム記憶部21に格納された制御プログラムに従って、プレス装置100全体の動作を制御する。本実施形態においては、特に、ボールねじの寿命時間を推定する処理を主として、実施する。The CPU (central processing unit) 30 controls the operation of the entire press device 100 according to a control program stored in the control program storage unit 21. In the present embodiment, particularly, processing for estimating the life time of the ball screw is mainly performed.
<中央演算処理装置の電気的構成>
 本実施形態に係る中央演算処理装置30は、図3に示すように、ディファレンシャル値算出部31と、荷重係数調整部32と、平均軸方向荷重値算出部33と、平均回転速度算出部34と、ボールねじ推定寿命算出部35と、を含んで構成されている。
<Electrical configuration of central processing unit>
As shown in FIG. 3, the central processing unit 30 according to the present embodiment includes a differential value calculation unit 31, a load coefficient adjustment unit 32, an average axial load value calculation unit 33, and an average rotation speed calculation unit 34. , A ball screw estimated life calculation unit 35.
 ディファレンシャル値算出部31は、荷重値記憶部26に記憶されたボールねじに加えられる軸方向の荷重値に基づいて、その軸方向の荷重値の変化量を算出する。
 なお、ここで、軸方向の荷重値の変化量とは、軸方向の荷重値の単位時間当たりの変化量であり、この荷重値fは、以下、数1に示すように、ロードセルで計測されたボールねじにかかる荷重値fm1とプレスのラムが上下運動する際のボールねじの加減速により生じる荷重値fm2との合算の値で算出される。
 また、加減速による荷重値を考慮するのは、現実的な使用状況(極端に大きな加速度がかかり続けない場合)では、加圧時にボールねじにかかる力fm1に比べて、加速度によってボールねじにかかる負荷fm2は無視できるほど小さいが、無負荷時の場合fm2≒0として計算すると、無負荷ならば無限に寿命が尽きないという計算結果になってしまうためである。
Based on the axial load value applied to the ball screw stored in the load value storage unit 26, the differential value calculation unit 31 calculates the amount of change in the axial load value.
Here, the variation of the load value of the axial, the change amount per unit time of the load values of the axial, the load value f m is less, as shown in Equation 1, measured by the load cell is calculated by the value of the sum of the load values f m2 caused by acceleration and deceleration of the ball screw when the load force value f m1 and the press ram according to the ball screw to move up and down.
Also, considering the load value due to acceleration / deceleration, in a realistic use situation (when extremely large acceleration does not continue to be applied), compared to the force f m1 applied to the ball screw at the time of pressurization, the acceleration is applied to the ball screw. Such a load fm2 is so small as to be negligible, but if no load is applied, the calculation result is fm2 ≒ 0, resulting in a calculation result that the life is not infinite if no load is applied.
Figure pctxmlib-appb-M000001
Figure pctxmlib-appb-M000001
 上記の軸方向の荷重値の単位時間当たりの変化量であるディファレンシャル値の変動が大きいほど、瞬時的な荷重の増加が認められ、ボールねじに急激な負荷がかかる衝撃の大きい運動が行われていると考えることができる。
 ここで、ボールねじにかかる荷重値fの変化量であるディファレンシャル値d[N/S]は、単位時間をt[S]としたときに、以下の数2に示す線形回帰直線の傾きの式で求めることができる。
The greater the change in the differential value, which is the amount of change in the axial load value per unit time, the larger the instantaneous increase in the load is. Can be considered.
Here, the differential value d is a variation of the load value f m according to the ball screw [N / S] is a unit of time is taken as t [S], the slope of the linear regression line shown in the equation (2) below It can be obtained by the formula.
Figure pctxmlib-appb-M000002
Figure pctxmlib-appb-M000002
 なお、上記では、単位時間当たりのディファレンシャル値の変化量を求めることを例示したが、i番目のサンプリングがなされた時点のラムの位置をp[mm]として、以下に示す数3により、単位距離当たりのディファレンシャル値の変化量を求めてもよい。In the above description, the calculation of the amount of change in the differential value per unit time has been exemplified. However, the position of the ram at the time when the i-th sampling is performed is defined as p i [mm], and the unit is expressed by the following Expression 3. The change amount of the differential value per distance may be obtained.
Figure pctxmlib-appb-M000003
Figure pctxmlib-appb-M000003
 荷重係数調整部32は、ディファレンシャル値算出部31において算出される荷重値の変化量に基づいて、初期荷重係数記憶部25に記憶されたボールねじの任意の荷重係数を調整する。
 ここで、任意の荷重係数は、後述する平均軸方向荷重値算出部33で算出される平均軸方向荷重値と、平均回転速度算出部34で算出されるボールねじの平均回転速度と、任意のボールねじの寿命時間と、に基づいて、ボールねじ推定寿命算出部35により算出される。
 なお、荷重係数fについて、従来は、図4に示すように、振動あるいは衝撃を、「微」、「小」、「中」、「大」の4つに区分し、かつ、ある幅を持たせて荷重係数fを定めていた。
 しかしながら、例えば、荷重係数fが、f=1.8の場合のボールねじの寿命は、f=1.3の場合のボールねじの寿命の約38%となるほど、ボールねじの寿命の推定においては、影響が大きい。
 また、荷重係数fを決定するための指標となる「振動/衝撃」に関しても定量的な計測手法が確立されていなかった。
 そこで、本実施形態では、上記の従来の課題に対して、荷重係数調整部32において、初期荷重係数記憶部25に記憶されたボールねじの初期荷重係数を基準として、ディファレンシャル値算出部31において算出される荷重値の変化量に基づいて、上記初期荷重係数を調整した荷重係数fを用いて、ボールねじの推定寿命を推定する。
The load coefficient adjustment unit 32 adjusts an arbitrary load coefficient of the ball screw stored in the initial load coefficient storage unit 25 based on the amount of change in the load value calculated by the differential value calculation unit 31.
Here, the arbitrary load coefficient is an average axial load value calculated by an average axial load value calculation unit 33 described later, an average rotation speed of the ball screw calculated by the average rotation speed calculation unit 34, and an arbitrary rotation coefficient. Based on the life time of the ball screw, the estimated life calculation unit 35 calculates the life of the ball screw.
Note that the load coefficient f w, conventionally, as shown in FIG. 4, the vibration or shock, "fine", "small", "medium", divided into four "large", and a width And the load coefficient fw was determined.
However, for example, the life of the ball screw when the load coefficient fw is fw = 1.8 is about 38% of the life of the ball screw when fw = 1.3, so that the life of the ball screw becomes longer. In estimation, the effect is large.
Further, quantitative measurement technique has not been established with regard serves as an index for determining the load factor f w "vibration / shock."
Therefore, in the present embodiment, in order to solve the above-described conventional problem, the differential value calculation unit 31 calculates the load coefficient adjustment unit 32 based on the ball screw initial load coefficient stored in the initial load coefficient storage unit 25. based on the amount of change in load value, using a load factor f w adjusted for the initial weighting factors to estimate the life expectancy of the ball screw.
 平均軸方向荷重値算出部33は、荷重値検出部としての回路部15において検出される荷重値を記憶する荷重値記憶部26に記憶された荷重値に基づいて、平均軸方向荷重値を算出する。The average axial load value calculation unit 33 calculates the average axial load value based on the load values stored in the load value storage unit 26 that stores the load values detected by the circuit unit 15 as the load value detection unit. I do.
 平均回転速度算出部34は、ボールねじの平均回転速度を算出する。
 ボールねじ推定寿命算出部35は、荷重係数調整部32において調整される荷重係数と、平均軸方向荷重値算出部33において算出される平均軸方向荷重値と、平均回転速度算出部34において算出されるボールねじの平均回転速度と、に基づいて、ボールねじの使用態様に応じた推定寿命を算出する。
 具体的には、基本動定格荷重をC[N]、荷重係数をf、平均軸方向荷重値をF[N]、ボールねじの平均回転速度をN[min-1]とすると、寿命回転数L[rev]は、数4に示す式により求まり、推定寿命時間L[h]は、数5に示す式により求まる。なお、平均軸方向荷重値F[N]は、サンプリング数をl、fmiと同じタイミングで一定間隔でサンプリングしたボールねじの回転速度をnmiとして、数6により求まり、平均回転速度をN[min-1]は、数7により求まる。
 得られた推定寿命時間は、表示部22に表示される。
 なお、数4、数5において、基本動定格荷重をC[N]および荷重係数をfは、定数であり、このうち、基本動定格荷重をC[N]は、プレス装置100に使われているボールねじの種類によって異なり、ボールねじメーカーがカタログ等で公表している数値である。
 また、平均軸方向荷重値F[N]とボールねじの平均回転速度N[min-1]は変数であり、サンプリング中(ディファレンシャルのサンプリング中と同時)のプレス装置100の運転環境(ワークWの個体差による荷重のかかり方、速度の違い)によって変化する。
The average rotation speed calculator 34 calculates the average rotation speed of the ball screw.
The ball screw estimated life calculation unit 35 calculates the load coefficient adjusted by the load coefficient adjustment unit 32, the average axial load value calculated by the average axial load value calculation unit 33, and the average rotation speed calculation unit 34. Based on the average rotation speed of the ball screw, an estimated life corresponding to the usage mode of the ball screw is calculated.
Specifically, the basic dynamic load rating C [N], the load coefficient f w, the average axial load value F m [N], the average rotational speed of the ball screw and N m [min -1], The life rotation speed L [rev] is obtained by the equation shown in Equation 4, and the estimated life time L h [h] is obtained by the equation shown in Equation 5. Note that the average axial load value F m [N] is obtained from Equation 6 where the rotational speed of the ball screw sampled at a constant interval at the same timing as f mi and the sampling number is 1 and n mi are obtained by Equation 6, and the average rotational speed is N m [min −1 ] is obtained by Expression 7.
The obtained estimated life time is displayed on the display unit 22.
Note that the number 4, the number 5, f w is the basic dynamic load rating C [N] and the load factor is a constant, of which, C [N] the basic dynamic load rating is used in the press apparatus 100 It depends on the type of ball screw used, and is a numerical value published by a ball screw manufacturer in a catalog or the like.
Further, the average axial load value F m [N] and the average rotation speed N m [min −1 ] of the ball screw are variables, and the operating environment (workpiece) of the press device 100 during sampling (simultaneously with differential sampling). (The difference in the load and the speed due to the individual difference of W).
Figure pctxmlib-appb-M000004
Figure pctxmlib-appb-M000004
Figure pctxmlib-appb-M000005
Figure pctxmlib-appb-M000005
Figure pctxmlib-appb-M000006
Figure pctxmlib-appb-M000006
Figure pctxmlib-appb-M000007
Figure pctxmlib-appb-M000007
<プレス装置の処理>
 本実施形態では、複数パターンの荷重係数fを用いたボールねじの推定寿命計算を同時に行い、実際にボールねじが壊れた時期と最も近いボールねじの推定寿命計算における荷重係数fと、その時のディファレンシャル値をプレス装置100に学習させることにより、さらにユーザ固有の使用環境に合ったボールねじの寿命予測を高精度に行う処理について説明する。
 具体的には、壊れていないボールねじが交換された場合には、ユーザが最適な交換時期であると判断した判定し、一番寿命時間が近い荷重係数fを学習する。
 また、壊れてしまったボールねじを交換した場合には、一番寿命が近く、かつ、壊れたタイミングより寿命が短くなる荷重係数fを学習する。
 なお、以下では、図5、図6を用いて、上記学習を第1段階と第2段階との2回の処理に分けて行う場合を例示して説明する。
<Processing of press machine>
In the present embodiment performs estimation life calculation of the ball screw using a load factor f w multiple patterns simultaneously, the load coefficient f w in fact estimated life calculation nearest ball screw and timing in broken ball screw, when the The following describes a process of making the press device 100 learn the differential value of the above, and thereby highly accurately predicting the life of the ball screw that further matches the user's unique use environment.
Specifically, when the ball screw is not corrupted is replaced, it is determined the user has determined that the optimal replacement time, the best lifetime learning close load factor f w.
Also, if you replace the broken got a ball screw, the most life is near, and life than broken timing to learn the load coefficient f w becomes shorter.
In the following, a case where the learning is performed in two processes of a first stage and a second stage will be described with reference to FIGS. 5 and 6.
<第1段階の学習処理>
 図5を用いて、本実施形態に係るプレス装置における第1段階の学習処理について説明する。なお、第1段階では、大まかな荷重係数fを決定することを目的に処理を行う。
<First stage learning process>
The first-stage learning process in the press device according to the present embodiment will be described with reference to FIG. In the first step, performing processing for the purpose of determining the approximate load factor f w.
 まず、ボールねじの交換あるいはプレスの初期状態であることを確認する(ステップS101)。ステップS101でボールねじの交換が行われた後(あるいは、プレスの初期状態)である場合、平均軸方向荷重Fとボールねじの平均回転速度をNとを所定の想定値(例えば、プレス装置100の設計上、想定している平均軸方向荷重Fとボールねじの平均回転速度をN)として、荷重係数fを1.0から2.0の間で、0.1刻みで変化させ、上記数4、数5を用いて、ボールねじ推定寿命算出部35により、ボールねじの推定寿命を算出する(ステップS102)。First, it is confirmed that the ball screw is replaced or the press is in the initial state (step S101). After replacement of the ball screw is performed in step S101 (or the initial state of the press), then the average axial load F m and the average rotational speed N m and a predetermined assumed value of the ball screw (for example, press the design of the device 100, the average rotational speed of the average axial load F m and a ball screw is assumed as N m), between a load factor f w from 1.0 to 2.0, in increments of 0.1 The estimated life of the ball screw is calculated by the estimated life calculation unit 35 using the above equations (4) and (5) (step S102).
 次に、平均軸方向荷重値算出部33が算出する平均軸方向荷重値F[N]と、ボールねじの平均回転速度N[min-1]とをサンプリングし(ステップS103)、ディファレンシャル値算出部31が算出するディファレンシャル値d[N/S]をサンプリングする(ステップS104)。Next, the average axial load value F m [N] calculated by the average axial load value calculation unit 33 and the average rotation speed N m [min −1 ] of the ball screw are sampled (Step S103), and the differential value is calculated. The differential value d [N / S] calculated by the calculator 31 is sampled (step S104).
 そして、ステップS103において、サンプリングした平均軸方向荷重値F[N]と、ボールねじの平均回転速度N[min-1]と、上記数4、数5とを用いて、ボールねじ推定寿命算出部35により、ボールねじの推定寿命を再算出する(ステップS105)。In step S103, the estimated life of the ball screw is calculated using the sampled average axial load value F m [N], the average rotation speed N m [min −1 ] of the ball screw, and the above equations (4) and (5). The calculation unit 35 recalculates the estimated life of the ball screw (step S105).
 その後、実際にボールねじが壊れていないかをユーザが判断する(ステップS106)。ステップS106において、ユーザによりボールねじが壊れていると判断された場合(ステップS106の「YES」)には、算出した推定寿命時間が実際の寿命時間より短いもののうち、最も時間が長い算出推定寿命時間に対応する荷重係数fを真値として学習し(ステップS108)、ステップS104において、サンプリングしたディファレンシャル値dの時間平均値を算出して(ステップS110)、第1段階の学習処理を終了する。Thereafter, the user determines whether the ball screw is actually broken (step S106). If it is determined in step S106 that the ball screw is broken by the user ("YES" in step S106), the calculated estimated life time is the longest among the calculated estimated life times shorter than the actual life time. learns the load factor f w corresponding to the time as a true value (step S108), in step S104, and calculates the time average value of the sampled differential value d (step S110), and ends the learning processing in the first stage .
 一方で、ステップS106において、ユーザによりボールねじが壊れていないと判断された場合(ステップS106の「NO」)には、ボールねじは、壊れていないが劣化が進んでいるために交換が必要か否かをユーザが判断し(ステップS107)、ユーザがボールねじの交換は必要ないと判断した場合(ステップS107の「NO」)には、処理をステップS103に戻す。On the other hand, if it is determined in step S106 that the ball screw is not broken by the user ("NO" in step S106), the ball screw is not broken but has deteriorated and needs to be replaced. The user determines whether or not it is not necessary (step S107). If the user determines that the ball screw need not be replaced ("NO" in step S107), the process returns to step S103.
 また、ステップS107において、ユーザがボールねじの交換が必要と判断した場合(ステップS107の「YES」)には、その判断した時点を実際の寿命時間であるとし、実際のボールねじの寿命時間に最も近い荷重係数fを真値として学習し(ステップS109)、ステップS104において、サンプリングしたディファレンシャル値dの時間平均値を算出して(ステップS110)、第1段階の学習処理を終了する。When the user determines in step S107 that the ball screw needs to be replaced (“YES” in step S107), the time when the determination is made is regarded as the actual life time, and the actual life time of the ball screw is determined. learning closest load factor f w as a true value (step S109), in step S104, and calculates the time average value of the sampled differential value d (step S110), and ends the learning processing in the first stage.
<第2段階の学習処理>
 図6を用いて、本実施形態に係るプレス装置における第2段階の学習処理について説明する。
 なお、第2段階では、第1段階で学習した荷重係数fを初期値とし、そこからさらに荷重係数fを細かく調整して精度を上げていく。
<Learning process of second stage>
With reference to FIG. 6, a description will be given of a second-stage learning process in the press device according to the present embodiment.
In the second stage, the load coefficient f w learned in the first stage as the initial value, is increased accuracy finely adjusted more load coefficient f w therefrom.
 まず、第1段階の学習処理時と比べてボールねじの環境が大きく変わった(例えば、ワークWが全く違うものに変更された等)か否かをユーザが判断する(ステップS201)。
 このとき、ボールねじの環境が大きく変わっているとユーザが判断した場合(ステップS201の「YES」)には、第2段階を終了して、第1段階から学習をやり直す。
First, the user determines whether or not the environment of the ball screw has changed significantly (for example, the work W has been changed to a completely different one, etc.) as compared with the time of the first-stage learning process (step S201).
At this time, if the user determines that the environment of the ball screw has changed significantly ("YES" in step S201), the second stage is terminated and learning is restarted from the first stage.
 一方で、ボールねじの環境が大きく変わっていないとユーザが判断した場合(ステップS201の「NO」)には、ユーザがボールねじの交換を行い(ステップS202)、一定時間間隔で、平均軸方向荷重値、ボールねじの平均回転速度、ディファレンシャル値dの時間平均値を取得する(ステップS203)。
 なお、ボールねじの交換は、交換の前後において、スペック等が全く異ならないボールねじにより行う。
On the other hand, when the user determines that the environment of the ball screw has not changed significantly (“NO” in step S201), the user replaces the ball screw (step S202), and at regular time intervals, the average axial direction is changed. A time average value of the load value, the average rotation speed of the ball screw, and the differential value d is obtained (step S203).
The replacement of the ball screw is performed by using a ball screw whose specifications and the like do not differ before and after the replacement.
 次に、CPU(中央演算処理装置)30は、ステップS203において取得したディファレンシャル値dの時間平均値と、第1段階のステップS110において取得したディファレンシャル値dの時間平均値とを比較する(ステップS204)。Next, the CPU (central processing unit) 30 compares the time average value of the differential value d acquired in step S203 with the time average value of the differential value d acquired in step S110 of the first stage (step S204). ).
 CPU(中央演算処理装置)30は、比較の結果、ステップS203において取得したディファレンシャル値dの時間平均値が、第1段階のステップS110において取得したディファレンシャル値dの時間平均値よりも大きいと判断した場合(ステップS204の「YES」)には、第1段階の時よりも衝撃の多い運転を行っていたと判断して、荷重係数fを以前の荷重係数fよりも小さい値に変更して(ステップS206)、処理をステップS207に遷移する。
 なお、ステップS206においては、例えば、荷重係数fを以前の荷重係数fよりも0.1間隔で小さくする。
As a result of the comparison, the CPU (central processing unit) 30 determines that the time average of the differential value d obtained in step S203 is larger than the time average of the differential value d obtained in step S110 of the first stage. case ( "YES" in step S204), it is determined to have been subjected to high operating shock than in the first stage, by changing the load factor f w to a value smaller than the previous load coefficient f w (Step S206), the process proceeds to Step S207.
In the step S206, for example, to reduce by 0.1 intervals than the previous load factor f w Load Factor f w.
 一方で、CPU(中央演算処理装置)30は、比較の結果、ステップS203において取得したディファレンシャル値dの時間平均値が、第1段階のステップS110において取得したディファレンシャル値dの時間平均値よりも小さいと判断した場合(ステップS204の「NO」)には、第1段階の時よりも衝撃の少ない運転を行っていたと判断して、荷重係数fを以前の荷重係数fよりも大きい値に変更して(ステップS205)、処理をステップS207に遷移する。
 なお、ステップS205においては、例えば、荷重係数fを以前の荷重係数fよりも0.1間隔で大きくする。
On the other hand, as a result of the comparison, the CPU (central processing unit) 30 determines that the time average value of the differential value d obtained in step S203 is smaller than the time average value of the differential value d obtained in step S110 of the first stage. If it is determined that the ( "NO" in step S204), it is determined to have been subjected to less operating shock than in the first stage, a load factor f w to a value greater than the previous load coefficient f w After the change (step S205), the process proceeds to step S207.
In the step S205, for example, increased at 0.1 intervals than the previous load factor f w Load Factor f w.
 CPU(中央演算処理装置)30は、ステップS207において、ボールねじ推定寿命算出部35を作動させ、ステップS205あるいはステップS206において、変更した荷重係数fを用いて、ボールねじの推定寿命時間を算出させる(ステップS207)。Calculating CPU (central processing unit) 30, in step S207, to operate the ball screw life expectancy calculator 35, in step S205 or step S206, using a load factor f w was changed, the estimated life time of the ball screw (Step S207).
 ユーザは、ステップS208において、ステップS207において算出したボールねじの推定寿命時間よりも早くボールねじが破損したか否かを判断し、ステップS207において算出したボールねじの推定寿命時間よりも早くボールねじが破損したと判断した場合(ステップS208の「YES」)には、CPU(中央演算処理装置)30が、荷重係数fを以前の荷重係数fよりも大きい値に変更して(ステップS210)、処理をステップS202に戻す。
 なお、ステップS210においては、例えば、荷重係数fを以前の荷重係数fよりも0.1間隔で大きくする。
In step S208, the user determines whether or not the ball screw has been damaged earlier than the estimated life time of the ball screw calculated in step S207, and the ball screw is sooner than the estimated life time of the ball screw calculated in step S207. If it is determined that damaged the ( "YES" in step S208), CPU (central processing unit) 30, by changing the load factor f w to a value greater than the previous load coefficient f w (step S210) The process returns to step S202.
In the step S210, for example, increased at 0.1 intervals than the previous load factor f w Load Factor f w.
 一方で、ユーザは、ステップS207において算出したボールねじの推定寿命時間よりも早くボールねじが破損していないと判断した場合(ステップS208の「NO」)には、ボールねじが完全に破損はしていないが、劣化が激しいために交換が必要であるか否かを判断し(ステップS209)、ユーザがボールねじの交換が必要であると判断した場合(ステップS209の「YES」)には、CPU(中央演算処理装置)30が、荷重係数fを以前の荷重係数fよりも大きい値に変更して(ステップS210)、処理をステップS202に戻す。On the other hand, when the user determines that the ball screw is not damaged earlier than the estimated life time of the ball screw calculated in step S207 (“NO” in step S208), the ball screw is completely damaged. However, it is determined whether or not replacement is necessary due to severe deterioration (step S209). If the user determines that replacement of the ball screw is necessary (“YES” in step S209), CPU (central processing unit) 30, by changing the load factor f w to a value greater than the previous load coefficient f w (step S210), the process returns to step S202.
 さらに、ユーザが、ボールねじの交換が必要ないと判断した場合(ステップS209の「NO」)には、CPU(中央演算処理装置)30は、ボールねじの交換が必要にある前に、ボールねじの推定寿命時間に達したか否かを判断する(ステップS211)。Further, when the user determines that the ball screw need not be replaced (“NO” in step S209), the CPU (central processing unit) 30 transmits the ball screw before the ball screw needs to be replaced. It is determined whether or not the estimated life time has been reached (step S211).
 そして、CPU(中央演算処理装置)30は、ボールねじの交換が必要になる前に、ボールねじの推定寿命時間に達していないと判断した場合(ステップS211の「NO」)には、処理をステップS203に戻す。If the CPU (central processing unit) 30 determines that the estimated life time of the ball screw has not been reached before the ball screw needs to be replaced (“NO” in step S211), the CPU 30 executes the processing. It returns to step S203.
 一方で、CPU(中央演算処理装置)30が、ボールねじの交換が必要にある前に、ボールねじの推定寿命時間に達していたと判断した場合(ステップS211の「YES」)には、CPU(中央演算処理装置)30は、荷重係数fを以前の荷重係数fよりも小さい値に変更して(ステップS212)、処理をステップS203に戻す。
 なお、ステップS211においては、例えば、荷重係数fを以前の荷重係数fよりも0.1間隔で小さくする。
On the other hand, when the CPU (central processing unit) 30 determines that the estimated life time of the ball screw has been reached before the ball screw needs to be replaced (“YES” in step S211), the CPU ( central processing unit) 30 changes the weighting factor f w to a value smaller than the previous load coefficient f w (step S212), the process returns to step S203.
In the step S211, for example, to reduce by 0.1 intervals than the previous load factor f w Load Factor f w.
 以上、説明したように、本実施形態に係るプレス装置100は、ボールねじの任意の荷重係数を記憶する初期荷重係数記憶部25と、ボールねじに加えられる軸方向の荷重値を検出する荷重値検出部(回路部15)と、荷重値検出部(回路部15)において、検出される軸方向の荷重値の変化量を算出するディファレンシャル値算出部31と、ディファレンシャル値算出部31において算出される荷重値の変化量に基づいて、初期荷重係数記憶部25に記憶されたボールねじの任意の荷重係数を調整する荷重係数調整部32と、荷重値検出部(回路部15)において検出される荷重値に基づいて、平均軸方向荷重値を算出する平均軸方向荷重値算出部33と、ボールねじの平均回転速度を算出する平均回転速度算出部34と、荷重係数調整部32において調整される荷重係数と、平均軸方向荷重値算出部33において算出される平均軸方向荷重値と、平均回転速度算出部34において算出されるボールねじの平均回転速度と、に基づいて、ボールねじの使用態様に応じた推定寿命を算出するボールねじ推定寿命算出部35と、を備えている。
 つまり、本実施形態に係るプレス装置は、ボールねじ推定寿命算出部35が算出するボールねじ推定寿命時間の精度に最も影響が大きい荷重係数を、荷重係数調整部32により、ディファレンシャル値算出部31において算出される荷重値の変化量に基づいて、初期荷重係数記憶部25に記憶されたボールねじの任意の荷重係数を調整したものを使用して、ボールねじ推定寿命時間を算出している。
 このことから、ディファレンシャル値(荷重値の変化量)を用いて、予め記憶された荷重係数をより正確に調整することが可能となる。具体的には、ある使用方法におけるディファレンシャル値と別の使用方法によるディファレンシャル値とを比較して、荷重係数を増減する。この方法により、ボールねじの使用が変化した場合に、使用態様に応じた荷重係数を求めることが可能となる。また、その荷重係数により、使用態様に応じたボールねじの推定寿命を算出することが可能となる。
 そのため、簡便かつ高精度に、ボールねじの寿命時間を推定することができる。
As described above, the press device 100 according to the present embodiment includes an initial load coefficient storage unit 25 that stores an arbitrary load coefficient of a ball screw, and a load value that detects an axial load value applied to the ball screw. The detection unit (circuit unit 15) and the load value detection unit (circuit unit 15) calculate the amount of change in the detected load value in the axial direction, and the differential value calculation unit 31 calculates the difference. A load coefficient adjustment unit 32 that adjusts an arbitrary load coefficient of the ball screw stored in the initial load coefficient storage unit 25 based on the change amount of the load value, and a load detected by the load value detection unit (the circuit unit 15). An average axial load value calculating unit 33 for calculating an average axial load value based on the value, an average rotational speed calculating unit 34 for calculating an average rotational speed of the ball screw, and a load coefficient adjusting unit. 2, the average axial load value calculated by the average axial load value calculation unit 33, and the average rotation speed of the ball screw calculated by the average rotation speed calculation unit 34, A ball screw estimated life calculation unit 35 for calculating the estimated life according to the usage mode of the ball screw.
That is, the press device according to the present embodiment uses the load coefficient adjustment unit 32 to determine the load coefficient that has the greatest effect on the accuracy of the estimated ball screw life time calculated by the estimated ball screw life calculation unit 35 in the differential value calculation unit 31. The estimated life time of the ball screw is calculated using a value obtained by adjusting an arbitrary load coefficient of the ball screw stored in the initial load coefficient storage unit 25 based on the calculated amount of change in the load value.
From this, it becomes possible to more accurately adjust the load coefficient stored in advance using the differential value (the amount of change in the load value). Specifically, the load coefficient is increased or decreased by comparing a differential value in a certain usage method with a differential value in another usage method. According to this method, when the use of the ball screw changes, it is possible to obtain the load coefficient according to the use mode. Further, the estimated life of the ball screw according to the use mode can be calculated from the load coefficient.
Therefore, the life time of the ball screw can be easily and accurately estimated.
 また、本実施形態に係るプレス装置100は、任意の荷重係数を平均軸方向荷重値算出部33で算出される平均軸方向荷重値と、平均回転速度算出部34で算出されるボールねじの平均回転速度と、任意のボールねじの寿命時間と、に基づいて算出する。
 このことから、実際に任意のボールねじを寿命まで使用して、軸方向の荷重値や回転速度から予測される寿命と実際の寿命とを比較することで、大まかな荷重係数を定めることが可能となる。
 この方法で取得した荷重係数を用いて、それまで使用したものと同じ型式・大きさのボールねじを同じような使用方法で使用した場合の推定寿命が大まかに定まる。
 そのため、簡便かつ高精度に、ボールねじの寿命時間を推定することができる。
In addition, the press device 100 according to the present embodiment calculates the average axial load value calculated by the average axial load value calculation unit 33 and the average of the ball screw calculated by the average rotation speed calculation unit 34. It is calculated based on the rotation speed and the life time of an arbitrary ball screw.
From this, it is possible to determine a rough load coefficient by actually using an arbitrary ball screw up to the life and comparing the life expected from the axial load value and the rotation speed with the actual life. Becomes
Using the load coefficient obtained by this method, the estimated life when a ball screw having the same type and size as those used up to that time is used in a similar usage method is roughly determined.
Therefore, the life time of the ball screw can be easily and accurately estimated.
 また、本実施形態に係るプレス装置100では、ボールねじに加えられる軸方向の荷重値をロードセルで計測されたボールねじにかかる荷重値、又はそのロードセルで計測されたボールねじにかかる荷重値とプレスのラムが上下運動する際のボールねじの加減速により生じる荷重値との合算の値とする。
 そのため、ボールねじに加えられる軸方向の荷重値をロードセルで計測されたボールねじにかかる荷重値あるいは、そのロードセルで計測されたボールねじにかかる荷重値とプレスのラムが上下運動する際のボールねじの加減速により生じる荷重値との合算の値のいずれかにしても、ある使用方法におけるディファレンシャル値と別の使用方法によるディファレンシャル値とを比較して、荷重係数を増減することにより、ボールねじの使用が変化した場合でも、使用態様に応じた荷重係数を求めることが可能となる。
 そのため、簡便かつ高精度に、ボールねじの寿命時間を推定することができる。
Further, in the press device 100 according to the present embodiment, the axial load value applied to the ball screw is determined by comparing the load value applied to the ball screw measured by the load cell, or the load value applied to the ball screw measured by the load cell to the press value. And the load value generated by the acceleration and deceleration of the ball screw when the ram moves up and down.
Therefore, the value of the axial load applied to the ball screw is the load value applied to the ball screw measured by the load cell, or the load value applied to the ball screw measured by the load cell and the ball screw when the press ram moves up and down. Regarding any of the sum values with the load value caused by the acceleration and deceleration of the ball screw by comparing the differential value in one use method with the differential value in another use method, and increasing or decreasing the load coefficient, Even when the usage changes, it is possible to obtain a load coefficient according to the usage mode.
Therefore, the life time of the ball screw can be easily and accurately estimated.
 なお、プレス装置100の処理をコンピュータシステムあるいはコンピュータが読み取り可能な記録媒体に記録し、この記録媒体に記録されたプログラムをプレス装置100に読み込ませ、実行することによって本発明のプレス装置100を実現することができる。ここでいうコンピュータシステムあるいはコンピュータとは、OSや周辺装置等のハードウェアを含む。Note that the processing of the press device 100 is recorded on a computer system or a computer-readable recording medium, and the program recorded on the recording medium is read and executed by the press device 100, thereby realizing the press device 100 of the present invention. can do. Here, the computer system or the computer includes an OS and hardware such as peripheral devices.
 また、「コンピュータシステムあるいはコンピュータ」は、WWW(World Wide Web)システムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムあるいはコンピュータから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムあるいはコンピュータに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。{"Computer system or computer" also includes a homepage providing environment (or display environment) if a WWW (World Wide Web) system is used. Further, the above program may be transmitted from a computer system or computer storing this program in a storage device or the like to another computer system or computer via a transmission medium or by a transmission wave in the transmission medium. Here, the "transmission medium" for transmitting a program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
 また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムあるいはコンピュータにすでに記録されているプログラムとの組合せで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the computer system or the program already recorded on the computer, and what is called a difference file (difference program) may be sufficient.
 以上、この発明の実施形態につき、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 例えば、本実施形態では、プレス装置100の一部の機能としてボールねじの寿命推定機能を含めることを例示したが、これに限らず、ボールねじの寿命推定機能を有した端末装置や個別の装置をプレス装置100とは別体で設けてもよい。
 また、ボールねじの寿命推定機能をクラウド上のサーバに持たせてもよい。
As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to the embodiments, and includes a design and the like without departing from the gist of the present invention.
For example, in the present embodiment, an example has been described in which the function of estimating the life of the ball screw is included as a part of the function of the press device 100. However, the present invention is not limited to this. May be provided separately from the press device 100.
Further, the server on the cloud may have the function of estimating the life of the ball screw.
 また、上記実施形態では、主に、固有のプレス装置100のみにより、ボールねじの寿命推定を行うことを例示して、説明したが、例えば、同じプレス装置100を複数同時に使用して、学習データを共有するようにしてもよい。
 この場合、複数の同じプレス装置100から多くの学習データを得ることができるため、学習時間を短縮することができる。
Further, in the above-described embodiment, the example has been described in which the life estimation of the ball screw is mainly performed only by the unique press device 100. However, for example, the learning data can be obtained by using a plurality of the same press devices 100 at the same time. May be shared.
In this case, since a large amount of learning data can be obtained from a plurality of the same press devices 100, the learning time can be reduced.
1;ラム
1a;筒状本体
2;ボールねじ
2a;ねじ軸
2b;ナット体
3;プレス本体
4;サーボモータ
5;ケーシング
6;筒状ガイド
9;起歪柱
11;ラム摺動機構
13;サーボモータドライバー
14;エンコーダ
15;回路部
16;駆動指令パルス発生部
17;エンコーダ位置カウンタ
21;制御プログラム記憶部
22;表示部
23;操作部
24;一時記憶部
25;初期荷重係数記憶部
26;荷重値記憶部
27;回転速度記憶部
30;CPU(中央演算処理装置)
31;ディファレンシャル値出部
32;荷重係数調整部
33;平均軸方向荷重値算出部
34;平均回転速度算出部
35;ボールねじ推定寿命算出部
100;プレス装置
W;ワーク
1; Ram 1a; Cylindrical body 2; Ball screw 2a; Screw shaft 2b; Nut body 3; Press body 4; Servo motor 5; Casing 6; Cylindrical guide 9; Motor driver 14; Encoder 15; Circuit 16; Drive command pulse generator 17; Encoder position counter 21; Control program storage 22; Display 23; Operation 24; Temporary storage 25; Initial load coefficient storage 26; Value storage unit 27; rotation speed storage unit 30; CPU (Central Processing Unit)
31; differential value output unit 32; load coefficient adjustment unit 33; average axial load value calculation unit 34; average rotation speed calculation unit 35; ball screw estimated life calculation unit 100; press device W;

Claims (7)

  1.  ボールねじに加えられる軸方向の荷重値を検出する荷重値検出部と、前記荷重値検出部において検出される荷重値に基づいて平均軸方向荷重値を算出する平均軸方向荷重値算出部と、前記ボールねじの平均回転速度を算出する平均回転速度算出部とを備え、前記ボールねじの荷重係数と、前記平均軸方向荷重値算出部において算出される平均軸方向荷重値と、前記平均回転速度算出部において算出される前記ボールねじの平均回転速度と、に基づいて、前記ボールねじの使用態様に応じた推定寿命時間を算出するプレス装置であって、
     前記荷重値検出部において検出される前記軸方向の荷重値の変化量を算出するディファレンシャル値算出部と、
     前記ディファレンシャル値算出部において算出される荷重値の変化量に基づいて、前記ボールねじの荷重係数を調整する荷重係数調整部と、
     を備えたことを特徴とするプレス装置。
    A load value detection unit that detects an axial load value applied to the ball screw, and an average axial load value calculation unit that calculates an average axial load value based on the load value detected by the load value detection unit, An average rotation speed calculation unit that calculates an average rotation speed of the ball screw, a load coefficient of the ball screw, an average axial load value calculated by the average axial load value calculation unit, and the average rotation speed. A press device that calculates an estimated life time according to a use mode of the ball screw, based on the average rotation speed of the ball screw calculated by a calculation unit,
    A differential value calculation unit that calculates a change amount of the axial load value detected by the load value detection unit,
    A load coefficient adjustment unit that adjusts a load coefficient of the ball screw based on a change amount of a load value calculated in the differential value calculation unit;
    A press device comprising:
  2.  前記荷重係数調整部により調整される荷重係数は、
     前記平均軸方向荷重値算出部で算出される平均軸方向荷重値と、前記平均回転速度算出部で算出される前記ボールねじの平均回転速度と、任意のボールねじの実際の寿命時間と、に基づいて算出されることを特徴とする請求項1に記載のプレス装置。
    The load coefficient adjusted by the load coefficient adjustment unit is:
    The average axial load value calculated by the average axial load value calculation unit, the average rotation speed of the ball screw calculated by the average rotation speed calculation unit, and the actual life time of any ball screw. The press apparatus according to claim 1, wherein the press apparatus is calculated based on the information.
  3.  前記荷重係数調整部において調整された荷重係数は、
     前記算出された推定寿命時間と、該推定寿命時間を算出したボールねじの実際の寿命時間と、に基づいてさらに調整されることを特徴とする請求項1又は2に記載のプレス装置。
    The load coefficient adjusted in the load coefficient adjustment unit is:
    The press apparatus according to claim 1, wherein adjustment is further made based on the calculated estimated life time and an actual life time of the ball screw for which the estimated life time is calculated.
  4.  前記ボールねじに加えられる前記軸方向の荷重値は、
     ロードセルで計測された前記ボールねじにかかる荷重値、又は該ロードセルで計測された前記ボールねじにかかる荷重値とラムが上下運動する際の前記ボールねじの加減速により生じる荷重値との合算の値であることを特徴とする請求項1から3のいずれか1項に記載のプレス装置。
    The axial load value applied to the ball screw is:
    The value of the load applied to the ball screw measured by the load cell, or the sum of the load value applied to the ball screw measured by the load cell and the load generated by acceleration / deceleration of the ball screw when the ram moves up and down. The press device according to any one of claims 1 to 3, wherein
  5.  ボールねじに加えられる軸方向の荷重値を検出する荷重値検出部と、前記荷重値検出部において検出される荷重値に基づいて、平均軸方向荷重値を算出する平均軸方向荷重値算出部と、前記ボールねじの平均回転速度を算出する平均回転速度算出部と、前記ボールねじの荷重係数と、前記平均軸方向荷重値算出部において算出される平均軸方向荷重値と、前記平均回転速度算出部において算出される前記ボールねじの平均回転速度と、に基づいて、前記ボールねじの使用態様に応じた推定寿命時間を算出する算出部と、を備えた端末装置であって、
     前記荷重値検出部において検出される前記軸方向の荷重値の変化量を算出するディファレンシャル値算出部と、
     前記ディファレンシャル値算出部において算出される荷重値の変化量に基づいて、前記ボールねじの荷重係数を調整する荷重係数調整部と、
     を備えたことを特徴とする端末装置。
    A load value detection unit that detects an axial load value applied to the ball screw, and an average axial load value calculation unit that calculates an average axial load value based on the load value detected by the load value detection unit. An average rotation speed calculation unit that calculates an average rotation speed of the ball screw, a load coefficient of the ball screw, an average axial load value calculated by the average axial load value calculation unit, and the average rotation speed calculation A terminal device, comprising: a calculating unit configured to calculate an estimated life time according to a usage mode of the ball screw, based on the average rotation speed of the ball screw calculated in the unit,
    A differential value calculation unit that calculates a change amount of the axial load value detected by the load value detection unit,
    A load coefficient adjustment unit that adjusts a load coefficient of the ball screw based on a change amount of a load value calculated in the differential value calculation unit;
    A terminal device comprising:
  6.  ボールねじに加えられる軸方向の荷重値を検出する荷重値検出部と、前記荷重値検出部において検出される荷重値に基づいて、平均軸方向荷重値を算出する平均軸方向荷重値算出部と、前記ボールねじの平均回転速度を算出する平均回転速度算出部と、前記ボールねじの荷重係数と、前記平均軸方向荷重値算出部において算出される平均軸方向荷重値と、前記平均回転速度算出部において算出される前記ボールねじの平均回転速度と、に基づいて、前記ボールねじの使用態様に応じた推定寿命時間を算出する算出部と、ディファレンシャル値算出部と、荷重係数調整部と、を含む端末装置におけるボールねじ推定寿命算出方法であって、
     前記ディファレンシャル値算出部が、前記荷重値検出部において検出される前記軸方向の荷重値の変化量を算出する第1の工程と、
     前記荷重係数調整部が、前記ディファレンシャル値算出部において算出される荷重値の変化量に基づいて、前記ボールねじの荷重係数を調整する第2の工程と、
     を備えたことを特徴とするボールねじ推定寿命算出方法。
    A load value detection unit that detects an axial load value applied to the ball screw, and an average axial load value calculation unit that calculates an average axial load value based on the load value detected by the load value detection unit. An average rotation speed calculation unit that calculates an average rotation speed of the ball screw, a load coefficient of the ball screw, an average axial load value calculated by the average axial load value calculation unit, and the average rotation speed calculation Based on the average rotation speed of the ball screw calculated in the section, based on a calculation unit that calculates an estimated life time according to the usage mode of the ball screw, a differential value calculation unit, and a load coefficient adjustment unit, A ball screw estimated life calculation method in a terminal device including:
    A first step in which the differential value calculation unit calculates a change amount of the axial load value detected by the load value detection unit;
    A second step of adjusting the load coefficient of the ball screw based on the amount of change in the load value calculated by the differential value calculation unit,
    A ball screw estimated life calculation method characterized by comprising:
  7.  ボールねじに加えられる軸方向の荷重値を検出する荷重値検出部と、前記荷重値検出部において検出される荷重値に基づいて、平均軸方向荷重値を算出する平均軸方向荷重値算出部と、前記ボールねじの平均回転速度を算出する平均回転速度算出部と、前記ボールねじの荷重係数と、前記平均軸方向荷重値算出部において算出される平均軸方向荷重値と、前記平均回転速度算出部において算出される前記ボールねじの平均回転速度と、に基づいて、前記ボールねじの使用態様に応じた推定寿命時間を算出する算出部と、ディファレンシャル値算出部と、荷重係数調整部と、を含む端末装置におけるボールねじ推定寿命算出方法をコンピュータに実行させるためのプログラムであって、
     前記ディファレンシャル値算出部が、前記荷重値検出部において検出される前記軸方向の荷重値の変化量を算出する第1の工程と、
     前記荷重係数調整部が、前記ディファレンシャル値算出部において算出される荷重値の変化量に基づいて、前記ボールねじの荷重係数を調整する第2の工程と、
     をコンピュータに実行させるためのプログラム。
    A load value detection unit that detects an axial load value applied to the ball screw, and an average axial load value calculation unit that calculates an average axial load value based on the load value detected by the load value detection unit. An average rotation speed calculation unit that calculates an average rotation speed of the ball screw, a load coefficient of the ball screw, an average axial load value calculated by the average axial load value calculation unit, and the average rotation speed calculation Based on the average rotation speed of the ball screw calculated in the section, based on a calculation unit that calculates an estimated life time according to the usage mode of the ball screw, a differential value calculation unit, and a load coefficient adjustment unit, A program for causing a computer to execute a ball screw estimated life calculation method in a terminal device including:
    A first step in which the differential value calculation unit calculates a change amount of the axial load value detected by the load value detection unit;
    A second step of adjusting the load coefficient of the ball screw based on the amount of change in the load value calculated by the differential value calculation unit,
    A program for causing a computer to execute.
PCT/IB2019/052943 2018-09-07 2019-04-10 Press device, terminal device, estimated-ball-screw-lifespan calculation method, and program WO2020049370A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019004468.0T DE112019004468T5 (en) 2018-09-07 2019-04-10 Pressing device, end device, as well as method and program for calculating the estimated service life of a ball screw spindle
CN201980047393.2A CN112639429B (en) 2018-09-07 2019-04-10 Press device, terminal device, ball screw estimated life calculating method, and program
KR1020217001101A KR102591896B1 (en) 2018-09-07 2019-04-10 Press equipment, terminal equipment, ball screw estimated life calculation method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-167789 2018-09-07
JP2018167789A JP7097268B2 (en) 2018-09-07 2018-09-07 Press equipment, terminal equipment, ball screw estimated life calculation method and program

Publications (1)

Publication Number Publication Date
WO2020049370A1 true WO2020049370A1 (en) 2020-03-12

Family

ID=69722350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/052943 WO2020049370A1 (en) 2018-09-07 2019-04-10 Press device, terminal device, estimated-ball-screw-lifespan calculation method, and program

Country Status (5)

Country Link
JP (1) JP7097268B2 (en)
KR (1) KR102591896B1 (en)
CN (1) CN112639429B (en)
DE (1) DE112019004468T5 (en)
WO (1) WO2020049370A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112454842A (en) * 2020-10-15 2021-03-09 宁波创基机械有限公司 Remote maintenance method for injection molding machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7377919B1 (en) 2022-06-20 2023-11-10 上銀科技股▲分▼有限公司 Maintenance information acquisition method for linear transmission and maintenance information acquisition system for linear transmission
CN115615693B (en) * 2022-12-05 2023-05-02 博创智能装备股份有限公司 Ball screw service life detection method and device, electronic equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271902A (en) * 2000-03-23 2001-10-05 Sumitomo Heavy Ind Ltd Calculation method and calculation device for rest of ball screw life
JP2005061882A (en) * 2003-08-20 2005-03-10 Nsk Ltd Repeater for operation state confirmating device
WO2009027255A2 (en) * 2007-08-24 2009-03-05 Siemens Aktiengesellschaft A method and system that are used to determine the service life endpoint and evaluate the current historical service life
JP2017181180A (en) * 2016-03-29 2017-10-05 株式会社牧野フライス製作所 Method and device for managing life of feed shaft of machine
WO2018025634A1 (en) * 2016-08-05 2018-02-08 オークマ株式会社 Method and device for diagnosing abnormality in feed shaft

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3185066B2 (en) * 1991-08-12 2001-07-09 黒田精工株式会社 Ball screw life monitoring device
KR100188773B1 (en) * 1993-10-14 1999-06-01 정몽규 Life tester
JP3506631B2 (en) * 1999-02-19 2004-03-15 東芝機械株式会社 Method and apparatus for estimating ball screw life of electric injection molding machine
JP2001202119A (en) * 2000-01-20 2001-07-27 Toyota Motor Corp Device and method for evaluating production plan and recording medium
JP2001350510A (en) * 2000-06-06 2001-12-21 Mori Seiki Co Ltd Machine tool maintenance management system
JP3855651B2 (en) * 2000-08-29 2006-12-13 日本精工株式会社 Rolling bearing life prediction method, life prediction device, rolling bearing selection device using the life prediction device, and storage medium
FR2827042B1 (en) * 2001-07-06 2003-10-03 Renault METHOD FOR EVALUATING THE REMAINING LIFE OF A TRANSMISSION BELT, AND ITS IMPLEMENTING DEVICE
JP4299257B2 (en) * 2005-03-09 2009-07-22 株式会社理研オプテック Load cell zero point correction circuit
DE102007038890B4 (en) * 2007-08-17 2016-09-15 Robert Bosch Gmbh Method and device for determining the service life of components in service
JP4782766B2 (en) * 2007-12-27 2011-09-28 オークマ株式会社 Machine diagnostic method and apparatus
JP2011069681A (en) * 2009-09-25 2011-04-07 Ntn Corp Method and device for estimating life expectancy of rolling bearing
CN101870075B (en) * 2010-07-02 2012-01-25 西南交通大学 Method for predicting service life of screw pair of numerical control machine on basis of performance degradation model
JP5540448B2 (en) * 2010-09-09 2014-07-02 株式会社Ihi Multiaxial fatigue life evaluation method and apparatus
JP5644374B2 (en) * 2010-10-27 2014-12-24 株式会社ジェイテクト Machine tool spindle state detection device
JP2013119212A (en) * 2011-12-07 2013-06-17 Nissei Plastics Ind Co Method and apparatus for managing service life of ball screw of industrial machine
CN104285139A (en) * 2012-04-24 2015-01-14 Skf公司 Bearing monitoring method and system
JP5674859B2 (en) * 2013-05-16 2015-02-25 ファナック株式会社 A numerical controller with a function to estimate the life of the bearing that supports the spindle
US9347372B2 (en) * 2014-09-13 2016-05-24 GM Global Technology Operations LLC Method for determining belt life
JP6635930B2 (en) * 2014-10-17 2020-01-29 株式会社日本製鋼所 Life prediction method of ball screw mechanism for mold clamping of toggle type mold clamping device and toggle type mold clamping device
CN107076646A (en) * 2015-03-18 2017-08-18 三菱电机株式会社 Driving machine life assessment device and driving machine life assessment method
JP5990729B1 (en) * 2015-04-03 2016-09-14 トライボテックス株式会社 General-purpose deterioration curve creation method and machine life prediction method, and general-purpose deterioration curve creation program and machine life prediction program
JP6653598B2 (en) * 2016-03-09 2020-02-26 蛇の目ミシン工業株式会社 Electric press and its calibration method
CN106017923B (en) * 2016-08-03 2018-07-31 南京理工大学 Ball screw assembly, reliability accelerated test method
CN106017924B (en) * 2016-08-03 2018-06-12 南京理工大学 Ball screw assembly, reliability accelerated test appraisal procedure
JP6786371B2 (en) * 2016-12-09 2020-11-18 蛇の目ミシン工業株式会社 Electric press
KR101802701B1 (en) * 2017-04-06 2017-11-28 울산대학교 산학협력단 Bearing reverse design method and device by evaluating residual life of bearing
CN108362452B (en) * 2018-02-04 2020-04-24 西北工业大学 Measuring method for axial static and dynamic stiffness measurement of planetary roller screw

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271902A (en) * 2000-03-23 2001-10-05 Sumitomo Heavy Ind Ltd Calculation method and calculation device for rest of ball screw life
JP2005061882A (en) * 2003-08-20 2005-03-10 Nsk Ltd Repeater for operation state confirmating device
WO2009027255A2 (en) * 2007-08-24 2009-03-05 Siemens Aktiengesellschaft A method and system that are used to determine the service life endpoint and evaluate the current historical service life
JP2017181180A (en) * 2016-03-29 2017-10-05 株式会社牧野フライス製作所 Method and device for managing life of feed shaft of machine
WO2018025634A1 (en) * 2016-08-05 2018-02-08 オークマ株式会社 Method and device for diagnosing abnormality in feed shaft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112454842A (en) * 2020-10-15 2021-03-09 宁波创基机械有限公司 Remote maintenance method for injection molding machine

Also Published As

Publication number Publication date
CN112639429A (en) 2021-04-09
CN112639429B (en) 2023-03-21
DE112019004468T5 (en) 2021-06-17
KR102591896B1 (en) 2023-10-19
KR20210021033A (en) 2021-02-24
JP2020041839A (en) 2020-03-19
JP7097268B2 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
WO2020049370A1 (en) Press device, terminal device, estimated-ball-screw-lifespan calculation method, and program
JP6262512B2 (en) System and method for setting a measurement force threshold in a force sensing caliper
JP7097054B2 (en) Press tools, crimping tools or cutting tools and tools
EP2363687B1 (en) Coordinate measuring machine
CN106909074B (en) Control device
JP3871293B2 (en) Object gripping control method by hand or manipulator
JP6104463B2 (en) Electric motor control device
BRPI0706536A2 (en) press forming device and press forming method
TWI597158B (en) Electric presses, critical point detection methods and computer programs
JP5756410B2 (en) Spring characteristic correcting method and spring characteristic correcting apparatus
JP5332306B2 (en) Method and apparatus for detecting load inflection point in press process
JP6229799B2 (en) Flatness control device
US10739734B2 (en) Motor control apparatus
JP4902371B2 (en) Hardness testing machine
JP4525262B2 (en) Weighing device
JP6257970B2 (en) Electric press, bending point detection method and program
WO2018189580A1 (en) Electric press, control method, and program
JP2019066478A (en) Curvature measurement apparatus
JP7057182B2 (en) Electric press, load cell selection method and program
CN111113152B (en) Detection compensation device, detection compensation method, and computer-readable storage medium
JP3617783B2 (en) Shape measuring device
WO2018173539A1 (en) Diagnostic system
JP7339577B2 (en) Shape measuring machine and measuring force adjustment method
US11772350B2 (en) Press device, load correction method, and recording medium
JPS6026452B2 (en) How to detect machine operating status

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857896

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217001101

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19857896

Country of ref document: EP

Kind code of ref document: A1