WO2018189580A1 - Electric press, control method, and program - Google Patents

Electric press, control method, and program Download PDF

Info

Publication number
WO2018189580A1
WO2018189580A1 PCT/IB2017/056780 IB2017056780W WO2018189580A1 WO 2018189580 A1 WO2018189580 A1 WO 2018189580A1 IB 2017056780 W IB2017056780 W IB 2017056780W WO 2018189580 A1 WO2018189580 A1 WO 2018189580A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
ram
load
unit
pulse signal
Prior art date
Application number
PCT/IB2017/056780
Other languages
French (fr)
Japanese (ja)
Inventor
比留間健一郎
Original Assignee
蛇の目ミシン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蛇の目ミシン工業株式会社 filed Critical 蛇の目ミシン工業株式会社
Priority to KR1020197022730A priority Critical patent/KR102206338B1/en
Priority to CN201780086561.XA priority patent/CN110461585B/en
Priority to DE112017007423.1T priority patent/DE112017007423T5/en
Publication of WO2018189580A1 publication Critical patent/WO2018189580A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/26Programme control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B1/00Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen
    • B30B1/18Presses, using a press ram, characterised by the features of the drive therefor, pressure being transmitted directly, or through simple thrust or tension members only, to the press ram or platen by screw means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/14Control arrangements for mechanically-driven presses

Definitions

  • the present invention relates to an electric press, a control method, and a program.
  • Patent Document 1 the technique disclosed in Patent Document 1 is to reduce the overshoot by decreasing the drive speed as it approaches the target, and the processing time becomes longer by decreasing the drive speed. There was a problem that the tact time could not be shortened.
  • the final stop position will be the position where the supply of the command pulse signal is stopped. , Behaves like returning and stopping.
  • the present invention has been made in view of the above-described problems, and provides an electric press, a control method, and a program capable of performing pressurization work on a work with an appropriate load while preventing an increase in tact time. To do.
  • One or more embodiments of the present invention include an electric motor, a motor driver that supplies driving electric power to the electric motor, a ram that pressurizes a work with the power of the electric motor, A target load value storage unit that stores a target load value of the ram, and after the supply of a drive command pulse signal input to the motor driver is stopped, a first distance that the ram overshoots is estimated The estimation unit, the second estimation unit for estimating the travel distance of the ram until the target load value is reached, and the estimation value by the first estimation unit become the estimation value by the second estimation unit.
  • an electric press comprising a drive command pulse signal stop unit that stops supply of the drive command pulse signal at a time point.
  • One or more embodiments of the present invention include a speed detection unit that detects the speed of the ram, and the first estimation unit sets a distance over which the ram overshoots by D v [mm].
  • An electric press characterized by estimating the distance over which the ram overshoots based on the equation (1) when the speed dependence coefficient is K v [sec] and the speed of the ram is V [mm / s]. Has proposed.
  • One or more embodiments of the present invention include a speed detection unit that detects the speed of the ram and a load value detection unit that detects a load value applied to the ram, and the first estimation
  • the section includes a distance over which the ram overshoots Dvf [mm], a speed dependence coefficient Kv [sec], a speed of the ram V [mm / s], and a load dependence coefficient Kf [sec / N].
  • the electric press is characterized in that the distance over which the ram overshoots is estimated based on Equation 2 when the load value is F [N].
  • One or more embodiments of the present invention include a position detection unit that detects the position of the ram, a load value detection unit that detects a load value applied to the ram, and the position and position of the ram.
  • a data string storage unit that stores a data string associated with a load value applied to the ram; a load gradient value calculation unit that calculates a load gradient value based on the data string stored in the data string storage unit;
  • the second estimation unit is configured to determine the target load value based on the current load value applied to the ram detected by the load value detection unit and the load gradient value calculated by the load gradient value calculation unit.
  • the electric press characterized by estimating the moving distance of the said ram until the load value detected by the said load value detection part arrives at the said target load value memorize
  • One or more embodiments of the present invention are characterized in that the load gradient value calculation unit calculates a first-order differential value of a load value related to a change in the position of the ram as the load gradient value. Proposes an electric press.
  • Embodiment 6 One or more embodiments of the present invention propose an electric press characterized in that the load inclination value calculation unit calculates the load inclination value by regression calculation.
  • the load gradient value calculation unit further calculates a second-order differential value of a load value related to a change in the position of the ram, and the second estimation unit ,
  • the target load value is F t [N]
  • the current load value is F 0 [N]
  • the load inclination value is S f [N / mm]
  • the second-order differential value of the load value is S sf [N / mm2]
  • an electric press characterized by estimating Dt based on Equation 3 is proposed.
  • Mode 8 In one or more embodiments of the present invention, when the ram is once stopped, the ram is further moved to a predetermined setting position, and a work is pressurized.
  • the driving command pulse signal corresponding to the distance to the set position is input to the motor driver based on the position with respect to the distance overshooting the ram estimated by the first estimation unit. Proposing a press.
  • One or more embodiments of the present invention include an electric motor, a motor driver that supplies driving electric power to the electric motor, and a ram that pressurizes the workpiece by the power of the electric motor.
  • An electric press comprising: a load value detection unit that detects a load value applied to the ram; and a position detection unit that detects the position of the ram, and supplies a drive command pulse signal input to the motor driver
  • a first estimation unit that estimates the distance over which the ram overshoots, and a data string storage unit that stores a data string in which the position of the ram and the load value applied to the ram at the position are linked
  • a load gradient value calculation unit that calculates a load gradient value based on the data sequence stored in the data string storage unit, a target load gradient value storage unit that stores a target load gradient value, The movement of the ram until the target load inclination value is reached based on the current load inclination value calculated by the load inclination value calculation section and the target load inclination value storage section
  • the load gradient value calculation unit calculates the load gradient value by a first-order differential value or a regression calculation of a load value related to a change in the position of the ram.
  • the second estimation value of the load value related to the change in the position of the ram is calculated, and the third estimation unit calculates the target load inclination value by S ft [N / mm], the first-order differential value or the regression calculation.
  • the calculated load inclination value (current load inclination value) is S f0 [N / mm]
  • the second-order differential value of the load value is S sf [N / mm2]
  • the moving distance until the target load inclination value is reached is D
  • One or more embodiments of the present invention include an electric motor, a motor driver that supplies driving electric power to the electric motor, a ram that pressurizes the workpiece with the power of the electric motor, A control method in an electric press having a target load value storage unit that stores a target load value of the ram, a first estimation unit, a second estimation unit, and a drive command pulse signal stop unit, A first step of estimating a distance over which the ram overshoots after the first estimation unit stops supplying the drive command pulse signal input to the motor driver, and the second estimation unit includes the target A second step of estimating the travel distance of the ram until the load value is reached, and the estimated value by the first estimating unit of the driving command pulse signal stop unit becomes an estimated value by the second estimating unit.
  • the Proposes a control method characterized by comprising: a third step of stopping the supply of the drive command pulse signal at point a.
  • One or more embodiments of the present invention include an electric motor, a motor driver that supplies driving electric power to the electric motor, a ram that pressurizes the workpiece with the power of the electric motor,
  • a computer executes a control method in an electric press having a target load value storage unit that stores a target load value of the ram, a first estimation unit, a second estimation unit, and a drive command pulse signal stop unit.
  • a second step of estimating the ram travel distance until the target load value is reached, and the drive command pulse signal stop unit is estimated by the first estimation unit.
  • Value is proposed a program for executing the third step, to the computer to stop the supply of the drive command pulse signal when it becomes the estimated value by the second estimator.
  • a pressurization operation can be performed with an appropriate load on a workpiece while preventing an increase in tact time.
  • an electric press 100 includes a press ram 1 that applies a desired pressure to a workpiece W (processing object) by an elevating operation, and an elevating operation (straight line) on the ram 1. And a ball screw 2 that gives movement), and these are provided in the press body 3.
  • a servo motor 4 such as an AC servo motor serving as a drive source is also housed in a head frame body of a casing 5 connected to the press body 3. Then, the drive of the servo motor 4 is transmitted to the ball screw 2 via a pulley and a belt.
  • the ram 1 is formed in a cylindrical body as shown in FIG. Specifically, a hollow portion is formed along the axial direction inside a cylindrical main body 1a, and the screw shaft 2a of the ball screw 2 can be inserted into the hollow portion. It has become. Further, a nut body 2b of the ball screw 2 is fixed to an end portion in the axial direction of the cylindrical main body 1a of the ram 1.
  • the strain column 9 is configured to be freely mounted at the distal end portion of the cylindrical main body 1a. In actuality, the strain column 9 abuts against the workpiece W and appropriately applies pressure. . In addition, the strain column 9 is configured so that a strain gauge can be attached, and the pressure applied to the workpiece W can be detected by the strain gauge.
  • a cylindrical guide 6 is provided so as to wrap the outer peripheral side surface of the cylindrical main body 1a.
  • the cylindrical guide 6 is fixed in the casing 5, and the ram 1 can be moved up and down along the cylindrical guide 6.
  • the electric press 100 includes a servo motor driver 13, an encoder 14, a CPU (Central Processing Unit) 20, a control program storage unit 21, a display unit 22, and an operation.
  • a unit 23, a temporary storage unit 24, a target load value storage unit 25, a data string storage unit 26, a circuit unit 27, a drive command pulse generation unit 28, and an encoder position counter 29 are configured.
  • the control program storage unit 21 stores a control program for the CPU (Central Processing Unit) 20 to control the operation and processing of the entire electric press 100.
  • the overshoot distance for estimating the distance over which the ram 1 overshoots after stopping the supply of a drive command pulse signal input to a servo motor driver 13 described later as well as the main program relating to the press work.
  • the ram movement distance estimation program module that estimates the distance of the ram 1 until the target load value is reached, or the overshoot distance estimation program module
  • a drive command pulse signal supply stop program module for stopping the supply of the drive command pulse signal is stored.
  • the display unit 22 is a display device that displays various types of information. In the present embodiment, information such as the program number, the pressurizing condition, the number of work pieces to be processed is displayed.
  • the operation unit 23 includes a touch panel, a tact switch, and the like for setting the pressurizing condition.
  • the temporary storage unit 24 stores temporary data.
  • the target load value storage unit 25 stores the target load value of the ram 1.
  • the data string storage unit 26 stores the position information obtained from the encoder position counter 29 and the load values detected in the strain column 9 and the circuit unit 27 in association with each other.
  • the circuit unit 27 amplifies a signal with respect to a resistance change of a strain gauge attached to the strain column 9, converts an analog signal into a digital signal by A / D conversion processing, and then outputs the analog signal to a CPU (central processing unit) 20. To do.
  • the CPU (central processing unit) 20 detects the load value from the digital signal input from the circuit unit 27.
  • the drive command pulse generator 28 generates a desired drive command pulse based on a command from a CPU (Central Processing Unit) 20 and outputs it to the servo motor driver 13 via a drive command pulse signal stop unit described later. To do.
  • the encoder 14 is used to detect the position of the ram 1 and is connected to the servo motor 4.
  • the encoder position counter 29 counts up the pulse signal from the encoder 14.
  • the CPU (central processing unit) 20 detects the position of the ram 1 from the count value of the encoder 14.
  • the central processing unit 20 includes a speed detection unit 30, a first estimation unit 31, a load gradient value calculation unit 33, a second estimation unit 34, and a drive.
  • a command pulse signal stop unit 35 is included.
  • the speed detection unit 30 detects the speed of the ram 1 based on an input signal from the encoder position counter 29 and a timer value (not shown), and outputs the detected speed to the first estimation unit 31.
  • the first estimation unit 31 estimates the distance that the ram 1 overshoots after the supply of the drive command pulse signal input to the servo motor driver 13 is stopped.
  • the motor rotation angle per pulse of the drive command pulse signal from the servo motor driver 13 depends on the characteristics of the servo motor 4. By determining, the moving distance of the load due to the rotation of the servo motor 4 is determined. However, during the driving of the load, in fact, a difference (error) between the instructed position and the current position occurs, and the load moves even when the drive command pulse signal is stopped, so-called Overshoot will occur. Hereinafter, the amount of overshoot will be referred to as “a droop pulse amount” as appropriate.
  • the first estimation unit 31 estimates the amount of accumulated pulses.
  • the amount of movement of the ram 1 due to overshoot (the amount of accumulated pulses) has an element proportional to the speed and an element proportional to the load. Therefore, the accumulated pulse amount is represented by D vf [mm], which depends on the speed.
  • the coefficient is K v [sec]
  • the speed of the ram 1 is V [mm / s]
  • the load dependence coefficient is K f [sec / N]
  • the load value is F [N]
  • the speed dependence coefficient K v is a coefficient droop pulse amount that is proportional to the speed
  • load dependence coefficient K f is a coefficient of droop pulse amount generated by the load
  • this factor is also dependent on the speed. Therefore, the accumulated pulse amount is estimated as the sum of these.
  • the slope of the graph corresponds to the speed dependence coefficient K v.
  • the load dependence coefficient K f the same measurement as in the case of the measurement of the speed dependence coefficient K v is performed when a load (ram 1 in this embodiment) is applied, and the term of K v * V is excluded. The value can be obtained from the coefficient.
  • the servo motor driver 13 grasps the accumulated pulse amount in the servo motor driver 13 and uses this to determine the CPU (central processing). In the case of having a function of transmitting to the device 20, the CPU (central processing unit) 20 may directly acquire the accumulated pulse amount in real time from the servo motor driver 13.
  • the amount of droop pulses may be simply calculated based on Equation 2 from D v [mm], the speed dependency coefficient K v [sec], and the speed of the ram 1 V (mm / s).
  • the load inclination value calculation unit 33 calculates the load inclination value based on the data string stored in the data string storage unit 26.
  • the load inclination value calculation unit 33 calculates a first-order differential value of the load value related to the change in the position of the ram 1 as the load inclination value. Specifically, for example, when the load inclination value is S f [N / mm], the load value is F [N], and the distance is D [mm], the load inclination value S f [N / mm] is a number. 3 is calculated.
  • the load inclination value calculation part 33 can also obtain
  • the load inclination value is S f [N / mm]
  • the position data series of the pressurizing part is (x1, x2,..., Xn)
  • the load data series is (y1, y2,. , Yn)
  • the load inclination value S f [N / mm] is calculated based on Equation 4.
  • the second estimation unit 34 estimates the moving distance of the ram 1 until the target load value is reached.
  • the target load value storage unit 25 stores the load value applied to the current ram 1 detected by the circuit unit 27 (load value detection unit) and the load gradient value calculated by the load gradient value calculation unit 33.
  • the moving distance of the ram 1 until the load value detected by the circuit unit 27 (load value detection unit) reaches the stored target load value is estimated.
  • the current load value in the no-load state is F 0 [N]
  • the load inclination value calculated by the load inclination value calculation unit 33 is S f [N / mm]
  • the calculated travel distance of the ram 1 is D [mm]. ]
  • Equation 5 is obtained.
  • Equation 5 when the target load value is F t [N] and the ram movement distance until reaching the target load value F t is D t , Equation 6 is obtained.
  • Equation 7 is obtained to obtain the ram movement distance D t until the target load value F t is reached. Therefore, if the target load value F t [N], the current load value F 0 [N], and the load gradient value S f [N / mm] are substituted into Equation 7, the target load value F t is reached. You can obtain the moving distance D t of the ram 1 to.
  • the method of obtaining the moving distance D t of the ram 1 until the target load value F t is reached is illustrated as a first-order approximation from the load inclination value S f [N / mm].
  • second-order differential value with respect to the distance as a secondary approximation, it is also possible to obtain the moving distance D t of the ram 1 to reach the target load value F t.
  • Equation 9 a target load value F t the load value F, if the distance D and the moving distance D t of the ram 1 to reach the target load value F t, is as few 10.
  • the drive command pulse signal stop unit 35 is configured until the estimated value (the accumulated pulse amount (distance over which the ram 1 is overshooted)) by the first estimating unit 31 reaches the estimated value (the target load value) by the second estimating unit 34.
  • the supply of the drive command pulse signal is stopped at the point of time when the ram 1 travel distance is reached.
  • the specific configuration of the drive command pulse signal stop unit 35 includes, for example, a comparison unit 36, a switch element SW, and a resistor R as shown in FIG.
  • the comparison unit 36 includes the amount of accumulated pulses (distance over which the ram 1 overshoots) obtained from the first estimation unit 31 and the travel distance of the ram 1 until reaching the target load value obtained from the second estimation unit 34.
  • the switch element SW is closed when the accumulated pulse amount (distance over which the ram 1 overshoots) reaches the movement distance of the ram 1 until the target load value is reached.
  • the drive command pulse signal input terminal of the servo motor driver 13 is set to the “Low” level, so that the power supplied to the servo motor 4 by the servo motor driver 13 is turned off.
  • the switch element SW a transistor or FET (Field effect transistors) and the like can be used.
  • a Schottky diode having a small Vf may be used instead of the resistor R.
  • the CPU (central processing unit) 20 reads the target load value from the target load value storage unit 25 and stores it in the temporary storage unit 24 (step S101).
  • the CPU (Central Processing Unit) 20 generates a drive command pulse in the drive command pulse generator 28 based on the target load value stored in the temporary storage unit 24, and sends the generated drive command pulse signal to the servo motor driver 13. Output (step S102).
  • the CPU (central processing unit) 20 compares the target load value read from the temporary storage unit 24 with the current load value applied to the current ram 1 detected by the load value detection unit (circuit unit 27), and sets the target load value. It is determined whether or not the difference value between the load value and the current load value is equal to or less than a predetermined value (step S103). If it is determined as a result of the determination that the difference value between the target load value and the current load value is not equal to or less than a predetermined value (“No” in step S103), the process returns to step S102. In step S103, it is determined whether or not the difference value between the target load value and the current load value is equal to or smaller than a predetermined specified value from the time when the target load value is approached to some extent. As the specified value, for example, it is considered that about 5% of the maximum pressure is appropriate.
  • step S104 when it is determined that the difference value between the target load value and the current load value is equal to or less than a predetermined specified value (“Yes” in step S103), the first estimation unit 31 is activated, The accumulation amount of the drive command pulse signal is detected from the current speed and the load value (step S104).
  • the load gradient value is calculated by the load gradient value calculation unit 33 (step S105), the second estimation unit 34 is activated, and the current ram 1 detected by the load value detection unit (circuit unit 27) is applied.
  • the current load value detected by the load value detection unit (circuit unit 27) is applied to the target load value stored in the target load value storage unit 25. Is estimated (step S106).
  • the drive command pulse signal stop unit 35 determines whether the accumulation amount of the drive command pulse signal corresponding to the overshoot distance detected by the first estimation unit 31 matches the movement distance calculated by the second estimation unit 34. If it is determined (step S107) and it is determined that they match (“Yes” in step S107), output of the drive command pulse is stopped (step S108). On the other hand, when the drive command pulse signal stop unit 35 does not match the travel distance calculated by the second estimation unit 34 with the amount of accumulation of the drive command pulse signal corresponding to the overshoot distance detected by the first estimation unit 31. If it is determined (“No” in step S107), the process returns to step S102.
  • the first estimation unit 31 that estimates the distance that the ram 1 overshoots after the supply of the drive command pulse signal input to the servo motor driver 13 is stopped, and the target load A second estimator 34 for estimating the travel distance of the ram 1 until the value is reached, and the drive command pulse signal when the estimated value by the first estimator 31 becomes the estimated value by the second estimator 34. Since the drive command pulse signal stop unit 35 for stopping the supply of the workpiece is provided, it is possible to perform the pressurizing operation with an appropriate load on the workpiece while preventing the tact time from being extended.
  • the first estimation unit 31 also includes a distance D vf [mm] over which the ram 1 overshoots, a speed dependence coefficient K v [sec], a speed V [mm / s] of the ram 1 and a load dependence coefficient K f [sec. / N] and the distance over which the ram 1 overshoots (accumulated pulse amount) is estimated by a relational expression using the load value F [N] as parameters, the distance over which the ram 1 overshoots accurately by a simple calculation process. (The amount of accumulated pulses) can be estimated.
  • the first estimating unit 31 uses a relational expression in which the distance D v [mm] over which the ram 1 overshoots, the speed dependency coefficient K v [sec], and the speed V [mm / s] of the ram 1 are used as parameters.
  • the distance over which 1 overshoots (the amount of accumulated pulses) can be estimated by a further simplified calculation formula.
  • the second estimation unit 34 sets the target load value F t [N], the current load value F 0 [N], the load gradient value S f [N / mm], and the second-order differential value S sf [ N / mm2] and the moving distance D t [mm] as parameters, the current load value detected by the load value detection unit (circuit unit 27) to the target load value stored in the target load value storage unit 25 Estimate the travel distance of the ram 1 until it reaches. Therefore, the movement distance of the ram 1 until the current load value reaches the target load value can be accurately estimated by a simple calculation process.
  • the electric press 110 according to the present embodiment will be described with reference to FIGS.
  • the electric press 110 according to the present embodiment relates to a two-stage drive method in which the press work is performed by temporarily stopping at a set load value and moving the ram 1 by a specified distance therefrom.
  • the central processing unit 20A includes a speed detection unit 30, a first estimation unit 41, a load gradient value calculation unit 33, a second estimation unit 44, and a drive. And a command pulse signal stop unit 45.
  • the detailed description is abbreviate
  • the first estimating unit 41 determines the distance (the amount of accumulated pulses) over which the ram 1 overshoots after stopping the supply of the drive command pulse signal input to the servo motor driver 13 for the first stage drive process. presume. Further, the first estimation unit 41 does not actually wait for the end of driving of the ram 1 after the drive command pulse signal stop unit 45 stops supplying the drive command pulse signal in the first stage drive process. A drive command pulse signal corresponding to the distance to the target position is further input to the servo motor driver 13 based on the position corresponding to the distance (accumulated pulse amount) over which the ram 1 estimated in the stage driving process is overshooted. Then, after the supply of the input drive command pulse signal is stopped, the distance over which the ram 1 overshoots (the amount of accumulated pulses) is estimated. Note that the method for estimating the overshoot distance is the same as in the first embodiment.
  • the second estimation unit 44 estimates the distance of the ram 1 until the target load value is reached in the first stage driving process. Further, the second estimation unit 44 does not actually wait for the end of driving of the ram 1 after the drive command pulse signal stop unit 45 stops supplying the drive command pulse signal in the first stage drive process. In the driving process at the stage, the distance of the ram 1 until the target load value is reached is estimated. Note that the method of estimating the distance of the ram 1 until the target load value is reached is the same as in the first embodiment.
  • the drive command pulse signal stop unit 45 is configured such that, in the first-stage driving process, the estimated value by the first estimating unit 41 (the amount of accumulated pulses (the distance over which the ram 1 overshoots)) is the estimated value by the second estimating unit 44. The supply of the drive command pulse signal is stopped at the point of time (the travel distance of the ram 1 until the target load value is reached). Further, in the second stage driving process, the estimated value (the amount of accumulated pulses (distance over which ram 1 overshoots)) by the first estimating unit 41 reaches the estimated value (target load value) by the second estimating unit 44. The supply of the drive command pulse signal is stopped at the time when the ram 1 travel distance is reached.
  • the configuration of the drive command pulse signal stop unit 45 is the same as that of the first embodiment.
  • the CPU (central processing unit) 20A reads the target load value from the target load value storage unit 25 and stores it in the temporary storage unit 24 as the first-stage driving process (step S201).
  • the CPU (Central Processing Unit) 20A generates a drive command pulse in the drive command pulse generator 28 based on the target load value stored in the temporary storage unit 24, and sends the generated drive command pulse signal to the servo motor driver 13. Output (step S202).
  • the CPU (Central Processing Unit) 20A compares the target load value read from the temporary storage unit 24 with the current load value applied to the current ram 1 detected by the load value detection unit (circuit unit 27), and sets the target load value. It is determined whether or not the difference value between the load value and the current load value is equal to or less than a predetermined value (step S203). If it is determined as a result of the determination that the difference value between the target load value and the current load value is not equal to or less than a predetermined value (“No” in step S203), the process returns to step S202.
  • step S203 it is determined whether or not the difference value between the target load value and the current load value is equal to or less than a predetermined specified value from the time when the target load value is approached to some extent.
  • a predetermined specified value for example, it is considered that about 5% of the maximum pressure is appropriate.
  • step S203 when it is determined that the difference value between the target load value and the current load value is equal to or less than a predetermined value (“Yes” in step S203), the first estimation unit 41 is activated, The accumulation amount of the drive command pulse signal is detected from the current speed and the load value (step S204).
  • the load gradient value is calculated by the load gradient value calculation unit 33 (step S105), the second estimation unit 44 is activated, and the current ram 1 detected by the load value detection unit (circuit unit 27) is applied.
  • the current load value detected by the load value detection unit (circuit unit 27) is applied to the target load value stored in the target load value storage unit 25. Is estimated (step S206).
  • the drive command pulse signal stop unit 45 determines whether the accumulation amount of the drive command pulse signal corresponding to the overshoot distance detected by the first estimation unit 41 matches the movement distance calculated by the second estimation unit 44. If it is determined (step S207) and it is determined that they match (“Yes” in step S207), output of the drive command pulse is stopped (step S208). On the other hand, when the drive command pulse signal stop unit 45 does not match the moving distance calculated by the second estimation unit 44, the amount of accumulation of the drive command pulse signal corresponding to the overshoot distance detected by the first estimation unit 41 If it is determined (“No” in step S207), the process returns to step S202.
  • the CPU (central processing unit) 20A determines whether the series of processing from step S201 to step S208 is the first stage driving process or the second stage driving process. If it is determined that the driving process is the first stage (“No” in step S209), the process returns to step S201, and a series of processes from step S201 to step S208 is executed. On the other hand, if it is determined that the driving process is in the second stage (“Yes” in step S209), the process ends.
  • a drive command pulse signal stop unit 45 that stops the supply of the drive command pulse signal at the time when the estimated value is reached, between the first stage drive process and the second stage drive process, Since there is no need to wait for the driving to actually end, it is possible to execute a pressurizing operation with an appropriate load on the workpiece while preventing an increase in tact time.
  • the electric press 120 according to the present embodiment will be described with reference to FIGS. 9 to 11.
  • the electric press 120 according to the present embodiment relates to a so-called differential load stopping method in which the stopping process is performed when the load inclination exceeds the target load inclination value.
  • the electric press 120 includes a servo motor driver 13, an encoder 14, a CPU (Central Processing Unit) 20B, a control program storage unit 21, a display unit 22, and an operation.
  • subjects the same code
  • the target load gradient value storage unit 25A stores a target load gradient value according to the present embodiment.
  • the central processing unit 20B includes a speed detection unit 30, a first estimation unit 31, a load gradient value calculation unit 33, a third estimation unit 38, and a drive. And a command pulse signal stop unit 55.
  • subjects the same code
  • the third estimation unit 38 reaches the target load gradient value based on the current load gradient value calculated by the load gradient value calculation unit 33 and the target load gradient value stored in the target load gradient value storage unit 25A.
  • the travel distance of the ram 1 is estimated.
  • the third estimation unit 38 estimates the moving distance of the ram 1 until the target load inclination value is reached.
  • S f is the load gradient value [N / mm]
  • S f0 is the current load gradient value [N / mm]
  • D is the distance [mm]
  • S sf is the second-order differential value of the load value [N / mm 2 ].
  • the second-order differential value S sf of the load value can be obtained from the slope of the regression line in the same manner as the first-order differential value S f of the load value.
  • the position data series is (x1, x2,..., Xn) and the data series of the first-order partial value of the load is (y1, y2,..., Yn)
  • the second floor of the load value is calculated based on Equation 15.
  • the CPU (central processing unit) 20B reads the target load gradient value from the target load gradient value storage unit 25A and stores it in the temporary storage unit 24 (step S301).
  • the CPU (Central Processing Unit) 20B generates a drive command pulse in the drive command pulse generation unit 28 based on the target load inclination value stored in the temporary storage unit 24, and the generated drive command pulse signal is transmitted to the servo motor driver 13. (Step S302).
  • the load gradient value calculation unit 33 calculates the current load gradient value (step S303).
  • the CPU (central processing unit) 20 compares the target load inclination value read from the temporary storage unit 24 with the current load value calculated by the load inclination value calculation unit 33, and compares the target load inclination value with the current load inclination value. It is determined whether or not the difference value is equal to or less than a predetermined value (step S304). If it is determined that the difference value between the target load inclination value and the current load inclination value is larger than a predetermined value (“No” in step S304), the process returns to step S302.
  • step S304 when it is determined that the difference value between the target load inclination value and the current load inclination value is equal to or less than a predetermined value (“Yes” in step S304), the first estimation unit 31 is activated. Then, the accumulation amount of the drive command pulse signal is detected from the current speed and the load value (step S305).
  • the third estimation unit 38 is activated, and the ram 1 until the load gradient value detected by the load gradient value calculation unit 33 reaches the target load gradient value stored in the target load gradient value storage unit 25A.
  • the movement distance is estimated (step S306).
  • step S307 If it is determined that the distance is equal, the output of the drive command pulse is stopped (step S308).
  • the drive command pulse signal stop unit 55 sets the amount of accumulation of the drive command pulse signal corresponding to the overshoot distance detected by the first estimation unit 31 to the shift target load slope value calculated by the third estimation unit 38. If it is determined that the moving distance does not match the actual moving distance (“No” in step S307), the process returns to step S302.
  • the first estimation unit 31 that estimates the distance over which the ram 1 overshoots after the supply of the drive command pulse signal input to the servo motor driver 13 is stopped, and the ram 1 And a data string storage unit 26 for storing a data string in which the load value applied to the ram 1 is linked at the position and a data string stored in the data string storage unit 26, and a load inclination value is calculated.
  • Load gradient value calculation unit 33, target load gradient value storage unit 37 that stores the target load gradient value, and current load gradient value calculated by load gradient value calculation unit 33 and target load gradient value storage unit 37 Based on the target load inclination value, a third estimation unit 38 that estimates the movement distance of the ram 1 until the target load inclination value is reached, and the estimated value by the first estimation unit 31 is the third estimation unit 38. Guess by And the drive command pulse signal stop unit 55 that stops the supply of the drive command pulse signal when the value reaches the value, so that the estimated value by the first estimation unit 31 is the third value even when the differential load is stopped. By stopping the supply of the drive command pulse signal when the estimated value by the estimating unit 38 is reached, overshoot of the ram 1 can be prevented. Therefore, it is possible to perform the pressurizing operation with an appropriate load on the workpiece while preventing the tact time from being extended.
  • the third estimation unit 38 a target load slope value S ft [N / mm], first order differential value or load tilt value calculated by regression calculation (current load gradient value) S f0 [N / mm] D t is estimated based on a predetermined relational expression, where S sf [N / mm2] is the second-order differential value of the load, and D t [mm] is the moving distance until the target load inclination value is reached.
  • S sf [N / mm2] is the second-order differential value of the load
  • D t [mm] is the moving distance until the target load inclination value is reached.
  • the electric press of the present invention can be realized by recording the processing of the electric press on a computer system or a computer-readable recording medium, and reading and executing the program recorded on the recording medium. It can.
  • the computer system or computer here includes an OS and hardware such as peripheral devices.
  • the “computer system or computer” includes a homepage providing environment (or display environment) if a WWW (World Wide Web) system is used.
  • the program may be transmitted from a computer system or computer storing the program in a storage device or the like to another computer system or computer via a transmission medium or by a transmission wave in the transmission medium.
  • the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Presses (AREA)
  • Press Drives And Press Lines (AREA)

Abstract

Provided is an electric press with which pressurizing work can be carried out with an appropriate load on a workpiece while preventing extension of tact time. An electric press has an electric motor, a motor driver that supplies driving electric power to the electric motor, a ram that performs pressurizing work on a workpiece through the motive power of the electric motor, and a target load value storage unit that stores a target load value of the ram, and the electric press is provided with a first estimation unit that estimates the distance by which the ram overshoots after the supply of a drive command pulse signal inputted to the motor driver has been stopped, a second estimation unit that estimates the distance by which the ram moves until reaching the target load value, and a drive command pulse signal stopping unit that stops the supply of the drive command pulse signal at the point in time when the value estimated by the first estimation unit has reached the value estimated by the second estimation unit.

Description

電動プレス、制御方法およびプログラムElectric press, control method and program
 本発明は、電動プレス、制御方法およびプログラムに関する。The present invention relates to an electric press, a control method, and a program.
 一般に、電動プレスにおいては、「一定速度・荷重停止」、「一定速度・ディファレンシャル停止」といった駆動モードがある。このような駆動モードでは、本来、ラムが停止すべき位置からオーバーシュートしてしまう現象が生じる場合がある。このオーバーシュート量は、一般的に、ラムの駆動速度に依存し、駆動速度が高いほど、オーバーシュート量は増えることが知られている。Generally, in an electric press, there are drive modes such as “constant speed / load stop” and “constant speed / differential stop”. In such a drive mode, a phenomenon may occur in which the ram inherently overshoots from the position where it should stop. This overshoot amount generally depends on the driving speed of the ram, and it is known that the overshoot amount increases as the driving speed increases.
 このようなオーバーシュート現象を低減するために、「減速荷重率」(目標の荷重に対して、設定した荷重率に到達した時点で、駆動速度を低速にした加圧を行なう制御)や「参照停止位置」(ラムが停止するであろう位置を設定することにより、その位置からは超低速で加圧する制御)といった方法が用意されている。In order to reduce such overshoot phenomenon, "Deceleration load factor" (control to pressurize at a low drive speed when the set load factor is reached for the target load) or "Reference There is prepared a method such as “stop position” (control by which the ram will stop and then pressurize at a very low speed from that position).
 また、オーバーシュート量を低減するために、目標の荷重と現在荷重の差分や、荷重の増加傾向といったものに基づいて、駆動速度を適応的に変化させるといった方法も開示されている(例えば、特許文献1参照。)。Further, in order to reduce the amount of overshoot, a method of adaptively changing the drive speed based on the difference between the target load and the current load or the increasing tendency of the load is also disclosed (for example, patents). Reference 1).
特許第3076755号公報Japanese Patent No. 3076755
 しかしながら、特許文献1に開示された技術は、あくまでも、目標に近づくに従って駆動速度を落としていくことにより、オーバーシュートを減らそうといったものであり、駆動速度を落とすことにより、加工時間が長くなるため、タクトタイムの短縮を図ることができないという問題があった。However, the technique disclosed in Patent Document 1 is to reduce the overshoot by decreasing the drive speed as it approaches the target, and the processing time becomes longer by decreasing the drive speed. There was a problem that the tact time could not be shortened.
 また、一般に、サーボモータをモータドライバーでパルス制御駆動する場合、モータドライバーに入力する指令パルス信号の供給を停止したときには、モータドライバーがその時点で持っている指令パルス位置とモータエンコーダの示す位置との差、いわゆる「溜まりパルス」に相当する距離だけ指令パルス信号の供給を停止した位置よりも移動して停止する。このような現象から、指令パルス信号の供給を停止したと同時に、この「溜まりパルス」をなくすようにすれば、オーバーシュート現象を発生しない様にすることも可能であると考えられる。In general, when the servo motor is pulse-controlled with a motor driver, when the supply of the command pulse signal input to the motor driver is stopped, the command pulse position that the motor driver has at that time and the position indicated by the motor encoder , The distance corresponding to the so-called “accumulated pulse” moves from the position where the supply of the command pulse signal is stopped and stops. From such a phenomenon, it is considered that it is possible to prevent the overshoot phenomenon from occurring if the “accumulated pulse” is eliminated at the same time when the supply of the command pulse signal is stopped.
 確かに、「溜まりパルス」をなくすと、最終的な停止位置は指令パルス信号の供給を停止した位置となるが、その動作としては、一旦、指令パルス信号の供給を停止した位置を行き過ぎた後、戻ってきて停止するといった挙動になる。Certainly, if the “accumulation pulse” is eliminated, the final stop position will be the position where the supply of the command pulse signal is stopped. , Behaves like returning and stopping.
 そのため、上記のような挙動は、加工作業として加圧駆動をしているプレスの動作としては不適切である。実際、曲げ加工や圧入加工で、一旦、オーバーシュートをして、ワークを押してしまうと、その後に適切な位置に戻ってきたとしても意味はなく、また停止した時の荷重値は加圧した最大値ではなく、荷重不足の値になってしまうという問題があった。Therefore, the behavior as described above is inappropriate as the operation of a press that is pressure driven as a machining operation. In fact, once bending or press-fitting and overshooting and pushing the workpiece, there is no point in returning to an appropriate position, and the load value when stopped is the maximum There was a problem that it was not a value but a value of insufficient load.
 そこで、本発明は、上述の課題に鑑みてなされたものであり、タクトタイムの延長を防止しつつ、ワークに対して適切な荷重で加圧作業を実行できる電動プレス、制御方法およびプログラムを提供する。Accordingly, the present invention has been made in view of the above-described problems, and provides an electric press, a control method, and a program capable of performing pressurization work on a work with an appropriate load while preventing an increase in tact time. To do.
 形態1;本発明の1またはそれ以上の実施形態は、電動モータと、該電動モータに駆動電力を供給するモータドライバーと、前記電動モータの動力によりワークに対して加圧作業を行うラムと、該ラムの目標荷重値を記憶する目標荷重値記憶部とを有し、前記モータドライバーに入力される駆動指令パルス信号の供給を停止した後に、前記ラムがオーバーシュートする距離を推定する第1の推定部と、前記目標荷重値に到達するまでの前記ラムの移動距離を推定する第2の推定部と、前記第1の推定部による推定値が前記第2の推定部による推定値となった時点で前記駆動指令パルス信号の供給を停止する駆動指令パルス信号停止部と、を備えたことを特徴とする電動プレスを提案している。Form 1; One or more embodiments of the present invention include an electric motor, a motor driver that supplies driving electric power to the electric motor, a ram that pressurizes a work with the power of the electric motor, A target load value storage unit that stores a target load value of the ram, and after the supply of a drive command pulse signal input to the motor driver is stopped, a first distance that the ram overshoots is estimated The estimation unit, the second estimation unit for estimating the travel distance of the ram until the target load value is reached, and the estimation value by the first estimation unit become the estimation value by the second estimation unit. There is proposed an electric press comprising a drive command pulse signal stop unit that stops supply of the drive command pulse signal at a time point.
 形態2;本発明の1またはそれ以上の実施形態は、前記ラムの速度を検出する速度検出部を有し、前記第1の推定部は、前記ラムがオーバーシュートする距離をD〔mm〕、速度依存係数をK〔sec〕、前記ラムの速度をV〔mm/s〕としたときに、数1に基づいて、前記ラムがオーバーシュートする距離を推定することを特徴とする電動プレスを提案している。Mode 2 One or more embodiments of the present invention include a speed detection unit that detects the speed of the ram, and the first estimation unit sets a distance over which the ram overshoots by D v [mm]. An electric press characterized by estimating the distance over which the ram overshoots based on the equation (1) when the speed dependence coefficient is K v [sec] and the speed of the ram is V [mm / s]. Has proposed.
 形態3;本発明の1またはそれ以上の実施形態は、前記ラムの速度を検出する速度検出部と、該ラムにかかる荷重値を検出する荷重値検出部とを有し、前記第1の推定部は、前記ラムがオーバーシュートする距離をDvf〔mm〕、速度依存係数をK〔sec〕、前記ラムの速度をV〔mm/s〕、荷重依存係数をK〔sec/N〕、前記荷重値をF〔N〕としたときに、数2に基づいて、前記ラムがオーバーシュートする距離を推定することを特徴とする電動プレスを提案している。Mode 3; One or more embodiments of the present invention include a speed detection unit that detects the speed of the ram and a load value detection unit that detects a load value applied to the ram, and the first estimation The section includes a distance over which the ram overshoots Dvf [mm], a speed dependence coefficient Kv [sec], a speed of the ram V [mm / s], and a load dependence coefficient Kf [sec / N]. The electric press is characterized in that the distance over which the ram overshoots is estimated based on Equation 2 when the load value is F [N].
 形態4;本発明の1またはそれ以上の実施形態は、前記ラムの位置を検出する位置検出部と、該ラムにかかる荷重値を検出する荷重値検出部と、前記ラムの位置と該位置において前記ラムにかかる荷重値とを紐付けたデータ列を記憶するデータ列記憶部と、前記データ列記憶部に記憶されたデータ列に基づいて、荷重傾斜値を算出する荷重傾斜値算出部と、を備え、前記第2の推定部が、前記荷重値検出部が検出する現在の前記ラムにかかる荷重値と前記荷重傾斜値算出部が算出する前記荷重傾斜値とに基づいて、前記目標荷重値記憶部に記憶された前記目標荷重値に前記荷重値検出部により検出される荷重値が到達するまでの前記ラムの移動距離を推定することを特徴とする電動プレスを提案している。Mode 4: One or more embodiments of the present invention include a position detection unit that detects the position of the ram, a load value detection unit that detects a load value applied to the ram, and the position and position of the ram. A data string storage unit that stores a data string associated with a load value applied to the ram; a load gradient value calculation unit that calculates a load gradient value based on the data string stored in the data string storage unit; And the second estimation unit is configured to determine the target load value based on the current load value applied to the ram detected by the load value detection unit and the load gradient value calculated by the load gradient value calculation unit. The electric press characterized by estimating the moving distance of the said ram until the load value detected by the said load value detection part arrives at the said target load value memorize | stored in the memory | storage part is proposed.
 形態5;本発明の1またはそれ以上の実施形態は、前記荷重傾斜値算出部は、前記荷重傾斜値として、前記ラムの位置の変化に関する荷重値の1階微分値を算出することを特徴とする電動プレスを提案している。Mode 5: One or more embodiments of the present invention are characterized in that the load gradient value calculation unit calculates a first-order differential value of a load value related to a change in the position of the ram as the load gradient value. Proposes an electric press.
 形態6;本発明の1またはそれ以上の実施形態は、前記荷重傾斜値算出部は、前記荷重傾斜値を回帰計算により算出することを特徴とする電動プレスを提案している。Embodiment 6: One or more embodiments of the present invention propose an electric press characterized in that the load inclination value calculation unit calculates the load inclination value by regression calculation.
 形態7;本発明の1またはそれ以上の実施形態は、前記荷重傾斜値算出部は、さらに、前記ラムの位置の変化に関する荷重値の2階微分値を算出し、前記第2の推定部は、前記目標荷重値をF〔N〕、現在の荷重値をF〔N〕、前記荷重傾斜値をS〔N/mm〕、前記荷重値の2階微分値をSsf〔N/mm2〕、前記移動距離をD〔mm〕としたときに、数3に基づいて、Dを推定することを特徴とする電動プレスを提案している。Mode 7: In one or more embodiments of the present invention, the load gradient value calculation unit further calculates a second-order differential value of a load value related to a change in the position of the ram, and the second estimation unit , The target load value is F t [N], the current load value is F 0 [N], the load inclination value is S f [N / mm], and the second-order differential value of the load value is S sf [N / mm2], and when the moving distance is Dt [mm], an electric press characterized by estimating Dt based on Equation 3 is proposed.
 形態8;本発明の1またはそれ以上の実施形態は、前記ラムを一旦停止させた後、前記ラムをさらに、所定の設定位置に移動させて、ワークに対して加圧作業を行なう場合に、前記第1の推定部が推定した前記ラムがオーバーシュートする距離に対する位置を基点として、さらに、前記設定位置までの距離に相当する駆動指令パルス信号を前記モータドライバーに入力することを特徴とする電動プレスを提案している。Mode 8: In one or more embodiments of the present invention, when the ram is once stopped, the ram is further moved to a predetermined setting position, and a work is pressurized. The driving command pulse signal corresponding to the distance to the set position is input to the motor driver based on the position with respect to the distance overshooting the ram estimated by the first estimation unit. Proposing a press.
 形態9;本発明の1またはそれ以上の実施形態は、電動モータと、該電動モータに駆動電力を供給するモータドライバーと、前記電動モータの動力により、ワークに対して加圧動作を行なうラムと、前記ラムにかかる荷重値を検出する荷重値検出部と、前記ラムの位置を検出する位置検出部と、を備えた電動プレスであって、前記モータドライバーに入力される駆動指令パルス信号の供給を停止した後に、前記ラムがオーバーシュートする距離を推定する第1の推定部と、前記ラムの位置と該位置において前記ラムにかかる荷重値とを紐付けたデータ列を記憶するデータ列記憶部と、前記データ列記憶部に記憶されたデータ列に基づいて、荷重傾斜値を算出する荷重傾斜値算出部と、目標荷重傾斜値を記憶する目標荷重傾斜値記憶部と、前記荷重傾斜値算出部が算出する現在の荷重傾斜値と前記目標荷重傾斜値記憶部に記憶されたが前記目標荷重傾斜値とに基づいて、前記目標荷重傾斜値に到達するまでの前記ラムの移動距離を推定する第3の推定部と、前記第1の推定部による推定値が前記第3の推定部による推定値となった時点で前記駆動指令パルス信号の供給を停止する駆動指令パルス信号停止部と、を備えたことを特徴とする電動プレスを提案している。Mode 9: One or more embodiments of the present invention include an electric motor, a motor driver that supplies driving electric power to the electric motor, and a ram that pressurizes the workpiece by the power of the electric motor. An electric press comprising: a load value detection unit that detects a load value applied to the ram; and a position detection unit that detects the position of the ram, and supplies a drive command pulse signal input to the motor driver A first estimation unit that estimates the distance over which the ram overshoots, and a data string storage unit that stores a data string in which the position of the ram and the load value applied to the ram at the position are linked A load gradient value calculation unit that calculates a load gradient value based on the data sequence stored in the data string storage unit, a target load gradient value storage unit that stores a target load gradient value, The movement of the ram until the target load inclination value is reached based on the current load inclination value calculated by the load inclination value calculation section and the target load inclination value storage section but stored in the target load inclination value storage section A third estimator for estimating a distance; and a drive command pulse signal stop for stopping the supply of the drive command pulse signal when an estimated value by the first estimator becomes an estimated value by the third estimator And an electric press characterized by comprising a part.
 形態10;本発明の1またはそれ以上の実施形態は、前記荷重傾斜値算出部は、前記荷重傾斜値を、前記ラムの位置の変化に関する荷重値の1階微分値あるいは回帰計算により算出するとともに、前記ラムの位置の変化に関する荷重値の2階微分値を算出し、前記第3の推定部は、前記目標荷重傾斜値をSft〔N/mm〕、前記1階微分値あるいは回帰計算により算出した荷重傾斜値(現在荷重傾斜値)をSf0〔N/mm〕、前記荷重値の2階微分値をSsf〔N/mm2〕、前記目標荷重傾斜値となるまでの移動距離をD〔mm〕としたときに、数4に基づいて、Dを推定することを特徴とする電動プレスを提案している。Mode 10: In one or more embodiments of the present invention, the load gradient value calculation unit calculates the load gradient value by a first-order differential value or a regression calculation of a load value related to a change in the position of the ram. The second estimation value of the load value related to the change in the position of the ram is calculated, and the third estimation unit calculates the target load inclination value by S ft [N / mm], the first-order differential value or the regression calculation. The calculated load inclination value (current load inclination value) is S f0 [N / mm], the second-order differential value of the load value is S sf [N / mm2], and the moving distance until the target load inclination value is reached is D An electric press characterized by estimating D t based on Equation 4 when t [mm] is proposed.
 形態11;本発明の1またはそれ以上の実施形態は、電動モータと、該電動モータに駆動電力を供給するモータドライバーと、前記電動モータの動力によりワークに対して加圧作業を行うラムと、該ラムの目標荷重値を記憶する目標荷重値記憶部と、第1の推定部と、第2の推定部と、駆動指令パルス信号停止部と、を有する電動プレスにおける制御方法であって、前記第1の推定部が前記モータドライバーに入力される駆動指令パルス信号の供給を停止した後に、前記ラムがオーバーシュートする距離を推定する第1の工程と、前記第2の推定部が、前記目標荷重値に到達するまでの前記ラムの移動距離を推定する第2の工程と、前記駆動指令パルス信号停止部が前記第1の推定部による推定値が前記第2の推定部による推定値となった時点で前記駆動指令パルス信号の供給を停止する第3の工程と、を備えたことを特徴とする制御方法を提案している。Mode 11: One or more embodiments of the present invention include an electric motor, a motor driver that supplies driving electric power to the electric motor, a ram that pressurizes the workpiece with the power of the electric motor, A control method in an electric press having a target load value storage unit that stores a target load value of the ram, a first estimation unit, a second estimation unit, and a drive command pulse signal stop unit, A first step of estimating a distance over which the ram overshoots after the first estimation unit stops supplying the drive command pulse signal input to the motor driver, and the second estimation unit includes the target A second step of estimating the travel distance of the ram until the load value is reached, and the estimated value by the first estimating unit of the driving command pulse signal stop unit becomes an estimated value by the second estimating unit. The Proposes a control method characterized by comprising: a third step of stopping the supply of the drive command pulse signal at point a.
 形態12;本発明の1またはそれ以上の実施形態は、電動モータと、該電動モータに駆動電力を供給するモータドライバーと、前記電動モータの動力によりワークに対して加圧作業を行うラムと、該ラムの目標荷重値を記憶する目標荷重値記憶部と、第1の推定部と、第2の推定部と、駆動指令パルス信号停止部と、を有する電動プレスにおける制御方法をコンピュータに実行させるためのプログラムであって、前記第1の推定部が前記モータドライバーに入力される駆動指令パルス信号の供給を停止した後に、前記ラムがオーバーシュートする距離を推定する第1の工程と、前記第2の推定部が、前記目標荷重値に到達するまでの前記ラムの移動距離を推定する第2の工程と、前記駆動指令パルス信号停止部が前記第1の推定部による推定値が前記第2の推定部による推定値となった時点で前記駆動指令パルス信号の供給を停止する第3の工程と、をコンピュータに実行させるためのプログラムを提案している。Mode 12: One or more embodiments of the present invention include an electric motor, a motor driver that supplies driving electric power to the electric motor, a ram that pressurizes the workpiece with the power of the electric motor, A computer executes a control method in an electric press having a target load value storage unit that stores a target load value of the ram, a first estimation unit, a second estimation unit, and a drive command pulse signal stop unit. A first step of estimating a distance that the ram overshoots after the first estimation unit stops supplying a drive command pulse signal input to the motor driver; and A second step of estimating the ram travel distance until the target load value is reached, and the drive command pulse signal stop unit is estimated by the first estimation unit. Value is proposed a program for executing the third step, to the computer to stop the supply of the drive command pulse signal when it becomes the estimated value by the second estimator.
 本発明の1またはそれ以上の実施形態によれば、タクトタイムの延長を防止しつつ、ワークに対して適切な荷重で加圧作業を実行できるという効果がある。According to one or more embodiments of the present invention, there is an effect that a pressurization operation can be performed with an appropriate load on a workpiece while preventing an increase in tact time.
本発明の第1の実施形態に係る電動プレスの構造を示す図である。It is a figure which shows the structure of the electric press which concerns on the 1st Embodiment of this invention.
本発明の第1の実施形態に係る電動プレスの電気的構成を示す図である。It is a figure which shows the electric constitution of the electric press which concerns on the 1st Embodiment of this invention.
本発明の第1の実施形態に係る中央演算処理装置の電気的構成を示す図である。It is a figure which shows the electrical constitution of the central processing unit which concerns on the 1st Embodiment of this invention.
本発明の第1の実施形態に係る駆動指令パルス信号停止部の電気的構成を示す図である。It is a figure which shows the electrical structure of the drive command pulse signal stop part which concerns on the 1st Embodiment of this invention.
本発明の第1の実施形態に係る電動プレスの処理を示す図である。It is a figure which shows the process of the electric press which concerns on the 1st Embodiment of this invention.
本発明の第1の実施形態に係る無負荷状態で速度Vをパラメータとして変化させた場合に、駆動指令パルス信号が停止した時点からラムが停止するまでの距離との関係を示す図である。It is a figure which shows the relationship with the distance from the time of a drive command pulse signal stopping to a ram stop, when changing the speed V as a parameter in the no-load state which concerns on the 1st Embodiment of this invention.
本発明の第2の実施形態に係る中央演算処理装置の電気的構成を示す図である。It is a figure which shows the electrical constitution of the central processing unit which concerns on the 2nd Embodiment of this invention.
本発明の第2の実施形態に係る電動プレスの処理を示す図である。It is a figure which shows the process of the electric press which concerns on the 2nd Embodiment of this invention.
本発明の第3の実施形態に係る電動プレスの電気的構成を示す図である。It is a figure which shows the electric constitution of the electric press which concerns on the 3rd Embodiment of this invention.
本発明の第3の実施形態に係る中央演算処理装置の電気的構成を示す図である。It is a figure which shows the electrical constitution of the central processing unit which concerns on the 3rd Embodiment of this invention.
本発明の第3の実施形態に係る電動プレスの処理を示す図である。It is a figure which shows the process of the electric press which concerns on the 3rd Embodiment of this invention.
<第1の実施形態>
 以下、本発明の第1の実施形態について、図1から図6を用いて説明する。
<First Embodiment>
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
<電動プレスの構造>
 図1を用いて、本実施形態に係る電動プレスの構造を説明する。
<Structure of electric press>
The structure of the electric press according to this embodiment will be described with reference to FIG.
 本実施形態に係る電動プレス100は、図1に示すように、昇降動作により、ワークW(加工対象)に対して所望の圧力を与えるプレス用のラム1と、該ラム1に昇降動作(直線運動)を与えるボール螺子2とからなり、これらが、プレス本体3内に設けられている。また、駆動源となるACサーボモータ等のサーボモータ4もプレス本体3に接続されたケーシング5の頭部枠体内に収納されている。そして、サーボモータ4の駆動は、プーリ、ベルトを介してボール螺子2に伝達される。As shown in FIG. 1, an electric press 100 according to the present embodiment includes a press ram 1 that applies a desired pressure to a workpiece W (processing object) by an elevating operation, and an elevating operation (straight line) on the ram 1. And a ball screw 2 that gives movement), and these are provided in the press body 3. A servo motor 4 such as an AC servo motor serving as a drive source is also housed in a head frame body of a casing 5 connected to the press body 3. Then, the drive of the servo motor 4 is transmitted to the ball screw 2 via a pulley and a belt.
 ラム1は、図1に示すように、筒状体に形成されている。具体的には、円筒状に形成された筒状本体1aの内部に軸方向に沿って中空状部が形成されており、該中空状部の内部にボール螺子2の螺子軸2aが挿入可能となっている。また、ラム1の筒状本体1aの軸長方向端部箇所には、ボール螺子2のナット体2bが固着されている。The ram 1 is formed in a cylindrical body as shown in FIG. Specifically, a hollow portion is formed along the axial direction inside a cylindrical main body 1a, and the screw shaft 2a of the ball screw 2 can be inserted into the hollow portion. It has become. Further, a nut body 2b of the ball screw 2 is fixed to an end portion in the axial direction of the cylindrical main body 1a of the ram 1.
 筒状本体1aの先端部には、起歪柱9が装着自在となるように構成されており、実際には、起歪柱9がワークWに当接して、適宜、圧力を与えるものである。また、起歪柱9は、歪ゲージが取り付け可能に構成され、この歪ゲージによって、ワークWに与える圧力を検出することができるようになっている。The strain column 9 is configured to be freely mounted at the distal end portion of the cylindrical main body 1a. In actuality, the strain column 9 abuts against the workpiece W and appropriately applies pressure. . In addition, the strain column 9 is configured so that a strain gauge can be attached, and the pressure applied to the workpiece W can be detected by the strain gauge.
 筒状本体1aの外周側面を包むようにして筒状ガイド6が設けられている。筒状ガイド6は、ケーシング5内に固定され、該筒状ガイド6に沿ってラム1が昇降移動可能に構成されている。A cylindrical guide 6 is provided so as to wrap the outer peripheral side surface of the cylindrical main body 1a. The cylindrical guide 6 is fixed in the casing 5, and the ram 1 can be moved up and down along the cylindrical guide 6.
<電動プレスの電気的構成>
 図2に示すように、本実施形態に係る電動プレス100は、サーボモータドライバー13と、エンコーダ14と、CPU(中央演算処理装置)20と、制御プログラム記憶部21と、表示部22と、操作部23と、一時記憶部24と、目標荷重値記憶部25と、データ列記憶部26と、回路部27と、駆動指令パルス発生部28と、エンコーダ位置カウンタ29とから構成されている。
<Electric configuration of electric press>
As shown in FIG. 2, the electric press 100 according to the present embodiment includes a servo motor driver 13, an encoder 14, a CPU (Central Processing Unit) 20, a control program storage unit 21, a display unit 22, and an operation. A unit 23, a temporary storage unit 24, a target load value storage unit 25, a data string storage unit 26, a circuit unit 27, a drive command pulse generation unit 28, and an encoder position counter 29 are configured.
 制御プログラム記憶部21は、CPU(中央演算処理装置)20が電動プレス100全体の動作や処理を制御するための制御プログラムを記憶する。例えば、本実施形態においては、プレス作業に関するメインプログラムはもとより、後述するサーボモータドライバー13に入力される駆動指令パルス信号の供給を停止した後に、ラム1がオーバーシュートする距離を推定するオーバーシュート距離推定プログラムモジュールや目標荷重値に到達するまでのラム1の距離を推定するラム移動距離推定プログラムモジュール、オーバーシュート距離推定プログラムモジュールによる推定値がラム移動距離推定プログラムモジュールによる推定値となった時点で駆動指令パルス信号の供給を停止する駆動指令パルス信号供給停止プログラムモジュール等を記憶する。表示部22は、各種情報を表示する表示装置である。本実施形態では、プログラムNoや加圧条件、処理ワーク数等の情報を表示する。The control program storage unit 21 stores a control program for the CPU (Central Processing Unit) 20 to control the operation and processing of the entire electric press 100. For example, in the present embodiment, the overshoot distance for estimating the distance over which the ram 1 overshoots after stopping the supply of a drive command pulse signal input to a servo motor driver 13 described later as well as the main program relating to the press work. At the time when the estimated value by the ram moving distance estimation program module becomes the estimated value by the ram moving distance estimation program module, the ram movement distance estimation program module that estimates the distance of the ram 1 until the target load value is reached, or the overshoot distance estimation program module A drive command pulse signal supply stop program module for stopping the supply of the drive command pulse signal is stored. The display unit 22 is a display device that displays various types of information. In the present embodiment, information such as the program number, the pressurizing condition, the number of work pieces to be processed is displayed.
 操作部23は、加圧条件等を設定するためのタッチパネル、タクトスイッチ等で構成されている。一時記憶部24は、一時的なデータを記憶する。目標荷重値記憶部25は、ラム1の目標荷重値を記憶する。データ列記憶部26は、エンコーダ位置カウンタ29から得られる位置情報と起歪柱9および回路部27において検出された荷重値とを関連付けて記憶する。The operation unit 23 includes a touch panel, a tact switch, and the like for setting the pressurizing condition. The temporary storage unit 24 stores temporary data. The target load value storage unit 25 stores the target load value of the ram 1. The data string storage unit 26 stores the position information obtained from the encoder position counter 29 and the load values detected in the strain column 9 and the circuit unit 27 in association with each other.
 回路部27は、起歪柱9に取り付けられた歪みゲージの抵抗変化に対する信号を増幅し、A/D変換処理によりアナログ信号をデジタル信号に変換した後に、CPU(中央演算処理装置)20へ出力する。CPU(中央演算処理装置)20は、回路部27から入力したデジタル信号により荷重値を検出する。The circuit unit 27 amplifies a signal with respect to a resistance change of a strain gauge attached to the strain column 9, converts an analog signal into a digital signal by A / D conversion processing, and then outputs the analog signal to a CPU (central processing unit) 20. To do. The CPU (central processing unit) 20 detects the load value from the digital signal input from the circuit unit 27.
 駆動指令パルス発生部28は、CPU(中央演算処理装置)20からの指令に基づいて、所望の駆動指令パルスを発生し、後述する駆動指令パルス信号停止部を介して、サーボモータドライバー13に出力する。エンコーダ14は、ラム1の位置を検出するために利用されるためのものであり、サーボモータ4に連結されている。エンコーダ位置カウンタ29は、エンコーダ14からのパルス信号をカウントアップする。CPU(中央演算処理装置)20は、エンコーダ14のカウント値からラム1の位置を検出する。The drive command pulse generator 28 generates a desired drive command pulse based on a command from a CPU (Central Processing Unit) 20 and outputs it to the servo motor driver 13 via a drive command pulse signal stop unit described later. To do. The encoder 14 is used to detect the position of the ram 1 and is connected to the servo motor 4. The encoder position counter 29 counts up the pulse signal from the encoder 14. The CPU (central processing unit) 20 detects the position of the ram 1 from the count value of the encoder 14.
<中央演算処理装置の電気的構成>
 本実施形態に係る中央演算処理装置20は、図3に示すように、速度検出部30と、第1の推定部31と、荷重傾斜値算出部33と、第2の推定部34と、駆動指令パルス信号停止部35とから構成されている。
<Electrical configuration of central processing unit>
As shown in FIG. 3, the central processing unit 20 according to the present embodiment includes a speed detection unit 30, a first estimation unit 31, a load gradient value calculation unit 33, a second estimation unit 34, and a drive. A command pulse signal stop unit 35 is included.
 速度検出部30は、エンコーダ位置カウンタ29からの入力信号と図示しないタイマーの値とによりラム1の速度を検出し、第1の推定部31に出力する。The speed detection unit 30 detects the speed of the ram 1 based on an input signal from the encoder position counter 29 and a timer value (not shown), and outputs the detected speed to the first estimation unit 31.
 第1の推定部31は、サーボモータドライバー13に入力される駆動指令パルス信号の供給を停止した後に、ラム1がオーバーシュートする距離を推定する。The first estimation unit 31 estimates the distance that the ram 1 overshoots after the supply of the drive command pulse signal input to the servo motor driver 13 is stopped.
 ここで、サーボモータ4を用いて、負荷(本実施形態ではラム1)を駆動する場合、サーボモータ4の特性により、サーボモータドライバー13からの駆動指令パルス信号の1パルスあたりのモータ回転角度が決まることにより、サーボモータ4の回転による負荷の移動距離が決まる。しかしながら、負荷の駆動中においては、実際には、指示した位置と現在の位置との差分(誤差分)が発生し、駆動指令パルス信号を止めても、負荷が移動してしまう現象、所謂、オーバーシュートが生じてしまう。このオーバーシュートの量を以下では、適宜、「溜りパルス量」と記す。第1の推定部31は、この溜りパルス量を推定する。Here, when the load (ram 1 in this embodiment) is driven using the servo motor 4, the motor rotation angle per pulse of the drive command pulse signal from the servo motor driver 13 depends on the characteristics of the servo motor 4. By determining, the moving distance of the load due to the rotation of the servo motor 4 is determined. However, during the driving of the load, in fact, a difference (error) between the instructed position and the current position occurs, and the load moves even when the drive command pulse signal is stopped, so-called Overshoot will occur. Hereinafter, the amount of overshoot will be referred to as “a droop pulse amount” as appropriate. The first estimation unit 31 estimates the amount of accumulated pulses.
 具体的には、オーバーシュートによるラム1の移動量(溜りパルス量)は、速度に比例する要素と、荷重に比例する要素とがあることから、溜りパルス量をDvf〔mm〕、速度依存係数をK〔sec〕、ラム1の速度をV〔mm/s〕、荷重依存係数をK〔sec/N〕、荷重値をF〔N〕としたときに、数1に基づいて、溜りパルス量を推定する。Specifically, the amount of movement of the ram 1 due to overshoot (the amount of accumulated pulses) has an element proportional to the speed and an element proportional to the load. Therefore, the accumulated pulse amount is represented by D vf [mm], which depends on the speed. When the coefficient is K v [sec], the speed of the ram 1 is V [mm / s], the load dependence coefficient is K f [sec / N], and the load value is F [N], Estimate the amount of drooping pulses.
 ここで、速度依存係数Kは、速度に比例する溜りパルス量の係数であり、荷重依存係数Kは、荷重によって発生する溜りパルス量の係数であって、この係数も速度に依存する。そのため、溜りパルス量はこれらの和として推定される。なお、速度依存係数Kや荷重依存係数Kは、駆動系やサーボモータドライバー13のフィードパックゲインによって変わる。そのため、これらの計数の値は事前に測定によって求める。具体的には、無負荷状態(荷重値F=0)において、速度Vをパラメータとして変えていき、指令駆動パルス信号が停止した時点から負荷(本実施形態ではラム1)が移動停止するまでの距離を測定する。この具体例を図6に示す。図6において、グラフの傾きが速度依存係数Kに相当する。また、荷重依存係数Kについては、負荷(本実施形態ではラム1)をかけた時に、速度依存係数Kの測定の場合と同様の測定を行い、K*Vの項を除いたものの係数からその値を求めることができる。Here, the speed dependence coefficient K v is a coefficient droop pulse amount that is proportional to the speed, load dependence coefficient K f is a coefficient of droop pulse amount generated by the load, this factor is also dependent on the speed. Therefore, the accumulated pulse amount is estimated as the sum of these. Incidentally, the speed dependence coefficient K v and load dependency coefficient K f will vary by the feed packs gain of the drive system and servo motor driver 13. Therefore, these count values are obtained by measurement in advance. Specifically, in the no-load state (load value F = 0), the speed V is changed as a parameter until the load (ram 1 in this embodiment) stops moving from when the command drive pulse signal stops. Measure distance. A specific example is shown in FIG. 6, the slope of the graph corresponds to the speed dependence coefficient K v. As for the load dependence coefficient K f , the same measurement as in the case of the measurement of the speed dependence coefficient K v is performed when a load (ram 1 in this embodiment) is applied, and the term of K v * V is excluded. The value can be obtained from the coefficient.
 なお、上記のように、現在の速度と荷重値とから溜りパルス量を算出する代わりに、サーボモータドライバー13がサーボモータドライバー13に溜まっているパルス量を把握し、これをCPU(中央演算処理装置)20に送信する機能を有する場合には、サーボモータドライバー13からCPU(中央演算処理装置)20が直接、溜りパルス量をリアルタイムに取得するようにしてもよい。As described above, instead of calculating the accumulated pulse amount from the current speed and load value, the servo motor driver 13 grasps the accumulated pulse amount in the servo motor driver 13 and uses this to determine the CPU (central processing). In the case of having a function of transmitting to the device 20, the CPU (central processing unit) 20 may directly acquire the accumulated pulse amount in real time from the servo motor driver 13.
 また、数1において、荷重依存係数をKの値は小さいため、溜りパルス量をDvfに対する荷重値Fの項の影響は限定的ともいえる。そこで、簡易的に、溜りパルス量をD〔mm〕を速度依存係数K〔sec〕とラム1の速度をV〔mm/s〕とから数2に基づいて求めてもよい。Further, in the equation 1, since the load dependency coefficient values of K f is small, the influence of the term of the load values F droop pulses amount relative to D vf can be said to be limited. Therefore, the amount of droop pulses may be simply calculated based on Equation 2 from D v [mm], the speed dependency coefficient K v [sec], and the speed of the ram 1 V (mm / s).
 荷重傾斜値算出部33は、データ列記憶部26に記憶されたデータ列に基づいて、荷重傾斜値を算出する。荷重傾斜値算出部33は、荷重傾斜値として、ラム1の位置の変化に関する荷重値の1階微分値を算出する。具体的には、例えば、荷重傾斜値をS〔N/mm〕、荷重値をF〔N〕、距離をD〔mm〕としたときに、荷重傾斜値S〔N/mm〕を数3に基づいて、算出する。The load inclination value calculation unit 33 calculates the load inclination value based on the data string stored in the data string storage unit 26. The load inclination value calculation unit 33 calculates a first-order differential value of the load value related to the change in the position of the ram 1 as the load inclination value. Specifically, for example, when the load inclination value is S f [N / mm], the load value is F [N], and the distance is D [mm], the load inclination value S f [N / mm] is a number. 3 is calculated.
 また、荷重傾斜値算出部33は、回帰直線を用いる直線回帰計算により荷重傾斜値を求めることもできる。この場合、荷重傾斜値をS〔N/mm〕、加圧部位の位置データ系列を(x1、x2、・・・・、xn)、荷重のデータ系列を(y1、y2、・・・・、yn)とすると、荷重傾斜値S〔N/mm〕は、数4に基づいて、算出される。Moreover, the load inclination value calculation part 33 can also obtain | require a load inclination value by the linear regression calculation using a regression line. In this case, the load inclination value is S f [N / mm], the position data series of the pressurizing part is (x1, x2,..., Xn), and the load data series is (y1, y2,...). , Yn), the load inclination value S f [N / mm] is calculated based on Equation 4.
 第2の推定部34は、目標荷重値に到達するまでのラム1の移動距離を推定する。具体的には、回路部27(荷重値検出部)が検出する現在のラム1にかかる荷重値と荷重傾斜値算出部33が算出する荷重傾斜値とに基づいて、目標荷重値記憶部25に記憶された目標荷重値に回路部27(荷重値検出部)により検出される荷重値が到達するまでのラム1の移動距離を推定する。つまり、無負荷状態における現在の荷重値をF〔N〕とし、荷重傾斜値算出部33が算出した荷重傾斜値をS〔N/mm〕とし、求めるラム1の移動距離をD〔mm〕とすると、数5の関係となる。The second estimation unit 34 estimates the moving distance of the ram 1 until the target load value is reached. Specifically, the target load value storage unit 25 stores the load value applied to the current ram 1 detected by the circuit unit 27 (load value detection unit) and the load gradient value calculated by the load gradient value calculation unit 33. The moving distance of the ram 1 until the load value detected by the circuit unit 27 (load value detection unit) reaches the stored target load value is estimated. In other words, the current load value in the no-load state is F 0 [N], the load inclination value calculated by the load inclination value calculation unit 33 is S f [N / mm], and the calculated travel distance of the ram 1 is D [mm]. ], The relationship of Equation 5 is obtained.
 数5において、目標荷重値をF〔N〕とし、目標荷重値Fに到達するまでのラムの移動距離をDとすると、数6のようになる。ここで、数6を変形すると、目標荷重値Fに到達するまでのラムの移動距離Dを求める数7となる。したがって、数7に目標荷重値F〔N〕、現在の荷重値をF〔N〕、荷重傾斜値S〔N/mm〕の値を代入すれば、目標荷重値Fに到達するまでのラム1の移動距離Dを求めることができる。In Equation 5, when the target load value is F t [N] and the ram movement distance until reaching the target load value F t is D t , Equation 6 is obtained. Here, when Equation 6 is transformed, Equation 7 is obtained to obtain the ram movement distance D t until the target load value F t is reached. Therefore, if the target load value F t [N], the current load value F 0 [N], and the load gradient value S f [N / mm] are substituted into Equation 7, the target load value F t is reached. You can obtain the moving distance D t of the ram 1 to.
 なお、上記では、荷重傾斜値S〔N/mm〕からの1次近似として、目標荷重値Fに到達するまでのラム1の移動距離Dを求める方法を例示したが、荷重値の距離に対する2階微分値を用いて、2次近似として、目標荷重値Fに到達するまでのラム1の移動距離Dを求めることもできる。In the above description, the method of obtaining the moving distance D t of the ram 1 until the target load value F t is reached is illustrated as a first-order approximation from the load inclination value S f [N / mm]. using second-order differential value with respect to the distance, as a secondary approximation, it is also possible to obtain the moving distance D t of the ram 1 to reach the target load value F t.
 具体的には、荷重値の2階微分値Ssf〔N/mm〕を数8とすると、荷重値Fは、数9のように表される。ここで、数9において、荷重値Fを目標荷重値Fと、距離Dを目標荷重値Fに到達するまでのラム1の移動距離Dとすると、数10のようになる。この数10を変形して、数11のように、Dに関する2次方程式として、これを解くと、数12に示すように、Dを求めることができる。Specifically, when the second-order differential value S sf [N / mm 2 ] of the load value is represented by Equation 8, the load value F is represented by Equation 9. Here, in the equation 9, a target load value F t the load value F, if the distance D and the moving distance D t of the ram 1 to reach the target load value F t, is as few 10. By transforming this number 10, as in equation 11, as a quadratic equation relating D t, solving this, as shown in Equation 12, it can be obtained D t.
 駆動指令パルス信号停止部35は、第1の推定部31による推定値(溜りパルス量(ラム1がオーバーシュートする距離))が第2の推定部34による推定値(目標荷重値に到達するまでのラム1の移動距離)となった時点で駆動指令パルス信号の供給を停止する。The drive command pulse signal stop unit 35 is configured until the estimated value (the accumulated pulse amount (distance over which the ram 1 is overshooted)) by the first estimating unit 31 reaches the estimated value (the target load value) by the second estimating unit 34. The supply of the drive command pulse signal is stopped at the point of time when the ram 1 travel distance is reached.
 駆動指令パルス信号停止部35の具体的な構成は、例えば、図4に示すように、比較部36とスイッチ素子SWと抵抗器Rとからなっている。比較部36は、第1の推定部31から得られる溜りパルス量(ラム1がオーバーシュートする距離)と第2の推定部34から得られる目標荷重値に到達するまでのラム1の移動距離とを比較して、溜りパルス量(ラム1がオーバーシュートする距離)が目標荷重値に到達するまでのラム1の移動距離となった時点でスイッチ素子SWを閉状態とする。スイッチ素子SWが閉状態となると、サーボモータドライバー13の駆動指令パルス信号入力端子が「Low」レベルとなることから、サーボモータドライバー13がサーボモータ4に供給する電力がOFFとなる。なお、スイッチ素子SWとしては、トランジスタやFET(Field effect transistor)等の電子部品を用いることができる。また、抵抗器Rに代えて、Vfの小さいショットキーダイオードを用いてもよい。The specific configuration of the drive command pulse signal stop unit 35 includes, for example, a comparison unit 36, a switch element SW, and a resistor R as shown in FIG. The comparison unit 36 includes the amount of accumulated pulses (distance over which the ram 1 overshoots) obtained from the first estimation unit 31 and the travel distance of the ram 1 until reaching the target load value obtained from the second estimation unit 34. And the switch element SW is closed when the accumulated pulse amount (distance over which the ram 1 overshoots) reaches the movement distance of the ram 1 until the target load value is reached. When the switch element SW is in the closed state, the drive command pulse signal input terminal of the servo motor driver 13 is set to the “Low” level, so that the power supplied to the servo motor 4 by the servo motor driver 13 is turned off. As the switch element SW, a transistor or FET (Field                 effect transistors) and the like can be used. Further, instead of the resistor R, a Schottky diode having a small Vf may be used.
<電動プレスの処理>
 図5を用いて、本実施形態に係る電動プレス100の処理について説明する。
<Electric press processing>
The process of the electric press 100 according to the present embodiment will be described with reference to FIG.
 まず、CPU(中央演算処理装置)20は、目標荷重値記憶部25から目標荷重値を読み出し、一時記憶部24に格納する(ステップS101)。CPU(中央演算処理装置)20は、一時記憶部24に格納した目標荷重値に基づき、駆動指令パルス発生部28に駆動指令パルスを発生させ、発生させた駆動指令パルス信号をサーボモータドライバー13に出力する(ステップS102)。First, the CPU (central processing unit) 20 reads the target load value from the target load value storage unit 25 and stores it in the temporary storage unit 24 (step S101). The CPU (Central Processing Unit) 20 generates a drive command pulse in the drive command pulse generator 28 based on the target load value stored in the temporary storage unit 24, and sends the generated drive command pulse signal to the servo motor driver 13. Output (step S102).
 次いで、CPU(中央演算処理装置)20は、一時記憶部24から読み出した目標荷重値と荷重値検出部(回路部27)が検出した現在のラム1にかかる現在荷重値とを比較し、目標荷重値と現在荷重値との差分値が予め定めた規定値以下であるか否かを判定する(ステップS103)。そして、判定の結果、目標荷重値と現在荷重値との差分値が予め定めた規定値以下でないと判定した場合(ステップS103の「No」)には、ステップS102に戻る。なお、ステップS103において、目標荷重値と現在荷重値との差分値が予め定めた規定値以下であるか否かを判定するのは、目標荷重値にある程度近づいた時点から第1の推定部31を起動させるためであり、規定値としては、例えば、最大加圧力の5%程度が妥当であると考えられる。Next, the CPU (central processing unit) 20 compares the target load value read from the temporary storage unit 24 with the current load value applied to the current ram 1 detected by the load value detection unit (circuit unit 27), and sets the target load value. It is determined whether or not the difference value between the load value and the current load value is equal to or less than a predetermined value (step S103). If it is determined as a result of the determination that the difference value between the target load value and the current load value is not equal to or less than a predetermined value (“No” in step S103), the process returns to step S102. In step S103, it is determined whether or not the difference value between the target load value and the current load value is equal to or smaller than a predetermined specified value from the time when the target load value is approached to some extent. As the specified value, for example, it is considered that about 5% of the maximum pressure is appropriate.
 判定の結果、目標荷重値と現在荷重値との差分値が予め定めた規定値以下であると判定した場合(ステップS103の「Yes」)には、第1の推定部31を起動して、現在の速度と荷重値とから駆動指令パルス信号の溜り量を検出する(ステップS104)。As a result of the determination, when it is determined that the difference value between the target load value and the current load value is equal to or less than a predetermined specified value (“Yes” in step S103), the first estimation unit 31 is activated, The accumulation amount of the drive command pulse signal is detected from the current speed and the load value (step S104).
 次に、荷重傾斜値算出部33により荷重傾斜値を算出し(ステップS105)、第2の推定部34を起動させ、荷重値検出部(回路部27)が検出した現在のラム1にかかる現在荷重値と荷重傾斜値算出部33が算出した荷重傾斜値とに基づいて、目標荷重値記憶部25に記憶された目標荷重値に荷重値検出部(回路部27)により検出される現在荷重値が到達するまでのラム1の移動距離を推定する(ステップS106)。Next, the load gradient value is calculated by the load gradient value calculation unit 33 (step S105), the second estimation unit 34 is activated, and the current ram 1 detected by the load value detection unit (circuit unit 27) is applied. Based on the load value and the load gradient value calculated by the load gradient value calculation unit 33, the current load value detected by the load value detection unit (circuit unit 27) to the target load value stored in the target load value storage unit 25. Is estimated (step S106).
 そして、駆動指令パルス信号停止部35が、第1の推定部31が検出するオーバーシュート距離に相当する駆動指令パルス信号の溜り量が第2の推定部34が算出する移動距離と一致するのかを判断し(ステップS107)、一致したと判断すると(ステップS107の「Yes」)、駆動指令パルスの出力を停止する(ステップS108)。一方で、駆動指令パルス信号停止部35が、第1の推定部31が検出するオーバーシュート距離に相当する駆動指令パルス信号の溜り量が第2の推定部34が算出する移動距離と一致しないと判断した場合(ステップS107の「No」)には、処理をステップS102に戻す。Then, the drive command pulse signal stop unit 35 determines whether the accumulation amount of the drive command pulse signal corresponding to the overshoot distance detected by the first estimation unit 31 matches the movement distance calculated by the second estimation unit 34. If it is determined (step S107) and it is determined that they match (“Yes” in step S107), output of the drive command pulse is stopped (step S108). On the other hand, when the drive command pulse signal stop unit 35 does not match the travel distance calculated by the second estimation unit 34 with the amount of accumulation of the drive command pulse signal corresponding to the overshoot distance detected by the first estimation unit 31. If it is determined (“No” in step S107), the process returns to step S102.
<本実施形態の作用・効果>
 本実施形態に係る電動プレスによれば、サーボモータドライバー13に入力される駆動指令パルス信号の供給を停止した後に、ラム1がオーバーシュートする距離を推定する第1の推定部31と、目標荷重値に到達するまでのラム1の移動距離を推定する第2の推定部34と、第1の推定部31による推定値が第2の推定部34による推定値となった時点で駆動指令パルス信号の供給を停止する駆動指令パルス信号停止部35と、を備えていることから、タクトタイムの延長を防止しつつ、ワークに対して適切な荷重で加圧作業を実行できる。
<Operation and effect of this embodiment>
According to the electric press according to the present embodiment, the first estimation unit 31 that estimates the distance that the ram 1 overshoots after the supply of the drive command pulse signal input to the servo motor driver 13 is stopped, and the target load A second estimator 34 for estimating the travel distance of the ram 1 until the value is reached, and the drive command pulse signal when the estimated value by the first estimator 31 becomes the estimated value by the second estimator 34. Since the drive command pulse signal stop unit 35 for stopping the supply of the workpiece is provided, it is possible to perform the pressurizing operation with an appropriate load on the workpiece while preventing the tact time from being extended.
 また、第1の推定部31は、ラム1がオーバーシュートする距離Dvf〔mm〕、速度依存係数K〔sec〕、ラム1の速度V〔mm/s〕、荷重依存係数K〔sec/N〕、荷重値F〔N〕をパラメータとした関係式によりラム1がオーバーシュートする距離(溜りパルス量)を推定することから、簡易な計算処理により、正確にラム1がオーバーシュートする距離(溜りパルス量)を推定することができる。The first estimation unit 31 also includes a distance D vf [mm] over which the ram 1 overshoots, a speed dependence coefficient K v [sec], a speed V [mm / s] of the ram 1 and a load dependence coefficient K f [sec. / N] and the distance over which the ram 1 overshoots (accumulated pulse amount) is estimated by a relational expression using the load value F [N] as parameters, the distance over which the ram 1 overshoots accurately by a simple calculation process. (The amount of accumulated pulses) can be estimated.
 また、第1の推定部31は、ラム1がオーバーシュートする距離D〔mm〕、速度依存係数K〔sec〕、ラム1の速度V〔mm/s〕をパラメータとした関係式によりラム1がオーバーシュートする距離(溜りパルス量)をさらに簡略化した計算式により推定することができる。Further, the first estimating unit 31 uses a relational expression in which the distance D v [mm] over which the ram 1 overshoots, the speed dependency coefficient K v [sec], and the speed V [mm / s] of the ram 1 are used as parameters. The distance over which 1 overshoots (the amount of accumulated pulses) can be estimated by a further simplified calculation formula.
 さらに、第2の推定部34は、目標荷重値F〔N〕、現在の荷重値F〔N〕、荷重傾斜値S〔N/mm〕、荷重値の2階微分値Ssf〔N/mm2〕、移動距離D〔mm〕をパラメータとした関係式により、目標荷重値記憶部25に記憶された目標荷重値に荷重値検出部(回路部27)により検出される現在荷重値が到達するまでのラム1の移動距離を推定する。そのため、簡易な計算処理により、正確に、目標荷重値に現在荷重値が到達するまでのラム1の移動距離を推定することができる。Furthermore, the second estimation unit 34 sets the target load value F t [N], the current load value F 0 [N], the load gradient value S f [N / mm], and the second-order differential value S sf [ N / mm2] and the moving distance D t [mm] as parameters, the current load value detected by the load value detection unit (circuit unit 27) to the target load value stored in the target load value storage unit 25 Estimate the travel distance of the ram 1 until it reaches. Therefore, the movement distance of the ram 1 until the current load value reaches the target load value can be accurately estimated by a simple calculation process.
<第2の実施形態>
 図7、8を用いて、本実施形態に係る電動プレス110について説明する。なお、本実施形態に係る電動プレス110は、設定荷重値で一旦停止し、そこから指定された距離だけラム1を移動させて加圧作業を行なう2段駆動方式に関するものである。
<Second Embodiment>
The electric press 110 according to the present embodiment will be described with reference to FIGS. The electric press 110 according to the present embodiment relates to a two-stage drive method in which the press work is performed by temporarily stopping at a set load value and moving the ram 1 by a specified distance therefrom.
<中央演算処理装置の電気的構成>
 本実施形態に係る中央演算処理装置20Aは、図7に示すように、速度検出部30と、第1の推定部41と、荷重傾斜値算出部33と、第2の推定部44と、駆動指令パルス信号停止部45とから構成されている。なお、第1の実施形態と同一の符号を付す構成要素については、同様の機能を有するものであることから、その詳細な説明は省略する。
<Electrical configuration of central processing unit>
As shown in FIG. 7, the central processing unit 20A according to the present embodiment includes a speed detection unit 30, a first estimation unit 41, a load gradient value calculation unit 33, a second estimation unit 44, and a drive. And a command pulse signal stop unit 45. In addition, about the component which attaches | subjects the same code | symbol as 1st Embodiment, since it has the same function, the detailed description is abbreviate | omitted.
 第1の推定部41は、1段目の駆動処理のために、サーボモータドライバー13に入力される駆動指令パルス信号の供給を停止した後に、ラム1がオーバーシュートする距離(溜りパルス量)を推定する。また、第1の推定部41は、1段目の駆動処理において、駆動指令パルス信号停止部45が駆動指令パルス信号の供給を停止した後に、実際にラム1の駆動終了を待つこと無く、1段目の駆動処理で推定したラム1がオーバーシュートする距離(溜りパルス量)に対応する位置を基点として、さらに、目標位置までの距離に相当する駆動指令パルス信号がサーボモータドライバー13に入力された際に、その入力された駆動指令パルス信号の供給を停止した後に、ラム1がオーバーシュートする距離(溜りパルス量)を推定する。なお、オーバーシュートする距離の推定方法は、第1の実施形態と同様である。The first estimating unit 41 determines the distance (the amount of accumulated pulses) over which the ram 1 overshoots after stopping the supply of the drive command pulse signal input to the servo motor driver 13 for the first stage drive process. presume. Further, the first estimation unit 41 does not actually wait for the end of driving of the ram 1 after the drive command pulse signal stop unit 45 stops supplying the drive command pulse signal in the first stage drive process. A drive command pulse signal corresponding to the distance to the target position is further input to the servo motor driver 13 based on the position corresponding to the distance (accumulated pulse amount) over which the ram 1 estimated in the stage driving process is overshooted. Then, after the supply of the input drive command pulse signal is stopped, the distance over which the ram 1 overshoots (the amount of accumulated pulses) is estimated. Note that the method for estimating the overshoot distance is the same as in the first embodiment.
 第2の推定部44は、1段目の駆動処理において、目標荷重値に到達するまでのラム1の距離を推定する。また、第2の推定部44は、1段目の駆動処理において、駆動指令パルス信号停止部45が駆動指令パルス信号の供給を停止した後に、実際にラム1の駆動終了を待つこと無く、2段目の駆動処理において、目標荷重値に到達するまでのラム1の距離を推定する。なお、目標荷重値に到達するまでのラム1の距離の推定方法は、第1の実施形態と同様である。The second estimation unit 44 estimates the distance of the ram 1 until the target load value is reached in the first stage driving process. Further, the second estimation unit 44 does not actually wait for the end of driving of the ram 1 after the drive command pulse signal stop unit 45 stops supplying the drive command pulse signal in the first stage drive process. In the driving process at the stage, the distance of the ram 1 until the target load value is reached is estimated. Note that the method of estimating the distance of the ram 1 until the target load value is reached is the same as in the first embodiment.
 駆動指令パルス信号停止部45は、1段目の駆動処理において、第1の推定部41による推定値(溜りパルス量(ラム1がオーバーシュートする距離))が第2の推定部44による推定値(目標荷重値に到達するまでのラム1の移動距離)となった時点で駆動指令パルス信号の供給を停止する。また、2段目の駆動処理において、第1の推定部41による推定値(溜りパルス量(ラム1がオーバーシュートする距離))が第2の推定部44による推定値(目標荷重値に到達するまでのラム1の移動距離)となった時点で駆動指令パルス信号の供給を停止する。なお、駆動指令パルス信号停止部45の構成は、第1の実施形態と同様である。The drive command pulse signal stop unit 45 is configured such that, in the first-stage driving process, the estimated value by the first estimating unit 41 (the amount of accumulated pulses (the distance over which the ram 1 overshoots)) is the estimated value by the second estimating unit 44. The supply of the drive command pulse signal is stopped at the point of time (the travel distance of the ram 1 until the target load value is reached). Further, in the second stage driving process, the estimated value (the amount of accumulated pulses (distance over which ram 1 overshoots)) by the first estimating unit 41 reaches the estimated value (target load value) by the second estimating unit 44. The supply of the drive command pulse signal is stopped at the time when the ram 1 travel distance is reached. The configuration of the drive command pulse signal stop unit 45 is the same as that of the first embodiment.
<電動プレスの処理>
 図8を用いて、本実施形態に係る電動プレスの処理について説明する。
<Electric press processing>
The process of the electric press which concerns on this embodiment is demonstrated using FIG.
 まず、CPU(中央演算処理装置)20Aは、1段目の駆動処理として、目標荷重値記憶部25から目標荷重値を読み出し、一時記憶部24に格納する(ステップS201)。CPU(中央演算処理装置)20Aは、一時記憶部24に格納した目標荷重値に基づき、駆動指令パルス発生部28に駆動指令パルスを発生させ、発生させた駆動指令パルス信号をサーボモータドライバー13に出力する(ステップS202)。First, the CPU (central processing unit) 20A reads the target load value from the target load value storage unit 25 and stores it in the temporary storage unit 24 as the first-stage driving process (step S201). The CPU (Central Processing Unit) 20A generates a drive command pulse in the drive command pulse generator 28 based on the target load value stored in the temporary storage unit 24, and sends the generated drive command pulse signal to the servo motor driver 13. Output (step S202).
 次いで、CPU(中央演算処理装置)20Aは、一時記憶部24から読み出した目標荷重値と荷重値検出部(回路部27)が検出した現在のラム1にかかる現在荷重値とを比較し、目標荷重値と現在荷重値との差分値が予め定めた規定値以下であるか否かを判定する(ステップS203)。そして、判定の結果、目標荷重値と現在荷重値との差分値が予め定めた規定値以下でないと判定した場合(ステップS203の「No」)には、ステップS202に戻る。なお、ステップS203において、目標荷重値と現在荷重値との差分値が予め定めた規定値以下であるか否かを判定するのは、目標荷重値にある程度近づいた時点から第1の推定部41を起動させるためであり、規定値としては、例えば、最大加圧力の5%程度が妥当であると考えられる。Next, the CPU (Central Processing Unit) 20A compares the target load value read from the temporary storage unit 24 with the current load value applied to the current ram 1 detected by the load value detection unit (circuit unit 27), and sets the target load value. It is determined whether or not the difference value between the load value and the current load value is equal to or less than a predetermined value (step S203). If it is determined as a result of the determination that the difference value between the target load value and the current load value is not equal to or less than a predetermined value (“No” in step S203), the process returns to step S202. In step S203, it is determined whether or not the difference value between the target load value and the current load value is equal to or less than a predetermined specified value from the time when the target load value is approached to some extent. As the specified value, for example, it is considered that about 5% of the maximum pressure is appropriate.
 判定の結果、目標荷重値と現在荷重値との差分値が予め定めた規定値以下であると判定した場合(ステップS203の「Yes」)には、第1の推定部41を起動して、現在の速度と荷重値とから駆動指令パルス信号の溜り量を検出する(ステップS204)。As a result of the determination, when it is determined that the difference value between the target load value and the current load value is equal to or less than a predetermined value (“Yes” in step S203), the first estimation unit 41 is activated, The accumulation amount of the drive command pulse signal is detected from the current speed and the load value (step S204).
 次に、荷重傾斜値算出部33により荷重傾斜値を算出し(ステップS105)、第2の推定部44を起動させ、荷重値検出部(回路部27)が検出した現在のラム1にかかる現在荷重値と荷重傾斜値算出部33が算出した荷重傾斜値とに基づいて、目標荷重値記憶部25に記憶された目標荷重値に荷重値検出部(回路部27)により検出される現在荷重値が到達するまでのラム1の移動距離を推定する(ステップS206)。Next, the load gradient value is calculated by the load gradient value calculation unit 33 (step S105), the second estimation unit 44 is activated, and the current ram 1 detected by the load value detection unit (circuit unit 27) is applied. Based on the load value and the load gradient value calculated by the load gradient value calculation unit 33, the current load value detected by the load value detection unit (circuit unit 27) to the target load value stored in the target load value storage unit 25. Is estimated (step S206).
 そして、駆動指令パルス信号停止部45が、第1の推定部41が検出するオーバーシュート距離に相当する駆動指令パルス信号の溜り量が第2の推定部44が算出する移動距離と一致するのかを判断し(ステップS207)、一致したと判断すると(ステップS207の「Yes」)、駆動指令パルスの出力を停止する(ステップS208)。一方で、駆動指令パルス信号停止部45が、第1の推定部41が検出するオーバーシュート距離に相当する駆動指令パルス信号の溜り量が第2の推定部44が算出する移動距離と一致しないと判断した場合(ステップS207の「No」)には、処理をステップS202に戻す。Then, the drive command pulse signal stop unit 45 determines whether the accumulation amount of the drive command pulse signal corresponding to the overshoot distance detected by the first estimation unit 41 matches the movement distance calculated by the second estimation unit 44. If it is determined (step S207) and it is determined that they match (“Yes” in step S207), output of the drive command pulse is stopped (step S208). On the other hand, when the drive command pulse signal stop unit 45 does not match the moving distance calculated by the second estimation unit 44, the amount of accumulation of the drive command pulse signal corresponding to the overshoot distance detected by the first estimation unit 41 If it is determined (“No” in step S207), the process returns to step S202.
 駆動指令パルスの出力を停止すると、CPU(中央演算処理装置)20Aは、ステップS201からステップS208までの一連の処理が、1段目の駆動処理であるのか、2段目の駆動処理であるのかを判定し、1段目の駆動処理であると判定した場合(ステップS209の「No」)には、ステップS201に戻り、ステップS201からステップS208までの一連の処理を実行する。一方、2段目の駆動処理であると判定した場合(ステップS209の「Yes」)には、処理を終了する。When the output of the drive command pulse is stopped, the CPU (central processing unit) 20A determines whether the series of processing from step S201 to step S208 is the first stage driving process or the second stage driving process. If it is determined that the driving process is the first stage (“No” in step S209), the process returns to step S201, and a series of processes from step S201 to step S208 is executed. On the other hand, if it is determined that the driving process is in the second stage (“Yes” in step S209), the process ends.
<本実施形態の作用・効果>
 本実施形態に係る電動プレスによれば、2段駆動方式による加圧作業の場合でも、サーボモータドライバー13に入力される駆動指令パルス信号の供給を停止した後に、ラム1がオーバーシュートする距離を推定する第1の推定部41と、目標荷重値に到達するまでのラム1の移動距離を推定する第2の推定部44と、第1の推定部41による推定値が第2の推定部44による推定値となった時点で駆動指令パルス信号の供給を停止する駆動指令パルス信号停止部45と、を備えているおり、1段目の駆動処理と2段目の駆動処理との間で、実際に駆動が終了することを待つことがないため、タクトタイムの延長を防止しつつ、ワークに対して適切な荷重で加圧作業を実行できる。
<Operation and effect of this embodiment>
According to the electric press according to the present embodiment, the distance over which the ram 1 overshoots after the supply of the drive command pulse signal input to the servo motor driver 13 is stopped even in the pressurization operation by the two-stage drive method. A first estimation unit 41 for estimation, a second estimation unit 44 for estimating the travel distance of the ram 1 until the target load value is reached, and an estimation value by the first estimation unit 41 is a second estimation unit 44. A drive command pulse signal stop unit 45 that stops the supply of the drive command pulse signal at the time when the estimated value is reached, between the first stage drive process and the second stage drive process, Since there is no need to wait for the driving to actually end, it is possible to execute a pressurizing operation with an appropriate load on the workpiece while preventing an increase in tact time.
<第3の実施形態>
 図9から図11を用いて、本実施形態に係る電動プレス120について説明する。なお、本実施形態に係る電動プレス120は、荷重の傾きが目標荷重傾斜値を越えたところで停止処理を行なう、所謂、ディファレンシャル荷重停止方式に関するものである。
<Third Embodiment>
The electric press 120 according to the present embodiment will be described with reference to FIGS. 9 to 11. The electric press 120 according to the present embodiment relates to a so-called differential load stopping method in which the stopping process is performed when the load inclination exceeds the target load inclination value.
<電動プレスの電気的構成>
 図9に示すように、本実施形態に係る電動プレス120は、サーボモータドライバー13と、エンコーダ14と、CPU(中央演算処理装置)20Bと、制御プログラム記憶部21と、表示部22と、操作部23と、一時記憶部24と、目標荷重傾斜値記憶部25Aと、データ列記憶部26と、回路部27と、駆動指令パルス発生部28と、エンコーダ位置カウンタ29とから構成されている。なお、第1の実施形態と同一の符号を付す構成要素については、同様の機能を有するものであることから、その詳細な説明は省略する。
<Electric configuration of electric press>
As shown in FIG. 9, the electric press 120 according to the present embodiment includes a servo motor driver 13, an encoder 14, a CPU (Central Processing Unit) 20B, a control program storage unit 21, a display unit 22, and an operation. A unit 23, a temporary storage unit 24, a target load gradient value storage unit 25A, a data string storage unit 26, a circuit unit 27, a drive command pulse generation unit 28, and an encoder position counter 29 are included. In addition, about the component which attaches | subjects the same code | symbol as 1st Embodiment, since it has the same function, the detailed description is abbreviate | omitted.
 目標荷重傾斜値記憶部25Aは、本実施形態に係る目標荷重傾斜値を記憶する。The target load gradient value storage unit 25A stores a target load gradient value according to the present embodiment.
<中央演算処理装置の電気的構成>
 本実施形態に係る中央演算処理装置20Bは、図10に示すように、速度検出部30と、第1の推定部31と、荷重傾斜値算出部33と、第3の推定部38と、駆動指令パルス信号停止部55とから構成されている。なお、第1の実施形態および第2の実施形態と同一の符号を付す構成要素については、同様の機能を有するものであることから、その詳細な説明は省略する。
<Electrical configuration of central processing unit>
As shown in FIG. 10, the central processing unit 20B according to the present embodiment includes a speed detection unit 30, a first estimation unit 31, a load gradient value calculation unit 33, a third estimation unit 38, and a drive. And a command pulse signal stop unit 55. In addition, about the component which attaches | subjects the same code | symbol as 1st Embodiment and 2nd Embodiment, since it has the same function, the detailed description is abbreviate | omitted.
 第3の推定部38は、荷重傾斜値算出部33が算出する現在の荷重傾斜値と目標荷重傾斜値記憶部25Aに記憶された目標荷重傾斜値とに基づいて、目標荷重傾斜値に到達するまでのラム1の移動距離を推定する。The third estimation unit 38 reaches the target load gradient value based on the current load gradient value calculated by the load gradient value calculation unit 33 and the target load gradient value stored in the target load gradient value storage unit 25A. The travel distance of the ram 1 is estimated.
 ここで、第3の推定部38は、以下に示すように、目標荷重傾斜値に到達するまでのラム1の移動距離を推定する。Here, as shown below, the third estimation unit 38 estimates the moving distance of the ram 1 until the target load inclination value is reached.
 まず、Sを荷重傾斜値〔N/mm〕、Sf0を現在荷重傾斜値〔N/mm〕、Dを距離〔mm〕、Ssfを荷重値の2階微分値〔N/mm〕とすると、これらは、数13の関係となる。First, S f is the load gradient value [N / mm], S f0 is the current load gradient value [N / mm], D is the distance [mm], and S sf is the second-order differential value of the load value [N / mm 2 ]. Then, these become the relationship of Formula 13.
 数13において、目標荷重傾斜値Sftとなる距離をDとして、これをDについて解くと、数14となる。こうして、目標荷重傾斜値に到達するまでのラム1の移動距離Dを推定する。In Expression 13, the distance at which the target load slope value S ft as D t, which is solved for D t, the number 14. Thus, the travel distance D t of the ram 1 until the target load inclination value is reached is estimated.
 また、荷重値の2階微分値Ssfは、荷重値の1階微分値Sと同様に、回帰直線の傾きから求めることもできる。この場合、位置データ系列を(x1、x2、・・・・、xn)、荷重の1階部分値のデータ系列を(y1、y2、・・・・、yn)とすると、荷重値の2階微分値Ssfは、数15に基づいて、算出される。Further, the second-order differential value S sf of the load value can be obtained from the slope of the regression line in the same manner as the first-order differential value S f of the load value. In this case, assuming that the position data series is (x1, x2,..., Xn) and the data series of the first-order partial value of the load is (y1, y2,..., Yn), the second floor of the load value. The differential value S sf is calculated based on Equation 15.
<電動プレスの処理>
 図11を用いて、本実施形態に係る電動プレスの処理について説明する。
<Electric press processing>
The process of the electric press according to the present embodiment will be described with reference to FIG.
 まず、CPU(中央演算処理装置)20Bは、目標荷重傾斜値記憶部25Aから目標荷重傾斜値を読み出し、一時記憶部24に格納する(ステップS301)。CPU(中央演算処理装置)20Bは、一時記憶部24に格納した目標荷重傾斜値に基づき、駆動指令パルス発生部28に駆動指令パルスを発生させ、発生させた駆動指令パルス信号をサーボモータドライバー13に出力する(ステップS302)。First, the CPU (central processing unit) 20B reads the target load gradient value from the target load gradient value storage unit 25A and stores it in the temporary storage unit 24 (step S301). The CPU (Central Processing Unit) 20B generates a drive command pulse in the drive command pulse generation unit 28 based on the target load inclination value stored in the temporary storage unit 24, and the generated drive command pulse signal is transmitted to the servo motor driver 13. (Step S302).
 次いで、荷重傾斜値算出部33が現在荷重傾斜値を算出する(ステップS303)。CPU(中央演算処理装置)20は、一時記憶部24から読み出した目標荷重傾斜値と荷重傾斜値算出部33が算出した現在荷重値とを比較し、目標荷重傾斜値と現在荷重傾斜値との差分値が予め定めた規定値以下であるか否かを判定する(ステップS304)。そして、判定の結果、目標荷重傾斜値と現在荷重傾斜値との差分値が予め定めた規定値よりも大きいと判定した場合(ステップS304の「No」)には、ステップS302に戻る。Next, the load gradient value calculation unit 33 calculates the current load gradient value (step S303). The CPU (central processing unit) 20 compares the target load inclination value read from the temporary storage unit 24 with the current load value calculated by the load inclination value calculation unit 33, and compares the target load inclination value with the current load inclination value. It is determined whether or not the difference value is equal to or less than a predetermined value (step S304). If it is determined that the difference value between the target load inclination value and the current load inclination value is larger than a predetermined value (“No” in step S304), the process returns to step S302.
 判定の結果、目標荷重傾斜値と現在荷重傾斜値との差分値が予め定めた規定値以下であると判定した場合(ステップS304の「Yes」)には、第1の推定部31を起動して、現在の速度と荷重値とから駆動指令パルス信号の溜り量を検出する(ステップS305)。As a result of the determination, when it is determined that the difference value between the target load inclination value and the current load inclination value is equal to or less than a predetermined value (“Yes” in step S304), the first estimation unit 31 is activated. Then, the accumulation amount of the drive command pulse signal is detected from the current speed and the load value (step S305).
 次に、第3の推定部38を起動させ、目標荷重傾斜値記憶部25Aに記憶された目標荷重傾斜値に荷重傾斜値算出部33により検出される荷重傾斜値が到達するまでのラム1の移動距離を推定する(ステップS306)。Next, the third estimation unit 38 is activated, and the ram 1 until the load gradient value detected by the load gradient value calculation unit 33 reaches the target load gradient value stored in the target load gradient value storage unit 25A. The movement distance is estimated (step S306).
 そして、駆動指令パルス信号停止部55が、第1の推定部31が検出するオーバーシュート距離に相当する駆動指令パルス信号の溜り量が第3の推定部38が算出する目標荷重傾斜値になるまでの移動距離と一致するのかを判断し(ステップS307)、一致したと判断すると、駆動指令パルスの出力を停止する(ステップS308)。一方で、駆動指令パルス信号停止部55が、第1の推定部31が検出するオーバーシュート距離に相当する駆動指令パルス信号の溜り量が第3の推定部38が算出する移目標荷重傾斜値になるまでの動距離と一致しないと判断した場合(ステップS307の「No」)には、処理をステップS302に戻す。Then, until the drive command pulse signal stop unit 55 reaches the target load inclination value calculated by the third estimation unit 38, the amount of accumulation of the drive command pulse signal corresponding to the overshoot distance detected by the first estimation unit 31 is reached. Is determined (step S307). If it is determined that the distance is equal, the output of the drive command pulse is stopped (step S308). On the other hand, the drive command pulse signal stop unit 55 sets the amount of accumulation of the drive command pulse signal corresponding to the overshoot distance detected by the first estimation unit 31 to the shift target load slope value calculated by the third estimation unit 38. If it is determined that the moving distance does not match the actual moving distance (“No” in step S307), the process returns to step S302.
<本実施形態の作用・効果>
 本実施形態に係る電動プレスによれば、サーボモータドライバー13に入力される駆動指令パルス信号の供給を停止した後に、ラム1がオーバーシュートする距離を推定する第1の推定部31と、ラム1の位置とその位置においてラム1にかかる荷重値とを紐付けたデータ列を記憶するデータ列記憶部26と、データ列記憶部26に記憶されたデータ列に基づいて、荷重傾斜値を算出する荷重傾斜値算出部33と、目標荷重傾斜値を記憶する目標荷重傾斜値記憶部37と、荷重傾斜値算出部33が算出する現在の荷重傾斜値と目標荷重傾斜値記憶部37に記憶された目標荷重傾斜値とに基づいて、目標荷重傾斜値に到達するまでのラム1の移動距離を推定する第3の推定部38と、第1の推定部31による推定値が第3の推定部38による推定値となった時点で駆動指令パルス信号の供給を停止する駆動指令パルス信号停止部55と、を備えていることから、ディファレンシャル荷重停止の場合でも、第1の推定部31による推定値が第3の推定部38による推定値となった時点で駆動指令パルス信号の供給を停止することにより、ラム1のオーバーシュートを防止することができる。そのため、タクトタイムの延長を防止しつつ、ワークに対して適切な荷重で加圧作業を実行できる。
<Operation and effect of this embodiment>
According to the electric press according to the present embodiment, the first estimation unit 31 that estimates the distance over which the ram 1 overshoots after the supply of the drive command pulse signal input to the servo motor driver 13 is stopped, and the ram 1 And a data string storage unit 26 for storing a data string in which the load value applied to the ram 1 is linked at the position and a data string stored in the data string storage unit 26, and a load inclination value is calculated. Load gradient value calculation unit 33, target load gradient value storage unit 37 that stores the target load gradient value, and current load gradient value calculated by load gradient value calculation unit 33 and target load gradient value storage unit 37 Based on the target load inclination value, a third estimation unit 38 that estimates the movement distance of the ram 1 until the target load inclination value is reached, and the estimated value by the first estimation unit 31 is the third estimation unit 38. Guess by And the drive command pulse signal stop unit 55 that stops the supply of the drive command pulse signal when the value reaches the value, so that the estimated value by the first estimation unit 31 is the third value even when the differential load is stopped. By stopping the supply of the drive command pulse signal when the estimated value by the estimating unit 38 is reached, overshoot of the ram 1 can be prevented. Therefore, it is possible to perform the pressurizing operation with an appropriate load on the workpiece while preventing the tact time from being extended.
 また、第3の推定部38は、目標荷重傾斜値をSft〔N/mm〕、1階微分値あるいは回帰計算により算出した荷重傾斜値(現在荷重傾斜値)をSf0〔N/mm〕、荷重の2階微分値をSsf〔N/mm2〕、目標荷重傾斜値となるまでの移動距離をD〔mm〕としたときに、所定の関係式に基づいて、Dを推定することから、簡易な計算処理により、目標荷重傾斜値となるまでのラム1の移動距離を正確に推定することができる。The third estimation unit 38, a target load slope value S ft [N / mm], first order differential value or load tilt value calculated by regression calculation (current load gradient value) S f0 [N / mm] D t is estimated based on a predetermined relational expression, where S sf [N / mm2] is the second-order differential value of the load, and D t [mm] is the moving distance until the target load inclination value is reached. Thus, the movement distance of the ram 1 up to the target load inclination value can be accurately estimated by a simple calculation process.
 なお、電動プレスの処理をコンピュータシステムあるいはコンピュータが読み取り可能な記録媒体に記録し、この記録媒体に記録されたプログラムを電動プレスに読み込ませ、実行することによって本発明の電動プレスを実現することができる。ここでいうコンピュータシステムあるいはコンピュータとは、OSや周辺装置等のハードウェアを含む。It is to be noted that the electric press of the present invention can be realized by recording the processing of the electric press on a computer system or a computer-readable recording medium, and reading and executing the program recorded on the recording medium. it can. The computer system or computer here includes an OS and hardware such as peripheral devices.
 また、「コンピュータシステムあるいはコンピュータ」は、WWW(World Wide Web)システムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムあるいはコンピュータから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムあるいはコンピュータに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。Further, the “computer system or computer” includes a homepage providing environment (or display environment) if a WWW (World Wide Web) system is used. The program may be transmitted from a computer system or computer storing the program in a storage device or the like to another computer system or computer via a transmission medium or by a transmission wave in the transmission medium. Here, the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
 また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムあるいはコンピュータにすでに記録されているプログラムとの組合せで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。Further, the program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system or the computer, what is called a difference file (difference program) may be sufficient.
 以上、この発明の実施形態につき、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to the embodiments, and includes designs and the like that do not depart from the gist of the present invention.
 1;ラム
 1a;筒状本体
 2;ボール螺子
 2a;螺子軸
 2b;ナット体
 3;プレス本体
 4;電動機
 5;ケーシング
 6;筒状ガイド
 9;起歪柱
 13;サーボモータドライバー
 14;エンコーダ
 20;CPU(中央演算処理装置)
 21;制御プログラム記憶部
 22;表示部
 23;操作部
 24;一時記憶部
 25;目標荷重値記憶部
 25A;目標荷重傾斜値記憶部
 26;データ列記憶部
 27;回路部
 28;駆動指令パルス発生部
 29;エンコーダ位置カウンタ
 30;速度検出部
 31;第1の推定部
 33;荷重傾斜値算出部
 34;第2の推定部
 35;駆動指令パルス信号停止部
 36;比較部
 38;第3の推定部
 41;第1の推定部
 42;第2の推定部
 45;駆動指令パルス信号停止部
 55;駆動指令パルス信号停止部
 100;電動プレス
DESCRIPTION OF SYMBOLS 1; Ram 1a; Cylindrical main body 2; Ball screw 2a; Screw shaft 2b; Nut body 3; Press main body 4; Electric motor 5: Casing 6; Cylindrical guide 9; CPU (Central Processing Unit)
21; control program storage unit 22; display unit 23; operation unit 24; temporary storage unit 25; target load value storage unit 25A; target load gradient value storage unit 26; data string storage unit 27; circuit unit 28; Unit 29; encoder position counter 30; speed detection unit 31; first estimation unit 33; load gradient value calculation unit 34; second estimation unit 35; drive command pulse signal stop unit 36; comparison unit 38; Unit 41; first estimation unit 42; second estimation unit 45; drive command pulse signal stop unit 55; drive command pulse signal stop unit 100; electric press

Claims (12)

  1.  電動モータと、該電動モータに駆動電力を供給するモータドライバーと、前記電動モータの動力によりワークに対して加圧作業を行うラムと、該ラムの目標荷重値を記憶する目標荷重値記憶部とを有し、
     前記モータドライバーに入力される駆動指令パルス信号の供給を停止した後に、前記ラムがオーバーシュートする距離を推定する第1の推定部と、
     前記目標荷重値に到達するまでの前記ラムの移動距離を推定する第2の推定部と、
     前記第1の推定部による推定値が前記第2の推定部による推定値となった時点で前記駆動指令パルス信号の供給を停止する駆動指令パルス信号停止部と、
     を備えたことを特徴とする電動プレス。
    An electric motor; a motor driver that supplies driving power to the electric motor; a ram that pressurizes a work by the power of the electric motor; and a target load value storage unit that stores a target load value of the ram. Have
    A first estimator for estimating a distance that the ram overshoots after stopping the supply of a drive command pulse signal input to the motor driver;
    A second estimating unit for estimating a moving distance of the ram until the target load value is reached;
    A drive command pulse signal stop unit that stops the supply of the drive command pulse signal when the estimated value by the first estimation unit becomes the estimated value by the second estimation unit;
    An electric press comprising:
  2.  前記ラムの速度を検出する速度検出部を有し、
     前記第1の推定部は、
     前記ラムがオーバーシュートする距離をD〔mm〕、速度依存係数をK〔sec〕、前記ラムの速度をV〔mm/s〕としたときに、数1に基づいて、前記ラムがオーバーシュートする距離を推定することを特徴とする請求項1に記載の電動プレス。
    Having a speed detector for detecting the speed of the ram;
    The first estimation unit includes:
    When the distance over which the ram overshoots is D v [mm], the speed dependency coefficient is K v [sec], and the speed of the ram is V [mm / s] The electric press according to claim 1, wherein a distance to be shot is estimated.
  3.  前記ラムの速度を検出する速度検出部と、該ラムにかかる荷重値を検出する荷重値検出部とを有し、
     前記第1の推定部は、
     前記ラムがオーバーシュートする距離をDvf〔mm〕、速度依存係数をK〔sec〕、前記ラムの速度をV〔mm/s〕、荷重依存係数をK〔sec/N〕、前記荷重値をF〔N〕としたときに、数2に基づいて、前記ラムがオーバーシュートする距離を推定することを特徴とする請求項1に記載の電動プレス。
    A speed detector for detecting the speed of the ram; and a load value detector for detecting a load value applied to the ram;
    The first estimation unit includes:
    The distance over which the ram overshoots is D vf [mm], the speed dependence coefficient is K v [sec], the speed of the ram is V [mm / s], the load dependence coefficient is K f [sec / N], and the load 2. The electric press according to claim 1, wherein when the value is F [N], the distance over which the ram overshoots is estimated based on Equation (2).
  4.  前記ラムの位置を検出する位置検出部と、
     該ラムにかかる荷重値を検出する荷重値検出部と、
     前記ラムの位置と該位置において前記ラムにかかる荷重値とを紐付けたデータ列を記憶するデータ列記憶部と、
     前記データ列記憶部に記憶されたデータ列に基づいて、荷重傾斜値を算出する荷重傾斜値算出部と、
     を備え、
     前記第2の推定部が、前記荷重値検出部が検出する現在の前記ラムにかかる荷重値と前記荷重傾斜値算出部が算出する前記荷重傾斜値とに基づいて、前記目標荷重値記憶部に記憶された前記目標荷重値に前記荷重値検出部により検出される前記荷重値が到達するまでの前記ラムの移動距離を推定することを特徴とする請求項1に記載の電動プレス。
    A position detector for detecting the position of the ram;
    A load value detector for detecting a load value applied to the ram;
    A data string storage unit for storing a data string in which the position of the ram and the load value applied to the ram at the position are linked;
    A load inclination value calculation unit for calculating a load inclination value based on the data string stored in the data string storage unit;
    With
    The second estimation unit stores the target load value storage unit based on the current load value applied to the ram detected by the load value detection unit and the load gradient value calculated by the load gradient value calculation unit. 2. The electric press according to claim 1, wherein a movement distance of the ram until the load value detected by the load value detection unit reaches the stored target load value is estimated.
  5.  前記荷重傾斜値算出部は、前記荷重傾斜値として、前記ラムの位置の変化に関する前記荷重値の1階微分値を算出することを特徴とする請求項4に記載の電動プレス。5. The electric press according to claim 4, wherein the load inclination value calculation unit calculates a first-order differential value of the load value related to a change in the position of the ram as the load inclination value.
  6.  前記荷重傾斜値算出部は、前記荷重傾斜値を回帰計算により算出することを特徴とする請求項4に記載の電動プレス。5. The electric press according to claim 4, wherein the load inclination value calculation unit calculates the load inclination value by regression calculation.
  7.  前記荷重傾斜値算出部は、さらに、前記ラムの位置の変化に関する荷重値の2階微分値を算出し、
     前記第2の推定部は、
     前記目標荷重値をF〔N〕、現在の荷重値をF〔N〕、前記荷重傾斜値をS〔N/mm〕、前記荷重値の2階微分値をSsf〔N/mm2〕、前記移動距離をD〔mm〕としたときに、数3に基づいて、Dを推定することを特徴とする請求項4から請求項6のいずれかに記載の電動プレス。
    The load inclination value calculation unit further calculates a second-order differential value of the load value related to the change in the position of the ram,
    The second estimation unit includes
    The target load value is F t [N], the current load value is F 0 [N], the load inclination value is S f [N / mm], and the second-order differential value of the load value is S sf [N / mm 2 The electric press according to any one of claims 4 to 6, wherein D t is estimated based on Equation 3 when the moving distance is D t [mm].
  8.  前記ラムに対して、一旦停止処理を実行した後、前記ラムをさらに、所定の設定位置に移動させて、ワークに対して加圧作業を行なう場合に、前記第1の推定部が推定した前記ラムがオーバーシュートする距離に対する位置を基点として、さらに、前記設定位置までの距離に相当する駆動指令パルス信号を前記モータドライバーに入力することを特徴とする請求項1から請求項7のいずれかに記載の電動プレス。When the ram is temporarily stopped, and then the ram is further moved to a predetermined setting position to pressurize the workpiece, the first estimation unit estimates the 8. The drive command pulse signal corresponding to the distance to the set position is further input to the motor driver based on the position with respect to the distance over which the ram overshoots. The electric press as described.
  9.  電動モータと、該電動モータに駆動電力を供給するモータドライバーと、前記電動モータの動力により、ワークに対して加圧動作を行なうラムと、前記ラムにかかる荷重値を検出する荷重値検出部と、前記ラムの位置を検出する位置検出部と、を備えた電動プレスであって、
     前記モータドライバーに入力される駆動指令パルス信号の供給を停止した後に、前記ラムがオーバーシュートする距離を推定する第1の推定部と、
     前記ラムの位置と該位置において前記ラムにかかる荷重値とを紐付けたデータ列を記憶するデータ列記憶部と、
     前記データ列記憶部に記憶されたデータ列に基づいて、荷重傾斜値を算出する荷重傾斜値算出部と、
     目標荷重傾斜値を記憶する目標荷重傾斜値記憶部と、
     前記荷重傾斜値算出部が算出する現在の荷重傾斜値と前記目標荷重傾斜値記憶部に記憶された前記目標荷重傾斜値とに基づいて、前記目標荷重傾斜値に到達するまでの前記ラムの移動距離を推定する第3の推定部と、
     前記第1の推定部による推定値が前記第3の推定部による推定値となった時点で前記駆動指令パルス信号の供給を停止する駆動指令パルス信号停止部と、
     を備えたことを特徴とする電動プレス。
    An electric motor; a motor driver that supplies driving power to the electric motor; a ram that pressurizes the workpiece by the power of the electric motor; and a load value detector that detects a load value applied to the ram. A position detector for detecting the position of the ram, and an electric press comprising:
    A first estimator for estimating a distance that the ram overshoots after stopping the supply of a drive command pulse signal input to the motor driver;
    A data string storage unit for storing a data string in which the position of the ram and the load value applied to the ram at the position are linked;
    A load inclination value calculation unit for calculating a load inclination value based on the data string stored in the data string storage unit;
    A target load slope value storage unit for storing the target load slope value;
    The movement of the ram until the target load gradient value is reached based on the current load gradient value calculated by the load gradient value calculation unit and the target load gradient value stored in the target load gradient value storage unit A third estimator for estimating the distance;
    A drive command pulse signal stop unit that stops the supply of the drive command pulse signal when the estimated value by the first estimation unit becomes the estimated value by the third estimation unit;
    An electric press comprising:
  10.  前記荷重傾斜値算出部は、前記荷重傾斜値を、前記ラムの位置の変化に関する前記荷重値の1階微分値あるいは回帰計算により算出するとともに、前記ラムの位置の変化に関する前記荷重値の2階微分値を算出し、
     前記第3の推定部は、
     前記目標荷重傾斜値をSft〔N/mm〕、前記1階微分値あるいは回帰計算により算出した荷重傾斜値(現在荷重傾斜値)をSf0〔N/mm〕、前記荷重値の2階微分値をSsf〔N/mm2〕、前記目標荷重傾斜値となるまでの移動距離をD〔mm〕としたときに、数4に基づいて、Dを推定することを特徴とする請求項9に記載の電動プレス。
    The load inclination value calculation unit calculates the load inclination value by a first-order differential value or regression calculation of the load value related to the change in the ram position, and a second-order of the load value related to the change in the ram position. Calculate the differential value,
    The third estimation unit includes
    The target load gradient value is S ft [N / mm], the first-order differential value or the load gradient value (current load gradient value) calculated by regression calculation is S f0 [N / mm], and the second-order derivative of the load value The D t is estimated based on the equation (4) when the value is S sf [N / mm 2] and the moving distance until the target load inclination value is D t [mm]. The electric press according to 9.
  11.  電動モータと、該電動モータに駆動電力を供給するモータドライバーと、前記電動モータの動力によりワークに対して加圧作業を行うラムと、該ラムの目標荷重値を記憶する目標荷重値記憶部と、第1の推定部と、第2の推定部と、駆動指令パルス信号停止部と、を有する電動プレスにおける制御方法であって、
     前記第1の推定部が前記モータドライバーに入力される駆動指令パルス信号の供給を停止した後に、前記ラムがオーバーシュートする距離を推定する第1の工程と、
     前記第2の推定部が、前記目標荷重値に到達するまでの前記ラムの移動距離を推定する第2の工程と、
     前記駆動指令パルス信号停止部が前記第1の推定部による推定値が前記第2の推定部による推定値となった時点で前記駆動指令パルス信号の供給を停止する第3の工程と、
     を備えたことを特徴とする制御方法。
    An electric motor; a motor driver that supplies driving power to the electric motor; a ram that pressurizes a work by the power of the electric motor; and a target load value storage unit that stores a target load value of the ram. A control method in an electric press having a first estimation unit, a second estimation unit, and a drive command pulse signal stop unit,
    A first step of estimating a distance that the ram overshoots after the first estimation unit stops supplying a drive command pulse signal input to the motor driver;
    A second step in which the second estimation unit estimates a moving distance of the ram until the target load value is reached;
    A third step in which the drive command pulse signal stop unit stops the supply of the drive command pulse signal when the estimated value by the first estimating unit becomes the estimated value by the second estimating unit;
    A control method comprising:
  12.  電動モータと、該電動モータに駆動電力を供給するモータドライバーと、前記電動モータの動力によりワークに対して加圧作業を行うラムと、該ラムの目標荷重値を記憶する目標荷重値記憶部と、第1の推定部と、第2の推定部と、駆動指令パルス信号停止部と、を有する電動プレスにおける制御方法をコンピュータに実行させるためのプログラムであって、
     前記第1の推定部が前記モータドライバーに入力される駆動指令パルス信号の供給を停止した後に、前記ラムがオーバーシュートする距離を推定する第1の工程と、
     前記第2の推定部が、前記目標荷重値に到達するまでの前記ラムの移動距離を推定する第2の工程と、
     前記駆動指令パルス信号停止部が前記第1の推定部による推定値が前記第2の推定部による推定値となった時点で前記駆動指令パルス信号の供給を停止する第3の工程と、
     をコンピュータに実行させるためのプログラム。
    An electric motor; a motor driver that supplies driving power to the electric motor; a ram that pressurizes a work by the power of the electric motor; and a target load value storage unit that stores a target load value of the ram. A program for causing a computer to execute a control method in an electric press having a first estimation unit, a second estimation unit, and a drive command pulse signal stop unit,
    A first step of estimating a distance that the ram overshoots after the first estimation unit stops supplying a drive command pulse signal input to the motor driver;
    A second step in which the second estimation unit estimates a moving distance of the ram until the target load value is reached;
    A third step in which the drive command pulse signal stop unit stops the supply of the drive command pulse signal when the estimated value by the first estimating unit becomes the estimated value by the second estimating unit;
    A program that causes a computer to execute.
PCT/IB2017/056780 2017-04-11 2017-11-01 Electric press, control method, and program WO2018189580A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197022730A KR102206338B1 (en) 2017-04-11 2017-11-01 Electric press, control method and program
CN201780086561.XA CN110461585B (en) 2017-04-11 2017-11-01 Electric press, control method, and program
DE112017007423.1T DE112017007423T5 (en) 2017-04-11 2017-11-01 Electric press, control process and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017078448A JP2018176214A (en) 2017-04-11 2017-04-11 Electric press, control method, and program
JP2017-078448 2017-04-11

Publications (1)

Publication Number Publication Date
WO2018189580A1 true WO2018189580A1 (en) 2018-10-18

Family

ID=63792943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2017/056780 WO2018189580A1 (en) 2017-04-11 2017-11-01 Electric press, control method, and program

Country Status (5)

Country Link
JP (1) JP2018176214A (en)
KR (1) KR102206338B1 (en)
CN (1) CN110461585B (en)
DE (1) DE112017007423T5 (en)
WO (1) WO2018189580A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7296779B2 (en) * 2019-05-15 2023-06-23 住友重機械工業株式会社 PRESSING MACHINE, PRESSING MACHINE LOAD ABNORMALITY DETECTION METHOD AND LOAD ABNORMALITY DETECTION PROGRAM
JP2022033563A (en) * 2020-08-17 2022-03-02 株式会社ジャノメ Press device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177510A (en) * 1991-12-26 1993-07-20 Murata Mach Ltd Load detecting device for servo system
JPH09314399A (en) * 1996-05-27 1997-12-09 Suzuki Mechatronics Kk Controller in press machine
JP2011098350A (en) * 2009-11-03 2011-05-19 Sintokogio Ltd Electric cylinder control method and electric cylinder control system
JP2012006048A (en) * 2010-06-25 2012-01-12 Sintokogio Ltd Method for controlling electric cylinder and system for controlling electric cylinder

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3076755U (en) 2000-10-03 2001-04-20 株式会社サンエス Clothes with pockets for mobile phones
JP2004124959A (en) * 2002-09-30 2004-04-22 Jatco Ltd Controller for automatic transmission
WO2004063819A1 (en) * 2003-01-08 2004-07-29 Matsushita Electric Industrial Co., Ltd. Image heating device and image forming device
CN201132385Y (en) * 2007-11-29 2008-10-15 申娟 Direct-drive electric screw press
EP2319635B1 (en) * 2009-11-10 2014-09-17 TRUMPF Werkzeugmaschinen GmbH & Co. KG Pressing drive and method for generating a stroke movement in a tool mount using a pressing drive
CN103465494B (en) * 2013-07-03 2015-08-19 全利机械股份有限公司 The paper sheet stacking high compression mechanism of paper products and paper sheet stacking height control method
JP6265650B2 (en) * 2013-08-08 2018-01-24 蛇の目ミシン工業株式会社 Embroidery status confirmation system, embroidery status confirmation device, embroidery status confirmation method, and embroidery status confirmation program
CN203623016U (en) * 2013-11-04 2014-06-04 江苏国力锻压机床有限公司 Hydraulic system of hydraulic machine
CN104550601B (en) * 2015-01-12 2016-12-07 顺德职业技术学院 A kind of double-toggle bi-motor parallel drive elbow-bar mechanism and control method thereof
CN204746809U (en) * 2015-05-04 2015-11-11 天津市辉源电力工程科技有限公司 Multi -functional straw briquetting sieving mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177510A (en) * 1991-12-26 1993-07-20 Murata Mach Ltd Load detecting device for servo system
JPH09314399A (en) * 1996-05-27 1997-12-09 Suzuki Mechatronics Kk Controller in press machine
JP2011098350A (en) * 2009-11-03 2011-05-19 Sintokogio Ltd Electric cylinder control method and electric cylinder control system
JP2012006048A (en) * 2010-06-25 2012-01-12 Sintokogio Ltd Method for controlling electric cylinder and system for controlling electric cylinder

Also Published As

Publication number Publication date
DE112017007423T5 (en) 2020-01-02
KR102206338B1 (en) 2021-01-21
KR20190104188A (en) 2019-09-06
CN110461585B (en) 2021-01-26
JP2018176214A (en) 2018-11-15
CN110461585A (en) 2019-11-15

Similar Documents

Publication Publication Date Title
JP5183399B2 (en) Numerical controller
KR101343257B1 (en) Motor control apparatus
EP1505463B1 (en) Position control device and position control method for machine tools
CN102577096B (en) Servo control apparatus
WO2018189580A1 (en) Electric press, control method, and program
CN109085802B (en) Control device for motor
EP3355140B1 (en) Performing position control of a controlled object
EP2388081A1 (en) Controller for die cushion mechanism
JP2012130214A (en) Motor control device and motor control method
US7923956B2 (en) Control device for servo die cushion
US10175676B2 (en) Servomotor controller, servomotor control method, and computer-readable recording medium
JP7097268B2 (en) Press equipment, terminal equipment, ball screw estimated life calculation method and program
JP5436160B2 (en) Force control device
KR102434062B1 (en) Electric press and method for calibrating the same
JP6154420B2 (en) Measuring method and measuring device for measuring rotation angle of servo motor
JP6568035B2 (en) Servo motor control device, servo motor control method, and servo motor control program
US20180200882A1 (en) Servomotor control device, servomotor control method, and computer readable recording medium
JP5560068B2 (en) Control method and control apparatus
JP2011251301A (en) Device for controlling pressure
US10185292B2 (en) Manufacturing management apparatus which reduces operational load of manufacturing machines
JP5172278B2 (en) Spot welding gun controller
JP2009107082A (en) Machine tool
JP2007105823A (en) Device and method of flexible control for manipulator
JP7041528B2 (en) Press equipment, load compensation methods and programs
US20240219890A1 (en) Motor control device, industrial machine system, and motor control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197022730

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17905707

Country of ref document: EP

Kind code of ref document: A1