JP5540448B2 - Multiaxial fatigue life evaluation method and apparatus - Google Patents

Multiaxial fatigue life evaluation method and apparatus Download PDF

Info

Publication number
JP5540448B2
JP5540448B2 JP2010201931A JP2010201931A JP5540448B2 JP 5540448 B2 JP5540448 B2 JP 5540448B2 JP 2010201931 A JP2010201931 A JP 2010201931A JP 2010201931 A JP2010201931 A JP 2010201931A JP 5540448 B2 JP5540448 B2 JP 5540448B2
Authority
JP
Japan
Prior art keywords
load
strain
stress
proportional
reduction rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010201931A
Other languages
Japanese (ja)
Other versions
JP2012058086A (en
Inventor
寛 中村
正祐 高梨
政男 坂根
隆基 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Ritsumeikan Trust
University of Fukui
Original Assignee
IHI Corp
Ritsumeikan Trust
University of Fukui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Ritsumeikan Trust, University of Fukui filed Critical IHI Corp
Priority to JP2010201931A priority Critical patent/JP5540448B2/en
Publication of JP2012058086A publication Critical patent/JP2012058086A/en
Application granted granted Critical
Publication of JP5540448B2 publication Critical patent/JP5540448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、航空機エンジン、過給器などの回転機械や、圧力容器などを含む一般構造物の疲労寿命を評価する際に用いられる多軸疲労寿命評価方法及び装置に関するものである。   The present invention relates to a multi-axis fatigue life evaluation method and apparatus used for evaluating the fatigue life of rotating machines such as aircraft engines and superchargers, and general structures including pressure vessels.

従来の多軸疲労寿命評価方法では、実機部材の応力状態を測定し、その測定結果を用いて構造解析モデルに対する応力解析を行い、寿命評価を行うことがなされている。この方法では、例えば、測定した応力あるいはひずみ状態からMisesの等価ひずみ(等価ひずみ範囲)ΔεeqあるいはMisesの等価応力(等価応力範囲)Δσeqを求め、求めた等価ひずみ範囲Δεeqあるいは等価応力範囲Δσeqを、下式で示されるManson-Coffinの式のひずみ範囲Δεあるいは応力範囲Δσに代入することで、疲労寿命を評価することが行われている。下式におけるA,Bは材料定数であり、単軸負荷の疲労試験を行いSN線図を作成することにより求めることができる。
Nf=(Δε/A)1/B
あるいは
Nf=(Δσ/A)1/B
但し、Nf:疲労寿命となるサイクル数
A,B:材料定数
Δε:ひずみ範囲
Δσ:応力範囲
In the conventional multiaxial fatigue life evaluation method, the stress state of an actual machine member is measured, the stress analysis is performed on the structural analysis model using the measurement result, and the life evaluation is performed. In this method, for example, the equivalent strain (equivalent strain range) Δε eq of Mises or the equivalent stress (equivalent stress range) Δσ eq of Mises is obtained from the measured stress or strain state, and the obtained equivalent strain range Δε eq or equivalent stress range is obtained. Fatigue life is evaluated by substituting Δσ eq into the strain range Δε or the stress range Δσ of the Manson-Coffin equation expressed by the following equation. A and B in the following equation are material constants, which can be obtained by conducting a uniaxial fatigue test and creating an SN diagram.
Nf = (Δε / A) 1 / B
Or Nf = (Δσ / A) 1 / B
Where Nf: number of cycles for fatigue life
A, B: Material constant
Δε: Strain range
Δσ: Stress range

ところで、実機部材の受ける荷重は、時刻とともに変化するランダム荷重である。したがって、主応力や主ひずみの方向(主軸という)が変化することも想定される。主軸方向を変化させた多軸疲労試験結果によれば、せん断ひずみと軸ひずみの位相あるいはせん断応力と軸応力の位相がずれるに従い、疲労寿命は単軸の寿命(等価ひずみあるいは等価応力を用いて求めた疲労寿命)よりも低下していくことが報告されている。   By the way, the load which an actual machine member receives is a random load which changes with time. Therefore, it is assumed that the direction of main stress or main strain (referred to as the main axis) changes. According to the results of the multiaxial fatigue test in which the main axis direction was changed, the fatigue life became uniaxial life (using equivalent strain or equivalent stress as the phase of shear strain and axial strain or the phase of shear stress and axial stress shifted. It has been reported that the fatigue life is lower than the calculated fatigue life.

したがって、上述の等価ひずみを用いた多軸疲労寿命評価方法では、主軸方向が変化しない場合、あるいは主軸方向の変化が小さい場合については疲労寿命を精度よく評価できるものの、主軸方向の変化が大きい場合は、等価ひずみにより求めた疲労寿命よりも、実際の疲労寿命が大幅に低減する可能性があり、疲労寿命を精度よく評価できなかった。つまり、主軸方向変化を含む負荷経路(Path)によっては、疲労寿命が大幅に低減する可能性があり、上述の等価ひずみあるいは等価応力を用いた多軸疲労寿命評価方法では、精度よく疲労寿命を評価することができない可能性があった。   Therefore, in the multiaxial fatigue life evaluation method using the equivalent strain described above, the fatigue life can be accurately evaluated when the principal axis direction does not change or the change in the principal axis direction is small, but the change in the principal axis direction is large. However, there is a possibility that the actual fatigue life may be significantly reduced from the fatigue life obtained by equivalent strain, and the fatigue life could not be evaluated with high accuracy. In other words, depending on the load path (Path) including changes in the principal axis direction, the fatigue life may be significantly reduced. With the above-described multiaxial fatigue life evaluation method using the equivalent strain or equivalent stress, the fatigue life can be improved with high accuracy. There was a possibility that it could not be evaluated.

こうした問題点を解決するために、負荷経路(主軸方向変化を含む負荷経路)を考慮して、主軸の変化にも対応できる多軸疲労寿命評価方法がいくつか提案されている。   In order to solve these problems, several multi-axis fatigue life evaluation methods that can cope with changes in the spindle have been proposed in consideration of load paths (load paths including changes in the spindle direction).

なかでも、非特許文献1,2では、評価対象とする期間中で最も大きな値をとる主応力(ひずみ)面に着目して、主軸の変化量を定量化する方法、および負荷経路(主軸方向変化を含む負荷経路)に基づいた多軸疲労寿命評価方法(IS法)が提案されている。以下、せん断ひずみと軸ひずみの位相差が大きい負荷を非比例負荷と呼称する。また、負荷経路を考慮した多軸疲労寿命評価を、非比例負荷を考慮した寿命評価という場合がある。   In particular, in Non-Patent Documents 1 and 2, focusing on the principal stress (strain) surface that takes the largest value during the period to be evaluated, a method for quantifying the amount of change in the principal axis, and the load path (major axis direction) A multiaxial fatigue life evaluation method (IS method) based on load paths including changes has been proposed. Hereinafter, a load having a large phase difference between shear strain and axial strain is referred to as non-proportional load. In addition, multiaxial fatigue life evaluation in consideration of the load path may be referred to as life evaluation in consideration of non-proportional load.

特開2001−329856号公報JP 2001-329856 A 特開平8−160035号公報JP-A-8-160035 特開2001−330542号公報JP 2001-330542 A

伊藤隆基、「非比例多軸低サイクル疲労寿命評価モデル」、材料、社団法人日本材料学会、2001年12月15日、vol.50、No.12,pp.1317−1322Takaki Ito, “Non-proportional multiaxial low cycle fatigue life evaluation model”, Materials, Japan Society for Materials Science, December 15, 2001, vol. 50, no. 12, pp. 1317-1322 Takamoto Itoh、Tomohiko Ozaki、Toru Amaya、and Masao Sakane、「DETERMINATION OF STRESS AND STRAIN RANGES UNDER NON-PROPORTIONAL CYCLIC LOADING」、8th International Conference on Multiaxial Fatigue & Fracture、2007年Takamoto Itoh, Tomohiko Ozaki, Toru Amaya, and Masao Sakane, "DETERMINATION OF STRESS AND STRAIN RANGES UNDER NON-PROPORTIONAL CYCLIC LOADING", 8th International Conference on Multiaxial Fatigue & Fracture, 2007 Takamoto Itoh、Masao Sakane、Takahiro Hata、Naomi Hamada、「A design procedure for assessing low cycle fatigue life under proportional and non-proportional loading」、International Journal of Fatigue 28、2006年、pp.459−466Takamoto Itoh, Masao Sakane, Takahiro Hata, Naomi Hamada, “A design procedure for assessing low cycle fatigue life under proportional and non-proportional loading”, International Journal of Fatigue 28, 2006, pp. 459-466

上述のように、等価ひずみあるいは等価応力を用いた多軸疲労寿命評価では、負荷経路によっては疲労寿命を精度よく評価することができない場合があり、このような場合は、IS法などの非比例負荷を考慮した寿命評価を用いる必要が生じる。   As described above, in multiaxial fatigue life evaluation using equivalent strain or equivalent stress, it may not be possible to accurately evaluate the fatigue life depending on the load path. It is necessary to use a life evaluation considering the load.

しかしながら、従来、任意の運用条件(応力あるいはひずみ状態)に対して、どちらの評価方法を用いるかという判断基準、すなわち、非比例負荷を考慮した寿命評価の要否を判断する判断基準が明確でなかった。   However, conventionally, the criteria for determining which evaluation method to use for any operating condition (stress or strain state), that is, the criteria for determining the necessity of life evaluation considering non-proportional load are clear. There wasn't.

さらに、多軸疲労寿命評価では、単に疲労寿命を評価するのみではなく、当該評価に基づき、実機部材の設計(運用条件と負荷経路)をどのように修正すればよいかを、容易に判断できることが望ましい。つまり、多軸疲労寿命評価では、運用条件と負荷経路を考慮した評価が可能であることが望ましい。   Furthermore, in multiaxial fatigue life evaluation, it is possible not only to evaluate fatigue life but also to easily determine how to modify the design (operation conditions and load path) of actual equipment based on the evaluation. Is desirable. That is, in multiaxial fatigue life evaluation, it is desirable to be able to evaluate in consideration of operation conditions and load path.

本発明は上記事情に鑑み為されたものであり、非比例負荷を考慮した寿命評価の要否を容易に判断でき、かつ、運用条件と負荷経路を考慮した評価が可能な多軸疲労寿命評価方法及び装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can easily determine the necessity of life evaluation considering non-proportional load, and can perform evaluation taking operation conditions and load path into consideration. It is an object to provide a method and apparatus.

本発明は上記目的を達成するために創案されたものであり、評価対象の構造物の応力またはひずみ状態を基に、負荷経路長さに対する主応力または主ひずみの方向変化を含む値の変化量の関係を求めると共に、主応力または主ひずみの方向変化を含む値の変化量の平均値である相当非比例負荷係数を求め、かつ、許容寿命低減率を予め設定すると共に、設定した許容寿命低減率に相当する相当非比例負荷係数を求め、前記負荷経路長さに対する主応力または主ひずみの方向変化を含む値の変化量の関係より求めた相当非比例負荷係数が、前記許容寿命低減率に相当する相当非比例負荷係数よりも小さいときは、等価応力または等価ひずみを用いて寿命評価を行い、前記負荷経路長さに対する主応力または主ひずみの方向変化を含む値の変化量の関係より求めた相当非比例負荷係数が、前記許容寿命低減率に相当する相当非比例負荷係数以上であるときは、負荷経路を考慮した寿命評価を行うようにした多軸疲労寿命評価方法である。   The present invention was devised to achieve the above object, and based on the stress or strain state of the structure to be evaluated, the amount of change in value including the change in direction of the principal stress or principal strain relative to the load path length In addition, the equivalent non-proportional load coefficient that is the average value of the amount of change including the direction change of the main stress or main strain is calculated, the allowable life reduction rate is set in advance, and the set allowable life reduction The equivalent non-proportional load coefficient corresponding to the rate is obtained, and the equivalent non-proportional load coefficient obtained from the relationship between the change amount of the value including the direction change of the main stress or the main strain with respect to the load path length is the allowable life reduction rate. If the load coefficient is smaller than the corresponding non-proportional load coefficient, the life evaluation is performed using equivalent stress or equivalent strain, and the amount of change including the change in direction of the principal stress or principal strain with respect to the load path length When the equivalent non-proportional load coefficient obtained from the relationship is equal to or greater than the equivalent non-proportional load coefficient corresponding to the allowable life reduction rate, it is a multiaxial fatigue life evaluation method in which life evaluation is performed in consideration of the load path. .

前記負荷経路を考慮した寿命評価は、前記構造物と同じ材料からなる試験片を用い、単軸負荷の疲労試験と円形負荷の疲労試験を行い、当該疲労試験の結果を基に、単軸負荷のSN線図と円形負荷のSN線図とをそれぞれ作成し、作成した前記単軸負荷のSN線図と前記円形負荷のSN線図を用い、両SN線図の低サイクル域での時間強度の差ないし非比例負荷での追硬化の程度を表す係数αを求め、かつ、前記構造物の応力またはひずみ状態を基に、[数1]に示す式(1)   The life evaluation in consideration of the load path uses a test piece made of the same material as the structure, performs a uniaxial load fatigue test and a circular load fatigue test, and based on the fatigue test results, SN diagram and circular load SN diagram are created respectively, and using the created single axis load SN diagram and circular load SN diagram, the time intensity in the low cycle region of both SN diagrams The coefficient α representing the degree of additional curing under a non-proportional load or the equation (1) shown in [Equation 1] based on the stress or strain state of the structure

により、非比例負荷係数fNPを求め、求めた係数αと非比例負荷係数fNPとに基づき、下式(2a)または下式(2b)
Nf_NP={(1+αfNP)Δε/A}1/B ・・・(2a)
Nf_NP={(1+αfNP)Δσ/A}1/B ・・・(2b)
但し、Nf_NP:疲労寿命となるサイクル数
A,B:材料定数
Δε:1サイクル中の最大主ひずみ軸に投影して算出される
ひずみ範囲
Δσ:1サイクル中の最大主応力軸に投影して算出される
応力範囲
により寿命評価を行ってもよい。
Thus, the non-proportional load coefficient f NP is obtained, and based on the obtained coefficient α and non-proportional load coefficient f NP , the following expression (2a) or
Nf_NP = {(1 + αf NP ) Δε / A} 1 / B (2a)
Nf_NP = {(1 + αf NP ) Δσ / A} 1 / B (2b)
Where Nf_NP : number of cycles for fatigue life
A, B: Material constant
Δε: Calculated by projecting on the maximum principal strain axis in one cycle
Strain range
Δσ: Calculated by projecting to the maximum principal stress axis during one cycle
Life evaluation may be performed according to the stress range.

前記許容寿命低減率βaに相当する相当非比例負荷係数fNP_a_eqは、下式(3)
NP_a=(βa B−1)/α ・・・(3)
但し、fNP_a:許容寿命低減率に相当する非比例負荷係数
βa:許容寿命低減率
α:非比例負荷での強度低下の程度ないし追硬化の程度を表す係数
B:材料定数
により、許容寿命低減率βaに相当する非比例負荷係数fNP_aを求め、求めた非比例負荷係数fNP_aを基に、下式(4)
NP_a_eq=fNP_a×4(SImax2/L ・・・(4)
但し、fNP_a_eq:許容寿命低減率に相当する相当非比例負荷係数
NP_a:許容寿命低減率に相当する非比例負荷係数
SImax:最大主応力または最大主ひずみ
L:負荷経路長さ
により求めてもよい。
The equivalent non-proportional load coefficient f NP_a_eq corresponding to the allowable life reduction rate β a is expressed by the following equation (3)
f NP_a = (β a B −1) / α (3)
However, f NP_a : Non-proportional load coefficient corresponding to the allowable life reduction rate
β a : Permissible life reduction rate
α: Coefficient indicating the degree of strength reduction or the degree of additional curing under non-proportional load
B: A non-proportional load coefficient f NP_a corresponding to the allowable life reduction rate β a is obtained from the material constant, and the following equation (4) is obtained based on the obtained non-proportional load coefficient f NP_a
f NP_a_eq = f NP_a × 4 (SI max ) 2 / L (4)
However, f NP_a_eq : Equivalent non-proportional load coefficient corresponding to the allowable life reduction rate
f NP_a : Non-proportional load coefficient corresponding to the allowable life reduction rate
SI max : Maximum principal stress or maximum principal strain
L: It may be obtained from the load path length.

また、本発明は、評価対象の構造物の応力またはひずみ状態を基に、負荷経路長さに対する主応力または主ひずみの方向変化を含む値の変化量の関係を求めると共に、主応力または主ひずみの方向変化を含む値の変化量の平均値である相当非比例負荷係数を求め、かつ、予め設定した許容寿命低減率に相当する相当非比例負荷係数を求める解析部と、前記負荷経路長さに対する主応力または主ひずみの方向変化を含む値の変化量の関係より求めた相当非比例負荷係数が、前記許容寿命低減率に相当する相当非比例負荷係数よりも小さいときは、等価応力または等価ひずみを用いて寿命評価を行い、前記負荷経路長さに対する主応力または主ひずみの方向変化を含む値の変化量の関係より求めた相当非比例負荷係数が、前記許容寿命低減率に相当する相当非比例負荷係数以上であるときは、負荷経路を考慮した寿命評価を行う評価部と、を備えた多軸疲労寿命評価装置である。   In addition, the present invention obtains the relationship between the change amount of the value including the direction change of the main stress or the main strain with respect to the load path length based on the stress or the strain state of the structure to be evaluated, and the main stress or the main strain. An analysis unit that obtains an equivalent non-proportional load coefficient that is an average value of a change amount of a value including a change in the direction of the load, and obtains an equivalent non-proportional load coefficient corresponding to a preset allowable life reduction rate; and the load path length If the equivalent non-proportional load coefficient obtained from the relationship between the change amount of the value including the direction change of the main stress or the main strain with respect to is smaller than the equivalent non-proportional load coefficient corresponding to the allowable life reduction rate, the equivalent stress or equivalent A life evaluation is performed using strain, and an equivalent non-proportional load coefficient obtained from a relationship between a change amount of a value including a main stress or a direction change of the main strain with respect to the load path length corresponds to the allowable life reduction rate. Equivalent when non proportional load is coefficient than that is a multi-axial fatigue life evaluation apparatus having a evaluation unit for performing life evaluation in consideration of the load path, a.

本発明によれば、非比例負荷を考慮した寿命評価の要否を容易に判断でき、かつ、運用条件と負荷経路を考慮した評価が可能な多軸疲労寿命評価方法及び装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the multiaxial fatigue life evaluation method and apparatus which can judge easily the necessity of the life evaluation in consideration of the non-proportional load, and can be evaluated in consideration of the operation condition and the load path can be provided.

本発明の一実施の形態に係る多軸疲労寿命評価方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the multiaxial fatigue life evaluation method which concerns on one embodiment of this invention. 本発明において、単軸負荷および円形負荷のSN線図の一例を示すグラフ図である。In this invention, it is a graph which shows an example of SN diagram of a uniaxial load and a circular load. (a)は、本発明において用いる構造物の応力またはひずみ状態を示すグラフ図であり、(b)は、(a)の応力またはひずみ状態における負荷経路長さに対する主応力または主ひずみの方向変化を含む値の変化量の関係を示すグラフ図である。(A) is a graph which shows the stress or strain state of the structure used in this invention, (b) is the direction change of the main stress or the main strain with respect to the load path length in the stress or strain state of (a). It is a graph which shows the relationship of the variation | change_quantity of the value containing. 本発明の多軸疲労寿命評価方法に用いる多軸疲労寿命評価装置の概略構成図である。It is a schematic block diagram of the multiaxial fatigue life evaluation apparatus used for the multiaxial fatigue life evaluation method of this invention.

以下、本発明の好適な実施の形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

まず、本実施の形態に係る多軸疲労寿命評価方法で用いるIS法について説明する。なお、IS法については、非特許文献1,2に詳細に記載されているため、ここでは概略のみを説明する。   First, the IS method used in the multiaxial fatigue life evaluation method according to the present embodiment will be described. Since the IS method is described in detail in Non-Patent Documents 1 and 2, only the outline will be described here.

IS法は、主応力(ひずみ)基準のクライテリアであり、下式(5)で定義される。
ΔSINP=(1+αfNP)ΔSI ・・・(5)
The IS method is a criterion based on principal stress (strain) and is defined by the following equation (5).
ΔSI NP = (1 + αf NP ) ΔSI (5)

式(5)において、ΔSIは1サイクル中の最大主応力(最大主ひずみ)軸に投影して算出される応力(ひずみ)範囲である。また、αは非比例負荷での追硬化の程度あるいは寿命低下の程度を表す係数であり、詳細は後述するが、非比例負荷による時間強度の低下率からも求めることができる。fNPは、負荷経路の非比例の程度を表すパラメータであり、非比例負荷係数と呼称する。 In Expression (5), ΔSI is a stress (strain) range calculated by projecting on the maximum principal stress (maximum principal strain) axis in one cycle. Further, α is a coefficient representing the degree of additional curing or life reduction under non-proportional load, and can be determined from the rate of decrease in time intensity due to non-proportional load as will be described in detail later. f NP is a parameter representing a non-proportional degree of the load path, and is referred to as a non-proportional load coefficient.

非比例負荷係数fNPは、[数2]に示す式(1)より得られる。 The non-proportional load coefficient f NP is obtained from Equation (1) shown in [Equation 2].

式(1)における積分記号の中の「|e1×eRSI(t)|」は、主応力(主ひずみ)の方向変化を含む値の変化量を表しており、dsは応力(ひずみ)経路、すなわち負荷経路を表している。負荷経路の全経路に沿って、主応力(ひずみ)の変化量を経路積分することにより、非比例負荷係数fNPを求めることができる。なお、式(1)において積分値を4(SImax2で除しているのは、fNPを基準化するためである。軸ひずみεまたは軸応力σとせん断ひずみγまたはせん断応力τが90度の位相差で負荷される円形負荷では、fNPは1となる。 “| E 1 × e R SI (t) |” in the integral symbol in the equation (1) represents the amount of change of the value including the direction change of the principal stress (principal strain), and ds represents the stress (strain). ) Path, that is, a load path. The non-proportional load coefficient f NP can be obtained by integrating the amount of change of the main stress (strain) along the entire path of the load path. The reason why the integral value is divided by 4 (SI max ) 2 in equation (1) is to standardize f NP . In a circular load in which axial strain ε or axial stress σ and shear strain γ or shear stress τ are loaded with a phase difference of 90 degrees, f NP is 1.

また、e1は最大主応力(最大主ひずみ)の方向を示すベクトルであり、eRは、ある時刻t(e1を基準(時刻0)とした時刻)での主応力(主ひずみ)の方向を示すベクトルである。よって、e1とeRの外積は、e1とeRのなす角度ξ(t)を用いて、sinξ(t)で表すことができる。よって、式(1)の積分記号の中の「|e1×eRSI(t)|」は、「SI(t)|sinξ(t)|」と表すこともできる。 Further, e 1 is a vector indicating the direction of the maximum principal stress (maximum principal strain), and e R is the direction of the principal stress (principal strain) at a certain time t (time when e1 is a reference (time 0)). It is a vector which shows. Thus, the outer product of e 1 and e R, using e 1 and e the angle of R xi] a (t), it can be represented by sinξ (t). Therefore, “| e 1 × e R SI (t) |” in the integral symbol of Expression (1) can also be expressed as “SI (t) | sinξ (t) |”.

以下、本実施の形態に係る多軸疲労寿命評価方法を図1を用いて説明する。   Hereinafter, the multiaxial fatigue life evaluation method according to the present embodiment will be described with reference to FIG.

図1に示すように、本実施の形態に係る多軸疲労寿命評価方法では、まず、ステップS1にて、評価対象の構造物と同じ材料からなる試験片を用い、単軸負荷(軸の引張・圧縮負荷;Push-pull)の疲労試験と円形負荷(circle)の疲労試験を行い、材料データを取得する。   As shown in FIG. 1, in the multiaxial fatigue life evaluation method according to the present embodiment, first, in step S1, a test piece made of the same material as the structure to be evaluated is used, and a uniaxial load (shaft tension) is used. -Perform compression test (push-pull) fatigue test and circular load (circle) fatigue test, and acquire material data.

その後、ステップS2にて、ステップS1で得た材料データ(単軸負荷と円形負荷の疲労試験の結果)を基に、単軸負荷のSN線図と円形負荷のSN線図とをそれぞれ作成する。   Thereafter, in step S2, based on the material data obtained in step S1 (results of uniaxial load and circular load fatigue tests), a uniaxial load SN diagram and a circular load SN diagram are created, respectively. .

ステップS2で作成するSN線図の一例を図2に示す。図2における実線が単軸負荷のSN線図であり、破線が円形負荷のSN線図である。図2では、縦軸をひずみ範囲Δε、横軸を疲労寿命となるサイクル数Nfとしており、縦軸、横軸共に対数表示としている。   An example of the SN diagram created in step S2 is shown in FIG. The solid line in FIG. 2 is an SN diagram of a uniaxial load, and the broken line is an SN diagram of a circular load. In FIG. 2, the vertical axis represents the strain range Δε, the horizontal axis represents the number of cycles Nf that becomes the fatigue life, and both the vertical axis and the horizontal axis are logarithmically displayed.

図2に示すように、SN線図は、低サイクル域において直線で近似することができる(図2では低サイクル域のみを示している)。単軸負荷のSN線図は、下式(6)
Nf=(Δε/A)1/B ・・・(6)
但し、Nf:疲労寿命となるサイクル数
A,B:材料定数
Δε:ひずみ範囲
のManson-Coffinの式により近似することができる。単軸負荷のSN線図を作成することで、材料定数A,Bを求めることができる。式(6)のひずみ範囲を応力範囲とし、Nf=(Δσ/A)1/Bとすることもできる。ただし、Δσは応力範囲である。
As shown in FIG. 2, the SN diagram can be approximated by a straight line in the low cycle region (only the low cycle region is shown in FIG. 2). The SN diagram for uniaxial load is given by the following formula (6)
Nf = (Δε / A) 1 / B (6)
Where Nf: number of cycles for fatigue life
A, B: Material constant
Δε: Can be approximated by the Manson-Coffin equation of the strain range. Material constants A and B can be obtained by creating an SN diagram of a uniaxial load. The strain range of Equation (6) may be the stress range, and Nf = (Δσ / A) 1 / B. However, Δσ is a stress range.

また、作成した単軸負荷のSN線図と円形負荷のSN線図を用い、両SN線図の低サイクル域での時間強度の差から、非比例負荷での追硬化の程度を表す係数αを求めることができる。   Also, using the SN diagram of the uniaxial load and the SN diagram of the circular load that was created, the coefficient α representing the degree of additional curing at a non-proportional load from the difference in time intensity in the low cycle region of both SN diagrams Can be requested.

なお、予め、各種材料ごとに単軸負荷の疲労試験と円形負荷の疲労試験を行い、材料定数A,Bと非比例負荷での追硬化の程度を表す係数αを求め、これらA,B,αを材料と関連付けて記憶しておくようにしてもよい。この場合、上述のステップS1,S2を省略でき、材料を選択すればA,B,αを求めることができる。   A uniaxial load fatigue test and a circular load fatigue test are performed in advance for each of various materials, and a material constant A, B and a coefficient α representing the degree of additional curing at a non-proportional load are obtained. α may be stored in association with the material. In this case, steps S1 and S2 described above can be omitted, and A, B, and α can be obtained by selecting a material.

ステップS3では、予め設定した許容寿命低減率βaに相当する相当非比例負荷係数fNP_a_eqを求める。 In step S3, an equivalent non-proportional load coefficient f NP_a_eq corresponding to a preset allowable life reduction rate β a is obtained .

上述の式(5)をひずみ範囲で整理すると、下式(7)のようになる。
ΔεNP=(1+αfNP)Δε ・・・(7)
但し、ΔεNP:非比例負荷を考慮したときの相当ひずみ範囲
式(7)のひずみ範囲を応力範囲とし、ΔσNP=(1+αfNP)Δσとすることもできる。ただし、ΔσNPは非比例負荷を考慮したときの相当応力範囲、Δσは応力範囲である。
When the above equation (5) is arranged in the strain range, the following equation (7) is obtained.
Δε NP = (1 + αf NP ) Δε (7)
However, [Delta] [epsilon] NP: the strain range of equivalent strain range expression (7) when considering the non-proportional load and stress range, can be a Δσ NP = (1 + αf NP ) Δσ. However, Δσ NP is an equivalent stress range when non-proportional load is considered, and Δσ is a stress range.

よって、式(6)のΔεを式(7)のΔεNPに置き換えると、非比例負荷(fNP≠1)を考慮したときの疲労寿命となるサイクル数Nf_NPは、下式(2a)または下式(2b)で表される。
Nf_NP={(1+αfNP)Δε/A}1/B ・・・(2a)
Nf_NP={(1+αfNP)Δσ/A}1/B ・・・(2b)
Therefore, when Δε in equation (6) is replaced with Δε NP in equation (7), the number of cycles Nf_NP that becomes a fatigue life when non-proportional load (f NP ≠ 1) is considered is expressed by the following equation (2a) or It is represented by the following formula (2b).
Nf_NP = {(1 + αf NP ) Δε / A} 1 / B (2a)
Nf_NP = {(1 + αf NP ) Δσ / A} 1 / B (2b)

式(6)と式(2a)より、寿命低減率βは下式(9)
β=Nf_NP/Nf=(1+αfNP1/B ・・・(9)
で得られる。式(9)を用いることにより、非比例負荷係数fNPから直接、寿命低減率βを求めることが可能である。なお、ここで得られる寿命低減率βは、単軸負荷での疲労寿命となるサイクル数Nfと比較して、非比例負荷を考慮したときの疲労寿命となるサイクル数Nf_NPが小さくなるほど、小さい値となる。つまり、非比例負荷の影響が大きい(時間強度の低下率が大きい)と、寿命低減率βの値が小さくなり、非比例負荷の影響が小さい(時間強度の低下率が小さい)と、寿命低減率βの値が大きくなる。
From the formula (6) and the formula (2a), the life reduction rate β is expressed by the following formula (9)
β = Nf_NP / Nf = (1 + αf NP ) 1 / B (9)
It is obtained by. By using equation (9), it is possible to determine the life reduction rate β directly from the non-proportional load coefficient f NP . In addition, the life reduction rate β obtained here is smaller as the number of cycles Nf_NP that becomes the fatigue life when considering the non-proportional load is smaller than the number of cycles Nf that becomes the fatigue life under the uniaxial load. Value. That is, if the influence of non-proportional load is large (the rate of decrease in time intensity is large), the value of life reduction rate β is small, and if the effect of non-proportional load is small (the rate of decrease in time intensity is small), the life is reduced. The value of the rate β increases.

式(9)をfNPで整理すると、下式(10)
NP=(βB−1)/α ・・・(10)
のようになる。式(10)を用いることにより、寿命低減率βを非比例負荷係数fNPに換算することができる。
When formula (9) is arranged by f NP , the following formula (10)
f NP = (β B −1) / α (10)
become that way. By using Expression (10), the life reduction rate β can be converted into a non-proportional load coefficient f NP .

式(10)より、許容寿命低減率βaとなる非比例負荷係数fNP_aは、下式(3)
NP_a=(βa B−1)/α ・・・(3)
で表すことができる。
From equation (10), the non-proportional load coefficient f NP — a that gives the allowable life reduction rate β a is
f NP_a = (β a B −1) / α (3)
Can be expressed as

式(3)により得た許容寿命低減率βaとなる非比例負荷係数fNP_aは、基準化が為されたものであるから、基準化を解消するために4(SImax2を乗じれば式(1)における積分値のみを抽出することができる。この積分値は、主応力(主ひずみ)の変化量を負荷経路に沿って積分した値であるから、積分値を負荷経路長さ(Loading path length;L-path)Lで除することにより、平均的な主応力(主ひずみ)の変化量、すなわち相当非比例負荷係数fNP_eqを求めることができる。 Since the non-proportional load coefficient f NP — a that is the allowable life reduction rate β a obtained by the equation (3) is normalized , it is multiplied by 4 (SI max ) 2 in order to cancel the standardization. For example, only the integral value in equation (1) can be extracted. Since this integrated value is a value obtained by integrating the amount of change of the main stress (main strain) along the load path, by dividing the integrated value by a loading path length (L-path) L, The amount of change in average principal stress (principal strain), that is, the equivalent non-proportional load coefficient f NP_eq can be obtained.

つまり、許容寿命低減率βaに相当する相当非比例負荷係数fNP_a_eqは、下式(4)
NP_a_eq=fNP_a×4(SImax2/L ・・・(4)
で求めることができる。
That is, the equivalent non-proportional load coefficient f NP_a_eq corresponding to the allowable life reduction rate β a is expressed by the following equation (4)
f NP_a_eq = f NP_a × 4 (SI max ) 2 / L (4)
Can be obtained.

ステップS4では、評価対象の構造物の応力またはひずみ状態を基に、負荷経路長さに対する主応力または主ひずみの方向変化を含む値の変化量の関係(以下、負荷経路長さに対する主応力または主ひずみの変化量の関係という)を求める。   In step S4, based on the stress or strain state of the structure to be evaluated, the relationship between the change amount of the value including the main stress or the direction change of the main strain with respect to the load path length (hereinafter referred to as the main stress or the load path length). (Referred to as the relationship of change in principal strain).

ここでは、一例として、図3(a)に示すように、軸方向負荷1サイクル中にねじり負荷(せん断負荷)が2サイクル作用する負荷が、構造物に作用する場合を説明する。この場合、負荷経路長さに対する主応力または主ひずみの変化量の関係は、図3(b)のようになる。   Here, as an example, as shown in FIG. 3A, a case will be described in which a load in which a torsional load (shear load) acts during one cycle of an axial load acts on a structure. In this case, the relationship between the change amount of the main stress or the main strain with respect to the load path length is as shown in FIG.

図3(b)における縦軸は、負荷経路長さに対する主応力または主ひずみの変化量であり、上述の式(1)の積分記号の中の値(ここでは、SI(t)|sinξ(t)|を用いている)である。また、図3(b)における横軸は、負荷経路長さである。   The vertical axis in FIG. 3 (b) is the amount of change in principal stress or principal strain with respect to the load path length, and the value (here SI (t) | sinξ ( t) | is used). Further, the horizontal axis in FIG. 3B is the load path length.

上述のように、非比例負荷係数fNPは、SI(t)|sinξ(t)|の変化量を負荷経路に沿って積分し、これを基準化することにより求められる。従って、図3(b)の実線で示された軌跡の面積を求め、これを基準化すれば、非比例負荷係数fNPを求めることができる。 As described above, the non-proportional load coefficient f NP is obtained by integrating the change amount of SI (t) | sinξ (t) | along the load path and normalizing it. Therefore, if the area of the locus shown by the solid line in FIG. 3B is obtained and normalized, the non-proportional load coefficient f NP can be obtained.

ステップS5では、ステップS4で求めた負荷経路長さに対する主応力または主ひずみの変化量の関係を基に、主応力または主ひずみの変化量の平均値である相当非比例負荷係数fNP_eqを求める。相当非比例負荷係数fNP_eqは、図3(b)の実線で示された軌跡の面積(つまり、主応力または主ひずみの変化量を負荷経路に沿って積分した積分値)を、負荷経路長さLで除することで求めることができる。得られた相当非比例負荷係数fNP_eqを、図3(b)に破線で示す。図3(b)における破線の下側の面積と、図3(b)の実線で示された軌跡の下側の面積とは、等しくなる。 In step S5, an equivalent non-proportional load coefficient f NP_eq that is an average value of changes in principal stress or principal strain is obtained based on the relationship between changes in principal stress or principal strain with respect to the load path length obtained in step S4. . The equivalent non-proportional load factor f NP_eq is the area of the locus indicated by the solid line in FIG. 3B (that is, the integrated value obtained by integrating the change amount of the main stress or the main strain along the load path), and the load path length. It can be obtained by dividing by L. The obtained non-proportional load coefficient f NP_eq is shown by a broken line in FIG. The area below the broken line in FIG. 3B is equal to the area below the locus shown by the solid line in FIG.

ステップS6では、ステップS5で求めた相当非比例負荷係数fNP_eqが、ステップS3で求めた許容寿命低減率βaに相当する相当非比例負荷係数fNP_a_eqよりも大きいかを判断する。 In step S6, it is determined whether the equivalent non-proportional load coefficient f NP_eq obtained in step S5 is larger than the equivalent non-proportional load coefficient f NP_a_eq corresponding to the allowable life reduction rate β a obtained in step S3.

一例として、許容寿命低減率βaを0.1とした場合の相当非比例負荷係数fNP_a_eqを一点鎖線、許容寿命低減率βaを0.25とした場合の相当非比例負荷係数fNP_a_eqを二点鎖線で、図3(b)に示す。この場合、βa=0.1としたときは、fNP_eq<fNP_a_eqとなり、ステップS6にてYESと判断され、βa=0.25としたときは、fNP_eq≧fNP_a_eqとなり、ステップS6にてNOと判断されることになる。 As an example, the equivalent non-proportional load coefficient f NP_a_eq when the allowable life reduction rate β a is 0.1 is a one-dot chain line, and the equivalent non-proportional load coefficient f NP_a_eq when the allowable life reduction rate β a is 0.25. This is shown by a two-dot chain line in FIG. In this case, when β a = 0.1, f NP_eq <f NP_a_eq is satisfied , and YES is determined in step S6. When β a = 0.25, f NP_eq ≧ f NP_a_eq and step S6 It will be judged as NO.

ステップS6にてYESと判断された場合、非比例負荷の影響が小さく、非比例負荷を考慮する必要がないと判断し、ステップS7にて、等価ひずみ(または等価応力)を用いて寿命評価を行う。   If YES is determined in step S6, it is determined that the influence of the non-proportional load is small and it is not necessary to consider the non-proportional load. In step S7, the life evaluation is performed using the equivalent strain (or equivalent stress). Do.

具体的には、例えばMisesの等価ひずみを用いる場合、下式(11)
Δεeq=(ε2+γ2/3)1/2 ・・・(11)
により等価ひずみ範囲Δεeqを求め、下式(12)
Nf=(Δεeq/A)1/B ・・・(12)
により寿命を評価するようにすればよい。
Specifically, for example, when using the equivalent strain of Mises, the following equation (11)
Δε eq = (ε 2 + γ 2/3) 1/2 ··· (11)
The equivalent strain range Δε eq is obtained by the following equation (12)
Nf = (Δε eq / A) 1 / B (12)
The life may be evaluated by

ステップS6にてNOと判断された場合、非比例負荷の影響が大きく、非比例負荷を考慮する必要があると判断し、ステップS8にて、非比例負荷を考慮した寿命評価(負荷経路を考慮した寿命評価)を行う。   If NO is determined in step S6, it is determined that the influence of the non-proportional load is large and it is necessary to consider the non-proportional load. In step S8, the life evaluation considering the non-proportional load (considering the load path) Life assessment).

具体的には、構造物の応力状態を基に、上述の式(1)により非比例負荷係数fNPを求め、下式(2a)または下式(2b)
Nf_NP={(1+αfNP)Δε/A}1/B ・・・(2a)
Nf_NP={(1+αfNP)Δσ/A}1/B ・・・(2b)
により寿命を評価する。
Specifically, based on the stress state of the structure, the non-proportional load coefficient f NP is obtained by the above equation (1), and the following equation (2a) or (2b)
Nf_NP = {(1 + αf NP ) Δε / A} 1 / B (2a)
Nf_NP = {(1 + αf NP ) Δσ / A} 1 / B (2b)
To evaluate the life.

図3(b)の負荷経路長さに対する主応力または主ひずみの変化量の関係において、主応力または主ひずみの変化量が、許容寿命低減率βaに相当する相当非比例負荷係数fNP_a_eqよりも高くなっている箇所は、非比例負荷の影響が大きく、設計上問題があると判断できる。よって、この箇所の主応力または主ひずみの変化量をできるだけ小さくするように、構造物の運用や形状(応力状態と負荷経路)を変更する、といった判断も可能となる。 In the context of the main stress or principal strain variation relative to the load path length in FIG. 3 (b), the main stress or principal strain amount of change, from the corresponding non-proportional load factor f NP_a_eq corresponding to the allowable lifetime reduction rate beta a The part where the value is higher is greatly influenced by the non-proportional load, and it can be determined that there is a design problem. Therefore, it is also possible to determine that the operation or shape (stress state and load path) of the structure is changed so as to minimize the amount of change in the main stress or main strain at this location.

次に、本発明の多軸疲労寿命評価方法を実現する多軸疲労寿命評価装置について説明する。   Next, a multiaxial fatigue life evaluation apparatus for realizing the multiaxial fatigue life evaluation method of the present invention will be described.

図4に示すように、多軸疲労寿命評価装置41は、入力部42と、材料データ解析部43と、解析部44と、評価部45と、出力部46と、材料データ記憶部47と、解析結果記憶部48と、評価結果記憶部49と、を備えている。これら各部は、インターフェイス、メモリ、CPU、ソフトウェアなどを適宜組み合わせて実現される。   As shown in FIG. 4, the multiaxial fatigue life evaluation apparatus 41 includes an input unit 42, a material data analysis unit 43, an analysis unit 44, an evaluation unit 45, an output unit 46, a material data storage unit 47, An analysis result storage unit 48 and an evaluation result storage unit 49 are provided. These units are realized by appropriately combining an interface, a memory, a CPU, software, and the like.

入力部42は、評価対象の構造物の材料を選択する材料選択部42aと、許容寿命低減率βaを入力する許容寿命低減率入力部42bと、評価対象の構造物の運用条件(応力またはひずみ状態)を入力する運用条件入力部42cと、単軸負荷と円形負荷での疲労試験の結果、および疲労試験に用いた材料を入力する材料データ入力部42dと、を備えている。 The input unit 42 includes a material selection unit 42a for selecting a material of the structure being evaluated, the allowable service life reduction rate input unit 42b for inputting an acceptable service life reduction factor beta a, operating conditions of the structure being evaluated (stress or An operation condition input unit 42c for inputting a strain state), and a material data input unit 42d for inputting a result of a fatigue test under a uniaxial load and a circular load and a material used for the fatigue test.

材料データ解析部43は、材料データ入力部42dに入力された疲労試験の結果を基に、単軸負荷と円形負荷のSN線図を作成し、作成したSN線図より材料定数A,Bおよび非比例負荷での追硬化の程度あるいは寿命低下の程度を表す係数αを求め、得られたA,B,αを材料と関連付けて材料データ記憶部47に記憶するよう構成される。   The material data analysis unit 43 creates SN diagrams of the uniaxial load and the circular load based on the fatigue test result input to the material data input unit 42d, and material constants A, B and A coefficient α representing the degree of additional curing or life reduction under non-proportional load is obtained, and the obtained A, B, α are associated with the material and stored in the material data storage unit 47.

解析部44は、運用条件入力部42cで入力された評価対象の構造物の運用条件(応力またはひずみ状態)を基に、負荷経路長さに対する主応力または主ひずみの変化量の関係を求めると共に、主応力または主ひずみの変化量の平均値である相当非比例負荷係数fNP_eqを求め、解析結果記憶部48に記憶するよう構成される。 The analysis unit 44 obtains the relationship between the change amount of the main stress or the main strain with respect to the load path length based on the operation condition (stress or strain state) of the structure to be evaluated input by the operation condition input unit 42c. The equivalent non-proportional load coefficient f NP — eq , which is the average value of changes in the main stress or main strain, is obtained and stored in the analysis result storage unit 48.

また、解析部44は、材料選択部42aで選択された材料のA,B,αを材料データ記憶部47から読み込み、読み込んだA,B,αと、許容寿命低減率入力部42bで入力された許容寿命低減率βaと、運用条件入力部42cで入力された評価対象の構造物の運用条件(応力またはひずみ状態)と、に基づき、許容寿命低減率βaに相当する相当非比例負荷係数fNP_a_eqを求め、解析結果記憶部48に記憶するよう構成される。 The analysis unit 44 reads A, B, α of the material selected by the material selection unit 42a from the material data storage unit 47, and inputs the read A, B, α and the allowable life reduction rate input unit 42b. and acceptable lifetime reduction rate beta a was, the operating conditions of the structure being evaluated entered in the operational condition input unit 42c (stress or strain state), on the basis of the corresponding non-proportional load corresponding to the allowable lifetime reduction rate beta a The coefficient f NP_a_eq is obtained and stored in the analysis result storage unit 48.

評価部45は、解析結果記憶部48に記憶された負荷経路長さに対する主応力または主ひずみの変化量の関係、相当非比例負荷係数fNP_eq、および許容寿命低減率βaに相当する相当非比例負荷係数fNP_a_eqに基づき、非比例負荷を考慮した寿命の要否を判断するよう構成される。 The evaluation unit 45 compares the non-proportional load coefficient f NP_eq and the allowable non-proportional load coefficient β a corresponding to the relationship between the change amount of the main stress or the main strain with respect to the load path length stored in the analysis result storage unit 48. Based on the proportional load coefficient f NP_a_eq , it is configured to determine the necessity of life considering the non-proportional load.

具体的には、評価部45は、fNP_eq<fNP_a_eqであるとき、等価応力または等価ひずみを用いて寿命評価を行い、fNP_eq≧fNP_a_eqであるとき、非比例負荷を考慮した寿命評価を行うよう構成される。評価部45は、評価結果を評価結果記憶部49に記憶するようにされる。 Specifically, the evaluation unit 45 performs life evaluation using equivalent stress or equivalent strain when f NP_eq <f NP_a_eq , and performs life evaluation considering a non-proportional load when f NP_eq ≧ f NP_a_eq. Configured to do. The evaluation unit 45 stores the evaluation result in the evaluation result storage unit 49.

出力部46は、解析結果記憶部48に記憶された負荷経路長さに対する主応力または主ひずみの変化量の関係をグラフ化すると共に、当該グラフに相当非比例負荷係数fNP_eq、および許容寿命低減率βaに相当する相当非比例負荷係数fNP_a_eqを表示したグラフ図(図3(b)参照)を作成し、評価結果記憶部49に記憶された評価結果と共に、ディスプレイなどの表示器に出力するようにされる。 The output unit 46 graphs the relationship of the change amount of the main stress or the main strain with respect to the load path length stored in the analysis result storage unit 48, and the corresponding non-proportional load coefficient f NP_eq and the allowable life reduction are displayed on the graph. corresponding non-proportional load factor f NP_a_eq graph displaying the equivalent to the rate beta a create a (see FIG. 3 (b)), evaluation evaluation with the results stored in the result storage unit 49, output to a display device such as a display To be done.

以上説明したように、本実施の形態に係る多軸疲労寿命評価方法では、評価対象の構造物の応力またはひずみ状態を基に、負荷経路長さに対する主応力または主ひずみの方向変化を含む値の変化量の関係を求めると共に、主応力または主ひずみの方向変化を含む値の変化量の平均値である相当非比例負荷係数fNP_eqを求め、かつ、許容寿命低減率βaを予め設定すると共に、設定した許容寿命低減率βaに相当する相当非比例負荷係数fNP_a_eqを求め、fNP_eq<fNP_a_eqであるときは、等価応力または等価ひずみを用いて寿命評価を行い、fNP_eq≧fNP_a_eqであるときは、非比例負荷を考慮した寿命評価を行うようにしている。 As described above, in the multiaxial fatigue life evaluation method according to the present embodiment, based on the stress or strain state of the structure to be evaluated, a value including the direction change of the main stress or main strain with respect to the load path length. Is calculated , and an equivalent non-proportional load coefficient f NP_eq which is an average value of the amount of change including the direction change of the main stress or the main strain is obtained, and the allowable life reduction rate β a is set in advance. together, determine the corresponding non-proportional load factor f NP_a_eq corresponding to the allowable life reduction factor beta a set, when a f NP_eq <f NP_a_eq performs life evaluation using the equivalent stress or equivalent strain, f NP_eq ≧ f When it is NP_a_eq , life evaluation considering non-proportional load is performed.

これにより、従来不明確であった非比例負荷を考慮した寿命評価の要否を判断する判断基準が明確となり、非比例負荷を考慮した寿命評価の要否を容易に判断することが可能となる。   As a result, the criteria for determining the necessity of life evaluation considering the non-proportional load, which has been unclear in the past, are clarified, and it becomes possible to easily determine the necessity of life evaluation considering the non-proportional load. .

また、負荷経路長さに対する主応力または主ひずみの変化量の関係において、主応力または主ひずみの変化量が、許容寿命低減率βaに相当する相当非比例負荷係数fNP_a_eqよりも高くなっている箇所は、非比例負荷の影響が大きく、設計上問題があると判断できる。つまり、本発明によれば、単に疲労寿命を評価するのみではなく、運用条件と負荷経路を考慮し、実機部材の設計をどのように修正すればよいかを、容易に判断できる。 Further, in the relationship of the change amount of the main stress or the main strain with respect to the load path length, the change amount of the main stress or the main strain is higher than the equivalent non-proportional load coefficient f NP_a_eq corresponding to the allowable life reduction rate β a. It is possible to determine that there is a problem in design because the influence of non-proportional load is large. In other words, according to the present invention, it is possible not only to simply evaluate the fatigue life but also to easily determine how to modify the design of the actual machine member in consideration of the operation conditions and the load path.

本発明は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。   The present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the spirit of the present invention.

例えば、上記実施の形態では、負荷経路長さに対する主応力または主ひずみの変化量の関係より求めた相当非比例負荷係数fNP_eqと、許容寿命低減率βaに相当する相当非比例負荷係数fNP_a_eqとを比較して、非比例負荷を考慮した寿命評価の要否を判断したが、主応力または主ひずみの変化量の関係を基に、上述の式(1)により非比例負荷係数fNPを算出し、算出した非比例負荷係数fNPを基に上述の式(9)により寿命低減率βを求め、求めた寿命低減率βと、設定した許容寿命低減率βaとを比較することにより、非比例負荷を考慮した寿命評価の要否を判断するようにしてもよい。寿命低減率βは相当非比例負荷係数fNP_eqに対応し、許容寿命低減率βaは相当非比例負荷係数fNP_a_eqに対応するので、比較対象としてどちらを用いても、同様に非比例負荷を考慮した寿命評価の要否を判断できる。 For example, in the above-described embodiment, the substantial non-proportional load coefficient f NP_eq obtained from the relationship between the change amount of the main stress or the main strain with respect to the load path length, and the substantial non-proportional load coefficient f corresponding to the allowable life reduction rate β a. Compared with NP_a_eq , the necessity of life evaluation considering non-proportional load was judged. Based on the relationship between changes in main stress or main strain, the non-proportional load coefficient f NP And calculate the life reduction rate β by the above formula (9) based on the calculated non-proportional load coefficient f NP and compare the determined life reduction rate β with the set allowable life reduction rate β a. Accordingly, it may be determined whether or not the life evaluation is necessary in consideration of the non-proportional load. The life reduction rate β corresponds to the equivalent non-proportional load coefficient f NP_eq , and the allowable life reduction rate β a corresponds to the equivalent non-proportional load coefficient f NP_a_eq. It is possible to determine the necessity of life evaluation in consideration.

41 多軸疲労寿命評価装置
42 入力部
43 材料データ解析部
44 解析部
45 評価部
46 出力部
41 Multiaxial fatigue life evaluation device 42 Input unit 43 Material data analysis unit 44 Analysis unit 45 Evaluation unit 46 Output unit

Claims (4)

評価対象の構造物の応力またはひずみ状態を基に、負荷経路長さに対する主応力または主ひずみの方向変化を含む値の変化量の関係を求めると共に、主応力または主ひずみの方向変化を含む値の変化量の平均値である相当非比例負荷係数を求め、
かつ、許容寿命低減率を予め設定すると共に、設定した許容寿命低減率に相当する相当非比例負荷係数を求め、
前記負荷経路長さに対する主応力または主ひずみの方向変化を含む値の変化量の関係より求めた相当非比例負荷係数が、前記許容寿命低減率に相当する相当非比例負荷係数よりも小さいときは、等価応力または等価ひずみを用いて寿命評価を行い、
前記負荷経路長さに対する主応力または主ひずみの方向変化を含む値の変化量の関係より求めた相当非比例負荷係数が、前記許容寿命低減率に相当する相当非比例負荷係数以上であるときは、負荷経路を考慮した寿命評価を行うようにした
ことを特徴とする多軸疲労寿命評価方法。
Based on the stress or strain state of the structure to be evaluated, obtain the relationship of the change amount of the value including the main stress or main strain direction change to the load path length, and the value including the main stress or main strain direction change The equivalent non-proportional load coefficient that is the average value of the change amount of
In addition, the allowable life reduction rate is set in advance, and an equivalent non-proportional load coefficient corresponding to the set allowable life reduction rate is obtained,
When the substantial non-proportional load coefficient obtained from the relationship between the change amount of the value including the direction change of the main stress or the main strain with respect to the load path length is smaller than the substantial non-proportional load coefficient corresponding to the allowable life reduction rate , Perform life evaluation using equivalent stress or equivalent strain,
When the substantial non-proportional load coefficient obtained from the relationship between the change amount of the value including the direction change of the main stress or the main strain with respect to the load path length is equal to or greater than the substantial non-proportional load coefficient corresponding to the allowable life reduction rate A multiaxial fatigue life evaluation method characterized in that life evaluation is performed in consideration of the load path.
前記負荷経路を考慮した寿命評価は、
前記構造物と同じ材料からなる試験片を用い、単軸負荷の疲労試験と円形負荷の疲労試験を行い、当該疲労試験の結果を基に、単軸負荷のSN線図と円形負荷のSN線図とをそれぞれ作成し、
作成した前記単軸負荷のSN線図と前記円形負荷のSN線図を用い、両SN線図の低サイクル域での時間強度の差ないし非比例負荷での追硬化の程度を表す係数αを求め、
かつ、前記構造物の応力またはひずみ状態を基に、[数1]に示す式(1)
により、非比例負荷係数fNPを求め、
求めた係数αと非比例負荷係数fNPとに基づき、下式(2a)または下式(2b)
Nf_NP={(1+αfNP)Δε/A}1/B ・・・(2a)
Nf_NP={(1+αfNP)Δσ/A}1/B ・・・(2b)
但し、Nf_NP:疲労寿命となるサイクル数
A,B:材料定数
Δε:1サイクル中の最大主ひずみ軸に投影して算出される
ひずみ範囲
Δσ:1サイクル中の最大主応力軸に投影して算出される
応力範囲
により寿命評価を行う
請求項1記載の多軸疲労寿命評価方法。
Life evaluation considering the load path is:
Using a test piece made of the same material as the structure, a uniaxial load fatigue test and a circular load fatigue test are performed. Based on the results of the fatigue test, a uniaxial load SN diagram and a circular load SN line are obtained. Create a figure and each
Using the SN diagram of the uniaxial load and the SN diagram of the circular load that was created, a coefficient α representing the difference in time intensity in the low cycle region of both SN diagrams or the degree of additional curing in a non-proportional load Seeking
And, based on the stress or strain state of the structure, the formula (1) shown in [Equation 1]
To obtain the non-proportional load coefficient f NP ,
Based on the obtained coefficient α and non-proportional load coefficient f NP , the following expression (2a) or the following expression (2b)
Nf_NP = {(1 + αf NP ) Δε / A} 1 / B (2a)
Nf_NP = {(1 + αf NP ) Δσ / A} 1 / B (2b)
Where Nf_NP : number of cycles for fatigue life
A, B: Material constant
Δε: Calculated by projecting on the maximum principal strain axis in one cycle
Strain range
Δσ: Calculated by projecting to the maximum principal stress axis during one cycle
The multiaxial fatigue life evaluation method according to claim 1, wherein life evaluation is performed based on a stress range.
前記許容寿命低減率βaに相当する相当非比例負荷係数fNP_a_eqは、
下式(3)
NP_a=(βa B−1)/α ・・・(3)
但し、fNP_a:許容寿命低減率に相当する非比例負荷係数
βa:許容寿命低減率
α:非比例負荷での強度低下の程度ないし追硬化の程度を表す係数
B:材料定数
により、許容寿命低減率βaに相当する非比例負荷係数fNP_aを求め、
求めた非比例負荷係数fNP_aを基に、下式(4)
NP_a_eq=fNP_a×4(SImax2/L ・・・(4)
但し、fNP_a_eq:許容寿命低減率に相当する相当非比例負荷係数
NP_a:許容寿命低減率に相当する非比例負荷係数
SImax:最大主応力または最大主ひずみ
L:負荷経路長さ
により求める
請求項1または2記載の多軸疲労寿命評価方法。
The equivalent non-proportional load coefficient f NP_a_eq corresponding to the allowable life reduction rate β a is
The following formula (3)
f NP_a = (β a B −1) / α (3)
However, f NP_a : Non-proportional load coefficient corresponding to the allowable life reduction rate
β a : Permissible life reduction rate
α: Coefficient indicating the degree of strength reduction or the degree of additional curing under non-proportional load
B: A non-proportional load coefficient f NP_a corresponding to the allowable life reduction rate β a is obtained from the material constant,
Based on the calculated non-proportional load coefficient f NP_a , the following formula (4)
f NP_a_eq = f NP_a × 4 (SI max ) 2 / L (4)
However, f NP_a_eq : Equivalent non-proportional load coefficient corresponding to the allowable life reduction rate
f NP_a : Non-proportional load coefficient corresponding to the allowable life reduction rate
SI max : Maximum principal stress or maximum principal strain
L: The multiaxial fatigue life evaluation method according to claim 1 or 2, which is obtained from a load path length.
評価対象の構造物の応力またはひずみ状態を基に、負荷経路長さに対する主応力または主ひずみの方向変化を含む値の変化量の関係を求めると共に、主応力または主ひずみの方向変化を含む値の変化量の平均値である相当非比例負荷係数を求め、
かつ、予め設定した許容寿命低減率に相当する相当非比例負荷係数を求める解析部と、 前記負荷経路長さに対する主応力または主ひずみの方向変化を含む値の変化量の関係より求めた相当非比例負荷係数が、前記許容寿命低減率に相当する相当非比例負荷係数よりも小さいときは、等価応力または等価ひずみを用いて寿命評価を行い、
前記負荷経路長さに対する主応力または主ひずみの方向変化を含む値の変化量の関係より求めた相当非比例負荷係数が、前記許容寿命低減率に相当する相当非比例負荷係数以上であるときは、負荷経路を考慮した寿命評価を行う評価部と、
を備えたことを特徴とする多軸疲労寿命評価装置。
Based on the stress or strain state of the structure to be evaluated, obtain the relationship of the change amount of the value including the main stress or main strain direction change to the load path length, and the value including the main stress or main strain direction change The equivalent non-proportional load coefficient that is the average value of the change amount of
In addition, an analysis unit that obtains a substantially non-proportional load coefficient corresponding to a preset allowable life reduction rate, and a non-proportional value obtained from a relationship between a change amount of a value including a main stress or a main strain with respect to the load path length. When the proportional load coefficient is smaller than the equivalent non-proportional load coefficient corresponding to the allowable life reduction rate, life evaluation is performed using equivalent stress or equivalent strain,
When the substantial non-proportional load coefficient obtained from the relationship between the change amount of the value including the direction change of the main stress or the main strain with respect to the load path length is equal to or greater than the substantial non-proportional load coefficient corresponding to the allowable life reduction rate An evaluation unit that performs life evaluation considering the load path;
A multiaxial fatigue life evaluation apparatus characterized by comprising:
JP2010201931A 2010-09-09 2010-09-09 Multiaxial fatigue life evaluation method and apparatus Active JP5540448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010201931A JP5540448B2 (en) 2010-09-09 2010-09-09 Multiaxial fatigue life evaluation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010201931A JP5540448B2 (en) 2010-09-09 2010-09-09 Multiaxial fatigue life evaluation method and apparatus

Publications (2)

Publication Number Publication Date
JP2012058086A JP2012058086A (en) 2012-03-22
JP5540448B2 true JP5540448B2 (en) 2014-07-02

Family

ID=46055360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010201931A Active JP5540448B2 (en) 2010-09-09 2010-09-09 Multiaxial fatigue life evaluation method and apparatus

Country Status (1)

Country Link
JP (1) JP5540448B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7097268B2 (en) * 2018-09-07 2022-07-07 株式会社ジャノメ Press equipment, terminal equipment, ball screw estimated life calculation method and program
CN113312822B (en) * 2021-06-08 2022-07-05 福建工程学院 Method for predicting multi-axial fatigue life of bearing of tire unloader

Also Published As

Publication number Publication date
JP2012058086A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP5721227B2 (en) Multiaxial fatigue life evaluation method
CN107430637B (en) Residual stress estimation method and residual stress estimation device
US20120053858A1 (en) Fatigue Life Estimation Method and System
JP2019178973A (en) Abnormality diagnosis method and abnormality diagnosis device of rolling bearing
JP5059224B2 (en) Fatigue fracture evaluation apparatus for parts, fatigue fracture evaluation method for parts, and computer program
CN111680435A (en) Notch part fatigue life prediction method and prediction device
TW201640080A (en) Collection of field measurement data using a pre-defined workflow
CN115994477B (en) Method for determining service life of rocket engine pipeline
JP5540448B2 (en) Multiaxial fatigue life evaluation method and apparatus
JP5721226B2 (en) Multiaxial fatigue life evaluation method
Wertz et al. An energy-based torsional-shear fatigue lifing method
JP2020003363A (en) Abnormality diagnosis method of rolling bearing, abnormality diagnosis device, and abnormality diagnosis program
JP2005181172A (en) Residual stress measuring method and apparatus
JP2018040769A5 (en)
JP4961285B2 (en) Life prediction method for rubber products
JP5303662B2 (en) Life prediction method for rubber products
JP4961287B2 (en) Life prediction method for rubber products
JP4368674B2 (en) Degradation evaluation method for rolling bearings
JP2010281661A (en) System, method and program for evaluating life of structure
LoPiccolo et al. Validation of a finite element model used for dynamic stress–strain prediction
JP2021196270A (en) Fatigue residual life specification device and fatigue residual life specification method
Griffith et al. Experimental modal analysis of research-sized wind turbine blades
JP3643818B2 (en) Plant maintenance optimization program, plant maintenance optimization system, and plant operation method
JP5303663B2 (en) Life prediction method for rubber products
JP6302523B1 (en) Product diagnostic device, product diagnostic method, and product diagnostic program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140418

R150 Certificate of patent or registration of utility model

Ref document number: 5540448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250