JP2020003363A - Abnormality diagnosis method of rolling bearing, abnormality diagnosis device, and abnormality diagnosis program - Google Patents

Abnormality diagnosis method of rolling bearing, abnormality diagnosis device, and abnormality diagnosis program Download PDF

Info

Publication number
JP2020003363A
JP2020003363A JP2018123489A JP2018123489A JP2020003363A JP 2020003363 A JP2020003363 A JP 2020003363A JP 2018123489 A JP2018123489 A JP 2018123489A JP 2018123489 A JP2018123489 A JP 2018123489A JP 2020003363 A JP2020003363 A JP 2020003363A
Authority
JP
Japan
Prior art keywords
vibration
frequency
bearing
value
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018123489A
Other languages
Japanese (ja)
Other versions
JP6511573B1 (en
Inventor
拓 杉浦
Hiroshi Sugiura
拓 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2018123489A priority Critical patent/JP6511573B1/en
Application granted granted Critical
Publication of JP6511573B1 publication Critical patent/JP6511573B1/en
Publication of JP2020003363A publication Critical patent/JP2020003363A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To calculate a robust evaluation index by taking into consideration influences of a rotation frequency and a transfer function, and to determine the presence or absence of an abnormality with high accuracy.SOLUTION: A rotation frequency of a spindle is changed to a rotation frequency for measuring vibration in S1, and vibration acceleration is measured and stored in S2. A correction vibration value is calculated from the rotation frequency and the vibration acceleration at the vibration measurement in S3, and the correction vibration value is Fourier-transformed and an amplitude at each specific frequency is recorded in S4. When the vibration measurement at a plurality of rotation frequencies for measuring all the vibrations which are defined in a determination in S5 has been finished, an average of values of the correction vibration values at each recorded specific frequency is calculated in S6, and a value of a correction vibration value of a feature specific frequency is extracted in S7. When performing a diagnosis by using a growth rate of vibration, after repeating the vibration measurement at the rotation frequencies for measuring all the vibrations two times, an evaluation index is calculated by using a bearing-induced vibration value in S11, and it is determined whether or not the evaluation index exceeds a threshold in S12.SELECTED DRAWING: Figure 5

Description

本発明は、工作機械等に用いられて主軸等の回転体を支持する転がり軸受の異常を診断する方法及び装置、プログラムに関するものである。   The present invention relates to a method, an apparatus, and a program for diagnosing an abnormality of a rolling bearing used for a machine tool or the like and supporting a rotating body such as a spindle.

回転体を支持する転がり軸受に内輪の損傷などの異常が生じると振動が発生する。軸受の異常によって発生する力は単純な正弦波状ではないため、高調波の周波数成分の振動が同時に観測される。この際に発生する振動の周波数(特徴周波数)は、回転速度に比例しており、回転体の回転速度と軸受諸元から算出することが可能である。
基本周波数だけ離れた2つの特徴周波数の振動の大きさがともに大きい場合、測定される振動の波形を見ると、基本周波数で振幅が変動しているように解釈することも可能である。よって、測定された振動の波形に対してエンベロープ処理をしたのちに周波数分析をすることで、振幅の変動の度合いを定量化し、診断する手法が知られている。
例えば特許文献1では、振動もしくは音響を測定してエンベロープ処理および周波数分析し、基本周波数成分の振動の大きさを全スペクトル成分の積分値であるオーバーオール値で除算して得られた算出値の大小によって異常の有無の判定を行う手法が示されている。
特許文献2では、振動を測定してエンベロープ処理および周波数分析し、特徴周波数成分の値を、打撃試験により予め測定した振動応答のレベル差や回転周波数を考慮した特徴周波数ごとに個別に設定されるしきい値と比較して診断する手法が示されている。
When an abnormality such as damage to the inner ring occurs in the rolling bearing supporting the rotating body, vibration occurs. Since the force generated by the bearing abnormality is not a simple sinusoidal wave, the vibration of the harmonic frequency component is simultaneously observed. The frequency (characteristic frequency) of the vibration generated at this time is proportional to the rotation speed, and can be calculated from the rotation speed of the rotating body and the bearing data.
If the magnitudes of the vibrations of the two characteristic frequencies separated by the fundamental frequency are both large, the waveform of the measured vibration can be interpreted as if the amplitude fluctuates at the fundamental frequency. Therefore, there has been known a technique of performing a frequency analysis after performing an envelope process on a measured vibration waveform to quantify a degree of fluctuation of the amplitude and perform a diagnosis.
For example, in Patent Document 1, vibration or sound is measured, envelope processing and frequency analysis are performed, and the magnitude of the calculated value obtained by dividing the magnitude of the vibration of the fundamental frequency component by the overall value that is the integral value of all spectral components is measured. Indicates a method for determining the presence or absence of an abnormality.
In Patent Document 2, vibration is measured, envelope processing and frequency analysis are performed, and the value of a characteristic frequency component is individually set for each characteristic frequency in consideration of a level difference of vibration response and a rotation frequency measured in advance by a hit test. A method of making a diagnosis by comparing with a threshold is shown.

特許第4120099号公報Japanese Patent No. 4120099 特許第5146008号公報Japanese Patent No. 5146008

工作機械のような手作業による精度の調整が行われる機械の場合には、機能上問題とならない範囲では機台ばらつきが存在する。工場の地盤、室温等の機械の使用環境も機械の伝達関数を変化させる要因となる。同一機種で同一の異常による同一の大きさの加振力が発生する同一の回転周波数において振動測定する場合であったとしても、機械の振動モード(伝達関数)の影響を受けるため、振動の大きさは同一に測定することはできない。後述する事例では、同一機種3台の伝達関数の大きさを比較した場合、ある周波数において伝達関数の大きさが最小の機台は最大の機台に対して約10%以下となっていた。同一機種の多数の機台において振動の大きさの分布を調査し、正常と異常を判別するしきい値を決定しようと試みても、機台ばらつきによる伝達関数の大きさの違いに比べて、正常時と異常時の振動の大きさの違いが小さい場合には、機台ばらつきを考慮すると正常・異常を確実に識別するためのしきい値を設けることができないことになる。
工作機械の主軸のような複雑な振動モードを持つ回転体に対して診断を実施する場合、エンベロープ処理をしたとしても回転体の回転周波数を1割変化させて特徴周波数が1割変化しただけであっても特徴周波数の振動の大きさは数倍変わってしまうことがある。これは、伝達関数の大きさが周波数毎に大きく異なるためである。エンベロープ処理は、伝達関数の大きさがそれぞれの周波数において異なることを考慮せず、複数の周波数の振動を一括して捉える処理である。複数の周波数の情報が不可逆に混ざり合ってしまう処理手法であるため、エンベロープ処理後に伝達関数の大きさを考慮した処理を行うことは理論上不可能である。
In the case of a machine such as a machine tool, in which accuracy is manually adjusted, there is machine variation within a range in which no functional problem occurs. The use environment of the machine, such as the ground of the factory and room temperature, also becomes a factor that changes the transfer function of the machine. Even when measuring vibration at the same rotation frequency where the same magnitude of excitation force is generated by the same abnormality due to the same model, it is affected by the vibration mode (transfer function) of the machine. It cannot be measured identically. In a case described later, when the magnitudes of the transfer functions of three identical models are compared, the magnitude of the magnitude of the transfer function at a certain frequency is less than about 10% of the magnitude of the largest magnitude. Investigating the distribution of the magnitude of vibration in many machines of the same model and trying to determine the threshold for distinguishing between normal and abnormal, compared to the difference in the size of the transfer function due to machine variations, In the case where the difference between the magnitude of the vibration in the normal state and the magnitude of the vibration in the abnormal state is small, it is impossible to provide a threshold for reliably discriminating between the normal state and the abnormal state in consideration of the machine variation.
When performing a diagnosis on a rotating body having a complicated vibration mode such as the main shaft of a machine tool, even if the envelope processing is performed, the rotation frequency of the rotating body is changed by 10% and the characteristic frequency is changed by 10%. Even so, the magnitude of the vibration at the characteristic frequency may change several times. This is because the magnitude of the transfer function greatly differs for each frequency. The envelope process is a process that collectively captures vibrations at a plurality of frequencies without considering that the magnitude of the transfer function differs at each frequency. Since it is a processing method in which information of a plurality of frequencies is irreversibly mixed, it is theoretically impossible to perform processing in consideration of the size of the transfer function after envelope processing.

よって、特許文献1のようにエンベロープ処理後の特徴周波数の振動の大きさをオーバーオールで除算するという処理も、伝達関数や回転周波数の影響を除去する手法ではないため、特許文献1の手法で算出される算出値は、傷の有無の判別程度には用いることができても、定量的な比較をすることはできないという課題がある。
また、特許文献2で提案されているような、エンベロープ処理後の特徴周波数の振動の大きさに対する、伝達関数や回転周波数の影響を考慮したしきい値というのは、伝達関数や回転周波数から合理的に決定することはできないといった課題がある。
このため、一般に市販されている軸受診断装置では、異常と判断するしきい値の設定が使用者に任されており、容易に異常診断に用いることができないか、異常と判断するしきい値をもっているが測定を実施する回転周波数をわずかに変えるだけであっても判定結果が大きく変わってしまい、本当に異常であるのか判断できないという課題がある。
一方、回転周波数によって軸受異常により生じる力の大きさが変化する種類の異常の場合には、回転周波数の影響も考慮しなければ適切な診断ができないという課題がある。
Therefore, the process of dividing the magnitude of the vibration of the characteristic frequency after the envelope processing by the overall processing as in Patent Document 1 is not a method of removing the influence of the transfer function or the rotation frequency, and is calculated by the method of Patent Document 1. There is a problem in that the calculated value obtained can be used for determining the presence or absence of a flaw, but cannot be quantitatively compared.
In addition, the threshold value that takes into account the influence of the transfer function and the rotation frequency on the magnitude of the oscillation of the characteristic frequency after the envelope processing as proposed in Patent Document 2 is reasonable from the transfer function and the rotation frequency. There is a problem that it cannot be determined on a regular basis.
For this reason, in a commercially available bearing diagnosis device, the setting of a threshold value for judging an abnormality is left to the user. However, even if the rotation frequency at which the measurement is performed is slightly changed, the determination result greatly changes, and there is a problem that it is impossible to determine whether or not it is really abnormal.
On the other hand, in the case of a type of abnormality in which the magnitude of the force caused by the bearing abnormality changes depending on the rotation frequency, there is a problem that an appropriate diagnosis cannot be made unless the influence of the rotation frequency is taken into consideration.

そこで、本発明は、上記問題に鑑みなされたものであって、回転周波数や伝達関数の影響を考慮したロバストな評価指標を算出して、異常の有無を高い精度で判断できる転がり軸受の異常診断方法及び装置、異常診断プログラムを提供することを目的とする。   Accordingly, the present invention has been made in view of the above-described problem, and calculates a robust evaluation index in consideration of the influence of the rotation frequency and the transfer function, and can determine with high accuracy whether or not there is an abnormality. It is an object of the present invention to provide a method and apparatus, and an abnormality diagnosis program.

上記目的を達成するために、請求項1に記載の発明は、回転体を支持する転がり軸受の異常を診断する方法であって、
前記回転体の複数の回転周波数における前記回転体の振動を測定する振動測定ステップと、
前記振動を振動測定時の前記回転体の回転周波数と比例関係にある所定の物理量の零以上のべき乗で除すと共に周波数分析して、周波数毎の振動の大きさを算出する周波数分析ステップと、
前記振動測定ステップでの振動測定時の前記回転体の回転周波数に対する周波数の比が同一な前記振動の大きさについて平均をとった振動平均値を算出する振動平均値算出ステップと、
前記振動平均値のうち、前記軸受に起因する振動が生じる周波数の前記回転周波数に対する比である特徴比周波数における軸受起因振動値を抽出する軸受起因振動値抽出ステップと、
前記軸受起因振動値に基づき評価指標を算出する評価指標算出ステップと、
前記評価指標に基づいて異常の有無を判断する判断ステップと、を実行することを特徴とする。
請求項2に記載の発明は、請求項1の構成において、前記振動平均値算出ステップでは、前記回転周波数、前記回転周波数の逆数、前記回転周波数の対数のいずれか1つが等間隔となるような前記回転周波数の組み合わせにおいて測定された前記振動の大きさを用いて前記振動平均値を算出することを特徴とする。
請求項3に記載の発明は、請求項1又は2の構成において、前記振動測定ステップでは、前記回転周波数が同一の組み合わせの振動測定を複数回行い、
前記評価指標算出ステップでは、前記軸受起因振動値の変化の度合いに基づいて前記評価指標を算出することを特徴とする。
請求項4に記載の発明は、請求項1乃至3の何れかに記載の構成において、前記振動平均値算出ステップでは、振動の周波数が既定した範囲内である振動の大きさのみを用いて平均を取ることを特徴とする。
上記目的を達成するために、請求項5に記載の発明は、回転体を支持する転がり軸受の異常を診断する装置であって、
前記回転体の複数の回転周波数における前記回転体の振動を測定する振動測定手段と、
前記振動を振動測定時の前記回転体の回転周波数と比例関係にある所定の物理量の零以上のべき乗で除すと共に周波数分析して、周波数毎の振動の大きさを算出する周波数分析手段と、
前記振動測定手段での振動測定時の前記回転体の回転周波数に対する周波数の比が同一な前記振動の大きさについて平均をとった振動平均値を算出する振動平均値算出手段と、
前記振動平均値のうち、前記軸受に起因する振動が生じる周波数の前記回転周波数に対する比である特徴比周波数における軸受起因振動値を抽出する軸受起因振動値抽出手段と、
前記軸受起因振動値に基づき評価指標を算出する評価指標算出手段と、
前記評価指標に基づいて異常の有無を判断する判断手段と、を備えることを特徴とする。
上記目的を達成するために、請求項6に記載の発明は、回転体を支持する転がり軸受の異常を診断するプログラムであって、複数の回転周波数でそれぞれ測定された回転体の振動が各回転周波数と共に入力されたコンピュータに、請求項1乃至4の何れかに記載の転がり軸受の異常診断方法における周波数分析ステップと、振動平均値算出ステップと、軸受起因振動値抽出ステップと、評価指標算出ステップと、判断ステップとを実行させることを特徴とする。
In order to achieve the above object, an invention according to claim 1 is a method for diagnosing an abnormality of a rolling bearing that supports a rotating body,
A vibration measuring step of measuring vibration of the rotating body at a plurality of rotation frequencies of the rotating body,
A frequency analysis step of dividing the vibration by a power of zero or more of a predetermined physical quantity having a proportional relationship with the rotation frequency of the rotating body at the time of vibration measurement and performing frequency analysis, and calculating a magnitude of vibration for each frequency,
A vibration average value calculating step of calculating a vibration average value in which the ratio of the frequency to the rotation frequency of the rotating body at the time of vibration measurement in the vibration measurement step is the average of the magnitude of the vibration,
Among the vibration average values, a bearing-induced vibration value extraction step of extracting a bearing-induced vibration value at a characteristic ratio frequency that is a ratio of a frequency at which vibration caused by the bearing occurs to the rotation frequency,
An evaluation index calculating step of calculating an evaluation index based on the bearing-induced vibration value,
Determining a presence or absence of an abnormality based on the evaluation index.
According to a second aspect of the present invention, in the configuration of the first aspect, in the vibration average value calculating step, any one of the rotation frequency, the reciprocal of the rotation frequency, and the logarithm of the rotation frequency becomes an equal interval. The vibration average value is calculated using the magnitude of the vibration measured in the combination of the rotation frequencies.
According to a third aspect of the present invention, in the configuration of the first or second aspect, in the vibration measuring step, the vibration measurement of the same combination of the rotation frequencies is performed a plurality of times,
In the evaluation index calculating step, the evaluation index is calculated based on a degree of change in the bearing-induced vibration value.
According to a fourth aspect of the present invention, in the configuration according to any one of the first to third aspects, in the vibration average value calculating step, the average is calculated using only the magnitude of the vibration whose frequency is within a predetermined range. It is characterized by taking.
In order to achieve the above object, the invention according to claim 5 is an apparatus for diagnosing an abnormality of a rolling bearing that supports a rotating body,
Vibration measuring means for measuring the vibration of the rotating body at a plurality of rotation frequencies of the rotating body,
Frequency analysis means for dividing the vibration by a power of zero or more of a predetermined physical quantity having a proportional relationship with the rotation frequency of the rotating body at the time of vibration measurement and frequency analysis, and calculating the magnitude of vibration for each frequency,
A vibration average value calculation unit that calculates a vibration average value in which a ratio of a frequency to a rotation frequency of the rotating body at the time of vibration measurement by the vibration measurement unit is averaged for the magnitude of the vibration,
Among the vibration average values, a bearing-induced vibration value extraction unit that extracts a bearing-induced vibration value at a characteristic ratio frequency that is a ratio of a frequency at which vibration caused by the bearing occurs to the rotation frequency,
Evaluation index calculating means for calculating an evaluation index based on the bearing-induced vibration value,
Determining means for determining the presence or absence of an abnormality based on the evaluation index.
In order to achieve the above object, an invention according to claim 6 is a program for diagnosing an abnormality of a rolling bearing that supports a rotating body, wherein the vibration of the rotating body measured at a plurality of rotation frequencies is measured for each rotation. A frequency analysis step, a vibration average value calculation step, a bearing-induced vibration value extraction step, and an evaluation index calculation step in the method for diagnosing abnormality of a rolling bearing according to any one of claims 1 to 4, which are input to a computer together with the frequency. And a determining step.

請求項1及び5,6に記載の発明によれば、測定された振動値から回転周波数の影響を取り除いた上で平均を算出するため、機台ばらつきの影響を低減して軸受起因振動値を得ることができる。この軸受起因振動値より算出する評価指標も機台ばらつきの影響が小さいため、異常と判断するしきい値の設定が容易となる。すなわち、回転周波数や伝達関数の影響を考慮したロバストな評価指標を算出して、異常の有無を高い精度で判断可能となる。
請求項2に記載の発明によれば、上記効果に加えて、伝達関数の大きさの機台ばらつき、および、伝達関数の大きさの比周波数毎のばらつきの低減効果が向上する。
請求項3に記載の発明によれば、上記効果に加えて、評価指標の値が伝達関数の大きさの値に依存しない値となるため、異なる構造の回転体の診断をする場合や異なる振動センサ位置で測定する場合でも同一のしきい値を用いた診断が可能となる。
請求項4に記載の発明によれば、上記効果に加えて、伝達関数の大きさの機台ばらつき、および、伝達関数の大きさの比周波数毎のばらつきの低減効果がさらに向上する。
According to the first, fifth, and sixth aspects of the present invention, the average is calculated after removing the influence of the rotation frequency from the measured vibration value. Obtainable. The evaluation index calculated from the bearing-induced vibration value is also less affected by the machine variation, so that it is easy to set a threshold value for determining an abnormality. That is, it is possible to calculate a robust evaluation index in consideration of the influence of the rotation frequency and the transfer function, and determine the presence or absence of abnormality with high accuracy.
According to the second aspect of the present invention, in addition to the above effects, the effect of reducing variations in the size of the transfer function and the variation in the size of the transfer function for each specific frequency is improved.
According to the third aspect of the present invention, in addition to the above-described effects, the value of the evaluation index is a value that does not depend on the value of the magnitude of the transfer function. Diagnosis using the same threshold value is possible even when measuring at the sensor position.
According to the fourth aspect of the invention, in addition to the above-described effects, the effect of reducing the variation of the transfer function in the machine and the variation of the transfer function in each specific frequency is further improved.

転がり軸受の異常診断装置の機能ブロック図である。FIG. 2 is a functional block diagram of a rolling bearing abnormality diagnosis device. 軸受異常による加振力と角速度との関係を示すグラフである。5 is a graph showing a relationship between an exciting force due to a bearing abnormality and an angular velocity. 同一機種における伝達関数の大きさのばらつきを示すグラフである。9 is a graph showing a variation in the magnitude of a transfer function in the same model. 同一機種における伝達関数の大きさの平均のばらつきを示すグラフである。9 is a graph showing the average dispersion of the magnitude of the transfer function in the same model. 異常診断方法のフローチャートである。It is a flowchart of an abnormality diagnosis method. 評価指標として振動の成長率を用いる場合の診断結果表示の説明図である。FIG. 11 is an explanatory diagram of a diagnosis result display when a growth rate of vibration is used as an evaluation index. 評価指標として軸受起因振動値の最大値を用いる場合の診断結果表示の説明図である。It is explanatory drawing of a diagnosis result display at the time of using the maximum value of a bearing origin vibration value as an evaluation parameter | index.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は転がり軸受の異常診断装置を工作機械の主軸に対して適用した場合の構成を示した機能ブロック図で、この図に基づいて具体的に説明する。
主軸1は、転がり軸受である軸受7を介して主軸ハウジング2に対して回転可能に取り付けられており、加工を行うための工具3が固定されている。モータ4は主軸1を駆動する。モータ4には速度検出器5が設けられて、測定されたモータ4の回転周波数が制御装置6に入力されるようになっている。制御装置6は、加工時には、速度検出器5で測定されたモータ4の回転周波数を指令回転周波数に保つようにモータ4へ供給する電流の制御を行っている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a functional block diagram showing a configuration in a case where an abnormality diagnosis device for a rolling bearing is applied to a main shaft of a machine tool, and will be specifically described based on this diagram.
The main shaft 1 is rotatably attached to the main shaft housing 2 via a bearing 7 which is a rolling bearing, and a tool 3 for performing processing is fixed. The motor 4 drives the main shaft 1. The motor 4 is provided with a speed detector 5, and the measured rotation frequency of the motor 4 is input to the control device 6. At the time of machining, the control device 6 controls the current supplied to the motor 4 so that the rotation frequency of the motor 4 measured by the speed detector 5 is maintained at the command rotation frequency.

主軸ハウジング2には、振動測定手段としての振動センサ8が取り付けられ、振動センサ8で測定される振動加速度は、A/D変換部9でデジタル値に変換され、振動測定時の回転周波数とともに記憶部10に記憶される。記憶部10は、予め設定するしきい値も記憶する。コンピュータである演算部11は、記憶部10に記憶された異常診断プログラムに従い、記憶部10に記憶された軸受諸元より軸受異常の特徴比周波数の算出を行い、記憶部10に記憶された振動測定時の回転周波数と振動加速度より、乗算、フーリエ変換、絶対値の算出、内挿処理を行って、比周波数に対する後述する修正振動値を算出すると共に、周波数毎の振動の大きさを算出する。また、演算部11は、振動測定時の主軸1の回転周波数に対する周波数の比が同一な振動の大きさについて平均をとった振動平均値を算出し、振動平均値の軸受に起因する振動が生じる周波数の回転周波数に対する比である特徴比周波数における軸受起因振動値を抽出する。さらに、演算部11は、軸受起因振動値に基づいて評価指標である異常度合いを算出し、軸受7が正常か否かを判断する。すなわち、演算部11は、周波数分析手段、振動平均値算出手段、軸受起因振動値抽出手段、評価指標算出手段、判断手段として機能する。演算部11による診断結果は表示部12に表示される。   A vibration sensor 8 as vibration measuring means is attached to the main shaft housing 2. Vibration acceleration measured by the vibration sensor 8 is converted into a digital value by an A / D converter 9 and stored together with a rotation frequency at the time of vibration measurement. Stored in the unit 10. The storage unit 10 also stores a preset threshold value. The arithmetic unit 11 which is a computer calculates the characteristic ratio frequency of the bearing abnormality from the bearing data stored in the storage unit 10 according to the abnormality diagnosis program stored in the storage unit 10, and calculates the vibration stored in the storage unit 10. From the rotational frequency and the vibration acceleration at the time of measurement, multiplication, Fourier transformation, calculation of an absolute value, and interpolation are performed to calculate a corrected vibration value, which will be described later, for the specific frequency, and calculate the magnitude of vibration for each frequency. . In addition, the calculation unit 11 calculates a vibration average value obtained by averaging vibration magnitudes having the same frequency ratio with respect to the rotation frequency of the main shaft 1 at the time of vibration measurement, and vibration due to the bearing of the vibration average value occurs. A bearing-induced vibration value at a characteristic ratio frequency, which is a ratio of the frequency to the rotation frequency, is extracted. Further, the calculation unit 11 calculates the degree of abnormality, which is an evaluation index, based on the bearing-induced vibration value, and determines whether the bearing 7 is normal. That is, the calculation unit 11 functions as a frequency analysis unit, a vibration average value calculation unit, a bearing-induced vibration value extraction unit, an evaluation index calculation unit, and a determination unit. The diagnosis result by the calculation unit 11 is displayed on the display unit 12.

軸受7において、内輪傷が局所的に存在する場合、内輪傷は主軸1の回転とともに回転し傷の位置を転動体が通過する際に生じる振動の方向が変化するため、内輪傷に対して転動体が通過する周波数に対して、回転周波数fROTだけ低い周波数と回転周波数fROTだけ高い周波数の振動が観測される。この特徴周波数の計算は、以下の数1、数2のように行うことができる。ここで、fI,N−は内輪傷N次の低い側の特徴周波数、fI,N+は内輪傷N次の高い側の特徴周波数、Zは軸受7の転動体の数、Dは軸受7のピッチ円直径、dは軸受7の転動体直径、αは軸受7の接触角である。 When the inner ring wound is locally present in the bearing 7, the inner ring wound rotates with the rotation of the main shaft 1 and the direction of vibration generated when the rolling element passes through the position of the wound changes. for frequencies body passes, the vibration of only high frequency rotational frequency f ROT only low frequency rotation frequency f ROT is observed. The calculation of the characteristic frequency can be performed as in the following Expressions 1 and 2. Here, f I, N− is the characteristic frequency on the lower side next to the inner ring wound N order, f I, N + is the characteristic frequency on the higher side next to the inner ring wound N order, Z is the number of rolling elements of the bearing 7, and D is the bearing 7 , D is the diameter of the rolling element of the bearing 7, and α is the contact angle of the bearing 7.

Figure 2020003363
Figure 2020003363
Figure 2020003363
Figure 2020003363

図2は、内輪傷の存在する軸受7により支持された主軸1について複数の回転周波数で振動加速度を測定し、特徴比周波数の振動振幅を算出し、それぞれの特徴比周波数に対応する軸受異常による加振力から振動センサ8の位置における振動への伝達関数で除算して算出された軸受異常による加振力Fを、角速度を横軸にプロットしたものである。
但し、ここで用いた伝達関数は、軸受異常による加振力から振動センサ8の位置における振動への伝達関数ではなく、軸受近傍を加振した際の振動センサ8の位置における振動を測定することで得られた伝達関数を代用している。ここで、軸受近傍とは、有限要素解析などにより求めた、振動センサ8の位置に加振した際に、軸受異常による加振力の発生位置と振動の方向・大きさが少なくともある周波数範囲において、同じと見なせる位置のことを表している。伝達関数の入力と出力を入れ替えても同じとなる相反定理により、ある周波数範囲においては軸受近傍を加振して得られる伝達関数は、軸受異常による加振力から振動センサ8の位置における振動への伝達関数として代用することが可能である。
FIG. 2 shows the results of measuring the vibration acceleration at a plurality of rotation frequencies for the main shaft 1 supported by the bearing 7 having the inner ring wound, calculating the vibration amplitude of the characteristic ratio frequency, and performing the operation based on the bearing abnormality corresponding to each characteristic ratio frequency. The vibration force F due to the bearing abnormality calculated by dividing the vibration force by the transfer function to the vibration at the position of the vibration sensor 8 is plotted on the horizontal axis of the angular velocity.
However, the transfer function used here is not a transfer function from the excitation force due to the bearing abnormality to the vibration at the position of the vibration sensor 8, but the vibration at the position of the vibration sensor 8 when the vicinity of the bearing is excited. Is substituted for the transfer function obtained in. Here, the vicinity of the bearing is defined as a position in the frequency range in which the position and the direction / magnitude of the vibration caused by the vibration of the bearing when the vibration is applied to the position of the vibration sensor 8 are determined by finite element analysis or the like. , Which indicates the same position. According to the reciprocity theorem, which is the same even when the input and output of the transfer function are interchanged, the transfer function obtained by exciting the vicinity of the bearing in a certain frequency range is changed from the exciting force due to the bearing abnormality to the vibration at the position of the vibration sensor 8. Can be substituted for the transfer function of

図2から、角速度の増加に対して軸受異常による加振力が増加する傾向があることがわかる。おおむね、軸受異常による加振力は角速度の2乗前後に比例している。内輪傷があると、転動体が通過する際に、主軸1は傷方向に変位・変形させられると考えられるが、この際、主軸1の重心が通る軌跡(変位)が回転周波数によらず一定と見なせるのであれば、主軸1の重心を変位させる反作用として発生する力は重心の変位の2階微分に比例することになる。重心の振動変位の周波数は回転周波数や角速度に比例する特徴周波数であるため、この力は振動測定をした際の回転周波数の2乗に比例することになる。これらの実験結果と仮説により、内輪傷による加振力は回転周波数の2乗に比例して近似していると推測される。   From FIG. 2, it can be seen that the exciting force due to the bearing abnormality tends to increase with the increase in the angular velocity. Generally, the exciting force due to the bearing abnormality is proportional to the square of the angular velocity. If there is an inner ring wound, it is considered that the main shaft 1 is displaced and deformed in the direction of the wound when the rolling element passes. At this time, the locus (displacement) of the center of gravity of the main shaft 1 is constant regardless of the rotation frequency. Therefore, the force generated as a reaction for displacing the center of gravity of the spindle 1 is proportional to the second derivative of the displacement of the center of gravity. Since the frequency of the vibration displacement of the center of gravity is a characteristic frequency proportional to the rotation frequency and the angular velocity, this force is proportional to the square of the rotation frequency when the vibration is measured. From these experimental results and hypotheses, it is estimated that the excitation force due to the inner ring wound is approximated in proportion to the square of the rotation frequency.

このように、軸受異常による加振力と回転周波数との関係が明らかとなると、測定した振動の値から回転周波数の影響を除いた値(修正振動値)を算出することが可能となるため、複数の回転周波数において振動測定を行うことで、伝達関数の大きさの影響を低減する処理を実現することができる。
なお、複数の回転周波数で測定する場合、回転周波数によって変化する特徴周波数では議論がしにくいため、特徴周波数を回転周波数で割った値(特徴比周波数)で論じる。内輪傷のN次の低い側の特徴比周波数kI,N−、内輪傷のN次の高い側の特徴比周波数kI,N+は、以下の数3、数4のようにそれぞれ求めることができる。
In this way, when the relationship between the excitation force due to the bearing abnormality and the rotation frequency becomes clear, it becomes possible to calculate a value (corrected vibration value) excluding the influence of the rotation frequency from the measured vibration value. By performing vibration measurement at a plurality of rotation frequencies, it is possible to realize processing for reducing the influence of the magnitude of the transfer function.
When measurement is performed at a plurality of rotation frequencies, it is difficult to discuss the characteristic frequency that changes according to the rotation frequency. Therefore, the measurement is performed using a value obtained by dividing the characteristic frequency by the rotation frequency (feature ratio frequency). The characteristic ratio frequency k I, N− on the N-th lower side of the inner ring wound and the characteristic ratio frequency k I, N + on the higher N-th side of the inner ring wound can be obtained as shown in the following Expressions 3 and 4. it can.

Figure 2020003363
Figure 2020003363
Figure 2020003363
Figure 2020003363

一方、回転周波数がfROTの場合の特徴比周波数kにおける軸受異常による加振力の大きさF(k、fROT)は、軸受7の損傷度合いに依存し回転周波数に依存しない定数Fを用いて以下の数5のように表現できる。 On the other hand, when the rotation frequency is f ROT , the magnitude F (k, f ROT ) of the excitation force due to the bearing abnormality at the characteristic ratio frequency k is a constant F * that depends on the degree of damage to the bearing 7 and does not depend on the rotation frequency. And can be expressed as in the following Equation 5.

Figure 2020003363
Figure 2020003363

この軸受異常による加振力から振動センサ8の位置における振動への伝達関数の大きさをG(k、fROT)とすると、振動センサ8で測定される回転周波数がfROTの場合の特徴比周波数kにおける振動の大きさA(k、fROT)は、以下の数6のように表現できる。なお、伝達関数の大きさG(k、fROT)は、比周波数が同一であっても回転周波数が異なる場合は別の値をとる。 Assuming that the magnitude of the transfer function from the excitation force due to the bearing abnormality to the vibration at the position of the vibration sensor 8 is G (k, f ROT ), the characteristic ratio when the rotation frequency measured by the vibration sensor 8 is f ROT The magnitude A (k, f ROT ) of the vibration at the frequency k can be expressed as in the following Expression 6. The magnitude G (k, f ROT ) of the transfer function takes another value when the rotation frequency is different even if the specific frequency is the same.

Figure 2020003363
Figure 2020003363

よって、振動センサ8で測定される振動の大きさA(k、fROT)と軸受7の損傷度合いに依存し回転周波数に依存しない定数Fには、以下の数7の関係がある。 Therefore, the magnitude A (k, f ROT ) of the vibration measured by the vibration sensor 8 and the constant F * which depends on the degree of damage to the bearing 7 and does not depend on the rotation frequency have the following equation ( 7).

Figure 2020003363
Figure 2020003363

測定される振動から回転周波数による軸受異常による加振力の大きさの変化の影響を除去するためには、特徴比周波数kにおける振動の大きさA(k、fROT)を角速度2πfROTの2乗で除算して、修正振動値A(k、fROT)を以下の数8のように求めれば良い。 In order to remove the influence of the change in the magnitude of the excitation force due to the bearing abnormality due to the rotation frequency from the measured vibration, the magnitude of the vibration A (k, f ROT ) at the characteristic ratio frequency k is calculated by calculating the angular velocity 2πf ROT The corrected vibration value A * (k, f ROT ) may be obtained by the following equation 8 by dividing by the power.

Figure 2020003363
Figure 2020003363

図3に、同一機種3台のそれぞれの伝達関数の大きさと、3台における伝達関数の大きさの最大に対する最小の比を示す。回転周波数のわずかな違いによって伝達関数の大きさが大きく異なるため、測定する回転周波数を変えることで特徴周波数が変わると、測定される振動の大きさが大きく変化することは明らかである。さらに、ある周波数において伝達関数の大きさが最小の機台は最大の機台に対して約10%以下となっている。このように、伝達関数G(k、fROT)は、同一構造の機械であっても機台ばらつきがあり、同一の異常度合いであっても機台と回転周波数の組み合わせによって振動は全く異なる大きさに測定される可能性があるため、異常と判断するしきい値の設定は困難である。また、伝達関数の大きさは機械の使用環境・使用状況などによって変化する。
そこで、数8を用いて、数7の特徴比周波数kにおける振動の大きさA(k、fROT)を修正振動値A(k、fROT)に置き換えると、以下の数9となる。
FIG. 3 shows the magnitude of the transfer function of each of the three same models and the minimum ratio of the magnitude of the transfer function to the maximum of the three. Since the magnitude of the transfer function greatly varies due to a slight difference in the rotation frequency, it is apparent that if the characteristic frequency is changed by changing the measured rotation frequency, the magnitude of the measured vibration is greatly changed. Further, at a certain frequency, the machine with the smallest transfer function is about 10% or less of the largest machine. As described above, the transfer function G (k, f ROT ) has a machine variation even for machines having the same structure, and the vibrations are completely different depending on the combination of the machine and the rotation frequency even if the degree of abnormality is the same. Therefore, it is difficult to set a threshold value that is determined to be abnormal because it is likely to be measured. Further, the magnitude of the transfer function changes depending on the use environment and use condition of the machine.
Therefore, when the magnitude A (k, f ROT ) of the vibration at the characteristic ratio frequency k in Equation 7 is replaced with the corrected vibration value A * (k, f ROT ) using Equation 8 , the following Equation 9 is obtained.

Figure 2020003363
Figure 2020003363

数9について既定範囲内であるN条件の回転周波数で平均をとった値を算出すると、以下の数10となる。数10の左辺は修正振動値の平均(振動平均値)であり、特徴比周波数kにおける軸受起因振動値でもある。数10の右辺は複数の回転周波数のそれぞれに対応する特徴比周波数kの伝達関数の大きさの平均と、軸受の損傷度合いに依存し回転周波数に依存しない定数Fとの積である。 Calculating a value obtained by averaging the rotation frequencies under N conditions within a predetermined range for Expression 9, the following Expression 10 is obtained. The left side of Equation 10 is the average of the corrected vibration values (vibration average value), and is also the bearing-induced vibration value at the characteristic ratio frequency k. The right side of Equation 10 is a product of the average of the magnitude of the transfer function of the characteristic ratio frequency k corresponding to each of the plurality of rotation frequencies and a constant F * that depends on the degree of damage to the bearing and does not depend on the rotation frequency.

Figure 2020003363
Figure 2020003363

図4に、前述の同一機種3台について複数の回転周波数のそれぞれに対応する比周波数毎の伝達関数の大きさの平均(振動の大きさの平均)を示す。伝達関数の大きさの平均は、特定の比周波数範囲において比周波数が異なってもほとんど大きさが変わらないことがわかる。また、伝達関数の大きさの平均は機台ばらつきも小さく、伝達関数の大きさの平均が最小の機台であっても最大の機台に対して約70%の大きさがある。
軸受の損傷度合いに依存し回転周波数に依存しない定数Fは、数9、数10のいずれであっても同じであり、軸受の損傷度合いに依存し回転周波数に依存しない定数Fにかかる比例係数の機台ばらつきが小さいため、数9の左辺の値(修正振動値)によって評価指標を算出するよりも、修正振動値の平均(数10左辺の値)によって評価指標を算出する方が高い診断精度となる。伝達関数の大きさの平均の機台ばらつきに比べれば、正常時と異常時で振動の大きさの差異が十分大きいため、同一機種のデータを十分数集めることで修正振動値の平均(数10左辺の値)から算出した評価指標に対するしきい値の設定は容易である。
FIG. 4 shows an average of transfer function magnitudes (average of magnitudes of vibration) for each of the specific frequencies corresponding to each of the plurality of rotation frequencies for the three same models. It can be seen that the average of the magnitude of the transfer function hardly changes even if the specific frequency differs in a specific specific frequency range. In addition, the average of the transfer function sizes has small machine-to-machine variation, and even if the machine has the smallest average of the transfer function, there is about 70% of the size of the largest machine.
The constant F * that depends on the degree of damage to the bearing and does not depend on the rotation frequency is the same regardless of Equations 9 and 10, and is proportional to the constant F * that depends on the degree of damage to the bearing and does not depend on the rotation frequency. Since the machine variation of the coefficient is small, it is higher to calculate the evaluation index by the average of the corrected vibration values (the value of the left side of Formula 10) than to calculate the evaluation index by the value on the left side of Formula 9 (corrected vibration value). Diagnostic accuracy. Compared to the average machine variation in the magnitude of the transfer function, the difference in the magnitude of the vibration between the normal and abnormal cases is sufficiently large. Therefore, by collecting a sufficient number of data of the same model, the average of the corrected vibration value (Equation 10) Setting of the threshold value for the evaluation index calculated from the value on the left side) is easy.

さらに、軸受がM回転した後に同一条件で測定した修正振動値の大きさをA’(k、fROT)、そのときの伝達関数をG’(k、fROT)、軸受の損傷度合いに依存し回転周波数に依存しない定数をF’ とすると、同様に以下の数11が成り立つ。伝達関数の大きさの平均は機械の使用環境・使用状況の影響も小さいため、以下の数12の近似が成立する。 Further, the magnitude of the corrected vibration value measured under the same conditions after the bearing has rotated M times is A * '(k, f ROT ), and the transfer function at that time is G' (k, f ROT ). Assuming that a constant that depends and does not depend on the rotation frequency is F * ′, the following Expression 11 is similarly established. Since the average of the magnitudes of the transfer functions is less affected by the use environment and use situation of the machine, the following approximation 12 is established.

Figure 2020003363
Figure 2020003363
Figure 2020003363
Figure 2020003363

振動の成長率Rを、軸受1回転あたりの軸受の損傷度合いに依存し回転周波数に依存しない定数の増分の、軸受の損傷度合いに依存し回転周波数に依存しない定数の平均に対する比として、以下の数13のようにおく。数13は伝達関数の大きさを含んでいないため、異なる機種であっても比較可能な値である。   The vibration growth rate R is defined as the ratio of the increment of the constant that depends on the degree of damage of the bearing per rotation of the bearing and does not depend on the rotation frequency to the average of the constant that depends on the degree of damage of the bearing and does not depend on the rotation frequency. Equation 13 is set. Since Expression 13 does not include the magnitude of the transfer function, it is a value that can be compared between different models.

Figure 2020003363
Figure 2020003363

数13に含まれるFおよびF’ は直接測定することができない値だが、数8、数9、数10、数11、数12を用いて、数13は以下の数14のように書き換えられる。 Although F * and F * ′ included in Equation 13 cannot be directly measured, Equation 13 is rewritten as Equation 14 below using Equations 8, 9, 9, 10, and 12. Can be

Figure 2020003363
Figure 2020003363

数14の右辺は全て測定可能又は算出可能な変数しか含まれておらず、振動の成長率Rを推定することは容易である。同一機種のデータを十分数集めることが困難な場合は、機種に依存する変数を含まない振動の成長率Rの分布を求めてしきい値を設定すれば異常を検出することができる。
ここでの振動の成長率Rは、軸受1回転あたりの振動の平均に対する振動の増加量の比として算出する事例を示したが、2回の測定における振動の平均値の比、軸受の回転回数M、基準の軸受の回転回数Mを使った以下の式15など別の定義式を用いることも可能である。
The right side of Expression 14 includes only measurable or calculable variables, and it is easy to estimate the growth rate R of vibration. When it is difficult to collect a sufficient number of data of the same model, an abnormality can be detected by obtaining the distribution of the growth rate R of the vibration that does not include the variable depending on the model and setting a threshold value.
Here, the case where the growth rate R of the vibration is calculated as the ratio of the increase amount of the vibration to the average of the vibration per one rotation of the bearing is shown. However, the ratio of the average value of the vibration in two measurements, the number of rotations of the bearing, M, it is also possible to use a different definition formulas such as the following equation 15 using the rotation number M 0 of the bearing of the reference.

Figure 2020003363
Figure 2020003363

そして、図5は、軸受7の異常診断を行う方法のフローチャートを示したものであり、このフローチャートに基づいて具体的に説明する。
まず、S1で、主軸1の回転周波数を振動を測定する回転周波数に変更し、S2で、振動センサ8によって振動加速度を測定し記憶する(S1,S2:振動測定ステップ)。
次に、S3で、振動測定時の回転周波数と振動加速度とにより修正振動値を算出し、S4で、修正振動値のフーリエ変換を行い、周波数が既定範囲内である修正振動値について比周波数毎の振幅を記録する(S3,S4:周波数分析ステップ)。
そして、S5で、既定された全ての振動を測定する複数の回転周波数における振動測定が終了しているか否かを判別し、振動測定が終了していればS6へ移行し、終了していなければS1へ戻ってS4までの処理を繰り返す。
なお、ここで振動を測定する複数の回転周波数は、回転周波数、回転周波数の逆数、回転周波数の対数の何れか1つが等間隔となるような回転周波数の組み合わせとするのが望ましい。このような回転周波数の組み合わせで測定された振動の大きさを用いて振動平均値を算出すれば、伝達関数の大きさの機台ばらつき、および、伝達関数の大きさの比周波数毎のばらつきの低減効果が向上する。
FIG. 5 shows a flowchart of a method for diagnosing an abnormality of the bearing 7, and a specific description will be given based on this flowchart.
First, in S1, the rotation frequency of the main shaft 1 is changed to the rotation frequency for measuring vibration, and in S2, the vibration acceleration is measured and stored by the vibration sensor 8 (S1, S2: vibration measurement step).
Next, in S3, a corrected vibration value is calculated from the rotation frequency and the vibration acceleration at the time of vibration measurement, and in S4, a Fourier transform of the corrected vibration value is performed. Is recorded (S3, S4: frequency analysis step).
Then, in S5, it is determined whether or not the vibration measurement at a plurality of rotation frequencies for measuring all the predetermined vibrations has been completed. If the vibration measurement has been completed, the process proceeds to S6, and if not completed, Returning to S1, the processing up to S4 is repeated.
Here, it is desirable that the plurality of rotation frequencies at which vibration is measured be a combination of rotation frequencies such that any one of the rotation frequency, the reciprocal of the rotation frequency, and the logarithm of the rotation frequency is equally spaced. If the vibration average value is calculated using the magnitude of the vibration measured by such a combination of the rotation frequencies, the variation in the size of the transfer function and the variation in the magnitude of the transfer function for each specific frequency are calculated. The reduction effect is improved.

S6で、記録された比周波数毎の修正振動値の値について振動平均値を算出し(振動平均値算出ステップ)、S7で、特徴比周波数における修正振動値の値(軸受起因振動値)を抽出する(軸受起因振動値抽出ステップ)。
次に、S8では、診断を行う責任者が予め選択して設定した振動の成長率(軸受起因振動値の変化の度合い)によって診断するか否かを判断する。ここで振動の成長率によって診断する場合はS9へ移行し、振動の成長率によって診断しない場合はS11へ移行する。
振動の成長率によって診断する場合、S9では、全ての振動を測定する回転周波数における振動測定が2回繰り返されたか否かを判断する。ここで当該振動測定が2回繰り返された場合は、S11へ移行する。一方、当該振動測定が2回繰り返されていない場合は、S10へ移行し、予め設定された時間又は回数だけ軸受7が回転するまで慣らし運転を実施し、S1へ移行する。
In S6, a vibration average value is calculated for the recorded corrected vibration value for each specific frequency (vibration average value calculation step), and in S7, the corrected vibration value (bearing-induced vibration value) at the characteristic ratio frequency is extracted. (Bearing-induced vibration value extraction step).
Next, in S8, it is determined whether or not to make a diagnosis based on the growth rate of vibration (the degree of change in the bearing-induced vibration value) selected and set in advance by the person responsible for the diagnosis. If the diagnosis is made based on the growth rate of the vibration, the process proceeds to S9. If the diagnosis is not made based on the growth rate of the vibration, the process proceeds to S11.
When the diagnosis is performed based on the growth rate of the vibration, in S9, it is determined whether or not the vibration measurement at the rotation frequency for measuring all the vibrations has been repeated twice. If the vibration measurement is repeated twice, the process proceeds to S11. On the other hand, if the vibration measurement has not been repeated twice, the process proceeds to S10, a running-in operation is performed until the bearing 7 rotates for a preset time or number of times, and the process proceeds to S1.

そして、S11では、軸受起因振動値より評価指標を算出し(評価指標算出ステップ)、S12で評価指標がしきい値を超過したか否かを判断する(判断ステップ)。ここで評価指標がしきい値を超過した場合はS13で異常と判断し、評価指標がしきい値を超過していない場合はS14で正常と判断して、S15で図6または図7に示すような診断結果を表示する。図6は、評価指標として振動の成長率を用いた場合の診断結果画面であり、図7は、評価指標として軸受起因振動値の最大値を用いた場合の診断結果画面である。   Then, in S11, an evaluation index is calculated from the bearing-induced vibration value (evaluation index calculation step), and in S12, it is determined whether the evaluation index has exceeded a threshold value (determination step). Here, when the evaluation index exceeds the threshold value, it is determined that the evaluation index is abnormal in S13, and when the evaluation index does not exceed the threshold value, it is determined that the evaluation index is normal in S14. Display such a diagnostic result. FIG. 6 is a diagnosis result screen when the growth rate of vibration is used as the evaluation index, and FIG. 7 is a diagnosis result screen when the maximum value of the bearing-induced vibration value is used as the evaluation index.

このように、上記形態の転がり軸受の異常診断方法及び異常診断装置、異常診断プログラムによれば、主軸1の複数の回転周波数における主軸1の振動を測定する振動測定ステップと、振動を振動測定時の主軸1の回転周波数と比例関係にある角速度の2乗で除すと共に周波数分析して、周波数毎の振動の大きさを算出する周波数分析ステップと、振動測定ステップでの振動測定時の主軸1の回転周波数に対する周波数の比が同一な振動の大きさについて平均をとった振動平均値を算出する振動平均値算出ステップと、振動平均値の軸受7に起因する振動の生じる周波数の回転周波数に対する比である特徴比周波数における軸受起因振動値を抽出する軸受起因振動値抽出ステップと、軸受起因振動値に基づき評価指標を算出する評価指標算出ステップと、評価指標に基づいて異常の有無を判断する判断ステップと、を実行することで、測定された振動値から回転周波数の影響を取り除いた上で平均を算出するため、機台ばらつきの影響を低減して軸受起因振動値を得ることができる。この軸受起因振動値より算出する評価指標も機台ばらつきの影響が小さいため、異常と判断するしきい値の設定が容易となる。すなわち、回転周波数や伝達関数の影響を考慮したロバストな評価指標を算出して、異常の有無を高い精度で判断可能となる。   As described above, according to the abnormality diagnosis method, the abnormality diagnosis device, and the abnormality diagnosis program for the rolling bearing according to the above-described embodiment, the vibration measurement step of measuring the vibration of the main shaft 1 at a plurality of rotation frequencies of the main shaft 1 and the vibration measurement step Frequency analysis step of calculating the magnitude of vibration for each frequency by dividing by the square of the angular velocity that is proportional to the rotation frequency of the main shaft 1 and calculating the magnitude of vibration for each frequency. A vibration average value calculating step of calculating a vibration average value obtained by averaging the magnitude of vibration having the same frequency with respect to the rotation frequency; and a ratio of the frequency at which the vibration caused by the bearing 7 of the vibration average value occurs to the rotation frequency. A bearing-induced vibration value extraction step for extracting a bearing-induced vibration value at a characteristic ratio frequency, and an evaluation index calculation for calculating an evaluation index based on the bearing-induced vibration value By executing the step and the determining step of determining the presence or absence of an abnormality based on the evaluation index, the average is calculated after removing the influence of the rotation frequency from the measured vibration value. , And a bearing-induced vibration value can be obtained. The evaluation index calculated from the bearing-induced vibration value is also less affected by the machine variation, so that it is easy to set a threshold value for determining an abnormality. That is, it is possible to calculate a robust evaluation index in consideration of the influence of the rotation frequency and the transfer function, and determine the presence or absence of abnormality with high accuracy.

特にここでは、振動測定ステップでは、測定ばらつきに対して振動の成長が明確に捉えられるように既定時間又は既定回転だけ軸受が回転する間隔をあけて回転周波数が同一の組み合わせの振動測定を複数回行い、評価指標算出ステップでは、軸受起因振動値の変化の度合い(振動の成長率)に基づいて評価指標を算出するようにしているので、評価指標の値が伝達関数の大きさの値に依存しない値となるため、異なる構造の主軸1の診断をする場合や異なる振動センサ8の位置で測定する場合でも同一のしきい値を用いた診断が可能となる。
また、振動平均値算出ステップでは、振動の周波数が既定した範囲内である振動の大きさのみを用いて平均を取るようにしているので、伝達関数の大きさの機台ばらつき、および、伝達関数の大きさの比周波数毎のばらつきの低減効果がさらに向上する。
Particularly, in this case, in the vibration measurement step, vibration measurement of the same combination of rotation frequencies is performed a plurality of times at intervals of rotation of the bearing for a predetermined time or predetermined rotation so that the growth of vibration can be clearly grasped with respect to measurement variations. In the evaluation index calculation step, the evaluation index is calculated based on the degree of change of the bearing-induced vibration value (vibration growth rate), so that the value of the evaluation index depends on the value of the magnitude of the transfer function. Therefore, even when the main shaft 1 having a different structure is diagnosed or when the measurement is performed at different positions of the vibration sensor 8, the same threshold value can be used for the diagnosis.
Further, in the vibration average value calculating step, the average is obtained by using only the magnitude of the vibration in which the frequency of the vibration is within a predetermined range. The effect of reducing the variation of the magnitude of each of the specific frequencies is further improved.

なお、上記形態では、回転周波数を考慮した振動値(修正振動値)の算出において、角速度の2乗で除算しているが、回転周波数そのものなど、回転周波数と比例関係にある物理量であれば同等の効果が得られるため置き換えてもよい。べき乗の指数の値が2である場合を示したが、回転周波数により加振力が変化する影響を低減する目的を達することが可能な別の数値(指数の値は0以上)に置き換えることが可能である。
また、角速度の2乗で除算する計算は定数のスカラー量で除算するだけの処理であるため、上記形態の周波数分析ステップでは、周波数分析の前に修正振動値を算出する例となっているが、振動平均値算出ステップを開始するまでであれば計算結果に影響しないため、例えばフーリエ変換して周波数領域での加速度を算出した後、角速度の2乗で除算する等、どのタイミングで行ってもよい。
一方、軸受起因振動値から評価指標を算出する場合は、各特徴比周波数の軸受起因振動値の平均値を採用しても良いし、各特徴比周波数の振動の成長率を求めてそれらの最大値や平均値としても良い。さらに、軸受起因振動値以外の振動平均値の値も参照した複雑な関数等によって決定してもよい。
In the above embodiment, the vibration value (corrected vibration value) in consideration of the rotation frequency is divided by the square of the angular velocity. However, any physical quantity such as the rotation frequency itself that is proportional to the rotation frequency is equivalent. May be replaced because the effect of (1) is obtained. Although the case where the value of the exponent of the exponent is 2 is shown, it can be replaced with another numerical value (the value of the exponent is 0 or more) that can achieve the purpose of reducing the effect of changing the exciting force depending on the rotation frequency. It is possible.
In addition, since the calculation of dividing by the square of the angular velocity is a process of merely dividing by a constant scalar amount, the frequency analysis step in the above embodiment is an example in which a corrected vibration value is calculated before frequency analysis. Since it does not affect the calculation result as long as the vibration average value calculation step is not started, any timing such as, for example, calculating the acceleration in the frequency domain by performing Fourier transform and dividing by the square of the angular velocity, etc. Good.
On the other hand, when calculating the evaluation index from the bearing-induced vibration value, the average value of the bearing-induced vibration values at each characteristic ratio frequency may be employed, or the maximum growth rate of the vibration at each characteristic ratio frequency may be obtained. It may be a value or an average value. Further, the value of the vibration average value other than the bearing-induced vibration value may be determined by a complicated function or the like that refers to the value.

その他、上記形態では、内輪傷による軸受異常を例に挙げて説明をしたが、転動体の損傷等異なる軸受異常に対して適用しても良い。
また、工作機械以外の機械に用いられる転がり軸受であっても本発明は適用可能である。
さらに、異常診断装置としては工作機械に組み込む形態の他、少なくとも記憶部と演算部と表示部とを工作機械とは別の装置として工作機械と有線又は無線で通信可能とし、工作機械側で振動を測定してデータを取得しつつ、異常診断プログラムに基づいて異常診断方法を実行するようにしてもよい。このようにすれば複数の工作機械に対して集中管理が行える。
In addition, in the above embodiment, the bearing abnormality due to the inner ring wound has been described as an example. However, the present invention may be applied to a different bearing abnormality such as damage to a rolling element.
Further, the present invention is applicable to a rolling bearing used for a machine other than a machine tool.
Furthermore, as an abnormality diagnosis device, in addition to the form incorporated in the machine tool, at least the storage unit, the arithmetic unit, and the display unit can be communicated with the machine tool by wire or wireless as a separate device from the machine tool, and the The abnormality diagnosis method may be executed based on an abnormality diagnosis program while measuring and acquiring data. In this way, centralized management can be performed for a plurality of machine tools.

1・・主軸、2・・主軸ハウジング、3・・工具、4・・モータ、5・・速度検出器、6・・制御装置、7・・軸受、8・・振動センサ、9・・A/D変換器、10・・記憶部、11・・演算部、12・・表示部。   1. Spindle, 2. Spindle housing, 3. Tool, 4. Motor, 5. Speed detector, 6. Control device, 7. Bearing, 8. Vibration sensor, 9. A / D converter, 10 storage unit, 11 operation unit, 12 display unit.

上記目的を達成するために、請求項1に記載の発明は、回転体を支持する転がり軸受の異常を診断する方法であって、
前記回転体の複数の回転周波数における前記回転体の振動を測定する振動測定ステップと、
前記振動を振動測定時の前記回転体の回転周波数と比例関係にある所定の物理量の零より大きい指数のべき乗で除すと共に周波数分析して、周波数毎の振動の大きさを算出する周波数分析ステップと、
前記振動測定ステップでの振動測定時の前記回転体の回転周波数に対する周波数の比が同一な前記振動の大きさについて平均をとった振動平均値を算出する振動平均値算出ステップと、
前記振動平均値のうち、前記軸受に起因する振動が生じる周波数の前記回転周波数に対する比である特徴比周波数における軸受起因振動値を抽出する軸受起因振動値抽出ステップと、
前記軸受起因振動値に基づき評価指標を算出する評価指標算出ステップと、
前記評価指標に基づいて異常の有無を判断する判断ステップと、を実行することを特徴とする。
請求項2に記載の発明は、請求項1の構成において、前記振動平均値算出ステップでは、前記回転周波数、前記回転周波数の逆数、前記回転周波数の対数のいずれか1つが等間隔となるような前記回転周波数の組み合わせにおいて測定された前記振動の大きさを用いて前記振動平均値を算出することを特徴とする。
請求項3に記載の発明は、請求項1又は2の構成において、前記振動測定ステップでは、前記回転周波数が同一の組み合わせの振動測定を複数回行い、
前記評価指標算出ステップでは、前記軸受起因振動値の変化の度合いに基づいて前記評価指標を算出することを特徴とする。
請求項4に記載の発明は、請求項1乃至3の何れかに記載の構成において、前記振動平均値算出ステップでは、振動の周波数が既定した範囲内である振動の大きさのみを用いて平均を取ることを特徴とする。
上記目的を達成するために、請求項5に記載の発明は、回転体を支持する転がり軸受の異常を診断する装置であって、
前記回転体の複数の回転周波数における前記回転体の振動を測定する振動測定手段と、
前記振動を振動測定時の前記回転体の回転周波数と比例関係にある所定の物理量の零より大きい指数のべき乗で除すと共に周波数分析して、周波数毎の振動の大きさを算出する周波数分析手段と、
前記振動測定手段での振動測定時の前記回転体の回転周波数に対する周波数の比が同一な前記振動の大きさについて平均をとった振動平均値を算出する振動平均値算出手段と、
前記振動平均値のうち、前記軸受に起因する振動が生じる周波数の前記回転周波数に対する比である特徴比周波数における軸受起因振動値を抽出する軸受起因振動値抽出手段と、
前記軸受起因振動値に基づき評価指標を算出する評価指標算出手段と、
前記評価指標に基づいて異常の有無を判断する判断手段と、を備えることを特徴とする。
上記目的を達成するために、請求項6に記載の発明は、回転体を支持する転がり軸受の異常を診断するプログラムであって、複数の回転周波数でそれぞれ測定された回転体の振動が各回転周波数と共に入力されたコンピュータに、請求項1乃至4の何れかに記載の転がり軸受の異常診断方法における周波数分析ステップと、振動平均値算出ステップと、軸受起因振動値抽出ステップと、評価指標算出ステップと、判断ステップとを実行させることを特徴とする。
In order to achieve the above object, an invention according to claim 1 is a method for diagnosing an abnormality of a rolling bearing that supports a rotating body,
A vibration measuring step of measuring vibration of the rotating body at a plurality of rotation frequencies of the rotating body,
A frequency analysis step of dividing the vibration by a power of an exponent larger than zero of a predetermined physical quantity that is proportional to the rotation frequency of the rotating body at the time of vibration measurement and frequency analysis to calculate the magnitude of vibration for each frequency When,
A vibration average value calculating step of calculating a vibration average value in which the ratio of the frequency to the rotation frequency of the rotating body at the time of vibration measurement in the vibration measurement step is the average of the magnitude of the vibration,
Among the vibration average values, a bearing-induced vibration value extraction step of extracting a bearing-induced vibration value at a characteristic ratio frequency that is a ratio of a frequency at which vibration caused by the bearing occurs to the rotation frequency,
An evaluation index calculating step of calculating an evaluation index based on the bearing-induced vibration value,
Determining a presence or absence of an abnormality based on the evaluation index.
According to a second aspect of the present invention, in the configuration of the first aspect, in the vibration average value calculating step, any one of the rotation frequency, the reciprocal of the rotation frequency, and the logarithm of the rotation frequency becomes an equal interval. The vibration average value is calculated using the magnitude of the vibration measured in the combination of the rotation frequencies.
According to a third aspect of the present invention, in the configuration of the first or second aspect, in the vibration measuring step, the vibration measurement of the same combination of the rotation frequencies is performed a plurality of times,
In the evaluation index calculating step, the evaluation index is calculated based on a degree of change in the bearing-induced vibration value.
According to a fourth aspect of the present invention, in the configuration according to any one of the first to third aspects, in the vibration average value calculating step, the average is calculated using only the magnitude of the vibration whose frequency is within a predetermined range. It is characterized by taking.
In order to achieve the above object, the invention according to claim 5 is an apparatus for diagnosing an abnormality of a rolling bearing that supports a rotating body,
Vibration measuring means for measuring the vibration of the rotating body at a plurality of rotation frequencies of the rotating body,
Frequency analysis means for dividing the vibration by a power of an exponent larger than zero of a predetermined physical quantity which is proportional to the rotation frequency of the rotating body at the time of vibration measurement and frequency analysis to calculate the magnitude of vibration for each frequency When,
A vibration average value calculation unit that calculates a vibration average value in which a ratio of a frequency to a rotation frequency of the rotating body at the time of vibration measurement by the vibration measurement unit is averaged for the magnitude of the vibration,
Among the vibration average values, a bearing-induced vibration value extraction unit that extracts a bearing-induced vibration value at a characteristic ratio frequency that is a ratio of a frequency at which vibration caused by the bearing occurs to the rotation frequency,
Evaluation index calculating means for calculating an evaluation index based on the bearing-induced vibration value,
Determining means for determining the presence or absence of an abnormality based on the evaluation index.
In order to achieve the above object, an invention according to claim 6 is a program for diagnosing an abnormality of a rolling bearing that supports a rotating body, wherein the vibration of the rotating body measured at a plurality of rotation frequencies is measured for each rotation. A frequency analysis step, a vibration average value calculation step, a bearing-induced vibration value extraction step, and an evaluation index calculation step in the method for diagnosing abnormality of a rolling bearing according to any one of claims 1 to 4, which are input to a computer together with the frequency. And a determining step.

なお、上記形態では、回転周波数を考慮した振動値(修正振動値)の算出において、角速度の2乗で除算しているが、回転周波数そのものなど、回転周波数と比例関係にある物理量であれば同等の効果が得られるため置き換えてもよい。べき乗の指数の値が2である場合を示したが、回転周波数により加振力が変化する影響を低減する目的を達することが可能な別の数値(指数の値は0より大きい)に置き換えることが可能である。
また、角速度の2乗で除算する計算は定数のスカラー量で除算するだけの処理であるため、上記形態の周波数分析ステップでは、周波数分析の前に修正振動値を算出する例となっているが、振動平均値算出ステップを開始するまでであれば計算結果に影響しないため、例えばフーリエ変換して周波数領域での加速度を算出した後、角速度の2乗で除算する等、どのタイミングで行ってもよい。
一方、軸受起因振動値から評価指標を算出する場合は、各特徴比周波数の軸受起因振動値の平均値を採用しても良いし、各特徴比周波数の振動の成長率を求めてそれらの最大値や平均値としても良い。さらに、軸受起因振動値以外の振動平均値の値も参照した複雑な関数等によって決定してもよい。
In the above embodiment, the vibration value (corrected vibration value) in consideration of the rotation frequency is divided by the square of the angular velocity. However, any physical quantity such as the rotation frequency itself that is proportional to the rotation frequency is equivalent. May be replaced because the effect of (1) is obtained. Although the case where the value of the exponent of the exponent is 2 is shown, replace it with another value (the value of the exponent is greater than 0) that can achieve the purpose of reducing the effect of the excitation force changing with the rotation frequency. Is possible.
In addition, since the calculation of dividing by the square of the angular velocity is a process of merely dividing by a constant scalar amount, the frequency analysis step in the above embodiment is an example in which a corrected vibration value is calculated before frequency analysis. Since it does not affect the calculation result as long as the vibration average value calculation step is not started, any timing such as, for example, calculating the acceleration in the frequency domain by performing Fourier transform and dividing by the square of the angular velocity, etc. Good.
On the other hand, when calculating the evaluation index from the bearing-induced vibration value, the average value of the bearing-induced vibration values at each characteristic ratio frequency may be employed, or the maximum growth rate of the vibration at each characteristic ratio frequency may be obtained. It may be a value or an average value. Further, the value of the vibration average value other than the bearing-induced vibration value may be determined by a complicated function or the like that refers to the value.

Claims (6)

回転体を支持する転がり軸受の異常を診断する方法であって、
前記回転体の複数の回転周波数における前記回転体の振動を測定する振動測定ステップと、
前記振動を振動測定時の前記回転体の回転周波数と比例関係にある所定の物理量の零以上のべき乗で除すと共に周波数分析して、周波数毎の振動の大きさを算出する周波数分析ステップと、
前記振動測定ステップでの振動測定時の前記回転体の回転周波数に対する周波数の比が同一な前記振動の大きさについて平均をとった振動平均値を算出する振動平均値算出ステップと、
前記振動平均値のうち、前記軸受に起因する振動が生じる周波数の回転周波数に対する比である特徴比周波数における軸受起因振動値を抽出する軸受起因振動値抽出ステップと、
前記軸受起因振動値に基づき評価指標を算出する評価指標算出ステップと、
前記評価指標に基づいて異常の有無を判断する判断ステップと、を実行することを特徴とする転がり軸受の異常診断方法。
A method for diagnosing an abnormality of a rolling bearing that supports a rotating body,
A vibration measuring step of measuring vibration of the rotating body at a plurality of rotation frequencies of the rotating body,
A frequency analysis step of dividing the vibration by a power of zero or more of a predetermined physical quantity having a proportional relationship with the rotation frequency of the rotating body at the time of vibration measurement and performing frequency analysis, and calculating a magnitude of vibration for each frequency,
A vibration average value calculating step of calculating a vibration average value in which the ratio of the frequency to the rotation frequency of the rotating body at the time of vibration measurement in the vibration measurement step is the average of the magnitude of the vibration,
Among the vibration average values, a bearing-induced vibration value extraction step of extracting a bearing-induced vibration value at a characteristic ratio frequency that is a ratio of a frequency at which vibration caused by the bearing occurs to a rotation frequency,
An evaluation index calculating step of calculating an evaluation index based on the bearing-induced vibration value,
Determining a presence or absence of an abnormality based on the evaluation index.
前記振動平均値算出ステップでは、前記回転周波数、前記回転周波数の逆数、前記回転周波数の対数のいずれか1つが等間隔となるような前記回転周波数の組み合わせにおいて測定された前記振動の大きさを用いて前記振動平均値を算出することを特徴とする請求項1に記載の転がり軸受の異常診断方法。   In the vibration average value calculation step, using the magnitude of the vibration measured in the combination of the rotation frequency, the reciprocal of the rotation frequency, the logarithm of the rotation frequency is such that any one of the logarithm of the rotation frequency is at equal intervals The method for diagnosing abnormality of a rolling bearing according to claim 1, wherein the vibration average value is calculated by using the method. 前記振動測定ステップでは、前記回転周波数が同一の組み合わせの振動測定を複数回行い、
前記評価指標算出ステップでは、前記軸受起因振動値の変化の度合いに基づいて前記評価指標を算出することを特徴とする請求項1又は2に記載の転がり軸受の異常診断方法。
In the vibration measurement step, the rotation frequency performs the vibration measurement of the same combination a plurality of times,
The method according to claim 1, wherein in the evaluation index calculation step, the evaluation index is calculated based on a degree of a change in the bearing-induced vibration value.
前記振動平均値算出ステップでは、振動の周波数が既定した範囲内である振動の大きさのみを用いて平均を取ることを特徴とする請求項1乃至3の何れかに記載の転がり軸受の異常診断方法。   The abnormality diagnosis of the rolling bearing according to any one of claims 1 to 3, wherein in the vibration average value calculating step, an average is obtained by using only the magnitude of the vibration whose vibration frequency is within a predetermined range. Method. 回転体を支持する転がり軸受の異常を診断する装置であって、
前記回転体の複数の回転周波数における前記回転体の振動を測定する振動測定手段と、
前記振動を振動測定時の前記回転体の回転周波数と比例関係にある所定の物理量の零以上のべき乗で除すと共に周波数分析して、周波数毎の振動の大きさを算出する周波数分析手段と、
前記振動測定手段での振動測定時の前記回転体の回転周波数に対する周波数の比が同一な前記振動の大きさについて平均をとった振動平均値を算出する振動平均値算出手段と、
前記振動平均値のうち、前記軸受に起因する振動が生じる周波数の回転周波数に対する比である特徴比周波数における軸受起因振動値を抽出する軸受起因振動値抽出手段と、
前記軸受起因振動値に基づき評価指標を算出する評価指標算出手段と、
前記評価指標に基づいて異常の有無を判断する判断手段と、を備えることを特徴とする転がり軸受の異常診断装置。
An apparatus for diagnosing an abnormality of a rolling bearing that supports a rotating body,
Vibration measuring means for measuring the vibration of the rotating body at a plurality of rotation frequencies of the rotating body,
Frequency analysis means for dividing the vibration by a power of zero or more of a predetermined physical quantity having a proportional relationship with the rotation frequency of the rotating body at the time of vibration measurement and frequency analysis, and calculating the magnitude of vibration for each frequency,
A vibration average value calculation unit that calculates a vibration average value in which a ratio of a frequency to a rotation frequency of the rotating body at the time of vibration measurement by the vibration measurement unit is averaged for the magnitude of the vibration,
Of the vibration average value, bearing-induced vibration value extraction means for extracting a bearing-induced vibration value at a characteristic ratio frequency that is a ratio of a frequency at which vibration caused by the bearing occurs to a rotation frequency,
Evaluation index calculating means for calculating an evaluation index based on the bearing-induced vibration value,
An abnormality diagnosis device for a rolling bearing, comprising: determination means for determining the presence or absence of an abnormality based on the evaluation index.
複数の回転周波数でそれぞれ測定された回転体の振動が各前記回転周波数と共に入力されたコンピュータに、請求項1乃至4の何れかに記載の転がり軸受の異常診断方法における周波数分析ステップと、振動平均値算出ステップと、軸受起因振動値抽出ステップと、評価指標算出ステップと、判断ステップとを実行させることを特徴とする転がり軸受の異常診断プログラム。   5. A frequency analysis step in the method for diagnosing abnormality of a rolling bearing according to claim 1, wherein the vibration of the rotating body measured at a plurality of rotation frequencies is input together with each of the rotation frequencies. An abnormality diagnosis program for a rolling bearing, which executes a value calculation step, a bearing-induced vibration value extraction step, an evaluation index calculation step, and a determination step.
JP2018123489A 2018-06-28 2018-06-28 Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program Active JP6511573B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018123489A JP6511573B1 (en) 2018-06-28 2018-06-28 Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018123489A JP6511573B1 (en) 2018-06-28 2018-06-28 Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program

Publications (2)

Publication Number Publication Date
JP6511573B1 JP6511573B1 (en) 2019-05-15
JP2020003363A true JP2020003363A (en) 2020-01-09

Family

ID=66530826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018123489A Active JP6511573B1 (en) 2018-06-28 2018-06-28 Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program

Country Status (1)

Country Link
JP (1) JP6511573B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012025A (en) * 2019-07-03 2021-02-04 株式会社ジェイテクト Inspection machine management system and inspection machine management method
WO2023063435A1 (en) * 2021-10-14 2023-04-20 エヌティーエンジニアリング株式会社 Working machine bearing quality determining method and system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7230872B2 (en) * 2020-03-31 2023-03-01 ブラザー工業株式会社 Numerical controller and numerical control method
JP6922065B1 (en) * 2020-12-22 2021-08-18 株式会社クボタ Rotation speed detection system and rotation speed detection device for rotating equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196629A (en) * 1978-10-23 1980-04-08 Philips Gerald J Fiber optic machinery performance monitor
JPS6491033A (en) * 1987-10-02 1989-04-10 Hitachi Ltd Method and apparatus for diagnosing sliding motion apparatus
JP2006153855A (en) * 2004-10-26 2006-06-15 Nsk Ltd Anomaly diagnostic apparatus
JP2010071738A (en) * 2008-09-17 2010-04-02 Jatco Ltd Failure detect device and failure detect method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196629A (en) * 1978-10-23 1980-04-08 Philips Gerald J Fiber optic machinery performance monitor
JPS6491033A (en) * 1987-10-02 1989-04-10 Hitachi Ltd Method and apparatus for diagnosing sliding motion apparatus
JP2006153855A (en) * 2004-10-26 2006-06-15 Nsk Ltd Anomaly diagnostic apparatus
JP2010071738A (en) * 2008-09-17 2010-04-02 Jatco Ltd Failure detect device and failure detect method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012025A (en) * 2019-07-03 2021-02-04 株式会社ジェイテクト Inspection machine management system and inspection machine management method
JP7272143B2 (en) 2019-07-03 2023-05-12 株式会社ジェイテクト Inspection machine management system and inspection machine management method
WO2023063435A1 (en) * 2021-10-14 2023-04-20 エヌティーエンジニアリング株式会社 Working machine bearing quality determining method and system

Also Published As

Publication number Publication date
JP6511573B1 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
JP2020003363A (en) Abnormality diagnosis method of rolling bearing, abnormality diagnosis device, and abnormality diagnosis program
CN110320038B (en) Abnormality diagnosis method and abnormality diagnosis device for rolling bearing
JP5686760B2 (en) Vibration discrimination method and vibration discrimination apparatus
JP5595193B2 (en) Abnormal diagnosis method for rotating machinery
JP7146683B2 (en) Rolling Bearing Abnormality Diagnosis Method, Abnormality Diagnosis Device, Abnormality Diagnosis Program
JP5622626B2 (en) Rotational speed display device
JP5293300B2 (en) Vibration monitoring device and vibration monitoring method for rotating machine
JP2008292288A (en) Bearing diagnostic device for reduction gear
JP6507297B1 (en) Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program
JP2011252762A (en) Method and device for monitoring bearing state
JP6483568B2 (en) Method for evaluating fatigue properties of materials
JP6430234B2 (en) Vibration analysis apparatus and program for rotating machine
JP5143863B2 (en) Bearing condition monitoring method and bearing condition monitoring apparatus
JP7083293B2 (en) Status monitoring method and status monitoring device
JP6869156B2 (en) Status monitoring device and status monitoring method
JP6995969B1 (en) Diagnostic device for rotating equipment
JP7097338B2 (en) Equipment diagnostic equipment, equipment diagnostic methods, and equipment diagnostic programs
JP6963456B2 (en) Gear diagnostic device and gear diagnostic method
JP2005308537A (en) Balance analyzer and balance analysis method by the same
JP2018040594A (en) Rotary shaft device and method of determining presence/absence of bearing anomaly in the same
EP3929460A1 (en) Anomaly detection system and anomaly detection method
JP2020144111A (en) Abnormality detection device, rotary machine, abnormality detection method and program
JP2017111018A (en) Abnormality detector and abnormality detecting method
Alekseev et al. Data measurement system of compressor units defect diagnosis by vibration value
JP6460030B2 (en) Rotating bearing state determination device and state determination method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181024

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6511573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150