JP5143863B2 - Bearing condition monitoring method and bearing condition monitoring apparatus - Google Patents

Bearing condition monitoring method and bearing condition monitoring apparatus Download PDF

Info

Publication number
JP5143863B2
JP5143863B2 JP2010125971A JP2010125971A JP5143863B2 JP 5143863 B2 JP5143863 B2 JP 5143863B2 JP 2010125971 A JP2010125971 A JP 2010125971A JP 2010125971 A JP2010125971 A JP 2010125971A JP 5143863 B2 JP5143863 B2 JP 5143863B2
Authority
JP
Japan
Prior art keywords
amplitude
distribution
bearing
logarithmic
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010125971A
Other languages
Japanese (ja)
Other versions
JP2011252761A5 (en
JP2011252761A (en
Inventor
将広 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Advantech Co Ltd
Original Assignee
JFE Advantech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Advantech Co Ltd filed Critical JFE Advantech Co Ltd
Priority to JP2010125971A priority Critical patent/JP5143863B2/en
Priority to KR1020110048309A priority patent/KR101444506B1/en
Publication of JP2011252761A publication Critical patent/JP2011252761A/en
Publication of JP2011252761A5 publication Critical patent/JP2011252761A5/ja
Application granted granted Critical
Publication of JP5143863B2 publication Critical patent/JP5143863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、軸受状態監視方法及び軸受状態監視装置に関する。   The present invention relates to a bearing state monitoring method and a bearing state monitoring device.

回転機械設備等における軸受の状態を監視して異常を診断する場合、例えば軸受に取り付けたセンサで測定した振動や音響(Acoustic Emission:AE)の振幅が、予め設定した閾値を越えているか否かで異常の有無を判断するのが一般的である。また、AEを測定する場合については、AEの振幅が予め設定した閾値を越えるイベントの一定期間内の発生数を監視指標にすることも知られている。   When diagnosing abnormalities by monitoring the state of bearings in rotating machinery equipment, etc., for example, whether the amplitude of vibration or acoustic (Acoustic Emission: AE) measured by a sensor attached to the bearing exceeds a preset threshold In general, it is determined whether there is an abnormality. In the case of measuring AE, it is also known that the number of occurrences within a certain period of events in which the amplitude of AE exceeds a preset threshold is used as a monitoring index.

振動を測定する場合、一般に100rpmを下回るような回転速度の低速回転設備に対しては、軸受に傷が存在しても発生する振動強度が微弱であり、信頼性のある状態監視は困難であるとされている(例えば、非特許文献1参照)。そのような低速回転設備においてもAEを測定する場合は十分な損傷感度が得られるが、振幅やイベント数と損傷との定量的関連付けが困難であり、基準値の設定には測定部位や運転条件(連続回転の回転数や間欠回転の周期)毎に現場での十分なデータ蓄積が必要とされており、いわゆるスポット測定による診断は困難である。   When measuring vibration, for low-speed rotating equipment with a rotational speed generally lower than 100 rpm, the vibration intensity generated is weak even if the bearing is flawed, and it is difficult to reliably monitor the condition. (For example, see Non-Patent Document 1). Even in such a low-speed rotating facility, sufficient damage sensitivity can be obtained when AE is measured, but it is difficult to quantitatively relate the amplitude and the number of events to damage. It is necessary to accumulate sufficient data on-site every time (the number of continuous rotations and the period of intermittent rotations), and so-called spot measurement is difficult to diagnose.

井上紀明著,「現場の疑問に応える実践振動法による設備診断」,日本プラントメンテナンス協会,1998年9月20日,p.91−92   Noriaki Inoue, “Equipment Diagnosis by Practical Vibration Method to Answer Field Questions”, Japan Plant Maintenance Association, September 20, 1998, p.91-92

本発明は、測定部位や運転条件毎のデータ蓄積による基準値を設定することなく、測定データの処理で軸受の状態を判定可能とすることを課題とする。   It is an object of the present invention to make it possible to determine the state of a bearing by processing measurement data without setting a reference value based on data accumulation for each measurement site or operation condition.

本発明の第1の態様は、回転軸を保持する軸受において前記回転軸の回転により発生する信号の時間波形に検波処理を行って検波波形を算出し、前記検波波形の振幅を対数化し、前記振幅を対数化した前記検波波形から前記振幅分布を算出し、前記振幅分布の頻度を対数化した対数化振幅分布を求め、前記振幅分布の最頻値を求め、前記振幅分布の前記最頻値の振幅よりも低振幅のデータを正規分布で近似した低振幅側分布と、この低振幅側分布を前記最頻値の振幅よりも高振幅側に適用した高振幅側分布とにより構成される推定正規分布を求め、前記推定正規分布の頻度を対数化した対数化推定正規分布を求め、前記対数化推定正規分布に余裕度を加算して基準分布を求め、前記対数化振幅分布と前記基準分布との比較により前記軸受の状態を判定する、軸受状態監視方法を提供する。 In a first aspect of the present invention, a detection waveform is calculated by performing a detection process on a time waveform of a signal generated by rotation of the rotation shaft in a bearing that holds the rotation shaft, and the amplitude of the detection waveform is logarithmized. The amplitude distribution is calculated from the detected waveform obtained by logarithmizing the amplitude, a logarithmic amplitude distribution obtained by logarithmizing the frequency of the amplitude distribution is obtained, a mode value of the amplitude distribution is obtained, and the mode value of the amplitude distribution is obtained. An estimation composed of a low-amplitude side distribution obtained by approximating data having a lower amplitude than the normal amplitude by a normal distribution and a high-amplitude side distribution obtained by applying this low-amplitude side distribution to a higher amplitude side than the amplitude of the mode value Obtaining a normal distribution, obtaining a logarithmic estimated normal distribution obtained by logarithmizing the frequency of the estimated normal distribution, obtaining a reference distribution by adding a margin to the logarithmized estimated normal distribution, obtaining the logarithmized amplitude distribution and the reference distribution Jo of the bearing by comparison with Determining, providing a bearing condition monitoring methods.

振幅分布とそれから得られる基準分布との比較により軸受の状態を判定するので、回転軸の回転速度が比較的低速(例えば0.1〜200rpm程度)である場合でも、測定部位や運転条件毎のデータ蓄積による基準値を設定することなく、検波波形の処理で軸受の状態の判定が可能である。   Since the bearing state is determined by comparing the amplitude distribution with the reference distribution obtained from the amplitude distribution, even when the rotational speed of the rotating shaft is relatively low (for example, about 0.1 to 200 rpm), it is determined for each measurement site and operating condition. It is possible to determine the state of the bearing by processing the detected waveform without setting a reference value by data accumulation.

数化推定正規分布に余裕度を加えることで判定の信頼性を向上できる。 It is possible to improve the reliability of the determination by adding margin to the number of estimated normal distribution pairs.

より具体的には、前記対数化振幅分布に含まれるデータのうち対数化頻度が前記基準分布の同一振幅の頻度を上回るものを多項式で近似して近似係数を求める。前記近似係数を前記対数化振幅分布と前記基準分布の差異を示す指標として前記軸受の状態の判定に使用する。例えば、前記多項式は一次式であり、この一次式の勾配又はその逆数の絶対値を前記指標として使用する。   More specifically, the approximation coefficient is obtained by approximating the data included in the logarithmic amplitude distribution whose logarithmization frequency exceeds the frequency of the same amplitude in the reference distribution with a polynomial. The approximate coefficient is used as an index indicating the difference between the logarithmic amplitude distribution and the reference distribution in determining the state of the bearing. For example, the polynomial is a linear expression, and the gradient of this linear expression or the absolute value of the inverse thereof is used as the index.

代案としては、前記対数化振幅分布のデータのうち対数化頻度が前記基準分布の同一振幅の頻度を上回るものについて以下の式で計算される指標面積を、前記対数化振幅分布と前記基準分布の差異を示す指標として前記軸受の状態の判定に使用する。   As an alternative, the index area calculated by the following equation for the logarithmic amplitude distribution data whose logarithmization frequency exceeds the same amplitude frequency of the reference distribution, the logarithmic amplitude distribution and the reference distribution of It is used to determine the state of the bearing as an index indicating the difference.

Figure 0005143863
Figure 0005143863

前記検波処理における前記回転軸の1回転又は間欠動作1周期当たりのサンプリング点数を、前記回転軸の回転数又は間欠動作の速度にかかわらず一定値とし、振幅を対数化した前記検波波形を使用して算出した前記振幅分布の頻度を前記一定値で除算することで規格化する。規格化することで測定部位や運転条件の相違による影響をより低減でき、より高精度で軸受の状態を判別できる。   In the detection processing, the number of sampling points per one rotation or intermittent operation of the rotation shaft in the detection process is set to a constant value regardless of the rotation speed of the rotation shaft or the speed of the intermittent operation, and the detection waveform in which the amplitude is logarithmically used is used. The frequency of the amplitude distribution calculated in the above is normalized by dividing by the constant value. By standardizing, the influence due to the difference in measurement site and operating conditions can be further reduced, and the state of the bearing can be determined with higher accuracy.

外乱ノイズとしての揺らぎ成分を含んだまま振動分布を求めると、振動分布の幅が本来測定したい信号(例えばAE)ではなく揺らぎ成分により決定され、軸受の状態判別の精度が低下する場合がある。このような場合、前記振幅分布の算出は、前記検波波形の揺らぎ成分を算出し、前記検波波形から前記揺らぎ成分を除去し、前記揺らぎ成分を除去した後の前記検波波形を使用して前記振幅分布を算出することが好ましい。前記揺らぎ成分の算出には移動平均やローパスフィルタを使用できる。   If the vibration distribution is obtained while including the fluctuation component as disturbance noise, the width of the vibration distribution is determined by the fluctuation component instead of the signal to be originally measured (for example, AE), and the accuracy of determining the state of the bearing may be lowered. In such a case, the calculation of the amplitude distribution is performed by calculating a fluctuation component of the detection waveform, removing the fluctuation component from the detection waveform, and using the detection waveform after removing the fluctuation component. It is preferable to calculate the distribution. For the calculation of the fluctuation component, a moving average or a low-pass filter can be used.

前記回転軸の回転により発生する信号は、AE、振動、又は超音波のいずれかである。   The signal generated by the rotation of the rotating shaft is either AE, vibration, or ultrasonic wave.

本発明の第2の態様は、回転軸を保持する軸受において前記回転軸の回転により発生する信号を検出するセンサ部と、前記センサ部が検出した測定波形に検波処理を行って検波波形を算出する検波処理部と、前記検波波形の振幅を対数化し、前記振幅を対数化した前記検波波形から振幅分布を算出する振幅分布算出部と、前記振幅分布の最頻値を求め、前記振幅分布の前記最頻値の振幅よりも低振幅のデータを正規分布で近似した低振幅側分布と、この低振幅側分布を前記最頻値の振幅よりも高振幅側に適用した高振幅側分布とにより構成される推定正規分布を求め、前記推定正規分布の頻度を対数化した対数化推定正規分布を求め、前記対数化推定正規分布に余裕度を加算して基準分布を求める基準波形生成部と、前記振幅分布の頻度を対数化した前記対数化振幅分布と前記基準分布との比較により前記軸受の状態を判定する判定部とを備える軸受状態監視装置を提供する。 According to a second aspect of the present invention, a sensor unit that detects a signal generated by rotation of the rotary shaft in a bearing that holds the rotary shaft, and a detection waveform is calculated by performing detection processing on the measurement waveform detected by the sensor unit. A detection processing unit that performs logarithm of the amplitude of the detection waveform, calculates an amplitude distribution from the detection waveform obtained by logarithmizing the amplitude, obtains a mode value of the amplitude distribution, A low-amplitude distribution obtained by approximating data having a lower amplitude than the amplitude of the mode with a normal distribution, and a high-amplitude side distribution obtained by applying the low-amplitude side distribution to a higher amplitude than the amplitude of the mode. A reference waveform generation unit that obtains a configured estimated normal distribution, obtains a logarithmic estimated normal distribution obtained by logarithmizing the frequency of the estimated normal distribution, adds a margin to the logarithmized estimated normal distribution, and obtains a reference distribution ; The frequency of the amplitude distribution is By a phased the logarithmic amplitude distribution comparison of the reference distribution provides a bearing condition monitoring apparatus and a determination unit for determining status of said bearing.

本発明によれば、振幅分布とそれから得られる基準分布との比較により軸受の状態を判定するので、測定部位や運転条件毎のデータ蓄積による基準値を設定することなく、検波波形の処理で軸受の状態の判定が可能である。   According to the present invention, since the state of the bearing is determined by comparing the amplitude distribution with the reference distribution obtained from the amplitude distribution, the bearing can be processed by the detection waveform without setting a reference value based on data accumulation for each measurement region and operating condition. The state can be determined.

本発明の実施形態にかかる軸受状態診断装置を示す模式図。The schematic diagram which shows the bearing state diagnostic apparatus concerning embodiment of this invention. AEの測定波形と検波波形を示すグラフ。The graph which shows the measurement waveform and detection waveform of AE. 振幅分布と推定正規分布を示すグラフ。A graph showing an amplitude distribution and an estimated normal distribution. 振幅分布、基準分布、及び近似曲線を示すグラフ。The graph which shows an amplitude distribution, a reference distribution, and an approximate curve. 軸受正常時の振幅分布、基準分布、及び近似直線を示すグラフ。The graph which shows the amplitude distribution at the time of a normal bearing, a reference distribution, and an approximate line. 軸受異常発生時の振幅分布、基準分布、及び近似直線を示すグラフ。The graph which shows the amplitude distribution at the time of bearing abnormality occurrence, a reference distribution, and an approximate line. 種々の測定条件における近似直線の勾配の逆数を示す棒グラフ。The bar graph which shows the reciprocal number of the gradient of the approximate line in various measurement conditions. 振幅分布、基準分布、及び指標面積を示すグラフ。A graph which shows amplitude distribution, standard distribution, and index area. 種々の測定条件における指標面積を示す棒グラフ。The bar graph which shows the parameter | index area in various measurement conditions. 検波波形と揺らぎ成分を示すグラフ。The graph which shows a detection waveform and a fluctuation component. 揺らぎ成分を除去した検波波形を示すグラフ。The graph which shows the detection waveform which removed the fluctuation component.

次に、添付図面を参照して本発明の実施形態を説明する。軸受が正常な場合の音響(AE)、振動、超音波等のRF波形の振幅分布は正規分布に従うことが知られているが、本発明者は、以下の知見を見出した。軸受が正常であり、かつ背景ノイズが低い場合、検波波形の振幅分布も正規分布で近似可能である。また、軸受に損傷が発生している場合、高振幅のデータの出現により振幅分布が正規分布から乖離するが、最頻値の振幅より低振幅側の振幅分布は正規分布で近似可能である。さらに、軸受に損傷が発生している場合に正規分布で近似した最頻値の振幅より低振幅側の振幅分布は、軸受が正常な場合の正規分布とほぼ同一である。本発明は、これらの知見を軸受の状態監視に適用したものである。 Next, embodiments of the present invention will be described with reference to the accompanying drawings. The amplitude distribution of RF waveforms such as acoustic (AE), vibration, and ultrasonic waves when the bearing is normal is known to follow a normal distribution, but the present inventor has found the following knowledge. When the bearing is normal and the background noise is low, the amplitude distribution of the detected waveform can be approximated by a normal distribution. When the bearing is damaged, the amplitude distribution deviates from the normal distribution due to the appearance of high-amplitude data, but the amplitude distribution on the lower amplitude side than the mode amplitude can be approximated by the normal distribution. Furthermore, the amplitude distribution on the lower amplitude side than the amplitude of the mode value approximated by the normal distribution when the bearing is damaged is substantially the same as the normal distribution when the bearing is normal. In the present invention, these findings are applied to monitoring the state of a bearing.

図1は、本発明の実施形態に係る軸受状態監視装置(以下、監視装置)1を示す。軸受3は回転機械設備(本実施形態ではベルトコンベア設備であるが設備や機械の種類は特に限定されない)の回転軸2を支持する。監視装置1は、軸受3における摩耗、損傷に起因する異常発生等を監視する。   FIG. 1 shows a bearing state monitoring device (hereinafter, monitoring device) 1 according to an embodiment of the present invention. The bearing 3 supports a rotating shaft 2 of rotating machine equipment (a belt conveyor equipment in this embodiment, but the kind of equipment or machine is not particularly limited). The monitoring device 1 monitors the occurrence of abnormality due to wear and damage in the bearing 3.

監視装置1は、軸受3にカプラントを介して固定されたAEセンサ10を備える。また、監視装置1は、フィルタ12、アンプ13、及び各種演算処理を行う信号処理部21を備える。また、監視装置1は、信号処理部21での処理結果に基づいて軸受3に異常が判定しているか否かを判定する判定部22と、判定部22の判定結果を表示するための例えばモニタ装置である表示部23を備える。さらにまた、監視装置1は、信号処理部21及び判定部22と協働して各種データ、演算結果等を記憶する記憶部24を備える。信号処理部21は、検波処理部30、サンプリング回路31、振幅分布算出部32、及び基準波生成部33を備える。   The monitoring device 1 includes an AE sensor 10 fixed to the bearing 3 via a coplant. Moreover, the monitoring apparatus 1 includes a filter 12, an amplifier 13, and a signal processing unit 21 that performs various arithmetic processes. The monitoring device 1 also includes a determination unit 22 that determines whether or not an abnormality is determined in the bearing 3 based on the processing result in the signal processing unit 21, and a monitor for displaying the determination result of the determination unit 22, for example. The display part 23 which is an apparatus is provided. Furthermore, the monitoring apparatus 1 includes a storage unit 24 that stores various data, calculation results, and the like in cooperation with the signal processing unit 21 and the determination unit 22. The signal processing unit 21 includes a detection processing unit 30, a sampling circuit 31, an amplitude distribution calculation unit 32, and a reference wave generation unit 33.

以下、この監視装置1により実行される軸受状態監視方法を説明する。   Hereinafter, a bearing state monitoring method executed by the monitoring device 1 will be described.

AEセンサ10は、軸受3において回転軸2の回転により発生するAE信号を検出する。AEセンサ10によるAE信号の検出に代えて、回転軸2の回転時に発生する振動を振動センサで検出してもよい。また、回転軸2の回転時に発生する超音波を超音波センサで検出してもよい。振動や超音波を検出する場合も、以下の処理を同様に適用できる。   The AE sensor 10 detects an AE signal generated by the rotation of the rotary shaft 2 in the bearing 3. Instead of detecting the AE signal by the AE sensor 10, vibration generated when the rotating shaft 2 rotates may be detected by a vibration sensor. Moreover, you may detect the ultrasonic wave which generate | occur | produces at the time of rotation of the rotating shaft 2 with an ultrasonic sensor. The following processing can be similarly applied when detecting vibrations and ultrasonic waves.

AEセンサ10からの測定波形(AEの時間波形)は、図示しないプリアンプ、フィルタ12、及びアンプ13を介して信号処理部21に入力される。AEセンサ10からの微弱な出力信号は、まずプリアンプで増幅される。プリアンプはAEセンサ10内に設けてもよいし、AEセンサ10とフィルタ12の間に設けてもよい。フィルタ12はプリアンプの信号からノイズを除去して適切な周波数帯域のみを通過させる。フィルタ12を通過した信号はアンプ13により信号処理部21での処理に適した強度に増幅される。   A measurement waveform (AE time waveform) from the AE sensor 10 is input to the signal processing unit 21 via a preamplifier, a filter 12, and an amplifier 13 (not shown). A weak output signal from the AE sensor 10 is first amplified by a preamplifier. The preamplifier may be provided in the AE sensor 10 or may be provided between the AE sensor 10 and the filter 12. The filter 12 removes noise from the preamplifier signal and passes only an appropriate frequency band. The signal that has passed through the filter 12 is amplified to an intensity suitable for processing by the signal processing unit 21 by the amplifier 13.

検波処理部30は、測定波形(アンプ13からに入力されるAEの時間波形)に検波処理を施して検波波形を算出する(図2参照)。この検波波形の時間長さは、少なくとも回転軸2の1回転分(回転軸2が間欠動作する場合には間欠動作の1周期分)を有する。例えば、回転軸2の10回転分程度の測定波形を得る。回転軸2の1回転分の時間長さは、回転軸2の設定回転数により決定してもよいし、実際に測定してもよい。   The detection processing unit 30 performs detection processing on the measurement waveform (AE time waveform input from the amplifier 13) to calculate a detection waveform (see FIG. 2). The time length of this detection waveform has at least one rotation of the rotating shaft 2 (one cycle of intermittent operation when the rotating shaft 2 operates intermittently). For example, a measurement waveform of about 10 rotations of the rotating shaft 2 is obtained. The time length for one rotation of the rotating shaft 2 may be determined by the set number of rotations of the rotating shaft 2 or may be actually measured.

サンプリング回路31は検波処理部30からの検波波形に対してサンプリングを実行する。   The sampling circuit 31 performs sampling on the detection waveform from the detection processing unit 30.

振幅分布算出部32は、サンプリング後の検波波形に対して以下の処理を行って振幅分布を算出する。まず、サンプリング後の検波波形の振幅を対数化(自然対数化)する。この振幅を対数化した検波波形を使用して振幅分布(検波波形中である振幅が出現する頻度の分布)を算出する(図3及び図4参照)。AEは振幅変化の範囲が広いため、対数化して低振幅側の情報の重みを相対的に増すことで、低振幅の変化も感度良く検知できるようにする。また、対数化することで比率が差になる(つまり線形では10倍の違いが、対数化すると+1となる)ので、振幅の取扱が容易になる。   The amplitude distribution calculation unit 32 calculates the amplitude distribution by performing the following processing on the detected waveform after sampling. First, the amplitude of the detected waveform after sampling is logarithmized (natural logarithmization). Using the detection waveform obtained by logarithmizing the amplitude, the amplitude distribution (the distribution of the frequency at which the amplitude appears in the detection waveform) is calculated (see FIGS. 3 and 4). Since AE has a wide range of amplitude changes, it is possible to detect low amplitude changes with high sensitivity by logarithmically increasing the weight of information on the low amplitude side. Further, the logarithm makes a ratio difference (that is, a linear difference of 10 times becomes a logarithm becomes +1), so that the handling of the amplitude becomes easy.

振幅分布の頻度を規格化してもよい。この場合、サンプリング回路31が測定波形をサンプリングするサンプリング周波数を回転軸2の回転数(間欠動作の場合には単位時間あたりの動作数)に応じて変化させ、それによって回転軸2の1回転又は間欠動作の1周期当たりのサンプリング点数Nを回転数や間欠動作の速度にかかわらず一定値とする。そして、振幅分布の頻度をサンプリング点数N(一定値)で除算することで規格化する。図3から図5B及び図7のグラフの縦軸は規格化された頻度である。   The frequency of the amplitude distribution may be normalized. In this case, the sampling frequency at which the sampling circuit 31 samples the measurement waveform is changed according to the number of rotations of the rotating shaft 2 (the number of operations per unit time in the case of intermittent operation), whereby one rotation of the rotating shaft 2 or The number N of sampling points per cycle of the intermittent operation is set to a constant value regardless of the rotation speed and the speed of the intermittent operation. Then, the frequency is normalized by dividing the frequency of the amplitude distribution by the number of sampling points N (a constant value). The vertical axis of the graphs of FIGS. 3 to 5B and 7 is the normalized frequency.

基準分布生成部33は、軸受の状態を判定するために使用する基準分布を求める。基準分布は軸受3が正常である場合の振幅分布を推定したものである推定正規分布をもとに求められる。前述のように軸受3に損傷が発生している場合、高振幅のデータが出現により振幅分布が正規分布から乖離するが、最頻値の振幅より低振幅側の振幅分布は正規分布で近似可能であり、この低振幅側の振幅分布は軸受3が正常な場合の正規分布とほぼ同一である。また、基準分布の最頻値の振幅より低振幅側の振幅分布を正規分布で近似したものを、最頻値の振幅を境に折り返すことにより、軸受が正常な場合の最頻値の振幅よりも高振幅側の振幅分布も推定できる。基準分布生成部33はこの原理によって軸受3が正常である場合の振幅分布を推定する。 The reference distribution generation unit 33 obtains a reference distribution used for determining the state of the bearing. The reference distribution is obtained based on an estimated normal distribution that is an estimation of the amplitude distribution when the bearing 3 is normal. When the bearing 3 is damaged as described above, the amplitude distribution deviates from the normal distribution due to the appearance of high amplitude data, but the amplitude distribution on the lower amplitude side than the mode amplitude can be approximated by the normal distribution. The amplitude distribution on the low amplitude side is almost the same as the normal distribution when the bearing 3 is normal. Also, by approximating the amplitude distribution on the lower amplitude side than the amplitude of the mode value of the reference distribution with a normal distribution, the amplitude of the mode value is folded back at the boundary so that the amplitude of the mode value when the bearing is normal The amplitude distribution on the higher amplitude side can also be estimated. Based on this principle, the reference distribution generation unit 33 estimates the amplitude distribution when the bearing 3 is normal.

以下、図3を参照して基準分布生成部33が基準分布を求める具体的な手順を説明する。まず、振幅分布(前述の規格化を行う場合には頻度を規格化した後の振幅分布)の最頻値Fmaxを求める。次に、振幅分布に含まれるデータのうち最頻値F max の振幅よりも低振幅のものを正規分布で近似した低振幅側分布を求める。また、この低振幅側分布を最頻値F max の振幅で折り返すことにより、最頻値F max の振幅よりも高振幅側の分布を推定したものである高振幅側分布を求める。低振幅側分布と高振幅側分布とを併せたものが前述の推定正規分布である。次に、推定正規分布を対数化(自然対数化)した対数化推定正規分布を求める(図5A及び図5Bを併せて参照)。対数化推定正規分布の頻度に、誤判定防止による判定信頼性向上ための余裕度αを加算する。対数化推定正規分布に余裕度αを加算して得られる分布が基準分布である。余裕度αは、例えば対数化前の推定正規分布に含まれるデータの頻度の2倍に相当する値(α=ln(2))に設定される。 Hereinafter, a specific procedure in which the reference distribution generation unit 33 obtains the reference distribution will be described with reference to FIG. First, the mode value F max of the amplitude distribution (the amplitude distribution after the frequency is normalized when the above-described normalization is performed) is obtained. Next, a low-amplitude distribution is obtained by approximating the data included in the amplitude distribution with a normal distribution having a lower amplitude than the amplitude of the mode Fmax . Moreover, by folding the lower amplitude side distribution with an amplitude of the mode F max, requiring a high amplitude side distribution is also obtained by estimating a distribution of high amplitude side than the amplitude of the mode F max. A combination of the low amplitude side distribution and the high amplitude side distribution is the above-described estimated normal distribution. Next, a logarithmic estimated normal distribution obtained by logarithmizing the estimated normal distribution (natural logarithmization) is obtained (see also FIGS. 5A and 5B). A margin α for improving determination reliability by preventing erroneous determination is added to the frequency of the logarithmic estimated normal distribution. The distribution obtained by adding the margin α to the logarithmic estimated normal distribution is the reference distribution. For example, the margin α is set to a value (α = ln (2)) corresponding to twice the frequency of data included in the estimated normal distribution before logarithmization.

一方、振幅分布算出部32は、前述のように振幅を対数化(自然対数化)した検波波形を使用して求めた振幅分布(前述の規格化を行う場合には頻度を規格化した後の振幅分布)に対し、さらに振幅分布の頻度を対数化(自然対数化)を実行して対数化振幅分布を算出する(図3及び図4参照)。異常起因のAEの頻度は背景ノイズのAEに比べはるかに少ないため、頻度を線形で見ると正常と異常の差が小さい。振幅分布を対数化することで、頻度の少ない異常起因のAEの重みを相対的に増すことができ、異常に対する感度を向上させることができる。   On the other hand, the amplitude distribution calculation unit 32 obtains the amplitude distribution obtained by using the detection waveform obtained by logarithmizing the amplitude (natural logarithmization) as described above (after performing frequency normalization in the case of performing the normalization described above). A logarithmic amplitude distribution is calculated by further performing logarithmization (natural logarithmization) of the frequency of the amplitude distribution on the amplitude distribution) (see FIGS. 3 and 4). Since the frequency of abnormal AEs is much lower than that of background noise AEs, the difference between normal and abnormal is small when the frequency is viewed linearly. By logarithmizing the amplitude distribution, it is possible to relatively increase the weight of an AE caused by an abnormality that is infrequent, and to improve the sensitivity to the abnormality.

判定部22は、振幅分布算出部32が算出した対数化振幅分布と基準分布生成部33が生成した基準分布との比較により軸受3が正常であるか(摩耗、損傷に起因する異常が発生していないか)を判定する。判定部22による軸受3の状態を判定は、対数化振幅分布に含まれるデータ(最頻値F max の振幅よりも高振幅側)のうち対数化頻度が基準波形の同一振幅の頻度を上回るもの、つまり対数化振幅分布のうち頻度が基準波形を上回っている領域を評価することで行う。具体的には判定手法としては、以下の2種類がある。 The determination unit 22 determines whether the bearing 3 is normal by comparing the logarithmized amplitude distribution calculated by the amplitude distribution calculation unit 32 and the reference distribution generated by the reference distribution generation unit 33 (an abnormality caused by wear or damage occurs). Is not determined). The determination of the state of the bearing 3 by the determination unit 22 is that the logarithmization frequency exceeds the frequency of the same amplitude of the reference waveform among the data included in the logarithmic amplitude distribution ( higher amplitude side than the amplitude of the mode Fmax ). That is, it is performed by evaluating a region in the logarithmic amplitude distribution where the frequency exceeds the reference waveform. Specifically, there are the following two types of determination methods.

第1の判定手法は以下の通りである。対数化振幅分布に含まれるデータのうち対数化頻度が基準分布の同一振幅の頻度を上回るものを多項式で近似して近似係数を求める。そして、この近似係数を対数化振幅分布と基準分布の差異を示す指標として軸受3の状態を判定する。例えば、図4から図5Bに示すように、対数化振幅分布に含まれるデータのうち対数化頻度が基準分布の同一振幅の頻度を上回るものを一次関数で近似した近似直線を求め、この近似直線の勾配の逆数の絶対値により軸受3の状態を判定する。図5A(正常時)と図5B(異常時)とを比較すれば明らかなように、軸受3に異常が発生していると正常時と比較して近似直線の勾配が緩やかになる。つまり、軸受3に異常が発生していると正常時と比較して勾配の逆数の絶対値は大きくなる。従って、勾配の逆数に関する適切な閾値を設定し、勾配の逆数の絶対値が閾値以下であれば軸受3は正常であると判定し、閾値を上回ると軸受3に異常が発生していると判定することができる。   The first determination method is as follows. An approximation coefficient is obtained by approximating the data included in the logarithmic amplitude distribution whose logarithmization frequency exceeds the frequency of the same amplitude in the reference distribution by a polynomial. Then, the state of the bearing 3 is determined using this approximation coefficient as an index indicating the difference between the logarithmic amplitude distribution and the reference distribution. For example, as shown in FIG. 4 to FIG. 5B, an approximate straight line obtained by approximating a data whose logarithmization frequency exceeds the frequency of the same amplitude of the reference distribution among data included in the logarithmic amplitude distribution by a linear function is obtained. The state of the bearing 3 is determined based on the absolute value of the reciprocal of the gradient. As is apparent from a comparison between FIG. 5A (during normal operation) and FIG. 5B (during abnormality), when an abnormality occurs in the bearing 3, the slope of the approximate straight line becomes gentler than that during normal operation. That is, when an abnormality occurs in the bearing 3, the absolute value of the reciprocal of the gradient is larger than that in the normal state. Accordingly, an appropriate threshold for the reciprocal of the gradient is set, and if the absolute value of the reciprocal of the gradient is equal to or less than the threshold, it is determined that the bearing 3 is normal, and if the absolute value exceeds the threshold, it is determined that an abnormality has occurred in the bearing 3. can do.

図6は軸受3の回転数が種々異なる場合(10rpm,20rpm,80rpm,100rpm)について、実験的に求めた近似曲線の勾配の逆数の絶対値を示す。この図6においてNo.1〜12は軸受3が正常である場合であり、No.13〜16は軸受3に異常が発生している場合である。近似曲線の勾配の逆数の絶対値は、正常時(No.1〜12)には概ね1程度であるが、異常時(No.13〜16)には2以上であり、明瞭な差異がある。図8の例の場合、例えば軸受3に異常発生に注意を要するか否かの判断の閾値を1.5に設定することが考えられる。本実施形態では、頻度を規格化しているため、共通の閾値を使用することができ、個々の測定場所で正常時と異常時の近似曲線の勾配の逆数の絶対値を測定して閾値を設定する必要がない。   FIG. 6 shows the absolute value of the reciprocal of the slope of the approximate curve obtained experimentally when the number of rotations of the bearing 3 is different (10 rpm, 20 rpm, 80 rpm, 100 rpm). In FIG. 6, Nos. 1 to 12 are cases where the bearing 3 is normal, and Nos. 13 to 16 are cases where an abnormality occurs in the bearing 3. The absolute value of the reciprocal of the slope of the approximate curve is approximately 1 when normal (No. 1 to 12), but is 2 or more when abnormal (No. 13 to 16), and there is a clear difference. . In the case of the example in FIG. 8, for example, it is conceivable to set the threshold value for determining whether or not the bearing 3 needs attention for occurrence of abnormality to 1.5. In this embodiment, since the frequency is standardized, a common threshold value can be used, and the threshold value is set by measuring the absolute value of the reciprocal of the slope of the approximate curve at normal and abnormal times at each measurement location. There is no need to do.

第1の判定手法において一次関数での近似を採用する場合に、勾配そのものや、勾配の絶対値を軸受3の状態判定における指標に使用してもよい。また、一次関数による近似に代えて二次以上の多次の関数による近似を行い、得られた多項式の係数を状態判定における指標に使用してもよい。   When approximation by a linear function is adopted in the first determination method, the gradient itself or the absolute value of the gradient may be used as an index in determining the state of the bearing 3. Further, approximation by a quadratic or higher-order function may be performed instead of approximation by a linear function, and the coefficient of the obtained polynomial may be used as an index in state determination.

第2の判定手法は、以下の通りである。図7を参照すると、対数化振幅分布に含まれるデータのうち対数化頻度が基準分布の同一振幅の頻度を上回るものと基準頻度Frefとにより囲まれた領域の面積(指標面積)を以下の式により計算する。 The second determination method is as follows. Referring to FIG. 7, the area (index area) of the region surrounded by the reference frequency F ref and the logarithmization frequency among the data included in the logarithmic amplitude distribution that exceeds the frequency of the same amplitude in the reference distribution is expressed as follows. Calculate with the formula.

Figure 0005143863
Figure 0005143863

指標面積ARの算出に使用する基準頻度Frefはある振幅が出現する頻度が検波波形内で1回である状況に相当する頻度よりも小さく、かつ余り小さ過ぎないことが好ましい。例えば、前述した頻度のサンプリング点数Nによる規格化を行わない場合、検波波形内で1回だけある波形が出現する場合の頻度は1であるので、基準頻度Frefはln(1)=0未満で余り小さ過ぎない値(例えば−1)に設定される。また、頻度のサンプリング点数Nによる規格化を行う場合、検波波形内で1回だけある波形が出現する場合の頻度は1/Nであるので、基準頻度Frefはln(1/N)未満で余り小さ過ぎない値(例えばln(1/N)未満の最も大きい整数)に設定される。規格化に使用するサンプリング点数Nが10,000の場合、ln(1/N)=−9.2であるので基準頻度Frefは例えば−10に設定される。 The reference frequency F ref used for calculating the index area AR is preferably smaller than the frequency corresponding to the situation in which a certain amplitude appears once in the detection waveform, and is not too small. For example, when the above-described normalization by the sampling point number N is not performed, the frequency when a waveform appears only once in the detected waveform is 1, so the reference frequency F ref is less than ln (1) = 0. Is set to a value that is not too small (for example, -1). In addition, when normalization is performed with the frequency sampling point N, the frequency when the waveform appears once in the detected waveform is 1 / N, so the reference frequency F ref is less than ln (1 / N). It is set to a value that is not too small (for example, the largest integer less than ln (1 / N)). When the number of sampling points N used for normalization is 10,000, since ln (1 / N) = − 9.2, the reference frequency F ref is set to −10, for example.

図8は軸受3の回転数が種々異なる場合(10rpm,20rpm,80rpm,100rpm)について、実験的に求めた指標面積ARの値を示す。この図8においてNo.1〜12は軸受3が正常である場合であり、No.13〜16は軸受3に異常が発生している場合である。指標面積ARの値は、正常時(No.1〜12)には20未満であるが、異常時(No.13〜16)には40以上であり、明瞭な差異がある。図8の例の場合、例えば軸受3に異常発生に注意を要するか否かの判断の閾値を20に設定することが考えられる。サンプリング点数Nで頻度を比較する場合には、測定系が同一であれば共通の閾値を使用することができ、個々の測定場所での正常時と異常時の指標面積ARを測定して閾値を設定する必要がない。   FIG. 8 shows the index area AR obtained experimentally when the number of rotations of the bearing 3 is different (10 rpm, 20 rpm, 80 rpm, 100 rpm). In FIG. 8, Nos. 1 to 12 are cases where the bearing 3 is normal, and Nos. 13 to 16 are cases where an abnormality occurs in the bearing 3. The value of the index area AR is less than 20 at the normal time (No. 1 to 12), but is 40 or more at the abnormal time (No. 13 to 16), and there is a clear difference. In the case of the example in FIG. 8, for example, it is conceivable to set the threshold value for determining whether or not the bearing 3 needs attention to occurrence of abnormality to 20. When comparing the frequency with the number of sampling points N, a common threshold can be used if the measurement systems are the same, and the threshold value is determined by measuring the normal and abnormal index areas AR at each measurement location. There is no need to set.

判定部22は、第1及び第2の判定手法のいずれか一方を実行してもよいし、これらの判定手法の両方を実行してもよい。例えば、判定部22は、第1及び第2の判定手法の両方で異常発生の判定が成立する場合には軸受3に異常が発生している判定するが、第1及び第2の判定手法のいずれか一方のみで異常発生の判定が成立する場合には軸受3は正常であると判定してもよい。   The determination unit 22 may execute either one of the first determination method and the second determination method, or may execute both of these determination methods. For example, the determination unit 22 determines that an abnormality has occurred in the bearing 3 when the determination of occurrence of abnormality is established in both the first and second determination methods. However, the determination unit 22 uses the first and second determination methods. If the determination of occurrence of abnormality is established with only one of them, the bearing 3 may be determined to be normal.

本実施形態では、対数化振幅分布を対数化前の振幅分布自体から算出した基準分布を比較することで軸受3の状態を判定する。従って、回転軸の回転速度が比較的低速(例えば0.1〜200rpm程度)である場合でも、測定部位や運転条件毎のデータ蓄積による基準値を設定することなく、検波波形の処理で軸受の状態の判定が可能である。   In the present embodiment, the state of the bearing 3 is determined by comparing the logarithmic amplitude distribution with a reference distribution calculated from the amplitude distribution itself before logarithmization. Therefore, even when the rotational speed of the rotating shaft is relatively low (for example, about 0.1 to 200 rpm), the detection waveform processing is performed without setting a reference value based on data accumulation for each measurement site and operating condition. The state can be determined.

対数化推定正規分布は近似で求めるため、実際のデータは対数化推定正規分布を中心にばらつく。このため、対数化推定正規分布をそのまま基準分布とすると、実際の振幅分布のばらつきにより、本来求めたい高振幅側の損傷起因のAEではない正常なAE部分でも基準値越えが発生する可能性があり、誤診断につながる。対数化推定正規分布に余裕度αを加算して得られた基準分布を使用することで、実際のデータの分布のばらつきに起因する誤診断を防ぐことができる。   Since the logarithmic estimated normal distribution is obtained by approximation, the actual data varies around the logarithmic estimated normal distribution. For this reason, if the logarithmic estimated normal distribution is used as the reference distribution as it is, there is a possibility that the reference value may be exceeded even in a normal AE portion that is not an AE caused by damage on the high amplitude side that is originally desired due to variations in the actual amplitude distribution. Yes, leading to misdiagnosis. By using the reference distribution obtained by adding the margin α to the logarithmic estimated normal distribution, it is possible to prevent misdiagnosis due to variations in the distribution of actual data.

外乱ノイズとしての揺らぎ成分を含んだまま振動分布を求めると、振動分布の幅が本来測定したい信号(例えばAE)ではなく揺らぎ成分により決定され、損傷に起因する振動成分による振幅変化がその中に埋もれてしまうおそれがある。そのため、揺らぎ成分により軸受3の状態判別の精度が低下する場合がある。このような場合、揺らぎ成分を除去した後に振幅分布の算出を行えばよい。具体的には、まず、振幅を対数化した後の検波波形に含まれる揺らぎ成分を算出する(図9参照)。次に、検波波形から揺らぎ成分を除去する(図10参照)。揺らぎ成分の算出には、例えば移動平均やローパスフィルタを使用できる。 When the vibration distribution is obtained while including the fluctuation component as disturbance noise, the width of the vibration distribution is determined by the fluctuation component, not the signal to be originally measured (for example, AE), and the amplitude change due to the vibration component due to the damage is included therein. There is a risk of being buried. For this reason, the accuracy of determining the state of the bearing 3 may decrease due to the fluctuation component. In such a case, the amplitude distribution may be calculated after removing the fluctuation component. Specifically, first, the fluctuation component included in the detection waveform after logarithmizing the amplitude is calculated (see FIG. 9). Next, the fluctuation component is removed from the detected waveform (see FIG. 10). For example, a moving average or a low-pass filter can be used to calculate the fluctuation component.

1 軸受状態監視装置
2 回転軸
3 軸受
10 音響センサ
11 プリアンプ
12 フィルタ
13 アンプ
14 サンプリング回路
21 信号処理部
22 判定部
23 表示部
24 記憶部
31 検波処理部
32 振幅分布算出部
33 基準分布生成部
DESCRIPTION OF SYMBOLS 1 Bearing state monitoring apparatus 2 Rotating shaft 3 Bearing 10 Acoustic sensor 11 Preamplifier 12 Filter 13 Amplifier 14 Sampling circuit 21 Signal processing part 22 Determination part 23 Display part 24 Storage part 31 Detection process part 32 Amplitude distribution calculation part 33 Reference distribution generation part

Claims (10)

回転軸を保持する軸受において前記回転軸の回転により発生する信号の時間波形に検波処理を行って検波波形を算出し、
前記検波波形の振幅を対数化し、
前記振幅を対数化した前記検波波形から前記振幅分布を算出し、
前記振幅分布の頻度を対数化した対数化振幅分布を求め、
前記振幅分布の最頻値を求め、前記振幅分布の前記最頻値の振幅よりも低振幅のデータを正規分布で近似した低振幅側分布と、この低振幅側分布を前記最頻値の振幅よりも高振幅側に適用した高振幅側分布とにより構成される推定正規分布を求め、前記推定正規分布の頻度を対数化した対数化推定正規分布を求め、前記対数化推定正規分布に余裕度を加算して基準分布を求め、
前記対数化振幅分布と前記基準分布との比較により前記軸受の状態を判定する、軸受状態監視方法。
In the bearing holding the rotary shaft, the detection waveform is calculated by performing detection processing on the time waveform of the signal generated by the rotation of the rotary shaft,
Logarithmically the amplitude of the detected waveform,
Calculating the amplitude distribution from the detected waveform obtained by logarithmizing the amplitude;
Obtaining a logarithmic amplitude distribution obtained by logarithmizing the frequency of the amplitude distribution;
A mode value of the amplitude distribution is obtained, a low-amplitude side distribution obtained by approximating data having a lower amplitude than the amplitude of the mode value of the amplitude distribution by a normal distribution, and the low-amplitude side distribution is represented by the amplitude of the mode value. An estimated normal distribution composed of a higher amplitude side distribution applied to a higher amplitude side than that, a logarithmic estimated normal distribution obtained by logarithmizing the frequency of the estimated normal distribution is obtained, and a margin is provided in the logarithmized estimated normal distribution. To obtain the reference distribution,
A bearing state monitoring method for determining a state of the bearing by comparing the logarithmic amplitude distribution and the reference distribution .
前記対数化振幅分布に含まれるデータのうち対数化頻度が前記基準分布の同一振幅の頻度を上回るものを多項式で近似して近似係数を求め、
前記近似係数を前記対数化振幅分布と前記基準分布の差異を示す指標として前記軸受の状態の判定に使用する、請求項に記載の軸受状態監視方法。
Approximating the data included in the logarithmic amplitude distribution with a logarithmization frequency exceeding the frequency of the same amplitude of the reference distribution by a polynomial to obtain an approximation coefficient,
The bearing state monitoring method according to claim 1 , wherein the approximation coefficient is used for determining the state of the bearing as an index indicating a difference between the logarithmic amplitude distribution and the reference distribution.
前記多項式は一次式であり、この一次式の勾配又はその逆数の絶対値を前記指標として使用する請求項に記載の軸受状態監視方法。 The bearing state monitoring method according to claim 2 , wherein the polynomial is a linear expression, and an absolute value of a gradient of the linear expression or its reciprocal is used as the index. 前記対数化振幅分布のデータのうち対数化頻度が前記基準分布の同一振幅の頻度を上回るものについて以下の式で計算される指標面積を、前記対数化振幅分布と前記基準分布の差異を示す指標として前記軸受の状態の判定に使用する、請求項に記載の軸受状態監視方法。
Figure 0005143863
The index area calculated by the following formula for the logarithmic amplitude distribution data whose logarithmization frequency exceeds the same amplitude frequency of the reference distribution is an index indicating the difference between the logarithmic amplitude distribution and the reference distribution. The bearing state monitoring method according to claim 1 , wherein the bearing state monitoring method is used to determine the state of the bearing.
Figure 0005143863
前記検波処理における前記回転軸の1回転又は間欠動作1周期当たりのサンプリング点数を、前記回転軸の回転数又は間欠動作の速度にかかわらず一定値とし、
振幅を対数化した前記検波波形を使用して算出した前記振幅分布の頻度を前記一定値で除算することで規格化する、請求項から請求項のいずれか1項に記載の軸受状態監視方法。
The number of sampling points per one rotation or intermittent operation of the rotating shaft in the detection process is set to a constant value regardless of the number of rotations of the rotating shaft or the speed of the intermittent operation,
Normalized by dividing the frequency of the amplitude distribution which is calculated by using the detection waveform amplitude and logarithmic in the constant value, bearing condition monitoring according to any one of claims 1 to 4 Method.
前記振幅を対数化した前記検波波形から前記振幅分布を算出する前に揺らぎ成分を除去する、請求項から請求項のいずれか1項に記載の軸受状態監視方法。 Wherein removing the fluctuation component prior to calculating the amplitude distribution from the logarithmic to said detection waveform amplitude, bearing condition monitoring method according to any one of claims 1 to 5. 前記揺らぎ成分の算出に移動平均又はローパスフィルタを使用する、請求項に記載の軸受状態監視方法。 The bearing state monitoring method according to claim 6 , wherein a moving average or a low-pass filter is used for calculating the fluctuation component. 前記回転軸の回転により発生する信号は、AE、振動、又は超音波のいずれかである、請求項1から請求項のいずれか1項に記載の軸受状態監視方法。 The signal generated by the rotation of the rotary shaft, AE, vibration, or any of the ultrasonic, bearing condition monitoring method according to any one of claims 1 to 7. 回転軸を保持する軸受において前記回転軸の回転により発生する信号を検出するセンサ部と、
前記センサ部が検出した測定波形に検波処理を行って検波波形を算出する検波処理部と、
前記検波波形の振幅を対数化し、前記振幅を対数化した前記検波波形から振幅分布を算出する振幅分布算出部と、
前記振幅分布の最頻値を求め、前記振幅分布の前記最頻値の振幅よりも低振幅のデータを正規分布で近似した低振幅側分布と、この低振幅側分布を前記最頻値の振幅よりも高振幅側に適用した高振幅側分布とにより構成される推定正規分布を求め、前記推定正規分布の頻度を対数化した対数化推定正規分布を求め、前記対数化推定正規分布に余裕度を加算して基準分布を求める基準波形生成部と、
前記振幅分布の頻度を対数化した前記対数化振幅分布と前記基準分布との比較により前記軸受の状態を判定する判定部と
を備える軸受状態監視装置。
A sensor unit for detecting a signal generated by rotation of the rotary shaft in a bearing holding the rotary shaft;
A detection processing unit that calculates a detection waveform by performing detection processing on the measurement waveform detected by the sensor unit;
An amplitude distribution calculating unit that logs the amplitude of the detection waveform and calculates an amplitude distribution from the detection waveform obtained by logarithmizing the amplitude;
A mode value of the amplitude distribution is obtained, a low-amplitude side distribution obtained by approximating data having a lower amplitude than the amplitude of the mode value of the amplitude distribution by a normal distribution, and the low-amplitude side distribution is represented by the amplitude of the mode value. An estimated normal distribution composed of a higher amplitude side distribution applied to a higher amplitude side than that, a logarithmic estimated normal distribution obtained by logarithmizing the frequency of the estimated normal distribution is obtained, and a margin is provided in the logarithmized estimated normal distribution. A reference waveform generation unit for obtaining a reference distribution by adding
A bearing state monitoring device comprising: a determination unit that determines the state of the bearing by comparing the logarithmic amplitude distribution obtained by logarithmizing the frequency of the amplitude distribution and the reference distribution .
前記センサ部は、前記回転軸の回転により前記軸受に発生するAE、振動、又は超音波のいずれかを検出する請求項に記載の軸受状態監視装置。 The bearing state monitoring apparatus according to claim 9 , wherein the sensor unit detects any one of AE, vibration, and ultrasonic waves generated in the bearing by rotation of the rotating shaft.
JP2010125971A 2010-06-01 2010-06-01 Bearing condition monitoring method and bearing condition monitoring apparatus Active JP5143863B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010125971A JP5143863B2 (en) 2010-06-01 2010-06-01 Bearing condition monitoring method and bearing condition monitoring apparatus
KR1020110048309A KR101444506B1 (en) 2010-06-01 2011-05-23 Method for monitoring status of a bearing apparatus for monitoring status of a bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010125971A JP5143863B2 (en) 2010-06-01 2010-06-01 Bearing condition monitoring method and bearing condition monitoring apparatus

Publications (3)

Publication Number Publication Date
JP2011252761A JP2011252761A (en) 2011-12-15
JP2011252761A5 JP2011252761A5 (en) 2012-04-19
JP5143863B2 true JP5143863B2 (en) 2013-02-13

Family

ID=45416815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010125971A Active JP5143863B2 (en) 2010-06-01 2010-06-01 Bearing condition monitoring method and bearing condition monitoring apparatus

Country Status (2)

Country Link
JP (1) JP5143863B2 (en)
KR (1) KR101444506B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101409986B1 (en) * 2013-07-15 2014-06-20 시그널링크 주식회사 Vibration monitoring fault diagnostic device
JP6042467B2 (en) * 2015-02-06 2016-12-14 Jfeアドバンテック株式会社 Bearing condition monitoring method and bearing condition monitoring apparatus
JP2021076533A (en) * 2019-11-12 2021-05-20 三菱重工業株式会社 Device and method for detecting rubbing of rotary machine
JP7285797B2 (en) * 2020-02-28 2023-06-02 株式会社東芝 State evaluation system, state evaluation device, and state evaluation method
WO2023282028A1 (en) * 2021-07-07 2023-01-12 日本精工株式会社 State monitoring apparatus for mechanical apparatus, wind power generation apparatus, state monitoring method, and program

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776419A (en) * 1980-10-31 1982-05-13 Hitachi Ltd Oscillation monitoring device
JPH0663496B2 (en) * 1985-03-04 1994-08-22 日本電装株式会社 Knotting control device for internal combustion engine
DE3875398T2 (en) * 1987-06-03 1993-04-08 Kawasaki Steel Co DEVICE FOR DETECTING FAULTS IN BEARINGS.
JPH01127934A (en) * 1987-11-12 1989-05-19 Hitachi Ltd Damage diagnosing device
JPH01214721A (en) * 1988-02-23 1989-08-29 Photo Composing Mach Mfg Co Ltd Diagnosing system for abnormality of rotary body
JP2547639B2 (en) * 1989-08-11 1996-10-23 三機工業株式会社 Vibration analysis method for inverter control equipment
JPH07218334A (en) * 1994-02-07 1995-08-18 Nippon Steel Corp Method and device for diagnosing bearing

Also Published As

Publication number Publication date
JP2011252761A (en) 2011-12-15
KR101444506B1 (en) 2014-09-24
KR20110132236A (en) 2011-12-07

Similar Documents

Publication Publication Date Title
KR101178962B1 (en) Abnormality diagnostic method and device of extremely low speed rotary machine
EP0209862B1 (en) Rotating machine diagnosis apparatus with acoustic emission technique
EP2237003B1 (en) Method for analysing vibration in rotor blades
CA1203883A (en) Method and apparatus for monitoring cracks of a rotatable body
CN103134679B (en) Bearing state monitors method and bearing state monitoring arrangement
JP5143863B2 (en) Bearing condition monitoring method and bearing condition monitoring apparatus
US8457909B2 (en) Timing analysis
Klausen et al. Multi-band identification for enhancing bearing fault detection in variable speed conditions
EP3012460B1 (en) Systems and methods for monitoring surge conditions
JP7470849B2 (en) ANOMALYSIS DETECTION DEVICE, ANOMALYSIS DETECTION METHOD, AND PROGRAM
KR101857355B1 (en) failure detection method for rotating machinery using Wavelet Entropy(WE) and Cyclic Logarithmic Envelope Spectrum(CLES)
JP2017194371A (en) Method for diagnosing abnormality of diagnosis object in rotational drive device and abnormality diagnosis device used therefor
JP2011252762A (en) Method and device for monitoring bearing state
CN112858484A (en) Friction detection device for rotary machine and friction detection method for rotary machine
JP2695366B2 (en) Abnormality diagnosis method for low-speed rotating machinery
JP7350667B2 (en) Abnormality detection device, rotating machine, abnormality detection method, and program
JP6042467B2 (en) Bearing condition monitoring method and bearing condition monitoring apparatus
JP2006189333A (en) Device for diagnosing abnormality of bearing
JP4071161B2 (en) Deterioration diagnosis method for rotating machinery
JP2006214901A (en) Bearing damage evaluation device, bearing damage evaluation method, bearing damage evaluation program, and storage medium with program stored therein
JP7040920B2 (en) Bearing condition monitoring device and abnormality diagnosis method
JP3144878B2 (en) Method for diagnosing abnormal sound of rotating machine, device therefor, and manufacturing line for rotating machine
JP7476440B2 (en) Method for diagnosing abnormalities in the shock system of rotating machinery
CN114076678B (en) Removing asymptotically decaying DC bias effects from vibration waveforms
KR102513378B1 (en) Apparatus and method for imaging time series signals of rotating equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5143863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150