JP2018040594A - Rotary shaft device and method of determining presence/absence of bearing anomaly in the same - Google Patents

Rotary shaft device and method of determining presence/absence of bearing anomaly in the same Download PDF

Info

Publication number
JP2018040594A
JP2018040594A JP2016173035A JP2016173035A JP2018040594A JP 2018040594 A JP2018040594 A JP 2018040594A JP 2016173035 A JP2016173035 A JP 2016173035A JP 2016173035 A JP2016173035 A JP 2016173035A JP 2018040594 A JP2018040594 A JP 2018040594A
Authority
JP
Japan
Prior art keywords
waveform
bearing
frequency
shaft device
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016173035A
Other languages
Japanese (ja)
Inventor
一成 小池
Kazunari Koike
一成 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2016173035A priority Critical patent/JP2018040594A/en
Publication of JP2018040594A publication Critical patent/JP2018040594A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To accurately detect bearing anomalies at a low cost.SOLUTION: A main shaft device 1 comprising a main shaft 3 rotatably supported by bearings 4 has a control unit 7 including; measurement means (vibration sensor 5) for measuring vibration of the bearings 4 while the main shaft 3 is rotating; waveform extraction means (computation unit 8) configured to apply signal processing to a measured signal waveform to extract a waveform in a frequency band pre-specified in accordance with rotation speed of the main shaft 3; definite integration means (computation unit 8) configured to definitely integrate the extracted waveform to derive area between the waveform and a lateral axis; and determination means (computation unit 8) configured to compare the derived area with a preset threshold to determine the presence/absence of anomalies in the bearings 4.SELECTED DRAWING: Figure 1

Description

本発明は、工作機械の主軸装置等、回転軸を軸受で軸支してなる回転軸装置に関し、詳しくは、分解することなく軸受の異常を判定することができる回転軸装置と、当該回転軸装置における軸受の異常判定方法とに関する。   The present invention relates to a rotary shaft device in which a rotary shaft is supported by a bearing, such as a main spindle device of a machine tool, and more specifically, a rotary shaft device capable of determining a bearing abnormality without disassembly, and the rotary shaft The present invention relates to a bearing abnormality determination method in an apparatus.

軸受は、工作機械の主軸装置等の多くの回転軸装置に使用されている。中でも、ころがり軸受は、一般的に、内輪、外輪、複数個の転動体、転動体を等間隔に保つための保持器で構成され、内輪が回転軸と共に回転し、外輪はハウジングに組み込まれ、固定されている。
このような軸受の異常としては、潤滑不良、異物の混入、摩耗、過大荷重等があり、回転軸装置を用いた生産現場においては、突然の設備故障による生産性低下を防ぐため、装置の常時監視が求められている。この軸受の異常を判定するために、例えば特許文献1には、回転部から発生する振動信号を周波数解析して実測データの周波数成分を求めると共に、回転部の異常に起因する振動の異常周波数を算出して、当該異常周波数に対応した実測データの周波数成分を抽出し、抽出された周波数成分と閾値との比較照合を行うことで異常の有無を判定する発明が開示されている。
The bearing is used in many rotating shaft devices such as a main shaft device of a machine tool. Among them, the rolling bearing is generally composed of an inner ring, an outer ring, a plurality of rolling elements, a cage for keeping the rolling elements at equal intervals, the inner ring rotates together with the rotating shaft, and the outer ring is incorporated in the housing. It is fixed.
Such bearing abnormalities include poor lubrication, contamination of foreign materials, wear, excessive load, etc., and in production sites using rotary shaft devices, to prevent a decrease in productivity due to sudden equipment failure, Monitoring is required. In order to determine the abnormality of this bearing, for example, in Patent Document 1, the frequency component of the measured data is obtained by analyzing the frequency of the vibration signal generated from the rotating part, and the abnormal frequency of the vibration caused by the abnormality of the rotating part is obtained. An invention is disclosed in which the frequency component of the measured data corresponding to the abnormal frequency is calculated and the frequency component of the measured data is extracted, and the presence / absence of the abnormality is determined by comparing and comparing the extracted frequency component with a threshold value.

特許第5146008号公報Japanese Patent No. 5146008

従来の方法では、正確な異常判定をするには、非常に性能の高い測定器が必要であるが、性能の高い測定器は高価なため、限られた設備でしか機械の判定ができない。また、振動は突発的に大きくなることがあるため、振動値の閾値による判定だけでは誤診する恐れがある。   In the conventional method, a very high-performance measuring instrument is required to accurately determine an abnormality. However, since a high-performance measuring instrument is expensive, a machine can be determined only with limited equipment. Moreover, since vibration may suddenly increase, there is a risk of misdiagnosis only by determination based on the threshold value of the vibration value.

そこで、本発明は、軸受の異常の有無を低コストかつ高精度に判定することができる回転軸装置及び、回転軸装置における軸受の異常判定方法とを提供することを目的としたものである。   Accordingly, an object of the present invention is to provide a rotary shaft device capable of determining the presence or absence of a bearing abnormality with low cost and high accuracy, and a method for determining a bearing abnormality in the rotary shaft device.

上記目的を達成するために、請求項1に記載の発明は、回転軸を軸受で軸支してなる回転軸装置であって、
前記回転軸の回転中の前記軸受の振動又は音を測定する測定手段と、測定した信号波形に信号処理を施して、前記回転軸の回転速度に対応して予め特定された周波数帯域での波形を抽出する波形抽出手段と、抽出された波形を定積分して横軸との間の面積を算出する定積分手段と、算出された面積を予め設定された閾値と比較して前記軸受の異常の有無を判定する判定手段とを含んでなることを特徴とする。
請求項2に記載の発明は、請求項1の構成において、前記波形抽出手段は、前記信号波形の絶対値を取得して前記周波数帯域のフィルタ処理を施した後、周波数解析を行って、前記軸受の異常に起因する周波数の整数倍の周期でエンベロープ処理を施し、再度周波数解析を行って前記波形を抽出することを特徴とする。
請求項3に記載の発明は、請求項2の構成において、前記波形抽出手段は、最初の前記周波数解析を行った後、所定の数のピーク周波数を算出し、各前記ピーク周波数を予め設定された前記軸受の異常に起因する周波数とそれぞれ比較して、各周波数間の誤差がそれぞれ所定値以下である場合にのみ、前記エンベロープ処理を施し、再度周波数解析を行って前記波形を抽出することを特徴とする。
請求項4に記載の発明は、請求項1乃至3の何れかの構成において、前記定積分手段は、算出した前記面積を、前記軸受の部位ごとに予め設定された周波数間隔ごとに分割し、前記判定手段は、前記軸受に異常ありと判定した場合、分割した前記周波数間隔ごとの面積と、前記閾値を前記周波数間隔ごとに分割した面積とを比較して変化率をそれぞれ算出し、各前記変化率を前記周波数間隔ごとに予め設定された各下限変化率と比較して、前記変化率が前記下限変化率を超えていた場合、当該変化率の前記周波数間隔を含む前記軸受の部位を異常と特定することを特徴とする。
請求項5に記載の発明は、請求項1乃至4の何れかの構成において、前記判定手段による判定結果を表示する表示手段を備えることを特徴とする。
請求項6に記載の発明は、請求項5の構成において、前記波形抽出手段で抽出された波形を記憶する記憶手段を備え、前記表示手段は、前記記憶手段に記憶された過去の前記波形と、前記波形抽出手段で抽出された現在の前記波形とを併せて表示することを特徴とする。
上記目的を達成するために、請求項7に記載の発明は、回転軸を軸受で軸支してなる回転軸装置において、前記軸受の異常を判定する方法であって、
前記回転軸の回転中の前記軸受の振動又は音をセンサによって測定する測定ステップと、測定した信号波形に信号処理を施して、前記回転軸の回転速度に対応して予め特定された周波数帯域での波形を抽出する波形抽出ステップと、抽出された波形を定積分して横軸との間の面積を算出する定積分ステップと、算出された面積を予め設定された閾値と比較して前記軸受の異常の有無を判定する判定ステップとを実行することを特徴とする。
In order to achieve the above object, the invention according to claim 1 is a rotating shaft device in which a rotating shaft is supported by a bearing,
A measuring means for measuring vibration or sound of the bearing during rotation of the rotating shaft, a signal processing is performed on the measured signal waveform, and a waveform in a frequency band specified in advance corresponding to the rotational speed of the rotating shaft A waveform extracting means for extracting the calculated waveform, a definite integrating means for calculating the area between the horizontal axis by deintegrating the extracted waveform, and comparing the calculated area with a preset threshold value to determine whether the bearing is abnormal. And determining means for determining whether or not there is any.
According to a second aspect of the present invention, in the configuration of the first aspect, the waveform extraction unit obtains an absolute value of the signal waveform, performs a filtering process of the frequency band, performs frequency analysis, and performs the frequency analysis. Envelope processing is performed at a cycle that is an integral multiple of the frequency caused by a bearing abnormality, and the waveform is extracted again by performing frequency analysis.
According to a third aspect of the present invention, in the configuration of the second aspect, the waveform extracting unit calculates a predetermined number of peak frequencies after performing the first frequency analysis, and sets each peak frequency in advance. In comparison with the frequency caused by the bearing abnormality, the envelope processing is performed only when the error between the frequencies is equal to or less than a predetermined value, and the waveform is extracted again by performing frequency analysis. Features.
According to a fourth aspect of the present invention, in the configuration according to any one of the first to third aspects, the definite integration unit divides the calculated area for each frequency interval set in advance for each part of the bearing, When determining that the bearing is abnormal, the determination means calculates the rate of change by comparing the divided area for each frequency interval with the area divided for the threshold value for each frequency interval, When the change rate is compared with each lower limit change rate set in advance for each frequency interval, and the change rate exceeds the lower limit change rate, the bearing portion including the frequency interval of the change rate is abnormal. It is characterized by specifying.
According to a fifth aspect of the present invention, in the configuration according to any one of the first to fourth aspects, the display device displays a determination result by the determination unit.
A sixth aspect of the present invention is the configuration of the fifth aspect, further comprising storage means for storing the waveform extracted by the waveform extraction means, wherein the display means includes the past waveform stored in the storage means. The current waveform extracted by the waveform extraction means is displayed together.
In order to achieve the above object, an invention according to claim 7 is a method of determining an abnormality of the bearing in a rotating shaft device in which the rotating shaft is supported by a bearing,
A measurement step of measuring vibration or sound of the bearing during rotation of the rotating shaft by a sensor, and applying signal processing to the measured signal waveform, in a frequency band specified in advance corresponding to the rotation speed of the rotating shaft A waveform extracting step for extracting the waveform of the bearing, a constant integration step for calculating the area between the horizontal axis by deintegrating the extracted waveform, and comparing the calculated area with a preset threshold value. A determination step of determining whether or not there is an abnormality.

本発明によれば、軸受の状態を低コストで高精度に診断し、異常の有無を判定することができる。よって、突然の設備故障による生産性低下を防ぐことができる。   According to the present invention, the state of the bearing can be diagnosed with high accuracy at low cost, and the presence or absence of abnormality can be determined. Therefore, it is possible to prevent a decrease in productivity due to a sudden equipment failure.

主軸装置の概略図である。It is the schematic of a main shaft apparatus. 異常判定制御のフローチャートである。It is a flowchart of abnormality determination control. 振動センサで測定した波形の概略を示す図である。It is a figure which shows the outline of the waveform measured with the vibration sensor. 演算装置で周波数解析した波形の概略を示す図である。It is a figure which shows the outline of the waveform which frequency-analyzed with the arithmetic unit. 表示装置に表示する波形を示すグラフである。It is a graph which shows the waveform displayed on a display apparatus. 記憶装置に記憶した前回の波形と今回の測定結果の波形とを表示装置に表示した状態を示すグラフである。It is a graph which shows the state which displayed on the display apparatus the waveform of the last time memorize | stored in the memory | storage device, and the waveform of this measurement result. 周波数間隔を設定した波形のグラフで、上が軸受の外輪、中が軸受の内輪、下が転動体である。In the waveform graph with frequency intervals set, the upper is the outer ring of the bearing, the inner is the inner ring of the bearing, and the lower is the rolling element.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、回転軸装置の一例である工作機械の主軸装置を示す概略図である。
この主軸装置1は、ハウジング2内に、図示しないモータによって回転駆動する回転軸としての主軸3を、転がり軸受である軸受4,4・・によって軸支してなり、主軸3の先端に工具が着脱可能となっている。
ハウジング2には、回転時の振動を検出する測定手段としての振動センサ5と、主軸3の回転速度を検出する回転速度検出器6とが取り付けられている。振動センサ5は、軸受4の近傍の静止部に設置されている。但し、設置する振動センサ5の数を限定するものではなく、1つのセンサでも異常の検知は可能だが、複数設置することで、軸受の状態をより正確に判断することができる。また、振動センサ5の代用として音を測定するセンサでもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram illustrating a spindle device of a machine tool that is an example of a rotary shaft device.
The spindle device 1 includes a housing 2 in which a spindle 3 as a rotating shaft that is driven to rotate by a motor (not shown) is supported by bearings 4, 4... That are rolling bearings, and a tool is attached to the tip of the spindle 3. It is removable.
A vibration sensor 5 as a measuring means for detecting vibration during rotation and a rotational speed detector 6 for detecting the rotational speed of the main shaft 3 are attached to the housing 2. The vibration sensor 5 is installed in a stationary part near the bearing 4. However, the number of vibration sensors 5 to be installed is not limited, and a single sensor can detect an abnormality, but by installing a plurality of sensors, the state of the bearing can be determined more accurately. A sensor for measuring sound may be used instead of the vibration sensor 5.

7は制御装置で、制御装置7には、演算装置8と、記憶装置9と、表示装置10と、入力装置11とが設けられている。主軸3は、制御装置7から指令された回転速度で回転し、演算装置8には、振動センサ5で検出された回転中の振動が入力される。主軸3の回転速度は、入力装置11によって任意で設定でき、主軸3の最高回転を設定できる。制御装置7は、記憶装置9に記憶された加工プログラムに従ってモータを回転駆動させて加工を行う他、後述する軸受4の異常判定も実行する。ここでは演算装置8が異常判定に係る波形抽出手段及び定積分手段、判定手段となり、記憶装置9が記憶手段、表示装置10が表示手段となる。   Reference numeral 7 denotes a control device, and the control device 7 is provided with an arithmetic device 8, a storage device 9, a display device 10, and an input device 11. The main shaft 3 rotates at a rotational speed commanded from the control device 7, and the vibration during rotation detected by the vibration sensor 5 is input to the arithmetic device 8. The rotational speed of the main shaft 3 can be arbitrarily set by the input device 11, and the maximum rotation of the main shaft 3 can be set. The control device 7 performs processing by rotating the motor in accordance with the processing program stored in the storage device 9, and also performs abnormality determination of the bearing 4 described later. Here, the arithmetic unit 8 is a waveform extraction unit, a definite integration unit, and a determination unit related to abnormality determination, the storage device 9 is a storage unit, and the display unit 10 is a display unit.

また、記憶装置9には、図2に示すシーケンスの異常判定プログラムが記憶されており、制御装置7は、主軸3が回転すると、オペレータの入力指示により、或いは予め設定された所定の時間間隔ごとに自動的に、当該異常判定プログラムに基づいて軸受4の異常判定制御を実行する。以下、この異常判定制御を図2に基づいて説明する。
まず、予め制御装置7に内蔵された演算装置8で、回転速度と軸受4の転動体の数、転動体の直径、転動体の回転ピッチ円直径から、軸受4の外輪、内輪、転動体、保持器の傷起因の周波数をそれぞれ算出して記憶装置9に記憶しておく。または、事前に各回転速度の軸受異常に起因する周波数を計算し、記憶装置9に記憶しておく。
The storage device 9 stores an abnormality determination program for the sequence shown in FIG. 2, and the control device 7 is operated by an operator input instruction or at predetermined time intervals when the spindle 3 rotates. The abnormality determination control of the bearing 4 is automatically executed based on the abnormality determination program. Hereinafter, the abnormality determination control will be described with reference to FIG.
First, in the calculation device 8 built in the control device 7 in advance, the outer ring, the inner ring, and the rolling element of the bearing 4 are calculated from the rotational speed, the number of rolling elements of the bearing 4, the diameter of the rolling element, and the rotational pitch circle diameter of the rolling element. The frequencies resulting from the scratches on the cage are calculated and stored in the storage device 9. Alternatively, the frequency resulting from the bearing abnormality at each rotational speed is calculated in advance and stored in the storage device 9.

そして、異常判定制御がスタートすると、S1で、回転速度検出器6を介して主軸3の回転数が取得されると共に、S2で、振動センサ5を介して図3に示すような回転中の振動が測定され、それぞれ記憶装置9に記憶される(測定ステップ)。
次に、S3で、制御装置7に組み込まれた図示しないA/D変換器により、測定した振動のアナログ信号をデジタル信号に変換後、S4で整流処理して波形の絶対値を取得する。
次に、S5で、回転速度に対応した特定の周波数帯域のみを抽出するバンドパスフィルタ処理を施し、S6で、抽出した波形の周波数解析を行う。この周波数解析は、図4に示すような周波数スペクトルを取得するFFT解析処理で、取得したスペクトル波形より、S7で、ピーク5点の周波数を算出する。但し、算出するピークは5点に限定しない。
When the abnormality determination control is started, the rotational speed of the main shaft 3 is acquired via the rotational speed detector 6 at S1, and the rotating vibration as shown in FIG. Are measured and stored in the storage device 9 (measurement step).
Next, in S3, an analog signal of vibration measured by an A / D converter (not shown) incorporated in the control device 7 is converted into a digital signal, and then rectified in S4 to obtain the absolute value of the waveform.
Next, in S5, band pass filter processing for extracting only a specific frequency band corresponding to the rotation speed is performed, and in S6, frequency analysis of the extracted waveform is performed. This frequency analysis is an FFT analysis process for acquiring a frequency spectrum as shown in FIG. 4, and the frequency at five peaks is calculated in S7 from the acquired spectrum waveform. However, the calculated peak is not limited to five points.

次に、S8で、算出したピーク5点の周波数と、記憶装置9に記憶されている軸受異常起因の周波数とを比較し、両者間の誤差が予め設定した所定値(ここでは10Hz)以下か否かを判別する。ここで、周波数の誤差が10Hzより大きい場合は、S9で軸受4に異常なしと判定する。次のS10の判別で主軸3への回転停止指令が確認されなければ、S1に戻って再び回転数を取得して以降の処理を行う。S10で回転停止指令が確認されれば制御を終了する。
一方、S8の判別で周波数間の誤差が10Hz以下であった場合は、S11で、S4で取得した振動の絶対値の波形に、軸受異常に起因する周波数の整数倍の周期でエンベロープ処理を行った後、S12で再度周波数解析を行い、図5に示すような波形を得る(波形抽出ステップ)。
Next, in S8, the calculated frequency of the five points of the peak is compared with the frequency caused by the bearing abnormality stored in the storage device 9, and whether the error between them is equal to or less than a predetermined value (here, 10 Hz). Determine whether or not. If the frequency error is greater than 10 Hz, it is determined that there is no abnormality in the bearing 4 in S9. If the rotation stop command to the spindle 3 is not confirmed in the next determination of S10, the process returns to S1 to acquire the rotation speed again and perform the subsequent processing. If the rotation stop command is confirmed in S10, the control is terminated.
On the other hand, if the error between frequencies is 10 Hz or less in the determination of S8, in S11, the waveform of the absolute value of the vibration acquired in S4 is subjected to envelope processing at a cycle that is an integral multiple of the frequency caused by the bearing abnormality. After that, frequency analysis is performed again in S12 to obtain a waveform as shown in FIG. 5 (waveform extraction step).

次に、S13で、取得した波形を定積分して横軸とで囲まれたグラフの面積Sを算出する(定積分ステップ)。
そして、S14で、算出したグラフの面積Sが予め設定した閾値より大きいか否かを判別し、面積Sが閾値より大きい場合、S15で軸受4に異常ありと判定し、その判定結果を表示装置10に表示する(判定ステップ)。なお、閾値は任意で変更することが可能である。異常ありの報知は表示以外にランプやブザー等の他の報知手段と併せて行うようにしてもよい。
Next, in S13, the acquired waveform is definitely integrated to calculate the area S of the graph surrounded by the horizontal axis (definite integration step).
In S14, it is determined whether or not the calculated area S of the graph is larger than a preset threshold. If the area S is larger than the threshold, it is determined in S15 that the bearing 4 is abnormal, and the determination result is displayed on the display device. 10 (determination step). The threshold value can be arbitrarily changed. The notification that there is an abnormality may be performed together with other notification means such as a lamp and a buzzer in addition to the display.

ここで、回転速度に対応した周波数帯域では、図7に示すように、予め軸受外輪(同図上)、軸受内輪(同図中)、転動体(同図下)でそれぞれ周波数間隔(図7の縦線で仕切られる間隔)を設定して、閾値の面積を各周波数間隔ごとに分割した面積S,S,S・・を算出し、外輪、内輪、転動体に異常がある場合の変化率が大きくなる周波数間隔とその下限変化率とを記憶装置9に保存しておく。
よって、S13では、波形を定積分すると共に、各周波数間隔ごとの面積も算出し、変化率が大きくなる周波数間隔において、閾値から分割した面積からの変化率を求める。次に、S14では、求めた周波数間隔での変化率と記憶装置9に保存していた下限変化率とを比較して、下限変化率を越えていれば、その変化率となった周波数間隔を含む場所(外輪、内輪、転動体)を軸受4の異常個所として特定することができる。
従って、S15では、異常ありの判定結果と共に、特定した異常箇所を併せて表示することで、異常部位も容易に把握できる。なお、記憶装置9に記憶した周波数間隔や下限変化率は任意に変更することができる。変化率の比較も全ての周波数間隔で行ってもよい。
Here, in the frequency band corresponding to the rotational speed, as shown in FIG. 7, frequency intervals (see FIG. 7) are respectively obtained beforehand for the bearing outer ring (upper figure), the bearing inner ring (in the figure), and the rolling element (lower figure). When the area S 1 , S 2 , S 3 ... Is calculated by dividing the threshold area for each frequency interval, the outer ring, the inner ring, and the rolling element are abnormal. Are stored in the storage device 9 and the frequency interval at which the rate of change increases.
Therefore, in S13, the waveform is definitely integrated, the area for each frequency interval is also calculated, and the change rate from the area divided from the threshold value is obtained in the frequency interval where the change rate becomes large. Next, in S14, the change rate at the obtained frequency interval is compared with the lower limit change rate stored in the storage device 9. If the lower limit change rate is exceeded, the frequency interval at which the change rate is obtained is determined. The place (outer ring, inner ring, rolling element) to be included can be specified as an abnormal part of the bearing 4.
Therefore, in S15, the abnormal part can be easily grasped by displaying the specified abnormal part together with the determination result of abnormality. The frequency interval and the lower limit change rate stored in the storage device 9 can be arbitrarily changed. The change rate comparison may also be performed at every frequency interval.

一方、S14の判別でグラフの面積Sが閾値以下であった場合、S16で異常なしと判定してS10へ移行し、回転停止指令の有無を確認する。
なお、判定結果が異常なしの場合でも表示装置10に表示してもよいし、S13で算出した波形を記憶装置9に保存し、図6に示すように、表示装置10に記憶した過去の測定結果と今回の測定結果とを同じグラフ上に表示するようにしてもよい。グラフ上に表示できるデータは2つに限定するものではなく、さらに遡って3つ以上の測定結果を併せて表示することもできる。
On the other hand, if the area S of the graph is equal to or smaller than the threshold value in the determination in S14, it is determined in S16 that there is no abnormality, the process proceeds to S10, and the presence / absence of a rotation stop command is confirmed.
Even if the determination result is normal, it may be displayed on the display device 10, or the waveform calculated in S13 is stored in the storage device 9, and the past measurement stored in the display device 10 as shown in FIG. The result and the current measurement result may be displayed on the same graph. The data that can be displayed on the graph is not limited to two, and three or more measurement results can also be displayed retroactively.

このように、上記形態の主軸装置1によれば、制御装置7に、主軸3の回転中の軸受4の振動を測定する測定手段(振動センサ5)と、測定した信号波形に信号処理を施して、主軸3の回転速度に対応して予め特定された周波数帯域での波形を抽出する波形抽出手段(演算装置8)と、抽出された波形を定積分して横軸との間の面積Sを算出する定積分手段(演算装置8)と、算出された面積Sを予め設定された閾値と比較して軸受4の異常の有無を判定する判定手段(演算装置8)とを備えたことで、軸受4の状態を低コストで高精度に診断し、異常の有無を判定することができる。よって、突然の設備故障による生産性低下を防ぐことができる。   Thus, according to the spindle device 1 of the above embodiment, the control device 7 performs signal processing on the measurement signal (vibration sensor 5) for measuring the vibration of the bearing 4 during rotation of the spindle 3 and the measured signal waveform. Then, a waveform extraction means (calculation device 8) for extracting a waveform in a frequency band specified in advance corresponding to the rotational speed of the main shaft 3, and an area S between the horizontal axis by definite integration of the extracted waveform And a determinator (arithmetic device 8) for determining whether or not there is an abnormality in the bearing 4 by comparing the calculated area S with a preset threshold value. The state of the bearing 4 can be diagnosed with high accuracy at low cost and the presence or absence of abnormality can be determined. Therefore, it is possible to prevent a decrease in productivity due to a sudden equipment failure.

なお、上記形態では、FFT解析して得たスペクトル波形からピーク5つの周波数を算出して軸受異常に起因する周波数と比較して異常なしの判定を行っているが(S6〜S9)、これらの処理を省略して、フィルタ処理を施した波形をS11でエンベロープ処理してそれ以降の処理を行ってグラフの面積Sを算出し、異常判定を行うようにしてもよい。   In the above embodiment, the peak five frequencies are calculated from the spectrum waveform obtained by the FFT analysis and compared with the frequency caused by the bearing abnormality to determine that there is no abnormality (S6 to S9). The processing may be omitted, and the waveform subjected to the filter processing may be envelope-processed in S11, the subsequent processing may be performed to calculate the area S of the graph, and the abnormality determination may be performed.

その他、本発明の回転軸装置や軸受の異常判定方法は、工作機械の主軸装置に限らず、自動車や鉄道車両、船舶等の他の機械設備においても適用可能である。   In addition, the abnormality determination method of the rotating shaft device and the bearing according to the present invention is not limited to the main shaft device of a machine tool, but can be applied to other mechanical equipment such as an automobile, a railcar, and a ship.

1・・主軸装置、2・・ハウジング、3・・主軸、4・・軸受、5・・振動センサ、6・・回転速度検出器、7・・制御装置、8・・演算装置、9・・記憶装置、10・・表示装置。   1 .... Spindle device, 2 .... Housing, 3 .... Spindle, 4 .... Bearing, 5 .... Vibration sensor, 6 .... Rotational speed detector, 7 .... Control device, 8 .... Calculation device, ... Storage device, 10 ... display device.

Claims (7)

回転軸を軸受で軸支してなる回転軸装置であって、
前記回転軸の回転中の前記軸受の振動又は音を測定する測定手段と、
測定した信号波形に信号処理を施して、前記回転軸の回転速度に対応して予め特定された周波数帯域での波形を抽出する波形抽出手段と、
抽出された波形を定積分して横軸との間の面積を算出する定積分手段と、
算出された面積を予め設定された閾値と比較して前記軸受の異常の有無を判定する判定手段と
を含んでなることを特徴とする回転軸装置。
A rotary shaft device having a rotary shaft supported by a bearing,
Measuring means for measuring vibration or sound of the bearing during rotation of the rotating shaft;
Waveform extraction means for performing signal processing on the measured signal waveform and extracting a waveform in a frequency band specified in advance corresponding to the rotation speed of the rotation shaft;
A definite integration means for calculating the area between the horizontal axis by deintegrating the extracted waveform;
A rotating shaft device comprising: a determining unit that compares the calculated area with a preset threshold value and determines whether or not there is an abnormality in the bearing.
前記波形抽出手段は、前記信号波形の絶対値を取得して前記周波数帯域のフィルタ処理を施した後、周波数解析を行って、前記軸受の異常に起因する周波数の整数倍の周期でエンベロープ処理を施し、再度周波数解析を行って前記波形を抽出することを特徴とする請求項1に記載の回転軸装置。   The waveform extraction means acquires the absolute value of the signal waveform and performs the filter processing of the frequency band, and then performs frequency analysis, and performs envelope processing at a cycle that is an integral multiple of the frequency caused by the abnormality of the bearing. The rotary shaft device according to claim 1, wherein the waveform is extracted by performing frequency analysis again. 前記波形抽出手段は、最初の前記周波数解析を行った後、所定の数のピーク周波数を算出し、各前記ピーク周波数を予め設定された前記軸受の異常に起因する周波数とそれぞれ比較して、各周波数間の誤差がそれぞれ所定値以下である場合にのみ、前記エンベロープ処理を施し、再度周波数解析を行って前記波形を抽出することを特徴とする請求項2に記載の回転軸装置。   The waveform extracting means calculates a predetermined number of peak frequencies after performing the first frequency analysis, compares each peak frequency with a preset frequency caused by the bearing abnormality, 3. The rotating shaft device according to claim 2, wherein the envelope processing is performed only when an error between frequencies is equal to or less than a predetermined value, and the waveform is extracted by performing frequency analysis again. 前記定積分手段は、算出した前記面積を、前記軸受の部位ごとに予め設定された周波数間隔ごとに分割し、
前記判定手段は、前記軸受に異常ありと判定した場合、分割した前記周波数間隔ごとの面積と、前記閾値を前記周波数間隔ごとに分割した面積とを比較して変化率をそれぞれ算出し、各前記変化率を前記周波数間隔ごとに予め設定された各下限変化率と比較して、前記変化率が前記下限変化率を超えていた場合、当該変化率の前記周波数間隔を含む前記軸受の部位を異常と特定することを特徴とする請求項1乃至3の何れかに記載の回転軸装置。
The definite integration means divides the calculated area for each frequency interval set in advance for each part of the bearing,
When determining that the bearing is abnormal, the determination means calculates the rate of change by comparing the divided area for each frequency interval with the area divided for the threshold value for each frequency interval, When the change rate is compared with each lower limit change rate set in advance for each frequency interval, and the change rate exceeds the lower limit change rate, the bearing portion including the frequency interval of the change rate is abnormal. The rotating shaft device according to any one of claims 1 to 3, wherein the rotating shaft device is specified.
前記判定手段による判定結果を表示する表示手段を備えることを特徴とする請求項1乃至4の何れかに記載の回転軸装置。   The rotary shaft device according to claim 1, further comprising a display unit that displays a determination result by the determination unit. 前記波形抽出手段で抽出された波形を記憶する記憶手段を備え、前記表示手段は、前記記憶手段に記憶された過去の前記波形と、前記波形抽出手段で抽出された現在の前記波形とを併せて表示することを特徴とする請求項5に記載の回転軸装置。   Storage means for storing the waveform extracted by the waveform extraction means; and the display means combines the past waveform stored in the storage means and the current waveform extracted by the waveform extraction means. The rotating shaft device according to claim 5, wherein the rotating shaft device is displayed. 回転軸を軸受で軸支してなる回転軸装置において、前記軸受の異常を判定する方法であって、
前記回転軸の回転中の前記軸受の振動又は音をセンサによって測定する測定ステップと、
測定した信号波形に信号処理を施して、前記回転軸の回転速度に対応して予め特定された周波数帯域での波形を抽出する波形抽出ステップと、
抽出された波形を定積分して横軸との間の面積を算出する定積分ステップと、
算出された面積を予め設定された閾値と比較して前記軸受の異常の有無を判定する判定ステップと
を実行することを特徴とする回転軸装置における軸受の異常判定方法。
In a rotary shaft device in which a rotary shaft is supported by a bearing, a method for determining an abnormality of the bearing,
A measurement step of measuring vibration or sound of the bearing during rotation of the rotating shaft with a sensor;
A waveform extraction step of performing signal processing on the measured signal waveform and extracting a waveform in a frequency band specified in advance corresponding to the rotation speed of the rotation shaft;
A definite integration step of calculating the area between the horizontal axis by deintegrating the extracted waveform;
A determination step of comparing the calculated area with a preset threshold value to determine the presence or absence of abnormality of the bearing, and a method of determining abnormality of the bearing in the rotary shaft device.
JP2016173035A 2016-09-05 2016-09-05 Rotary shaft device and method of determining presence/absence of bearing anomaly in the same Pending JP2018040594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016173035A JP2018040594A (en) 2016-09-05 2016-09-05 Rotary shaft device and method of determining presence/absence of bearing anomaly in the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016173035A JP2018040594A (en) 2016-09-05 2016-09-05 Rotary shaft device and method of determining presence/absence of bearing anomaly in the same

Publications (1)

Publication Number Publication Date
JP2018040594A true JP2018040594A (en) 2018-03-15

Family

ID=61625629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016173035A Pending JP2018040594A (en) 2016-09-05 2016-09-05 Rotary shaft device and method of determining presence/absence of bearing anomaly in the same

Country Status (1)

Country Link
JP (1) JP2018040594A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230097101A1 (en) * 2020-05-19 2023-03-30 Mitsubishi Electric Corporation Vibration analysis apparatus and vibration analysis method
WO2023063435A1 (en) * 2021-10-14 2023-04-20 エヌティーエンジニアリング株式会社 Working machine bearing quality determining method and system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230097101A1 (en) * 2020-05-19 2023-03-30 Mitsubishi Electric Corporation Vibration analysis apparatus and vibration analysis method
US11754468B2 (en) 2020-05-19 2023-09-12 Mitsubishi Electric Corporation Vibration analysis apparatus and vibration analysis method
WO2023063435A1 (en) * 2021-10-14 2023-04-20 エヌティーエンジニアリング株式会社 Working machine bearing quality determining method and system

Similar Documents

Publication Publication Date Title
EP2169497B1 (en) Dynamic vibration condition monitoring parameter normalization system and method
JP6657256B2 (en) Fault diagnosis method and fault diagnosis device for feed axis
JP6499946B2 (en) Machine tool bearing diagnostic device
EP2570879A2 (en) Condition monitoring system and method
US11579043B2 (en) Information terminal and machine component diagnosis system
KR101498527B1 (en) Diagnosis system using vibration frequency analysis program for rotation equipment of power plant
JP7000135B2 (en) Feed shaft abnormality diagnosis method and abnormality diagnosis device
JP2018028512A (en) Machine with rotating shaft
JP6507297B1 (en) Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program
JP6511573B1 (en) Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program
KR20140004987A (en) Vibration signal analysis method in motors
JP2018040594A (en) Rotary shaft device and method of determining presence/absence of bearing anomaly in the same
KR20110122483A (en) Built-in vibration monitor having order spectrum analysis function and fault diagnosis method of variable rotating speed machine using the monitor
JP2019158514A (en) Inspection device of bearing for passenger conveyor, and inspection method of bearing for passenger conveyor
JP2018091638A (en) Rotating body inspection device
JP2018040456A (en) Rotary shaft device and abnormality diagnostic method of bearing on rotary shaft device
JP2018028865A (en) Machine with rotation axis
JP6995969B1 (en) Diagnostic device for rotating equipment
JP3739681B2 (en) Vibration monitoring method and apparatus
KR101482511B1 (en) Diagnosis System and Method of Bearing Defect by Phase Lag and Data Dispersion Shape Factor
JP6348934B2 (en) Abnormality diagnosis system and abnormality diagnosis method
JP2000162035A (en) Method and device for determining abnormality in rotating equipment
CN114829895A (en) Vibration analysis device and vibration measurement system
JP5321646B2 (en) Abnormality inspection method and abnormality inspection device
JP6460030B2 (en) Rotating bearing state determination device and state determination method