JP6511573B1 - Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program - Google Patents

Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program Download PDF

Info

Publication number
JP6511573B1
JP6511573B1 JP2018123489A JP2018123489A JP6511573B1 JP 6511573 B1 JP6511573 B1 JP 6511573B1 JP 2018123489 A JP2018123489 A JP 2018123489A JP 2018123489 A JP2018123489 A JP 2018123489A JP 6511573 B1 JP6511573 B1 JP 6511573B1
Authority
JP
Japan
Prior art keywords
vibration
frequency
bearing
value
rotational
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018123489A
Other languages
Japanese (ja)
Other versions
JP2020003363A (en
Inventor
拓 杉浦
拓 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp filed Critical Okuma Corp
Priority to JP2018123489A priority Critical patent/JP6511573B1/en
Application granted granted Critical
Publication of JP6511573B1 publication Critical patent/JP6511573B1/en
Publication of JP2020003363A publication Critical patent/JP2020003363A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

【課題】回転周波数や伝達関数の影響を考慮したロバストな評価指標を算出して、異常の有無を高い精度で判断可能とする。【解決手段】S1で振動を測定する回転周波数に変更し、S2で振動加速度を測定し記憶する。S3で振動測定時の回転周波数と振動加速度とにより修正振動値を算出し、S4で修正振動値のフーリエ変換を行い、比周波数毎の振幅を記録する。S5の判別で既定された全ての振動を測定する複数の回転周波数における振動測定が終了していれば、S6で記録された比周波数毎の修正振動値の値について平均を算出し、S7で特徴比周波数の修正振動値の値を抽出する。振動の成長率によって診断する場合、全ての振動を測定する回転周波数における振動測定を2回繰り返した後、S11で軸受起因振動値より評価指標を算出し、S12で評価指標がしきい値を超過したか否かを判断する。【選択図】図5An object of the present invention is to calculate a robust evaluation index in consideration of the effects of rotational frequency and transfer function, and to make it possible to judge the presence or absence of abnormality with high accuracy. A vibration frequency is changed to a rotational frequency to be measured in S1, and a vibration acceleration is measured and stored in S2. A corrected vibration value is calculated from the rotational frequency and vibration acceleration at the time of vibration measurement in S3, Fourier transform of the corrected vibration value is performed in S4, and the amplitude for each specific frequency is recorded. If vibration measurement at a plurality of rotational frequencies for measuring all vibrations defined in S5 has been completed, an average is calculated for the value of the corrected vibration value for each specific frequency recorded in S6, and the feature is determined in S7 Extract the value of the corrected vibration value of the specific frequency. In the case of diagnosis based on the growth rate of vibration, vibration measurement at the rotational frequency at which all vibrations are measured is repeated twice, then an evaluation index is calculated from the bearing-induced vibration value in S11, and the evaluation index exceeds the threshold in S12. Determine if you [Selected figure] Figure 5

Description

本発明は、工作機械等に用いられて主軸等の回転体を支持する転がり軸受の異常を診断する方法及び装置、プログラムに関するものである。   The present invention relates to a method, apparatus, and program for diagnosing an abnormality in a rolling bearing that is used in a machine tool or the like and supports a rotating body such as a main shaft.

回転体を支持する転がり軸受に内輪の損傷などの異常が生じると振動が発生する。軸受の異常によって発生する力は単純な正弦波状ではないため、高調波の周波数成分の振動が同時に観測される。この際に発生する振動の周波数(特徴周波数)は、回転速度に比例しており、回転体の回転速度と軸受諸元から算出することが可能である。
基本周波数だけ離れた2つの特徴周波数の振動の大きさがともに大きい場合、測定される振動の波形を見ると、基本周波数で振幅が変動しているように解釈することも可能である。よって、測定された振動の波形に対してエンベロープ処理をしたのちに周波数分析をすることで、振幅の変動の度合いを定量化し、診断する手法が知られている。
例えば特許文献1では、振動もしくは音響を測定してエンベロープ処理および周波数分析し、基本周波数成分の振動の大きさを全スペクトル成分の積分値であるオーバーオール値で除算して得られた算出値の大小によって異常の有無の判定を行う手法が示されている。
特許文献2では、振動を測定してエンベロープ処理および周波数分析し、特徴周波数成分の値を、打撃試験により予め測定した振動応答のレベル差や回転周波数を考慮した特徴周波数ごとに個別に設定されるしきい値と比較して診断する手法が示されている。
When an abnormality such as damage to the inner ring occurs in the rolling bearing that supports the rotating body, vibration occurs. Since the force generated by the abnormality of the bearing is not a simple sine wave, vibrations of harmonic frequency components are simultaneously observed. The frequency (characteristic frequency) of the vibration generated at this time is proportional to the rotational speed, and can be calculated from the rotational speed of the rotating body and the bearing specifications.
If the magnitudes of the oscillations of the two feature frequencies separated by the fundamental frequency are both large, it can be interpreted that the amplitude fluctuates at the fundamental frequency when the waveform of the measured oscillation is viewed. Therefore, there is known a method of quantifying the degree of fluctuation of the amplitude and performing diagnosis by performing frequency processing after performing envelope processing on the waveform of the measured vibration.
For example, in Patent Document 1, vibration or sound is measured, envelope processing and frequency analysis are performed, and the magnitude of the calculated value obtained by dividing the magnitude of the vibration of the fundamental frequency component by the overall value which is the integral value of all spectrum components. Shows a method of determining the presence or absence of an abnormality.
In Patent Document 2, the vibration is measured, envelope processing and frequency analysis are performed, and the value of the characteristic frequency component is individually set for each characteristic frequency in consideration of the level difference of the vibration response and the rotation frequency previously measured by the impact test. A technique for diagnosing in comparison to a threshold is shown.

特許第4120099号公報Patent No. 4120099 特許第5146008号公報Patent No. 5146008

工作機械のような手作業による精度の調整が行われる機械の場合には、機能上問題とならない範囲では機台ばらつきが存在する。工場の地盤、室温等の機械の使用環境も機械の伝達関数を変化させる要因となる。同一機種で同一の異常による同一の大きさの加振力が発生する同一の回転周波数において振動測定する場合であったとしても、機械の振動モード(伝達関数)の影響を受けるため、振動の大きさは同一に測定することはできない。後述する事例では、同一機種3台の伝達関数の大きさを比較した場合、ある周波数において伝達関数の大きさが最小の機台は最大の機台に対して約10%以下となっていた。同一機種の多数の機台において振動の大きさの分布を調査し、正常と異常を判別するしきい値を決定しようと試みても、機台ばらつきによる伝達関数の大きさの違いに比べて、正常時と異常時の振動の大きさの違いが小さい場合には、機台ばらつきを考慮すると正常・異常を確実に識別するためのしきい値を設けることができないことになる。
工作機械の主軸のような複雑な振動モードを持つ回転体に対して診断を実施する場合、エンベロープ処理をしたとしても回転体の回転周波数を1割変化させて特徴周波数が1割変化しただけであっても特徴周波数の振動の大きさは数倍変わってしまうことがある。これは、伝達関数の大きさが周波数毎に大きく異なるためである。エンベロープ処理は、伝達関数の大きさがそれぞれの周波数において異なることを考慮せず、複数の周波数の振動を一括して捉える処理である。複数の周波数の情報が不可逆に混ざり合ってしまう処理手法であるため、エンベロープ処理後に伝達関数の大きさを考慮した処理を行うことは理論上不可能である。
In the case of a machine such as a machine tool in which manual adjustment of accuracy is performed, there are machine variations to the extent that there is no functional problem. The machine's operating environment, such as factory ground and room temperature, also changes the machine's transfer function. Even in the case of vibration measurement at the same rotational frequency at which the same type of vibration force of the same magnitude is generated due to the same abnormality in the same model, it is affected by the vibration mode (transfer function) of the machine. Can not be measured identically. In the case described later, when the magnitudes of transfer functions of three identical models are compared, the machine with the smallest magnitude of the transfer function at a certain frequency is about 10% or less of the largest machine. Even if the distribution of vibration magnitudes is investigated in many machines of the same model, and an attempt is made to determine the threshold value for discriminating between normal and abnormal, compared to the difference in transfer function magnitude due to machine dispersion, If the difference in magnitude between normal and abnormal vibrations is small, it is not possible to provide a threshold value for reliably identifying normal / abnormal, in consideration of machine variations.
When diagnosis is performed on a rotating body having a complicated vibration mode such as the spindle of a machine tool, even if envelope processing is performed, the rotational frequency of the rotating body is changed by 10% and the feature frequency is changed by 10%. Even if there is, the magnitude of the vibration of the characteristic frequency may change several times. This is because the magnitude of the transfer function is largely different for each frequency. The envelope processing is processing for collectively capturing vibrations of a plurality of frequencies without considering that the magnitudes of transfer functions are different at each frequency. Since this is a processing method in which information of a plurality of frequencies is irreversibly mixed, it is theoretically impossible to perform processing taking into account the magnitude of the transfer function after envelope processing.

よって、特許文献1のようにエンベロープ処理後の特徴周波数の振動の大きさをオーバーオールで除算するという処理も、伝達関数や回転周波数の影響を除去する手法ではないため、特許文献1の手法で算出される算出値は、傷の有無の判別程度には用いることができても、定量的な比較をすることはできないという課題がある。
また、特許文献2で提案されているような、エンベロープ処理後の特徴周波数の振動の大きさに対する、伝達関数や回転周波数の影響を考慮したしきい値というのは、伝達関数や回転周波数から合理的に決定することはできないといった課題がある。
このため、一般に市販されている軸受診断装置では、異常と判断するしきい値の設定が使用者に任されており、容易に異常診断に用いることができないか、異常と判断するしきい値をもっているが測定を実施する回転周波数をわずかに変えるだけであっても判定結果が大きく変わってしまい、本当に異常であるのか判断できないという課題がある。
一方、回転周波数によって軸受異常により生じる力の大きさが変化する種類の異常の場合には、回転周波数の影響も考慮しなければ適切な診断ができないという課題がある。
Therefore, the process of dividing the magnitude of the vibration of the feature frequency after envelope processing by the overall as in Patent Document 1 is not a method of removing the influence of the transfer function or the rotational frequency, so the calculation is performed by the method of Patent Document 1 Although the calculated value can be used to determine the presence or absence of a flaw, there is a problem that quantitative comparison can not be performed.
Further, as proposed in Patent Document 2, the threshold in consideration of the influence of the transfer function and the rotational frequency on the magnitude of the vibration of the feature frequency after the envelope processing is rational from the transfer function and the rotational frequency There is a problem that it can not be decided
For this reason, in the bearing diagnosis apparatus generally marketed, setting of the threshold value to be judged as abnormal is left to the user, and it can not easily be used for abnormality diagnosis, or with the threshold value to be judged as abnormal. However, there is a problem that even if the rotational frequency at which the measurement is performed is slightly changed, the determination result greatly changes, and it can not be determined whether it is really abnormal.
On the other hand, in the case of a type of abnormality in which the magnitude of the force generated by the bearing abnormality changes due to the rotational frequency, there is a problem that appropriate diagnosis can not be performed without considering the influence of the rotational frequency.

そこで、本発明は、上記問題に鑑みなされたものであって、回転周波数や伝達関数の影響を考慮したロバストな評価指標を算出して、異常の有無を高い精度で判断できる転がり軸受の異常診断方法及び装置、異常診断プログラムを提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and it is possible to calculate a robust evaluation index in consideration of the influence of rotational frequency and transfer function, and diagnose the abnormality of the rolling bearing which can judge the presence or absence of abnormality with high accuracy. It aims at providing a method and apparatus, and an abnormality diagnosis program.

上記目的を達成するために、請求項1に記載の発明は、回転体を支持する転がり軸受の異常を診断する方法であって、
前記回転体の複数の回転周波数における前記回転体の振動を測定する振動測定ステップと、
前記振動を振動測定時の前記回転体の回転周波数と比例関係にある所定の物理量の零より大きい指数のべき乗で除すと共に周波数分析して、周波数毎の振動の大きさを算出する周波数分析ステップと、
前記振動測定ステップでの振動測定時の前記回転体の回転周波数に対する周波数の比が同一な前記振動の大きさについて平均をとった振動平均値を算出する振動平均値算出ステップと、
前記振動平均値のうち、前記軸受に起因する振動が生じる周波数の前記回転周波数に対する比である特徴比周波数における軸受起因振動値を抽出する軸受起因振動値抽出ステップと、
前記軸受起因振動値に基づき評価指標を算出する評価指標算出ステップと、
前記評価指標に基づいて異常の有無を判断する判断ステップと、を実行することを特徴とする。
請求項2に記載の発明は、請求項1の構成において、前記振動平均値算出ステップでは、前記回転周波数、前記回転周波数の逆数、前記回転周波数の対数のいずれか1つが等間隔となるような前記回転周波数の組み合わせにおいて測定された前記振動の大きさを用いて前記振動平均値を算出することを特徴とする。
請求項3に記載の発明は、請求項1又は2の構成において、前記振動測定ステップでは、前記回転周波数が同一の組み合わせの振動測定を複数回行い、
前記評価指標算出ステップでは、前記軸受起因振動値の変化の度合いに基づいて前記評価指標を算出することを特徴とする。
請求項4に記載の発明は、請求項1乃至3の何れかに記載の構成において、前記振動平均値算出ステップでは、振動の周波数が既定した範囲内である振動の大きさのみを用いて平均を取ることを特徴とする。
上記目的を達成するために、請求項5に記載の発明は、回転体を支持する転がり軸受の異常を診断する装置であって、
前記回転体の複数の回転周波数における前記回転体の振動を測定する振動測定手段と、
前記振動を振動測定時の前記回転体の回転周波数と比例関係にある所定の物理量の零より大きい指数のべき乗で除すと共に周波数分析して、周波数毎の振動の大きさを算出する周波数分析手段と、
前記振動測定手段での振動測定時の前記回転体の回転周波数に対する周波数の比が同一な前記振動の大きさについて平均をとった振動平均値を算出する振動平均値算出手段と、
前記振動平均値のうち、前記軸受に起因する振動が生じる周波数の前記回転周波数に対する比である特徴比周波数における軸受起因振動値を抽出する軸受起因振動値抽出手段と、
前記軸受起因振動値に基づき評価指標を算出する評価指標算出手段と、
前記評価指標に基づいて異常の有無を判断する判断手段と、を備えることを特徴とする。
上記目的を達成するために、請求項6に記載の発明は、回転体を支持する転がり軸受の異常を診断するプログラムであって、複数の回転周波数でそれぞれ測定された回転体の振動が各回転周波数と共に入力されたコンピュータに、請求項1乃至4の何れかに記載の転がり軸受の異常診断方法における周波数分析ステップと、振動平均値算出ステップと、軸受起因振動値抽出ステップと、評価指標算出ステップと、判断ステップとを実行させることを特徴とする。
In order to achieve the above object, the invention according to claim 1 is a method of diagnosing an abnormality in a rolling bearing supporting a rotating body,
Measuring a vibration of the rotating body at a plurality of rotational frequencies of the rotating body;
A frequency analysis step of calculating the magnitude of vibration at each frequency by dividing the vibration by the power of an index larger than zero of a predetermined physical quantity proportional to the rotational frequency of the rotating body at the time of vibration measurement and performing frequency analysis When,
A vibration average value calculating step of calculating a vibration average value obtained by averaging the magnitudes of the vibrations having the same ratio of frequency to rotational frequency of the rotating body at the time of vibration measurement in the vibration measuring step;
A bearing-induced vibration value extraction step of extracting a bearing-induced vibration value at a feature ratio frequency that is a ratio of the frequency at which the vibration caused by the bearing occurs to the rotational frequency among the vibration average values;
An evaluation index calculation step of calculating an evaluation index based on the bearing-induced vibration value;
Performing a determination step of determining the presence or absence of an abnormality based on the evaluation index.
The invention according to claim 2 is that in the configuration according to claim 1, any one of the rotation frequency, the reciprocal of the rotation frequency, and the logarithm of the rotation frequency is equally spaced in the vibration average value calculation step. The vibration average value may be calculated using the magnitude of the vibration measured at the combination of the rotational frequencies.
The invention according to claim 3 is the configuration according to claim 1 or 2, wherein, in the vibration measurement step, vibration measurement of the combination having the same rotational frequency is performed a plurality of times,
The evaluation index calculating step is characterized in that the evaluation index is calculated based on the degree of change of the bearing-induced vibration value.
The invention according to claim 4 is that, in the configuration according to any one of claims 1 to 3, in the vibration average value calculating step, an average is made using only the magnitude of the vibration whose frequency is within a predetermined range. It is characterized by taking.
In order to achieve the above object, the invention according to claim 5 is an apparatus for diagnosing an abnormality in a rolling bearing supporting a rotating body,
Vibration measuring means for measuring the vibration of the rotating body at a plurality of rotational frequencies of the rotating body;
Frequency analysis means for calculating the magnitude of vibration for each frequency by dividing the vibration by the power of an index larger than zero of a predetermined physical quantity proportional to the rotational frequency of the rotating body at the time of vibration measurement and performing frequency analysis When,
Vibration average value calculation means for calculating a vibration average value obtained by averaging the magnitudes of the vibrations having the same ratio of frequency to rotational frequency of the rotating body at the time of vibration measurement by the vibration measurement means;
A bearing-induced vibration value extraction unit that extracts a bearing-induced vibration value at a feature ratio frequency that is a ratio of the frequency at which the vibration caused by the bearing occurs to the rotational frequency among the vibration average values;
Evaluation index calculation means for calculating an evaluation index based on the bearing-induced vibration value;
And determining means for determining the presence or absence of an abnormality based on the evaluation index.
In order to achieve the above object, the invention according to claim 6 is a program for diagnosing an abnormality of a rolling bearing supporting a rotating body, wherein each vibration of the rotating body measured at a plurality of rotational frequencies is each rotation The frequency analysis step, the vibration average value calculation step, the bearing-induced vibration value extraction step, the evaluation index calculation step, and the evaluation method for a rolling bearing abnormality diagnosis method according to any one of claims 1 to 4 And a determination step.

請求項1及び5,6に記載の発明によれば、測定された振動値から回転周波数の影響を取り除いた上で平均を算出するため、機台ばらつきの影響を低減して軸受起因振動値を得ることができる。この軸受起因振動値より算出する評価指標も機台ばらつきの影響が小さいため、異常と判断するしきい値の設定が容易となる。すなわち、回転周波数や伝達関数の影響を考慮したロバストな評価指標を算出して、異常の有無を高い精度で判断可能となる。
請求項2に記載の発明によれば、上記効果に加えて、伝達関数の大きさの機台ばらつき、および、伝達関数の大きさの比周波数毎のばらつきの低減効果が向上する。
請求項3に記載の発明によれば、上記効果に加えて、評価指標の値が伝達関数の大きさの値に依存しない値となるため、異なる構造の回転体の診断をする場合や異なる振動センサ位置で測定する場合でも同一のしきい値を用いた診断が可能となる。
請求項4に記載の発明によれば、上記効果に加えて、伝達関数の大きさの機台ばらつき、および、伝達関数の大きさの比周波数毎のばらつきの低減効果がさらに向上する。
According to the inventions of claims 1 5 and 6, since the influence of the rotational frequency is removed from the measured vibration value to calculate the average, the influence of the machine variation is reduced to reduce the bearing-induced vibration value. You can get it. Since the evaluation index calculated from the bearing-induced vibration value is also less affected by machine fluctuation, it is easy to set the threshold value to be judged as abnormal. That is, it is possible to determine the presence or absence of abnormality with high accuracy by calculating a robust evaluation index in consideration of the influence of the rotational frequency and the transfer function.
According to the second aspect of the invention, in addition to the above effects, the effect of reducing machine-to-machine variation in transfer function magnitude and variation on specific frequency of the magnitude of the transfer function are improved.
According to the third aspect of the invention, in addition to the above effects, the value of the evaluation index is a value that does not depend on the value of the magnitude of the transfer function. Even when measuring at the sensor position, diagnosis using the same threshold value is possible.
According to the fourth aspect of the present invention, in addition to the above effects, the reduction effect of the variation of the transfer function magnitude and the variation of the transfer function magnitude for each specific frequency can be further improved.

転がり軸受の異常診断装置の機能ブロック図である。It is a functional block diagram of an abnormality diagnosis device for rolling bearings. 軸受異常による加振力と角速度との関係を示すグラフである。It is a graph which shows the relationship between the excitation force and angular velocity by bearing abnormality. 同一機種における伝達関数の大きさのばらつきを示すグラフである。It is a graph which shows the dispersion | variation in the magnitude | size of the transfer function in the same model. 同一機種における伝達関数の大きさの平均のばらつきを示すグラフである。It is a graph which shows the dispersion | variation in the average of the magnitude | size of the transfer function in the same model. 異常診断方法のフローチャートである。It is a flowchart of the abnormality diagnosis method. 評価指標として振動の成長率を用いる場合の診断結果表示の説明図である。It is an explanatory view of a diagnostic result display in a case of using a growth rate of vibration as an evaluation index. 評価指標として軸受起因振動値の最大値を用いる場合の診断結果表示の説明図である。It is explanatory drawing of a diagnostic result display in the case of using the maximum value of a bearing origin vibration value as an evaluation index.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は転がり軸受の異常診断装置を工作機械の主軸に対して適用した場合の構成を示した機能ブロック図で、この図に基づいて具体的に説明する。
主軸1は、転がり軸受である軸受7を介して主軸ハウジング2に対して回転可能に取り付けられており、加工を行うための工具3が固定されている。モータ4は主軸1を駆動する。モータ4には速度検出器5が設けられて、測定されたモータ4の回転周波数が制御装置6に入力されるようになっている。制御装置6は、加工時には、速度検出器5で測定されたモータ4の回転周波数を指令回転周波数に保つようにモータ4へ供給する電流の制御を行っている。
Hereinafter, embodiments of the present invention will be described based on the drawings.
FIG. 1 is a functional block diagram showing a configuration in the case where a rolling bearing abnormality diagnosis device is applied to a main shaft of a machine tool, which will be specifically described based on this drawing.
The spindle 1 is rotatably attached to the spindle housing 2 via a bearing 7 which is a rolling bearing, and a tool 3 for processing is fixed. The motor 4 drives the spindle 1. The motor 4 is provided with a speed detector 5 so that the measured rotational frequency of the motor 4 is input to the controller 6. At the time of processing, the control device 6 controls the current supplied to the motor 4 so as to maintain the rotational frequency of the motor 4 measured by the speed detector 5 at the command rotational frequency.

主軸ハウジング2には、振動測定手段としての振動センサ8が取り付けられ、振動センサ8で測定される振動加速度は、A/D変換部9でデジタル値に変換され、振動測定時の回転周波数とともに記憶部10に記憶される。記憶部10は、予め設定するしきい値も記憶する。コンピュータである演算部11は、記憶部10に記憶された異常診断プログラムに従い、記憶部10に記憶された軸受諸元より軸受異常の特徴比周波数の算出を行い、記憶部10に記憶された振動測定時の回転周波数と振動加速度より、乗算、フーリエ変換、絶対値の算出、内挿処理を行って、比周波数に対する後述する修正振動値を算出すると共に、周波数毎の振動の大きさを算出する。また、演算部11は、振動測定時の主軸1の回転周波数に対する周波数の比が同一な振動の大きさについて平均をとった振動平均値を算出し、振動平均値の軸受に起因する振動が生じる周波数の回転周波数に対する比である特徴比周波数における軸受起因振動値を抽出する。さらに、演算部11は、軸受起因振動値に基づいて評価指標である異常度合いを算出し、軸受7が正常か否かを判断する。すなわち、演算部11は、周波数分析手段、振動平均値算出手段、軸受起因振動値抽出手段、評価指標算出手段、判断手段として機能する。演算部11による診断結果は表示部12に表示される。   A vibration sensor 8 as vibration measuring means is attached to the spindle housing 2, and the vibration acceleration measured by the vibration sensor 8 is converted into a digital value by the A / D converter 9, and stored together with the rotational frequency at the time of vibration measurement. It is stored in the unit 10. The storage unit 10 also stores a threshold set in advance. The calculation unit 11 which is a computer calculates the feature ratio frequency of the bearing abnormality from the bearing specifications stored in the storage unit 10 according to the abnormality diagnosis program stored in the storage unit 10, and the vibration stored in the storage unit 10 Performs multiplication, Fourier transform, calculation of absolute value, and interpolation processing from rotational frequency and vibration acceleration at the time of measurement to calculate a corrected vibration value to be described later for the relative frequency, and also calculates the magnitude of vibration for each frequency. . In addition, the calculation unit 11 calculates a vibration average value obtained by averaging the magnitudes of vibrations having the same ratio of the frequency to the rotational frequency of the main shaft 1 at the time of vibration measurement, and vibrations due to the bearings of the vibration average value occur. A bearing-induced vibration value at a feature ratio frequency which is a ratio of the frequency to the rotational frequency is extracted. Furthermore, the calculation unit 11 calculates an abnormality degree, which is an evaluation index, based on the bearing-induced vibration value, and determines whether the bearing 7 is normal. That is, the calculation unit 11 functions as frequency analysis means, vibration average value calculation means, bearing induced vibration value extraction means, evaluation index calculation means, and judgment means. The diagnosis result by the calculation unit 11 is displayed on the display unit 12.

軸受7において、内輪傷が局所的に存在する場合、内輪傷は主軸1の回転とともに回転し傷の位置を転動体が通過する際に生じる振動の方向が変化するため、内輪傷に対して転動体が通過する周波数に対して、回転周波数fROTだけ低い周波数と回転周波数fROTだけ高い周波数の振動が観測される。この特徴周波数の計算は、以下の数1、数2のように行うことができる。ここで、fI,N−は内輪傷N次の低い側の特徴周波数、fI,N+は内輪傷N次の高い側の特徴周波数、Zは軸受7の転動体の数、Dは軸受7のピッチ円直径、dは軸受7の転動体直径、αは軸受7の接触角である。 In the bearing 7, when the inner ring flaw is present locally, the inner ring flaw rotates with the rotation of the main shaft 1, and the direction of the vibration generated when the rolling element passes the position of the scratch changes. for frequencies body passes, the vibration of only high frequency rotational frequency f ROT only low frequency rotation frequency f ROT is observed. The calculation of the feature frequency can be performed as in the following Equation 1 and Equation 2. Here, f I, N− is the feature frequency on the lower side of the inner ring scratch N next, f I, N + is the feature frequency on the higher side of the inner ring scratch N next, Z is the number of rolling elements of the bearing 7, D is the bearing 7 Is the diameter of the rolling element of the bearing 7, d is the diameter of the rolling element of the bearing 7, and α is the contact angle of the bearing 7.

Figure 0006511573
Figure 0006511573
Figure 0006511573
Figure 0006511573

図2は、内輪傷の存在する軸受7により支持された主軸1について複数の回転周波数で振動加速度を測定し、特徴比周波数の振動振幅を算出し、それぞれの特徴比周波数に対応する軸受異常による加振力から振動センサ8の位置における振動への伝達関数で除算して算出された軸受異常による加振力Fを、角速度を横軸にプロットしたものである。
但し、ここで用いた伝達関数は、軸受異常による加振力から振動センサ8の位置における振動への伝達関数ではなく、軸受近傍を加振した際の振動センサ8の位置における振動を測定することで得られた伝達関数を代用している。ここで、軸受近傍とは、有限要素解析などにより求めた、振動センサ8の位置に加振した際に、軸受異常による加振力の発生位置と振動の方向・大きさが少なくともある周波数範囲において、同じと見なせる位置のことを表している。伝達関数の入力と出力を入れ替えても同じとなる相反定理により、ある周波数範囲においては軸受近傍を加振して得られる伝達関数は、軸受異常による加振力から振動センサ8の位置における振動への伝達関数として代用することが可能である。
FIG. 2 measures the vibration acceleration at a plurality of rotational frequencies for the main shaft 1 supported by the bearing 7 in which the inner ring flaw exists, calculates the vibration amplitude of the feature ratio frequency, and causes the bearing abnormality corresponding to each feature ratio frequency The angular velocity is plotted on the horizontal axis, with the vibrational force F due to a bearing abnormality calculated by dividing the transfer function to the vibration at the position of the vibration sensor 8 from the vibrational force.
However, the transfer function used here is not a transfer function from the excitation force due to the bearing abnormality to the vibration at the position of the vibration sensor 8, but measures the vibration at the position of the vibration sensor 8 when vibrating near the bearing. The transfer function obtained in is substituted. Here, in the vicinity of the bearing, when excited to the position of the vibration sensor 8 obtained by finite element analysis etc., the generation position of the exciting force due to the bearing abnormality and the direction and magnitude of the vibration at least in a frequency range , Represents the position that can be considered the same. According to the reciprocity theorem which becomes the same even if the input and output of the transfer function are interchanged, the transfer function obtained by exciting the vicinity of the bearing in a certain frequency range is from the excitation force due to the bearing abnormality to the vibration at the position of the vibration sensor 8 It is possible to substitute as a transfer function of

図2から、角速度の増加に対して軸受異常による加振力が増加する傾向があることがわかる。おおむね、軸受異常による加振力は角速度の2乗前後に比例している。内輪傷があると、転動体が通過する際に、主軸1は傷方向に変位・変形させられると考えられるが、この際、主軸1の重心が通る軌跡(変位)が回転周波数によらず一定と見なせるのであれば、主軸1の重心を変位させる反作用として発生する力は重心の変位の2階微分に比例することになる。重心の振動変位の周波数は回転周波数や角速度に比例する特徴周波数であるため、この力は振動測定をした際の回転周波数の2乗に比例することになる。これらの実験結果と仮説により、内輪傷による加振力は回転周波数の2乗に比例して近似していると推測される。   From FIG. 2, it can be seen that the excitation force due to the bearing abnormality tends to increase as the angular velocity increases. In general, the excitation force due to the bearing abnormality is proportional to the square of the angular velocity. If there is an inner ring flaw, the main shaft 1 is considered to be displaced or deformed in the direction of the flaw when the rolling elements pass, but at this time, the locus (displacement) through which the center of gravity of the main spindle 1 passes is constant regardless of the rotational frequency If it can be considered, the force generated as a reaction that displaces the center of gravity of the main shaft 1 is proportional to the second derivative of the displacement of the center of gravity. Since the frequency of the vibration displacement of the center of gravity is a characteristic frequency that is proportional to the rotation frequency or the angular velocity, this force is proportional to the square of the rotation frequency when measuring the vibration. From these experimental results and hypotheses, it is presumed that the excitation force due to the inner ring injury approximates in proportion to the square of the rotational frequency.

このように、軸受異常による加振力と回転周波数との関係が明らかとなると、測定した振動の値から回転周波数の影響を除いた値(修正振動値)を算出することが可能となるため、複数の回転周波数において振動測定を行うことで、伝達関数の大きさの影響を低減する処理を実現することができる。
なお、複数の回転周波数で測定する場合、回転周波数によって変化する特徴周波数では議論がしにくいため、特徴周波数を回転周波数で割った値(特徴比周波数)で論じる。内輪傷のN次の低い側の特徴比周波数kI,N−、内輪傷のN次の高い側の特徴比周波数kI,N+は、以下の数3、数4のようにそれぞれ求めることができる。
As described above, when the relationship between the excitation force and the rotational frequency due to the bearing abnormality is clarified, it is possible to calculate a value (corrected vibration value) obtained by removing the influence of the rotational frequency from the measured value of vibration. By performing vibration measurement at a plurality of rotational frequencies, it is possible to realize processing for reducing the influence of the magnitude of the transfer function.
When measurement is performed at a plurality of rotational frequencies, it is difficult to discuss the feature frequency that changes depending on the rotational frequency, so the characteristic frequency divided by the rotational frequency (a characteristic ratio frequency) will be discussed. The feature ratio frequency k I, N− of the Nth lower side of the inner ring injury and the feature ratio frequency k I, N + of the next higher side of the inner ring injury can be determined as in the following Equation 3 and Equation 4 it can.

Figure 0006511573
Figure 0006511573
Figure 0006511573
Figure 0006511573

一方、回転周波数がfROTの場合の特徴比周波数kにおける軸受異常による加振力の大きさF(k、fROT)は、軸受7の損傷度合いに依存し回転周波数に依存しない定数Fを用いて以下の数5のように表現できる。 On the other hand, the rotational frequency of the excitation force due to bearing abnormality in characteristic ratio frequency k in the case of f ROT magnitude F (k, f ROT) is a constant F * that does not depend on the rotation frequency depends on the degree of damage of the bearing 7 It can be expressed as the following equation 5 using:

Figure 0006511573
Figure 0006511573

この軸受異常による加振力から振動センサ8の位置における振動への伝達関数の大きさをG(k、fROT)とすると、振動センサ8で測定される回転周波数がfROTの場合の特徴比周波数kにおける振動の大きさA(k、fROT)は、以下の数6のように表現できる。なお、伝達関数の大きさG(k、fROT)は、比周波数が同一であっても回転周波数が異なる場合は別の値をとる。 Assuming that the magnitude of the transfer function from the excitation force due to this bearing abnormality to the vibration at the position of the vibration sensor 8 is G (k, f ROT ), the feature ratio when the rotational frequency measured by the vibration sensor 8 is f ROT The magnitude A (k, f ROT ) of the vibration at the frequency k can be expressed as the following equation 6. Note that the magnitude G (k, f ROT ) of the transfer function takes other values when the rotational frequency is different even if the relative frequency is the same.

Figure 0006511573
Figure 0006511573

よって、振動センサ8で測定される振動の大きさA(k、fROT)と軸受7の損傷度合いに依存し回転周波数に依存しない定数Fには、以下の数7の関係がある。 Therefore, the constant F * which is dependent on the magnitude A (k, f ROT ) of the vibration measured by the vibration sensor 8 and the degree of damage to the bearing 7 has a relationship of the following equation 7.

Figure 0006511573
Figure 0006511573

測定される振動から回転周波数による軸受異常による加振力の大きさの変化の影響を除去するためには、特徴比周波数kにおける振動の大きさA(k、fROT)を角速度2πfROTの2乗で除算して、修正振動値A(k、fROT)を以下の数8のように求めれば良い。 In order to remove the influence of the change in magnitude of the excitation force due to the bearing abnormality due to the rotational frequency from the measured vibration, the magnitude A (k, f ROT ) of the vibration at the feature ratio frequency k is set to 2 of the angular velocity 2πf ROT The corrected vibration value A * (k, f ROT ) may be obtained by the following equation 8 by dividing by the power.

Figure 0006511573
Figure 0006511573

図3に、同一機種3台のそれぞれの伝達関数の大きさと、3台における伝達関数の大きさの最大に対する最小の比を示す。回転周波数のわずかな違いによって伝達関数の大きさが大きく異なるため、測定する回転周波数を変えることで特徴周波数が変わると、測定される振動の大きさが大きく変化することは明らかである。さらに、ある周波数において伝達関数の大きさが最小の機台は最大の機台に対して約10%以下となっている。このように、伝達関数G(k、fROT)は、同一構造の機械であっても機台ばらつきがあり、同一の異常度合いであっても機台と回転周波数の組み合わせによって振動は全く異なる大きさに測定される可能性があるため、異常と判断するしきい値の設定は困難である。また、伝達関数の大きさは機械の使用環境・使用状況などによって変化する。
そこで、数8を用いて、数7の特徴比周波数kにおける振動の大きさA(k、fROT)を修正振動値A(k、fROT)に置き換えると、以下の数9となる。
FIG. 3 shows the magnitudes of the transfer functions of the three identical models, and the ratio of the magnitude to the maximum of the magnitudes of the transfer functions of the three models. Since the magnitude of the transfer function is largely different due to a slight difference in rotational frequency, it is obvious that if the feature frequency is changed by changing the rotational frequency to be measured, the magnitude of the vibration to be measured is largely changed. Furthermore, the machine with the smallest transfer function magnitude at a frequency is about 10% or less of the largest machine. As described above, the transfer function G (k, f ROT ) varies even with machines having the same structure, and even with the same degree of abnormality, the vibration is completely different depending on the combination of the machine and the rotational frequency. It is difficult to set a threshold value to judge an abnormality because it may be measured. Also, the magnitude of the transfer function changes depending on the operating environment, operating conditions, etc. of the machine.
Then, if the magnitude A (k, f ROT ) of the vibration at the feature ratio frequency k of Eq. 7 is replaced with the corrected oscillation value A * (k, f ROT ) using Eq. 8, the following Eq. 9 is obtained.

Figure 0006511573
Figure 0006511573

数9について既定範囲内であるN条件の回転周波数で平均をとった値を算出すると、以下の数10となる。数10の左辺は修正振動値の平均(振動平均値)であり、特徴比周波数kにおける軸受起因振動値でもある。数10の右辺は複数の回転周波数のそれぞれに対応する特徴比周波数kの伝達関数の大きさの平均と、軸受の損傷度合いに依存し回転周波数に依存しない定数Fとの積である。 The value obtained by averaging the rotational frequency of the N condition which is within the predetermined range for the equation (9) is obtained as the following equation (10). The left side of Expression 10 is an average of the corrected vibration values (vibration average value), and is also a bearing-induced vibration value at the feature ratio frequency k. The right side of Formula 10 is the product of the average of the transfer function magnitudes of the feature ratio frequency k corresponding to each of the plurality of rotational frequencies and the constant F * that does not depend on the rotational frequency depending on the degree of damage to the bearing.

Figure 0006511573
Figure 0006511573

図4に、前述の同一機種3台について複数の回転周波数のそれぞれに対応する比周波数毎の伝達関数の大きさの平均(振動の大きさの平均)を示す。伝達関数の大きさの平均は、特定の比周波数範囲において比周波数が異なってもほとんど大きさが変わらないことがわかる。また、伝達関数の大きさの平均は機台ばらつきも小さく、伝達関数の大きさの平均が最小の機台であっても最大の機台に対して約70%の大きさがある。
軸受の損傷度合いに依存し回転周波数に依存しない定数Fは、数9、数10のいずれであっても同じであり、軸受の損傷度合いに依存し回転周波数に依存しない定数Fにかかる比例係数の機台ばらつきが小さいため、数9の左辺の値(修正振動値)によって評価指標を算出するよりも、修正振動値の平均(数10左辺の値)によって評価指標を算出する方が高い診断精度となる。伝達関数の大きさの平均の機台ばらつきに比べれば、正常時と異常時で振動の大きさの差異が十分大きいため、同一機種のデータを十分数集めることで修正振動値の平均(数10左辺の値)から算出した評価指標に対するしきい値の設定は容易である。
FIG. 4 shows an average (average of vibration magnitudes) of transfer function magnitudes at respective fractional frequencies corresponding to each of a plurality of rotational frequencies for the three identical models described above. It can be seen that the average of the transfer function magnitudes remains almost unchanged at different fractional frequencies in a particular fractional frequency range. Further, the average of the transfer function magnitudes is small, and even if the average of the transfer function magnitudes is the smallest, the magnitude is about 70% of the largest machine.
The constant F * that is dependent on the degree of damage to the bearing and is not dependent on the rotational frequency is the same regardless of whether it is the number 9 or 10, and the proportional to the constant F * that is independent of the degree of damage on the bearing and independent of the rotational frequency Since the machine variation of the coefficient is small, calculating the evaluation index by the average of the corrected vibration values (value on the left side of the tens) is higher than calculating the evaluation index by the value on the left side of the equation 9 (corrected vibration value) It becomes diagnostic accuracy. Since the difference between the magnitude of the vibration between normal and abnormal is sufficiently large compared to the average machine variation of the transfer function, collecting a sufficient number of data of the same model results in the average of the corrected vibration values (10 It is easy to set a threshold for the evaluation index calculated from the value on the left side.

さらに、軸受がM回転した後に同一条件で測定した修正振動値の大きさをA’(k、fROT)、そのときの伝達関数をG’(k、fROT)、軸受の損傷度合いに依存し回転周波数に依存しない定数をF’ とすると、同様に以下の数11が成り立つ。伝達関数の大きさの平均は機械の使用環境・使用状況の影響も小さいため、以下の数12の近似が成立する。 Furthermore, the magnitude of the corrected vibration value measured under the same conditions after M rotation of the bearing is A * '(k, f ROT ), the transfer function at that time is G' (k, f ROT ), the degree of damage to the bearing Assuming that the constant dependent and not dependent on the rotational frequency is F * ′, the following equation 11 holds similarly. Since the average of the transfer function magnitudes is also less affected by the operating environment and operating conditions of the machine, the following approximation of Equation 12 holds.

Figure 0006511573
Figure 0006511573
Figure 0006511573
Figure 0006511573

振動の成長率Rを、軸受1回転あたりの軸受の損傷度合いに依存し回転周波数に依存しない定数の増分の、軸受の損傷度合いに依存し回転周波数に依存しない定数の平均に対する比として、以下の数13のようにおく。数13は伝達関数の大きさを含んでいないため、異なる機種であっても比較可能な値である。   The ratio of the growth rate R of vibration depending on the degree of damage of the bearing per one rotation of the bearing and the increment of the constant independent of the rotational frequency to the mean of the constant independent of the degree of damage of the bearing and independent of the rotational frequency is It sets like a number 13. Since Equation 13 does not include the magnitude of the transfer function, it is a comparable value even for different models.

Figure 0006511573
Figure 0006511573

数13に含まれるFおよびF’ は直接測定することができない値だが、数8、数9、数10、数11、数12を用いて、数13は以下の数14のように書き換えられる。 Although F * and F * 'included in Eq. 13 can not be measured directly, Eq. 13 is rewritten as Eq. 14 using Eq. 8, Eq. 9, Eq. 10, Eq. 11, Eq. Be

Figure 0006511573
Figure 0006511573

数14の右辺は全て測定可能又は算出可能な変数しか含まれておらず、振動の成長率Rを推定することは容易である。同一機種のデータを十分数集めることが困難な場合は、機種に依存する変数を含まない振動の成長率Rの分布を求めてしきい値を設定すれば異常を検出することができる。
ここでの振動の成長率Rは、軸受1回転あたりの振動の平均に対する振動の増加量の比として算出する事例を示したが、2回の測定における振動の平均値の比、軸受の回転回数M、基準の軸受の回転回数Mを使った以下の式15など別の定義式を用いることも可能である。
The right side of Equation 14 includes only measurable or computable variables, and it is easy to estimate the growth rate R of the vibration. If it is difficult to collect a sufficient number of data of the same model, it is possible to detect an abnormality by determining the distribution of the growth rate R of vibration that does not include a variable dependent on the model and setting a threshold.
Although the growth rate R of vibration here is calculated as the ratio of the amount of increase in vibration to the average of vibration per one rotation of the bearing, the ratio of the average value of vibration in two measurements and the number of rotations of the bearing It is also possible to use another definition equation such as the following equation 15 using M, the number of rotations M 0 of the reference bearing.

Figure 0006511573
Figure 0006511573

そして、図5は、軸受7の異常診断を行う方法のフローチャートを示したものであり、このフローチャートに基づいて具体的に説明する。
まず、S1で、主軸1の回転周波数を振動を測定する回転周波数に変更し、S2で、振動センサ8によって振動加速度を測定し記憶する(S1,S2:振動測定ステップ)。
次に、S3で、振動測定時の回転周波数と振動加速度とにより修正振動値を算出し、S4で、修正振動値のフーリエ変換を行い、周波数が既定範囲内である修正振動値について比周波数毎の振幅を記録する(S3,S4:周波数分析ステップ)。
そして、S5で、既定された全ての振動を測定する複数の回転周波数における振動測定が終了しているか否かを判別し、振動測定が終了していればS6へ移行し、終了していなければS1へ戻ってS4までの処理を繰り返す。
なお、ここで振動を測定する複数の回転周波数は、回転周波数、回転周波数の逆数、回転周波数の対数の何れか1つが等間隔となるような回転周波数の組み合わせとするのが望ましい。このような回転周波数の組み合わせで測定された振動の大きさを用いて振動平均値を算出すれば、伝達関数の大きさの機台ばらつき、および、伝達関数の大きさの比周波数毎のばらつきの低減効果が向上する。
And FIG. 5 shows the flowchart of the method of performing abnormality diagnosis of the bearing 7, It demonstrates concretely based on this flowchart.
First, at S1, the rotational frequency of the main shaft 1 is changed to a rotational frequency for measuring vibration, and at S2, vibration acceleration is measured and stored by the vibration sensor 8 (S1, S2: vibration measuring step).
Next, in S3, a corrected vibration value is calculated from the rotational frequency and vibration acceleration at the time of vibration measurement, and in S4, Fourier transformation of the corrected vibration value is performed, and for each corrected frequency, the corrected vibration value whose frequency is within the predetermined range. Record the amplitude of (S3, S4: frequency analysis step).
Then, in S5, it is determined whether or not the vibration measurement at a plurality of rotational frequencies at which all the predetermined vibrations are measured has ended, and if the vibration measurement has ended, the process proceeds to S6, and if it has not ended It returns to S1 and repeats the process to S4.
Here, it is desirable that the plurality of rotational frequencies at which the vibration is measured be a combination of rotational frequencies such that any one of the rotational frequency, the reciprocal of the rotational frequency, and the logarithm of the rotational frequency is equally spaced. If the vibration average value is calculated using the magnitude of vibration measured with such a combination of rotational frequencies, machine variation of the transfer function magnitude and variation of the transfer function magnitude for each ratio frequency The reduction effect is improved.

S6で、記録された比周波数毎の修正振動値の値について振動平均値を算出し(振動平均値算出ステップ)、S7で、特徴比周波数における修正振動値の値(軸受起因振動値)を抽出する(軸受起因振動値抽出ステップ)。
次に、S8では、診断を行う責任者が予め選択して設定した振動の成長率(軸受起因振動値の変化の度合い)によって診断するか否かを判断する。ここで振動の成長率によって診断する場合はS9へ移行し、振動の成長率によって診断しない場合はS11へ移行する。
振動の成長率によって診断する場合、S9では、全ての振動を測定する回転周波数における振動測定が2回繰り返されたか否かを判断する。ここで当該振動測定が2回繰り返された場合は、S11へ移行する。一方、当該振動測定が2回繰り返されていない場合は、S10へ移行し、予め設定された時間又は回数だけ軸受7が回転するまで慣らし運転を実施し、S1へ移行する。
In S6, the vibration average value is calculated for the value of the corrected vibration value for each of the recorded ratio frequencies (vibration average value calculation step), and in S7, the value of the corrected vibration value (bearing-induced vibration value) at the feature ratio frequency is extracted (Bearing-induced vibration value extraction step).
Next, in S8, it is determined whether or not to diagnose based on the growth rate of vibration (the degree of change in bearing-induced vibration value) which is selected and set in advance by the person in charge of diagnosis. Here, if the diagnosis is made based on the growth rate of vibration, the process proceeds to S9, and if the diagnosis is not made based on the growth rate of vibration, the process proceeds to S11.
In the case of diagnosis based on the growth rate of vibration, in S9, it is determined whether vibration measurement at the rotational frequency at which all vibrations are measured has been repeated twice. Here, if the vibration measurement is repeated twice, the process proceeds to S11. On the other hand, when the said vibration measurement is not repeated twice, it transfers to S10, implements the break-in operation until the bearing 7 rotates only the time or frequency | count set beforehand, and transfers to S1.

そして、S11では、軸受起因振動値より評価指標を算出し(評価指標算出ステップ)、S12で評価指標がしきい値を超過したか否かを判断する(判断ステップ)。ここで評価指標がしきい値を超過した場合はS13で異常と判断し、評価指標がしきい値を超過していない場合はS14で正常と判断して、S15で図6または図7に示すような診断結果を表示する。図6は、評価指標として振動の成長率を用いた場合の診断結果画面であり、図7は、評価指標として軸受起因振動値の最大値を用いた場合の診断結果画面である。   Then, in S11, an evaluation index is calculated from the bearing-induced vibration value (evaluation index calculation step), and in S12, it is determined whether the evaluation index exceeds a threshold (determination step). Here, if the evaluation index exceeds the threshold, it is judged as abnormal in S13, and if the evaluation index does not exceed the threshold, it is judged as normal in S14 and shown in FIG. 6 or 7 in S15. Display diagnostic results like FIG. 6 is a diagnostic result screen when the growth rate of vibration is used as the evaluation index, and FIG. 7 is a diagnostic result screen when the maximum value of the bearing-induced vibration value is used as the evaluation index.

このように、上記形態の転がり軸受の異常診断方法及び異常診断装置、異常診断プログラムによれば、主軸1の複数の回転周波数における主軸1の振動を測定する振動測定ステップと、振動を振動測定時の主軸1の回転周波数と比例関係にある角速度の2乗で除すと共に周波数分析して、周波数毎の振動の大きさを算出する周波数分析ステップと、振動測定ステップでの振動測定時の主軸1の回転周波数に対する周波数の比が同一な振動の大きさについて平均をとった振動平均値を算出する振動平均値算出ステップと、振動平均値の軸受7に起因する振動の生じる周波数の回転周波数に対する比である特徴比周波数における軸受起因振動値を抽出する軸受起因振動値抽出ステップと、軸受起因振動値に基づき評価指標を算出する評価指標算出ステップと、評価指標に基づいて異常の有無を判断する判断ステップと、を実行することで、測定された振動値から回転周波数の影響を取り除いた上で平均を算出するため、機台ばらつきの影響を低減して軸受起因振動値を得ることができる。この軸受起因振動値より算出する評価指標も機台ばらつきの影響が小さいため、異常と判断するしきい値の設定が容易となる。すなわち、回転周波数や伝達関数の影響を考慮したロバストな評価指標を算出して、異常の有無を高い精度で判断可能となる。   As described above, according to the abnormality diagnosis method and the abnormality diagnosis apparatus for the rolling bearing of the above embodiment, and the abnormality diagnosis program, the vibration measurement step of measuring the vibration of the spindle 1 at a plurality of rotational frequencies of the spindle 1 Dividing by the square of the angular velocity proportional to the rotational frequency of the main spindle 1 and performing frequency analysis to calculate the magnitude of vibration for each frequency, and the main spindle 1 at the time of vibration measurement in the vibration measurement step The ratio of the frequency to the rotational frequency of the vibration average value calculation step of calculating the vibration average value obtained by averaging the magnitudes of vibrations having the same frequency ratio, and the ratio of the vibration average value to the rotational frequency of the frequency at which the vibration caused by the bearing 7 occurs A bearing-induced vibration value extraction step of extracting a bearing-induced vibration value at the feature ratio frequency, and an evaluation index calculation of calculating an evaluation index based on the bearing-induced vibration value In order to calculate the average after removing the influence of the rotational frequency from the measured vibration value by executing the step and the judgment step of judging the presence or absence of abnormality based on the evaluation index, the influence of machine variation To reduce the bearing-induced vibration value. Since the evaluation index calculated from the bearing-induced vibration value is also less affected by machine fluctuation, it is easy to set the threshold value to be judged as abnormal. That is, it is possible to determine the presence or absence of abnormality with high accuracy by calculating a robust evaluation index in consideration of the influence of the rotational frequency and the transfer function.

特にここでは、振動測定ステップでは、測定ばらつきに対して振動の成長が明確に捉えられるように既定時間又は既定回転だけ軸受が回転する間隔をあけて回転周波数が同一の組み合わせの振動測定を複数回行い、評価指標算出ステップでは、軸受起因振動値の変化の度合い(振動の成長率)に基づいて評価指標を算出するようにしているので、評価指標の値が伝達関数の大きさの値に依存しない値となるため、異なる構造の主軸1の診断をする場合や異なる振動センサ8の位置で測定する場合でも同一のしきい値を用いた診断が可能となる。
また、振動平均値算出ステップでは、振動の周波数が既定した範囲内である振動の大きさのみを用いて平均を取るようにしているので、伝達関数の大きさの機台ばらつき、および、伝達関数の大きさの比周波数毎のばらつきの低減効果がさらに向上する。
In particular, here, in the vibration measurement step, vibration measurement of the same combination of rotational frequencies is performed multiple times at intervals of the bearing rotation for a predetermined time or predetermined rotation so that the growth of the vibration can be clearly captured for measurement variation. In the evaluation index calculation step, the evaluation index is calculated based on the degree of change in bearing-induced vibration value (growth rate of vibration), so the value of the evaluation index depends on the value of the transfer function size Since the value is not set, it is possible to make a diagnosis using the same threshold even when diagnosing the main shaft 1 of a different structure or when measuring at different positions of the vibration sensor 8.
In addition, in the vibration average value calculation step, since the average is taken using only the vibration magnitude that is within the predetermined range of the vibration frequency, machine variation of the transfer function magnitude, and the transfer function The reduction effect of the variation of each ratio frequency of the size of is further improved.

なお、上記形態では、回転周波数を考慮した振動値(修正振動値)の算出において、角速度の2乗で除算しているが、回転周波数そのものなど、回転周波数と比例関係にある物理量であれば同等の効果が得られるため置き換えてもよい。べき乗の指数の値が2である場合を示したが、回転周波数により加振力が変化する影響を低減する目的を達することが可能な別の数値(指数の値は0より大きい)に置き換えることが可能である。
また、角速度の2乗で除算する計算は定数のスカラー量で除算するだけの処理であるため、上記形態の周波数分析ステップでは、周波数分析の前に修正振動値を算出する例となっているが、振動平均値算出ステップを開始するまでであれば計算結果に影響しないため、例えばフーリエ変換して周波数領域での加速度を算出した後、角速度の2乗で除算する等、どのタイミングで行ってもよい。
一方、軸受起因振動値から評価指標を算出する場合は、各特徴比周波数の軸受起因振動値の平均値を採用しても良いし、各特徴比周波数の振動の成長率を求めてそれらの最大値や平均値としても良い。さらに、軸受起因振動値以外の振動平均値の値も参照した複雑な関数等によって決定してもよい。
In the above embodiment, in the calculation of the vibration value (corrected vibration value) considering the rotational frequency, division is performed by the square of the angular velocity, but any physical quantity such as the rotational frequency itself that is proportional to the rotational frequency is equivalent. It may be replaced because the effect of is obtained. Although the case where the value of the exponent of the power is 2 has been shown, replacing it with another numerical value (the value of the exponent is greater than 0) capable of achieving the purpose of reducing the effect of changing the excitation force by the rotation frequency Is possible.
Moreover, since the calculation of dividing by the square of the angular velocity is a process of dividing only by the scalar quantity of a constant, the frequency analysis step of the above embodiment is an example of calculating the corrected vibration value before the frequency analysis. Since the calculation result does not affect the calculation result until the vibration average value calculation step is started, for example, after calculating the acceleration in the frequency domain by Fourier transform, dividing by the square of the angular velocity, etc. Good.
On the other hand, when the evaluation index is calculated from the bearing-induced vibration value, the average value of the bearing-induced vibration values of each feature ratio frequency may be adopted, or the growth rate of the vibration of each feature ratio frequency is determined It may be a value or an average value. Furthermore, the value of the vibration average value other than the bearing-induced vibration value may also be determined by a complex function or the like that is referred to.

その他、上記形態では、内輪傷による軸受異常を例に挙げて説明をしたが、転動体の損傷等異なる軸受異常に対して適用しても良い。
また、工作機械以外の機械に用いられる転がり軸受であっても本発明は適用可能である。
さらに、異常診断装置としては工作機械に組み込む形態の他、少なくとも記憶部と演算部と表示部とを工作機械とは別の装置として工作機械と有線又は無線で通信可能とし、工作機械側で振動を測定してデータを取得しつつ、異常診断プログラムに基づいて異常診断方法を実行するようにしてもよい。このようにすれば複数の工作機械に対して集中管理が行える。
In addition, in the above-mentioned form, although bearing abnormalities by inner ring scratches were mentioned as an example and explained, it may apply to different bearing abnormalities, such as damage to a rolling element.
The present invention is also applicable to rolling bearings used in machines other than machine tools.
Furthermore, in addition to the form incorporated into a machine tool as an abnormality diagnosis apparatus, at least the storage unit, the calculation unit, and the display unit can communicate with the machine tool in a wired or wireless manner as a separate device from the machine tool. The abnormality diagnosis method may be executed based on the abnormality diagnosis program while measuring data and acquiring data. In this way, centralized control can be performed on a plurality of machine tools.

1・・主軸、2・・主軸ハウジング、3・・工具、4・・モータ、5・・速度検出器、6・・制御装置、7・・軸受、8・・振動センサ、9・・A/D変換器、10・・記憶部、11・・演算部、12・・表示部。   1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · speed control device · · · · control device 7 · · · bearing 8 · · · vibration sensor 9 · · A / D converter, 10 · · · storage unit, 11 · · · operation unit, 12 · · display unit.

Claims (6)

回転体を支持する転がり軸受の異常を診断する方法であって、
前記回転体の複数の回転周波数における前記回転体の振動を測定する振動測定ステップと、
前記振動を振動測定時の前記回転体の回転周波数と比例関係にある所定の物理量の零より大きい指数のべき乗で除すと共に周波数分析して、周波数毎の振動の大きさを算出する周波数分析ステップと、
前記振動測定ステップでの振動測定時の前記回転体の回転周波数に対する周波数の比が同一な前記振動の大きさについて平均をとった振動平均値を算出する振動平均値算出ステップと、
前記振動平均値のうち、前記軸受に起因する振動が生じる周波数の回転周波数に対する比である特徴比周波数における軸受起因振動値を抽出する軸受起因振動値抽出ステップと、
前記軸受起因振動値に基づき評価指標を算出する評価指標算出ステップと、
前記評価指標に基づいて異常の有無を判断する判断ステップと、を実行することを特徴とする転がり軸受の異常診断方法。
A method of diagnosing an abnormality in a rolling bearing supporting a rotating body, the method comprising:
Measuring a vibration of the rotating body at a plurality of rotational frequencies of the rotating body;
A frequency analysis step of calculating the magnitude of vibration at each frequency by dividing the vibration by the power of an index larger than zero of a predetermined physical quantity proportional to the rotational frequency of the rotating body at the time of vibration measurement and performing frequency analysis When,
A vibration average value calculating step of calculating a vibration average value obtained by averaging the magnitudes of the vibrations having the same ratio of frequency to rotational frequency of the rotating body at the time of vibration measurement in the vibration measuring step;
A bearing-induced vibration value extraction step of extracting a bearing-induced vibration value at a feature ratio frequency that is a ratio of the frequency at which the vibration caused by the bearing occurs to the rotational frequency among the vibration average values;
An evaluation index calculation step of calculating an evaluation index based on the bearing-induced vibration value;
And a judging step of judging the presence or absence of an abnormality based on the evaluation index.
前記振動平均値算出ステップでは、前記回転周波数、前記回転周波数の逆数、前記回転周波数の対数のいずれか1つが等間隔となるような前記回転周波数の組み合わせにおいて測定された前記振動の大きさを用いて前記振動平均値を算出することを特徴とする請求項1に記載の転がり軸受の異常診断方法。   In the vibration average value calculation step, using the magnitude of the vibration measured at a combination of the rotation frequency such that any one of the rotation frequency, the reciprocal of the rotation frequency, and the logarithm of the rotation frequency is equally spaced. The method according to claim 1, wherein the vibration average value is calculated. 前記振動測定ステップでは、前記回転周波数が同一の組み合わせの振動測定を複数回行い、
前記評価指標算出ステップでは、前記軸受起因振動値の変化の度合いに基づいて前記評価指標を算出することを特徴とする請求項1又は2に記載の転がり軸受の異常診断方法。
In the vibration measurement step, vibration measurement of the combination having the same rotational frequency is performed a plurality of times,
The method according to claim 1 or 2, wherein in the evaluation index calculation step, the evaluation index is calculated based on the degree of change in the bearing-induced vibration value.
前記振動平均値算出ステップでは、振動の周波数が既定した範囲内である振動の大きさのみを用いて平均を取ることを特徴とする請求項1乃至3の何れかに記載の転がり軸受の異常診断方法。   The abnormality diagnosis of the rolling bearing according to any one of claims 1 to 3, wherein in the vibration average value calculating step, only the magnitude of the vibration which is within a predetermined range is used to calculate the average. Method. 回転体を支持する転がり軸受の異常を診断する装置であって、
前記回転体の複数の回転周波数における前記回転体の振動を測定する振動測定手段と、
前記振動を振動測定時の前記回転体の回転周波数と比例関係にある所定の物理量の零より大きい指数のべき乗で除すと共に周波数分析して、周波数毎の振動の大きさを算出する周波数分析手段と、
前記振動測定手段での振動測定時の前記回転体の回転周波数に対する周波数の比が同一な前記振動の大きさについて平均をとった振動平均値を算出する振動平均値算出手段と、
前記振動平均値のうち、前記軸受に起因する振動が生じる周波数の回転周波数に対する比である特徴比周波数における軸受起因振動値を抽出する軸受起因振動値抽出手段と、
前記軸受起因振動値に基づき評価指標を算出する評価指標算出手段と、
前記評価指標に基づいて異常の有無を判断する判断手段と、を備えることを特徴とする転がり軸受の異常診断装置。
An apparatus for diagnosing an abnormality in a rolling bearing supporting a rotating body, the apparatus comprising:
Vibration measuring means for measuring the vibration of the rotating body at a plurality of rotational frequencies of the rotating body;
Frequency analysis means for calculating the magnitude of vibration for each frequency by dividing the vibration by the power of an index larger than zero of a predetermined physical quantity proportional to the rotational frequency of the rotating body at the time of vibration measurement and performing frequency analysis When,
Vibration average value calculation means for calculating a vibration average value obtained by averaging the magnitudes of the vibrations having the same ratio of frequency to rotational frequency of the rotating body at the time of vibration measurement by the vibration measurement means;
A bearing-induced vibration value extraction unit that extracts a bearing-induced vibration value at a feature ratio frequency that is a ratio of the frequency at which the vibration caused by the bearing occurs to the rotational frequency among the vibration average values;
Evaluation index calculation means for calculating an evaluation index based on the bearing-induced vibration value;
And a judging means for judging the presence or absence of an abnormality based on the evaluation index.
複数の回転周波数でそれぞれ測定された回転体の振動が各前記回転周波数と共に入力されたコンピュータに、請求項1乃至4の何れかに記載の転がり軸受の異常診断方法における周波数分析ステップと、振動平均値算出ステップと、軸受起因振動値抽出ステップと、評価指標算出ステップと、判断ステップとを実行させることを特徴とする転がり軸受の異常診断プログラム。   A frequency analysis step in a method for diagnosing a rolling bearing abnormality according to any one of claims 1 to 4, in a computer to which vibration of a rotating body measured at each of a plurality of rotational frequencies is input together with each of the rotational frequencies, and vibration average A rolling bearing abnormality diagnosis program, characterized by executing a value calculation step, a bearing-induced vibration value extraction step, an evaluation index calculation step, and a determination step.
JP2018123489A 2018-06-28 2018-06-28 Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program Active JP6511573B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018123489A JP6511573B1 (en) 2018-06-28 2018-06-28 Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018123489A JP6511573B1 (en) 2018-06-28 2018-06-28 Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program

Publications (2)

Publication Number Publication Date
JP6511573B1 true JP6511573B1 (en) 2019-05-15
JP2020003363A JP2020003363A (en) 2020-01-09

Family

ID=66530826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018123489A Active JP6511573B1 (en) 2018-06-28 2018-06-28 Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program

Country Status (1)

Country Link
JP (1) JP6511573B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012025A (en) * 2019-07-03 2021-02-04 株式会社ジェイテクト Inspection machine management system and inspection machine management method
CN113467379A (en) * 2020-03-31 2021-10-01 兄弟工业株式会社 Numerical controller and numerical control method
JP2022098983A (en) * 2020-12-22 2022-07-04 株式会社クボタ Rotary apparatus revolving speed detection system and revolving speed detection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063435A1 (en) * 2021-10-14 2023-04-20 エヌティーエンジニアリング株式会社 Working machine bearing quality determining method and system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196629A (en) * 1978-10-23 1980-04-08 Philips Gerald J Fiber optic machinery performance monitor
JPS6491033A (en) * 1987-10-02 1989-04-10 Hitachi Ltd Method and apparatus for diagnosing sliding motion apparatus
JP2006153855A (en) * 2004-10-26 2006-06-15 Nsk Ltd Anomaly diagnostic apparatus
JP4560110B2 (en) * 2008-09-17 2010-10-13 ジヤトコ株式会社 Abnormality diagnosis apparatus and abnormality diagnosis method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012025A (en) * 2019-07-03 2021-02-04 株式会社ジェイテクト Inspection machine management system and inspection machine management method
JP7272143B2 (en) 2019-07-03 2023-05-12 株式会社ジェイテクト Inspection machine management system and inspection machine management method
CN113467379A (en) * 2020-03-31 2021-10-01 兄弟工业株式会社 Numerical controller and numerical control method
JP2022098983A (en) * 2020-12-22 2022-07-04 株式会社クボタ Rotary apparatus revolving speed detection system and revolving speed detection device

Also Published As

Publication number Publication date
JP2020003363A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP6511573B1 (en) Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program
JP6496061B1 (en) Method and apparatus for diagnosing abnormality of rolling bearing
JP5686760B2 (en) Vibration discrimination method and vibration discrimination apparatus
US9791856B2 (en) Fault frequency set detection system and method
JP4592123B2 (en) Unsteady signal analyzer and medium on which unsteady signal analysis program is recorded
CN110346591A (en) Machine rotational speed is determined based on rumble spectrum figure
JP7049978B2 (en) Cutting system, machining error measuring method, and machining error measuring device
JP2008292288A (en) Bearing diagnostic device for reduction gear
JP7146683B2 (en) Rolling Bearing Abnormality Diagnosis Method, Abnormality Diagnosis Device, Abnormality Diagnosis Program
JP6507297B1 (en) Method and apparatus for diagnosing abnormality of rolling bearing, abnormality diagnosis program
JP2013213817A (en) Systems and methods of identifying types of faults
KR102491716B1 (en) Machining environment estimation device
JP2011252762A (en) Method and device for monitoring bearing state
JP6354349B2 (en) Vibration detector and machine tool
TWI609737B (en) Method for detecting change of linear slide preload value of machine tool
JP5476413B2 (en) Diagnostic method for soundness of rotating machinery
JP7097338B2 (en) Equipment diagnostic equipment, equipment diagnostic methods, and equipment diagnostic programs
JP2012171058A (en) Method and device for preparing stability limit diagram
CN115499458A (en) Vibration monitoring method, device, equipment and storage medium based on Internet of things
EP3929460B1 (en) Anomaly detection system and anomaly detection method
JP2005308537A (en) Balance analyzer and balance analysis method by the same
CN116057357A (en) Method for monitoring at least one working machine driven by a rotary machine
Alekseev et al. Data measurement system of compressor units defect diagnosis by vibration value
WO2023209846A1 (en) Input/output device and steering measurement device
JPH01274019A (en) Monitoring of vibration for rotary machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181024

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181024

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6511573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150