JP5721227B2 - Multiaxial fatigue life evaluation method - Google Patents

Multiaxial fatigue life evaluation method Download PDF

Info

Publication number
JP5721227B2
JP5721227B2 JP2011183638A JP2011183638A JP5721227B2 JP 5721227 B2 JP5721227 B2 JP 5721227B2 JP 2011183638 A JP2011183638 A JP 2011183638A JP 2011183638 A JP2011183638 A JP 2011183638A JP 5721227 B2 JP5721227 B2 JP 5721227B2
Authority
JP
Japan
Prior art keywords
strain
stress
principal
range
δsi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011183638A
Other languages
Japanese (ja)
Other versions
JP2013044667A (en
Inventor
中村 寛
寛 中村
正祐 高梨
正祐 高梨
政男 坂根
政男 坂根
隆基 伊藤
隆基 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Ritsumeikan Trust
University of Fukui
Original Assignee
IHI Corp
Ritsumeikan Trust
University of Fukui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Ritsumeikan Trust, University of Fukui filed Critical IHI Corp
Priority to JP2011183638A priority Critical patent/JP5721227B2/en
Publication of JP2013044667A publication Critical patent/JP2013044667A/en
Application granted granted Critical
Publication of JP5721227B2 publication Critical patent/JP5721227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、航空機エンジン、過給器などの回転機械や、圧力容器などを含む一般構造物の疲労寿命を評価する際に用いられる多軸疲労寿命評価方法に関するものである。   The present invention relates to a multiaxial fatigue life evaluation method used for evaluating the fatigue life of a general structure including a rotary machine such as an aircraft engine and a supercharger, a pressure vessel, and the like.

実機部材の受ける荷重は、時刻と共に変化するランダム荷重である。従来、変動する多軸負荷場の寿命を評価するために、単軸での評価手法を拡張し、等価ひずみや等価応力(例えば、ミゼスの等価ひずみや等価応力)を用い、レインフロー法などの波数計数法とマイナー則などの累積損傷則(累積疲労損傷則)を用いて、単軸での材料データに基づき評価を行ってきた。   The load received by the actual machine member is a random load that changes with time. Conventionally, in order to evaluate the life of a fluctuating multiaxial load field, the uniaxial evaluation method has been expanded, and equivalent strain and equivalent stress (for example, equivalent strain and equivalent stress of Mises) are used. Evaluation has been made based on uniaxial material data using wave number counting method and cumulative damage law such as minor law (cumulative fatigue damage law).

しかし、複雑に変化する多軸負荷状態や構造の不連続性によって、主応力や主ひずみの方向(主軸という)が変化することも想定される。主軸方向を変化させた多軸疲労試験結果によれば、せん断ひずみと軸ひずみの位相あるいはせん断応力と軸応力の位相がずれるに従い、疲労寿命は単軸の寿命(等価ひずみあるいは等価応力を用いて求めた疲労寿命)よりも低下していくことが報告されている。   However, it is also assumed that the direction of principal stress and principal strain (referred to as the principal axis) changes due to a complexly changing multiaxial load state and structural discontinuity. According to the results of the multiaxial fatigue test in which the main axis direction was changed, the fatigue life became uniaxial life (using equivalent strain or equivalent stress as the phase of shear strain and axial strain or the phase of shear stress and axial stress shifted. It has been reported that the fatigue life is lower than the calculated fatigue life.

こうした問題点を解決するために、負荷経路(主軸方向変化を含む負荷経路)を考慮して、主軸の変化にも対応できる多軸疲労寿命評価方法がいくつか提案されている。   In order to solve these problems, several multi-axis fatigue life evaluation methods that can cope with changes in the spindle have been proposed in consideration of load paths (load paths including changes in the spindle direction).

なかでも、非特許文献1〜3では、評価対象とする期間中で主応力・主ひずみが最も大きな値となる主応力・主ひずみ面に着目して、主軸の変化量を定量化する方法、および負荷経路(主軸方向変化を含む負荷経路)に基づいた多軸疲労寿命評価方法(IS(Itoh-Sakane)法)が提案されている。   Among them, in Non-Patent Documents 1 to 3, a method of quantifying the amount of change in the main axis by paying attention to the principal stress / principal strain surface having the largest principal stress / principal strain during the period to be evaluated, In addition, a multiaxial fatigue life evaluation method (IS (Itoh-Sakane) method) based on load paths (load paths including changes in the main shaft direction) has been proposed.

伊藤隆基、「非比例多軸低サイクル疲労寿命評価モデル」、材料、社団法人日本材料学会、2001年12月15日、vol.50、No.12、pp.1317−1322Takaki Ito, “Non-proportional multiaxial low cycle fatigue life evaluation model”, Materials, Japan Society for Materials Science, December 15, 2001, vol. 50, no. 12, pp. 1317-1322 Takamoto Itoh、Tomohiko Ozaki、Toru Amaya、and Masao Sakane、「DETERMINATION OF STRESS AND STRAIN RANGES UNDER NON-PROPORTIONAL CYCLIC LOADING」、8th International Conference on Multiaxial Fatigue & Fracture、2007年Takamoto Itoh, Tomohiko Ozaki, Toru Amaya, and Masao Sakane, "DETERMINATION OF STRESS AND STRAIN RANGES UNDER NON-PROPORTIONAL CYCLIC LOADING", 8th International Conference on Multiaxial Fatigue & Fracture, 2007 Takamoto Itoh、Masao Sakane、Takahiro Hata、Naomi Hamada、「A design procedure for assessing low cycle fatigue life under proportional and non-proportional loading」、International Journal of Fatigue 28、2006年、pp.459−466Takamoto Itoh, Masao Sakane, Takahiro Hata, Naomi Hamada, “A design procedure for assessing low cycle fatigue life under proportional and non-proportional loading”, International Journal of Fatigue 28, 2006, pp. 459-466 呉敏、伊藤隆基、清水祐太、中村寛、高梨正祐、「非比例多軸負荷におけるTi−6Al−4Vの低サイクル疲労寿命に及ぼす平均ひずみの影響」、M&M2010材料力学カンファレンスCD−ROM論文集、社団法人日本機械学会、2010年10月、pp.1165−1167Satoshi Kure, Takaki Ito, Yuta Shimizu, Hiroshi Nakamura, Masasuke Takanashi, “Effect of Average Strain on Low Cycle Fatigue Life of Ti-6Al-4V under Non-proportional Multiaxial Load”, M & M 2010 Materials Mechanics Conference CD-ROM, The Japan Society of Mechanical Engineers, October 2010, pp. 1165-1167

しかしながら、従来のIS法では、負荷の大きさが複雑に変化する波形に対して、負荷波形の大きさと主軸方向の変化の程度とを、それぞれ評価することができなかった。   However, in the conventional IS method, the magnitude of the load waveform and the degree of change in the principal axis direction cannot be evaluated with respect to the waveform in which the magnitude of the load changes in a complicated manner.

具体的には、従来のIS法では、評価対象とする期間全体での主軸の変化量の評価を行い、その結果を基に、主軸の変化量を考慮した(非比例負荷を考慮した)応力範囲またはひずみ範囲を求めて疲労寿命の評価を行っている。疲労寿命の評価を行う際に用いる応力範囲やひずみ範囲は、評価対象とする期間全体に対応するものであるから、負荷波形1つ1つでの疲労損傷を考慮した評価を行うものではなかった。   Specifically, in the conventional IS method, the amount of change in the main shaft is evaluated over the entire period to be evaluated, and based on the results, the amount of change in the main shaft is taken into account (considering a non-proportional load). The fatigue life is evaluated by obtaining the range or strain range. Since the stress range and strain range used when evaluating fatigue life correspond to the entire period to be evaluated, evaluation was not performed considering fatigue damage in each load waveform. .

そのため、例えば、1度だけ大きな負荷がかかり、小さな負荷が多数回かかる場合など、負荷の大きさが複雑に(あるいは不規則に)変化する場合においては、評価対象とする期間をどのように設定するかにより異なる疲労寿命の評価となってしまうおそれがあり、従来のIS法で疲労損傷を高精度に予測することは困難であった。   Therefore, for example, when the load size changes complicatedly (or irregularly), such as when a large load is applied only once and a small load is applied many times, how is the period to be evaluated set? Depending on whether or not the fatigue life may be evaluated, it is difficult to predict fatigue damage with high accuracy by the conventional IS method.

そこで、本発明の目的は、上記課題を解決し、負荷の大きさが複雑に変化する場合であっても、多軸負荷による疲労損傷を高精度に予測可能な多軸疲労寿命評価方法を提供することにある。   Accordingly, an object of the present invention is to solve the above problems and provide a multiaxial fatigue life evaluation method capable of predicting fatigue damage due to a multiaxial load with high accuracy even when the magnitude of the load changes in a complicated manner. There is to do.

本発明は上記目的を達成するために創案されたものであり、評価対象の構造物の応力またはひずみ状態を基に、評価対象の主応力・主ひずみ面を決定する評価面決定工程と、各時刻での主応力・主ひずみの大きさをSI(t)、前記評価対象の主応力・主ひずみ面の主応力・主ひずみ軸と各時刻での主応力・主ひずみ軸とのなす角度をξ(t)としたとき、負荷経路長さに対する前記評価対象の主応力・主ひずみ面に作用する主応力・主ひずみの大きさ(SI(t)cosξ(t))の関係と、負荷経路長さに対する主応力・主ひずみの方向変化を含む値の変化量(SI(t)|sinξ(t)|)の関係と、を求める解析工程と、前記負荷経路長さに対する前記評価対象の主応力・主ひずみ面に作用する主応力・主ひずみの大きさの関係を基に、前記評価対象の主応力・主ひずみ面に作用する主応力・主ひずみの大きさの波形の解析を行い、当該波形から前記評価対象の主応力・主ひずみ面での疲労損傷に寄与する波(あるいは波の組み合せ)を分割して抽出すると共に、抽出した波(あるいは波の組み合せ)のそれぞれについて、主応力・主ひずみ面に作用する応力範囲またはひずみ範囲ΔSIiを求める波形計数工程と、負荷経路長さに対する主応力・主ひずみの方向変化を含む値の変化量の関係を基に、前記波形計数工程で抽出したそれぞれの波(あるいは波の組み合せ)に対応する非比例負荷係数fNP_iを[数1]に示す式(1) The present invention was devised to achieve the above object, and based on the stress or strain state of the structure to be evaluated, an evaluation surface determination step for determining the principal stress / strain surface of the evaluation object, The magnitude of the principal stress and principal strain at the time is SI (t), and the angle between the principal stress and principal strain axis of the principal stress and principal strain surface to be evaluated is the principal stress and principal strain axis at each time. When ξ (t), the relationship between the principal stress / principal strain acting on the principal stress / principal strain surface to be evaluated with respect to the load pathway length (SI (t) cosξ (t)) and the load pathway An analysis step for obtaining a relationship of a change amount (SI (t) | sinξ (t) |) of a value including a direction change of main stress / strain with respect to the length, and a main of the evaluation target with respect to the load path length Based on the relationship between the principal stress and principal strain acting on the stress and principal strain surface Analyzing the waveform of the principal stress and principal strain acting on the principal stress and principal strain surface of the evaluation object, and analyzing the waveform that contributes to fatigue damage on the principal stress and principal strain surface of the evaluation object (Or a combination of waves) divided and extracted, and for each of the extracted waves (or a combination of waves), a waveform counting step for obtaining a stress range or strain range ΔSI i acting on the principal stress / strain plane, A non-proportional load coefficient f NP — i corresponding to each wave (or combination of waves) extracted in the waveform counting step based on the relationship between the change amount of the value including the direction change of the main stress / strain with respect to the load path length. Equation (1) shown in [Equation 1]

より求め、求めた非比例負荷係数fNP_iと前記波形計数工程で求めた応力範囲またはひずみ範囲ΔSIiとを基に、非比例負荷を考慮した応力範囲またはひずみ範囲ΔSIi_NPをそれぞれの波ごとに演算する演算工程と、該演算工程で求めた応力範囲またはひずみ範囲ΔSIi_NPと、予め求めておいた単軸負荷時のSN線図とに基づいて累積損傷を演算し、演算した累積損傷を基に、前記構造物の疲労寿命を予測する寿命予測工程と、を備えた多軸疲労寿命評価方法である。 Based on the obtained non-proportional load coefficient f NP_i and the stress range or strain range ΔSI i obtained in the waveform counting step, the stress range or strain range ΔSI i_NP considering the non-proportional load is determined for each wave. The cumulative damage is calculated based on the calculation process to be calculated, the stress range or strain range ΔSI i_NP obtained in the calculation process, and the SN diagram at the time of uniaxial load obtained in advance. And a life prediction step for predicting the fatigue life of the structure.

前記波形計数工程での前記波形の解析は、レインフロー法に基づき行うとよい。   The analysis of the waveform in the waveform counting step may be performed based on a rainflow method.

前記評価面決定工程では、前記評価対象の構造物の各時刻での応力またはひずみ状態を基に、各時刻での主応力または主ひずみに対して直交する面である主応力・主ひずみ面をそれぞれ求め、求めた各時刻での主応力・主ひずみ面のそれぞれに対して、当該主応力・主ひずみ面に作用する各時刻での主応力または主ひずみの垂直成分の値をそれぞれ算出すると共に、当該算出した値と、予め求めておいた単軸負荷時のSN線図とに基づき、各主応力・主ひずみ面での累積損傷評価を行い、当該累積損傷評価で最も損傷が大きいと評価された主応力・主ひずみ面を評価対象の主応力・主ひずみ面として決定するとよい。   In the evaluation surface determination step, based on the stress or strain state at each time of the structure to be evaluated, a principal stress / strain surface that is orthogonal to the principal stress or principal strain at each time is determined. For each principal stress and principal strain surface at each obtained time, calculate the value of the principal stress or principal strain vertical component at each time acting on the principal stress and principal strain surface. Based on the calculated value and the SN diagram at the time of uniaxial load obtained in advance, cumulative damage evaluation at each principal stress / strain plane is performed, and it is evaluated that the damage is the largest in the cumulative damage evaluation. The determined principal stress / strain surface may be determined as the principal stress / strain surface to be evaluated.

前記演算工程では、非比例負荷係数fNP_iと前記波形計数工程で求めた応力範囲またはひずみ範囲ΔSIiとを基に、下式(2)
ΔSIi_NP=(1+αfNP_i)ΔSIi+kSi_mean ・・・(2)
但し、α:非比例負荷での追硬化の程度あるいは寿命低下の程度を
表す係数
i_mean:それぞれの波での平均応力または平均ひずみ
k:材料定数
より、非比例負荷を考慮した応力範囲またはひずみ範囲ΔSIi_NPを演算してもよい。
Wherein in the calculation step, based on the stress range or strain range DerutaSI i obtained in a non-proportional load factor f NP_i the waveform counting step, the following equation (2)
ΔSI i_NP = (1 + αf NP_i ) ΔSI i + kS i_mean (2)
Where α is the degree of further curing or non-proportional load
Coefficient to represent
S i_mean : Average stress or average strain at each wave
k: A stress range or a strain range ΔSI i_NP considering a non-proportional load may be calculated from the material constant.

前記演算工程では、非比例負荷係数fNP_iと前記波形計数工程で求めた応力範囲またはひずみ範囲ΔSIiとを基に、下式(3)
ΔSIi_NP=(1+αfNP_i)ΔSIi{(1−Ri)/2}w-1
・・・(3)
但し、α:非比例負荷での追硬化の程度あるいは寿命低下の程度を
表す係数
i:それぞれの波での最大応力または最大ひずみと
最小応力または最小ひずみとの比
w:材料定数
より、非比例負荷を考慮した応力範囲またはひずみ範囲ΔSIi_NPを演算してもよい。
Wherein in the calculation step, based on the stress range or strain range DerutaSI i obtained in a non-proportional load factor f NP_i the waveform counting step, the following equation (3)
ΔSI iNP = (1 + αf NPi ) ΔSI i {(1−R i ) / 2} w−1
... (3)
Where α is the degree of further curing or non-proportional load
Coefficient to represent
R i : Maximum stress or maximum strain in each wave
Ratio to minimum stress or strain
w: A stress range or a strain range ΔSI i_NP considering a non-proportional load may be calculated from the material constant.

本発明によれば、負荷の大きさが複雑に変化する場合であっても、多軸負荷による疲労損傷を高精度に予測可能な多軸疲労寿命評価方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where the magnitude | size of load changes complicatedly, the multiaxial fatigue life evaluation method which can predict the fatigue damage by a multiaxial load with high precision can be provided.

本発明の一実施の形態に係る多軸疲労寿命評価方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the multiaxial fatigue life evaluation method which concerns on one embodiment of this invention. 本発明において、評価対象の主応力・主ひずみ面を決定する際の手順を示すフローチャートである。In this invention, it is a flowchart which shows the procedure at the time of determining the main stress and principal strain surface of evaluation object. (a),(b)は、本発明において、ある時刻tnの主応力・主ひずみ面に作用する別の時刻tiの主応力・主ひずみS(ti)の垂直成分について説明する図である。(A), (b) is a figure explaining the perpendicular | vertical component of main stress and principal strain S (t i ) of another time t i which acts on the principal stress and principal strain surface at a certain time t n in the present invention. It is. 本発明において、評価対象の主応力・主ひずみ面に作用する主応力・主ひずみの大きさと、主応力または主ひずみの方向変化を含む値の変化量を説明する図である。In this invention, it is a figure explaining the variation | change_quantity of the value including the magnitude | size of the principal stress and principal strain which acts on the principal stress and principal strain surface of evaluation object, and the principal stress or principal strain. (a)は、評価対象の構造物の各時刻での応力またはひずみ状態の一例を示す図であり、(b)は、(a)の応力またはひずみ状態のときに得られる負荷経路長さに対するSI(t)cosξ(t),SI(t)|sinξ(t)|の関係を示す図である。(A) is a figure which shows an example of the stress or distortion state in each time of the structure of evaluation object, (b) is with respect to the load path | route length obtained at the time of the stress or distortion state of (a). It is a figure which shows the relationship between SI (t) cosξ (t) and SI (t) | sinξ (t) |. 図5(b)の関係が得られた場合における、レインフロー法による波数計数を説明する図である。FIG. 6 is a diagram for explaining wave number counting by a rainflow method when the relationship of FIG. 5B is obtained. 図6のBの波に対応する負荷経路長さの区間を説明する図である。It is a figure explaining the area of the load path | route length corresponding to the wave of B of FIG.

以下、本発明の実施の形態を添付図面にしたがって説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

まず、本実施の形態に係る多軸疲労寿命評価方法で用いるIS法について説明する。なお、IS法については、非特許文献1,2に詳細に記載されているため、ここでは概略のみを説明する。   First, the IS method used in the multiaxial fatigue life evaluation method according to the present embodiment will be described. Since the IS method is described in detail in Non-Patent Documents 1 and 2, only the outline will be described here.

IS法は、主応力(ひずみ)基準のクライテリアであり、下式(4)で定義される。
ΔSINP=(1+αfNP)ΔSI ・・・(4)
The IS method is a criterion based on principal stress (strain) and is defined by the following equation (4).
ΔSI NP = (1 + αf NP ) ΔSI (4)

式(4)において、ΔSIは評価対象となる主応力・主ひずみ面に作用する垂直成分として算出される応力(ひずみ)範囲、すなわち、評価対象の主応力・主ひずみ面での主応力・主ひずみ軸を基準軸としたとき、その基準軸に投影して算出される応力(ひずみ)範囲である。また、αは非比例負荷(応力またはひずみの主軸方向が変化する負荷)での追硬化の程度あるいは寿命低下の程度を表す係数であり、非比例負荷による時間強度の低下率からも求めることができる。αは材料定数であるため、予め材料データとして取得しておくとよい。fNPは、負荷経路の非比例の程度を表すパラメータであり、非比例負荷係数と呼称する。 In Expression (4), ΔSI is a stress (strain) range calculated as a normal component acting on the principal stress / strain surface to be evaluated, that is, the principal stress / principal on the principal stress / strain surface to be evaluated. When the strain axis is the reference axis, the stress (strain) range is calculated by projecting to the reference axis. Α is a coefficient representing the degree of further curing or life reduction under non-proportional load (load in which the principal axis direction of stress or strain changes), and can also be obtained from the rate of decrease in time intensity due to non-proportional load. it can. Since α is a material constant, it is preferable to obtain it in advance as material data. f NP is a parameter representing a non-proportional degree of the load path, and is referred to as a non-proportional load coefficient.

非比例負荷係数fNPは、[数2]に示す式(5)より得られる。 The non-proportional load coefficient f NP is obtained from the equation (5) shown in [Equation 2].

式(5)における積分記号の中の「|e1×eRSI(t)|」は、主応力(主ひずみ)の方向変化を含む値の変化量を表しており、dsは応力(ひずみ)経路、すなわち負荷経路を表している。負荷経路の全経路に沿って、主応力(ひずみ)の変化量を経路積分することにより、非比例負荷係数fNPを求めることができる。なお、式(5)において積分値にπ/(2SImax・Lpath)を乗じているのは、fNPを基準化するためである。軸ひずみεまたは軸応力σとせん断ひずみγまたはせん断応力τが90度の位相差で負荷される円形負荷では、fNPは1となる。 “| E 1 × e R SI (t) |” in the integral symbol in equation (5) represents the amount of change of the value including the direction change of the principal stress (principal strain), and ds is the stress (strain). ) Path, that is, a load path. The non-proportional load coefficient f NP can be obtained by integrating the amount of change of the main stress (strain) along the entire path of the load path. The reason why the integral value is multiplied by π / (2SI max · L path ) in Equation (5) is to standardize f NP . In a circular load in which axial strain ε or axial stress σ and shear strain γ or shear stress τ are loaded with a phase difference of 90 degrees, f NP is 1.

また、e1は最大主応力(最大主ひずみ)の方向を示す単位ベクトルであり、eRは、ある時刻t(e1を基準(時刻0)とした時刻)での主応力(主ひずみ)の方向を示す単位ベクトルである。よって、e1とeRの外積は、e1とeRのなす角度ξ(t)を用いて、sinξ(t)で表すことができる。よって、式(5)の積分記号の中の「|e1×eRSI(t)|」は、「SI(t)|sinξ(t)|」と表すこともできる。 Further, e 1 is a unit vector indicating the direction of the maximum principal stress (maximum principal strain), and e R is the principal stress (principal strain) at a certain time t (time with e 1 as a reference (time 0)). Is a unit vector indicating the direction of. Thus, the outer product of e 1 and e R uses e 1 and e the angle of R xi] a (t), it can be represented by sinξ (t). Therefore, “| e 1 × e R SI (t) |” in the integral symbol of Expression (5) can also be expressed as “SI (t) | sinξ (t) |”.

以下、本実施の形態に係る多軸疲労寿命評価方法を用いて説明する。   Hereinafter, the multiaxial fatigue life evaluation method according to the present embodiment will be described.

図1に示すように、本実施の形態に係る多軸疲労寿命評価方法は、評価面決定工程(ステップS1)と、解析工程(ステップS2)と、波形計数工程(ステップS3)と、演算工程(ステップS4)と、寿命予測工程(ステップS5)と、を主に備えている。   As shown in FIG. 1, the multiaxial fatigue life evaluation method according to the present embodiment includes an evaluation surface determination step (step S1), an analysis step (step S2), a waveform counting step (step S3), and a calculation step. (Step S4) and a life prediction step (Step S5) are mainly provided.

ステップS1の評価面決定工程では、まず、ステップS11にて、評価対象の構造物の各時刻での応力またはひずみ状態を基に、各時刻での主応力または主ひずみを計算する。これにより、各時刻での主応力または主ひずみに対して直交する面である各時刻での主応力・主ひずみ面も得られることになる。   In the evaluation surface determination step of step S1, first, in step S11, the main stress or main strain at each time is calculated based on the stress or strain state at each time of the structure to be evaluated. Thereby, the principal stress / strain plane at each time, which is a plane orthogonal to the principal stress or principal strain at each time, is also obtained.

なお、ステップS11で計算に用いる各時刻での応力またはひずみ状態としては、例えば、疲労寿命の評価を行う部位がセンサを配置した測定点である場合は、そのセンサによる測定データを用いることができる。また、測定点でない部位の疲労寿命の評価を行う際には、応力またはひずみ状態を任意の方法で解析した解析結果を用いることができる。また、評価を行う期間は、例えば、評価対象の構造物の起動(運用開始)から停止(運用終了)までとすればよい。具体的には、例えば、評価対象の構造物が航空機である場合には、離陸から着陸までの1サイクル、評価対象の構造物がプラントである場合は、前回の定期検査から今回の定期検査までを、評価対象の期間とすればよい。   In addition, as the stress or strain state at each time used for calculation in step S11, for example, when the part where the fatigue life is evaluated is a measurement point where the sensor is arranged, measurement data by the sensor can be used. . Moreover, when evaluating the fatigue life of the site | part which is not a measuring point, the analysis result which analyzed the stress or the strain state by arbitrary methods can be used. Moreover, what is necessary is just to set it as the period which performs evaluation from the starting (operation start) to the stop (operation end) of the structure of evaluation object, for example. Specifically, for example, when the structure to be evaluated is an aircraft, one cycle from take-off to landing, and when the structure to be evaluated is a plant, from the previous periodic inspection to the current periodic inspection. May be set as the period to be evaluated.

その後、ステップS12にて、評価対象の主応力・主ひずみ面を決定する。このとき、従来から行われているように、主応力・主ひずみが最大となる面を評価対象の主応力・主ひずみ面としてもよいが、本実施の形態では、最も疲労損傷が大きい主応力・主ひずみ面を求め、その最も疲労損傷が大きい主応力・主ひずみ面を評価対象の主応力・主ひずみ面に決定する。   Thereafter, in step S12, the main stress / strain surface to be evaluated is determined. At this time, as has been done conventionally, the surface having the largest principal stress / strain may be the principal stress / strain surface to be evaluated, but in this embodiment, the principal stress with the greatest fatigue damage is obtained. -Obtain the principal strain surface and determine the principal stress / strain surface with the greatest fatigue damage as the principal stress / strain surface to be evaluated.

これは、例えば、大きい負荷が1回作用する間に多数回の小さい負荷が作用する場合のように、応力・ひずみの状態によっては、主応力・主ひずみが最大となる面が最も疲労損傷が大きくなるとは限らないためである。このような場合に従来通り主応力・主ひずみが最大となる面を評価対象として疲労寿命の評価を行うと、最も疲労損傷が大きい面でない面を評価対象としていることとなり、危険側の評価となってしまう。   This is because, for example, the surface where the principal stress / principal strain is maximized is most subject to fatigue damage depending on the state of stress / strain, such as when many small loads are applied while a large load is applied once. It is because it does not necessarily become large. In such a case, if the fatigue life is evaluated with the surface having the largest principal stress / strain as the evaluation target as before, the surface that is not the surface with the greatest fatigue damage is evaluated, and the evaluation on the dangerous side turn into.

ステップS12で評価対象の主応力・主ひずみ面を決定する際の具体的な手順を図2に示す。   FIG. 2 shows a specific procedure for determining the principal stress / strain surface to be evaluated in step S12.

図2に示すように、評価対象の主応力・主ひずみ面を決定する際には、まず、ステップS121にて、ある時刻tnの主応力・主ひずみ面に着目し、その面に作用する他の各時刻での主応力または主ひずみの垂直成分の値をそれぞれ算出する。 As shown in FIG. 2, when determining the principal stress / principal strain surface to be evaluated, first, in step S121, pay attention to the principal stress / principal strain surface at a certain time t n and act on that surface. The value of the vertical component of the principal stress or principal strain at each other time is calculated.

図3(a)に示すように、ある時刻tnの主応力・主ひずみがS(tn)であり、時刻tnの主応力・主ひずみ面が符号21で示される面であったとする。このとき、図3(b)に示すように、別の時刻tiの主応力・主ひずみがS(ti)であったとすると、時刻tnの主応力・主ひずみ面21に作用する別の時刻tiの主応力・主ひずみS(ti)の垂直成分は、図中のS(ti)’のようになる。同様にして、ある時刻tnの主応力・主ひずみ面21に作用する全ての時刻での主応力・主ひずみの垂直成分を算出する。 As shown in FIG. 3A, it is assumed that the principal stress / principal strain at a certain time t n is S (t n ), and the principal stress / principal strain surface at the time t n is a plane indicated by reference numeral 21. . At this time, as shown in FIG. 3B, if the main stress / principal strain at another time t i is S (t i ), another stress acting on the principal stress / principal strain surface 21 at time t n is obtained. The vertical component of the principal stress / principal strain S (t i ) at time t i is as shown by S (t i ) ′ in the figure. Similarly, the vertical components of the principal stress and principal strain at all times acting on the principal stress and principal strain surface 21 at a certain time t n are calculated.

その後、ステップS122にて、予め求めておいた単軸負荷時のSN線図に基づき、時刻tnの主応力・主ひずみ面について累積損傷評価を行う。 Thereafter, in step S122, cumulative damage evaluation is performed on the principal stress / principal strain surface at time t n based on the SN diagram at the time of uniaxial load obtained in advance.

累積損傷評価では、マイナー則や修正マイナー則を用いて評価を行うとよい。具体的には、ステップS121で算出した任意の時刻tiの主応力・主ひずみの垂直成分S(ti)’に対応するサイクル数Niを単軸負荷時のSN線図より求めると共に、そのS(ti)’が負荷された回数niを求め、下式(6)
n=Σ(ni/Ni) ・・・(6)
により、時刻tnの主応力・主ひずみ面での疲労損傷度Dnを求める。
In cumulative damage evaluation, it is recommended to use minor rules or modified minor rules. Specifically, the arbitrary time t i the number of cycles N i corresponding to the main stress and principal strain of the vertical component S (t i) 'together with obtained from SN diagram during uniaxial load calculated in step S121, The number of times n i at which S (t i ) ′ is loaded is obtained, and the following equation (6)
D n = Σ (n i / N i ) (6)
Thus, the fatigue damage degree D n on the principal stress / principal strain surface at time t n is obtained.

その後、ステップS123にて、全てのnについて計算を行ったかを判断し、NOと判断されればステップS121に戻る。つまり、ステップS121,S122を全ての時刻について実行し、すべての時刻の主応力・主ひずみ面での疲労損傷度をそれぞれ求める。なお、評価対象とする時刻の間隔については、解析結果を用いる場合には解析を行った設定(ステップ)をそのまま採用すればよく、測定結果を用いる場合には、適宜な間隔に設定すればよい。   Thereafter, in step S123, it is determined whether all n have been calculated. If NO is determined, the process returns to step S121. That is, steps S121 and S122 are executed for all times, and the fatigue damage levels on the principal stress / principal strain surfaces at all times are obtained. As for the time interval to be evaluated, the analysis setting (step) may be employed as it is when the analysis result is used, and may be set at an appropriate interval when the measurement result is used. .

その後、ステップS124にて、ステップS122で求めた疲労損傷度Dnが最大となる主応力・主ひずみ面、すなわち、最大の疲労損傷となる主応力・主ひずみ面を選択し、選択した主応力・主ひずみ面での主応力・主ひずみ軸(つまり主応力・主ひずみ面に垂直な軸)を基準軸とし、選択した主応力・主ひずみ面を評価面に決定する。 Thereafter, at step S124, the main stress and principal strain surface fatigue damage degree D n obtained is maximum in step S122, i.e., select the primary stress and principal strain plane of maximum fatigue damage were selected principal stress -The principal stress / principal strain axis (that is, the axis perpendicular to the principal stress / principal strain plane) is used as the reference axis, and the selected principal stress / principal strain plane is determined as the evaluation plane.

図1に戻り、ステップS12(ステップS122〜S124)にて評価対象の主応力・主ひずみ面を決定した後、ステップS2の解析工程を行う。   Returning to FIG. 1, after determining the main stress / strain surface to be evaluated in step S <b> 12 (steps S <b> 122 to S <b> 124), the analysis process of step S <b> 2 is performed.

ステップS2の解析工程では、IS法を用いて、負荷経路長さに対する評価対象の主応力・主ひずみ面に作用する主応力・主ひずみの大きさの関係と、負荷経路長さに対する主応力・主ひずみの方向変化を含む値の変化量の関係と、を求める。   In the analysis process of step S2, the IS method is used to determine the relationship between the principal stress and principal strain acting on the principal stress and principal strain surface to be evaluated with respect to the load path length, and the principal stress and principal strain with respect to the load path length. The relationship between the change amount of the value including the direction change of the main strain is obtained.

図4に示すように、各時刻での主応力・主ひずみの大きさをSI(t)、評価対象の主応力・主ひずみ面の主応力・主ひずみ軸と各時刻での主応力・主ひずみ軸とのなす角度(つまりe1とeRのなす角度)をξ(t)としたとき、評価対象の主応力・主ひずみ面に作用する主応力・主ひずみの大きさは、SI(t)cosξ(t)と表すことができる。また、主応力または主ひずみの方向変化を含む値の変化量は、SI(t)|sinξ(t)|と表すことができる。 As shown in FIG. 4, the magnitude of the principal stress / strain at each time is SI (t), the principal stress / strain axis of the principal stress / strain surface to be evaluated, and the principal stress / strain at each time. When the angle formed by the strain axis (that is, the angle formed by e 1 and e R ) is ξ (t), the magnitude of the principal stress / strain acting on the principal stress / strain plane to be evaluated is SI ( t) can be expressed as cosξ (t). Further, the amount of change of the value including the direction change of the main stress or the main strain can be expressed as SI (t) | sinξ (t) |.

一例として、図5(a)に示すように、軸負荷が1回作用する間にねじり負荷が2回作用する場合を考えると、負荷経路長さに対するSI(t)cosξ(t),SI(t)|sinξ(t)|の関係は、それぞれ図5(b)に実線と破線で示すようになる。図5(b)のような関係を得た後、ステップS3に進む。   As an example, when a torsional load is applied twice while an axial load is applied once as shown in FIG. 5A, SI (t) cosξ (t), SI ( t) | sinξ (t) | is represented by a solid line and a broken line in FIG. After obtaining the relationship as shown in FIG. 5B, the process proceeds to step S3.

ステップS3の波形計数工程では、負荷経路長さに対するSI(t)cosξ(t)の関係を基に、SI(t)cosξ(t)の波形の解析(波形計数解析、頻度解析)を行い、当該波形から評価対象の主応力・主ひずみ面での疲労損傷に寄与する波(あるいは波の組み合せ)を分割して抽出する。本実施の形態では、波形の解析をレインフロー法に基づき行う場合を説明するが、レインフロー法に限らず、例えば、レンジペア法、ヒステリシスループ法などを用いることが可能である。   In the waveform counting step of step S3, the analysis of the waveform of SI (t) cosξ (t) (waveform counting analysis, frequency analysis) is performed based on the relationship of SI (t) cosξ (t) to the load path length. A wave (or combination of waves) that contributes to fatigue damage on the principal stress / strain surface to be evaluated is divided and extracted from the waveform. In this embodiment, a case where a waveform analysis is performed based on a rainflow method will be described. However, the present invention is not limited to the rainflow method, and for example, a range pair method, a hysteresis loop method, or the like can be used.

レインフロー法については、公知であるため説明を省略するが、例えば、ステップS2の解析工程で図5(b)の関係が得られた場合を考えると、レインフロー法を適用すると、図6に示すように、A〜Eの5つの波(あるいは波の組合せ)が抽出されることになる。   The rainflow method is well-known and will not be described. For example, considering the case where the relationship shown in FIG. 5B is obtained in the analysis step of step S2, applying the rainflow method to FIG. As shown, five waves (or combinations of waves) A to E are extracted.

抽出した波(あるいは波の組み合せ)のそれぞれについて、応力またはひずみの最大値Si_maxと最小値Si_minが求まるので、これらの差をとることで、評価対象の主応力・主ひずみ面に作用する応力範囲またはひずみ範囲ΔSIi(=Si_max−Si_min)を、それぞれの波(あるいは波の組み合せ)ごとに求めることができる。 For each of the extracted waves (or combinations of waves), the maximum value S i_max and the minimum value S i_min of the stress or strain are obtained. By taking the difference between these values, the stress / strain surface is affected. The stress range or strain range ΔSI i (= S imax −S imin ) can be obtained for each wave (or combination of waves).

ステップS4の演算工程では、まず、ステップS41にて、ステップS2の解析工程で得た負荷経路長さに対するSI(t)|sinξ(t)|の関係を基に、ステップS3の波形計数工程で抽出したそれぞれの波(あるいは波の組み合せ)に対応する非比例負荷係数fNP_iを求める。 In the calculation process of step S4, first, in step S41, based on the relationship of SI (t) | sinξ (t) | with respect to the load path length obtained in the analysis process of step S2, the waveform counting process of step S3. A non-proportional load coefficient f NP — i corresponding to each extracted wave (or combination of waves) is obtained .

非比例負荷係数fNP_iは、[数3]に示す式(1) The non-proportional load coefficient f NP_i is expressed by the equation (1) shown in [Equation 3].

より求めることができる。 It can be obtained more.

式(1)では、抽出したそれぞれの波(あるいは波の組み合せ)に対応する負荷経路長さの区間のSI(t)|sinξ(t)|を抽出し、その抽出したSI(t)|sinξ(t)|を負荷経路に沿って経路積分した値を規格化することで、非比例負荷係数fNP_iを求めている。 In Expression (1), SI (t) | sinξ (t) | of the section of the load path length corresponding to each extracted wave (or combination of waves) is extracted, and the extracted SI (t) | sinξ The non-proportional load coefficient f NP — i is obtained by standardizing the value obtained by integrating the path integral along (t) |

例えば、図6におけるBの波(波の組み合せ)について考えると、図7に示すように、B1,B2の区間のSI(t)|sinξ(t)|を負荷経路に沿って経路積分し、その積分値を規格化することで、非比例負荷係数fNP_iを求めることができる。 For example, considering the B wave (combination of waves) in FIG. 6, SI (t) | sinξ (t) | in the section of B1 and B2 is integrated along the load path as shown in FIG. By normalizing the integral value, the non-proportional load coefficient f NP_i can be obtained.

その後、ステップS42にて、ステップS41で求めた抽出したそれぞれの波(あるいは波の組み合せ)に対応する非比例負荷係数fNP_iと、ステップS3の波形計数工程で求めた応力範囲またはひずみ範囲ΔSIiとを基に、非比例負荷を考慮した応力範囲またはひずみ範囲ΔSIi_NPをそれぞれの波ごとに演算する。 Thereafter, at step S42, a non-proportional load factor f NP_i corresponding to each of the wave (or a combination of waves) the extracted obtained in the step S41, stress range determined by the waveform counting step of step S3 or strain range DerutaSI i Based on the above, the stress range or the strain range ΔSI i_NP considering the non-proportional load is calculated for each wave.

非比例負荷を考慮した応力範囲またはひずみ範囲ΔSIi_NPを求める際には、上述の式(4)を適用して、下式(7)
ΔSIi_NP=(1+αfNP_i)ΔSIi ・・・(7)
により求めてもよい。
When obtaining the stress range or strain range ΔSI i_NP considering the non-proportional load, the above formula (4) is applied and the following formula (7)
ΔSI i_NP = (1 + αf NP_i ) ΔSI i (7)
You may ask for.

ただし、例えば、図6におけるAやEの波については、応力・ひずみの平均値が0とならないため、平均応力や平均ひずみを考慮した評価を行うことがより望ましい。   However, for example, with respect to the waves A and E in FIG. 6, since the average value of stress / strain does not become 0, it is more desirable to perform evaluation in consideration of average stress and average strain.

具体的には、非比例負荷係数fNP_iとステップS3の波形計数工程で求めた応力範囲またはひずみ範囲ΔSIiとを基に、下式(2)または下式(3)
ΔSIi_NP=(1+αfNP_i)ΔSIi+kSi_mean ・・・(2)
但し、α:非比例負荷での追硬化の程度あるいは寿命低下の程度を
表す係数
i_mean:それぞれの波での平均応力または平均ひずみ
k:材料定数
ΔSIi_NP=(1+αfNP_i)ΔSIi{(1−Ri)/2}w-1
・・・(3)
但し、α:非比例負荷での追硬化の程度あるいは寿命低下の程度を
表す係数
i:それぞれの波での最大応力または最大ひずみと
最小応力または最小ひずみとの比
w:材料定数
より、非比例負荷を考慮した応力範囲またはひずみ範囲ΔSIi_NPを演算することが望ましい。式(2),(3)におけるk,wは、単軸負荷の試験結果から得られる平均応力または平均ひずみの影響の程度を表す材料定数であり、予め材料データとして取得しておくとよい。
Specifically, based on the stress range or strain range DerutaSI i obtained in non-proportional load factor f NP_i waveform counting step of step S3, the following equation (2) or the following formula (3)
ΔSI i_NP = (1 + αf NP_i ) ΔSI i + kS i_mean (2)
Where α is the degree of further curing or non-proportional load
Coefficient to represent
S i_mean : Average stress or average strain at each wave
k: material constant ΔSI i —NP = (1 + αf NPi ) ΔSI i {(1−R i ) / 2} w−1
... (3)
Where α is the degree of further curing or non-proportional load
Coefficient to represent
R i : Maximum stress or maximum strain in each wave
Ratio to minimum stress or strain
w: It is desirable to calculate the stress range or strain range ΔSI i_NP in consideration of the non-proportional load from the material constant. In equations (2) and (3), k and w are material constants representing the degree of influence of average stress or average strain obtained from uniaxial load test results, and may be acquired in advance as material data.

なお、式(2)におけるSi_meanは、下式(8)
i_mean=(Si_max+Si_min)/2 ・・・(8)
により求めることができ、式(3)におけるRiは、下式(9)
i=Si_min/Si_max ・・・(9)
により求めることができる。式(8),(9)におけるSi_max、Si_minは、抽出したそれぞれの波(あるいは波の組み合せ)における応力またはひずみの最大値、最小値である。式(2),(3)の根拠については、非特許文献4に詳細に記載されているため、ここでは説明を省略する。
In addition, Si_mean in Formula (2) is the following Formula (8)
S i_mean = (S i_max + S i_min ) / 2 (8)
R i in the equation (3) can be calculated by the following equation (9).
R i = S i_min / S i_max (9)
It can ask for. S i — max and S i — min in equations (8) and (9) are the maximum and minimum values of stress or strain in each extracted wave (or combination of waves). Since the grounds of the equations (2) and (3) are described in detail in Non-Patent Document 4, description thereof is omitted here.

ステップS5の寿命予測工程では、まず、ステップS51にて、ステップS4の演算工程で求めた応力範囲またはひずみ範囲ΔSIi_NPと、予め求めておいた単軸負荷時のSN線図とに基づいて、抽出したそれぞれの波(あるいは波の組み合せ)による疲労損傷(疲労ダメージ)を計算する。 In the life prediction process in step S5, first, in step S51, based on the stress range or strain range ΔSI i_NP obtained in the calculation process in step S4 and the SN diagram at the time of uniaxial load obtained in advance, Fatigue damage (fatigue damage) due to each extracted wave (or combination of waves) is calculated.

具体的には、抽出した波のそれぞれについて、演算工程で求めた応力範囲またはひずみ範囲ΔSIi_NPに対応するサイクル数Niを単軸負荷時のSN線図より求め、下式(10)
i=ni/Ni ・・・(10)
によりそれぞれの波(あるいは波の組み合せ)における疲労損傷度Diを求める。式(10)におけるniは、ΔSIi_NPが負荷された回数であるが、ここでは波(あるいは波の組み合せ)の1つ1つについて疲労損傷を計算するので、ni=1となる。
Specifically, for each of the extracted wave, the stress range or strain range ΔSI i_NP cycle number N i corresponding to that obtained by computation step obtained from SN diagram during uniaxial load, the following equation (10)
D i = n i / N i (10)
To obtain the fatigue damage degree D i for each wave (or combination of waves). In equation (10), n i is the number of times ΔSI i_NP is loaded. Here, since fatigue damage is calculated for each wave (or combination of waves), n i = 1.

ステップS52では、累積損傷(累積疲労損傷)を演算する。具体的には、下式(11)
D=ΣDi ・・・(11)
より、ステップS51で求めたそれぞれの波(あるいは波の組み合せ)の疲労損傷度Diを足し合わせて累積損傷Dを計算する。
In step S52, cumulative damage (cumulative fatigue damage) is calculated. Specifically, the following formula (11)
D = ΣD i (11)
Thus, the cumulative damage D is calculated by adding the fatigue damage degrees D i of the respective waves (or combinations of waves) obtained in step S51.

その後、ステップS53にて、ステップS52で得た累積損傷Dを基に、評価対象の構造物の疲労寿命を予測する。Dが1以上となれば損傷が発生して寿命となるので、例えば、任意の運用期間(例えば運用開始から運用終了までの1サイクル)に累積される疲労損傷を求め、Dが1になるまでの時間(サイクル数)を予測することで、疲労寿命を予測することができる。   Thereafter, in step S53, the fatigue life of the structure to be evaluated is predicted based on the cumulative damage D obtained in step S52. If D is 1 or more, damage occurs and the service life is reached. For example, fatigue damage accumulated in an arbitrary operation period (for example, one cycle from the operation start to the operation end) is obtained, and until D becomes 1. The fatigue life can be predicted by predicting the time (number of cycles).

以上説明したように、本実施の形態に係る多軸疲労寿命評価方法では、従来方法のように評価対象の期間全体で一括した評価を行うのではなく、レインフロー法により抽出される波(あるいは波の組み合せ)の1つ1つについて個別に疲労損傷を求め、これらを累積することで、評価対象の期間全体での累積損傷を求めるようにしている。そのため、たとえ負荷の大きさが複雑に変化する場合であっても、従来の設計基礎データとして用いられている単軸の疲労寿命データ(つまりSN線図)を用いて、主軸の方向が複雑に変化する多軸負荷による疲労損傷を高精度に予測することが可能になる。   As described above, in the multiaxial fatigue life evaluation method according to the present embodiment, the waves extracted by the rainflow method (or the The fatigue damage is obtained individually for each of the combinations of waves, and these are accumulated to obtain the accumulated damage over the entire evaluation target period. Therefore, even if the magnitude of the load changes in a complicated manner, the direction of the spindle is complicated by using the single axis fatigue life data (that is, the SN diagram) used as conventional design basic data. Fatigue damage due to changing multiaxial loads can be predicted with high accuracy.

また、本実施の形態に係る多軸疲労寿命評価方法では、従来方法のように主応力・主ひずみが最大となる面を評価するのではなく、最も疲労損傷が大きい主応力・主ひずみ面を評価対象としているため、主軸の大きさと方向が複雑に変化する多軸負荷による疲労損傷をより高精度に予測することが可能になる。   Further, in the multiaxial fatigue life evaluation method according to the present embodiment, the principal stress / principal strain surface with the largest fatigue damage is not evaluated as in the conventional method, but the surface having the largest principal stress / strain is evaluated. Since it is the object of evaluation, it becomes possible to predict fatigue damage due to multiaxial loads in which the size and direction of the main shaft change in a complicated manner with higher accuracy.

さらに、本実施の形態に係る多軸疲労寿命評価方法では、レインフロー法により抽出した波の平均値が必ずしも0とならないことに注目し、上述の式(2)、(3)を用いて平均応力や平均ひずみを考慮した評価を行っているため、疲労寿命のより高精度な予測が可能になる。   Furthermore, in the multiaxial fatigue life evaluation method according to the present embodiment, attention is paid to the fact that the average value of the waves extracted by the rainflow method is not necessarily 0, and the average is calculated using the above-described equations (2) and (3). Since the evaluation is performed in consideration of the stress and the average strain, the fatigue life can be predicted with higher accuracy.

本発明は、上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。   The present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the spirit of the present invention.

Claims (5)

評価対象の構造物の応力またはひずみ状態を基に、評価対象の主応力・主ひずみ面を決定する評価面決定工程と、
各時刻での主応力・主ひずみの大きさをSI(t)、前記評価対象の主応力・主ひずみ面の主応力・主ひずみ軸と各時刻での主応力・主ひずみ軸とのなす角度をξ(t)としたとき、負荷経路長さに対する前記評価対象の主応力・主ひずみ面に作用する主応力・主ひずみの大きさ(SI(t)cosξ(t))の関係と、負荷経路長さに対する主応力・主ひずみの方向変化を含む値の変化量(SI(t)|sinξ(t)|)の関係と、を求める解析工程と、
前記負荷経路長さに対する前記評価対象の主応力・主ひずみ面に作用する主応力・主ひずみの大きさの関係を基に、前記評価対象の主応力・主ひずみ面に作用する主応力・主ひずみの大きさの波形の解析を行い、当該波形から前記評価対象の主応力・主ひずみ面での疲労損傷に寄与する波(あるいは波の組み合せ)を分割して抽出すると共に、抽出した波(あるいは波の組み合せ)のそれぞれについて、主応力・主ひずみ面に作用する応力範囲またはひずみ範囲ΔSIiを求める波形計数工程と、
負荷経路長さに対する主応力・主ひずみの方向変化を含む値の変化量の関係を基に、前記波形計数工程で抽出したそれぞれの波(あるいは波の組み合せ)に対応する非比例負荷係数fNP_iを[数1]に示す式(1)
より求め、求めた非比例負荷係数fNP_iと前記波形計数工程で求めた応力範囲またはひずみ範囲ΔSIiとを基に、非比例負荷を考慮した応力範囲またはひずみ範囲ΔSIi_NPをそれぞれの波ごとに演算する演算工程と、
該演算工程で求めた応力範囲またはひずみ範囲ΔSIi_NPと、予め求めておいた単軸負荷時のSN線図とに基づいて累積損傷を演算し、演算した累積損傷を基に、前記構造物の疲労寿命を予測する寿命予測工程と、
を備えたことを特徴とする多軸疲労寿命評価方法。
Based on the stress or strain state of the structure to be evaluated, an evaluation surface determination step for determining the main stress / strain surface of the evaluation target;
The magnitude of the principal stress and principal strain at each time is SI (t), and the angle between the principal stress and principal strain axis of the principal stress and principal strain surface to be evaluated and the principal stress and principal strain axis at each time Ξ (t) and the relationship between the load path length and the principal stress / principal strain acting on the principal stress / principal strain surface to be evaluated (SI (t) cosξ (t)) and the load An analysis step for obtaining a relationship of a change amount (SI (t) | sinξ (t) |) of a value including a change in direction of main stress / strain with respect to a path length;
Based on the relationship between the principal stress and principal strain acting on the principal stress and principal strain surface of the evaluation object with respect to the load path length, the principal stress and principal stress acting on the principal stress and principal strain surface of the evaluation object Analyze the waveform of the magnitude of the strain, extract and extract the wave (or combination of waves) that contributes to fatigue damage on the main stress / strain surface of the evaluation object from the waveform and extract the extracted wave ( Or a wave counting step for obtaining a stress range or strain range ΔSI i acting on the principal stress / strain surface for each of the combinations of waves),
A non-proportional load coefficient f NP — i corresponding to each wave (or combination of waves) extracted in the waveform counting step based on the relationship between the change amount of the value including the direction change of the main stress / strain with respect to the load path length. Equation (1) shown in [Equation 1]
Based on the obtained non-proportional load coefficient f NP_i and the stress range or strain range ΔSI i obtained in the waveform counting step, the stress range or strain range ΔSI i_NP considering the non-proportional load is determined for each wave. A calculation process to calculate,
Cumulative damage is calculated based on the stress range or strain range ΔSI i_NP determined in the calculation step and the SN diagram at the time of uniaxial load determined in advance, and based on the calculated cumulative damage, Life prediction process for predicting fatigue life;
A multiaxial fatigue life evaluation method comprising:
前記波形計数工程での前記波形の解析は、レインフロー法に基づき行う
請求項1記載の多軸疲労寿命評価方法。
The multiaxial fatigue life evaluation method according to claim 1, wherein the analysis of the waveform in the waveform counting step is performed based on a rainflow method.
前記評価面決定工程では、
前記評価対象の構造物の各時刻での応力またはひずみ状態を基に、各時刻での主応力または主ひずみに対して直交する面である主応力・主ひずみ面をそれぞれ求め、
求めた各時刻での主応力・主ひずみ面のそれぞれに対して、当該主応力・主ひずみ面に作用する各時刻での主応力または主ひずみの垂直成分の値をそれぞれ算出すると共に、
当該算出した値と、予め求めておいた単軸負荷時のSN線図とに基づき、各主応力・主ひずみ面での累積損傷評価を行い、
当該累積損傷評価で最も損傷が大きいと評価された主応力・主ひずみ面を評価対象の主応力・主ひずみ面として決定する
請求項1または2記載の多軸疲労寿命評価方法。
In the evaluation surface determination step,
Based on the stress or strain state at each time of the structure to be evaluated, the principal stress / strain surface that is orthogonal to the principal stress or principal strain at each time is obtained,
For each principal stress / strain surface at each obtained time, calculate the value of the principal stress or principal strain component at each time acting on the principal stress / strain surface, and
Based on the calculated value and the SN diagram at the time of uniaxial load obtained in advance, cumulative damage evaluation at each principal stress and principal strain surface is performed,
The multiaxial fatigue life evaluation method according to claim 1 or 2, wherein the principal stress / principal strain surface evaluated as having the greatest damage in the cumulative damage evaluation is determined as the principal stress / principal strain surface to be evaluated.
前記演算工程では、
非比例負荷係数fNP_iと前記波形計数工程で求めた応力範囲またはひずみ範囲ΔSIiとを基に、下式(2)
ΔSIi_NP=(1+αfNP_i)ΔSIi+kSi_mean ・・・(2)
但し、α:非比例負荷での追硬化の程度あるいは寿命低下の程度を
表す係数
i_mean:それぞれの波での平均応力または平均ひずみ
k:材料定数
より、非比例負荷を考慮した応力範囲またはひずみ範囲ΔSIi_NPを演算する
請求項1〜3いずれかに記載の多軸疲労寿命評価方法。
In the calculation step,
Based on the non-proportional load coefficient f NP — i and the stress range or strain range ΔSI i obtained in the waveform counting step, the following equation (2)
ΔSI i_NP = (1 + αf NP_i ) ΔSI i + kS i_mean (2)
Where α is the degree of further curing or non-proportional load
Coefficient to represent
S i_mean : Average stress or average strain at each wave
The multiaxial fatigue life evaluation method according to claim 1, wherein k: a stress range or a strain range ΔSI i_NP considering a non-proportional load is calculated from a material constant.
前記演算工程では、
非比例負荷係数fNP_iと前記波形計数工程で求めた応力範囲またはひずみ範囲ΔSIiとを基に、下式(3)
ΔSIi_NP=(1+αfNP_i)ΔSIi{(1−Ri)/2}w-1
・・・(3)
但し、α:非比例負荷での追硬化の程度あるいは寿命低下の程度を
表す係数
i:それぞれの波での最大応力または最大ひずみと
最小応力または最小ひずみとの比
w:材料定数
より、非比例負荷を考慮した応力範囲またはひずみ範囲ΔSIi_NPを演算する
請求項1〜3いずれかに記載の多軸疲労寿命評価方法。
In the calculation step,
Based on the non-proportional load factor f NP — i and the stress range or strain range ΔSI i obtained in the waveform counting step, the following equation (3)
ΔSI iNP = (1 + αf NPi ) ΔSI i {(1−R i ) / 2} w−1
... (3)
Where α is the degree of further curing or non-proportional load
Coefficient to represent
R i : Maximum stress or maximum strain in each wave
Ratio to minimum stress or strain
The multiaxial fatigue life evaluation method according to claim 1, wherein w: a stress range or strain range ΔSI i_NP considering a non-proportional load is calculated from a material constant.
JP2011183638A 2011-08-25 2011-08-25 Multiaxial fatigue life evaluation method Active JP5721227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011183638A JP5721227B2 (en) 2011-08-25 2011-08-25 Multiaxial fatigue life evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011183638A JP5721227B2 (en) 2011-08-25 2011-08-25 Multiaxial fatigue life evaluation method

Publications (2)

Publication Number Publication Date
JP2013044667A JP2013044667A (en) 2013-03-04
JP5721227B2 true JP5721227B2 (en) 2015-05-20

Family

ID=48008686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011183638A Active JP5721227B2 (en) 2011-08-25 2011-08-25 Multiaxial fatigue life evaluation method

Country Status (1)

Country Link
JP (1) JP5721227B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103604688B (en) * 2013-12-01 2014-10-08 北京航空航天大学 Prediction method for multi-axial high-cycle fatigue life of plastic metal material based on critical plane approach
CN104462834B (en) * 2014-12-16 2018-01-09 中国汽车工程研究院股份有限公司 Vehicle frame complex working condition non-proportional loading computational methods including welding analog
CN105260574B (en) * 2015-11-15 2018-08-07 北京工业大学 A kind of all Multiaxial Fatigue Life Prediction methods of height based on critical surface method Fatigue criteria
CN108959692B (en) * 2018-04-28 2022-07-12 南京航空航天大学 Method for calculating average shear stress under multi-axis non-proportional load
CN109142528B (en) * 2018-08-27 2021-01-26 佛山科学技术学院 High-temperature ultrahigh-cycle fatigue life prediction method for high-strength titanium alloy
CN110874515B (en) * 2018-08-31 2023-04-14 福建金风科技有限公司 Method and equipment for determining fatigue damage of three-pile foundation
CN109614715B (en) * 2018-12-13 2020-06-19 电子科技大学 Energy field intensity method considering notch effect under action of multi-axis load and application thereof
CN110220805B (en) * 2019-06-25 2022-06-07 北京工业大学 Variable-amplitude multi-shaft heat engine fatigue life prediction method based on creep fatigue damage accumulation
CN110705137B (en) * 2019-08-22 2023-04-21 中车青岛四方机车车辆股份有限公司 Method and device for determining stress amplitude and mean value
CN111159871B (en) * 2019-12-23 2024-03-26 北京工业大学 Random multi-axis cycle counting method based on path curve integration
CN111488678B (en) * 2020-04-01 2023-07-07 浙江运达风电股份有限公司 Wind turbine tower accumulated fatigue damage evaluation system and method
CN112100563B (en) * 2020-09-11 2024-04-19 广州汽车集团股份有限公司 Multi-axis load equivalent processing method, device, computer equipment and medium
CN113109177B (en) * 2021-03-26 2023-01-03 北京工业大学 Based on K f Method for predicting multi-axis constant-amplitude thermal mechanical fatigue life of notch part
CN113326577A (en) * 2021-04-25 2021-08-31 潍坊学院 Multi-stress-ratio-considered total life and residual life prediction method and system and application
CN113504038B (en) * 2021-07-05 2022-11-29 吉林大学 Method for evaluating damage of engineering equipment arm support structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61139744A (en) * 1984-12-13 1986-06-27 Saginomiya Seisakusho Inc Fatique testing method
JPS62130338A (en) * 1985-12-03 1987-06-12 Ishikawajima Harima Heavy Ind Co Ltd Fatigue diagnosing device for device loaded repeatedly
JPH01165931A (en) * 1987-12-23 1989-06-29 Nippon Steel Corp Fatigue tester
US5736645A (en) * 1997-01-16 1998-04-07 Ford Global Technologies, Inc. Method of predicting crack initiation based fatigue life
JP2003014601A (en) * 2001-06-29 2003-01-15 Mitsubishi Heavy Ind Ltd Method for evaluating progress in fatigue crack
JP5267391B2 (en) * 2009-09-08 2013-08-21 株式会社Ihi Method and apparatus for evaluating fatigue strength of casting material

Also Published As

Publication number Publication date
JP2013044667A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
JP5721227B2 (en) Multiaxial fatigue life evaluation method
Chasalevris et al. Identification of multiple cracks in beams under bending
Gillich et al. Method to enhance the frequency readability for detecting incipient structural damage
Vázquez et al. A model to predict fretting fatigue life including residual stresses
JP6077042B2 (en) Notch coefficient estimation method, notch coefficient estimation system, and notch coefficient estimation device
Mao et al. The construction and comparison of damage detection index based on the nonlinear output frequency response function and experimental analysis
JP5059224B2 (en) Fatigue fracture evaluation apparatus for parts, fatigue fracture evaluation method for parts, and computer program
Gillich et al. A method to enhance frequency readability for early damage detection
KR20170039906A (en) Methiod for counting fatigue damage in frequency domain applicable to multi-spectral loading pattern
Singh et al. The needs of understanding stochastic fatigue failure for the automobile crankshaft: A review
JP5710997B2 (en) Fatigue limit identification system and fatigue limit identification method
Ong et al. Determination of damage severity on rotor shaft due to crack using damage index derived from experimental modal data
JP5721226B2 (en) Multiaxial fatigue life evaluation method
CN108052717B (en) Fatigue life calibration method based on local stress-strain method
Peng et al. Nonlinear structural damage detection using output‐only Volterra series model
CN117594164A (en) Metal structure residual fatigue life calculation and evaluation method and system based on digital twin
JP2009098101A (en) Determination method for existence of suffering of building
KR20090050855A (en) Engine crankshaft fatigue limit stress determination method
KR101444289B1 (en) Method for evaluating fatigue damage by combined load
Tan et al. Comparisons of creep constraint and fracture parameter C* of different types of surface cracks in pressurized pipes
Karlén et al. Experimental and statistical investigation of the weakest link integral and the volume effect
JP5540448B2 (en) Multiaxial fatigue life evaluation method and apparatus
KR101601499B1 (en) Device and method for setting a sign on random vibration test
Butrym et al. Fatigue life estimation of structural components using macrofibre composite sensors
TWI384207B (en) Method of modal analysis by free vibration response only (mafvro) and system thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140529

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150320

R150 Certificate of patent or registration of utility model

Ref document number: 5721227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250