JP5267391B2 - Method and apparatus for evaluating fatigue strength of casting material - Google Patents
Method and apparatus for evaluating fatigue strength of casting material Download PDFInfo
- Publication number
- JP5267391B2 JP5267391B2 JP2009207277A JP2009207277A JP5267391B2 JP 5267391 B2 JP5267391 B2 JP 5267391B2 JP 2009207277 A JP2009207277 A JP 2009207277A JP 2009207277 A JP2009207277 A JP 2009207277A JP 5267391 B2 JP5267391 B2 JP 5267391B2
- Authority
- JP
- Japan
- Prior art keywords
- crack
- fatigue
- diagram
- elliptical
- defect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
本発明は、内在欠陥が存在する鋳物材等の材料を用いた構造物の疲労強度設計に好適な鋳物材の疲労強度評価方法及び装置に関するものである。 The present invention relates to a method and an apparatus for evaluating the fatigue strength of a casting material suitable for designing the fatigue strength of a structure using a material such as a casting material having inherent defects.
複雑な形状を有する部材や大型の部材では、製作・製造の容易さから、一般に、機械加工や溶接ではなく、鋳物材が用いられている。 In the case of a member having a complicated shape or a large-sized member, a casting material is generally used instead of machining or welding because of ease of production and manufacture.
鋳物材では、作製した金型に金属を流し込めば任意の形状が得られるため、製作・製造が容易であるという利点があるが、金属の冷却過程において不純物や空気などが集中して金属が健全に固まりきれなかった領域、すなわち内在欠陥が発生してしまうという問題がある。これは、製造上避けられない問題であり、特に、製造する鋳物材の質量が大きくなると、内在欠陥が含まれてしまうことは避けられない。 Casting materials have the advantage of being easy to manufacture and manufacture because any shape can be obtained by pouring the metal into the mold, but impurities and air are concentrated during the metal cooling process. There is a problem that an area that cannot be solidified, that is, an intrinsic defect occurs. This is an unavoidable problem in manufacturing. In particular, when the mass of a casting material to be manufactured increases, it is inevitable that an intrinsic defect is included.
内在欠陥が存在する鋳物材等の材料は、内在欠陥が存在しないか存在しても極めて小さい材料に比べて、その疲労強度が低下する。したがって、鋳物材において疲労などの材料強度を評価する際には、この内在欠陥を考慮した評価を実施する必要がある。 A material such as a casting material in which an inherent defect exists has a lower fatigue strength than a material in which the inherent defect does not exist or is extremely small. Therefore, when evaluating the material strength such as fatigue in the cast material, it is necessary to perform an evaluation in consideration of the inherent defects.
従来、このような内在欠陥を有する鋳物材の疲労強度を評価する際には、通常の材料と同様に鋳物材からなる試験片を作製して疲労試験を行い、疲労試験の結果から作成した疲労評価線図(S−N線図)を用いて鋳物材の疲労強度を評価していた。一例として、鋳物材からなる丸棒試験片を用いて疲労試験を行った場合のS−N線図を図10に示す。 Conventionally, when evaluating the fatigue strength of a casting material having such an internal defect, a fatigue test was performed by preparing a test piece made of a casting material in the same manner as a normal material and conducting a fatigue test. The fatigue strength of the casting material was evaluated using an evaluation diagram (SN diagram). As an example, FIG. 10 shows an SN diagram when a fatigue test is performed using a round bar test piece made of a cast material.
より具体的には、従来方法では、図10に破線で示すように、疲労試験で得られた各プロット(応力振幅σaと繰返し数Nfのプロット)を全て包絡するような評価線図を設定し、この評価線図を用いて鋳物材の疲労強度を評価(あるいは設計)していた。 More specifically, in the conventional method, as shown by a broken line in FIG. 10, an evaluation diagram that envelops all the plots (plots of stress amplitude σ a and repetition number N f ) obtained in the fatigue test is shown. The fatigue strength of the casting material was evaluated (or designed) using this evaluation diagram.
なお、この出願の発明に関連する先行技術文献情報としては、特許文献1、非特許文献1〜3がある。
As prior art document information related to the invention of this application, there are
しかしながら、鋳物材からなる試験片には、各試験片毎に寸法の異なる内在欠陥が存在しているため、内在欠陥を考慮せずに作成したS−N線図では、各試験片の内在欠陥の大きさに依存して、疲労強度のバラツキ(構造解析等で得る評価パラメータ(応力やひずみ)に対するバラツキ)が非常に大きくなる。 However, in the test piece made of a casting material, there is an internal defect having a different size for each test piece. Therefore, in the SN diagram prepared without considering the internal defect, the internal defect of each test piece is obtained. The fatigue strength variation (variation with respect to the evaluation parameters (stress and strain) obtained by structural analysis or the like) becomes very large depending on the magnitude of.
したがって、このようなバラツキが全て包絡されるような評価線図を用いた場合、過度に安全側の評価となってしまい、絶対値として評価クライテリア(評価基準)を明確に設定できないという問題がある。換言すれば、設定した評価線図自体が不明確な安全率を用いており、評価線図の設定の根拠が不明確であるため、この評価線図を用いて鋳物材等の内在欠陥が含まれる構造物の疲労強度を評価すると、特にS−N線図のバラツキが大きい場合は、過度な安全側評価となってしまう可能性がある。 Therefore, when an evaluation diagram that envelops all such variations is used, the evaluation becomes excessively safe, and the evaluation criteria (evaluation criteria) cannot be clearly set as absolute values. . In other words, the set evaluation diagram itself uses an unclear safety factor, and the basis for setting the evaluation diagram is unclear, so this evaluation diagram is used to include internal defects such as casting materials. When the fatigue strength of the structure to be evaluated is evaluated, there is a possibility that excessive safety evaluation may be performed particularly when the SN diagram has a large variation.
また、鋳物材等の内在欠陥が含まれる構造物の疲労強度を評価する方法として、既存の製品との比較による相対評価を行う方法も考えられるが、この方法では、従来機(既存の製品)との相対比較により、従来機と同等以上の強度を有するとして新機を開発する方法であるため、構造解析等の作業が2倍以上になってしまい、精度も低いなどの問題がある。 In addition, as a method for evaluating the fatigue strength of a structure containing a built-in defect such as a casting material, a method of performing a relative evaluation by comparison with an existing product is also conceivable, but in this method, a conventional machine (existing product) is considered. As a result of the relative comparison, the new machine is developed with the same or higher strength as the conventional machine. Therefore, the work such as structural analysis is more than doubled, and there is a problem that the accuracy is low.
そこで、本発明の目的は、上記課題を解決し、S−N線図のバラツキを抑え、内在欠陥を有する鋳物材の疲労強度を精度よく評価することが可能な鋳物材の疲労強度評価方法及び装置を提供することにある。 Therefore, an object of the present invention is to solve the above-mentioned problems, suppress variation in the SN diagram, and accurately evaluate the fatigue strength of a casting material having an inherent defect, To provide an apparatus.
本発明は上記目的を達成するために創案されたものであり、内在欠陥を有する鋳物材の疲労強度評価方法であって、前記鋳物材の試験片を複数作製して疲労試験を行い、該疲労試験の結果から、応力振幅σaと繰返し数Nfの関係であるS−N線図を作成しておき、他方、前記各試験片の内在欠陥を、該内在欠陥の寸法を考慮した半楕円もしくは楕円のき裂で表すと共に、該半楕円もしくは楕円のき裂と最大応力拡大係数が等しくなる半円もしくは円形のき裂の半径aeqを求めて、前記各試験片の内在欠陥を、前記半円もしくは円形のき裂としてモデル化すると共に、[数1]に示す式(1) The present invention was devised in order to achieve the above object, and is a method for evaluating the fatigue strength of a casting material having an inherent defect, wherein a plurality of test pieces of the casting material are prepared and subjected to a fatigue test. From the test results, an SN diagram, which is a relationship between the stress amplitude σ a and the number of repetitions N f , is prepared. On the other hand, the internal defect of each test piece is a semi-ellipse considering the size of the internal defect. Alternatively, the radius a eq of the semi-circular or circular crack in which the maximum stress intensity factor is equal to that of the semi-elliptical or elliptical crack is obtained by an elliptical crack, and the inherent defect of each specimen is While modeling as a semi-circle or circular crack, Equation (1) shown in [Equation 1]
を用いて、疲労限度に影響を与えないき裂長さである固有き裂長さa0を算出し、得られた各試験片の前記半円もしくは円形のき裂の半径aeqと、前記固有き裂長さa0とに基づき、[数2]に示す式(2) Is used to calculate the natural crack length a 0 , which is the crack length that does not affect the fatigue limit, and the semicircular or circular crack radius a eq of each of the obtained specimens and the specific crack Based on the crack length a 0 , the formula (2) shown in [Expression 2]
により前記各試験片の推定疲労限度σwを算出し、得られた前記各試験片の推定疲労限度σwで、前記疲労試験で作成したS−N線図の応力振幅σaを除することで、応力振幅σa/推定疲労限度σwと繰返し数Nfの関係である内在欠陥を考慮したS−N線図を作成し、作成した前記内在欠陥を考慮したS−N線図を用いて、前記鋳物材の疲労強度の評価を行う鋳物材の疲労強度評価方法である。 The estimated fatigue limit σ w of each specimen is calculated by the above, and the stress amplitude σ a of the SN diagram created in the fatigue test is divided by the estimated fatigue limit σ w of each specimen obtained. Then, an SN diagram in consideration of the internal defect, which is a relationship between the stress amplitude σ a / the estimated fatigue limit σ w and the number of repetitions N f , is created, and the created SN diagram in consideration of the internal defect is used. This is a method for evaluating the fatigue strength of a casting material for evaluating the fatigue strength of the casting material.
前記半楕円もしくは楕円のき裂は、前記各試験片の破断面における内在欠陥の寸法から長径および短径が設定されてもよい。 The semi-elliptical or elliptical crack may have a major axis and a minor axis determined from the size of the inherent defect in the fracture surface of each test piece.
また、本発明は、内在欠陥を有する鋳物材の疲労強度評価装置であって、前記鋳物材の試験片を複数作製して行った疲労試験の結果から、応力振幅σaと繰返し数Nfの関係であるS−N線図を作成するS−N線図作成部と、前記各試験片の内在欠陥を、該内在欠陥の寸法を考慮した半楕円もしくは楕円のき裂で表すと共に、該半楕円もしくは楕円のき裂と最大応力拡大係数が等しくなる半円もしくは円形のき裂の半径aeqを求めて、前記各試験片の内在欠陥を、前記半円もしくは円形のき裂としてモデル化すると共に、[数3]に示す式(1) Further, the present invention is an apparatus for evaluating the fatigue strength of a casting material having an inherent defect, and the stress amplitude σ a and the number of repetitions N f are determined from the results of a fatigue test performed by producing a plurality of test pieces of the casting material. The S—N diagram creation unit for creating a related S—N diagram, and the internal defects of each test piece are represented by a semi-ellipse or an elliptical crack in consideration of the dimensions of the internal defects, A semicircle or circular crack radius a eq in which the maximum stress intensity factor is equal to an ellipse or an elliptical crack is obtained, and the internal defect of each specimen is modeled as the semicircular or circular crack. Along with Equation (1) shown in [Equation 3]
を用いて、疲労限度に影響を与えないき裂長さである固有き裂長さa0を算出し、得られた各試験片の前記半円もしくは円形のき裂の半径aeqと、前記固有き裂長さa0とに基づき、[数4]に示す式(2) Is used to calculate the natural crack length a 0 , which is the crack length that does not affect the fatigue limit, and the semicircular or circular crack radius a eq of each of the obtained specimens and the specific crack Based on the crack length a 0 , the formula (2) shown in [Expression 4]
により前記各試験片の推定疲労限度σwを算出する疲労限度演算部と、該疲労限度演算部で得られた前記各試験片の推定疲労限度σwで、前記疲労試験で作成したS−N線図の応力振幅σaを除することで、応力振幅σa/推定疲労限度σwと繰返し数Nfの関係である内在欠陥を考慮したS−N線図を作成する修正S−N線図作成部と、該修正S−N線図作成部で作成した前記内在欠陥を考慮したS−N線図を用いて、前記鋳物材の疲労強度の評価を行う疲労強度評価部とを備えた鋳物材の疲労強度評価装置である。 The fatigue limit calculation unit for calculating the estimated fatigue limit σ w of each test piece by the above, and the estimated fatigue limit σ w of each test piece obtained by the fatigue limit calculation unit, the SN prepared in the fatigue test by dividing the stress amplitude sigma a of the diagram, modified S-N line to create a S-N diagram in consideration of the inherent defect is the relationship of the stress amplitude sigma a / estimated fatigue limit sigma w and the number of repetitions N f And a fatigue strength evaluation unit that evaluates the fatigue strength of the casting material using an SN diagram that takes into account the inherent defects created by the modified SN diagram creation unit. It is a fatigue strength evaluation apparatus of a casting material.
本発明によれば、S−N線図のバラツキを抑え、内在欠陥を有する鋳物材の疲労強度を精度よく評価することが可能な鋳物材の疲労強度評価方法及び装置を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the fatigue strength evaluation method and apparatus of a casting material which can suppress the dispersion | variation of a SN diagram and can evaluate the fatigue strength of the casting material which has an internal defect accurately can be provided.
以下、本発明の好適な実施の形態を添付図面にしたがって説明する。 Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
まず、本実施の形態に係る鋳物材の疲労強度評価方法に用いる鋳物材の疲労強度評価装置について説明する。 First, a cast material fatigue strength evaluation apparatus used in the cast material fatigue strength evaluation method according to the present embodiment will be described.
図1に示すように、鋳物材の疲労強度評価装置1は、鋳物材の試験片(鋳鋼試験片)を複数作製して行った疲労試験の結果(応力振幅σaと繰返し数Nf)、各試験片の内在欠陥の寸法、および試験片に用いた材料名を入力するための入力部2と、入力部2で入力された疲労試験の結果から応力振幅σaと繰返し数Nfの関係であるS−N線図を作成するS−N線図作成部3と、試験片に用いた材料の材料データを記憶する材料データ記憶部4と、入力部2で入力された各試験片の内在欠陥の寸法、および材料データ記憶部4に記憶された材料データに基づき、各試験片の推定疲労限度σwを算出する疲労限度演算部5と、疲労限度演算部5で求めた各試験片の推定疲労限度σwで、S−N線図作成部3で作成したS−N線図の応力振幅σaを除することで、応力振幅σa/推定疲労限度σwと繰返し数Nfの関係である内在欠陥を考慮したS−N線図(修正S−N線図)を作成する修正S−N線図作成部6と、修正S−N線図作成部6で作成した内在欠陥を考慮したS−N線図を記憶する修正S−N線図記憶部7と、修正S−N線図記憶部7に記憶された内在欠陥を考慮したS−N線図を用いて、鋳物材の疲労強度の評価を行う疲労強度評価部8と、疲労強度評価部8で行った疲労強度の評価結果をモニターなどの表示器に出力する出力部9とを備えている。
As shown in FIG. 1, the cast material fatigue
これら、入力部2、S−N線図作成部3、材料データ記憶部4、疲労限度演算部5、修正S−N線図作成部6、修正S−N線図記憶部7、疲労強度評価部8、出力部9は、インターフェイス、メモリ、CPU、ソフトウェアなどを適宜組み合わせて実現される。
These are:
材料データ記憶部4は、下限界応力拡大係数範囲ΔKth、ビッカース硬さHvなどの材料固有のデータを材料データとして記憶する。 The material data storage unit 4 stores material-specific data such as a lower limit stress intensity factor range ΔK th and Vickers hardness Hv as material data.
疲労限度演算部5は、各試験片の内在欠陥を半円もしくは円形のき裂としてモデル化して、半円もしくは円形のき裂の半径aeqを求めると共に、疲労限度に影響を与えないき裂長さである固有き裂長さa0を算出し、これら各試験片の半円もしくは円形のき裂の半径aeqと、固有き裂長さa0とに基づき、各試験片の推定疲労限度σwを算出するように構成される。推定疲労限度σwを算出する詳細な手順については後述する。
The fatigue
次に、本実施の形態に係る鋳物材の疲労強度評価方法を、鋳物材の疲労強度評価装置1の動作と共に詳細に説明する。
Next, the method for evaluating the fatigue strength of the casting material according to the present embodiment will be described in detail together with the operation of the fatigue
図2に示すように、本実施の形態に係る鋳物材の疲労強度評価方法では、まず、鋳物材の試験片を複数作製して疲労試験を行う(ステップS1)。本実施の形態では、鋳物材からなる丸棒試験片を複数作製して軸力による引張圧縮の疲労試験を行い、各試験片について応力振幅σaと繰返し数Nfを測定した。 As shown in FIG. 2, in the method for evaluating fatigue strength of a casting material according to the present embodiment, first, a plurality of test pieces of the casting material are produced and a fatigue test is performed (step S1). In the present embodiment, a plurality of round bar test pieces made of a cast material were produced and subjected to a tensile and compression fatigue test using an axial force, and the stress amplitude σ a and the number of repetitions N f were measured for each test piece.
また、疲労試験において各試験片が破断したときの破断面に露出した内在欠陥の寸法を試験片毎に測定する。内在欠陥は、実際には3次元の形状を有するが、試験片に含まれる最も寸法の大きい内在欠陥が破断面に露出するので、本実施の形態では、破断面における最も大きい内在欠陥の寸法を測定することとした。 Moreover, the dimension of the internal defect exposed to the torn surface when each test piece fractures in the fatigue test is measured for each test piece. Although the intrinsic defect actually has a three-dimensional shape, the largest internal defect included in the test piece is exposed on the fracture surface, so in this embodiment, the largest intrinsic defect size on the fracture surface is set. It was decided to measure.
図3に示すように、内在欠陥31は一般に複雑な形状となっているので、本実施の形態では、内在欠陥31の平面視で最も長い方向(長さ方向という)の長さdと、長さ方向と垂直な方向の幅wを測定するようにした。 As shown in FIG. 3, the inherent defect 31 generally has a complicated shape. Therefore, in the present embodiment, the length d in the longest direction (referred to as the length direction) in plan view of the inherent defect 31 is The width w in the direction perpendicular to the vertical direction was measured.
その後、入力部2に、疲労試験で得た各試験片の応力振幅σaと繰返し数Nf、各試験片の内在欠陥の寸法(長さdおよび幅w)、および試験片に用いた材料名を入力する(ステップS2)。
Thereafter, the stress amplitude σ a and the number of repetitions N f of each test piece obtained in the fatigue test, the dimensions (length d and width w) of the inherent defect of each test piece, and the material used for the test piece are input to the
入力部2に各入力値を入力すると、S−N線図作成部3は、入力部2に入力された各試験片の応力振幅σaと繰返し数Nfに基づき、S−N線図を作成する(ステップS3)。S−N線図作成部3が作成するS−N線図の一例を図4に示す。図4に示すS−N線図では、各試験片の内在欠陥を考慮に入れていないため、バラツキが非常に大きくなっている。
When each input value is input to the
その後、疲労限度演算部5は、入力部2に入力された内在欠陥の寸法(長さdおよび幅w)に基づき、内在欠陥を半楕円または楕円のき裂にモデル化する(ステップS4)。具体的には、図5(a),(b)に示すように、試験片の表面51に内在欠陥(欠陥)がある場合は半楕円のき裂52、試験片の内部に内在欠陥がある場合は楕円のき裂53にモデル化する。このとき、半楕円もしくは楕円のき裂の長軸2aを内在欠陥の長さd、短軸2cを内在欠陥の幅wとして、各試験片の内在欠陥31全体を包含するように半楕円もしくは楕円のき裂を設定する(図3の破線参照)。これにより、安全側の設計が可能となる。
Thereafter, the fatigue
内在欠陥を半楕円または楕円のき裂にモデル化した後、疲労限度演算部5は、半楕円または楕円のき裂を、さらに、半円または円のき裂にモデル化する(ステップS5)。
After modeling the intrinsic defect into a semi-elliptical or elliptical crack, the fatigue
具体的には、まず、疲労限度演算部5は、[数5]に示す式(3)により、設定した半楕円または楕円のき裂における応力拡大係数Kを算出する。
Specifically, first, the fatigue
式(3)において、F1は、き裂の形状や位置、対象としている部品(ここでは丸棒試験片)に依存する係数であり、この係数F1は、長軸2aと短軸2cとの比を考慮した値となっている。係数F1の値については、予め材料データ記憶部4に記憶させておくか、あるいは入力部2に入力するようにされる。なお、式(3)については、非特許文献2に詳しく説明されているため、ここでは説明を省略する。
In the equation (3), F 1 is a coefficient depending on the shape and position of the crack and the target part (here, round bar test piece), and this coefficient F 1 is determined by the major axis 2a and the minor axis 2c. It is a value considering the ratio of. The value of the coefficient F 1 is stored in advance in the material data storage unit 4 or input to the
応力拡大係数Kを算出した後、疲労限度演算部5は、半楕円もしくは楕円のき裂と最大応力拡大係数が等しくなる半円もしくは円形のき裂の半径aeqを、[数6]に示す式(4)により求める。
After calculating the stress intensity factor K, the
式(4)において、F2は、き裂の形状を半円もしくは円形とした場合の係数であり、き裂の形状を半楕円もしくは楕円とした場合の係数F1とは異なる。係数F2の値については、予め材料データ記憶部4に記憶させておくか、あるいは入力部2に入力するようにされる。
In Formula (4), F 2 is a coefficient when the crack shape is a semicircle or a circle, and is different from the coefficient F 1 when the crack shape is a semi-ellipse or an ellipse. The value of the coefficient F 2 is stored in advance in the material data storage unit 4 or input to the
以上により、各試験片の内在欠陥は、半径aeqの半円もしくは円形のき裂としてモデル化されることとなる。図6(a),(b)に示すように、試験片の表面61に内在欠陥(欠陥)がある場合は半円のき裂62、試験片の内部に内在欠陥がある場合は円のき裂63にモデル化される。
As described above, the inherent defect of each test piece is modeled as a semicircle or circular crack with a radius aeq . As shown in FIGS. 6 (a) and 6 (b), when there is an internal defect (defect) on the
各試験片の内在欠陥を半円もしくは円形のき裂としてモデル化することにより、内在欠陥の寸法のパラメータを半径aeq1つのみとすることが可能となり、内在欠陥のモデルを簡単にすることが可能となる。 By modeling the internal defect of each specimen as a semi-circle or circular crack, it is possible to have only one radius a eq parameter for the size of the internal defect and simplify the model of the internal defect Is possible.
各試験片の内在欠陥を半円もしくは円形のき裂としてモデル化した後、疲労限度演算部5は、平滑材に存在しても疲労限度に影響を与えないき裂長さである固有き裂長さa0を算出する(ステップS6)。
After modeling the internal defects of each specimen as a semi-circle or circular crack, the fatigue
具体的には、疲労限度演算部5は、まず、入力部2で入力された試験片の材料名を基に、材料データ記憶部4から下限界応力拡大係数範囲ΔKthとビッカース硬さHvとを取得する。
Specifically, the fatigue
その後、[数7]に示す式(1)を用いて固有き裂長さa0を算出する。 Thereafter, the natural crack length a 0 is calculated using the equation (1) shown in [Equation 7].
一般に、内在欠陥のない材料(無欠陥材)の疲労限度σw0はビッカース硬さHvの1.6倍(σw0=1.6Hv)として表すことができるので、式(1)における下限界応力範囲Δσw0は、内在欠陥のない材料の疲労限度σw0をさらに2倍することで求められる。 In general, the fatigue limit σ w0 of a material having no inherent defect (defect-free material) can be expressed as 1.6 times the Vickers hardness Hv (σ w0 = 1.6 Hv), so the lower limit stress in the equation (1) The range Δσ w0 is obtained by further doubling the fatigue limit σ w0 of a material having no intrinsic defect.
式(1)は内在欠陥があったとしても疲労限度に影響を与えないぎりぎりの寸法であるときに成り立つ関係式であり、そのときのき裂長さa0を固有き裂長さと定義している。 Expression (1) is a relational expression that is established when there is a marginal dimension that does not affect the fatigue limit even if there is an intrinsic defect, and the crack length a 0 at that time is defined as the intrinsic crack length.
その後、疲労限度演算部5は、得られた各試験片の半円もしくは円形のき裂の半径aeqと、固有き裂長さa0とに基づき、[数8]に示す式(2)
After that, the fatigue
により、各試験片の推定疲労限度σwを算出する(ステップS7)。式(2)において、内在欠陥のない材料の疲労限度σw0と固有き裂長さa0は材料固有の値であるから、推定疲労限度σwは、半円もしくは円形のき裂の半径aeqのみに依存していることが分かる。 Thus, the estimated fatigue limit σ w of each test piece is calculated (step S7). In equation (2), since the fatigue limit σ w0 and the inherent crack length a 0 of the material having no inherent defect are values inherent to the material, the estimated fatigue limit σ w is the radius a eq of the semicircular or circular crack. It turns out that it depends only on.
ここで、式(2)の根拠について説明しておく。 Here, the basis of Expression (2) will be described.
図7に、き裂進展速度da/dnと応力拡大係数範囲ΔKの関係を示す。図7に示すように、応力拡大係数範囲ΔKが下限界応力拡大係数範囲ΔKthよりも小さくなると、応力が繰返しかかってもき裂は進展しない。 FIG. 7 shows the relationship between the crack growth rate da / dn and the stress intensity factor range ΔK. As shown in FIG. 7, when the stress intensity factor range ΔK is smaller than the lower limit stress intensity factor range ΔK th , the crack does not propagate even if stress is repeatedly applied.
つまり、内在欠陥に応力が繰り返しかかったとしても、上述の式(4)で得られる応力拡大係数Kを用いた応力拡大係数範囲ΔKが、下限界応力拡大係数範囲ΔKthよりも小さければ、内在欠陥が存在してもき裂は進展しないということになる。したがって、下限界応力拡大係数範囲ΔKthに対応する下限界応力範囲Δσthは、内在欠陥を有する材料の疲労限度に相当するといえる。 That is, even if stress is repeatedly applied to the intrinsic defect, if the stress intensity factor range ΔK using the stress intensity factor K obtained by the above equation (4) is smaller than the lower limit stress intensity factor range ΔK th , This means that the crack does not propagate even if there is a defect. Therefore, it can be said that the lower limit stress range Δσ th corresponding to the lower limit stress intensity factor range ΔK th corresponds to the fatigue limit of a material having an inherent defect.
非特許文献3に記載されているように、下限界応力範囲Δσthとき裂長さaとの関係は、図8に示す曲線で表すことができる(図8は非特許文献3より引用)。図8に実線で示した曲線は、[数9]に示す式(5)で表される。
As described in
式(5)におけるき裂長さaは、本実施の形態では半円もしくは円形のき裂の半径aeqに相当するので、a=aeqとし、左辺の下限界応力範囲を振幅(疲労限度)に変換すると、式(5)は[数10]に示す式(6)のようになる。 In the present embodiment, the crack length a in the equation (5) corresponds to the radius a eq of the semicircle or circular crack, so a = a eq and the lower limit stress range on the left side is the amplitude (fatigue limit). (5) becomes Equation (6) shown in [Equation 10].
式(6)のσw0を右辺に移項すると、任意の内在欠陥が存在する場合の疲労限度の推定式である式(2)が導出される。 When σ w0 in equation (6) is shifted to the right side, equation (2), which is an estimation equation of the fatigue limit when any inherent defect exists, is derived.
つまり、本実施の形態では、内在欠陥をき裂とみなして、き裂の寸法と下限界応力との関係式により、任意のき裂長さのときの下限界応力を算出している。この下限界応力は、欠陥材(鋳物材)の疲労限度と考えることができるため、式(2)の推定式を用いて、内在欠陥の寸法効果を考慮した推定疲労限度σwを推定することが可能となる。 That is, in the present embodiment, the underlying defect is regarded as a crack, and the lower limit stress at an arbitrary crack length is calculated from the relational expression between the crack size and the lower limit stress. Since this lower limit stress can be considered as the fatigue limit of a defect material (casting material), the estimated fatigue limit σ w taking into account the dimensional effect of the inherent defect should be estimated using the estimation formula of Equation (2). Is possible.
図2に戻り、各試験片の推定疲労限度σwを算出した後、修正S−N線図作成部6は、疲労限度演算部5で求めた各試験片の推定疲労限度σwで、S−N線図作成部3で作成したS−N線図の応力振幅σa(縦軸)を除することで、縦軸を無次元化し、応力振幅σa/推定疲労限度σwと繰返し数Nfの関係である内在欠陥を考慮したS−N線図を作成する(ステップS8)。修正S−N線図作成部6で作成した内在欠陥を考慮したS−N線図の一例を図9に示す。
Returning to FIG. 2, after calculating the estimated fatigue limit σ w of each test piece, the modified SN
図9に示すように、内在欠陥を考慮したS−N線図は、内在欠陥を考慮しないS−N線図(図4参照)と比較して、バラツキが抑えられている。修正S−N線図作成部6で作成した内在欠陥を考慮したS−N線図は、修正S−N線図記憶部7に記憶される。
As shown in FIG. 9, the SN diagram in consideration of the intrinsic defects is suppressed in variation compared with the SN diagram (see FIG. 4) in which the intrinsic defects are not considered. The SN diagram in consideration of the intrinsic defect created by the modified SN
その後、疲労強度評価部8は、修正S−N線図記憶部7に記憶された内在欠陥を考慮したS−N線図を用いて、鋳物材の疲労強度の評価を行う(ステップS9)。具体的には、疲労強度評価部8は、内在欠陥を考慮したS−N線図(図9に実線で示す直線)に所定の安全率を掛けた評価線図(図9に破線で示す直線)を作成し、この評価線図を用いて鋳物材の疲労強度の評価(あるいは設計)を行う。評価線図は、全てのプロットを包絡するように作成される。疲労強度評価部8で行った疲労強度の評価結果は、出力部9を介してモニターなどの表示器に出力される。 Thereafter, the fatigue strength evaluation unit 8 evaluates the fatigue strength of the casting material using the SN diagram in consideration of the inherent defects stored in the corrected SN diagram storage unit 7 (step S9). Specifically, the fatigue strength evaluation unit 8 is an evaluation diagram (a straight line indicated by a broken line in FIG. 9) obtained by multiplying a SN diagram (a straight line indicated by a solid line in FIG. 9) in consideration of an inherent defect by a predetermined safety factor. ) And evaluate (or design) the fatigue strength of the casting material using this evaluation diagram. The evaluation diagram is created so as to envelop all the plots. The fatigue strength evaluation result performed by the fatigue strength evaluation unit 8 is output to a display device such as a monitor via the output unit 9.
なお、作成した評価線図を用いて、鋳物材の所定の繰返し数Nfでの応力(例えば、106回疲労強度、107回疲労強度など)を求める場合、疲労強度評価部8にて、所定の繰返し数Nfに対応する応力振幅σa/推定疲労限度σwの値を求め、この値から応力振幅σaを逆算するようにすればよい。 In addition, when obtaining stress (for example, 10 6 times fatigue strength, 10 7 times fatigue strength, etc.) at a predetermined number of repetitions N f of the casting material using the created evaluation diagram, the fatigue strength evaluation unit 8 Then, the value of the stress amplitude σ a / the estimated fatigue limit σ w corresponding to the predetermined number of repetitions N f is obtained, and the stress amplitude σ a is calculated backward from this value.
この場合、推定疲労限度σwを算出する際に用いる半径aeqとしては、例えば、多数の試験片における内在欠陥の寸法(長さd、幅w)を測定してそれぞれ半径aeqを算出し、算出した半径aeqの統計処理を実施して確率分布を演算し、十分に安全側であると判断できる所定の確率(例えば99%程度の確率)における半径aeqを用いるようにすればよい。つまり、推定疲労限度σwを算出する際に用いる半径aeqとしては、十分に安全側と判断できる値を用いるとよい。 In this case, as the radius a eq used when calculating the estimated fatigue limit σ w , for example, the radius a eq is calculated by measuring the dimensions (length d, width w) of inherent defects in a large number of specimens. , and performs a statistical processing of the calculated radius a eq calculates the probability distribution, it is sufficient to use a radius a eq for a given probability can be determined that a sufficiently safe side (e.g. the probability of about 99%) . That is, as the radius a eq used when calculating the estimated fatigue limit σ w , a value that can be determined to be sufficiently safe may be used.
以上説明したように、本実施の形態に係る鋳物材の疲労強度評価方法では、鋳物材の試験片を複数作製して疲労試験を行い、その疲労試験の結果から、応力振幅σaと繰返し数Nfの関係であるS−N線図を作成しておき、他方、各試験片の内在欠陥を半円もしくは円形のき裂としてモデル化すると共に、固有き裂長さa0を算出し、得られた各試験片の半円もしくは円形のき裂の半径aeqと、固有き裂長さa0とに基づき、上述の式(2)により各試験片の推定疲労限度σwを算出し、得られた各試験片の推定疲労限度σwで、疲労試験で作製したS−N線図の応力振幅σaを除することで、応力振幅σa/推定疲労限度σwと繰返し数Nfの関係である内在欠陥を考慮したS−N線図を作成し、作成した内在欠陥を考慮したS−N線図を用いて、鋳物材の疲労強度の評価を行うようにしている。 As described above, in the method for evaluating the fatigue strength of a casting material according to the present embodiment, a plurality of test pieces of the casting material are produced and subjected to a fatigue test. From the fatigue test result, the stress amplitude σ a and the number of repetitions are determined. An SN diagram, which is the relationship of N f , is prepared, and on the other hand, the inherent defect of each specimen is modeled as a semicircle or circular crack, and the inherent crack length a 0 is calculated and obtained. The estimated fatigue limit σ w of each specimen is calculated according to the above equation (2) based on the semicircular or circular crack radius a eq of each specimen and the inherent crack length a 0. By dividing the stress amplitude σ a of the SN diagram prepared in the fatigue test by the estimated fatigue limit σ w of each test piece, the stress amplitude σ a / the estimated fatigue limit σ w and the number of repetitions N f Create an SN diagram that takes into account the inherent defects that are related, and use the created SN diagram to take into account the internal defects. And to carry out the evaluation of the fatigue strength of the wood.
つまり、本実施の形態では、従来のS−N線図に対して、推定疲労限度σwを考慮したS−N線図(内在欠陥を考慮したS−N線図)を作成し、これを用いて鋳物材の疲労強度の評価を行うようにしている。 In other words, in the present embodiment, an SN diagram (SN diagram considering an intrinsic defect) taking into account the estimated fatigue limit σ w is created with respect to the conventional SN diagram, It is used to evaluate the fatigue strength of the casting material.
内在欠陥を考慮したS−N線図は、各試験片の内在欠陥の寸法が考慮されたものであるため、疲労強度線図(S−N線図)のバラツキを小さくすることができ、過度な安全率を用いることなく、合理的な評価線図(疲労設計線図)を作成することが可能となる。したがって、内在欠陥を有する鋳物材の疲労強度を精度よく評価することが可能となる。 Since the SN diagram in consideration of the internal defects is one in which the dimensions of the internal defects of each test piece are taken into account, the variation of the fatigue strength diagram (SN diagram) can be reduced, and excessively It is possible to create a rational evaluation diagram (fatigue design diagram) without using a significant safety factor. Therefore, it becomes possible to accurately evaluate the fatigue strength of the casting material having an inherent defect.
上記実施の形態では、試験片の破断面の内在欠陥の寸法を測定するようにしたが、これに限らず、内在欠陥の寸法は任意の方法で測定してもよく、例えば、超音波を用いたUT検査や色付きインクを用いたPT検査により内在欠陥の寸法を測定するようにしてもよい。 In the above embodiment, the size of the internal defect on the fracture surface of the test piece is measured. However, the present invention is not limited to this, and the size of the internal defect may be measured by any method, for example, using ultrasonic waves. The size of the inherent defect may be measured by a conventional UT inspection or a PT inspection using colored ink.
また、上記実施の形態では、内在欠陥を含む材料として鋳物材を挙げたが、本発明は、鋳物材に限らず、内在欠陥を含む他の材料にも適用可能である。また、疲労の起点(疲労による破壊の起点)となる介在物や第二層も本発明と同様に扱うことが可能である。つまり、本発明によれば、統一的な評価が可能となる。 Moreover, in the said embodiment, although the casting material was mentioned as a material containing an intrinsic defect, this invention is applicable not only to a casting material but the other material containing an intrinsic defect. In addition, inclusions and second layers that become the starting point of fatigue (starting point of fracture due to fatigue) can be handled in the same manner as in the present invention. That is, according to the present invention, unified evaluation is possible.
さらに、上記実施の形態では、軸力による引張圧縮の疲労試験を行ったが、多軸引張など様々な応力成分を含む場合については、それら応力成分を一軸の引張としたときの等価応力(例えば、ミーゼスの等価応力や、トレスカの等価応力)で評価するか、あるいは、試験片に作用する最も大きい応力を用いて評価するようにすればよい。 Furthermore, in the above embodiment, a fatigue test of tensile compression by axial force was performed. However, in the case where various stress components such as multiaxial tension are included, equivalent stresses when the stress components are uniaxial tension (for example, Equivalent stress of Mises or equivalent stress of Tresca) or evaluation using the largest stress acting on the test piece.
31 内在欠陥
51,61 試験片の表面
52 半楕円のき裂
53 楕円のき裂
62 半円のき裂
63 円のき裂
31
Claims (3)
前記鋳物材の試験片を複数作製して疲労試験を行い、該疲労試験の結果から、応力振幅σaと繰返し数Nfの関係であるS−N線図を作成しておき、
他方、前記各試験片の内在欠陥を、該内在欠陥の寸法を考慮した半楕円もしくは楕円のき裂で表すと共に、該半楕円もしくは楕円のき裂と最大応力拡大係数が等しくなる半円もしくは円形のき裂の半径aeqを求めて、前記各試験片の内在欠陥を、前記半円もしくは円形のき裂としてモデル化すると共に、
[数1]に示す式(1)
得られた各試験片の前記半円もしくは円形のき裂の半径aeqと、前記固有き裂長さa0とに基づき、[数2]に示す式(2)
得られた前記各試験片の推定疲労限度σwで、前記疲労試験で作成したS−N線図の応力振幅σaを除することで、応力振幅σa/推定疲労限度σwと繰返し数Nfの関係である内在欠陥を考慮したS−N線図を作成し、
作成した前記内在欠陥を考慮したS−N線図を用いて、前記鋳物材の疲労強度の評価を行うことを特徴とする鋳物材の疲労強度評価方法。 A method for evaluating the fatigue strength of a casting material having inherent defects,
A plurality of test pieces of the casting material were prepared and subjected to a fatigue test. From the result of the fatigue test, an SN diagram that is a relationship between the stress amplitude σ a and the number of repetitions N f was prepared,
On the other hand, the internal defect of each test piece is represented by a semi-elliptical or elliptical crack in consideration of the size of the internal defect, and the semi-elliptical or elliptical crack has the same maximum stress intensity factor as that of the semi-elliptical or elliptical crack. A crack radius a eq is determined, and the inherent defect of each specimen is modeled as the semi-circle or circular crack,
Formula (1) shown in [Formula 1]
Based on the semicircular or circular crack radius a eq of each of the obtained test pieces and the inherent crack length a 0 , the equation (2) shown in [Expression 2]
By dividing the stress amplitude σ a of the SN diagram created in the fatigue test by the estimated fatigue limit σ w of each test piece obtained, the stress amplitude σ a / the estimated fatigue limit σ w and the number of repetitions Create an SN diagram that takes into account the intrinsic defects that are the relationship of N f ,
A method for evaluating the fatigue strength of a casting material, wherein the fatigue strength of the casting material is evaluated using an S—N diagram in consideration of the created inherent defect.
前記鋳物材の試験片を複数作製して行った疲労試験の結果から、応力振幅σaと繰返し数Nfの関係であるS−N線図を作成するS−N線図作成部と、
前記各試験片の内在欠陥を、該内在欠陥の寸法を考慮した半楕円もしくは楕円のき裂で表すと共に、該半楕円もしくは楕円のき裂と最大応力拡大係数が等しくなる半円もしくは円形のき裂の半径aeqを求めて、前記各試験片の内在欠陥を、前記半円もしくは円形のき裂としてモデル化すると共に、
[数3]に示す式(1)
該疲労限度演算部で得られた前記各試験片の推定疲労限度σwで、前記疲労試験で作成したS−N線図の応力振幅σaを除することで、応力振幅σa/推定疲労限度σwと繰返し数Nfの関係である内在欠陥を考慮したS−N線図を作成する修正S−N線図作成部と、 該修正S−N線図作成部で作成した前記内在欠陥を考慮したS−N線図を用いて、前記鋳物材の疲労強度の評価を行う疲労強度評価部とを備えたことを特徴とする鋳物材の疲労強度評価装置。 A fatigue strength evaluation device for a casting material having an inherent defect,
From the result of a fatigue test performed by producing a plurality of test pieces of the cast material, an SN diagram creation unit that creates an SN diagram that is a relationship between the stress amplitude σ a and the number of repetitions N f ;
The internal defect of each test piece is represented by a semi-elliptical or elliptical crack in consideration of the size of the internal defect, and the semi-elliptical or elliptical crack has the same maximum stress intensity factor as that of the semi-elliptical or elliptical crack. Determining the radius a eq of the crack and modeling the inherent defect of each specimen as the semi-circle or circular crack;
Formula (1) shown in [Formula 3]
By dividing the stress amplitude σ a of the SN diagram created in the fatigue test by the estimated fatigue limit σ w of each test piece obtained by the fatigue limit calculation unit, the stress amplitude σ a / estimated fatigue A modified SN diagram creating unit for creating an SN diagram in consideration of an inherent defect that is a relationship between the limit σ w and the number of repetitions N f , and the intrinsic defect created by the modified SN diagram creating unit A fatigue strength evaluation apparatus for a casting material, comprising: a fatigue strength evaluation unit that evaluates the fatigue strength of the casting material using an SN diagram in consideration of the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009207277A JP5267391B2 (en) | 2009-09-08 | 2009-09-08 | Method and apparatus for evaluating fatigue strength of casting material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009207277A JP5267391B2 (en) | 2009-09-08 | 2009-09-08 | Method and apparatus for evaluating fatigue strength of casting material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011058887A JP2011058887A (en) | 2011-03-24 |
JP5267391B2 true JP5267391B2 (en) | 2013-08-21 |
Family
ID=43946701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009207277A Expired - Fee Related JP5267391B2 (en) | 2009-09-08 | 2009-09-08 | Method and apparatus for evaluating fatigue strength of casting material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5267391B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5721227B2 (en) * | 2011-08-25 | 2015-05-20 | 株式会社Ihi | Multiaxial fatigue life evaluation method |
JP5721226B2 (en) * | 2011-08-25 | 2015-05-20 | 株式会社Ihi | Multiaxial fatigue life evaluation method |
KR101329204B1 (en) * | 2012-04-19 | 2013-11-14 | 한국항공우주산업 주식회사 | Evaluation methods for s-n fatigue property combined with damages induced by aging effect |
JP6365813B2 (en) * | 2013-10-10 | 2018-08-01 | 三菱重工業株式会社 | Fatigue strength estimation method |
CN104833600B (en) * | 2015-05-21 | 2018-04-10 | 江苏理工学院 | Test method for testing fatigue strength of material |
JP7059050B2 (en) * | 2018-03-09 | 2022-04-25 | 三菱重工業株式会社 | Stress estimation device, stress estimation method and program |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08122221A (en) * | 1994-10-24 | 1996-05-17 | Osaka Gas Co Ltd | Integrity evaluating method and device for underground buried pipe |
JPH11101726A (en) * | 1997-09-26 | 1999-04-13 | Hitachi Constr Mach Co Ltd | Pressure resistant life testing apparatus for pressure vessel |
JPH11101725A (en) * | 1997-09-26 | 1999-04-13 | Hitachi Constr Mach Co Ltd | Pressure resistant life testing apparatus for pressure vessel |
JP4857425B2 (en) * | 2001-03-23 | 2012-01-18 | 株式会社産学連携機構九州 | Design method for long-life fatigue strength of metallic materials |
JP3992281B2 (en) * | 2003-06-17 | 2007-10-17 | アイシン高丘株式会社 | Spheroidal graphite cast iron member having excellent fatigue strength and method for producing the same |
JP4375245B2 (en) * | 2005-02-10 | 2009-12-02 | トヨタ自動車株式会社 | Method for creating fatigue limit diagram of cast member |
JP4786479B2 (en) * | 2006-09-06 | 2011-10-05 | 中国電力株式会社 | Fracture mechanics test method and specimen |
-
2009
- 2009-09-08 JP JP2009207277A patent/JP5267391B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011058887A (en) | 2011-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5267391B2 (en) | Method and apparatus for evaluating fatigue strength of casting material | |
Sunder | Unraveling the science of variable amplitude fatigue | |
Lievers et al. | Using incremental forming to calibrate a void nucleation model for automotive aluminum sheet alloys | |
CN106644711B (en) | A kind of ductile material single shaft constitutive relation test method | |
CN108256179B (en) | Method for predicting material creep curve | |
JP6119451B2 (en) | Fatigue life prediction method for thin plate laser welds | |
Tijani et al. | Quantitative evaluation of fatigue life of cast aluminum alloys by non-destructive testing and parameter model | |
Collini et al. | Fatigue crack growth analysis in porous ductile cast iron microstructure | |
Zhu et al. | A new approach for the influence of residual stress on fatigue crack propagation | |
JP2011147949A (en) | Method and device for deciding breakage in press forming simulation of sheet | |
JP2007307602A (en) | Apparatus for estimating characteristic of cast parts | |
JP2011169745A (en) | Method for measuring brittle crack stopping fracture toughness | |
JP2008185450A (en) | Calculation and evaluation method of non-linear fracture mechanical parameter | |
JP4533621B2 (en) | Residual stress measurement method and apparatus | |
CN107271273B (en) | A kind of method of cross tensile pre-deformation load measurement yield surface | |
Nourian‐Avval et al. | Variable amplitude fatigue behavior and modeling of cast aluminum | |
CN107220410B (en) | Method for acquiring influence sensitivity of parameters to welding residual stress and deformation | |
Guzmán et al. | Damage characterization in a ferritic steel sheet: Experimental tests, parameter identification and numerical modeling | |
Blug et al. | Application of high‐performance DIC for a comprehensive evaluation of biaxial fatigue crack growth experiments | |
CN104913876B (en) | The producing device and method of aluminum alloy bodywork residual stress measurement zero stress test block based on supercritical ultrasonics technology | |
JP5370022B2 (en) | Method and apparatus for estimating low cycle fatigue characteristics | |
Antunes et al. | Plasticity induced crack closure in Middle‐Crack Tension specimen: numerical versus experimental | |
CN104122205B (en) | A kind of method utilizing impression uplift capacity to measure residual stress | |
Guan | Probabilistic modeling of threshold stress intensity factor for fatigue endurance reliability prediction | |
JP2010175479A (en) | Method for evaluating life of minute notched material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120724 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130314 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130409 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130422 |
|
LAPS | Cancellation because of no payment of annual fees |