JP2010175479A - Method for evaluating life of minute notched material - Google Patents

Method for evaluating life of minute notched material Download PDF

Info

Publication number
JP2010175479A
JP2010175479A JP2009020685A JP2009020685A JP2010175479A JP 2010175479 A JP2010175479 A JP 2010175479A JP 2009020685 A JP2009020685 A JP 2009020685A JP 2009020685 A JP2009020685 A JP 2009020685A JP 2010175479 A JP2010175479 A JP 2010175479A
Authority
JP
Japan
Prior art keywords
notch
stress
fatigue
life
characteristic distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009020685A
Other languages
Japanese (ja)
Other versions
JP5212146B2 (en
Inventor
Yoichi Yamashita
洋一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009020685A priority Critical patent/JP5212146B2/en
Publication of JP2010175479A publication Critical patent/JP2010175479A/en
Application granted granted Critical
Publication of JP5212146B2 publication Critical patent/JP5212146B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating the life of a minute notched material capable of precisely estimating the fatigue life of the minute notched material having minute notches. <P>SOLUTION: A fatigue test is performed using a plurality of samples different in notch depth and notch tip radius to respectively form the SN charts of the respective samples while the stress distribution σ<SB>y</SB>in the notched cross sections of the respective samples is estimated with respect to the nominal stress imparted in the fatigue test and a characteristic distance x<SB>0</SB>is calculated at every sample. On the basis of them, the characteristic distance average stress σ<SB>ave</SB>being the average stress from a notched bottom to the characteristic distance x<SB>0</SB>is calculated, the relation of the fatigue crack producing life to the characteristic distance average stress σ<SB>ave</SB>is preliminarily calculated from the calculated characteristic distance average stress σ<SB>ave</SB>and the SN charts and the characteristic distance average stress σ<SB>ave</SB>of the minute notched material estimating fatigue life is calculated using the calculated relation to estimate the fatigue life of the minute notched material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微小な切欠きを有する微小切欠材の疲労寿命を予測する方法に係り、特に、特性距離モデル(Critical Distance Model)を用いた微小切欠材の寿命評価方法に関するものである。   The present invention relates to a method for predicting the fatigue life of a minute notch material having a minute notch, and more particularly to a method for evaluating the life of a minute notch material using a characteristic distance model.

航空機用ジェットエンジンでは、図16に示すように、ファン161で取り込んだ空気の一部を圧縮機162で圧縮して燃焼器163に送り込み、燃焼器163内で燃料を噴射、点火することで連続的に高温・高圧のガスを発生させ、このガスにより圧縮機162を駆動する高圧タービン164、ファン161を駆動する低圧タービン165を順次駆動させた後、ジェットノズル166からガスを高速度で後方に噴出することにより、ガスの噴流と反対方向への推進力を得ている。   In the aircraft jet engine, as shown in FIG. 16, a part of the air taken in by the fan 161 is compressed by the compressor 162 and sent to the combustor 163, and fuel is injected and ignited in the combustor 163. The high-pressure turbine 164 that drives the compressor 162 and the low-pressure turbine 165 that drives the fan 161 are sequentially driven by this gas, and then the gas is moved backward from the jet nozzle 166 at a high speed. Propulsion in the opposite direction to the gas jet is obtained by jetting.

このような航空機用ジェットエンジン160では、ファン161の空気取入口から鳥や石などの異物(Foreign Object Debris)を吸い込んでしまうことがあり、この異物の吸い込みにより、ファン161のファンブレード167や圧縮機162の動静翼168に微小な傷(ニック/デント、スクラッチ)が発生しやすい。   In such an aircraft jet engine 160, foreign objects such as birds and stones (Foreign Object Debris) may be sucked from the air intake port of the fan 161, and the suction of the foreign matters causes the fan blade 167 of the fan 161 to be compressed. Minute scratches (nick / dent, scratch) are likely to occur on the moving blade 168 of the machine 162.

ファンブレード167や圧縮機162の動静翼168の損傷の第1要因は、高サイクル疲労によるものである。微小な傷を有するファンブレード167や圧縮機162の動静翼168では、その微小な傷に応力が集中してき裂が発生し、これが起点となってファンブレード167や動静翼168が破壊されてしまうおそれがある。   The first cause of damage to the fan blade 167 and the moving blades 168 of the compressor 162 is due to high cycle fatigue. In the fan blade 167 having minute flaws and the moving stator blade 168 of the compressor 162, stress is concentrated on the minute flaws and a crack is generated, which may cause the fan blade 167 and the moving stator blade 168 to be destroyed. There is.

したがって、このような破壊を防ぐため、微小な傷を有するファンブレード167や動静翼168の疲労強度(疲労寿命)を予測し、適切な検査を実施することで、健全性を確保する必要がある。   Therefore, in order to prevent such destruction, it is necessary to predict the fatigue strength (fatigue life) of the fan blade 167 and the stationary blade 168 having minute scratches, and to ensure soundness by performing an appropriate inspection. .

従来、微小な傷(切欠き)を有するファンブレード167や動静翼168の疲労寿命を予測する方法としては、FEM(Finite Element Method;有限要素法)や、簡易計算式により切欠きの応力集中部(切欠き底)のピーク応力値を求め、これを基に、予め作成した平滑材のSN線図を用いて疲労寿命を予測する方法や、ピーク応力値と材料の疲労限度(疲労限応力振幅)とを比較し、疲労き裂が発生するか否か(補修や交換が必要であるかどうか)を判断する方法が知られている。   Conventionally, methods for predicting the fatigue life of fan blades 167 and moving blades 168 having minute flaws (notches) include FEM (Finite Element Method) and simple calculation formulas for stress concentration portions of notches. The peak stress value of the (notch bottom) is obtained, and based on this, the fatigue life is predicted using the SN diagram of the smooth material prepared in advance, the peak stress value and the fatigue limit of the material (fatigue limit stress amplitude) ) To determine whether or not a fatigue crack occurs (whether repair or replacement is necessary).

なお、この出願の発明に関連する先行技術文献情報としては、次のものがある。   The prior art document information related to the invention of this application includes the following.

Luca Susmel、「The Theory of critical distances:a review of its applications in fatigue」、Engineering Fracture Mechanics 75(2008)、p.1706−1724Luca Susmel, “The Theory of critical distances: a review of its applications in factage”, Engineering Fracture Mechanics 75 (2008). 1706-1724 D.Taylor、「The theory of critical distances」、Engineering Fracture Mechanics 75(2008)、p.1696−1705D. Taylor, “The theory of critical distances”, Engineering Fracture Mechanics 75 (2008), p. 1696-1705

しかしながら、従来方法では、切欠きの応力集中部(切欠き底)の応力集中係数が大きい場合、切欠き底のピーク応力値で疲労寿命(疲労強度)を予測すると、過度に安全側の評価結果となってしまう問題があった。   However, in the conventional method, when the stress concentration factor of the stress concentration part (notch bottom) of the notch is large, if the fatigue life (fatigue strength) is predicted by the peak stress value of the notch bottom, the evaluation result on the excessively safe side There was a problem that would become.

すなわち、従来方法では、実際には運用に支障のない極微小の切欠きが発生した場合であっても、その切欠きの形状が応力集中係数の大きい形状(例えば、V字形状)であれば、評価指標であるピーク応力値が大きくなってしまい、その寿命を過度に短く予測してしまう問題があり、疲労寿命を精度よく予測することができなかった。   That is, in the conventional method, even if an extremely small notch that actually does not interfere with operation is generated, if the notch has a shape with a large stress concentration factor (for example, a V shape) The peak stress value, which is an evaluation index, becomes large, and there is a problem that the life is predicted to be too short, and the fatigue life cannot be accurately predicted.

そこで、本発明の目的は、微小な切欠きを有する微小切欠材の疲労寿命を精度よく予測可能な微小切欠材の寿命評価方法を提供することにある。   Accordingly, an object of the present invention is to provide a life evaluation method for a minute notch material that can accurately predict the fatigue life of a minute notch material having a minute notch.

本発明は上記目的を達成するために創案されたものであり、微小な切欠きを有する微小切欠材の疲労寿命を予測する方法であって、切欠き深さ、切欠き先端半径の異なる複数の試料を用いて疲労試験を行い、各試料のSN線図をそれぞれ作成し、他方、上記疲労試験で付与した公称応力に対して各試料の切欠き断面での応力分布σyを推定すると共に、数1に示す式(1) The present invention was devised in order to achieve the above object, and is a method for predicting the fatigue life of a micro notch material having a micro notch, and includes a plurality of notches having different notch depths and notch tip radii. A fatigue test is performed using the sample, and an SN diagram of each sample is created. On the other hand, the stress distribution σ y at the notched cross section of each sample is estimated with respect to the nominal stress applied in the fatigue test, Formula (1) shown in Formula 1

Figure 2010175479
Figure 2010175479

で定義される特性距離x0を各試料ごとに求め、これら試料断面での応力分布σyと特性距離x0に基づき、切欠き底から特性距離x0までの平均応力である特性距離平均応力σaveをそれぞれ求め、求めた特性距離平均応力σaveと上記SN線図とから、特性距離平均応力σaveに対する疲労き裂発生寿命の関係を求めておき、この関係を用い、疲労寿命を予測する微小切欠材の特性距離平均応力σaveを求めることで、上記微小切欠材の疲労寿命を予測する微小切欠材の寿命評価方法である。 In seeking properties distance x 0, which is defined for each sample, based on the stress distribution sigma y and characteristic distance x 0 in these samples sectional characteristic distance mean stress is the average stress from the notch root to the characteristic distance x 0 σ ave is obtained, and the relationship between the obtained characteristic distance average stress σ ave and the above SN diagram is used to obtain the relationship of the fatigue crack initiation life to the characteristic distance average stress σ ave , and the fatigue life is predicted using this relationship This is a method for evaluating the life of a micro notch material by predicting the fatigue life of the micro notch material by obtaining the characteristic distance average stress σ ave of the micro notch material.

上記疲労試験により、各試料の破断寿命Nfを求めると共に、SN線図を作成して疲労限応力振幅Δσwをそれぞれ求め、他方、各試料の切欠き底にき裂が発生したときの応力拡大係数を求めると共に、上記切欠き断面での応力分布σyをそれぞれ決定し、得られた切欠き底にき裂が発生したときの応力拡大係数、および試料断面での応力分布σyを基に、き裂進展則に基づき、疲労き裂進展寿命の解析を行うと共に、下限界応力拡大係数範囲ΔKthを求め、上記疲労限応力振幅Δσw、および上記下限界応力拡大係数範囲ΔKthを基に、式(1)より特性距離x0を各試料ごとに求めると共に、求めた特性距離x0と上記試料断面での応力分布σyとに基づき、切欠き底から特性距離x0までの平均応力である特性距離平均応力σaveを求めてもよい。 By the fatigue test, the seek rupture life N f of each sample, by creating an SN diagram seeking fatigue limit stress amplitude .DELTA..sigma w respectively, while stress when cracks occurred in the notch bottom of each sample In addition to determining the expansion factor, the stress distribution σ y at the notch cross section was determined, and the stress intensity factor when the crack occurred at the notch bottom and the stress distribution σ y at the sample cross section were determined. In addition, based on the crack growth law, the fatigue crack growth life is analyzed, the lower limit stress intensity factor range ΔK th is obtained, and the fatigue limit stress amplitude Δσ w and the lower limit stress intensity factor range ΔK th are calculated. On the basis of the characteristic distance x 0 for each sample based on the formula (1), the distance from the notch bottom to the characteristic distance x 0 is calculated based on the obtained characteristic distance x 0 and the stress distribution σ y in the sample cross section. The characteristic distance average stress σ ave , which is an average stress, may be obtained.

上記疲労試験で得られた各試料の破断寿命Nfと、上記疲労き裂進展寿命の解析で得られた疲労き裂進展寿命Npとから、下式(2)
i=Nf−Np …(2)
より各試料の疲労き裂発生寿命Niを求め、これを基に、上記特性距離平均応力σaveに対する疲労き裂発生寿命Niの関係を求めてもよい。
From the fracture life N f of each sample obtained in the fatigue test and the fatigue crack growth life N p obtained by the analysis of the fatigue crack growth life, the following equation (2)
N i = N f −N p (2)
Need additional fatigue crack initiation life N i of each sample, based on this, it may be obtained relation fatigue crack initiation life N i with respect to the characteristic distance mean stress sigma ave.

上記試料が、平滑丸棒の表面にスクラッチ型の切欠きが形成されたスクラッチ型丸棒試験片であるとよい。   The sample may be a scratch-type round bar test piece in which a scratch-type notch is formed on the surface of a smooth round bar.

上記切欠き底にき裂が発生したときの応力拡大係数は、平板のエッジにき裂が発生した場合における、応力集中があるときの応力拡大係数と、応力集中がないときの応力拡大係数との比をとり、その比に上記平滑丸棒にき裂が発生したときの応力拡大係数を掛けることで求めてもよい。   The stress intensity factor when a crack occurs at the notch bottom is the stress intensity factor when there is a stress concentration and the stress intensity factor when there is no stress concentration when a crack occurs at the edge of a flat plate. May be obtained by multiplying the ratio by the stress intensity factor when a crack occurs in the smooth round bar.

切欠き先端半径を0.01mm以下としたときの特性距離平均応力σaveを求め、求めた特性距離平均応力σaveと、上記特性距離平均応力σaveに対する疲労き裂発生寿命の関係とから、最小疲労き裂発生寿命を求めてもよい。 The characteristic distance average stress σ ave when the radius of the notch tip is 0.01 mm or less was obtained, and from the obtained characteristic distance average stress σ ave and the relationship of the fatigue crack initiation life to the characteristic distance average stress σ ave , The minimum fatigue crack initiation life may be obtained.

上記特性距離平均応力σaveに対する疲労き裂発生寿命の関係を求めた後、この関係を用いて、切欠き先端半径を0.01mm以下としたときのSN線図を切欠き深さごとに作成し、これを用いて、切欠き深さごとに最小疲労限応力振幅を求めると共に、切欠きのない平滑材における疲労限応力振幅Δσwとの比をとることで、疲労限応力振幅の最大減少率をそれぞれ求め、切欠き深さと疲労限応力振幅の最大減少率との関係を求めておき、この関係を用い、疲労寿命を予測する微小切欠材の切欠き深さから、疲労限応力振幅の最大減少率を求め、これを平滑材の疲労限応力振幅Δσwに掛け合わせることで、上記微小切欠材の最小疲労限応力振幅を求めてもよい。 After obtaining the relationship of fatigue crack initiation life to the above characteristic distance average stress σ ave , using this relationship, create an SN diagram for each notch depth when the notch tip radius is 0.01 mm or less Using this, the minimum fatigue limit stress amplitude is calculated for each notch depth and the ratio of the fatigue limit stress amplitude Δσ w in a smooth material without notches is maximized. The relationship between the notch depth and the maximum reduction rate of the fatigue limit stress amplitude is obtained, and the fatigue limit stress amplitude is calculated from the notch depth of the micro notch material that predicts the fatigue life using this relationship. obtain the maximum reduction rate, which by multiplying the fatigue limit stress amplitude .DELTA..sigma w of smooth material, may be obtained the minimum fatigue limit stress amplitude of the fine notches material.

上記切欠き先端半径を0.01mm以下としたときのSN線図を用いて、任意のサイクル数における最小時間強度を切欠き深さごとに求めると共に切欠きのない平滑材における時間強度との比をとることで、時間強度の最大減少率をそれぞれ求め、切欠き深さに対する時間強度の最大減少率の関係を求めておき、この関係を用い、疲労寿命を予測する微小切欠材の切欠き深さから、時間強度の最大減少率を求め、これを平滑材の時間強度に掛け合わせることで、上記微小切欠材の任意のサイクル数における最小時間強度を求めてもよい。   Using the SN diagram when the radius of the notch tip is 0.01 mm or less, the minimum time strength at any number of cycles is obtained for each notch depth, and the ratio to the time strength in a smooth material without notches. By calculating the maximum reduction rate of time strength, the relationship between the maximum reduction rate of time strength and the notch depth is obtained, and this relationship is used to calculate the notch depth of a micro notch material that predicts fatigue life. Then, the minimum time strength at an arbitrary number of cycles of the minute notch material may be obtained by obtaining the maximum rate of decrease in time strength and multiplying this by the time strength of the smooth material.

本発明によれば、微小切欠材の疲労寿命を精度よく予測することができる。   According to the present invention, the fatigue life of a minute notch can be accurately predicted.

本発明の微小切欠材の寿命評価方法のフローチャートである。It is a flowchart of the lifetime evaluation method of the micro notch material of this invention. 特性距離モデルを説明する図である。It is a figure explaining a characteristic distance model. 図3(a)は本発明で用いた試料の平面図であり、図3(b)はそのA部拡大図、図3(c)はその切欠きの拡大図である。FIG. 3A is a plan view of a sample used in the present invention, FIG. 3B is an enlarged view of a portion A, and FIG. 3C is an enlarged view of the notch. 本発明において、疲労試験で得られるSN線図である。In this invention, it is a SN diagram obtained by a fatigue test. 本発明において、切欠きが形成された丸棒の切欠き底にき裂が発生したときの応力拡大係数を求める際の概念図である。In this invention, it is a conceptual diagram at the time of calculating | requiring the stress intensity factor when a crack generate | occur | produces in the notch bottom of the round bar in which the notch was formed. 切欠き深さに対する応力拡大係数の関係の一例を示す図である。It is a figure which shows an example of the relationship of the stress intensity factor with respect to a notch depth. xの座標系とrの座標系との関係を説明する図である。It is a figure explaining the relationship between the coordinate system of x, and the coordinate system of r. 本発明において、切欠き断面での応力分布、および特性距離平均応力の求め方を説明するための図である。In this invention, it is a figure for demonstrating how to obtain | require the stress distribution in a notch cross section, and characteristic distance average stress. 本発明において、下限界応力拡大係数範囲の求め方を説明するための図である。In this invention, it is a figure for demonstrating how to obtain | require a lower limit stress intensity factor range. 本発明において、特性距離平均応力に対する疲労き裂発生寿命の関係を示す図である。In this invention, it is a figure which shows the relationship of the fatigue crack generation lifetime with respect to characteristic distance average stress. 切欠き先端半径を小さくすると特性距離平均応力がある値に収束することを説明する図である。It is a figure explaining that characteristic distance average stress will be converged to a certain value when a notch tip radius is made small. 切欠き先端半径を小さくすると疲労き裂発生寿命が最小疲労き裂発生寿命に収束することを説明する図である。It is a figure explaining that the fatigue crack initiation life converges to the minimum fatigue crack initiation life when the notch tip radius is reduced. 図10の関係を用いて求めた、切欠き深さごとのSN線図である。It is SN diagram for every notch depth calculated | required using the relationship of FIG. 図10の関係を用いて求めた、切欠き先端半径ごとのSN線図である。It is SN diagram for every notch tip radius calculated | required using the relationship of FIG. 本発明において求めた、切欠き深さと疲労限応力振幅の最大減少率との関係を示す図である。It is a figure which shows the relationship between the notch depth calculated | required in this invention, and the maximum reduction rate of fatigue limit stress amplitude. 航空機用のジェットエンジンの概略断面図と、その一部拡大図である。1 is a schematic sectional view of a jet engine for an aircraft and a partially enlarged view thereof. 本発明の微小切欠材の寿命評価方法に用いる微小切欠材の寿命評価装置の概略図である。It is the schematic of the lifetime evaluation apparatus of the micro notch material used for the lifetime evaluation method of the micro notch material of this invention.

以下、本発明の好適な実施の形態を添付図面にしたがって説明する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

本発明の微小切欠材の寿命評価方法は、異物(Foreign Object Debris)の吸い込み等により微小な傷が発生した航空機用ジェットエンジンのファンブレード等の疲労寿命を予測する前段階として、微小な切欠きを有する微小切欠材の疲労寿命を評価する方法である。   The method for evaluating the life of a micro notch material according to the present invention is a micro notch as a pre-stage for predicting the fatigue life of a fan blade of an aircraft jet engine in which micro scratches have occurred due to suction of foreign object debris, etc. This is a method for evaluating the fatigue life of a micro-notch material having a.

また、本発明の微小切欠材の寿命評価方法は、特性距離モデル(Critical Distance Model)を用い、切欠き底から特性距離(Critical Distance)までの平均応力、すなわち特性距離平均応力(Critical Distance Stress)を評価指標として、微小切欠材の疲労寿命を評価する方法である。   Moreover, the life evaluation method of the micro notch material of this invention uses the characteristic distance model (Critical Distance Model), the average stress from a notch bottom to a characteristic distance (Critical Distance), ie, characteristic distance average stress (Critical Distance Stress) Is a method for evaluating the fatigue life of a micro-notch material.

まず、特性距離モデルについて簡単に説明する。   First, the characteristic distance model will be briefly described.

図2に示すように、金属材料からなり、微小な切欠き22を有する微小切欠材21では、切欠き底Bに応力が集中する。そのため、微小切欠材21の切欠き断面での応力分布σyは、切欠き底Bで最も大きくなり、切欠き底Bから微小切欠材21内部に向かって、徐々に減少する。 As shown in FIG. 2, stress is concentrated on the notch bottom B in the notch material 21 made of a metal material and having the notch 22. Therefore, the stress distribution σ y at the notch cross section of the minute notch material 21 becomes the largest at the notch bottom B, and gradually decreases from the notch bottom B toward the inside of the minute notch material 21.

このことから、例えば、切欠き底Bのピーク応力値が同じであっても、微小切欠材21内部に向かって応力分布σyが緩やかに減少する場合と、急激に低下する場合とでは、微小切欠材21が受ける負担に差が生じ、疲労寿命にも差が生じることが分かる。具体的には、切欠き底Bのピーク応力値が同じであっても、微小切欠材21内部に向かって応力分布σyが急激に低下する方が、平均応力が小さくなるため、微小切欠材21が受ける負担が軽くなり、疲労寿命は長くなる。 Therefore, for example, even when the peak stress value of the notch bottom B is the same, the stress distribution σ y gradually decreases toward the inside of the minute notch material 21 and the case where the stress distribution σ y decreases sharply. It can be seen that there is a difference in the burden received by the notch material 21 and a difference in fatigue life. Specifically, even if the peak stress value of the notch bottom B is the same, the average stress becomes smaller when the stress distribution σ y decreases more rapidly toward the inside of the minute notch material 21. The burden on 21 is reduced and the fatigue life is increased.

このように、微小切欠材21では、切欠き底Bの1点の応力で疲労強度は決まらず、微小切欠材21内部に向かって応力分布σyがどのように変化するかが重要な因子となる。従来の切欠き底のピーク応力値を評価指標として用いる方法では、切欠き底Bの1点の応力のみを考慮し、切欠き断面での応力分布σyを考慮していないため、微小切欠材21の正確な疲労寿命の評価ができなかったものと考えられる。 Thus, in the minute notch material 21, the fatigue strength is not determined by the stress at one point of the notch bottom B, and how the stress distribution σ y changes toward the inside of the minute notch material 21 is an important factor. Become. In the conventional method using the peak stress value of the notch bottom as an evaluation index, only the stress at one point on the notch bottom B is considered and the stress distribution σ y at the notch cross section is not considered. It is considered that 21 was not able to evaluate the fatigue life accurately.

本発明では、切欠き底Bから特性距離x0までの平均応力、すなわち特性距離平均応力σaveを、微小切欠材21の疲労寿命の評価指標として用いる。 In the present invention, the average stress from the notch bottom B to the characteristic distance x 0 , that is, the characteristic distance average stress σ ave is used as an evaluation index of the fatigue life of the minute notch material 21.

金属材料では、金属材料に含まれる不純物に起因して疲労破壊する。すなわち、金属材料では、高サイクル疲労において微小なき裂が発生し得る。この微小なき裂の最大長さ(平滑な金属材料が含みうる最大のき裂深さ)が、特性距離x0である。換言すれば、特性距離x0は、平滑材の疲労限応力振幅Δσw(これ以下の応力で何回荷重を繰り返しても疲労き裂が発生しないという限界応力)に対して、き裂が進展しない限界長さを意味する。 In a metal material, fatigue failure occurs due to impurities contained in the metal material. That is, in a metal material, a minute crack can occur in high cycle fatigue. The micro Without maximum length of crack (maximum can裂深of a smooth metallic material may comprise) is a characteristic distance x 0. In other words, the characteristic distance x 0 is that the crack propagates with respect to the fatigue limit stress amplitude Δσ w of the smooth material (a limit stress that does not generate a fatigue crack no matter how many times the load is repeated with a stress less than this). Means limit length not.

したがって、特性距離x0は、平滑材における疲労限応力振幅Δσwと、き裂が進展しなくなる下限界応力拡大係数範囲ΔKthとから求めることができ、数2に示す式(1) Therefore, the characteristic distance x 0 can be obtained from the fatigue limit stress amplitude Δσ w in the smooth material and the lower limit stress intensity factor range ΔK th at which the crack does not propagate.

Figure 2010175479
Figure 2010175479

で定義される。式(1)中の下限界応力拡大係数範囲ΔKth、疲労限応力振幅Δσwの具体的な求め方については後述する。 Defined by A specific method for obtaining the lower limit stress intensity factor range ΔK th and the fatigue limit stress amplitude Δσ w in the equation (1) will be described later.

そして、上述の金属材料が含みうる最大長さ(特性距離x0)のき裂が切欠き底Bに発生した場合の平均応力が、特性距離平均応力σaveである。特性距離平均応力σaveは、切欠き底Bから特性距離x0までの平均応力であるから、数3に示す式(3) The average stress when the crack having the maximum length (characteristic distance x 0 ) that can be included in the metal material is generated in the notch bottom B is the characteristic distance average stress σ ave . Since the characteristic distance average stress σ ave is an average stress from the notch bottom B to the characteristic distance x 0 , the equation (3)

Figure 2010175479
Figure 2010175479

で表される(図2参照)。 (See FIG. 2).

本発明者は、特性距離モデルを用いた微小切欠材21の疲労寿命評価方法について検討を重ねた結果、特性距離平均応力σaveに対する疲労き裂発生寿命の関係が、切欠き深さや切欠き先端半径にかかわらず、1つのSN線図として作成できることを見出し、本発明に至った。 As a result of repeated studies on the fatigue life evaluation method of the micro notch material 21 using the characteristic distance model, the present inventor found that the relationship between the fatigue crack initiation life and the characteristic distance average stress σ ave is the notch depth and the notch tip. The inventors have found that a single SN diagram can be created regardless of the radius, and have reached the present invention.

図1は、本実施形態に係る微小切欠材の寿命評価方法のフローチャートである。   FIG. 1 is a flowchart of a method for evaluating the lifetime of a minute notch material according to the present embodiment.

図1に示すように、本実施形態に係る微小切欠材の寿命評価方法は、大きく2つのステップS101、S102に分けることができる。   As shown in FIG. 1, the method for evaluating the lifetime of a micro notch material according to this embodiment can be roughly divided into two steps S101 and S102.

ステップS101では、疲労試験を行うと共に特性距離平均応力σaveの計算を行い、特性距離平均応力σaveに対する疲労き裂発生寿命の関係を求める。 In step S101, a fatigue test is performed and a characteristic distance average stress σ ave is calculated to obtain a relationship between the fatigue crack initiation life and the characteristic distance average stress σ ave .

ステップS102では、ステップS101で求めた特性距離平均応力σaveに対する疲労き裂発生寿命の関係を基に、切欠き深さと疲労限応力振幅Δσwの最大減少率との関係を求め、この関係を用いて、疲労寿命を予測する微小切欠材21の切欠き深さdから、最小疲労限応力振幅を求める。 In step S102, based on the relationship between the fatigue crack initiation life for characteristic distance mean stress sigma ave obtained in step S101, it obtains the relationship between the maximum rate of decrease of the notch depth and the fatigue limit stress amplitude .DELTA..sigma w, the relationship The minimum fatigue limit stress amplitude is obtained from the notch depth d of the minute notch 21 for predicting the fatigue life.

以下、各ステップについて詳細に説明する。   Hereinafter, each step will be described in detail.

まず、特性距離平均応力σaveに対する疲労き裂発生寿命の関係を求める(ステップS101)に先立ち、切欠き深さd、切欠き先端半径ρの異なる複数の試料を準備する(ステップS1)。本実施形態で用いた試料を図3(a)〜(c)に示す。 First, prior to obtaining the relationship between the fatigue crack initiation life and the characteristic distance average stress σ ave (step S101), a plurality of samples having different notch depths d and notch tip radii ρ are prepared (step S1). Samples used in this embodiment are shown in FIGS.

図3(a)〜(c)に示すように、試料31は、平滑丸棒の表面にスクラッチ型の切欠き22が形成されたスクラッチ型丸棒試験片である。切欠き22は、試料31の軸方向の中心に形成され、試料31の外周に一様に形成される。   As shown in FIGS. 3A to 3C, a sample 31 is a scratch type round bar test piece in which a scratch type notch 22 is formed on the surface of a smooth round bar. The notch 22 is formed at the center of the sample 31 in the axial direction, and is uniformly formed on the outer periphery of the sample 31.

試料31の切欠き22の深さdは、1mm以下、望ましくは0.5mm以下である。これは、実際にファンブレード等に深さ1mm以上の大きな切欠きが発生した場合には、危険であるため無条件で交換、補修されるためである。本実施形態では、切欠き深さdをそれぞれ0.1mm、0.3mm、0.5mmとし、切欠き先端半径ρを0.05mmとした。また、切欠き深さd=0.3mmの試料31については、切欠き先端半径ρが0.2mmの試料31も作成した。   The depth d of the notch 22 of the sample 31 is 1 mm or less, preferably 0.5 mm or less. This is because when a large notch with a depth of 1 mm or more actually occurs in a fan blade or the like, it is dangerous and is replaced and repaired unconditionally. In the present embodiment, the notch depth d is 0.1 mm, 0.3 mm, and 0.5 mm, respectively, and the notch tip radius ρ is 0.05 mm. For the sample 31 with the notch depth d = 0.3 mm, a sample 31 with a notch tip radius ρ of 0.2 mm was also prepared.

試料31は金属材料からなる。本実施形態では、試料31として、チタン合金からなるものを用いた。図3(a)に示すように、本実施形態では、疲労試験が行いやすいように、両端部の径が大きくなるよう形成された試料31を用いたが、試料31の径は全長にわたり一定であっても問題ない。   The sample 31 is made of a metal material. In the present embodiment, the sample 31 is made of a titanium alloy. As shown in FIG. 3A, in this embodiment, the sample 31 formed so that the diameters at both ends are increased so that the fatigue test can be easily performed. However, the diameter of the sample 31 is constant over the entire length. There is no problem even if it exists.

その後、各試料31について疲労試験を行い、各試料31の破断寿命Nfを求めると共に、各試料31についてSN線図を作成する(ステップS2)。作成したSN線図の一例を図4に示す。 Thereafter, the fatigue test for each sample 31, along with determining the rupture life N f of each sample 31, to create the SN diagram for each sample 31 (step S2). An example of the created SN diagram is shown in FIG.

図4のSN線図を作成した後、このSN線図から各試料31の疲労限応力振幅Δσwを求める(ステップS3)。本実施形態では、繰返し数N(破断寿命Nf)=107サイクルにおける最大応力振幅を疲労限応力振幅Δσwとした。 After the SN diagram of FIG. 4 is created, the fatigue limit stress amplitude Δσ w of each sample 31 is determined from this SN diagram (step S3). In the present embodiment, the maximum stress amplitude at the number of repetitions N (rupture life N f ) = 10 7 cycles is defined as the fatigue limit stress amplitude Δσ w .

他方、試料31の切欠き底Bに発生するき裂の応力拡大係数Knotch_semicircle_roundbarを求める(ステップS4)。この応力拡大係数Knotch_semicircle_roundbarを求める際の概念図を図5に示す。 On the other hand, the stress intensity factor Knotch_semicircle_roundbar of the crack generated at the notch bottom B of the sample 31 is obtained (step S4). FIG. 5 shows a conceptual diagram when obtaining this stress intensity factor K notch_semicircle_roundbar .

図5に示すように、試料31の切欠き底Bに発生するき裂のK値(Knotch_semicircle_roundbar)を求める際には、まず、平板のエッジにき裂が発生した場合における、応力集中があるときの応力拡大係数Knotch_throughcrackと、応力集中がないときの応力拡大係数Kthroughcrackを求め、これらの比(Knotch_throughcrack/Kthroughcrack)をとる。さらに、この比に平滑丸棒にき裂が発生したときの応力拡大係数Ksemicircle_roundbarを掛け合わせることにより、応力集中があるとき、すなわち、切欠き底Bにき裂が発生したときの応力拡大係数Knotch_semicircle_roundbarを求める。すなわち、切欠き底Bにき裂が発生したときの応力拡大係数Knotch_semicircle_roundbarは、下式(4)
notch_semicircle_roundbar=(Knotch_throughcrack/Kthroughcrack)×Ksemicircle_roundbar …(4)
で表される。平滑丸棒にき裂が発生したときの応力拡大係数Ksemicircle_roundbarと、切欠き底Bにき裂が発生したときの応力拡大係数Knotch_semicircle_roundbarの一例を、図6に示す。
As shown in FIG. 5, when obtaining the K value (K notch_semicircle_roundbar ) of the crack generated at the notch bottom B of the sample 31, first, there is stress concentration when a crack is generated at the edge of the flat plate. and the stress intensity factor K Notch_throughcrack of time, determined stress intensity factor K Throughcrack when there is no stress concentration, taking these ratios (K notch_throughcrack / K throughcrack). Furthermore, by multiplying this ratio by the stress intensity factor K semicircle_roundbar when a crack occurs in a smooth round bar, the stress intensity factor when a stress occurs, that is, when a crack occurs in the notch bottom B Find K notch_semicircle_roundbar . That is, the stress intensity factor K notch_semicircle_roundbar when a crack occurs in the notch bottom B is expressed by the following equation (4)
K notch_semicircle_roundbar = (K notch_throughcrack / K throughcrack ) × K semicircle_roundbar (4)
It is represented by An example of a stress intensity factor K semicircle_roundbar when a crack occurs in a smooth round bar and an example of a stress intensity factor K notch_semicircle_roundbar when a crack occurs in a notch bottom B are shown in FIG.

また、疲労試験で付与した公称応力(正味断面平均応力)σmに対して各試料31の切欠き断面での応力分布σyを推定する(ステップS5)。 Further, the stress distribution σ y at the notched cross section of each sample 31 is estimated with respect to the nominal stress (net cross section average stress) σ m applied in the fatigue test (step S5).

切欠き断面での応力分布σyは、数4に示す式(5) The stress distribution σ y at the notched cross section is expressed by equation (5)

Figure 2010175479
Figure 2010175479

で表される。ここで、式(5)におけるrは、図7に示すように、xの座標系から−ρ/2だけx方向に移動した座標系を示しており、r=x+ρ/2で表される。また、A,Bは未知数であり、これら未知数A,Bを求める必要がある。 It is represented by Here, r in Expression (5) indicates a coordinate system moved in the x direction by −ρ / 2 from the coordinate system of x, as shown in FIG. 7, and is represented by r = x + ρ / 2. A and B are unknown numbers, and it is necessary to obtain these unknown numbers A and B.

未知数A,Bを求めるため、試料31における力のつりあい式(試料31は丸棒試試験片であるため、軸力のつりあい式)を導出する。   In order to obtain the unknowns A and B, a force balance equation for the sample 31 (because the sample 31 is a round bar test piece, an axial force balance equation) is derived.

図8に示すように、公称応力σmによる軸力Fは、F=σm・πR2となる。他方、切欠き断面での応力分布σyによる軸力Fは、数5に示す式(6) As shown in FIG. 8, the axial force F due to the nominal stress σ m is F = σ m · πR 2 . On the other hand, the axial force F due to the stress distribution σ y in the notched cross section is expressed by Equation (6)

Figure 2010175479
Figure 2010175479

となる。よって、試料31における軸力のつりあい式は、数6に示す式(7) It becomes. Therefore, the balance formula of the axial force in the sample 31 is the formula (7) shown in Equation 6.

Figure 2010175479
Figure 2010175479

で表される。式(5)、(7)を用いて、未知数A,Bを求めると、未知数Aは数7に示す式(8) It is represented by When the unknowns A and B are obtained using the equations (5) and (7), the unknown A is expressed by the equation (8) shown in the equation (7).

Figure 2010175479
Figure 2010175479

となり、未知数Bは下式(9)
B=Kt−A …(9)
となる。求めた未知数A,Bを式(5)に代入すれば、切欠き断面での応力分布σyが得られる。
The unknown B is given by the following formula (9)
B = K t −A (9)
It becomes. By substituting the obtained unknowns A and B into Equation (5), the stress distribution σ y at the notched section can be obtained.

その後、ステップS4で求めた応力拡大係数Knotch_semicircle_roundbar、およびステップS5で求めた切欠き断面での応力分布σyを基に、応力拡大係数範囲ΔKを求め、疲労き裂進展寿命Npの解析を行う(ステップS6)。疲労き裂進展寿命Npの解析は、従来より用いられている下式(10)
da/dN=C(ΔK)m …(10)
但し、C、m:材料定数
a:き裂深さ
N:サイクル数
da/dN:1サイクル当たりのき裂の伸び量
ΔK:応力拡大係数範囲
で表されるき裂進展則を用いる。式(10)において材料定数C,mは、試料31にチタン合金を用いているため、これに対応するよう、C=4.625×10-12(MPa)、m=3.295(m)とした。サイクル当たりのき裂の伸び量da/dNと応力拡大係数範囲ΔKとの関係の一例を図9に示す。
Thereafter, based on the stress intensity factor K notch_semicircle_roundbar obtained in step S4 and the stress distribution σ y in the notch cross section obtained in step S5, the stress intensity factor range ΔK is obtained, and the fatigue crack growth life N p is analyzed. It performs (step S6). The analysis of fatigue crack growth life N p is based on the following equation (10)
da / dN = C (ΔK) m (10)
Where C and m are material constants.
a: Crack depth
N: Number of cycles
da / dN: Crack elongation per cycle
ΔK: The crack growth law expressed by the stress intensity factor range is used. In the formula (10), since the material constants C and m use a titanium alloy for the sample 31, C = 4.625 × 10 −12 (MPa) and m = 3.295 (m) so as to correspond to this. It was. An example of the relationship between the crack elongation per cycle da / dN and the stress intensity factor range ΔK is shown in FIG.

図9より、き裂が進展しなくなる下限界応力拡大係数範囲ΔKthが得られる。疲労き裂進展寿命Npは、式(10)の常微分方程式を数値計算により、逐次、応力拡大係数範囲とき裂寸法を更新しながら計算する手法を用いて算定する。その初期条件は、初期のき裂深さを特性距離X0とし、き裂深さが、丸棒試験片の直径よりも大きくなった時点(き裂が貫通した時点)を解析終了時点(破断時点)とすることで疲労き裂進展寿命Npを算定する。 From FIG. 9, the lower limit stress intensity factor range ΔK th at which the crack does not propagate is obtained. Fatigue Crack Propagation lifetime N p is numerically ordinary differential equation of Formula (10), sequentially, to calculate using the method for calculating while updating the裂寸method when the stress intensity factor range. The initial condition is that the initial crack depth is the characteristic distance X0, and the time when the crack depth becomes larger than the diameter of the round bar test piece (when the crack penetrates) is the time when the analysis is completed (when the fracture occurs). ) and to calculate the fatigue crack growth life N p by.

疲労き裂進展寿命Npの解析を行った後、ステップS6で得られた疲労き裂進展寿命Npと、ステップS2で求めた破断寿命Nfとから、各試料31での疲労き裂発生寿命Niを求める(ステップS7)。 After analysis of the fatigue crack propagation life N p, fatigue and crack growth life N p obtained in step S6, and a rupture life N f obtained in step S2, the fatigue crack generation in each sample 31 The service life Ni is obtained (step S7).

破断寿命Nfは、疲労き裂発生寿命Niと疲労き裂進展寿命Npの和、すなわち下式(11)
f=Ni+Np …(11)
で表される。よって、疲労き裂発生寿命Niは、式(11)を変形して下式(2)
i=Nf−Np …(2)
で求めることができる。
The sum of the rupture life N f is Fatigue and fatigue crack initiation life N i crack growth life N p, namely the following equation (11)
N f = N i + N p (11)
It is represented by Therefore, the fatigue crack initiation life N i is obtained by modifying equation (11)
N i = N f −N p (2)
Can be obtained.

その後、ステップS3で得た疲労限応力振幅Δσwと、ステップS6で得た下限界応力拡大係数ΔKthとを用いて、数8に示す式(1) After that, using the fatigue limit stress amplitude Δσ w obtained in step S3 and the lower limit stress intensity factor ΔK th obtained in step S6, equation (1)

Figure 2010175479
Figure 2010175479

により、特性距離x0を各試料ごとに求め、得られた特性距離x0を基に、特性距離平均応力σaveをそれぞれ求める(ステップS8)。式(1)において材料定数Fは、チタン合金に対応する値(F=1.1215×2)とする。 Thus, the characteristic distance x 0 is obtained for each sample, and the characteristic distance average stress σ ave is obtained based on the obtained characteristic distance x 0 (step S8). In the formula (1), the material constant F is set to a value corresponding to the titanium alloy (F = 1.215 × 2).

特性距離平均応力σaveは、切欠き底Bから特性距離x0まで範囲での合計の応力Pを、その断面積Sで割ったものであるから、数9に示す式(12) Since the characteristic distance average stress σ ave is obtained by dividing the total stress P in the range from the notch bottom B to the characteristic distance x 0 by the cross-sectional area S, the equation (12)

Figure 2010175479
Figure 2010175479

で求められる。この式(12)に、式(5)で表される切欠き断面での応力分布σyを代入して計算すると、特性距離平均応力σaveは、数10に示す式(13) Is required. When the stress distribution σ y at the notched cross section represented by the formula (5) is substituted into the formula (12) and calculated, the characteristic distance average stress σ ave is expressed by the formula (13) shown in Formula 10.

Figure 2010175479
Figure 2010175479

となる。 It becomes.

特性距離平均応力σaveが得られたら、その特性距離平均応力σaveと、ステップS7で求めた各試料の疲労き裂発生寿命Niとから、特性距離平均応力σaveに対する疲労き裂発生寿命Niの関係を求める(ステップS9)。得られた特性距離平均応力σaveに対する疲労き裂発生寿命Niの関係を図10に示す。 When characteristic distance mean stress sigma ave is obtained, and its properties distance mean stress sigma ave, and a fatigue crack initiation life N i of each sample obtained in step S7, Fatigue on the properties distance mean stress sigma ave Crack Initiation life determining the relationship N i (step S9). The relationship between the properties obtained distance mean stress σ Fatigue against ave crack initiation life N i shown in FIG. 10.

図10は、ステップS1で作成した全ての試料31(切欠き深さd=0.1mm、0.3mm、0.5mm、切欠き先端半径ρ=0.05mm、0.2mm)をプロットしたものである。このように、特性距離平均応力σaveに対する疲労き裂発生寿命Niの関係は、切欠き深さdや切欠き先端半径ρにかかわらず、1つのSN線図として作成することができる。 FIG. 10 is a plot of all samples 31 (notch depth d = 0.1 mm, 0.3 mm, 0.5 mm, notch tip radius ρ = 0.05 mm, 0.2 mm) created in step S1. It is. Thus, the relationship between the characteristic distance fatigue to the average stress sigma ave crack initiation life N i, regardless of the tip radius ρ-out d and the notch cut-out depth, can be created as a single SN diagram.

図10において、疲労き裂発生寿命Niが105サイクル未満ある場合と、疲労き裂発生寿命Niが105サイクル以上である場合のデータを分けているのは、疲労き裂発生寿命Ni=105サイクルで傾きが変化していることを表すためである。 In FIG. 10, the data when the fatigue crack initiation life N i is less than 10 5 cycles and when the fatigue crack initiation life N i is 10 5 cycles or more are separated. This is because i = 10 5 cycles to indicate that the slope changes.

図10の特性距離平均応力σaveに対する疲労き裂発生寿命Niの関係を予め作成しておけば、疲労寿命を予測する微小切欠材21の特性距離平均応力σaveを求めれば、微小切欠材21の疲労寿命(疲労き裂発生寿命Ni)を予測することが可能となる。 Once you have created in advance a characteristic distance mean relationship stress sigma fatigue against ave crack initiation life N i in FIG. 10, by obtaining the characteristic distance mean stress sigma ave of micro notch member 21 for predicting the fatigue life, small notches material it is possible to predict 21 of fatigue life (the fatigue crack initiation life N i).

さらに、切欠き先端半径ρを0.01mm以下、好ましくは0.001mm以下としたときの特性距離平均応力σaveを求め、求めた特性距離平均応力σaveと、図10の特性距離平均応力σaveに対する疲労き裂発生寿命Niの関係とから、最小疲労き裂発生寿命を求める(ステップS10)。 Further, the characteristic distance average stress σ ave is determined when the notch tip radius ρ is 0.01 mm or less, preferably 0.001 mm or less. The obtained characteristic distance average stress σ ave and the characteristic distance average stress σ of FIG. and a relationship between the fatigue crack initiation life N i for ave, obtain the minimum fatigue crack initiation life (step S10).

本発明者は、切欠き先端半径ρと疲労寿命の関係について検討を重ねた結果、切欠き先端半径ρをいくら小さくしても、特性距離平均応力σaveが上昇しなくなる領域が存在すること、すなわち、切欠き先端半径ρを小さくすると、特性距離平均応力σaveがある値に収束することを見出した。 As a result of repeatedly examining the relationship between the notch tip radius ρ and the fatigue life, the present inventor has a region where the characteristic distance average stress σ ave does not increase no matter how small the notch tip radius ρ is. That is, it has been found that when the notch tip radius ρ is reduced, the characteristic distance average stress σ ave converges to a certain value.

図11に示すように、切欠き先端半径ρが0.01mm以下の小さい値になると、特性距離平均応力σaveはある値に収束する。このため、図12に示すように、切欠き先端半径ρが0.01mm以下の小さい値になると、疲労き裂発生寿命Niがあるサイクル数に収束することになる。このサイクル数が最小疲労き裂発生寿命である。 As shown in FIG. 11, when the notch tip radius ρ becomes a small value of 0.01 mm or less, the characteristic distance average stress σ ave converges to a certain value. Therefore, as shown in FIG. 12, the notch tip radius ρ is below a small value 0.01 mm, it will converge to a number of cycles there is fatigue crack initiation life N i. This cycle number is the minimum fatigue crack initiation life.

よって、切欠き深さdのみに依存した最小疲労き裂発生寿命を求めることができる。この最小疲労き裂発生寿命は、切欠き先端半径ρが0.01mm以下、すなわち、切欠き22が略V字形状である場合の疲労き裂発生寿命であるから、最も応力集中が高い状態での疲労き裂発生寿命であり、最も安全側の評価であるといえる。   Therefore, the minimum fatigue crack initiation life depending only on the notch depth d can be obtained. This minimum fatigue crack generation life is the fatigue crack generation life when the notch tip radius ρ is 0.01 mm or less, that is, when the notch 22 is substantially V-shaped. It can be said that this is the most safe evaluation.

次に、ステップS9で求めた特性距離平均応力σaveに対する疲労き裂発生寿命Niの関係を用いて、切欠き深さdと疲労限応力振幅Δσwの最大減少率との関係を求めるステップ(ステップS102)について説明する。 Next, the step of using the relationship between the fatigue crack initiation life N i, obtains the relationship between the maximum rate of decrease of the notch depth d fatigue limit stress amplitude .DELTA..sigma w on the properties distance mean stress sigma ave obtained in step S9 (Step S102) will be described.

ステップS9で特性距離平均応力σaveに対する疲労き裂発生寿命Niの関係を求めた後、これを用いて、切欠き深さdごとにSN線図を作成する(ステップS11)。 After obtaining the relationship characteristic distance fatigue to the average stress sigma ave crack initiation life N i in step S9, and used to create a SN diagram for each notch depth d (step S11).

まず、一例として、切欠き先端半径ρが0.05mmである場合のSN線図を図13に示す。図13において、プロット(□、△、○:◇は平滑材)はステップS2の疲労試験における実験値であり、実線および破線はステップS11で作成したSN線図である。図13に示すように、作成したSN線図は実験値とよく一致しており、図10の関係から精度よくSN線図を作成できていることが分かる。図13のSN線図を作成する際は、図10より得た疲労き裂発生寿命Niに疲労き裂進展寿命Npを足し合わせて、破断寿命Nf(繰返し数N)を求めるとよい。 First, as an example, FIG. 13 shows an SN diagram when the notch tip radius ρ is 0.05 mm. In FIG. 13, plots (□, Δ, ○: ◇ are smooth materials) are experimental values in the fatigue test of Step S2, and solid lines and broken lines are SN diagrams created in Step S11. As shown in FIG. 13, the created SN diagram is in good agreement with the experimental value, and it can be seen that the SN diagram can be created with high accuracy from the relationship of FIG. When the SN diagram of FIG. 13 is created, the fracture life N f (repetition number N) may be obtained by adding the fatigue crack initiation life N i obtained from FIG. 10 to the fatigue crack growth life N p. .

また、図14に、切欠き深さd=0.3mmにおいて切欠き先端半径ρを0.2mm、0.05mmとしたときのSN線図を示す。図14に示すように、作成したSN線図(実線)は、実験値(□、△:◇は平滑材)とよく一致している。   FIG. 14 shows an SN diagram when the notch tip radius ρ is 0.2 mm and 0.05 mm at the notch depth d = 0.3 mm. As shown in FIG. 14, the created SN diagram (solid line) is in good agreement with the experimental values (□, Δ: ◇ are smooth materials).

また、図14には、切欠き先端半径ρを0.01mm以下の小さい値にしたときのSN線図を併せて示す。このSN線図が、切欠き深さd=0.3mmにおける、最小強度を示すSN線図となる。   FIG. 14 also shows an SN diagram when the notch tip radius ρ is set to a small value of 0.01 mm or less. This SN diagram is an SN diagram showing the minimum strength at the notch depth d = 0.3 mm.

これと同様に、各切欠き深さdについても、切欠き先端半径ρを0.01mm以下の小さい値にしたときのSN線図を作成する。   Similarly, for each notch depth d, an SN diagram is created when the notch tip radius ρ is set to a small value of 0.01 mm or less.

その後、ステップS11で作成したSN線図(切欠き先端半径ρ≦0.01mm)を基に、切欠き深さdと疲労限応力振幅の最大減少率との関係を求める(ステップS12)。   Thereafter, the relationship between the notch depth d and the maximum reduction rate of the fatigue limit stress amplitude is obtained based on the SN diagram (notch tip radius ρ ≦ 0.01 mm) created in step S11 (step S12).

ここでは、サイクル数N=107回における時間強度、すなわち疲労限応力振幅Δσwについて検討する。時間強度とは、任意のサイクル数における最大応力振幅のことである。 Here, the time strength at the number of cycles N = 10 7 , that is, the fatigue limit stress amplitude Δσ w is examined. Time strength is the maximum stress amplitude at any number of cycles.

ステップS10で説明したように、切欠き先端半径ρを0.01mm以下と小さくすると、特性距離平均応力σaveはある値に収束し、この収束値を基に最小疲労き裂発生寿命を得ることができる。よって、切欠き先端半径ρを0.01mm以下としたときのSN線図を切欠き深さdごとに作成すれば、作成したSN線図を基に、切欠き深さdごとに最小疲労限応力振幅を求めることができ、これと平滑材の疲労限応力振幅Δσwとの比をとることで、切欠き深さdと疲労限応力振幅の最大減少率(無次元化疲労限度)との関係を求めることができる。 As described in step S10, when the notch tip radius ρ is reduced to 0.01 mm or less, the characteristic distance average stress σ ave converges to a certain value, and the minimum fatigue crack initiation life is obtained based on this convergence value. Can do. Therefore, if an SN diagram is created for each notch depth d when the notch tip radius ρ is 0.01 mm or less, the minimum fatigue limit is determined for each notch depth d based on the created SN diagram. The stress amplitude can be obtained, and by taking the ratio of this to the fatigue limit stress amplitude Δσ w of the smooth material, the notch depth d and the maximum reduction rate of the fatigue limit stress amplitude (dimensionless fatigue limit) A relationship can be sought.

より具体的には、まず、ステップS11で作成したSN線図(切欠き先端半径ρ≦0.01mm)より、サイクル数N=107回における最大応力振幅、すなわち最小疲労限応力振幅(最小時間強度)を、切欠き深さdごとに求める。 More specifically, first, from the SN diagram (notch tip radius ρ ≦ 0.01 mm) created in step S11, the maximum stress amplitude at the cycle number N = 10 7 times, that is, the minimum fatigue limit stress amplitude (minimum time). Strength) is obtained for each notch depth d.

その後、得られた切欠き深さdごとの最小疲労限応力振幅と、切欠き22のない平滑材における疲労限応力振幅Δσwとの比(微小切欠材21の最小疲労限応力振幅/平滑材の疲労限応力振幅Δσw)をとると、切欠き深さdごとに疲労限応力振幅の最大減少率(無次元化疲労限度)が得られる。 Thereafter, the ratio of the obtained minimum fatigue limit stress amplitude for each notch depth d to the fatigue limit stress amplitude Δσ w in the smooth material without the notch 22 (minimum fatigue limit stress amplitude of the minute notch material 21 / smooth material Of the fatigue limit stress amplitude Δσ w ), the maximum reduction rate (dimensionless fatigue limit) of the fatigue limit stress amplitude is obtained for each notch depth d.

得られた切欠き深さdと疲労限応力振幅の最大減少率との関係のを図15に破線で示す。図15では、参考のため、ρ=0.05mmとしたときの切欠き深さdと疲労限応力振幅の減少率との関係(図13のSN線図に対応)を実線で示している。   The relationship between the obtained notch depth d and the maximum reduction rate of the fatigue limit stress amplitude is shown by a broken line in FIG. In FIG. 15, for reference, the relationship between the notch depth d and the reduction rate of the fatigue limit stress amplitude when ρ = 0.05 mm (corresponding to the SN diagram of FIG. 13) is shown by a solid line.

図15の関係(破線)を予め求めておくことにより、疲労寿命を予測する微小切欠材21の切欠き先端半径ρを計測せずとも、切欠き深さdのみを計測すれば、疲労限応力振幅の最大減少率を求めることが可能となる。   By obtaining the relationship (broken line) in FIG. 15 in advance, if only the notch depth d is measured without measuring the notch tip radius ρ of the minute notch material 21 that predicts the fatigue life, the fatigue limit stress It is possible to obtain the maximum reduction rate of the amplitude.

さらに、得られた疲労限応力振幅の最大減少率を平滑材の疲労限応力振幅Δσwに掛け合わせると、微小切欠材21の最小疲労限応力振幅を求めることができる(ステップS13)。 Furthermore, Multiplying the maximum reduction of the resulting fatigue limit stress amplitude fatigue limit stress amplitude .DELTA..sigma w of smooth material, it is possible to obtain the minimum fatigue limit stress amplitude of the micro notch member 21 (step S13).

これにより、得られた最小疲労限応力振幅の値が、所定値(許容限界値)以下となったときに、交換または補修が必要であると判断することができる。   Thereby, when the value of the obtained minimum fatigue limit stress amplitude becomes equal to or smaller than a predetermined value (allowable limit value), it can be determined that replacement or repair is necessary.

上述のように、特性距離モデルを用いて微小切欠材21の疲労寿命を予測する際には、微小切欠材21の切欠き深さd、切欠き先端半径ρを計測する必要がある。しかし、実際には、切欠き深さdは容易に計測できるものの、切欠き先端半径ρを計測するのは非常に困難である。本発明では、切欠き深さdのみで微小切欠材21の最小疲労限応力振幅Δσwを予測することが可能となるため、実際に航空機用ジェットエンジンのファンブレード等の疲労寿命を予測する際に非常に有効である。 As described above, when the fatigue life of the minute notch material 21 is predicted using the characteristic distance model, it is necessary to measure the notch depth d and the notch tip radius ρ of the minute notch material 21. However, in practice, the notch depth d can be easily measured, but it is very difficult to measure the notch tip radius ρ. In the present invention, since it is possible to predict the minimum fatigue limit stress amplitude Δσ w of the minute notch material 21 only by the notch depth d, when actually predicting the fatigue life of an aircraft jet engine fan blade or the like. It is very effective.

本実施形態では、サイクル数N=107サイクルにおける最小時間強度(最小疲労限応力振幅)について説明したが、任意のサイクル数における最小時間強度(例えば、8万回強度など)も同様にして求めることができる。 In the present embodiment, the minimum time strength (minimum fatigue limit stress amplitude) at the cycle number N = 10 7 cycles has been described, but the minimum time strength (for example, 80,000 times strength, etc.) at any cycle number is obtained in the same manner. be able to.

以上説明したように、本実施形態に係る微小切欠材の寿命評価方法では、切欠き深さd、切欠き先端半径ρの異なる複数の試料31を用いて疲労試験を行い、各試料31のSN線図をそれぞれ作成し、他方、疲労試験で付与した公称応力σmに対して各試料31の切欠き断面での応力分布σyを推定すると共に特性距離x0を求め、これに基づき、特性距離平均応力σaveをそれぞれ求め、求めた特性距離平均応力σaveと上記SN線図とから、特性距離平均応力σaveに対する疲労き裂発生寿命Niの関係を求めておき、この関係を用い、疲労寿命を予測する微小切欠材21の特性距離平均応力σaveを求めることで、微小切欠材31の疲労き裂発生寿命Niを予測している。 As described above, in the method for evaluating the life of a micro notch material according to the present embodiment, a fatigue test is performed using a plurality of samples 31 having different notch depths d and notch tip radii ρ. On the other hand, the stress distribution σ y at the notch cross section of each sample 31 is estimated and the characteristic distance x 0 is obtained with respect to the nominal stress σ m applied in the fatigue test. determined distance mean stress sigma ave respectively, from the determined characteristic distance mean stress sigma ave and the SN diagram, to previously obtain a relation between the fatigue crack initiation life N i on the properties distance mean stress sigma ave, using this relationship , by obtaining the characteristic distance mean stress sigma ave of micro notch member 21 for predicting the fatigue life, I predict the fatigue crack initiation life N i of the small notch member 31.

これにより、切欠き22の形態や、切欠き断面の応力分布σyを考慮して微小切欠材21の寿命(疲労き裂発生寿命Ni)を予測することが可能となるため、従来のように過度に安全側に寿命を評価してしまうことがなくなり、微小切欠材21の寿命を精度よく予測することが可能となる。 This makes it possible to predict the life (fatigue crack initiation life N i ) of the minute notch material 21 in consideration of the shape of the notch 22 and the stress distribution σ y of the notch cross section. Therefore, the life is not excessively evaluated on the safe side, and the life of the minute notch material 21 can be accurately predicted.

また、本実施形態では、試料31として、平滑丸棒の表面にスクラッチ型の切欠きが形成されたスクラッチ型丸棒試験片を用いている。スクラッチ型の試料では、エッジに鋭い傷が形成されたニック型の試料や、凹みが形成されたデント型の試料と比較して、最も疲労強度が低くなるため、スクラッチ型の試料を用いることで、安全側の評価が可能となる。   In this embodiment, a scratch-type round bar test piece in which a scratch-type notch is formed on the surface of a smooth round bar is used as the sample 31. Scratch-type samples have the lowest fatigue strength compared to nick-type samples with sharp flaws and dent-type samples with dents. The safety side can be evaluated.

さらに、本実施形態では、切欠き先端半径ρを0.01mm以下としたときのSN線図を切欠き深さdごとに作成し、これを用いて、切欠き深さdと疲労限応力振幅の最大減少率との関係を求めている。   Further, in the present embodiment, an SN diagram when the notch tip radius ρ is 0.01 mm or less is created for each notch depth d, and the notch depth d and fatigue limit stress amplitude are used. The relationship with the maximum rate of decrease is demanded.

本実施形態では、切欠き深さdと疲労限応力振幅の最大減少率との関係を予め求めているため、疲労寿命を予測する微小切欠材21の切欠き先端半径ρが計測できない場合であっても、切欠き深さdから、微小切欠材21の最小疲労限応力振幅を求めることが可能となり、交換や補修の必要性を知ることができる。   In this embodiment, since the relationship between the notch depth d and the maximum reduction rate of the fatigue limit stress amplitude is obtained in advance, the notch tip radius ρ of the minute notch material 21 that predicts the fatigue life cannot be measured. However, the minimum fatigue limit stress amplitude of the minute notch material 21 can be obtained from the notch depth d, and the necessity for replacement or repair can be known.

本実施形態に係る微小切欠材の寿命評価方法は、例えば、図17に示す微小切欠材の寿命評価装置170により実現される。   The micro notch material life evaluation method according to the present embodiment is realized by, for example, a micro notch material life evaluation apparatus 170 shown in FIG.

微小切欠材の寿命評価装置170は、試料31の切欠き深さd、切欠き先端半径ρ、疲労試験の結果等の解析データを入力する解析データ入力部171と、材料データを記憶する材料データ記憶部172と、解析条件を記憶する解析条件記憶部173と、入力部171に入力された解析データと材料データ記憶部173に記憶された材料データを基に、解析条件記憶部173に記憶された解析条件に従って、上述のステップS2〜S12で説明した解析を行う解析部174と、解析部174で得られた切欠き深さdと疲労限応力振幅の最大減少率との関係を記憶する解析結果記憶部175とを備える。   The micro notch material life evaluation apparatus 170 includes an analysis data input unit 171 for inputting analysis data such as a notch depth d, a notch tip radius ρ, and a fatigue test result of the sample 31, and material data for storing material data. Based on the storage unit 172, the analysis condition storage unit 173 for storing the analysis conditions, the analysis data input to the input unit 171 and the material data stored in the material data storage unit 173, the analysis condition storage unit 173 stores the analysis data. The analysis unit 174 that performs the analysis described in steps S2 to S12 according to the analysis conditions described above, and the analysis that stores the relationship between the notch depth d obtained by the analysis unit 174 and the maximum reduction rate of the fatigue limit stress amplitude A result storage unit 175.

また、微小切欠材の寿命評価装置170は、評価対象となる微小切欠き材の切欠き深さdを入力する評価対象データ入力部176と、微小切欠き材を実際に用いる際に必要な疲労限応力振幅である規格データを記憶する規格記憶部177と、評価対象データ入力部176で入力された切欠き深さdを基に、解析結果記憶部175に記憶された切欠き深さdと疲労限応力振幅の最大減少率との関係を用いて評価対象の微小切欠き材の最小疲労限応力振幅を求め、これが上記規格データを満足するか否かを出力する評価部178とを備える。   Further, the micro notch material life evaluation apparatus 170 includes an evaluation object data input unit 176 for inputting the notch depth d of the micro notch material to be evaluated, and fatigue required when the micro notch material is actually used. Based on the notch depth d input by the evaluation object data input unit 176 and the notch depth d stored in the analysis result storage unit 175, An evaluation unit 178 that obtains the minimum fatigue limit stress amplitude of the minute notch material to be evaluated using the relationship with the maximum reduction rate of the fatigue limit stress amplitude and outputs whether or not this satisfies the standard data.

入力部171、材料データ記憶部172、解析条件記憶部173、解析部174、解析結果記憶部175、評価対象データ入力部176、規格記憶部177、評価部178は、インターフェイス、メモリ、CPU、ソフトウェアなどを適宜組み合わせて実現される。   The input unit 171, the material data storage unit 172, the analysis condition storage unit 173, the analysis unit 174, the analysis result storage unit 175, the evaluation object data input unit 176, the standard storage unit 177, and the evaluation unit 178 are an interface, memory, CPU, software It implement | achieves combining suitably.

微小切欠材の寿命評価装置170を用いて評価を行う際は、まず、入力部171より解析データを入力すると共に解析部174で解析し、予め解析結果記憶部175に解析結果(切欠き深さdと疲労限応力振幅の最大減少率との関係)を記憶させておく。   When performing the evaluation using the micro notch material life evaluation device 170, first, analysis data is input from the input unit 171 and analyzed by the analysis unit 174, and the analysis result (notch depth) is stored in the analysis result storage unit 175 in advance. (Relationship between d and maximum reduction rate of fatigue limit stress amplitude) is stored.

その上で、評価対象データ入力部176より評価対象となる微小切欠き材のデータ(切欠き深さd)を入力すると、評価部178において、入力された切欠き深さdに対応する疲労限応力振幅が求められると共に、求めた疲労限応力振幅が予め設定した規格データを満足するか否かが判断され、その結果が外部に出力される。   After that, when data of the notch material to be evaluated (notch depth d) is input from the evaluation object data input unit 176, the fatigue limit corresponding to the input notch depth d is entered in the evaluation unit 178. The stress amplitude is determined, and it is determined whether or not the determined fatigue limit stress amplitude satisfies preset standard data, and the result is output to the outside.

21 微小切欠材
22 切欠き
31 試料
B 切欠き底
21 Micro notch material 22 Notch 31 Sample B Notch bottom

Claims (8)

微小な切欠きを有する微小切欠材の疲労寿命を予測する方法であって、
切欠き深さ、切欠き先端半径の異なる複数の試料を用いて疲労試験を行い、各試料のSN線図をそれぞれ作成し、他方、上記疲労試験で付与した公称応力に対して各試料の切欠き断面での応力分布σyを推定すると共に、数1に示す式(1)
Figure 2010175479
で定義される特性距離x0を各試料ごとに求め、これら試料断面での応力分布σyと特性距離x0に基づき、切欠き底から特性距離x0までの平均応力である特性距離平均応力σaveをそれぞれ求め、求めた特性距離平均応力σaveと上記SN線図とから、特性距離平均応力σaveに対する疲労き裂発生寿命の関係を求めておき、
この関係を用い、疲労寿命を予測する微小切欠材の特性距離平均応力σaveを求めることで、上記微小切欠材の疲労寿命を予測することを特徴とする微小切欠材の寿命評価方法。
A method for predicting the fatigue life of a minute notch material having a minute notch,
A fatigue test is performed using a plurality of samples having different notch depths and notch tip radii, and an SN diagram is prepared for each sample. On the other hand, each sample is cut against the nominal stress applied in the fatigue test. Estimating the stress distribution σ y at the notched cross section, and using the equation (1)
Figure 2010175479
In seeking properties distance x 0, which is defined for each sample, based on the stress distribution sigma y and characteristic distance x 0 in these samples sectional characteristic distance mean stress is the average stress from the notch root to the characteristic distance x 0 σ ave is obtained, and the relationship between the obtained characteristic distance average stress σ ave and the above SN diagram is used to obtain the relationship of the fatigue crack initiation life to the characteristic distance average stress σ ave ,
A life evaluation method for a micro notch material, wherein the fatigue life of the micro notch material is predicted by obtaining the characteristic distance average stress σ ave of the micro notch material for predicting the fatigue life using this relationship.
上記疲労試験により、各試料の破断寿命Nfを求めると共に、SN線図を作成して疲労限応力振幅Δσwをそれぞれ求め、
他方、各試料の切欠き底にき裂が発生したときの応力拡大係数を求めると共に、上記切欠き断面での応力分布σyをそれぞれ決定し、
得られた切欠き底にき裂が発生したときの応力拡大係数、および試料断面での応力分布σyを基に、き裂進展則に基づき、疲労き裂進展寿命の解析を行うと共に、下限界応力拡大係数範囲ΔKthを求め、
上記疲労限応力振幅Δσw、および上記下限界応力拡大係数範囲ΔKthを基に、式(1)より特性距離x0を各試料ごとに求めると共に、求めた特性距離x0と上記試料断面での応力分布σyとに基づき、切欠き底から特性距離x0までの平均応力である特性距離平均応力σaveを求める請求項1記載の微小切欠材の寿命評価方法。
Through the fatigue test, the fracture life N f of each sample is obtained, and an SN diagram is created to obtain the fatigue limit stress amplitude Δσ w .
On the other hand, the stress intensity factor when a crack occurred at the notch bottom of each sample was determined, and the stress distribution σ y at the notch cross section was determined,
Based on the stress intensity factor when the crack occurred at the notch bottom and the stress distribution σ y at the sample cross section, the fatigue crack growth life was analyzed based on the crack growth law. Obtain the limit stress intensity factor range ΔK th ,
Based on the fatigue limit stress amplitude Δσ w and the lower limit stress intensity factor range ΔK th , the characteristic distance x 0 is obtained for each sample from the equation (1), and the obtained characteristic distance x 0 and the sample cross section The life evaluation method for a micro notch material according to claim 1, wherein a characteristic distance average stress σ ave , which is an average stress from the notch bottom to the characteristic distance x 0 , is obtained based on the stress distribution σ y of the notch.
上記疲労試験で得られた各試料の破断寿命Nfと、上記疲労き裂進展寿命の解析で得られた疲労き裂進展寿命Npとから、下式(2)
i=Nf−Np …(2)
より各試料の疲労き裂発生寿命Niを求め、これを基に、上記特性距離平均応力σaveに対する疲労き裂発生寿命Niの関係を求める請求項2記載の微小切欠材の寿命評価方法。
From the fracture life N f of each sample obtained in the fatigue test and the fatigue crack growth life N p obtained by the analysis of the fatigue crack growth life, the following equation (2)
N i = N f −N p (2)
Need additional fatigue crack initiation life N i of each sample, based on this, the characteristic distance mean stress life evaluation method for a micro notch material according to claim 2, wherein determining the relationship between the fatigue crack initiation life N i for sigma ave .
上記試料が、平滑丸棒の表面にスクラッチ型の切欠きが形成されたスクラッチ型丸棒試験片である請求項1〜3いずれかに記載の微小切欠材の寿命評価方法。   The method for evaluating the life of a minute notch material according to any one of claims 1 to 3, wherein the sample is a scratch-type round bar test piece in which a scratch-type notch is formed on the surface of a smooth round bar. 上記切欠き底にき裂が発生したときの応力拡大係数は、平板のエッジにき裂が発生した場合における、応力集中があるときの応力拡大係数と、応力集中がないときの応力拡大係数との比をとり、その比に上記平滑丸棒にき裂が発生したときの応力拡大係数を掛けることで求められる請求項4記載の微小切欠材の寿命評価方法。   The stress intensity factor when a crack occurs at the notch bottom is the stress intensity factor when there is a stress concentration and the stress intensity factor when there is no stress concentration when a crack occurs at the edge of a flat plate. 5. The method for evaluating the life of a micro notch material according to claim 4, wherein the ratio is obtained by multiplying the ratio by a stress intensity factor when a crack occurs in the smooth round bar. 切欠き先端半径を0.01mm以下としたときの特性距離平均応力σaveを求め、求めた特性距離平均応力σaveと、上記特性距離平均応力σaveに対する疲労き裂発生寿命の関係とから、最小疲労き裂発生寿命を求める請求項1〜5いずれかに記載の微小切欠材の寿命評価方法。 The characteristic distance average stress σ ave when the radius of the notch tip is 0.01 mm or less was obtained, and from the obtained characteristic distance average stress σ ave and the relationship of the fatigue crack initiation life to the characteristic distance average stress σ ave , The lifetime evaluation method of the micro notch material in any one of Claims 1-5 which calculates | requires the minimum fatigue crack generation lifetime. 上記特性距離平均応力σaveに対する疲労き裂発生寿命の関係を求めた後、この関係を用いて、切欠き先端半径を0.01mm以下としたときのSN線図を切欠き深さごとに作成し、これを用いて、切欠き深さごとに最小疲労限応力振幅を求めると共に、切欠きのない平滑材における疲労限応力振幅Δσwとの比をとることで、疲労限応力振幅の最大減少率をそれぞれ求め、切欠き深さと疲労限応力振幅の最大減少率との関係を求めておき、
この関係を用い、疲労寿命を予測する微小切欠材の切欠き深さから、疲労限応力振幅の最大減少率を求め、これを平滑材の疲労限応力振幅Δσwに掛け合わせることで、上記微小切欠材の最小疲労限応力振幅を求める請求項1〜6いずれかに記載の微小切欠材の寿命評価方法。
After obtaining the relationship of fatigue crack initiation life to the above characteristic distance average stress σ ave , using this relationship, create an SN diagram for each notch depth when the notch tip radius is 0.01 mm or less Using this, the minimum fatigue limit stress amplitude is calculated for each notch depth and the ratio of the fatigue limit stress amplitude Δσ w in a smooth material without notches is maximized. Rate, and find the relationship between the notch depth and the maximum reduction rate of fatigue limit stress amplitude,
Using this relationship, the maximum reduction rate of the fatigue limit stress amplitude is obtained from the notch depth of the micro notch that predicts the fatigue life, and this is multiplied by the fatigue limit stress amplitude Δσ w of the smooth material to obtain the above-mentioned micro The method for evaluating the life of a minute notch material according to any one of claims 1 to 6, wherein a minimum fatigue limit stress amplitude of the notch material is obtained.
上記切欠き先端半径を0.01mm以下としたときのSN線図を用いて、任意のサイクル数における最小時間強度を切欠き深さごとに求めると共に切欠きのない平滑材における時間強度との比をとることで、時間強度の最大減少率をそれぞれ求め、切欠き深さに対する時間強度の最大減少率の関係を求めておき、
この関係を用い、疲労寿命を予測する微小切欠材の切欠き深さから、時間強度の最大減少率を求め、これを平滑材の時間強度に掛け合わせることで、上記微小切欠材の任意のサイクル数における最小時間強度を求める請求項7記載の微小切欠材の寿命評価方法。
Using the SN diagram when the radius of the notch tip is 0.01 mm or less, the minimum time strength at any number of cycles is obtained for each notch depth and the ratio to the time strength in a smooth material without notches. By taking each, the maximum rate of decrease in time strength is determined, and the relationship between the maximum rate of decrease in time strength with respect to the notch depth is determined,
Using this relationship, the maximum reduction rate of time strength is obtained from the notch depth of the minute notch material that predicts the fatigue life, and this is multiplied by the time strength of the smooth material. The lifetime evaluation method of the micro notch material of Claim 7 which calculates | requires the minimum time intensity | strength in a number.
JP2009020685A 2009-01-30 2009-01-30 Method for evaluating the life of minute notches Expired - Fee Related JP5212146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009020685A JP5212146B2 (en) 2009-01-30 2009-01-30 Method for evaluating the life of minute notches

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009020685A JP5212146B2 (en) 2009-01-30 2009-01-30 Method for evaluating the life of minute notches

Publications (2)

Publication Number Publication Date
JP2010175479A true JP2010175479A (en) 2010-08-12
JP5212146B2 JP5212146B2 (en) 2013-06-19

Family

ID=42706588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009020685A Expired - Fee Related JP5212146B2 (en) 2009-01-30 2009-01-30 Method for evaluating the life of minute notches

Country Status (1)

Country Link
JP (1) JP5212146B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058849A (en) * 2009-09-07 2011-03-24 Ihi Corp Method and device for estimating low cycle fatigue characteristics
JP2013205299A (en) * 2012-03-29 2013-10-07 Ihi Corp Determination method of notch factor
CN110595709A (en) * 2019-08-14 2019-12-20 南京航空航天大学 Method for determining allowable amplitude of turbine engine blade
CN111079329A (en) * 2019-12-04 2020-04-28 中国直升机设计研究所 Fatigue life assessment method based on similar structure test
CN113627012A (en) * 2021-08-06 2021-11-09 长安大学 Method for predicting breaking strength of carbon fiber/metal laminated structure after surface scratch

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927062B1 (en) * 1969-03-04 1974-07-15
JPS55171112U (en) * 1979-05-26 1980-12-08
WO1986004414A1 (en) * 1985-01-16 1986-07-31 Hitachi Construction Machinery Co., Ltd. Method of measuring stress concentration coefficient with ultrasonic wave
JPH0735664A (en) * 1993-07-19 1995-02-07 Kawasaki Steel Corp Method for introducing fatigue crack to fracture toughness test piece
JP2002022632A (en) * 2000-07-11 2002-01-23 Mitsubishi Heavy Ind Ltd Method and equipment for measuring fatigue crack
JP2005262281A (en) * 2004-03-19 2005-09-29 Sumitomo Metal Ind Ltd Welded joint excellent in fatigue life
JP2007309801A (en) * 2006-05-18 2007-11-29 Kawasaki Heavy Ind Ltd Fatigue sensor and fatigue damage estimation method
JP2010112783A (en) * 2008-11-05 2010-05-20 Ihi Corp Method for calculating average stress evaluating parameter
JP2010175478A (en) * 2009-01-30 2010-08-12 Ihi Corp Method for evaluating lower limit value of fatigue strength of minute flaw member

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4927062B1 (en) * 1969-03-04 1974-07-15
JPS55171112U (en) * 1979-05-26 1980-12-08
WO1986004414A1 (en) * 1985-01-16 1986-07-31 Hitachi Construction Machinery Co., Ltd. Method of measuring stress concentration coefficient with ultrasonic wave
JPH0735664A (en) * 1993-07-19 1995-02-07 Kawasaki Steel Corp Method for introducing fatigue crack to fracture toughness test piece
JP2002022632A (en) * 2000-07-11 2002-01-23 Mitsubishi Heavy Ind Ltd Method and equipment for measuring fatigue crack
JP2005262281A (en) * 2004-03-19 2005-09-29 Sumitomo Metal Ind Ltd Welded joint excellent in fatigue life
JP2007309801A (en) * 2006-05-18 2007-11-29 Kawasaki Heavy Ind Ltd Fatigue sensor and fatigue damage estimation method
JP2010112783A (en) * 2008-11-05 2010-05-20 Ihi Corp Method for calculating average stress evaluating parameter
JP2010175478A (en) * 2009-01-30 2010-08-12 Ihi Corp Method for evaluating lower limit value of fatigue strength of minute flaw member

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012058407; SUSMEL L., SUSMEL L., TAYLOR D.: 'The Modified Woehler Curve Method applied along with the Theory of Critical Distances to estimate fi' Fatigue Fract Eng Mater Struct Vol.31, No.12, 200812, Page.1047-1064 *
JPN6012058408; LANNING D B, NICHOLAS T, HARITOS G K: 'On the use of critical distance theories for the prediction of the high cycle fatigue limit stress i' Int J Fatigue Vol.27, No.1, 200501, Page.45-57 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058849A (en) * 2009-09-07 2011-03-24 Ihi Corp Method and device for estimating low cycle fatigue characteristics
JP2013205299A (en) * 2012-03-29 2013-10-07 Ihi Corp Determination method of notch factor
CN110595709A (en) * 2019-08-14 2019-12-20 南京航空航天大学 Method for determining allowable amplitude of turbine engine blade
CN111079329A (en) * 2019-12-04 2020-04-28 中国直升机设计研究所 Fatigue life assessment method based on similar structure test
CN111079329B (en) * 2019-12-04 2022-10-18 中国直升机设计研究所 Fatigue life assessment method based on similar structure test
CN113627012A (en) * 2021-08-06 2021-11-09 长安大学 Method for predicting breaking strength of carbon fiber/metal laminated structure after surface scratch
CN113627012B (en) * 2021-08-06 2023-06-20 长安大学 Method for predicting fracture strength of carbon fiber/metal layered structure after surface scratch

Also Published As

Publication number Publication date
JP5212146B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP2008003009A (en) Lifetime diagnosis device for high-temperature equipment, and lifetime diagnosis method and program for high-temperature equipment
JP5059224B2 (en) Fatigue fracture evaluation apparatus for parts, fatigue fracture evaluation method for parts, and computer program
JP2015532430A (en) Method and system for probabilistic fatigue crack life estimation
JP5212146B2 (en) Method for evaluating the life of minute notches
JP2014071053A (en) Creep damage assessment method and creep damage assessment system for high-temperature members
Hou et al. Prediction of fatigue crack propagation lives of turbine discs with forging-induced initial cracks
EP2724141A2 (en) System and method for generating a combined model for isothermal and anisothermal fatigue life
Shlyannikov et al. Fatigue of steam turbine blades with damage on the leading edge
Patriarca et al. A probabilistic framework to define the design stress and acceptable defects under combined-cycle fatigue conditions
JP5187209B2 (en) Evaluation method of lower limit of fatigue strength of minute defect members
Xu et al. Assessment of fatigue life of remanufactured impeller based on FEA
Xiannian et al. Fatigue crack propagation analysis in an aero-engine turbine disc using computational methods and spin test
JP5862415B2 (en) How to determine the notch factor
JP2011232206A (en) Flaw evaluation device and flaw evaluation method
JP2013096862A (en) Crack extension behavior prediction method
JP2012032333A (en) Method for evaluating generation of ductile crack and device for the same
Liu et al. Method for predicting crack initiation life of notched specimen based on damage mechanics
Nenadic et al. Seeding cracks using a fatigue tester for accelerated gear tooth breaking
Milana et al. Fatigue life assessment methods: the case of ship unloaders
JP5492057B2 (en) Damage prediction method for heat-resistant steel welds
Kasl et al. Failure analysis of Rotating Blades of Lowpressure Steam Turbine Rotors and Possibility of Prediction Corrosion-fatigue Ruptures
Whitney-Rawls et al. Comparison of aero engine component lifing methods
Narasimhachary et al. Life assessment of large gas turbine blades
JP2005037370A (en) Method and program for reliability assessment
Tehrani Yekta Acceptance Criteria for Ultrasonic Impact Treatment of Highway Steel Bridges

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees