JP5862415B2 - How to determine the notch factor - Google Patents

How to determine the notch factor Download PDF

Info

Publication number
JP5862415B2
JP5862415B2 JP2012075949A JP2012075949A JP5862415B2 JP 5862415 B2 JP5862415 B2 JP 5862415B2 JP 2012075949 A JP2012075949 A JP 2012075949A JP 2012075949 A JP2012075949 A JP 2012075949A JP 5862415 B2 JP5862415 B2 JP 5862415B2
Authority
JP
Japan
Prior art keywords
notch
stress
characteristic distance
coefficient
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012075949A
Other languages
Japanese (ja)
Other versions
JP2013205299A (en
Inventor
山下 洋一
洋一 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2012075949A priority Critical patent/JP5862415B2/en
Publication of JP2013205299A publication Critical patent/JP2013205299A/en
Application granted granted Critical
Publication of JP5862415B2 publication Critical patent/JP5862415B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、切欠き係数の決定方法に関するものである。   The present invention relates to a method for determining a notch coefficient.

疲労に及ぼす切欠きの効果を表す指標として、切欠き係数(疲労切欠き係数)がある。   As an index representing the effect of notch on fatigue, there is a notch coefficient (fatigue notch coefficient).

切欠き係数Kfは、切欠きがない平滑材の疲労強度σsmoothを、切欠きのある切欠き材の疲労強度σnotchで除したものであり、下式
f=σsmooth/σnotch
で表される。
The notch coefficient K f is obtained by dividing the fatigue strength σ smooth of a smooth material having no notch by the fatigue strength σ notch of a notched material having a notch , and the following equation: K f = σ smooth / σ notch
It is represented by

例えば、航空エンジン部品(動翼、静翼、ディスク)などの回転機械の部品では、設計段階で切欠きのない状態での疲労強度(つまり平滑材での疲労強度σsmooth)を求めておくが、任意の切欠き形状について切欠き係数Kfを求めておけば、部品に同じ形状の切欠き(傷)が形成されたときに、下式
σnotch=σsmooth/Kf
により、簡単に切欠きが形成された部品の疲労強度を予測することが可能になる。
For example, in the case of rotating machine parts such as aircraft engine parts (moving blades, stationary blades, and disks), the fatigue strength in the state where there is no notch in the design stage (that is, the fatigue strength σ smooth in a smooth material) is obtained. If the notch coefficient K f is obtained for an arbitrary notch shape, when the notch (scratch) of the same shape is formed in the part, the following equation σ notch = σ smooth / K f
This makes it possible to easily predict the fatigue strength of a part in which a notch is formed.

なお、この出願の発明に関連する先行技術文献情報としては、非特許文献1〜3がある。   Note that there are Non-Patent Documents 1 to 3 as prior art document information related to the invention of this application.

G.M.Owolabi、R.Prasannavenkatesan、D.L.McDowell、「Probabilistic framework for a microstructure−sensitive fatigue notch factor」、International Journal of Fatigue、32、2010年、pp.1378−1388G. M.M. Owolabi, R.A. Prasannavenkatesan, D.C. L. McDowell, “Probabilistic framework for a microstructural-sensitive notot factor”, International Journal of Factor, 32, 2010, pp. 1378-1388 David B.Lanning、Theodore Nicholas、Anthony Palazotto、「HCF notch predictions based on weakest−link failure models」、International Journal of Fatigue、25、2003年、pp.835−841David B.B. Lanning, Theodore Nicholas, Anthony Palazoto, “HCF notch predications based on weed-link failure models”, International Journal 3F. 835-841 Glinka,G.、「Calculation of Inelastic Notch−Tip Strain−Stress Histories under Cyclic Loading」、Engineering Fracture Mechanics、Vol.22、No.5、1985年Glinka, G .; "Calculation of Inelastic Notch-Tip Strain-Stress History under Cyclic Loading", Engineering Fracture Mechanics, Vol. 22, no. 5, 1985

しかしながら、切欠き形状が異なれば切欠き係数Kfも異なるので、切欠き形状が変化するごとに、その形状の切欠きを形成した試験片を作成して疲労試験を行い、得られた疲労強度σnotchを基に切欠き係数Kfを求める、という作業を繰り返す必要がある。 However, since the notch coefficient K f varies with the notch shape, every time the notch shape changes, a test piece with a notch of that shape is created and a fatigue test is performed. It is necessary to repeat the work of obtaining the notch coefficient K f based on σ notch .

このように、従来は切欠き形状ごとに疲労試験を行って切欠き係数Kfを求めなければならず、試験費用が膨大となってしまうという問題があった。 Thus, the prior art must seek notch factor K f by performing fatigue tests for each shape notch, there is a problem that the test cost becomes enormous.

本発明は上記事情に鑑み為されたものであり、簡便かつ低コストに切欠き係数を求めることが可能な切欠き係数の決定方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for determining a notch coefficient that can obtain the notch coefficient simply and at low cost.

本発明は上記目的を達成するために創案されたものであり、切欠き先端半径の異なる切欠きを形成した2つの試験片を用いて疲労試験を行い、両試験片で同じ疲労寿命となるときの切欠きの深さ方向の応力分布をそれぞれ求める応力分布演算工程と、該応力分布演算工程で求めた2つの応力分布を用い、両応力分布における応力の切欠き先端からの積分値が等しくなる切欠き先端からの距離である特性距離を求める特性距離演算工程と、該特性距離演算工程で求めた特性距離に基づき、前記試験片での破壊プロセスゾーンを設定する破壊プロセスゾーン設定工程と、前記特性距離演算工程で求めた特性距離に基づき、評価対象の切欠き形状での切欠き先端から特性距離までの平均応力である特性距離平均応力を求め、[数1]に示す式(1)   The present invention was devised to achieve the above object, and when a fatigue test is performed using two test pieces having notches with different notch tip radii, and both test pieces have the same fatigue life. Using the stress distribution calculation step to obtain the stress distribution in the depth direction of each notch and the two stress distributions obtained in the stress distribution calculation step, the integrated values from the stress notch tip in both stress distributions are equal. A characteristic distance calculating step for obtaining a characteristic distance that is a distance from the notch tip, a destructive process zone setting step for setting a destructive process zone in the test piece based on the characteristic distance obtained in the characteristic distance calculating step, Based on the characteristic distance obtained in the characteristic distance calculation step, the characteristic distance average stress that is the average stress from the notch tip to the characteristic distance in the notch shape to be evaluated is obtained, and the equation (1) shown in [Equation 1]

により、切欠き係数Kfを演算する切欠き係数演算工程と、を備えた切欠き係数の決定方法である。 By a method for determining the notch coefficient with the cutout coefficient calculation step of calculating a notch factor K f, the.

前記破壊プロセスゾーン設定工程では、前記試験片での破壊プロセスゾーンを、断面形状が特性距離と等しい直径の円形状であるリング状に設定するとよい。   In the destructive process zone setting step, the destructive process zone in the test piece may be set in a ring shape having a circular shape with a cross-sectional shape having a diameter equal to the characteristic distance.

前記切欠き係数演算工程では、ワイブル係数を[数2]に示す式(2)   In the notch coefficient calculation step, the Weibull coefficient is expressed by Equation (2) shown in [Equation 2].

により求めるとよい。 It is better to ask for.

前記切欠き係数演算工程では、有限要素法による解析により、評価対象の切欠き形状での切欠きの深さ方向の応力分布を求め、求めた応力分布を用いて特性距離平均応力を求めてもよい。   In the notch coefficient calculation step, the stress distribution in the depth direction of the notch in the notch shape to be evaluated is obtained by analysis using the finite element method, and the characteristic distance average stress is obtained using the obtained stress distribution. Good.

前記切欠き係数演算工程では、特性距離平均応力を[数3]に示す式(3)   In the notch coefficient calculation step, the characteristic distance average stress is expressed by the following equation (3):

により求めてもよい。 You may ask for.

本発明によれば、簡便かつ低コストに切欠き係数を求めることが可能な切欠き係数の決定方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the determination method of the notch coefficient which can obtain | require a notch coefficient simply and at low cost can be provided.

本発明の一実施の形態に係る切欠き係数の決定方法を示すフローチャートである。It is a flowchart which shows the determination method of the notch coefficient which concerns on one embodiment of this invention. (a)は本発明で用いた試料の平面図であり、(b)はそのA部拡大図、(c)はその切欠きの拡大図である。(A) is a top view of the sample used by this invention, (b) is the A section enlarged view, (c) is the notched enlarged view. 本発明において、特性距離を説明する図である。In this invention, it is a figure explaining characteristic distance. (a),(b)は、本発明において、破壊プロセスゾーンを説明する図である。(A), (b) is a figure explaining a destruction process zone in this invention. 本発明において、最大無害スクラッチ深さを説明する図である。In this invention, it is a figure explaining the maximum harmless scratch depth. (a)はTi−6Al−4V合金、(b)はインコネル(登録商標)718合金の本発明で求めた切欠き係数の予測値と実測値とを比較する図である。(A) is a figure which compares the predicted value of the notch coefficient calculated | required by this invention of the Ti-6Al-4V alloy and (b) inconel (trademark) 718 alloy with the measured value.

以下、本発明の実施の形態を添付図面にしたがって説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

本発明の切欠き係数の決定方法は、例えば、航空機用ジェットエンジンの部品(動翼、静翼、ディスク)において、異物(Foreign Object Debriss)の吸い込み等により微小な傷が発生した場合に、その微少な傷による疲労寿命への影響を評価する際等に用いられるものである。   The method for determining the notch coefficient of the present invention is, for example, in the case where a minute flaw occurs due to suction of a foreign object (Foreign Object Devices) in an aircraft jet engine component (moving blade, stationary blade, disk). It is used when evaluating the effect on fatigue life due to minute scratches.

図1は、本実施の形態に係る切欠き係数の決定方法を示すフローチャートである。   FIG. 1 is a flowchart showing a notch coefficient determination method according to the present embodiment.

図1に示すように、本実施の形態に係る切欠き係数の決定方法は、ステップS1の応力分布演算工程と、ステップS2の特性距離演算工程と、ステップS3の破壊プロセスゾーン設定工程と、ステップS4の切欠き係数演算工程と、からなる。以下、各ステップについて詳細に説明する。   As shown in FIG. 1, the notch coefficient determination method according to the present embodiment includes a stress distribution calculation step in step S1, a characteristic distance calculation step in step S2, a fracture process zone setting step in step S3, And a notch coefficient calculating step of S4. Hereinafter, each step will be described in detail.

ステップS1の応力分布演算工程では、切欠き先端半径の異なる切欠きを形成した2つの試験片を用いて疲労試験を行い、両試験片で同じ疲労寿命となるときの切欠きの深さ方向の応力分布をそれぞれ求める。   In the stress distribution calculation step of step S1, a fatigue test is performed using two test pieces formed with notches having different notch tip radii, and the depth direction of the notch when both the test pieces have the same fatigue life is obtained. Each stress distribution is obtained.

図2(a)〜(c)に示すように、本実施の形態で用いる試験片21は、円筒状で軸方向の中央に向かって外径のみが徐々に小さくなるように(内径は一定で、中央に向かって徐々に肉厚が薄くなるように)形成され、その中央部に、破壊を発生させる部分である試験部(この部分は一定の径に形成される)23が形成された丸棒試験片において、試験部23の表面に周方向に沿ってスクラッチ型の切欠き22を形成したスクラッチ型の丸棒試験片である。切欠き22は、試験部23の軸方向の中央に形成され、試験片21の外周に沿って一様に形成される。試験片21としては、評価対象の部材と同じ材料からなるものを用いる。   As shown in FIGS. 2A to 2C, the test piece 21 used in the present embodiment is cylindrical and has an outer diameter that gradually decreases toward the center in the axial direction (the inner diameter is constant). A circle formed with a test part 23 (this part is formed to have a constant diameter), which is a part that generates a fracture, at the center part. The bar test piece is a scratch type round bar test piece in which a scratch notch 22 is formed along the circumferential direction on the surface of the test portion 23. The notch 22 is formed at the center of the test portion 23 in the axial direction, and is formed uniformly along the outer periphery of the test piece 21. The test piece 21 is made of the same material as the member to be evaluated.

ステップS1では、切欠き先端半径ρが異なる試験片21を作成して疲労試験を行い、両試験片21で疲労寿命が同じになるときの切欠き22の深さ方向の応力分布、すなわち、両試験片21で疲労寿命が同じになるときの公称応力に対する、試験片21の半径方向に沿った軸方向の応力の分布(Axial Stress distribution)をそれぞれ求める。両応力分布を求める際には、疲労試験の結果を基に有限要素法(Finite Element Method)による解析を行うか、あるいは、後述する公式(式(6))を用いる。ステップS1で得られる応力分布の一例を図3に示す。   In step S1, a test piece 21 having different notch tip radii ρ is prepared and subjected to a fatigue test. The stress distribution in the depth direction of the notch 22 when the fatigue life is the same in both test pieces 21, that is, both The axial stress distribution (Axial Stress distribution) along the radial direction of the test piece 21 with respect to the nominal stress when the fatigue life is the same in the test piece 21 is obtained. When obtaining both stress distributions, analysis by a finite element method (Finite Element Method) is performed based on the result of the fatigue test, or a formula (formula (6)) described later is used. An example of the stress distribution obtained in step S1 is shown in FIG.

ステップS2の特性距離演算工程では、ステップS1の応力分布演算工程で求めた2つの応力分布を用い、両応力分布における応力の切欠き先端からの積分値が等しくなる切欠き先端からの距離である特性距離(Critical Distance)を求める。   In the characteristic distance calculation process in step S2, the two stress distributions obtained in the stress distribution calculation process in step S1 are used, and the distance from the notch tip where the integrated values of the stresses from the notch tip in both stress distributions are equal. The characteristic distance (Critical Distance) is obtained.

図3に示すように、切欠き先端半径ρが異なる2つの応力分布は必ず交差する。この交差する位置での切欠き先端からの距離xをL0としたとき、0≦x≦L0の領域での両応力分布の曲線間の面積S0と、L0≦x≦L1での両応力分布の曲線間の面積S1とが等しくなる切欠き先端からの距離L1が、特性距離(両応力分布における応力の切欠き先端からの積分値が等しくなる切欠き先端からの距離)となる。 As shown in FIG. 3, two stress distributions having different notch tip radii inevitably intersect each other. The distance x from the notch tip at the position of this intersection when the L 0, a 0 ≦ x ≦ L area S 0 between the curves of both the stress distribution in the region of 0, in L 0 ≦ x ≦ L 1 The distance L 1 from the notch tip where the area S1 between the two stress distribution curves is equal is the characteristic distance (the distance from the notch tip where the integrated value from the notch tip of the stress in both stress distributions is equal). It becomes.

ステップS3の破壊プロセスゾーン設定工程では、ステップS2の特性距離演算工程で求めた特性距離L1に基づき、試験片21での破壊プロセスゾーン(Fracture Process Zone)を設定する。破壊プロセスゾーンとは、疲労破壊する際の初期のマイクロクラックなどが形成される領域のことであり、つまり破壊が発生する領域のことである。この領域での応力やひずみの大きさが破壊に影響を及ぼしているといえる。 The destructive process zone setting step of step S3, based on the characteristic distance L 1 determined by the characteristic distance calculating process in step S2, the set breaking process zone of the test piece 21 (Fracture Process Zone). The fracture process zone is a region where an initial microcrack or the like at the time of fatigue fracture is formed, that is, a region where fracture occurs. It can be said that the magnitude of stress and strain in this region affects the fracture.

図4(a)に示すように、本実施の形態では、試験片21での破壊プロセスゾーンを、断面形状が特性距離L1と等しい直径の円形状であるリング状に設定する。試験片21の破壊プロセスゾーンの体積Vnotchは、直径L1の円の面積を試験片21の周方向に積分することで求めることができ、下式(4)
notch=π21 2(Do−L1)/4 ・・・(4)
で表される。
As shown in FIG. 4A, in the present embodiment, the fracture process zone in the test piece 21 is set in a ring shape having a circular shape with a cross-sectional shape having a diameter equal to the characteristic distance L 1 . The volume V notch of the fracture process zone of the test piece 21 can be obtained by integrating the area of a circle having a diameter L 1 in the circumferential direction of the test piece 21, and the following equation (4)
V notch = π 2 L 1 2 (D o −L 1 ) / 4 (4)
It is represented by

なお、図4(b)に示すように、切欠き22を形成しない平滑な丸棒試験片41においては、肉厚が最も薄く形成された試験部23のどこかで破壊が発生するため、試験部23全体が破壊プロセスゾーンとなる。よって、試験部23の軸方向に沿った長さをl、外径をDo、肉厚をL1とすると、平滑な丸棒試験片での破壊プロセスゾーンの体積Vsmoothは、下式(5)
smooth=π・l((Do 2−(Do−2L)2)/4) ・・・(5)
で表される。
In addition, as shown in FIG.4 (b), in the smooth round bar test piece 41 which does not form the notch 22, since a fracture | rupture generate | occur | produces in the test part 23 formed in the thinnest thickness, test The entire part 23 becomes a destruction process zone. Therefore, the length along the axial direction of the test part 23 l, the outer diameter D o, the wall thickness and L 1, the volume V smooth smooth fracture process zone of a smooth round bar specimens, the following formula ( 5)
V smooth = π · l ((D o 2 − (D o −2L) 2 ) / 4) (5)
It is represented by

特性距離L1は材料ごとに一定の値であり、破壊プロセスゾーンは特性距離L1に応じて設定されるものであるから、一度特性距離L1を取得し破壊プロセスゾーンを設定しておけば、以降はステップS1〜S3を省略することが可能である。 The characteristic distance L 1 is a constant value for each material, and the destruction process zone is set according to the characteristic distance L 1. Therefore, once the characteristic distance L 1 is obtained and the destruction process zone is set. Thereafter, steps S1 to S3 can be omitted.

ステップS4の切欠き係数演算工程では、評価対象の切欠き形状(深さd、切欠き先端半径ρ)での切欠き先端から特性距離L1までの平均応力である特性距離平均応力(Critical Distance Stress)σCDを求め、[数4]に示す式(1)により、切欠き係数Kfを演算する。 The notch coefficient calculation process in step S4, the notch of the evaluation object shape is the average stress from the notch tip in (depth d, tip radius ρ notch) until characteristic distance L 1 characteristic distance mean stress (Critical Distance (Stress) σ CD is calculated, and the notch coefficient K f is calculated by the equation (1) shown in [Equation 4].

まず、特性距離平均応力σCDを求める方法を詳細に説明する。 First, a method for obtaining the characteristic distance average stress σ CD will be described in detail.

切欠き近傍の応力分布式は、[数5]に示す式(6)で表せることが知られている(非特許文献3参照)。なお、式(6)におけるrは、x軸を−ρ/2シフトした座標系を表している。また、応力集中係数Ktは、切欠き形状から求めることができる。切欠き形状から応力集中係数Ktを求める方法は公知であるため、ここでは説明を省略する。 It is known that the stress distribution equation in the vicinity of the notch can be expressed by equation (6) shown in [Equation 5] (see Non-Patent Document 3). In the equation (6), r represents a coordinate system obtained by shifting the x axis by −ρ / 2. Also, the stress concentration factor K t can be determined from the notch shape. Since a method of determining the stress concentration factor K t from the notch shape is known, a description thereof will be omitted.

他方、特性距離平均応力σCDは、その定義より、[数6]に示す式(7)で表すことができる。 On the other hand, the characteristic distance average stress σ CD can be expressed by Equation (7) shown in [Equation 6] by its definition.

よって、式(7)に式(6)を代入して式を整理すると、[数7]に示す式(3)のようになる。   Therefore, when formula (6) is substituted into formula (7) and rearranged, formula (3) shown in [Equation 7] is obtained.

式(3)から分かるように、特性距離平均応力σCDはσnotchの関数であり、この式(3)を上述の式(1)に代入すると、σnotchが打ち消しあって消去される。つまり、上述の式(1)では見かけ上σnotchが含まれているように見えるが、実際にはσnotchはキャンセルされる。 As can be seen from the equation (3), the characteristic distance average stress σ CD is a function of σ notch , and when this equation (3) is substituted into the above equation (1), σ notch cancels and is erased. That is, in the above equation (1), it appears that σ notch is included, but σ notch is actually canceled.

なお、本実施の形態では、式(6)の応力分布式を用いて特性距離平均応力σCDを求める場合を説明したが、これに限らず、有限要素法による解析により、評価対象の切欠き形状での切欠きの深さ方向の応力分布を求め、求めた応力分布を用いて特性距離平均応力σCDを求めることも勿論可能である。 In the present embodiment, the case where the characteristic distance average stress σ CD is obtained using the stress distribution formula of Expression (6) has been described. However, the present invention is not limited to this, and the notch to be evaluated is analyzed by the finite element method. It is of course possible to obtain the stress distribution in the depth direction of the notch in the shape and obtain the characteristic distance average stress σ CD using the obtained stress distribution.

次に、切欠き係数Kfを求める式(1)について詳細に説明しておく。 Next, equation (1) for obtaining the notch coefficient K f will be described in detail.

上述の式(1)は、最弱リンク理論(Weakest Link Failure Theory)に基づいて定式化されたものである。以下、式(1)をどのように導出したかを説明しておく。   The above equation (1) is formulated based on the weakest link theory (Weakest Link Failure Theory). Hereinafter, how the formula (1) is derived will be described.

平滑な丸棒試験片の破壊プロセスゾーン(体積はVsmooth)がn個の体積V0の微少ユニットからなるとしたとき、σiの応力下で微少ユニットに破壊が発生する確率p(σi)は、下式(8)
p(σi)=(σi/σum ・・・(8)
で表される。なお、式(8)におけるσuは材料定数である。
When destruction process zone smooth round specimens (volume of V smooth smooth) was to consist of small units of n volume V 0, the probability destroyed small unit under stress sigma i occurs p (sigma i) Is the following formula (8)
p (σ i ) = (σ i / σ u ) m (8)
It is represented by In Equation (8), σ u is a material constant.

最弱リンク理論では、σiの応力下で微少ユニットが破壊されずに残る確率(1−p(σi))をn個の微少ユニットで掛け合わせたものが、破壊プロセスゾーン全体で破壊が発生しない確率Psとなり、[数8]に示す式(9)のようになる。よって、破壊プロセスゾーン全体で破壊が発生する確率Pfは、[数8]に示す式(10)のようになる。 In the weakest link theory, the probability that a micro unit remains without being destroyed under the stress of σ i (1-p (σ i )) is multiplied by n micro units. Probability P s that does not occur is as shown in Equation (9) shown in [Equation 8]. Therefore, the probability P f of occurrence of destruction in the entire destruction process zone is as shown in Equation (10) shown in [Equation 8].

式(8)の両辺の自然対数をとり、p(σi)が小さい値であると仮定すると、[数9]に示す式(11)となる。さらに、式(11)を連続形式に書き直すと、[数9]に示す式(12)となる。 Taking the natural logarithm of both sides of Equation (8) and assuming that p (σ i ) is a small value, Equation (11) shown in [Equation 9] is obtained. Further, when Expression (11) is rewritten into a continuous format, Expression (12) shown in [Equation 9] is obtained.

体積Vsmoothの破壊プロセスゾーン全体が一定の応力σ=σiであると仮定すると、式(11),(12)より、[数10]に示す式(13)のようになる。よって、平滑な丸棒試験片の破壊プロセスゾーン全体での破壊が発生する確率(累積確率)Pfは、[数10]に示す式(14)のようになる。 Assuming that the entire fracture process zone of the volume V smooth has a constant stress σ = σ i , the following equation (13) is obtained from equations (11) and (12). Therefore, the probability (cumulative probability) P f at which a smooth round bar test piece breaks in the entire break process zone is expressed by Equation (14) shown in [Equation 10].

ここで、切欠き係数Kfを決定するために、切欠きを形成した試験片の均一でない応力状態と有限要素法による解析を考える。体積Vnotchの破壊プロセスゾーンはn個の要素に分割される。このとき、各要素の体積dViは、応力勾配を無視できる程度に小さく設定される。各要素の破壊確率Pf,iは、[数11]に示す式(15)で表される。 Here, in order to determine the notch factor K f, consider the analysis by the stress state and the finite element method is not a homogeneous specimen to form a notch. The destruction process zone of volume V notch is divided into n elements. At this time, the volume dV i of each element is set small to negligible stress gradient. The destruction probability P f, i of each element is expressed by Equation (15) shown in [Equation 11].

式(15)におけるViは、σiの応力を受けるi番目の要素の体積である。上述の式(11)と同様に、切欠きを形成した試験片での破壊プロセスゾーン全体で破壊が発生しない確率Psは、[数12]に示す式(16)で表される。さらに、式(16)を連続形式に書き直すと、[数12]に示す式(17)となる。 V i in equation (15) is the volume of the i-th element that receives the stress of σ i . Similar to the above equation (11), the probability P s that no fracture occurs in the entire fracture process zone in the test piece in which the notch is formed is expressed by equation (16) shown in [Equation 12]. Further, when Expression (16) is rewritten into a continuous format, Expression (17) shown in [Equation 12] is obtained.

よって、切欠きを形成した丸棒試験片の破壊プロセスゾーン全体での破壊が発生する確率(累積確率)Pfは、[数13]に示す式(18)のようになる。 Therefore, the probability (cumulative probability) P f that the round bar test piece in which the notch is formed breaks in the entire fracture process zone is expressed by Equation (18) shown in [Equation 13].

ここで、破壊プロセスゾーン内においては、σi≒σCDであるので、式(18)は[数14]に示す式(19)のようになる。 Here, since σ i ≈σ CD in the destruction process zone, Expression (18) becomes Expression (19) shown in [Equation 14].

他方、上述の式(14)より、平滑な丸棒試験片におけるσsmoothの応力下での破壊が発生する確率Pfは、[数15]に示す式(20)のようになる。 On the other hand, from the above equation (14), the probability P f that a smooth round bar test piece is broken under the stress of σ smooth is expressed by equation (20) shown in [Equation 15].

これら式(19),(20)でPfの値が等しくなるとき、下式(21)
notch・σCD m=Vsmooth・σsmooth m ・・・(21)
の関係が得られる。式(21)を変形すると、下式(22)
σsmooth=(Vnotch/Vsmooth1/m・σCD ・・・(22)
となる。
When the values of P f are equal in these equations (19) and (20), the following equation (21)
V notch · σ CD m = V smooth · σ smooth m (21)
The relationship is obtained. When formula (21) is transformed, the following formula (22)
σ smooth = (V notch / V smooth ) 1 / m · σ CD (22)
It becomes.

切欠き係数Kfは、下式(23)
f=σsmooth/σnotch ・・・(23)
で表されるので、式(23)に式(22)を代入すると、上述の式(1)が得られることになる。式(1)における(Vnotch/Vsmooth1/mは、平滑な丸棒試験片と切欠きを形成した丸棒試験片との間の寸法効果(体積効果、表面積効果)を表しており、σCD/σnotchは、破壊プロセスゾーンでの平均応力の集中を表すファクターを表している。
The notch coefficient K f is expressed by the following equation (23)
K f = σ smooth / σ notch (23)
Therefore, when the equation (22) is substituted into the equation (23), the above equation (1) is obtained. (V notch / V smooth ) 1 / m in the formula (1) represents the size effect (volume effect, surface area effect) between the smooth round bar test piece and the round bar test piece formed with a notch. , Σ CD / σ notch represents a factor representing the concentration of average stress in the fracture process zone.

さらに、式(1)に上述のσCDの式(3)を代入すると、[数16]に示す式(24)が得られる。本実施の形態では、この式(24)を用いて切欠き係数Kfを求めることになる。 Further, when the above-described σ CD formula (3) is substituted into formula (1), formula (24) shown in [Expression 16] is obtained. In the present embodiment, the notch coefficient K f is obtained using this equation (24).

式(1)や式(24)中のワイブル係数(Weibull exponent)mは、平滑な丸棒試験片を用いた疲労試験の結果、及び切欠きを形成した丸棒試験片の疲労試験の結果を基に決定される値である。   The Weibull coefficient m in Equation (1) and Equation (24) is the result of the fatigue test using a smooth round bar test piece and the result of the fatigue test of a round bar test piece having a notch. It is a value determined based on this.

より詳細には、疲労試験によって得られる両試験片で同じ疲労寿命(サイクル数)となるときの疲労強度σsmooth,σnotchを基に、切欠き係数Kf0(=σsmooth/σnotch)を求め、[数17]に示す式(2)より、ワイブル係数mを求める。なお、式(2)におけるσnotchは、疲労試験での最大の公称純断面応力である。 More specifically, the notch coefficient K f0 (= σ smooth / σ notch ) is calculated based on the fatigue strengths σ smooth and σ notch when both specimens obtained by the fatigue test have the same fatigue life (number of cycles). Then, the Weibull coefficient m is obtained from Equation (2) shown in [Equation 17]. In the equation (2), σ notch is the maximum nominal pure sectional stress in the fatigue test.

式(2)において、切欠き係数Kf0はサイクル数によって変わる(つまり、高サイクル疲労と低サイクル疲労とではワイブル係数mが変わる)ので、切欠き係数Kf0を演算する際のサイクル数は、評価対象に応じて適宜設定すればよい。 In the equation (2), the notch coefficient K f0 varies depending on the number of cycles (that is, the Weibull coefficient m varies between high cycle fatigue and low cycle fatigue), so the number of cycles when calculating the notch coefficient K f0 is What is necessary is just to set suitably according to evaluation object.

以上説明したように、本実施の形態に係る切欠き係数の決定方法は、切欠き先端半径ρの異なる切欠きを形成した2つの試験片を用いて疲労試験を行い、両試験片で同じ疲労寿命となるときの切欠きの深さ方向の応力分布をそれぞれ求める応力分布演算工程と、応力分布演算工程で求めた2つの応力分布を用い、両応力分布における応力の切欠き先端からの積分値が等しくなる切欠き先端からの距離である特性距離L1を求める特性距離演算工程と、特性距離演算工程で求めた特性距離L1に基づき、試験片での破壊プロセスゾーンを設定する破壊プロセスゾーン設定工程と、特性距離演算工程で求めた特性距離L1に基づき、評価対象の切欠き形状での切欠き先端から特性距離L1までの平均応力である特性距離平均応力σCDを求め、上述の式(1)により、切欠き係数Kfを演算する切欠き係数演算工程と、を備えている。 As described above, the notch coefficient determination method according to the present embodiment performs a fatigue test using two test pieces formed with notches having different notch tip radii ρ, and both test pieces have the same fatigue rate. Using the stress distribution calculation process to obtain the stress distribution in the depth direction of the notch at the end of the life and the two stress distributions obtained in the stress distribution calculation process, the integrated value from the stress notch tip in both stress distributions A characteristic distance calculation step for obtaining a characteristic distance L 1 which is a distance from the notch tip where the two are equal, and a fracture process zone for setting a fracture process zone for a test piece based on the characteristic distance L 1 obtained in the characteristic distance calculation step Based on the characteristic distance L 1 obtained in the setting step and the characteristic distance calculation step, the characteristic distance average stress σ CD that is the average stress from the notch tip to the characteristic distance L 1 in the notch shape to be evaluated is obtained. Formula of By 1) it is provided with a notch coefficient calculation step of calculating a notch factor K f, the.

つまり、本実施の形態では、2つの異なる切欠き先端半径ρを有する丸棒試験片の疲労試験結果から定める特性距離L1を用いて切欠き底の疲労破壊プロセスゾーンを設定し、最弱リンク理論から定式化された式(1)を用いて疲労切欠き係数Kfを求めている。 That is, in the present embodiment, the fatigue fracture process zone at the notch bottom is set using the characteristic distance L 1 determined from the fatigue test results of the round bar test pieces having two different notch tip radii ρ, and the weakest link The fatigue notch coefficient K f is obtained using the formula (1) formulated from the theory.

これにより、疲労試験が必要な特性距離L1とワイブル係数mを予め求めておけば、疲労試験を行うことなく、簡便かつ低コストに切欠き係数Kfを求めることが可能になる。また、式(1)は、破壊プロセスゾーンの体積を考慮しているため、部材の疲労破壊に対する寸法効果(体積効果、表面積効果)も考慮した評価を行うことが可能になる。 Accordingly, if the characteristic distance L 1 and the Weibull coefficient m that require a fatigue test are obtained in advance, the notch coefficient K f can be obtained easily and at low cost without performing the fatigue test. Moreover, since Formula (1) considers the volume of a fracture process zone, it becomes possible to evaluate also considering the dimension effect (volume effect, surface area effect) with respect to the fatigue fracture of a member.

さらに、切欠きの深さ方向の応力分布として上述の式(6)を用いることで、有限要素法による解析も省略可能となり、さらなる簡便化、低コスト化が可能となる。   Further, by using the above equation (6) as the stress distribution in the depth direction of the notch, the analysis by the finite element method can be omitted, and further simplification and cost reduction are possible.

本実施の形態では、切欠き係数Kfを簡便に求めることができるので、切欠き先端半径ρを一定として切欠きの深さdごとに切欠き係数Kfを求め、図5に示すような切欠き深さdと切欠き係数Kfの逆数の関係を求め、切欠き係数Kfの逆数が1、すなわちKf=1となる切欠き深さdから最大無害スクラッチ深さdmaxを求めることができる。 In the present embodiment, the notch coefficient K f can be easily obtained. Therefore, the notch coefficient K f is obtained for each notch depth d with the notch tip radius ρ constant, as shown in FIG. obtain the relation of the reciprocal of the notch depth d and the notch factor K f, the inverse of notch coefficient K f 1, i.e. determine the maximum harmless scratch depth d max from K f = 1 and becomes the notch depth d be able to.

この最大無害スクラッチ深さdmaxは、Kf=1、すなわちσnotch=σsmoothとなる切欠き深さdであるから、切欠き深さdが最大無害スクラッチ深さdmax以下であれば、疲労強度が平滑な状態と変わらないことになり、その切欠きは疲労強度に影響を及ぼさず無害であると判断することができる。例えば、航空エンジンのファンブレードに異物等が接触して傷が付いた場合に、その傷(切欠き)の先端半径ρから最大無害スクラッチ深さdmaxを演算し、傷の深さが最大無害スクラッチ深さdmax以下であればそのまま無視して運用でき、最大無害スクラッチ深さdmaxより大きければ補修が必要(安全率等を考慮してもよい)、と判断することができ、傷の補修の要否を簡単に判断できるようになる。従来は、補修の要否は経験により判断するしかなかったが、本発明によれば、補充の要否を根拠をもって判断できるようになり、メリットは大きい。 This maximum harmless scratch depth d max is a cutout depth d such that K f = 1, that is, σ notch = σ smooth , so that if the cutout depth d is equal to or less than the maximum harmless scratch depth d max , The fatigue strength is not changed from a smooth state, and the notch does not affect the fatigue strength and can be determined to be harmless. For example, when a foreign object or the like comes into contact with an aero engine fan blade and is scratched, the maximum harmless scratch depth d max is calculated from the tip radius ρ of the scratch (notch), and the scratch depth is maximum harmless. If it is less than the scratch depth d max , it can be ignored and operated, and if it is greater than the maximum harmless scratch depth d max, it can be determined that repair is necessary (safety factor etc. may be considered). It will be possible to easily determine whether repairs are necessary. Conventionally, the necessity of repair has only been determined by experience. However, according to the present invention, the necessity of repair can be determined based on grounds, and there is a great merit.

本発明は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更を加え得ることは勿論である。   The present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the spirit of the present invention.

例えば、上記実施の形態では、試験片21での破壊プロセスゾーンを、断面形状が特性距離L1と等しい直径の円形状であるリング状に設定したが、これに限らず、例えば、断面形状を一辺の長さが特性距離L1と等しい正方形状としてもよい。 For example, in the above embodiment, the fracture process zone in the test piece 21 is set to a ring shape having a circular shape with a cross-sectional diameter equal to the characteristic distance L 1. The length of one side may be a square shape equal to the characteristic distance L 1 .

また、上記実施の形態では、切欠き先端半径ρの異なる切欠きを形成した2つの試験片の疲労試験結果を基に特性距離L1を求めたが、複数ペアの試験片を用いて各ペアについてそれぞれ特性距離L1を求め、その平均値を用いるようにしてもよい。 Further, in the above embodiment, the characteristic distance L 1 is obtained based on the fatigue test results of two test pieces formed with notches having different notch tip radii ρ, but each pair is formed using a plurality of pairs of test pieces. The characteristic distance L 1 may be obtained for each and the average value thereof may be used.

さらに、上記実施の形態では言及しなかったが、本発明は、航空エンジンディスクのダブテール等の接触端部にも適用可能である。ダブテール等の接触端部での応力分布は、切欠底の応力分布とほぼ同じになることが証明されており、接触端部の応力分布に対しても本発明と同じ考えで評価すること(すなわち切欠き係数Kfを求めて接触端部での疲労強度を評価すること)が可能である。これにより、ダブテールの耐久性に及ぼす寸法効果を定量的に予測できるようになる。 Further, although not mentioned in the above embodiment, the present invention can also be applied to a contact end portion such as a dovetail of an aircraft engine disk. It has been proved that the stress distribution at the contact end such as a dovetail is almost the same as the stress distribution at the notch bottom, and the stress distribution at the contact end is evaluated based on the same idea as the present invention (ie, it) is possible to evaluate the fatigue strength at the contact end seeking notch coefficient K f. As a result, the size effect on the durability of the dovetail can be predicted quantitatively.

チタン合金であるTi−6Al−4V合金(ρ=0.05mm,0.2mm)と、ニッケル基合金であるインコネル(登録商標)718合金(ρ=0.05mm,0.2mm,0.6mm)について、107の高サイクル時における切欠き係数Kfを求め、実測値との比較を行った。結果をそれぞれ図6(a),(b)に示す。 Ti-6Al-4V alloy (ρ = 0.05 mm, 0.2 mm) which is a titanium alloy and Inconel (registered trademark) 718 alloy (ρ = 0.05 mm, 0.2 mm, 0.6 mm) which is a nickel-based alloy The notch coefficient K f at the time of a high cycle of 10 7 was obtained and compared with the actually measured value. The results are shown in FIGS. 6 (a) and 6 (b), respectively.

なお、Ti−6Al−4V合金では、d=0.3mm、ρ=0.05mmとしたときのワイブル係数mが7.7であり、d=0.3mm、ρ=0.2mmとしたときのワイブル係数mが7.8とほぼ同じ値であったため、m=7.7を切欠き係数Kfの演算に用いた。 In the Ti-6Al-4V alloy, the Weibull coefficient m is 7.7 when d = 0.3 mm and ρ = 0.05 mm, and when d = 0.3 mm and ρ = 0.2 mm. for the Weibull coefficient m was almost the same value as 7.8, using the m = 7.7 in the calculation of the notch coefficient K f.

また、インコネル718合金では、d=0.3mm、ρ=0.05mmとしたときのワイブル係数mが15.3であり、d=0.3mm、ρ=0.2mmとしたときのワイブル係数mが17.0であり、d=0.3mm、ρ=0.6mmとしたときのワイブル係数mが14.4であったため、これらの平均値であるm=15.6を切欠き係数Kfの演算に用いた。 In the Inconel 718 alloy, the Weibull coefficient m when d = 0.3 mm and ρ = 0.05 mm is 15.3, and the Weibull coefficient m when d = 0.3 mm and ρ = 0.2 mm. Is 17.0, and the Weibull coefficient m is 14.4 when d = 0.3 mm and ρ = 0.6 mm. Therefore, the average value of m = 15.6 is set to the notch coefficient K f. Used for the calculation.

図6(a),(b)に示すように、本発明により求めた切欠き係数Kfの予測値は実測値とよく一致しており、本発明により精度よく切欠き係数Kfを求められることが確認できた。 FIG. 6 (a), the asked to (b), the predicted value of the notch coefficient K f obtained by the present invention are in good agreement with the measured values, precisely notch factor K f by the present invention I was able to confirm.

また、図6(a),(b)より、Ti−6Al−4V合金では、ρ=0.05mmのとき最大無害スクラッチ深さdmaxが0.080mm、インコネル718合金では、ρ=0.05mmのとき最大無害スクラッチ深さdmaxが0.025mmであることも確認できた。このように、切欠き先端半径ρが同じであっても材料が異なれば最大無害スクラッチ深さdmaxは変わるので、簡便に切欠き係数Kfを求めることができ、簡便に最大無害スクラッチ深さdmaxを予測できる本発明のメリットは大きい。 6 (a) and 6 (b), in the Ti-6Al-4V alloy, the maximum harmless scratch depth d max is 0.080 mm when ρ = 0.05 mm, and in the Inconel 718 alloy, ρ = 0.05 mm. It was also confirmed that the maximum harmless scratch depth d max was 0.025 mm. Thus, even if the notch tip radius ρ is the same, the maximum harmless scratch depth d max changes if the material is different. Therefore, the notch coefficient K f can be easily obtained, and the maximum harmless scratch depth can be easily obtained. The merit of the present invention that can predict d max is great.

21 試験片
22 切欠き
23 試験部
21 Test piece 22 Notch 23 Test part

Claims (5)

切欠き先端半径の異なる切欠きを形成した2つの試験片を用いて疲労試験を行い、両試験片で同じ疲労寿命となるときの切欠きの深さ方向の応力分布をそれぞれ求める応力分布演算工程と、
該応力分布演算工程で求めた2つの応力分布を用い、両応力分布における応力の切欠き先端からの積分値が等しくなる切欠き先端からの距離である特性距離を求める特性距離演算工程と、
該特性距離演算工程で求めた特性距離に基づき、前記試験片での破壊プロセスゾーンを設定する破壊プロセスゾーン設定工程と、
前記特性距離演算工程で求めた特性距離に基づき、評価対象の切欠き形状での切欠き先端から特性距離までの平均応力である特性距離平均応力を求め、[数1]に示す式(1)
により、切欠き係数Kfを演算する切欠き係数演算工程と、
を備えたことを特徴とする切欠き係数の決定方法。
Stress distribution calculation process in which a fatigue test is performed using two test pieces with notches having different notch radii, and the stress distribution in the depth direction of the notch is obtained when both test pieces have the same fatigue life. When,
A characteristic distance calculation step of obtaining a characteristic distance that is a distance from the notch tip where the integrated values from the notch tip of the stress in both stress distributions are equal using the two stress distributions obtained in the stress distribution calculation step;
A destruction process zone setting step for setting a destruction process zone in the test piece based on the characteristic distance obtained in the characteristic distance calculation step;
Based on the characteristic distance obtained in the characteristic distance calculation step, a characteristic distance average stress, which is an average stress from the notch tip to the characteristic distance in the notch shape to be evaluated, is obtained, and Expression (1) shown in [Equation 1]
A notch coefficient calculating step for calculating the notch coefficient K f ,
A method for determining a notch coefficient, comprising:
前記破壊プロセスゾーン設定工程では、前記試験片での破壊プロセスゾーンを、断面形状が特性距離と等しい直径の円形状であるリング状に設定する
請求項1記載の切欠き係数の決定方法。
The notch coefficient determination method according to claim 1, wherein, in the fracture process zone setting step, the fracture process zone in the test piece is set to a ring shape having a circular cross section having a diameter equal to the characteristic distance.
前記切欠き係数演算工程では、ワイブル係数を[数2]に示す式(2)
により求める
請求項1または2記載の切欠き係数の決定方法。
In the notch coefficient calculation step, the Weibull coefficient is expressed by Equation (2) shown in [Equation 2].
The method for determining a notch coefficient according to claim 1 or 2.
前記切欠き係数演算工程では、有限要素法による解析により、評価対象の切欠き形状での切欠きの深さ方向の応力分布を求め、求めた応力分布を用いて特性距離平均応力を求める
請求項1〜3いずれかに記載の切欠き係数の決定方法。
In the notch coefficient calculation step, the stress distribution in the depth direction of the notch in the notch shape to be evaluated is obtained by analysis using a finite element method, and the characteristic distance average stress is obtained using the obtained stress distribution. The determination method of the notch coefficient in any one of 1-3.
前記切欠き係数演算工程では、特性距離平均応力を[数3]に示す式(3)
により求める
請求項1〜3いずれかに記載の切欠き係数の決定方法。
In the notch coefficient calculation step, the characteristic distance average stress is expressed by the following equation (3):
The method for determining a notch coefficient according to any one of claims 1 to 3.
JP2012075949A 2012-03-29 2012-03-29 How to determine the notch factor Expired - Fee Related JP5862415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012075949A JP5862415B2 (en) 2012-03-29 2012-03-29 How to determine the notch factor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075949A JP5862415B2 (en) 2012-03-29 2012-03-29 How to determine the notch factor

Publications (2)

Publication Number Publication Date
JP2013205299A JP2013205299A (en) 2013-10-07
JP5862415B2 true JP5862415B2 (en) 2016-02-16

Family

ID=49524510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075949A Expired - Fee Related JP5862415B2 (en) 2012-03-29 2012-03-29 How to determine the notch factor

Country Status (1)

Country Link
JP (1) JP5862415B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6365813B2 (en) * 2013-10-10 2018-08-01 三菱重工業株式会社 Fatigue strength estimation method
JP6077042B2 (en) * 2015-04-06 2017-02-08 三菱重工業株式会社 Notch coefficient estimation method, notch coefficient estimation system, and notch coefficient estimation device
CN108613889B (en) * 2018-04-27 2020-07-07 佛山科学技术学院 Titanium alloy blunt notch fatigue strength loss coefficient evaluation method based on cycle life

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06317411A (en) * 1993-05-06 1994-11-15 Hitachi Constr Mach Co Ltd Method for discriminating resistance to fatigue of welded joint
JP5212146B2 (en) * 2009-01-30 2013-06-19 株式会社Ihi Method for evaluating the life of minute notches

Also Published As

Publication number Publication date
JP2013205299A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
Yuan et al. Efficient computational techniques for mistuning analysis of bladed discs: a review
Williams et al. A practical method for statistical analysis of strain–life fatigue data
Zhu et al. Bayesian framework for probabilistic low cycle fatigue life prediction and uncertainty modeling of aircraft turbine disk alloys
Yamashita et al. Fatigue life prediction of small notched Ti–6Al–4V specimens using critical distance
Elshamy et al. Crack detection of cantilever beam by natural frequency tracking using experimental and finite element analysis
JP2016509670A (en) Probabilistic modeling and sizing of internal defects in nondestructive inspection for fatigue damage prediction and structural integrity assessment
JP2008003009A (en) Lifetime diagnosis device for high-temperature equipment, and lifetime diagnosis method and program for high-temperature equipment
KR20100031658A (en) Method for determining reheat cracking susceptibility
Booysen et al. Fatigue life assessment of a low pressure steam turbine blade during transient resonant conditions using a probabilistic approach
Jezernik et al. Numerical modelling of fatigue crack initiation and growth of martensitic steels
JP5059224B2 (en) Fatigue fracture evaluation apparatus for parts, fatigue fracture evaluation method for parts, and computer program
Shlyannikov et al. Structural integrity assessment of turbine disk on a plastic stress intensity factor basis
JP5862415B2 (en) How to determine the notch factor
Beretta et al. Structural integrity assessment of turbine discs in presence of potential defects: probabilistic analysis and implementation
Louks et al. On the multiaxial fatigue assessment of complex three-dimensional stress concentrators
Ong et al. Determination of damage severity on rotor shaft due to crack using damage index derived from experimental modal data
McMurtrey et al. The effect of pit size and density on the fatigue behaviour of a pre‐corroded martensitic stainless steel
Squarcella et al. The importance of the material properties on the burst speed of turbine disks for aeronautical applications
Infante et al. Case studies of computational simulations of fatigue crack propagation using finite elements analysis tools
Qiu et al. Predicting fatigue crack growth evolution via perturbation series expansion method based on the generalized multinomial theorem
Brunel et al. Rolling contact fatigue of railways wheels: Influence of steel grade and sliding conditions
JP5212146B2 (en) Method for evaluating the life of minute notches
Milošević et al. Influence of size effect and stress gradient on the high-cycle fatigue strength of a 1.4542 steel
Bednarz Influence of the amplitude of resonance vibrations on fatigue life of a compressor blade with simulated FOD damage
Li et al. A fault diagnosis method based on stiffness evaluation model for full ceramic ball bearings containing subsurface cracks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150127

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R151 Written notification of patent or utility model registration

Ref document number: 5862415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees