JP4786479B2 - Fracture mechanics test method and specimen - Google Patents

Fracture mechanics test method and specimen Download PDF

Info

Publication number
JP4786479B2
JP4786479B2 JP2006241998A JP2006241998A JP4786479B2 JP 4786479 B2 JP4786479 B2 JP 4786479B2 JP 2006241998 A JP2006241998 A JP 2006241998A JP 2006241998 A JP2006241998 A JP 2006241998A JP 4786479 B2 JP4786479 B2 JP 4786479B2
Authority
JP
Japan
Prior art keywords
test
test piece
specimen
metal
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006241998A
Other languages
Japanese (ja)
Other versions
JP2008064573A (en
Inventor
秀高 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2006241998A priority Critical patent/JP4786479B2/en
Publication of JP2008064573A publication Critical patent/JP2008064573A/en
Application granted granted Critical
Publication of JP4786479B2 publication Critical patent/JP4786479B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

金属製の試験片に対して高温における破壊力学的試験を行う方法及びその試験体に関する。   The present invention relates to a method for performing a fracture mechanics test at a high temperature on a metal test piece and a test body thereof.

材料強度試験のうち熱負荷のかかる設備等の余寿命を破壊力学的な視点から評価する試験に、例えば、破壊靱性試験やき裂進展試験などがある。これらの試験は、小規模降伏状態又は平面ひずみ状態における条件下で実施されなければならず、試験対象となる試験片に試験可能な大きさについての規格がある。   Among the material strength tests, tests for evaluating the remaining life of facilities that are subjected to heat load from a fracture mechanics viewpoint include, for example, a fracture toughness test and a crack growth test. These tests must be performed under conditions in a small-scale yield or plane strain state, and there is a standard for the size that can be tested on the specimen being tested.

破壊靱性試験には、線形弾性破壊力学に基づく平面ひずみ破壊靱性(KIC)試験(ASTM規格E399−90)や、弾性、弾塑性を問わず亀裂先端近傍の特異応力・ひずみ場の強さを測定する弾塑性破壊靱性(JIC)試験(ASTM規格E1737−96)などがあり、これら試験には試験片として、例えば、CT(Compact Tension;ASTM規格E399−90)試験片や3点曲げ試験片(日本機械学会基準JSME S 001−1992)が用いられる。 Fracture toughness tests include plane strain fracture toughness (K IC ) test (ASTM standard E399-90) based on linear elastic fracture mechanics and the strength of singular stress and strain field near the crack tip regardless of elasticity or elasto-plasticity. There are elastoplastic fracture toughness (J IC ) tests (ASTM standard E1737-96) to be measured, and these tests include, for example, CT (Compact Tension; ASTM standard E399-90) test specimens and three-point bending tests. A piece (Japan Society of Mechanical Engineers standard JSME S 001-1992) is used.

図8は破壊靱性試験に用いられる(a)CT試験片、(b)3点曲げ試験片の斜視図である。   FIG. 8 is a perspective view of (a) a CT specimen and (b) a three-point bending specimen used for a fracture toughness test.

図8に示す試験片には、試験を実施する上で必要な最小寸法が、板厚B、亀裂長さa及びリガメント幅bについて、平面破壊靱性(KIC)試験では式(1)、弾塑性破壊靱性(JIC)試験では式(2)のように定められている。
B、b、a≧2.5(K/σys ・・・ (1)
B、b≧25(J/σfs) ・・・ (2)
ただし、Kは破壊靱性、σysは材料の降伏応力(耐力)、JはJ積分値、σfsは有効降伏強度である。
In the test piece shown in FIG. 8, the minimum dimensions necessary for carrying out the test are the plate thickness B, crack length a and ligament width b. In the plane fracture toughness (K IC ) test, In the plastic fracture toughness (J IC ) test, it is defined as shown in equation (2).
B, b, a ≧ 2.5 (K Q / σ ys ) 2 (1)
B, b ≧ 25 (J Q / σ fs ) (2)
Where K Q is fracture toughness, σ ys is the yield stress (proof strength) of the material, J Q is the J integral value, and σ fs is the effective yield strength.

式(1)又は式(2)によれば、板厚Bの条件は平面ひずみ状態であること、そして、亀裂長さa又はリガメント幅bの条件は小規模降伏状態であることを保障するものである。   According to formula (1) or formula (2), it is ensured that the condition of the plate thickness B is a plane strain state, and the condition of the crack length a or the ligament width b is a small-scale yielding state. It is.

これらの試験によると、試験中に得られるK及びJの値は、式(1)又は式(2)の条件を満たしたときに初めて、その時の値を平面ひずみ破壊靱性KIQ及び弾塑性破壊靱性JICとする結果を得られることができ、予め、試験片の寸法が妥当であったかどうかは、試験を行った後にしかわからず、得られた結果がすべて妥当な値であるとは限らない。そのため、試験片の各寸法が大きい程、KIQ及びJICの値が確定しやすいので、可能な限り大きい試験片を設備等から採取することが好ましく、特に、板厚Bについては採取後に変更できないので、できるだけ厚い方がよい。 According to these tests, the values of K Q and J Q obtained during the test are the values when the conditions of the formula (1) or (2) are satisfied, and the values at that time are calculated as the plane strain fracture toughness K IQ and the elastic modulus. can be obtained the result that the plastic fracture toughness J IC, advance, and whether it was valid specimen dimensions, not known only after the test, the results obtained are all reasonable values Not exclusively. Therefore, the larger the dimensions of the test piece, the easier it is to determine the values of KIQ and J IC. Therefore, it is preferable to collect as large a test piece as possible from the equipment, etc. Especially, the thickness B is changed after collection. Since it is not possible, it is better to be as thick as possible.

また、き裂進展試験についても平面ひずみ状態であることが条件であるので、上記試験と同様に板厚Bが厚い方がよい。   Moreover, since it is a condition that the crack growth test is also in a plane strain state, it is better that the plate thickness B is thick as in the above test.

ところで、電力各社においては、高温機器の経年化が年々進む中で、それらの補修コストの低減にむけて、定期検査間隔の延長、機器の寿命延伸が重要な課題とされており、供用中の高温機器の予寿命の推定にこれら破壊力学的試験の適用が検討されている。   By the way, in the electric power companies, as the aging of high-temperature equipment progresses year by year, extension of the periodic inspection interval and extension of the service life of equipment are regarded as important issues in order to reduce their repair costs. The application of these fracture mechanics tests to the estimation of the longevity of high temperature equipment is being studied.

しかしながら、これら高温機器から上記試験に必要な厚さのサンプルを採取することは、機器自体にダメージを与えることとなるため、その適用が困難であった。したがって、破壊力学的試験の対象試験片は、使用済みの廃棄された機器から採取されたサンプルに限られてしまい、この結果を前記使用済み機器と同じ時間だけ稼動している実機の余寿命として推定するなどの方法でしか評価できないため、稼働中の実機の正確な余寿命評価ができなかった。   However, collecting a sample having a thickness necessary for the above-described test from these high-temperature devices is difficult to apply because it damages the devices themselves. Therefore, the target specimens for the destructive mechanics test are limited to samples taken from used and discarded equipment, and this result is regarded as the remaining life of an actual machine operating for the same time as the used equipment. Since it can be evaluated only by estimation methods, it has not been possible to accurately evaluate the remaining life of an actual machine in operation.

これに対して、従来より、実機にダメージを与えない程度の小片のサンプルを採取し、そのサンプルを有効利用することにより上述した試験を実現可能にした試験方法が提案されている。   On the other hand, conventionally, a test method has been proposed in which a small sample that does not damage an actual machine is collected and the above-described test can be realized by effectively using the sample.

例えば、特許文献1には、実機から採取されたサンプルの両面に、サンプルと同材質又は異材質の材料によって作製された補助部材を、COレーザ又は電子ビームを用いて、サンプルと補助部材との溶接ビート部をサンプルの2倍以上の硬さを有するように焼き入れするとともに溶接して補助部材付試験片を作製し、この補助部材付試験片を3点曲げ試験に用いて平面ひずみ破壊靱性値KICを算出する方法が開示されている。これは、サンプル両面に、サンプルへの熱影響を少なく、かつ溶接ビート部に硬化部を形成させる溶接を施すことにより、サンプル近傍の変形に対する拘束度を増大させて平面ひずみ状態を保持させ、破壊靱性KIC試験を実現させるためのものである。
特開平10−132718号公報
For example, in Patent Document 1, an auxiliary member made of the same material as the sample or a different material is used on both surfaces of a sample collected from an actual machine, and a sample and an auxiliary member using a CO 2 laser or an electron beam. The weld bead part of this sample was quenched and welded so as to have a hardness more than twice that of the sample, and a test piece with an auxiliary member was produced. A method for calculating the toughness value K IC is disclosed. This is because the thermal effect on the sample is reduced on both sides of the sample, and the weld beat part is hardened to form a hardened part, thereby increasing the degree of restraint against deformation near the sample and maintaining the plane strain state. Toughness K To achieve the IC test.
JP-A-10-132718

しかしながら、特許文献1に開示される試験方法では、例えば、設備から採取したサンプルと同材質のものを補助部材としてサンプルの両面に溶接して補助部材付試験片を作製し、その補助部材付試験片を用いて、設備から採取したサンプルがクリープ変形を大きく生じるような高温における破壊靱性試験を行う場合、補助部材にも同様にクリープ変形が生じてしまうのでサンプルに十分な応力を伝達することができず、破壊靱性試験が実施できなくなるおそれがある。   However, in the test method disclosed in Patent Document 1, for example, a test piece with an auxiliary member is produced by welding a sample of the same material as the sample collected from the facility to both surfaces of the sample as an auxiliary member. When performing a fracture toughness test at a high temperature where a sample taken from the facility causes a large amount of creep deformation using a piece, creep deformation will occur in the auxiliary member as well, so that sufficient stress can be transmitted to the sample. There is a risk that the fracture toughness test cannot be performed.

また、サンプルと補助部材との間の溶接ビート部に硬化部を形成させる溶接を施すとしても、上記のような高温では、硬化部の硬度が低下することによりサンプルに対する拘束度が低下し、平面ひずみ状態を保てなくなって破壊靱性試験が実施できなくなるおそれもある。   In addition, even if the welding beat portion between the sample and the auxiliary member is welded to form a hardened portion, at a high temperature as described above, the hardness of the hardened portion is reduced, and the degree of restraint on the sample is reduced. There is also a possibility that the fracture toughness test cannot be performed because the strain state cannot be maintained.

また、補助部材としてサンプルと異材質のものを用いた場合においての補助部材に生じるクリープ変形についての具体的対策は、特に講じられていない。   Further, no specific measures are taken for the creep deformation that occurs in the auxiliary member when a different material from the sample is used as the auxiliary member.

また、サンプルへの熱影響を少なくするためにCOレーザ又は電子ビームを用いて溶接を行っているが、この熱影響がたとえ小規模であってもサンプルが小型であるので、サンプルの大きさに対する熱影響を及ぼす領域の比率が大きくなり、試験結果に影響を与えるおそれがある。このため、正確な試験結果が得られるように、サンプルへ与える熱影響をできるだけ少なくする必要がある。 In order to reduce the thermal effect on the sample, welding is performed using a CO 2 laser or an electron beam. Even if this thermal effect is small, the sample is small. The ratio of the heat-affected area with respect to is increased, which may affect the test results. For this reason, it is necessary to minimize the thermal influence on the sample so that an accurate test result can be obtained.

本発明は、上記の点に鑑みてなされたものであり、実機から採取した小型の試験片を利用して高温における破壊力学的試験を正確に行えるようにすることを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to accurately perform a fracture mechanics test at a high temperature using a small test piece collected from an actual machine.

上記の目的を達成するため、本発明は、金属製の試験片に対して、高温における破壊力学的試験を行う方法であって、
前記試験片の両面に、所定の温度におけるクリープ強度が前記試験片よりも高く、かつ前記所定の温度における硬度が前記試験片よりも高い拘束部材を、ボロンと、前記試験片を構成する少なくとも1つの金属元素と、前記拘束部材を構成する少なくとも1つの金属元素とを含む金属箔を介在させて溶接して試験体を作製し、
前記試験体における前記試験片に予亀裂を導入し、
前記試験体を所定の高温に加熱した状態で前記拘束部材を介して前記試験片に荷重を与えることを特徴とする(第1の発明)。
In order to achieve the above object, the present invention is a method for performing a fracture mechanics test at a high temperature on a metal specimen,
On both surfaces of the test piece, a restraining member having a creep strength at a predetermined temperature higher than that of the test piece and having a hardness at the predetermined temperature higher than that of the test piece is composed of boron and at least one of the test piece. A test specimen is produced by welding with a metal foil containing two metal elements and at least one metal element constituting the restraining member ,
Introducing a precrack into the specimen in the specimen,
A load is applied to the test piece through the restraint member in a state where the test body is heated to a predetermined high temperature (first invention).

本発明の破壊力学的試験方法によれば、材料強度試験を行う高温条件において、実機から採取した試験片よりもクリープ強度が高く、かつ、高い硬度を有する拘束部材を、試験片の両面に溶接して試験体として試験に用いることにより、例えば、採取した試験片にクリープ現象が生じるような高温度において試験を行う場合であっても、拘束部材を介して試験片に十分に応力を伝達させることができるとともに堅固に拘束できるため、平面ひずみ状態又は小規模降伏状態を条件とする破壊力学的試験を実施することができる。   According to the fracture mechanics test method of the present invention, a restraint member having a higher creep strength and higher hardness than a test piece taken from an actual machine is welded to both surfaces of the test piece under high temperature conditions for performing a material strength test. By using the test specimen as a test body, for example, even when the test is performed at a high temperature at which a creep phenomenon occurs in the collected specimen, sufficient stress is transmitted to the specimen through the restraint member. And can be firmly constrained, so a fracture mechanics test can be performed subject to plane strain conditions or small scale yield conditions.

また、試験片と拘束部材との間にボロンを含む金属箔を介在させて溶接することにより、金属箔を介さない場合よりも低い融点にて溶接ができるため、試験片に与える熱影響をより少なくでき、破壊力学的試験を正確に実施することができる。   Also, by welding with a metal foil containing boron between the test piece and the restraining member, welding can be performed with a lower melting point than when not using the metal foil, so the heat effect on the test piece is more And the fracture mechanics test can be performed accurately.

さらに、金属箔が、前記試験片を構成する少なくとも1つの金属元素と、前記拘束部材を構成する少なくとも1つの金属元素とを含むので、溶融した金属箔と試験片及び拘束部材とが親和して、試験片と拘束部材との溶接間の溶着性を向上させ、試験片をさらに堅固に拘束できる。これにより、より精度の高い平面ひずみ状態又は小規模降伏状態が形成でき、破壊力学的試験を正確に実施することができる。 Furthermore, since the metal foil includes at least one metal element constituting the test piece and at least one metal element constituting the restraint member, the melted metal foil, the test piece and the restraint member have an affinity. The weldability between the weld of the test piece and the restraining member can be improved, and the test piece can be restrained more firmly. Thereby, a plane strain state or a small scale yield state with higher accuracy can be formed, and a fracture mechanics test can be performed accurately.

の発明は、第1の発明において、前記所定の温度は、600℃以上であることを特徴とする。 In a second aspect based on the first aspect , the predetermined temperature is 600 ° C. or higher.

の発明は、第1又は2の発明において、前記拘束部材に、ジルコニア合金、SUS、クロム含有率9%以上の合金、ニッケル基合金又はコバルト基合金のいずれかを用いることを特徴とする。 According to a third invention, in the first or second invention, the restraining member is made of any one of a zirconia alloy, SUS, an alloy having a chromium content of 9% or more, a nickel-base alloy, or a cobalt-base alloy. .

の発明は、第1〜3のいずれかの発明において、前記溶接に、レーザ又は電子ビームを用いることを特徴とする。 According to a fourth invention, in any one of the first to third inventions, a laser or an electron beam is used for the welding.

の発明は、金属製の試験片に対して行われる高温における破壊力学的試験用の試験体であって、前記試験片の両面に、所定の温度におけるクリープ強度が前記試験片よりも高く、かつ前記温度における硬度が前記試験片よりも高い拘束部材を、ボロンと、前記試験片を構成する少なくとも1つの金属元素と、前記拘束部材を構成する少なくとも1つの金属元素とを含む金属箔を介在させて溶接してなることを特徴とする。 A fifth invention is a specimen for a fracture mechanics test at a high temperature performed on a metal test piece, and the creep strength at a predetermined temperature is higher than that of the test piece on both sides of the test piece. And a metal foil comprising a restraining member having a hardness at the temperature higher than that of the test piece, boron , at least one metal element constituting the test piece, and at least one metal element constituting the restraint member. It is characterized by being interposed and welded.

本発明によれば、実機から採取した小型の試験片を利用して高温における破壊力学的試験を正確に行うことができる。   According to the present invention, a fracture mechanics test at a high temperature can be accurately performed using a small test piece collected from an actual machine.

以下、本発明に係るき裂進展試験方法の好ましい一実施形態について図面を用いて詳細に説明する。   Hereinafter, a preferred embodiment of a crack growth test method according to the present invention will be described in detail with reference to the drawings.

本実施形態に係るき裂進展試験方法は、例えば、発電所設備うち熱負荷のかかるタービンの車室の余寿命評価を行う際に用いられる。   The crack growth test method according to the present embodiment is used, for example, when performing a remaining life evaluation of a turbine casing of a power plant facility that is subjected to a thermal load.

図1は、本実施形態に係るき裂進展試験方法の手順を示すフローチャートである。
図1に示すように、き裂進展試験方法は、車室から金属片を採取するサンプリング工程S1と、採取された金属片から試験体を作製する試験体作製工程S2と、作製された試験体を用いて実施するき裂進展試験工程S3にから構成される。
FIG. 1 is a flowchart showing a procedure of a crack growth test method according to the present embodiment.
As shown in FIG. 1, the crack growth test method includes a sampling step S1 for collecting a metal piece from a passenger compartment, a test piece preparation step S2 for producing a test piece from the collected metal piece, and a produced test piece. It is comprised from the crack growth test process S3 implemented using.

サンプリング工程S1では、余寿命評価の対象とする車室の表面における所定位置から金属片を採取する。その際に、実機に与えるダメージを極力少なく、また採取される金属片に加工変形や熱変形が生じないようにすることが好ましい。このような金属片の採取には、例えば、特開2006−102900号公報に開示される放電サンプリング装置を用いる。   In sampling process S1, a metal piece is extract | collected from the predetermined position in the surface of the compartment used as the object of remaining life evaluation. At that time, it is preferable that damage to the actual machine is as small as possible and that the metal piece to be collected is not deformed or thermally deformed. For collecting such metal pieces, for example, a discharge sampling device disclosed in Japanese Patent Laid-Open No. 2006-102900 is used.

図2は、上記放電サンプリング装置を用いて採取した金属片の一例を示す平面図及び立面図である。図2に示すように、この放電サンプリング装置によって採取可能な金属片12は、概ね2.5mm×20mm×40mmの大きさで採取される。   FIG. 2 is a plan view and an elevation view showing an example of a metal piece collected using the discharge sampling apparatus. As shown in FIG. 2, the metal piece 12 that can be sampled by the discharge sampling device is sampled in a size of approximately 2.5 mm × 20 mm × 40 mm.

試験体作製工程S2では、サンプリング工程S1において実機から採取された金属片12に拘束部材を溶接して試験体の作製を行う。金属片12は、上記のように放電サンプリング装置によって実機表面を剥ぎ取るように採取されるため、金属片12の剥ぎ取りの開始又は終了する端部においては、金属片12の厚さが次第に薄くなる部分(以下、薄肉部12aという)ができる。これに対し材料試験用の試験体には厚みの一定となる部分が必要であるので、金属片12からこれら薄肉部12aを取り除く加工を行い、この加工後の金属片12を試験片12bとする。この薄肉部12aを取り除く加工にも、例えば、加工変形や熱変形が生じさせないような放電加工装置又は切削装置を用いることが好ましい。同図に示すように試験片12bの大きさは、例えば2.5mm×20mm×20mm程度である。   In the specimen preparation step S2, a specimen is prepared by welding a restraining member to the metal piece 12 collected from the actual machine in the sampling step S1. Since the metal piece 12 is collected so as to peel off the surface of the actual machine by the discharge sampling device as described above, the thickness of the metal piece 12 is gradually reduced at the end portion where the peeling of the metal piece 12 starts or ends. (Hereinafter referred to as the thin-walled portion 12a). On the other hand, since a specimen having a constant thickness is required for the specimen for material testing, a process for removing the thin portion 12a from the metal piece 12 is performed, and the metal piece 12 after the process is used as a test piece 12b. . For the process of removing the thin portion 12a, for example, it is preferable to use an electric discharge machining apparatus or a cutting apparatus that does not cause machining deformation or thermal deformation. As shown in the figure, the size of the test piece 12b is, for example, about 2.5 mm × 20 mm × 20 mm.

次に、加工した試験片12bの両面に、試験片12bが平面ひずみ状態となるように拘束する拘束部材を溶接する処理を行う。図3は、本実施形態に係る試験体の分解斜視図であり、図4は、作成された試験体の斜視図である。   Next, the process which welds the restraint member which restrains so that the test piece 12b may be in a plane strain state is performed on both surfaces of the processed test piece 12b. FIG. 3 is an exploded perspective view of the test body according to the present embodiment, and FIG. 4 is a perspective view of the created test body.

図3に示すように、拘束部材14は、タービンの車室に導入される蒸気と同程度の温度である600〜700℃の温度域においてもクリープ変形を生じにくく、またこの温度においても高硬度を維持できる金属(例えば、ジルコニア合金、SUS、クロム含有率9%以上の合金、ニッケル基合金又はコバルト基合金など)により構成される。拘束部材14には試験片12bと断面の大きさを同程度(例えば、20mm×20mm×20mm)に加工したものを、試験片12bの両面に溶接するために、1試験体につき2個作製する。   As shown in FIG. 3, the restraining member 14 hardly causes creep deformation even in a temperature range of 600 to 700 ° C., which is the same temperature as the steam introduced into the turbine casing, and also has high hardness at this temperature. (For example, a zirconia alloy, SUS, an alloy having a chromium content of 9% or more, a nickel-base alloy, or a cobalt-base alloy). Two restraint members 14 having a cross-sectional size similar to that of the test piece 12b (for example, 20 mm × 20 mm × 20 mm) are prepared for each test piece in order to weld the both sides of the test piece 12b. .

また、試験片12bと拘束部材14とを溶接する際に、その間に金属箔であるフィラー16を介在させて溶接する。フィラー16には、ボロンと、金属片12を構成する少なくとも1つの金属元素(例えば、車室から採取したものであれば、クロム、モリブテン又はバナジウムなど)と、拘束部材14を構成する少なくとも1つの金属元素(例えば、クロム又はコバルトなど)とを含むもの用いる。また、溶接には電子ビーム(図示しない)及びレーザ(図示しない)を用いる。以下にこのフィラー16を用いて溶接を行った際の試験片12bと拘束部材14との接合プロセスを説明する。   Moreover, when welding the test piece 12b and the restraint member 14, it welds by interposing the filler 16 which is metal foil between them. The filler 16 includes boron, at least one metal element that constitutes the metal piece 12 (for example, chromium, molybdenum, vanadium, or the like if collected from the passenger compartment), and at least one that constitutes the restraining member 14. A material containing a metal element (such as chromium or cobalt) is used. Further, an electron beam (not shown) and a laser (not shown) are used for welding. Below, the joining process of the test piece 12b and the restraint member 14 at the time of welding using this filler 16 is demonstrated.

まず、電子ビーム及びレーザによる加熱によって融点を超えたフィラー16が溶融する。この時にフィラー16中のボロンは、溶融部と接している試験片12b又は拘束部材14の端面から内部へと拡散浸透する。フィラー16の溶融部と接している試験片12b又は拘束部材14の端面は、ボロン濃度が高くなり、融点が下がり一部溶融する。この時、フィラー16には、試験片12bと拘束部材14を構成する金属元素が含まれているので、溶融したフィラー16は、一部溶融した試験片12b及び拘束部材14と親和していき、フィラー16と試験片12b及び拘束部材14とは強固に結合される。その後、拡散が進みボロン濃度が低下してくると融点が上がり、溶融部が凝固して接合がなされる。なお、図4に示すように、溶接部18の厚さは1mm未満であることが好ましい。   First, the filler 16 exceeding the melting point is melted by heating with an electron beam and a laser. At this time, boron in the filler 16 diffuses and penetrates from the end face of the test piece 12b or the restraining member 14 in contact with the melted portion. The test piece 12b in contact with the melted portion of the filler 16 or the end face of the restraining member 14 has a high boron concentration, a lower melting point, and a partial melting. At this time, since the filler 16 contains a metal element constituting the test piece 12b and the restraining member 14, the molten filler 16 has an affinity with the partially melted test piece 12b and the restraining member 14, The filler 16, the test piece 12b, and the restraining member 14 are firmly bonded. Thereafter, as the diffusion progresses and the boron concentration decreases, the melting point increases, and the melted portion solidifies to be joined. In addition, as shown in FIG. 4, it is preferable that the thickness of the welding part 18 is less than 1 mm.

このようにして試験片12bの両面に拘束部材14を溶接した後、試験体10における試験片12bの厚み方向の中央部に予き裂20を導入することにより、試験体10が作製される。なお、予き裂20は、例えば一般的な放電加工機など用いて加工する。   After welding the restraining member 14 to both surfaces of the test piece 12b in this way, the test piece 10 is produced by introducing the pre-crack 20 into the central portion of the test piece 12b in the thickness direction of the test piece 12b. The pre-crack 20 is processed using, for example, a general electric discharge machine.

き裂進展試験工程S3では、試験体作製工程S2で作製された試験体10を用いて、ASTM E647―93に基づき、タービンの車室に導入される蒸気と同様の高温条件を試験対象温度としてき裂進展試験を行う。図5は、き裂進展試験における試験体10周辺の構成を示す立面模式図である。   In the crack growth test step S3, the test object 10 produced in the specimen preparation step S2 is subjected to the same high temperature conditions as the steam to be introduced into the turbine casing based on ASTM E647-93. Then perform a crack growth test. FIG. 5 is a schematic elevation view showing the configuration around the specimen 10 in the crack growth test.

図5に示すように、試験機22に備えるチャック24に試験体10を固定し、試験体10を、高周波加熱コイル25などを用いて600〜700℃の温度まで加熱する。そして、この状態において試験機22からチャック24を通じて試験体10に、所定の応力σ及び応力比(最大応力σmaxと最小応力σminとの比)で長手方向に繰り返し荷重をかけ、その時のき裂の長さa(図4参照)を測定していく。き裂の確認方法は読み取り顕微鏡にて行う。読み取られたき裂長さaと繰り返し数Nからき裂進展速度(da/aN)を求め、次式(3)を用いて応力拡大係数幅ΔKを計算する。

Figure 0004786479
ただし、Fは補正係数、Δσは最大応力σmaxと最小応力σminとの差である。 As shown in FIG. 5, the test body 10 is fixed to a chuck 24 provided in the testing machine 22, and the test body 10 is heated to a temperature of 600 to 700 ° C. using a high-frequency heating coil 25 or the like. In this state, a load is repeatedly applied in the longitudinal direction to the test body 10 from the testing machine 22 through the chuck 24 at a predetermined stress σ and a stress ratio (ratio between the maximum stress σ max and the minimum stress σ min ). The crack length a (see FIG. 4) is measured. The crack confirmation method is performed with a scanning microscope. The crack growth rate (da / aN) is obtained from the read crack length a and the number of repetitions N, and the stress intensity factor width ΔK is calculated using the following equation (3).
Figure 0004786479
However, F is a correction coefficient, and Δσ is a difference between the maximum stress σ max and the minimum stress σ min .

そして、これらき裂進展速度(da/aN)と応力拡大係数幅ΔKとの関係を両対数グラフにプロットする。図6は、き裂進展速度(da/aN)と応力拡大係数幅ΔKとの関係の一例を示すグラフである。   The relationship between the crack growth rate (da / aN) and the stress intensity factor width ΔK is plotted on a log-log graph. FIG. 6 is a graph showing an example of the relationship between the crack growth rate (da / aN) and the stress intensity factor width ΔK.

図6に示すように、き裂進展速度(da/aN)と応力拡大係数幅ΔKとのプロット点の分布は、一般に、き裂の進展開始に関する領域Aと、き裂の安定成長段階である領域Bと、最後に急速にき裂が進展する不安定破壊の領域Cに分類される。領域Aについては、き裂が開始される際の応力拡大係数幅ΔKthが評価値として用いられ、また、領域Cについては、不安定破壊が開始する応力拡大係数幅ΔKmaxにおける最大応力σmaxに対応する応力拡大係数Kmaxを疲労破壊靱性Kfcとして評価値に用いる。また、領域Bについては、次式(4)で示されるようなパリス則と呼ばれるき裂進展則の関係が成立し、この関係に基づいて設備機械の検査間隔の決定や余寿命の評価がなされる。
da/dN=C(ΔK) ・・・ (4)
ただし、Cは定数、mは両対数グラフにプロットされたΔKとda/aNとの傾きである。
As shown in FIG. 6, the distribution of the plot points of the crack growth rate (da / aN) and the stress intensity factor width ΔK is generally in the region A related to the initiation of crack growth and the stable growth stage of the crack. It is classified into a region B and a region C of unstable fracture where a crack progresses rapidly at the end. For the region A, the stress intensity factor width ΔK th at the start of cracking is used as an evaluation value, and for the region C, the maximum stress σ max at the stress intensity factor width ΔK max at which unstable fracture starts. using the stress intensity factor K max corresponding to the evaluation value as a fatigue fracture toughness K fc to. For region B, the relationship of the crack propagation law called the Paris law as shown in the following equation (4) is established, and the inspection interval of the equipment machine and the evaluation of the remaining life are made based on this relationship. The
da / dN = C (ΔK) m (4)
Where C is a constant, and m is the slope of ΔK and da / aN plotted on a log-log graph.

以上説明したように、本実施形態によるき裂進展試験方法によれば、試験対象とする600〜700℃の温度域において、実機から採取した金属片12よりもクリープ強度が高く、かつ、高い硬度を有する拘束部材14を、試験片12bの両面に溶接して試験体10として試験に用いることにより、拘束部材14を介して試験片12bに十分に応力を伝達させることができるとともに堅固に拘束できるため、平面ひずみ状態又は小規模降伏状態を条件とするき裂進展試験を実施することができる。   As described above, according to the crack growth test method according to the present embodiment, in the temperature range of 600 to 700 ° C. to be tested, the creep strength is higher than the metal piece 12 collected from the actual machine, and the hardness is high. By using the restraining member 14 having the test piece 12b on both sides of the test piece 12b and using it as the test body 10 for the test, the stress can be sufficiently transmitted to the test piece 12b through the restraining member 14 and firmly restrained. Therefore, it is possible to carry out a crack growth test under the condition of a plane strain state or a small scale yield state.

また、本発明のき裂進展試験方法によれば、試験片12bと拘束部材14との間に、ボロンを含むフィラー16を介在させて溶接することにより、フィラー16を介さない場合よりも低い融点にて溶接ができるので試験片12bに与える熱影響をより少なくできる。   Moreover, according to the crack growth test method of the present invention, the melting point is lower than that in the case where no filler 16 is interposed by welding the filler 16 containing boron between the test piece 12 b and the restraining member 14. Since the welding can be carried out at a lower temperature, the thermal effect on the test piece 12b can be reduced.

また、フィラー16には、金属片12を構成する少なくとも1つの金属元素と、拘束部材14を構成する少なくとも1つの金属元素とが含まれることにより、溶融したフィラー16と、試験片12b及び拘束部材14とが親和して、溶接間の溶着性を向上させ、試験片12bをさらに堅固に拘束できるため、精度の高い平面ひずみ状態を形成させることができる。これらの結果、試験片12bについてき裂進展試験をより正確に実施することができる。   Further, the filler 16 contains at least one metal element constituting the metal piece 12 and at least one metal element constituting the restraining member 14, so that the molten filler 16, the test piece 12 b and the restraining member are contained. 14 can improve the weldability between welds, and the test piece 12b can be more firmly restrained, so that a highly accurate plane strain state can be formed. As a result, the crack growth test can be more accurately performed on the test piece 12b.

なお、本実施形態による試験体10はき裂進展試験に用いたが、これに限らず破壊靱性試験に用いてもよい。   In addition, although the test body 10 by this embodiment was used for the crack growth test, you may use it for not only this but a fracture toughness test.

また、本実施形態による試験体は説明した形状に限らず、図8に示すようなCT試験片や3点曲げ試験片にも適用してもよい。図7は、本発明に係る試験体をCT試験片及び3点曲げ試験片に適用した例を示す分解斜視図である。   Moreover, the test body according to the present embodiment is not limited to the shape described above, and may be applied to a CT test piece or a three-point bending test piece as shown in FIG. FIG. 7 is an exploded perspective view showing an example in which the test body according to the present invention is applied to a CT test piece and a three-point bending test piece.

図7に示すように、設備から採取された金属片12を所定の大きさに加工し、高温度条件(例えば、600〜700℃)においてもクリープ強度が高く、かつ、高い硬度を維持できる金属を材質とする拘束部材14を、金属片12の両面にフィラー16を介して溶接して、金属片12に予き裂20を導入することで、高温における破壊力学的試験に使用可能なCT試験片26及び3点曲げ試験片28が作製できる。   As shown in FIG. 7, the metal piece 12 collected from the facility is processed into a predetermined size, and the metal has high creep strength and can maintain high hardness even under high temperature conditions (for example, 600 to 700 ° C.). A CT test that can be used for a fracture mechanics test at a high temperature by welding a constraining member 14 made of a metal to both sides of a metal piece 12 via a filler 16 and introducing a pre-crack 20 into the metal piece 12 A piece 26 and a three-point bending test piece 28 can be produced.

本実施形態に係る高温のき裂進展試験方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the high temperature crack growth test method which concerns on this embodiment. 本実施形態に係る放電サンプリング装置を用いて採取した金属片の一例を示す平面図及び立面図である。It is the top view and elevation which show an example of the metal piece extract | collected using the discharge sampling apparatus which concerns on this embodiment. 本実施形態に係る試験体の分解斜視図である。It is a disassembled perspective view of the test body which concerns on this embodiment. 本実施形態に係る完成した試験体の斜視図である。It is a perspective view of the completed test body concerning this embodiment. き裂進展試験における試験体10周辺の構成を示す立面模式図である。It is an elevation surface schematic diagram showing the configuration around the specimen 10 in the crack growth test. き裂進展速度(da/aN)と応力拡大係数幅ΔKとの関係の一例を示すグラフである。It is a graph which shows an example of the relationship between a crack growth rate (da / aN) and stress intensity factor width | variety (DELTA) K. 本発明に係る試験体をCT試験片及び3点曲げ試験片に適用した例を示す分解斜視図である。It is a disassembled perspective view which shows the example which applied the test body which concerns on this invention to a CT test piece and a 3-point bending test piece. 破壊靱性試験に用いられる(a)CT試験片、(b)3点曲げ試験片の斜視図である。It is a perspective view of (a) CT specimen used for a fracture toughness test, and (b) 3 point bending specimen.

符号の説明Explanation of symbols

10 試験体
12 金属片
12a 薄肉部
12b 試験片
14 拘束部材
16 フィラー
18 溶接部
20 予き裂
DESCRIPTION OF SYMBOLS 10 Test body 12 Metal piece 12a Thin part 12b Test piece 14 Restraint member 16 Filler 18 Welded part 20 Pre-crack

Claims (5)

金属製の試験片に対して、高温における破壊力学的試験を行う方法であって、
前記試験片の両面に、所定の温度におけるクリープ強度が前記試験片よりも高く、かつ前記所定の温度における硬度が前記試験片よりも高い拘束部材を、ボロンと、前記試験片を構成する少なくとも1つの金属元素と、前記拘束部材を構成する少なくとも1つの金属元素とを含む金属箔を介在させて溶接して試験体を作製し、
前記試験体における前記試験片に予亀裂を導入し、
前記試験体を所定の高温に加熱した状態で前記拘束部材を介して前記試験片に荷重を与えることを特徴とする破壊力学的試験方法。
A method for performing a fracture mechanics test at a high temperature on a metal specimen,
On both surfaces of the test piece, a restraining member having a creep strength at a predetermined temperature higher than that of the test piece and having a hardness at the predetermined temperature higher than that of the test piece is composed of boron and at least one of the test piece. A test specimen is produced by welding with a metal foil containing two metal elements and at least one metal element constituting the restraining member ,
Introducing a precrack into the specimen in the specimen,
A fracture mechanics test method, wherein a load is applied to the test piece through the restraint member in a state where the test body is heated to a predetermined high temperature.
前記所定の温度は、600℃以上であることを特徴とする請求項1に記載の破壊力学的試験方法。 The fracture mechanics test method according to claim 1, wherein the predetermined temperature is 600 ° C. or more. 前記拘束部材に、ジルコニア合金、SUS、クロム含有率9%以上の合金、ニッケル基合金又はコバルト基合金のいずれかを用いることを特徴とする請求項1又は2に記載の破壊力学的試験方法。 The fracture mechanics test method according to claim 1 or 2 , wherein any one of a zirconia alloy, SUS, an alloy having a chromium content of 9% or more, a nickel base alloy, or a cobalt base alloy is used as the restraining member. 前記溶接に、レーザ又は電子ビームを用いることを特徴とする請求項1〜にいずれかに記載の破壊力学的試験方法。 Destructive mechanical testing method according to any one to claims 1 to 3 for the welding, characterized by using a laser or electron beam. 金属製の試験片に対して行われる高温における破壊力学的試験用の試験体であって、
前記試験片の両面に、所定の温度におけるクリープ強度が前記試験片よりも高く、かつ前記温度における硬度が前記試験片よりも高い拘束部材を、ボロンと、前記試験片を構成する少なくとも1つの金属元素と、前記拘束部材を構成する少なくとも1つの金属元素とを含む金属箔を介在させて溶接してなることを特徴とする試験体。
A specimen for a fracture mechanics test at a high temperature performed on a metal specimen,
On both surfaces of the test piece, a restraining member having a creep strength at a predetermined temperature higher than that of the test piece and having a hardness at the temperature higher than that of the test piece, boron, and at least one metal constituting the test piece A test body characterized by being welded with a metal foil containing an element and at least one metal element constituting the restraining member .
JP2006241998A 2006-09-06 2006-09-06 Fracture mechanics test method and specimen Expired - Fee Related JP4786479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006241998A JP4786479B2 (en) 2006-09-06 2006-09-06 Fracture mechanics test method and specimen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006241998A JP4786479B2 (en) 2006-09-06 2006-09-06 Fracture mechanics test method and specimen

Publications (2)

Publication Number Publication Date
JP2008064573A JP2008064573A (en) 2008-03-21
JP4786479B2 true JP4786479B2 (en) 2011-10-05

Family

ID=39287420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006241998A Expired - Fee Related JP4786479B2 (en) 2006-09-06 2006-09-06 Fracture mechanics test method and specimen

Country Status (1)

Country Link
JP (1) JP4786479B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181245A (en) * 2009-02-04 2010-08-19 Nihon Univ Method for controlling crack, tool for setting, and device for controlling therefor
JP5302870B2 (en) * 2009-02-27 2013-10-02 大阪瓦斯株式会社 Fracture stress range estimation method
JP5311403B2 (en) * 2009-07-27 2013-10-09 一般財団法人電力中央研究所 How to create a temperature estimation formula for coated parts
JP5267391B2 (en) * 2009-09-08 2013-08-21 株式会社Ihi Method and apparatus for evaluating fatigue strength of casting material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810049U (en) * 1981-07-10 1983-01-22 株式会社ほくさん Fracture toughness material testing equipment
JPH02226041A (en) * 1989-02-27 1990-09-07 Fuji Electric Co Ltd Displacement measuring method of load application point of sample
JPH02227631A (en) * 1989-02-28 1990-09-10 Toshiba Corp Improving method for creep resistance strength
JP2861314B2 (en) * 1990-07-20 1999-02-24 三菱自動車工業株式会社 Resistance welding method using amorphous foil
JPH08297080A (en) * 1995-04-26 1996-11-12 Mitsubishi Heavy Ind Ltd Fracture toughness test method by small test piece
JPH10132718A (en) * 1996-10-30 1998-05-22 Mitsubishi Heavy Ind Ltd Method for testing fracture toughness using micro test piece

Also Published As

Publication number Publication date
JP2008064573A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
Cam et al. Determination of mechanical and fracture properties of laser beam welded steel joints
Thibault et al. Residual stress and microstructure in welds of 13% Cr–4% Ni martensitic stainless steel
Jang et al. Assessing welding residual stress in A335 P12 steel welds before and after stress-relaxation annealing through instrumented indentation technique
Blagoeva et al. Qualification of P91 welds through small punch creep testing
JP4786479B2 (en) Fracture mechanics test method and specimen
Bhaduri et al. Repair welding of cracked steam turbine blades using austenitic and martensitic stainless-steel consumables
CN112432862B (en) Comprehensive evaluation method for welding thermal crack sensitivity
KR20180127095A (en) Estimation Apparatus and Method of Creep Crack Rate and Relevant Growth Fracture Parameters for Small Punch Specimen with a Micro Groove
Lippold Recent developments in weldability testing
Shingledecker Creep-rupture performance of Inconel Alloy 740 and welds
JP4676323B2 (en) Method for measuring fracture toughness value of metallic materials
An et al. Analysis of the creep behavior of P92 steel welded joint
Mariappan et al. Characterization of the cyclic deformation behavior of simulated HAZs and other constituent microstructural regions of P91 steel weldment
Chakraborty et al. Evaluation of hydrogen-assisted cracking susceptibility in modified 9cr-1mo steel welds
Mokhtarishirazabad et al. Study of the fracture toughness in electron beam welds
Kadoi et al. New measurement technique of ductility curve for ductility-dip cracking susceptibility in Alloy 690 welds
JP4594948B2 (en) Evaluation method of brittleness of turbine rotor made of Cr-Mo-V steel
Konopik et al. Compatibility of fracture toughness results in the upper shelf region
Ceyhan et al. High temperature cross-weld characterisation of steel weldments by microtensile testing
CN114509318B (en) Quantitative evaluation method for transverse cold crack sensitivity of typical joint welding of jacket
Chvostová et al. Application of Metallographic Investigation in Development of Sub-Sized Specimen Testing Techniques
Hasebe et al. Microstructure degradation in stainless steel weld metals due to thermal and mechanical histories
Ali et al. Creep evaluation of traditional and nuclear power plant high-temperature components, using small pin-loaded one-bar and two-bar specimens
Szczucka-Lasota et al. Welding of mobile platform elements made from mixed grades of high-strength steels
Murat et al. The Effects of TIG Welding Rod Compositions on Phase Distributions and Corrosion Properties of Dissimilar 304L and 420 Stainless Steel Welds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110713

R150 Certificate of patent or registration of utility model

Ref document number: 4786479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees