JP5302870B2 - Fracture stress range estimation method - Google Patents

Fracture stress range estimation method Download PDF

Info

Publication number
JP5302870B2
JP5302870B2 JP2009286731A JP2009286731A JP5302870B2 JP 5302870 B2 JP5302870 B2 JP 5302870B2 JP 2009286731 A JP2009286731 A JP 2009286731A JP 2009286731 A JP2009286731 A JP 2009286731A JP 5302870 B2 JP5302870 B2 JP 5302870B2
Authority
JP
Japan
Prior art keywords
range
crack
stress
fracture stress
δσf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009286731A
Other languages
Japanese (ja)
Other versions
JP2010223939A (en
Inventor
憲泰 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2009286731A priority Critical patent/JP5302870B2/en
Publication of JP2010223939A publication Critical patent/JP2010223939A/en
Application granted granted Critical
Publication of JP5302870B2 publication Critical patent/JP5302870B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method for estimating a range of breaking stress capable of obtaining the range of breaking stress of an object material to be evaluated that may be fatigue broken under an oxidizing atmosphere with a high temperature through a rational and relatively versatile examination process. <P>SOLUTION: The method for estimating a range of breaking stress includes the steps of determining a stress expansion coefficient range &utri;Kth at a boundary point where a stable state without crack extension changes to an extension state with rapid crack extension by conducting a crack extension evaluating test, determining the change of the thickness d of an oxide layer in a time t region as d = &alpha;t<SP>&beta;</SP>(&alpha; and &beta;: constant), substituting an approximate expression of d=&alpha;t&beta;in a crack length a in &Delta;Keff=k&times;&Delta;&sigma;&times;(&pi;a)<SP>1/2</SP>, which is a relational expression of the stress expansion coefficient range &Delta;K and a crack length a, substituting &Delta;Keffth of an effective value in the stress expansion coefficient range at the boundary point, in the stress expansion range, and estimating a breaking stress range &Delta;&sigma;f in the object material to be evaluated which is high temperature fatigued by a repeated load received in a high temperature state. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、高温において繰り返し応力を受けるために、ある周期によって交換されるべき部材の寿命予測方法に関し、さらに詳細には、高温酸化雰囲気下で繰り返し荷重を受けて高温疲労する評価対象材料における破壊応力範囲Δσfを推定する破壊応力範囲の推定方法に関する。   The present invention relates to a method for predicting the life of a member to be replaced at a certain cycle in order to receive repeated stress at a high temperature, and more particularly, fracture in a material to be evaluated that undergoes high temperature fatigue under repeated load in a high temperature oxidizing atmosphere. The present invention relates to a fracture stress range estimation method for estimating a stress range Δσf.

エンジン排気弁は高温状態で繰り返し応力を受ける最も代表的な部材の一つである。このようなエンジン排気弁においても、交換時期を寿命予測に基づいて、適切に求めてやる必要がある。特に、この種の特殊な用途には、従来、知られていなかった、あるいは従来、その用途に使用されてこなかった材料が、新たに採用されることがあるが、その材料の寿命予測を適切に行う必要があり、所謂、交換時期を適切に推定する必要がある。   The engine exhaust valve is one of the most representative members that are repeatedly subjected to stress at high temperatures. Even in such an engine exhaust valve, it is necessary to appropriately obtain the replacement time based on the life prediction. Especially for special applications of this type, new materials may be used that have not been known or have not been used for that purpose. It is necessary to estimate the so-called replacement time appropriately.

この種の高温状態で繰り返し応力を受ける部材における、表面き裂深さの解析方法として、特許文献1には、ボイラの水壁管に発生するき裂深さの解析方法が紹介されている。特許文献1に開示の技術では、水壁管外面の所望箇所のき裂深さaTC0を計測した後(S1)、応力振幅σaを算出(S2)するととともに、起動停止に伴う応力値の幅から有限要素法等を使用して応力振幅σaを算出し、これら求められた値から応力拡大係数範囲ΔKを算出し(S3)、ボイラ1内の雰囲気条件に応じた線図iを選択し(S4)、次に、応力拡大係数範囲ΔKに対応した疲労表面き裂成分(daen/dN)×Nを求め(S5)、測定時(現在)の当該部位のエレファントスキン状表面き裂深さapから、当該ボイラ
固有の高温再酸化(腐食)速度daHC/dtを逆算し(S6)、得られた高温再酸化速度daHC/dtを用いて今後進展が予想できるエレファントスキン状表面き裂深さaTCを逐次演算する(S8)。
As a method for analyzing the surface crack depth in a member subjected to repeated stress in this type of high temperature state, Patent Document 1 introduces a method for analyzing the crack depth generated in the water wall pipe of a boiler. In the technique disclosed in Patent Document 1, after measuring the crack depth a TC0 of the desired location on the outer surface of the water wall pipe (S1), the stress amplitude σ a is calculated (S2), and the stress value associated with the start and stop is calculated. The stress amplitude σ a is calculated from the width using a finite element method or the like, the stress intensity factor range ΔK is calculated from the obtained values (S3), and the diagram i corresponding to the atmospheric conditions in the boiler 1 is selected. (S4) Next, a fatigue surface crack component (da en / dN) × N corresponding to the stress intensity factor range ΔK is obtained (S5), and the elephant skin-like surface crack of the relevant part at the time of measurement (current) From the depth a p , the high temperature reoxidation (corrosion) rate da HC / dt specific to the boiler is calculated backward (S6), and the resulting high temperature reoxidation rate da HC / dt can be used to predict the future elephant skin shape. The surface crack depth a TC is sequentially calculated (S8).

特開2002−156325号公報JP 2002-156325 A

しかしながら、上記の特許文献1に開示の技術は、応力解析が必要となるとともに、ボイラ1内の雰囲気条件に応じた線図iを必要とする等、解析に必要とされる信頼性の高い経験データを多数集積しておく必要がある。   However, the technique disclosed in Patent Document 1 requires a stress analysis and requires a diagram i corresponding to the atmospheric conditions in the boiler 1 so that the highly reliable experience required for the analysis is required. A lot of data needs to be accumulated.

一般に高温酸化疲労破壊は、応力拡大係数範囲ΔKが特定の閾値ΔKthを超えた段階で、急速に発生することが知られている。例えば、本願が対象とするNi基合金の場合、応力拡大係数範囲ΔKが上記閾値ΔKthを越えるまでの時間が数万時間程度であるのに対して、閾値ΔKthを越えると数〜数十時間程度で破壊する。   In general, it is known that high-temperature oxidative fatigue failure occurs rapidly when the stress intensity factor range ΔK exceeds a specific threshold value ΔKth. For example, in the case of the Ni-based alloy which is the subject of the present application, the time until the stress intensity factor range ΔK exceeds the threshold value ΔKth is about several tens of thousands of hours, whereas when the threshold value ΔKth is exceeded, several to several tens of hours. Destroy with.

そこで、上記のような、高温酸化雰囲気下で疲労破壊に至ることがある評価対象材料の破壊応力範囲を、合理的かつ汎用性のある試験を経て得る推定方法を得ることが好ましい。   Therefore, it is preferable to obtain an estimation method for obtaining the fracture stress range of the material to be evaluated that may lead to fatigue fracture under a high-temperature oxidizing atmosphere as described above through a rational and versatile test.

高温酸化環境において金属材料表面には粒界酸化が発生する。この粒界酸化層は時間と共に進行し、予き裂として働き、応力集中(ノッチ効果)によって疲労寿命を低下させる方向に働く可能性が極めて高い。実際、発明者らも、粒界酸化が進行しているものは疲労寿命が低下することを確認した。   Grain boundary oxidation occurs on the surface of the metal material in a high temperature oxidation environment. This grain boundary oxide layer progresses with time, works as a precrack, and is very likely to work in the direction of reducing the fatigue life by stress concentration (notch effect). In fact, the inventors have also confirmed that fatigue life is reduced when grain boundary oxidation is progressing.

一般に、き裂進展速度はき裂先端の応力拡大係数範囲ΔKで決定され、ΔKがある閾値(ΔKth)を超えるまで、き裂進展は開始しないものとされている。時間とともに進行する粒界酸化層が予き裂の役割を果たすとすれば、その厚さが、使用される応力で、ΔKthに到達するとき裂進展が開始すると推定できる。   Generally, the crack growth rate is determined by the stress intensity factor range ΔK at the crack tip, and the crack growth is not started until ΔK exceeds a certain threshold value (ΔKth). If the grain boundary oxide layer that progresses with time plays a role of pre-cracking, it can be estimated that crack growth starts when the thickness reaches ΔKth with the stress used.

一方、一般に、疲労寿命は、以下のように考えられている。
疲労寿命=疲労き裂発生寿命+疲労き裂進展寿命
しかし、先に説明した応力拡大係数範囲ΔKが前記閾値ΔKthを越える範囲では、き裂進展速度は非常に大きく、最大でも数十時間で破断に至る。この疲労き裂進展寿命は、疲労き裂発生寿命と見なすことができる粒界酸化が進行する時間(数万時間)に比較して極めて短く、実際の寿命を考える上でほとんど無視して良い。
そこで、発明者らは、「疲労寿命=疲労き裂発生寿命」と考えて事実上差し支えないことに着目して本願を完成した。
On the other hand, the fatigue life is generally considered as follows.
Fatigue life = Fatigue crack initiation life + Fatigue crack growth life However, in the range where the stress intensity factor range ΔK described above exceeds the threshold value ΔKth, the crack growth rate is very high, and the fracture occurs in several tens of hours at the maximum. To. This fatigue crack growth life is extremely short compared to the time (tens of thousands of hours) in which grain boundary oxidation proceeds, which can be regarded as the fatigue crack initiation life, and can be almost ignored when considering the actual life.
Accordingly, the present inventors have completed the present application by paying attention to the fact that “fatigue life = fatigue crack initiation life” is virtually acceptable.

さらに、本願が対象とするようなNi基合金では、CT試験片を使用してき裂進展特性評価試験を行うと、後に図5で示すように、き裂開口変位COD(crack opening displacement)と試験片にかかる荷重Pとの関係は、単純に荷重の増加に伴ってき裂開口変位CODが増加する線形な関係にはなく、一定以上の荷重範囲で初めてき裂開口変位CODの増加が認められる非線形な関係となる。このような材料の場合は、高温雰囲気下では、見かけ上かかっている「見かけ上の荷重ΔP」よりも少ない「荷重の有効値ΔPeff」、即ち、見かけ上かかっている荷重「ΔP」から「荷重の増加に対して、ほとんどき裂開口変位が増加しない荷重の最大値Pb」を減算した荷重(ΔPeff=ΔP−ΔPb)によってき裂が進展する。そこで、破壊応力範囲Δσfの推定には、応力拡大係数範囲ΔKの有効値ΔKeffを使用する、即ち、ΔKeff=k×Δσ×(πa)1/2を使用するのが適当であるとの考えのもと、発明者らの本願発明を完成した。 Further, in a Ni-based alloy as the object of the present application, when a crack growth characteristic evaluation test is performed using a CT test piece, as shown in FIG. 5 later, crack opening displacement COD (crack opening displacement) and test piece The relationship with the load P is not a linear relationship in which the crack opening displacement COD increases simply as the load increases, but is non-linear in which an increase in the crack opening displacement COD is recognized for the first time within a certain load range. It becomes a relationship. In the case of such a material, under a high-temperature atmosphere, the “effective load value ΔPeff” which is smaller than the apparent “load ΔP”, that is, the apparent load “ΔP” to “load” The crack progresses by a load (ΔPeff = ΔP−ΔPb) obtained by subtracting the maximum load Pb ”at which the crack opening displacement hardly increases. Therefore, it is considered that it is appropriate to use the effective value ΔKeff of the stress intensity factor range ΔK, that is, to use ΔKeff = k × Δσ × (πa) 1/2 for the estimation of the fracture stress range Δσf. Originally, the inventors have completed the present invention.

具体的には、以下の手順で破壊応力範囲Δσfの推定を行う。
1 境界点応力拡大係数導出ステップ
評価対象材料のCT試験片を使用してき裂進展特性評価試験を行い、き裂進展が認められない安定状態から、き裂の急速な進展が認められる進展状態となる境界点の応力拡大係数範囲ΔKthを求める。
2 熱処理挙動導出ステップ
評価対象材料に熱処理を施し、熱処理により形成される酸化層厚さdと熱処理時間tとの関係である酸化層形成速度挙動を求める。
3 変化近似式導出ステップ
熱処理挙動導出ステップにより求められた酸化層形成速度挙動に基づいて、時間t領域における酸化層厚さdの変化を、近似式d=αtβ(α及びβは定数)として求める。
4 荷重−き裂開口変位導出ステップ
評価対象材料で構成されたCT試験片について、き裂開口変位COD(crack opening displacement)とCT試験片にかかる荷重Pとの関係を求める試験であるき裂進展特性評価試験を行う。求められた荷重―き裂開口変位の関係から、評価対象材料の開口比U=ΔPeff/ΔPを求め、ΔKeffth/ΔK=U=ΔPeff/ΔPの前提の下、応力拡大係数範囲ΔKの有効値(有効範囲)ΔKeffthを求める。
5 破壊応力範囲推定ステップ
応力拡大係数範囲ΔKの有効値ΔKeffthと、き裂長さaとの関係式であるΔKeffth=k×Δσ×(πa)1/2(ここでkは形状係数)に関して、
き裂長さaに、酸化層厚さ変化近似式導出ステップにより求められた近似式d=αtβを使用して求まるき裂長さの代表式を代入し、
応力拡大係数範囲に、境界点応力拡大係数導出ステップにより求められた境界点の応力拡大係数範囲の有効値ΔKeffthを代入し、
高温状態で繰り返し荷重を受けて高温疲労する評価対象材料における破壊応力範囲Δσfを推定する。
Specifically, the fracture stress range Δσf is estimated by the following procedure.
1 Boundary point stress intensity factor derivation step Performs a crack growth characteristic evaluation test using a CT specimen of the material to be evaluated, and changes from a stable state where crack growth is not observed to a state where rapid crack growth is observed. The stress intensity factor range ΔKth at the boundary point is obtained.
2 Heat treatment behavior deriving step Heat treatment is performed on the material to be evaluated, and an oxide layer formation rate behavior which is a relation between the oxide layer thickness d formed by the heat treatment and the heat treatment time t is obtained.
3 Change Approximation Formula Deriving Step Based on the oxide layer formation rate behavior obtained in the heat treatment behavior deriving step, the change in the oxide layer thickness d in the time t region is expressed as an approximate expression d = αt β (α and β are constants). Ask.
4 Load-crack opening displacement derivation step Crack growth characteristics, which are tests to determine the relationship between crack opening displacement COD (crack opening displacement) and the load P applied to the CT test piece for CT test pieces made of the material to be evaluated Perform an evaluation test. From the obtained load-crack opening displacement relationship, the opening ratio U = ΔPeff / ΔP of the material to be evaluated is obtained, and the effective value of the stress intensity factor range ΔK (assuming ΔKeffth / ΔK = U = ΔPeff / ΔP) ( Effective range) ΔKeffth is obtained.
5 Fracture Stress Range Estimating Step Regarding ΔKeffth = k × Δσ × (πa) 1/2 (where k is a shape factor), which is a relational expression between the effective value ΔKeffth of the stress intensity factor range ΔK and the crack length a,
Substituting for the crack length a a representative expression of the crack length obtained using the approximate expression d = αt β obtained in the oxide layer thickness change approximate expression deriving step,
For the stress intensity factor range, substitute the effective value ΔKeffth of the boundary point stress intensity factor range obtained by the boundary point stress intensity factor derivation step,
A fracture stress range Δσf is estimated in a material to be evaluated that undergoes high temperature fatigue under repeated load in a high temperature state.

本願に係る破壊応力範囲の推定方法では、評価対象材料に経時的に形成される酸化層厚さdを変化近似式導出ステップで求め、この酸化層厚さdで進展するき裂が形成されているとして、応力拡大係数範囲との関係式を求める。一方、境界点応力拡大係数導出ステップで求められた応力拡大係数範囲ΔKthを使用して、荷重−き裂開口変位導出ステップで別途求められる開口比Uを使用して応力拡大係数範囲ΔKthの有効値ΔKeffthを求め、破壊応力範囲推定ステップで破壊応力範囲Δσfを推定する。
従って、本発明により、経年使用によって低下していく破壊応力範囲、引いては疲労強度,疲労寿命を合理的に推定することが可能となった。実際に使用する際には,実部材にかかる応力範囲を確認し、適正な安全率を考慮することにより本発明で得られた予測曲線を用いて、適正な交換周期の設定が可能となる。
In the method for estimating the fracture stress range according to the present application, the oxide layer thickness d formed over time in the material to be evaluated is obtained in a change approximation formula deriving step, and a crack that propagates with this oxide layer thickness d is formed. As a result, a relational expression with the stress intensity factor range is obtained. On the other hand, using the stress intensity factor range ΔKth obtained in the boundary point stress intensity factor deriving step, the effective value of the stress intensity factor range ΔKth using the opening ratio U separately obtained in the load-crack opening displacement deriving step. ΔKeffth is obtained, and the fracture stress range Δσf is estimated in the fracture stress range estimation step.
Therefore, according to the present invention, it has become possible to reasonably estimate the range of fracture stress that decreases with age, and thus the fatigue strength and fatigue life. In actual use, it is possible to set an appropriate replacement period using the prediction curve obtained in the present invention by confirming the stress range applied to the actual member and considering an appropriate safety factor.

上記のような手順で、破壊応力範囲σfを求める場合、前記き裂長さaとして、酸化層厚さ変化近似式導出ステップにより求められた近似式d=αtβをそのまま使用することができる。
即ち、 前記破壊応力範囲Δσfを、下記の式に基づいて求める
Δσf=ΔKeffth/〔k×{π(αtβ)}1/2
ここで、kはCT試験片の形状に基づいて定まる形状係数。
When the fracture stress range σf is obtained by the procedure as described above, the approximate expression d = αt β obtained by the oxide layer thickness change approximate expression derivation step can be used as it is as the crack length a.
That is, the fracture stress range Δσf is obtained based on the following equation: Δσf = ΔKeffth / [k × {π (αt β )} 1/2 ]
Here, k is a shape factor determined based on the shape of the CT specimen.

この場合は、酸化層厚さの近似式をそのまま使用するので、これまで説明した1 境界点応力拡大係数導出ステップ、2 熱処理挙動導出ステップ、3 変化近似式導出ステップを実行するとともに、4 荷重−き裂開口変位導出ステップを行うだけで、実質的に破壊応力σfの推定式を得ることができる。   In this case, since the approximate expression of the oxide layer thickness is used as it is, the 1 boundary point stress intensity factor deriving step, 2 heat treatment behavior deriving step, 3 change approximate expression deriving step described above are executed, and 4 load− By simply performing the crack opening displacement deriving step, an estimation formula for the fracture stress σf can be obtained substantially.

一方、前記評価対象材料の所定寿命回数における破壊応力範囲Δσf0と前記境界点応力拡大係数導出ステップにより求められた境界点の応力拡大係数範囲の有効値ΔKeffthとから、ΔKeffth=k×Δσf0×(πa01/2とに基づいて、所定寿命回数における破壊応力範囲Δσf0を考慮した、き裂の進展が始る進展開始時に存在すると仮定することができる固有き裂長さa0を求め、
前記破壊応力範囲Δσfを、下記の式に基づいて求めることもできる
Δσf=ΔKeffth/〔k×{π(αtβ+a0)}1/2
ここで、kはCT試験片の形状に基づいて定まる形状係数。
On the other hand, ΔKeffth = k × Δσf 0 × from the fracture stress range Δσf 0 at the predetermined number of times of the evaluation target material and the effective value ΔKeffth of the stress intensity factor range at the boundary point obtained by the boundary point stress intensity factor derivation step. Based on (πa 0 ) 1/2 , an inherent crack length a 0 that can be assumed to exist at the start of crack initiation considering the fracture stress range Δσf 0 at a predetermined number of lifetimes is obtained. ,
The fracture stress range Δσf can also be obtained based on the following equation: Δσf = ΔKeffth / [k × {π (αt β + a 0 )} 1/2 ]
Here, k is a shape factor determined based on the shape of the CT specimen.

このようにすることで、境界点における応力拡大係数範囲の有効値ΔKeffthと所定寿命回数における破壊応力範囲Δσf0から仮想的な初期き裂を仮定して固有き裂長さa0を求めて、使用期間の短い領域でのき裂長さを適切に仮定して、当該固有き裂長さa0と膜厚dが時間の経過とともに増加する酸化被膜の形成との両方の情報を使用して、破壊応力範囲を推定できる。発明者らは、この推定方法による推定のほうが、例えば、数十時間といった短時間側から確度の高い合理的な推定を行えると考えている。 In this way, the intrinsic crack length a 0 is obtained by assuming a virtual initial crack from the effective value ΔKeffth of the stress intensity factor range at the boundary point and the fracture stress range Δσf 0 at the predetermined number of times of life. By appropriately assuming the crack length in a short-period region, information on both the inherent crack length a 0 and the formation of an oxide film in which the film thickness d increases with time can be used. The range can be estimated. The inventors consider that the estimation by this estimation method can perform a reasonable estimation with high accuracy from the short time side such as several tens of hours.

以上の状況から、先に説明した
Δσf=ΔKeffth/〔k×{π(αtβ)}1/2
Δσf=ΔKeffth/〔k×{π(αtβ+a0)}1/2
夫々により推定される破壊応力範囲Δσfについて、数千時間から数万時間における破壊応力範囲の推定を、両破壊応力範囲の推定方法により得られる破壊応力範囲それぞれの間に、前記破壊応力範囲Δσfがあると推定することもできる。
From the above situation, Δσf = ΔKeffth / [k × {π (αt β )} 1/2 ] described above
Δσf = ΔKeffth / [k × {π (αt β + a 0 )} 1/2 ]
With respect to the fracture stress range Δσf estimated by each, the fracture stress range Δσf between the fracture stress ranges obtained by the estimation methods of both fracture stress ranges is estimated by estimating the fracture stress range in thousands to tens of thousands of hours. It can also be estimated that there is.

この構成では、固有き裂長さが支配的となる疲労と、酸化被膜の形成による疲労が支配的となる疲労との両方を加味して、破壊応力範囲Δσfを適切に推定できる。   In this configuration, the fracture stress range Δσf can be appropriately estimated in consideration of both fatigue in which the inherent crack length is dominant and fatigue in which the fatigue due to the formation of the oxide film is dominant.

本願に係る第1実施形態の破壊応力範囲の推定方法の手順を示す図The figure which shows the procedure of the estimation method of the fracture stress range of 1st Embodiment which concerns on this application Ni基合金の疲労き裂進展特性を示す図Diagram showing fatigue crack growth characteristics of Ni-based alloys CT試験片の形状を示す図Diagram showing the shape of CT specimen 熱処理時間と酸化層厚さの関係を示す図Diagram showing the relationship between heat treatment time and oxide layer thickness き裂開口変位と荷重の関係を示す図Diagram showing the relationship between crack opening displacement and load 第1実施形態により求められた使用時間と破壊応力範囲との関係線を示す図The figure which shows the relationship line of the use time calculated | required by 1st Embodiment, and the fracture stress range 本願に係る第2実施形態の破壊応力範囲の推定方法の手順を示す図The figure which shows the procedure of the estimation method of the fracture stress range of 2nd Embodiment which concerns on this application Ni基合金の高温疲労試験結果を示す図The figure which shows the high temperature fatigue test result of Ni base alloy 第2実施形態により求められた使用時間と破壊応力範囲との関係線を示す図The figure which shows the relationship line of the use time calculated | required by 2nd Embodiment, and the fracture stress range

以下、本願の破壊応力範囲の推定方法を、評価対象材料であるエンジン排気弁用のNi基合金に使用した結果に基づいて、具体的に説明する。
今回用いたNi基合金の組成は、表1の通りである。
Hereinafter, the estimation method of the fracture stress range of the present application will be specifically described based on the result of using the Ni-based alloy for engine exhaust valves, which is the material to be evaluated.
The composition of the Ni-based alloy used this time is as shown in Table 1.

Figure 0005302870
この表で、「bal」は残余分を示す。
Figure 0005302870
In this table, “bal” indicates the remainder.

本願の破壊応力範囲の推定方法は、少なくとも数千時間から数万時間のおける破壊応力範囲の推定を良好に行うことを目的とする。そして、この破壊応力範囲Δσfの推定において、先にも説明したように「疲労寿命=疲労き裂発生寿命」との仮定の下に使用時間領域における破壊応力範囲の推定を行う。ここで、以下に示す第1実施形態では、き裂長さaとして、酸化層厚さdの近似式をそのまま使用する。一方、第2実施形態では、第1実施形態のように酸化層厚さdの近似式をそのまま使用したのでは、初期き裂がない状態でき裂進展が始まった場合の発生応力が無限大になる不合理を回避するため、材料が本来持っている固有き裂なる概念を導入し、この固有き裂長さa0と、酸化化層厚さdとの和をき裂長さに使用する。
以下、第1実施形態、第2実施形態の順に説明する。
The purpose of the method for estimating the fracture stress range of the present application is to satisfactorily estimate the fracture stress range in at least several thousand hours to tens of thousands of hours. In the estimation of the fracture stress range Δσf, the fracture stress range in the use time region is estimated under the assumption that “fatigue life = fatigue crack generation life” as described above. Here, in the first embodiment described below, the approximate expression of the oxide layer thickness d is used as it is as the crack length a. On the other hand, in the second embodiment, if the approximate expression of the oxide layer thickness d is used as it is as in the first embodiment, the generated stress is infinite when crack growth starts without an initial crack. In order to avoid this unreasonable nature, the concept of inherent crack inherent in the material is introduced, and the sum of the inherent crack length a 0 and the oxidized layer thickness d is used as the crack length.
Hereinafter, the first embodiment and the second embodiment will be described in this order.

〔第1実施形態〕
図1に、本願に係る破壊応力範囲の推定方法の手順を示した。
以下、手順に沿って、各ステップの処理内容を説明するとともに、そのステップで得られる上記Ni基合金の結果について説明する。
[First Embodiment]
In FIG. 1, the procedure of the estimation method of the fracture stress range which concerns on this application was shown.
Hereinafter, along with the procedure, the processing contents of each step will be described, and the results of the Ni-based alloy obtained in the step will be described.

1 境界点応力拡大係数導出ステップ(#1−1)
評価対象材料であるNi基合金で構成されたCT試験片(コンパクトテンション試験片)に対して、き裂進展特性評価試験を実行して、き裂進展が認められない安定状態から、き裂の急速な進展が認められる進展状態となる境界点の応力拡大係数範囲ΔKthを求める。
このき裂進展特性評価試験を実行することにより得られたNi基合金の応力拡大係数範囲ΔKと疲労き裂伝播速度da/dNを示したのが図2であり、CT試験片の形状を示したのが図3である。同図3において、長さの単位はmmである。
1 Boundary point stress intensity factor deriving step (# 1-1)
For CT specimens (compact tension specimens) made of Ni-based alloy, which is the material to be evaluated, a crack growth characteristic evaluation test was performed. From a stable state where no crack propagation was observed, The stress intensity factor range ΔKth at the boundary point where the rapid progress is recognized is obtained.
FIG. 2 shows the stress intensity factor range ΔK and fatigue crack propagation rate da / dN of the Ni-based alloy obtained by executing this crack growth characteristic evaluation test, and shows the shape of the CT specimen. This is shown in FIG. In FIG. 3, the unit of length is mm.

き裂進展特性評価試験は、ASTM D5045−93に規定される試験法に従い、試験で付与した応力範囲はΔσ=0〜4.3MPaであり、応力拡大係数範囲ΔKは、き裂深さaを測定して、ΔK=k×Δσ×(πa)1/2に従って求め、疲労き裂伝播速度da/dNは、aの増加量を1プロット毎に応力付与回数で割って求めた。ここで、kはCT試験片の形状に従って定まる形状係数であり、具体的には1.1215である。 In the crack growth characteristic evaluation test, the stress range applied in the test is Δσ = 0 to 4.3 MPa in accordance with the test method specified in ASTM D5045-93, and the stress intensity factor range ΔK is the crack depth a. Measured and determined according to ΔK = k × Δσ × (πa) 1/2 , and the fatigue crack propagation rate da / dN was determined by dividing the increase in a by the number of times stress was applied for each plot. Here, k is a shape factor determined according to the shape of the CT test piece, specifically 1.1215.

図2に示すき裂進展特性評価から、き裂進展が認められない安定状態から、き裂の急速な進展が認められる進展状態となる境界点の応力拡大係数範囲ΔKthは、約8.68MPa・m1/2と推定した。 From the evaluation of crack growth characteristics shown in FIG. 2, the stress intensity factor range ΔKth at the boundary point from the stable state where crack growth is not observed to the growth state where rapid crack growth is recognized is about 8.68 MPa · Estimated as m 1/2 .

2 熱処理挙動導出ステップ(#2)
Ni基合金評価対象材料に熱処理を施し、熱処理により形成される酸化層厚さdと熱処理時間tとの関係である酸化層形成速度挙動を求める。
熱処理挙動導出ステップで求められた熱処理時間t(hr)と酸化層厚さd(μm)の関係を図示したのが図4である。この熱処理挙動導出ステップでは、試験を加速するため、実機温度800℃に対して、試験温度900℃とした。また、時間の加速の影響に関しては、公知の最も良く使用されるパラメータであるラルソンミラーパラメータを使用した。ラルソンミラーパラメータPは、P=絶対温度×(20+log(加熱時間))の関係となる。
例えば、実機温度が800℃であると仮定すると、実験炉等で900℃に加熱することにより、以下のように加熱時間を短縮することが可能である。
800℃ 900℃
2000hr 20.6hr
3000hr 29.9hr
5000hr 47.7hr
10000hr 89.9hr
2 Heat treatment behavior derivation step (# 2)
The Ni base alloy evaluation target material is subjected to heat treatment, and an oxide layer formation rate behavior which is a relation between the oxide layer thickness d formed by the heat treatment and the heat treatment time t is obtained.
FIG. 4 shows the relationship between the heat treatment time t (hr) obtained in the heat treatment behavior deriving step and the oxide layer thickness d (μm). In this heat treatment behavior deriving step, the test temperature was set to 900 ° C. with respect to the actual machine temperature of 800 ° C. in order to accelerate the test. As for the influence of time acceleration, the Larson Miller parameter, which is the most commonly used parameter, is used. The Larson mirror parameter P has a relationship of P = absolute temperature × (20 + log (heating time)).
For example, assuming that the actual machine temperature is 800 ° C., the heating time can be shortened as follows by heating to 900 ° C. in an experimental furnace or the like.
800 ° C 900 ° C
2000hr 20.6hr
3000hr 29.9hr
5000hr 47.7hr
10000hr 89.9hr

3 変化近似式導出ステップ(#3)
熱処理挙動導出ステップ(#2)により求められた酸化層形成速度挙動に基づいて、時間t領域における酸化層厚さdの変化を、d=αtβ(α及びβは定数)として導出し酸化層厚さd(m)の近似式を求める。
Ni基合金について、α=0.326×10-6、β=0.6209となった。
3. Step for deriving a change approximation formula (# 3)
Based on the oxide layer formation rate behavior obtained in the heat treatment behavior deriving step (# 2), the change in the oxide layer thickness d in the time t region is derived as d = αt β (α and β are constants) to obtain the oxide layer An approximate expression of the thickness d (m) is obtained.
For the Ni-based alloy, α = 0.326 × 10 −6 and β = 0.6209.

4 破壊応力範囲推定ステップ
4−1 基本概念
応力拡大係数範囲の有効値ΔKeffと、き裂長さaとの関係式であるΔKeff=k×Δσ×(πa)1/2に関して(Δσは応力)、き裂長さaに、前記酸化層厚さ変化近似式導出ステップにより求められた近似式d=αtβを代入し、応力拡大係数範囲の有効値ΔKeffに、前記境界点応力拡大係数導出ステップにより求められた境界点の応力拡大係数範囲の有効値ΔKeffthを代入し、高温状態で繰り返し荷重を受けて高温疲労する評価対象材料における破壊応力範囲Δσfを推定する。
4 Fracture Stress Range Estimation Step 4-1 Basic Concept Regarding ΔKeff = k × Δσ × (πa) 1/2 that is a relational expression between the effective value ΔKeff of the stress intensity factor range and the crack length a (Δσ is stress), Substituting the approximate expression d = αt β obtained in the oxide layer thickness change approximate expression deriving step for the crack length a, and obtaining the effective value ΔKeff in the stress intensity factor range by the boundary point stress intensity coefficient deriving step. The effective value ΔKeffth of the stress intensity factor range at the boundary point is substituted, and the fracture stress range Δσf in the evaluation target material that undergoes repeated load in a high temperature state and undergoes high temperature fatigue is estimated.

具体的な式の展開は、以下の通りである。
通常の破壊力学より、応力範囲Δσ、き裂長さaと応力拡大係数範囲の有効値ΔKeffとの関係は、ΔKeff=k×Δσ×(πa)1/2で表される。
破壊が発生する応力範囲をΔσfとすると、ΔKeffth=k×Δσf×(πa)1/2となる。
The specific expression expansion is as follows.
From normal fracture mechanics, the relationship between the stress range Δσ, the crack length a, and the effective value ΔKeff of the stress intensity factor range is expressed as ΔKeff = k × Δσ × (πa) 1/2 .
If the stress range where fracture occurs is Δσf, then ΔKeffth = k × Δσf × (πa) 1/2 .

き裂長さaに、前記酸化層厚さ変化近似式導出ステップにより求められた近似式d=αtβを代入すると、ΔKeffth=1.1215×Δσf×(0.326×10-6πt0.62091/2となる。
この式が、本件に係る寿命予測式の基本的な形態である。
Substituting the approximate expression d = αt β obtained in the oxide layer thickness change approximate expression deriving step into the crack length a, ΔKeffth = 1.215 × Δσf × (0.326 × 10 −6 πt 0.6209 ) 1 / 2 .
This formula is a basic form of the life prediction formula according to the present case.

4−2 荷重−き裂開口変位導出ステップ(#4)
本願では、評価対象材料で構成されたCT試験片について、き裂進展特性評価試験結果を利用して、き裂開口変位COD(crack opening displacement)と荷重Pとの関係を求め、求められた荷重範囲ΔPとき裂開口変位CODとの関係から、開口比U=ΔPeff/ΔPを求める。
Ni基合金では、図5の荷重(MN)とき裂開口変位(mm)との関係から、開口比U=ΔPeff/ΔPは(3.38417−1.891169)/3.38417=0.44117となった。
4-2 Load-crack opening displacement derivation step (# 4)
In the present application, with respect to a CT test piece composed of a material to be evaluated, the relationship between the crack opening displacement COD (crack opening displacement) and the load P is obtained using the crack growth characteristic evaluation test result, and the obtained load is obtained. From the relationship between the range ΔP and the crack opening displacement COD, the opening ratio U = ΔPeff / ΔP is obtained.
In the case of the Ni-based alloy, the opening ratio U = ΔPeff / ΔP is (3.338417-1.9111169) /3.38417=0.441117 from the relationship between the load (MN) and the crack opening displacement (mm) in FIG. became.

き裂進展特性評価試験において、高温状態では、通常、高温加熱の影響によりCT試験片のき裂先端部近傍に圧縮の応力場が形成され、図5に示す、見かけ上かかっている見かけ上の荷重ΔPよりも少ない有効荷重ΔPeffによってき裂が進展する。そこで、この影響を取り除く。
これまでにも示したように、このような非線形な材料では、応力拡大係数範囲の有効値ΔKeffと、き裂長さaとの関係式としてΔKeff=k×Δσ×(πa)1/2を採用するのが好ましい。そこで、先に境界点応力拡大係数導出ステップ(#1−1)で求められた境界点の応力拡大係数範囲ΔKthをその有効値ΔKeffthに置き換え、この有効値を使用する(#1−2)。
In the crack growth characteristic evaluation test, in a high temperature state, a compressive stress field is usually formed in the vicinity of the crack tip portion of the CT specimen due to the effect of high temperature heating, and the apparent appearance shown in FIG. The crack propagates with an effective load ΔPeff smaller than the load ΔP. Therefore, this effect is removed.
As shown above, in such a nonlinear material, ΔKeff = k × Δσ × (πa) 1/2 is adopted as a relational expression between the effective value ΔKeff of the stress intensity factor range and the crack length a. It is preferable to do this. Therefore, the stress intensity factor range ΔKth at the boundary point previously obtained in the boundary point stress intensity factor deriving step (# 1-1) is replaced with the effective value ΔKeffth, and this effective value is used (# 1-2).

以上より、先に説明した境界点での応力拡大係数範囲の有効値ΔKeffthを、破壊応力範囲Δσf及びき裂長さαtβを使用して記載し直すと、以下の通りとなる。
ΔKeffth=k×Δσf×(παtβ1/2(式1)
From the above, when the effective value ΔKeffth of the stress intensity factor range at the boundary point described above is rewritten using the fracture stress range Δσf and the crack length αt β , the following is obtained.
ΔKeffth = k × Δσf × (παt β ) 1/2 (Formula 1)

結果、破壊応力範囲Δσfは、
Δσf=ΔKeffth/[k×(παtβ1/2](式2)とできる(#6)。
評価対象としたNi基合金について、 Δσf=3.83/[1.1215×(0.326×10-6πt0.62091/2]となった。
As a result, the fracture stress range Δσf is
Δσf = ΔKeffth / [ k × (παt β ) 1/2 ] (Expression 2) (# 6).
Regarding the Ni-based alloy to be evaluated, Δσf = 3.83 / [1.1215 × ( 0.326 × 10 −6 πt 0.6209 ) 1/2 ].

図6に、このようにして求めた破壊応力範囲Δσfと時間tとの関係を示した。
「実機使用品」と記載の「■」で示す破壊応力範囲の実測値は、800℃〜常温の変化で温度が変化する高温酸化雰囲気下で、約5000時間、Ni基合金をエンジン排気弁の表面材料として使用した後、その破壊応力を測定した結果である。破壊応力範囲曲線と、実機使用品との測定結果は、よく一致していた。
FIG. 6 shows the relationship between the fracture stress range Δσf thus determined and time t.
The measured value of the fracture stress range indicated by “■” described as “actual product use” is that the Ni-based alloy is removed from the engine exhaust valve for about 5000 hours in a high-temperature oxidizing atmosphere where the temperature changes from 800 ° C. to room temperature. It is the result of measuring the fracture stress after using as a surface material. The measurement results of the fracture stress range curve and the actual product were in good agreement.

〔第2実施形態〕
先にも示したように、第2実施形態では、材料が本来持っている「固有き裂長さ」なる概念を導入し、この「固有き裂長さ」と「酸化層厚さ」とを考慮した「き裂長さ」を使用する。
[Second Embodiment]
As previously indicated, in the second embodiment, the concept of “inherent crack length” inherent to the material is introduced, and this “inherent crack length” and “thickness of oxide layer” are considered. Use “crack length”.

図7に、図1に対応して、本願に係る破壊応力範囲の推定方法の手順を示した。
この図に示す手順には、図1に示した手順に対して、固有き裂長さ導出ステップ(#15)が追加されている。そして、本第2実施形態では、この固有き裂長さ導出ステップ(#15)で導出される固有き裂長さa0と酸化層厚さdを合算したき裂長さaを、境界点における応力拡大係数範囲の有効値と、き裂長さの関係式に導入する。
FIG. 7 shows the procedure of the method for estimating the fracture stress range according to the present application, corresponding to FIG.
In the procedure shown in this figure, an inherent crack length deriving step (# 15) is added to the procedure shown in FIG. In the second embodiment, the crack length a obtained by adding the inherent crack length a 0 derived in the inherent crack length deriving step (# 15) and the oxide layer thickness d is defined as the stress expansion at the boundary point. It is introduced into the relational expression between the effective value of the coefficient range and the crack length.

境界点応力拡大係数導出ステップ(#11−1、図1に示す#1−1)、熱処理挙動導出ステップ(#12、図1に示す#2)、変化近似式導出ステップ(#13、図1に示す#3)、荷重−き裂開口変位導出ステップ(#14、図1に示す#4)、及び境界点応力拡大係数範囲ΔKthをその有効値ΔKeffthに変換するステップ(#11−2、図1に示す#1−2)は、ステップ番号は異なるが、その内容は、実質的に同一である。   Boundary point stress intensity factor derivation step (# 11-1, # 1-1 shown in FIG. 1), heat treatment behavior derivation step (# 12, # 2 shown in FIG. 1), change approximate expression derivation step (# 13, FIG. 1) 3), a load-crack opening displacement deriving step (# 14, # 4 shown in FIG. 1), and a step of converting the boundary point stress intensity factor range ΔKth into its effective value ΔKeffth (# 11-2, FIG. # 1-2) shown in FIG. 1 has substantially the same contents although the step numbers are different.

1 境界点応力拡大係数導出ステップ(#11−1)
評価対象材料であるNi基合金で構成されたCT試験片(コンパクトテンション試験片)に対して、き裂進展特性評価試験を実行して、き裂進展が認められない安定状態から、き裂の急速な進展が認められる進展状態となる境界点の応力拡大係数範囲ΔKthを求める。
1 Boundary point stress intensity factor deriving step (# 11-1)
For CT specimens (compact tension specimens) made of Ni-based alloy, which is the material to be evaluated, a crack growth characteristic evaluation test was performed. From a stable state where no crack propagation was observed, The stress intensity factor range ΔKth at the boundary point where the rapid progress is recognized is obtained.

先にも示したように、図2に示すき裂進展特性評価から、き裂進展が認められない安定状態から、き裂の急速な進展が認められる進展状態となる境界点の応力拡大係数範囲ΔKthは、約8.68MPa・m1/2と推定した。 As previously indicated, the stress intensity factor range at the boundary point from the stable state where crack growth is not observed to the state where rapid crack growth is observed, based on the evaluation of crack growth characteristics shown in FIG. ΔKth was estimated to be about 8.68 MPa · m 1/2 .

2 熱処理挙動導出ステップ(#12)
Ni基合金評価対象材料に熱処理を施し、熱処理により形成される酸化層厚さと熱処理時間との関係である酸化層形成速度挙動を求める。
2 Heat treatment behavior derivation step (# 12)
The Ni base alloy evaluation target material is subjected to heat treatment, and an oxide layer formation rate behavior which is a relationship between the thickness of the oxide layer formed by the heat treatment and the heat treatment time is obtained.

3 変化近似式導出ステップ(#13)
熱処理挙動導出ステップ(#12)により求められた酸化層形成速度挙動に基づいて、時間t領域における酸化層厚さdの変化を、d=αtβ(α及びβは定数)として導出し酸化層厚さd(m)の近似式を求める。
図4に示した、Ni基合金について、α=0.326×10-6、β=0.6209となった。
3. Step for deriving a change approximation formula (# 13)
Based on the oxide layer formation rate behavior obtained in the heat treatment behavior deriving step (# 12), the change in the oxide layer thickness d in the time t region is derived as d = αt β (α and β are constants) to obtain the oxide layer An approximate expression of the thickness d (m) is obtained.
Regarding the Ni-based alloy shown in FIG. 4, α = 0.326 × 10 −6 and β = 0.6209.

4 荷重−き裂開口変位導出ステップ(#14)
本願では、評価対象材料で構成されたCT試験片について、き裂進展特性評価試験結果を利用して、き裂開口変位CODと荷重Pとの関係を求める。求められた荷重範囲ΔPとき裂開口変位CODとの関係から、開口比U=ΔPeff/ΔPを求める。
Ni基合金では、図5の荷重(MN)とき裂開口変位(mm)との関係から、開口比U=ΔPeff/ΔPは(3.38417−1.891169)/3.38417=0.44117となった。この開口比U=ΔPeff/ΔPを使用して境界点応力拡大係数導出ステップで得た境界点の応力拡大係数範囲ΔKthをその有効値ΔKeffthに変換し、この有効値を使用する(#11−2)。
4 Load-crack opening displacement derivation step (# 14)
In the present application, the relationship between the crack opening displacement COD and the load P is obtained for the CT test piece composed of the material to be evaluated using the crack growth characteristic evaluation test result. From the relationship between the obtained load range ΔP and the crack opening displacement COD, the opening ratio U = ΔPeff / ΔP is obtained.
In the case of the Ni-based alloy, the opening ratio U = ΔPeff / ΔP is (3.338417-1.9111169) /3.38417=0.441117 from the relationship between the load (MN) and the crack opening displacement (mm) in FIG. became. Using this aperture ratio U = ΔPeff / ΔP, the boundary point stress intensity factor range ΔKth obtained in the boundary point stress intensity factor derivation step is converted into its effective value ΔKeffth, and this effective value is used (# 11-2). ).

5 固有き裂長さ導出ステップ(#15)
この固有き裂長さ導出ステップ(#15)は、評価対象材料の所定寿命回数における破壊応力範囲Δσf0と境界点応力拡大係数導出ステップにより求められた境界点の応力拡大係数範囲ΔKeffthの有効値とから、ΔKeffth=k×Δσf0×(πa01/2に基づいて、所定寿命回数における破壊応力範囲Δσf0を考慮した、き裂の進展が始る進展開始時に存在すると仮定することができる固有き裂長さa0を求めるステップである。
5 Intrinsic crack length derivation step (# 15)
This intrinsic crack length deriving step (# 15) includes an effective value of the fracture stress range Δσf 0 at the predetermined number of times of the evaluation target material and the boundary point stress intensity factor range ΔKeffth obtained by the boundary point stress intensity factor deriving step. From ΔKeffth = k × Δσf 0 × (πa 0 ) 1/2 , it can be assumed that the crack is present at the start of crack propagation, taking into account the fracture stress range Δσf 0 at the predetermined number of times of life. This is a step for obtaining the inherent crack length a 0 .

以下、さらに詳細に説明する。
このステップでは、評価対象材料の評価対象環境下での疲労限度(評価対象材料の所定寿命回数における破壊応力範囲)Δσf0を求め、当該疲労限度から固有き裂長さa0を導出する。
固有き裂長さa0は、固有き裂長さa0を考慮する場合の基礎式ΔKeff=k×Δσ×[π(a1+a0)]1/2に基づいて、t=0の時の応力拡大係数範囲ΔKeff=k×Δσ×(π(a0))1/2を使用する。上記の固有き裂長さを考慮した基礎式で、a1は時間の経過とともに進展するき裂要素(本願では酸化被膜要素)であり、a0はt=0の時に存在すると仮定するき裂要素(一般に固有き裂長さと称される)である。
このような固有き裂長さa0は、高温における疲労限度(破壊応力Δσf0)を108回寿命と仮定し、評価対象材料の108回寿命を求めるのが一般的である。即ち、この108回寿命から上記ΔKeff=k×Δσ×[π(a0)]1/2に基づいて求めることができる。
This will be described in more detail below.
In this step, a fatigue limit (fracture stress range at a predetermined number of lifetimes of the evaluation target material) Δσf 0 in the evaluation target environment of the evaluation target material is obtained, and an inherent crack length a 0 is derived from the fatigue limit.
The inherent crack length a 0 is the stress at t = 0 based on the basic equation ΔKeff = k × Δσ × [π (a 1 + a 0 )] 1/2 when considering the inherent crack length a 0 The magnification factor range ΔKeff = k × Δσ × (π (a 0 )) 1/2 is used. In the above basic formula considering the inherent crack length, a 1 is a crack element (an oxide film element in this application) that grows with time, and a 0 is a crack element that is assumed to exist when t = 0. (Generally referred to as the inherent crack length).
Such an inherent crack length a 0 is generally obtained by assuming a fatigue limit (fracture stress Δσf 0 ) at a high temperature of 10 8 times life and obtaining the 10 8 times life of the material to be evaluated. That is, it can be obtained from the above 10 8 times lifetime based on the above ΔKeff = k × Δσ × [π (a 0 )] 1/2 .

図8に、本願に係るNi基合金の新品と経年使用品の高温疲労試験結果を示した。この材料の108回疲労限度は、新品で153Mpaであり、経年使用品(3000時間使用品)で80Mpa程度である。評価対象材料の固有き裂長さa0を求める場合、本来、微小なき裂しか存在しない材料において固有き裂長さa0が仮定されるものであるため、固有き裂長さa0を求める場合153MPaとするのが適当である。 FIG. 8 shows the results of a high temperature fatigue test of a new Ni-based alloy and an aged product according to the present application. The 10 8 times fatigue limit of this material is 153 Mpa for a new product and about 80 Mpa for an aged product (a product used for 3000 hours). When determining the specific crack length a 0 evaluated material, originally for specific crack length a 0 in the material there is only small Without crack is intended to be assumed, and 153MPa case of obtaining the specific crack length a 0 It is appropriate to do.

先に示したように、この材料の開口比U=ΔPeff/ΔPは0.44117であり、図2から応力拡大係数範囲ΔKの閾値はΔKth=8.68と判明している。よって、き裂が進展し始める境界点での応力拡大係数範囲の有効値はΔKeffth=0.44117×8.68=3.83となった。 As shown above, the aperture ratio U = ΔPeff / ΔP of this material is 0.44117, and the threshold value of the stress intensity factor range ΔK is ΔKth = 8. 68 . Therefore, the effective value of the stress intensity factor range at the boundary point where the crack starts to propagate is ΔKeffth = 0.44117 × 8.68 = 3.83 .

求まった境界点における応力拡大係数範囲の有効値ΔKeffthと、先に求めた108回寿命における破壊応力範囲Δσf0とを使用して、固有き裂長さa0を、以下のように推定した。 Using the effective value ΔKeffth of the stress intensity factor range at the obtained boundary point and the previously obtained fracture stress range Δσf 0 at 10 8 times life, the intrinsic crack length a 0 was estimated as follows.

ΔKeffth=k×Δσf0×(πa01/2
3.83=1.1215×153×(πa01/2
0=0.1589×10-3(m)。
ΔKeffth = k × Δσf 0 × (πa 0 ) 1/2 ,
3. 83 = 1.1215 × 153 × (πa 0 ) 1/2
a 0 = 0.1589 × 10 −3 (m).

6 破壊応力範囲推定ステップ
第2実施形態では、先にも示したように、き裂長さaとして、酸化層厚さdと固有き裂長さa0との和を使用する。
応力拡大係数範囲の有効値ΔKeffとき裂長さa=d+a0とは、下記基本式で繋がる。
ΔKeff=k×Δσ×[π(d+a0)]1/2
上記の有効な応力拡大係数範囲の閾値ΔKeffthと、酸化層厚さdの近似式を考慮すると、破壊応力範囲Δσfとは、以下の式とできる(#16)。
ΔKeffth=k×Δσf×{π(αtβ+a0)}1/2(式3)
6 Fracture Stress Range Estimating Step In the second embodiment, as previously indicated, the sum of the oxide layer thickness d and the intrinsic crack length a 0 is used as the crack length a.
The effective value ΔKeff of the stress intensity factor range and the crack length a = d + a 0 are connected by the following basic formula.
ΔKeff = k × Δσ × [π (d + a 0 )] 1/2
Considering the above threshold value ΔKeffth of the effective stress intensity factor range and the approximate expression of the oxide layer thickness d, the fracture stress range Δσf can be expressed by the following equation (# 16).
ΔKeffth = k × Δσf × {π (αt β + a 0 )} 1/2 (Formula 3)

結果、破壊応力範囲Δσfは、
Δσf=ΔKeffth/〔k×{π(αtβ+a0)}1/2〕となる(#17)。
As a result, the fracture stress range Δσf is
Δσf = ΔKeffth / [k × {π (αt β + a 0 )} 1/2 ] (# 17).

評価対象としたNi基合金については、
Δσf=3.83/〔1.1215×{π(0.326×10-6×t0.6209+0.1589×10-3)}1/2
となった。
For Ni-based alloys that were evaluated,
Δσf = 3. 83 / [ 1.1215 × (0.326 × 10 −6 × t 0.6209 + 0.1589 × 10 −3 )} 1/2 ]
It became.

図9に、このようにして求めた破壊応力範囲Δσfと時間tとの関係を示した。
「実機使用品」と記載の「■」で示す破壊応力範囲の実測値は、800℃〜常温の変化で温度が変化する高温酸化雰囲気下で、約5000時間、Ni基合金をエンジン排気弁の表面材料として使用した後、その破壊応力を測定した結果である。破壊応力範囲曲線と、実機使用品との測定結果は、よく一致していた。
FIG. 9 shows the relationship between the fracture stress range Δσf thus determined and the time t.
The measured value of the fracture stress range indicated by “■” described as “actual product use” is that the Ni-based alloy is removed from the engine exhaust valve for about 5000 hours in a high-temperature oxidizing atmosphere where the temperature changes from 800 ° C. to room temperature. It is the result of measuring the fracture stress after using as a surface material. The measurement results of the fracture stress range curve and the actual product were in good agreement.

よって、経年使用によって低下していく破壊応力範囲を精度良く予測することが可能となった。実際に使用する際には、実部材にかかる応力範囲を明確化し、適正な安全率を考慮することにより本発明で得られた予測曲線を用いて、適正な交換周期の設定が可能となった。   Therefore, it has become possible to accurately predict the fracture stress range that decreases with age. When actually used, the stress range applied to the actual member is clarified, and an appropriate replacement cycle can be set using the prediction curve obtained by the present invention by considering an appropriate safety factor. .

〔別実施形態〕
以上説明したように、第1実施形態と第2実施形態とで、夫々、破壊応力範囲Δσfが異なる。そこで、両者の実施形態を重み付けして、その重み付けの結果として、実際の破壊応力範囲を推定することもできる。
即ち、第1実施形態における破壊応力範囲
Δσf=ΔKeffth/〔k×{π(αtβ)}1/2
及び、第2実施形態における破壊応力範囲
Δσf=ΔKeffth/〔k×{π(αtβ+a0)}1/2
夫々により推定される破壊応力範囲Δσfについて、数千時間から数万時間における破壊応力範囲の推定を、両破壊応力範囲の推定方法により得られる破壊応力範囲それぞれの間に、前記破壊応力範囲Δσfがあると推定することもできる。
このようにすると、固有き裂長さa0が支配的となる疲労と、酸化被膜の形成による疲労が支配的となる疲労との両方を加味して、破壊応力範囲Δσfを適切に推定できる。
[Another embodiment]
As described above, the fracture stress range Δσf is different between the first embodiment and the second embodiment. Therefore, both embodiments can be weighted, and the actual fracture stress range can be estimated as a result of the weighting.
That is, the fracture stress range in the first embodiment Δσf = ΔKeffth / [k × {π (αt β )} 1/2 ]
And the fracture stress range in the second embodiment Δσf = ΔKeffth / [k × {π (αt β + a 0 )} 1/2 ]
With respect to the fracture stress range Δσf estimated by each, the fracture stress range Δσf between the fracture stress ranges obtained by the estimation methods of both fracture stress ranges is estimated by estimating the fracture stress range in thousands to tens of thousands of hours. It can also be estimated that there is.
In this way, the fracture stress range Δσf can be appropriately estimated by taking into account both the fatigue in which the inherent crack length a 0 is dominant and the fatigue in which the fatigue due to the formation of the oxide film is dominant.

高温酸化雰囲気下で疲労破壊に至ることがある評価対象材料の破壊応力範囲を、合理的かつ比較的汎用性のある試験工程を経て得ることができる破壊応力範囲の推定方法を得ることができた。   We were able to obtain a method for estimating the range of fracture stress that can be obtained through a reasonable and relatively versatile testing process for the fracture stress range of the evaluation target material that can lead to fatigue failure in a high-temperature oxidizing atmosphere. .

Claims (4)

高温酸化雰囲気下で繰り返し荷重を受けて高温疲労する評価対象材料における破壊応力範囲Δσfを推定する破壊応力範囲の推定方法であって、
前記評価対象材料で構成されたCT試験片に対して、き裂進展特性評価試験を実行して、き裂進展が認められない安定状態から、き裂の急速な進展が認められる進展状態となる境界点の応力拡大係数範囲ΔKthを求める境界点応力拡大係数導出ステップと、
前記評価対象材料に熱処理を施し、熱処理により形成される酸化層厚さと熱処理時間との関係である酸化層形成速度挙動を求める熱処理挙動導出ステップと、
前記熱処理挙動導出ステップにより求められた酸化層形成速度挙動に基づいて、時間t領域における酸化層厚さdの変化を、d=αtβ(α及びβは定数)として導出する酸化層厚さ変化近似式導出ステップと、
前記評価対象材料で構成されたCT試験片について、き裂開口変位CODと前記CT試験片にかかる荷重Pとの関係を求める試験であるき裂進展特性評価試験を行う荷重−き裂開口変位導出ステップを実行するとともに、前記荷重−き裂開口変位導出ステップで求められた荷重―き裂開口変位の関係から、前記評価対象材料の開口比U=ΔPeff/ΔPを求め、
前記境界点応力拡大係数導出ステップで求められた前記応力拡大係数範囲ΔKthと、求められた前記評価対象材料の開口比Uとから、前記境界点の応力拡大係数範囲の有効値ΔKeffthをΔKeffth=ΔKth×Uとして求め、
kを形状係数とする、応力拡大係数範囲の有効値ΔKeffと、き裂長さaとの関係式であるΔKeff=k×Δσ×(πa)1/2に関して、
前記き裂長さaに、前記酸化層厚さ変化近似式導出ステップにより求められた近似式d=αtβを使用して求まるき裂長さ代表式を代入し、
前記応力拡大係数範囲の有効値ΔKeffに、求められた前記境界点の応力拡大係数範囲の有効値ΔKeffthを代入し、
高温状態で繰り返し荷重を受けて高温疲労する評価対象材料における破壊応力範囲Δσfを推定する破壊応力範囲の推定方法。
A method for estimating a fracture stress range for estimating a fracture stress range Δσf in a material to be evaluated that undergoes high temperature fatigue under repeated loading in a high temperature oxidizing atmosphere,
A crack growth characteristic evaluation test is performed on the CT specimen composed of the material to be evaluated, and a stable state in which crack propagation is not observed is changed to a progress state in which rapid crack growth is recognized. A boundary point stress intensity factor deriving step for obtaining a stress intensity factor range ΔKth of the boundary point;
A heat treatment behavior deriving step of performing a heat treatment on the material to be evaluated, and obtaining an oxide layer formation rate behavior that is a relationship between a thickness of the oxide layer formed by the heat treatment and a heat treatment time;
Based on the oxide layer formation rate behavior obtained in the heat treatment behavior deriving step, the change in the oxide layer thickness d in the time t region is derived as d = αt β (α and β are constants). An approximate expression derivation step;
A load-crack opening displacement derivation step for conducting a crack growth characteristic evaluation test, which is a test for obtaining a relationship between a crack opening displacement COD and a load P applied to the CT test piece, with respect to a CT test piece composed of the material to be evaluated. And calculating the opening ratio U = ΔPeff / ΔP of the material to be evaluated from the relationship of load-crack opening displacement obtained in the load-crack opening displacement derivation step,
From the stress intensity factor range ΔKth obtained in the boundary point stress intensity factor deriving step and the obtained opening ratio U of the evaluation target material, an effective value ΔKeffth of the stress intensity factor range at the boundary point is expressed as ΔKeffth = ΔKth. X as U,
Regarding ΔKeff = k × Δσ × (πa) 1/2 , which is a relational expression between the effective value ΔKeff of the stress intensity factor range, where k is a shape factor, and the crack length a,
Substituting the crack length a using the approximate expression d = αt β obtained by the oxide layer thickness change approximate expression derivation step into the crack length a,
Valid values ΔKeff of the stress intensity factor range, by substituting the effective value ΔKeffth the stress intensity factor range of the boundary points obtained,
A method for estimating a fracture stress range for estimating a fracture stress range Δσf in a material to be evaluated that undergoes high temperature fatigue under repeated load in a high temperature state.
前記破壊応力範囲Δσfを、下記の式に基づいて求める請求項1記載の破壊応力範囲の推定方法
Δσf=ΔKeffth/〔k×{π(αtβ)}1/2
ここで、kはCT試験片の形状に基づいて定まる形状係数。
The fracture stress range estimation method according to claim 1, wherein the fracture stress range Δσf is obtained based on the following formula: Δσf = ΔKeffth / [k × {π (αt β )} 1/2 ]
Here, k is a shape factor determined based on the shape of the CT specimen.
前記評価対象材料の所定寿命回数における破壊応力範囲Δσf0と前記境界点応力拡大係数導出ステップにより求められた境界点の応力拡大係数範囲の有効値ΔKeffthとから、ΔKeffth=k×Δσf0×(πa01/2とに基づいて、所定寿命回数における破壊応力範囲Δσf0を考慮した、き裂の進展が始る進展開始時に存在すると仮定することができる固有き裂長さa0を求め、
前記破壊応力範囲Δσfを、下記の式に基づいて求める請求項1記載の破壊応力範囲の推定方法
Δσf=ΔKeffth/〔k×{π(αtβ+a0)}1/2
ここで、kはCT試験片の形状に基づいて定まる形状係数。
ΔKeffth = k × Δσf 0 × (πa) from the fracture stress range Δσf 0 at the predetermined number of times of the evaluation target material and the effective value ΔKeffth of the stress intensity factor range at the boundary point obtained by the step of deriving the boundary point stress intensity factor 0 ) Based on 1/2 , an inherent crack length a 0 that can be assumed to exist at the start of crack initiation considering the fracture stress range Δσf 0 at a predetermined number of lifetimes,
The fracture stress range estimation method according to claim 1, wherein the fracture stress range Δσf is obtained based on the following formula: Δσf = ΔKeffth / [k × {π (αt β + a 0 )} 1/2 ]
Here, k is a shape factor determined based on the shape of the CT specimen.
請求項2記載の破壊応力範囲の推定方法と請求項3記載の破壊応力範囲の推定方法を実行し、数千時間から数万時間における破壊応力範囲の推定を、
請求項2及び請求項3記載の破壊応力範囲の推定方法により得られる破壊応力範囲それぞれの間に、前記破壊応力範囲Δσfがあると推定する破壊応力範囲の推定方法。
The estimation method of the fracture stress range according to claim 2 and the estimation method of the fracture stress range according to claim 3 are executed to estimate the fracture stress range in thousands to tens of thousands of hours.
A method for estimating a fracture stress range in which the fracture stress range Δσf is estimated to be between the fracture stress ranges obtained by the fracture stress range estimation method according to claim 2 or 3.
JP2009286731A 2009-02-27 2009-12-17 Fracture stress range estimation method Expired - Fee Related JP5302870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009286731A JP5302870B2 (en) 2009-02-27 2009-12-17 Fracture stress range estimation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009046777 2009-02-27
JP2009046777 2009-02-27
JP2009286731A JP5302870B2 (en) 2009-02-27 2009-12-17 Fracture stress range estimation method

Publications (2)

Publication Number Publication Date
JP2010223939A JP2010223939A (en) 2010-10-07
JP5302870B2 true JP5302870B2 (en) 2013-10-02

Family

ID=43041259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009286731A Expired - Fee Related JP5302870B2 (en) 2009-02-27 2009-12-17 Fracture stress range estimation method

Country Status (1)

Country Link
JP (1) JP5302870B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3004808B1 (en) * 2013-04-22 2015-04-17 Snecma METHOD FOR ANALYZING A BREAKING FACES OF A TURBOMACHINE PIECE
CN106290029B (en) * 2016-08-31 2018-10-16 清华大学 A method of material oxidation rate is measured in real time using high-temperature nano impression instrument
CN110020497B (en) * 2019-04-18 2023-06-16 长沙理工大学 Method for evaluating fatigue life probability of suspension cable of service bridge
CN110619170B (en) * 2019-09-11 2023-01-06 中国三峡建设管理有限公司 Method for performing construction control by utilizing arch dam upstream overhang analysis
CN114047089B (en) * 2021-09-30 2022-08-05 南京航空航天大学 Method for calculating service life of material under action of thermal shock load
WO2024013878A1 (en) * 2022-07-13 2024-01-18 三菱電機株式会社 Crack inspection device, crack monitoring system, and crack inspection method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682353A (en) * 1992-09-04 1994-03-22 Nippon Steel Corp Method for measurement of fatigue crack propagation lower limit stress expansion coefficient range
JPH11352037A (en) * 1998-06-12 1999-12-24 Japan Tobacco Inc Testing machine for crack development
JP4464548B2 (en) * 2000-11-17 2010-05-19 バブコック日立株式会社 Method for analyzing surface crack depth of metal members
JP4068549B2 (en) * 2003-11-21 2008-03-26 株式会社東芝 Method and system for evaluating crack growth characteristics
JP4786479B2 (en) * 2006-09-06 2011-10-05 中国電力株式会社 Fracture mechanics test method and specimen

Also Published As

Publication number Publication date
JP2010223939A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
Wang et al. Creep-fatigue life prediction and interaction diagram in nickel-based GH4169 superalloy at 650 C based on cycle-by-cycle concept
JP5302870B2 (en) Fracture stress range estimation method
WO2016045024A1 (en) Method for measuring and determining fracture toughness of structural material in high-temperature environment
AU2010200506B2 (en) Method for assessing remaining lifespan of bolt used at high temperatures
JP4176777B2 (en) Method for predicting crack growth in gas turbine high-temperature parts and crack growth prediction apparatus using this method
Kim et al. Continuum damage mechanics-based creep–fatigue-interacted life prediction of nickel-based superalloy at high temperature
CN107843510B (en) Method for estimating residual endurance life of supercritical unit T/P91 heat-resistant steel based on room-temperature Brinell hardness prediction
Abbasi et al. An investigation into the effect of elevated temperatures on fretting fatigue response under cyclic normal contact loading
CN108256179B (en) Method for predicting material creep curve
JP5567233B1 (en) Crack growth estimation method and information processing apparatus
Vöse et al. An approach to life prediction for a nickel-base superalloy under isothermal and thermo-mechanical loading conditions
Gustafsson et al. Modelling of high temperature fatigue crack growth in Inconel 718 under hold time conditions
JP2006300855A (en) Method of estimating lifetime of structure having organic member
Ramirez et al. The influence of plasticity-induced crack closure on creep-fatigue crack growth in two heat-resistant steels
JP2020003373A (en) Lifetime prediction method, lifetime prediction device, and lifetime prediction device program
Gope et al. Evaluation of fatigue damage parameters for Ni‐based super alloys Inconel 825 steel notched specimen using stochastic approach
CN114295491B (en) Prediction method for creep damage and deformation evolution behavior along with time
JP4676323B2 (en) Method for measuring fracture toughness value of metallic materials
Hurley et al. Prediction of fatigue initiation lives in notched Ti 6246 specimens
JP3728286B2 (en) Nondestructive high temperature creep damage evaluation method
JP2011232206A (en) Flaw evaluation device and flaw evaluation method
Härkegård et al. Growth of naturally initiated fatigue cracks in ferritic gas turbine rotor steels
Idris et al. Predicting fatigue crack growth rate under block spectrum loading based on temperature evolution using the degradation-entropy generation theorem
CN111859619B (en) Nondestructive prediction method for low cycle fatigue life of heat aging material by using hardness
Omprakash et al. Creep damage evaluation of DS CM247 nickel base superalloy using alternate current potential drop technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees