JP5674859B2 - A numerical controller with a function to estimate the life of the bearing that supports the spindle - Google Patents

A numerical controller with a function to estimate the life of the bearing that supports the spindle Download PDF

Info

Publication number
JP5674859B2
JP5674859B2 JP2013104090A JP2013104090A JP5674859B2 JP 5674859 B2 JP5674859 B2 JP 5674859B2 JP 2013104090 A JP2013104090 A JP 2013104090A JP 2013104090 A JP2013104090 A JP 2013104090A JP 5674859 B2 JP5674859 B2 JP 5674859B2
Authority
JP
Japan
Prior art keywords
unit
cutting
spindle
torque
main shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013104090A
Other languages
Japanese (ja)
Other versions
JP2014223700A (en
Inventor
肇 小川
肇 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP2013104090A priority Critical patent/JP5674859B2/en
Priority to DE102014006904.4A priority patent/DE102014006904B4/en
Priority to US14/276,115 priority patent/US9157831B2/en
Priority to CN201410208858.7A priority patent/CN104166371B/en
Publication of JP2014223700A publication Critical patent/JP2014223700A/en
Application granted granted Critical
Publication of JP5674859B2 publication Critical patent/JP5674859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/70Stationary or movable members for carrying working-spindles for attachment of tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/007Arrangements for observing, indicating or measuring on machine tools for managing machine functions not concerning the tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0957Detection of tool breakage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2260/00Details of constructional elements
    • B23C2260/80Serrations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4065Monitoring tool breakage, life or condition

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Description

本発明は、工作機械の主軸を支持するベアリングの寿命を推定する機能を備えた数値制御装置に関する。   The present invention relates to a numerical control device having a function of estimating the life of a bearing that supports a spindle of a machine tool.

工作機械の主軸の軸受けとして使われているベアリングは、摩擦や負荷によって除々に劣化していくため、適切な時期に交換する必要がある。従来、工作機械における主軸ベアリングの交換時期の目安として、主軸の回転速度や回転時間を積算した総回転数や総回転時間が用いられている。例えば、特許文献1には、寿命管理機能付き数値制御装置が開示されており、当該数値制御装置は、可動部の部品の寿命に関する動作量の累積値と、予め設定された可動部の寿命値とを比較し、部品の寿命の判定を行うという内容で、累積値を表示する表示手段を備えている。また、特許文献2には、ベアリングの寿命モニタリング方法が開示されており、当該モニタリング方法は、機械の運転状況からベアリングを支持する回転体の回転数と回転体にかかるロードの平均値を逐一計算し、ベアリングの寿命値を求める。そして、回転体の回転時間の積算値が寿命値を超えた場合に、メンテナンス時期をメッセージ表示する。   Bearings used as bearings for machine tool spindles gradually deteriorate due to friction and load, so it is necessary to replace them at an appropriate time. Conventionally, the total number of rotations and the total rotation time obtained by integrating the rotation speed and rotation time of the main shaft are used as a guideline for replacing the main shaft bearing in the machine tool. For example, Patent Document 1 discloses a numerical control device with a life management function, and the numerical control device includes an accumulated value of operation amounts related to the life of components of the movable part, and a preset life value of the movable part. And a display means for displaying the accumulated value with the content of determining the life of the component. Patent Document 2 discloses a method for monitoring the life of a bearing. This monitoring method calculates the number of rotations of the rotating body that supports the bearing and the average value of the load applied to the rotating body from the operating state of the machine. Then, obtain the bearing life value. When the integrated value of the rotation time of the rotating body exceeds the life value, a maintenance time message is displayed.

特開平5−208343号公報JP-A-5-208343 特開2011−247660号公報JP 2011-247660 A

工作機械の主軸を支持するベアリングの寿命は、主軸に作用する力の影響を受ける。非切削時は、主軸と被加工物は非接触状態にあるが、切削時は主軸と被加工物が接触するため、被加工物からの反力と同等の力が主軸に作用する。そのため、切削時は、非切削時に比べてベアリングへの負荷が大きくなり、相対的に寿命が短くなる。   The life of the bearing that supports the spindle of the machine tool is affected by the force acting on the spindle. While the main shaft and the workpiece are not in contact with each other during non-cutting, the main shaft and the workpiece are in contact with each other during cutting, so that a force equivalent to the reaction force from the workpiece acts on the main shaft. Therefore, when cutting, the load on the bearing is larger than when not cutting, and the life is relatively shortened.

しかし、従来は、非切削時と切削時を区別せず、単純に主軸の回転速度や回転時間を積算していたため、主軸への負荷の影響が考慮されてなかった。例えば、特許文献1に開示される寿命管理技術は、主軸の動作量を単に積算しているだけで、可動部の部品に作用する力の影響については考慮されていない。そのため、部材にかかる力の大きさによらず、所定の累積値に達した場合、交換時期であると判定されてしまう。   Conventionally, however, no distinction is made between non-cutting and cutting, and the rotation speed and rotation time of the spindle are simply integrated, so the influence of the load on the spindle has not been considered. For example, the life management technique disclosed in Patent Document 1 merely adds up the amount of movement of the spindle, and does not consider the influence of the force acting on the components of the movable part. For this reason, when the predetermined cumulative value is reached regardless of the magnitude of the force applied to the member, it is determined that the replacement time is reached.

そこで、本発明の目的は、切削状態を示す切削信号を監視し、非切削時は、従来通り主軸の回転速度や回転時間を積算し、切削時は、回転速度や回転時間に主軸に作用する力に応じた重みを乗じて積算し、切削時の主軸に作用する負荷の影響を積算値に考慮することで、より精度よく交換時期を見積もることが可能な、主軸を支持するベアリングの寿命を推定する機能を備えた数値制御装置を提供することである。   Therefore, an object of the present invention is to monitor a cutting signal indicating a cutting state, and during non-cutting, the rotation speed and rotation time of the main spindle are integrated as before, and during cutting, the rotation speed and rotation time act on the main spindle. By multiplying the weight according to the force and integrating, and considering the influence of the load acting on the spindle during cutting in the integrated value, the life of the bearing that supports the spindle can be estimated more accurately. It is to provide a numerical control device having an estimation function.

本願の請求項1に係る発明は、工作機械の主軸を支持するベアリングの寿命を推定する機能を備えた工作機械を制御する数値制御装置において、前記主軸の回転速度と送り軸のトルクを、駆動軸を制御する制御部、又は、各駆動軸に取り付けられた検出器から所定の周期毎に取得する物理データ取得部と、前記制御部が出力する切削状態を示す切削信号を監視する切削信号監視部と、前記物理データ取得部で取得した送り軸のトルクから主軸に作用する力を算出する負荷算出部と、前記負荷算出部で算出した主軸に作用する力に応じた重みを予め与えられたテーブルから抽出する重み抽出部と、前記切削信号が非切削状態にある場合、前記主軸の回転速度を所定の周期毎に積算し、前記切削信号が切削状態にある場合、前記物理データ取得部で取得した前記主軸の回転速度に前記重み抽出部で抽出した重みを乗算した第2の主軸の回転速度を所定の周期毎に積算する第1積算部と、前記第1積算部で積算した積算値を記憶する記憶部と、を備え、前記積算値に基づいて前記ベアリングの寿命を推定することを特徴とする数値制御装置である。
請求項2に係る発明は、工作機械の主軸を支持するベアリングの寿命を推定する機能を備えた工作機械を制御する数値制御装置において、前記主軸の回転速度と送り軸のトルクを、駆動軸を制御する制御部、又は、各駆動軸に取り付けられた検出器から所定の周期毎に取得する物理データ取得部と、前記制御部が出力する切削状態を示す切削信号を監視する切削信号監視部と、前記物理データ取得部で取得した送り軸のトルクから主軸に作用する力を算出する負荷算出部と、前記負荷算出部で算出した主軸に作用する力に応じた重みを予め与えられたテーブルから抽出する重み抽出部と、前記主軸が回転中か停止中かを示す回転状態信号を監視する回転信号監視部と、前記回転状態信号が回転中、且つ、前記切削信号が非切削状態の場合、前記所定の周期を積算し、前記回転状態信号が回転中、且つ、前記切削信号が切削状態の場合、前記所定の周期に前記重み抽出部で抽出した重みを乗算した第2の所定の周期を前記所定の周期毎に積算する第2積算部と、前記第2積算部で積算した積算値を記憶する記憶部と、を備え、前記積算値に基づいて前記ベアリングの寿命を推定することを特徴とする数値制御装置である。
The invention according to claim 1 of the present application is a numerical control device for controlling a machine tool having a function of estimating a life of a bearing that supports a spindle of a machine tool, wherein the rotational speed of the spindle and the torque of a feed shaft are driven. A control unit that controls the shaft, or a physical data acquisition unit that acquires at predetermined intervals from a detector attached to each drive shaft, and a cutting signal monitor that monitors a cutting signal indicating a cutting state output by the control unit , A load calculation unit for calculating a force acting on the main spindle from the torque of the feed shaft acquired by the physical data acquisition unit, and a weight corresponding to the force acting on the main shaft calculated by the load calculation unit. A weight extraction unit that extracts from a table, and when the cutting signal is in a non-cutting state, the rotation speed of the spindle is integrated every predetermined period, and when the cutting signal is in a cutting state, the physical data acquisition unit A first integration section for integrating the obtained rotational speed of the second spindle multiplied by the weight extracted by the weight extraction unit to the rotational speed of the spindle in a predetermined cycle, the integrated value obtained by integrating by the first accumulation unit A numerical value control device that estimates the life of the bearing based on the integrated value.
According to a second aspect of the present invention, there is provided a numerical control apparatus for controlling a machine tool having a function of estimating a life of a bearing that supports a main shaft of a machine tool, wherein the rotational speed of the main shaft and the torque of the feed shaft are determined using a drive shaft. A control unit to control, or a physical data acquisition unit that acquires at predetermined intervals from a detector attached to each drive shaft, and a cutting signal monitoring unit that monitors a cutting signal indicating a cutting state output by the control unit; A load calculation unit that calculates a force acting on the main shaft from the torque of the feed shaft acquired by the physical data acquisition unit, and a weight that is given in advance according to the force that acts on the main shaft calculated by the load calculation unit. a weight extraction unit which extracts, in the rotation signal monitoring unit the main shaft to monitor the rotational state signal indicating whether or stopped rotating, the pre-Symbol rotation state signal rotation, and, when the cutting signal is in a non-cutting state ,Previous When a predetermined period is integrated, and when the rotation state signal is rotating and the cutting signal is a cutting state, a second predetermined period obtained by multiplying the predetermined period by the weight extracted by the weight extraction unit is A second integrating unit that integrates every predetermined period; and a storage unit that stores the integrated value integrated by the second integrating unit, wherein the life of the bearing is estimated based on the integrated value. It is a numerical control device.

請求項3に係る発明は、前記負荷算出部は、前記物理データ取得部で取得した前記送り軸のトルクから前記制御部、又は、前記検出器で取得した送り軸の加速度にイナーシャを乗じた加速度分のトルクを差し引いたトルクから主軸に作用する力を算出することを特徴とする請求項1または2に記載の数値制御装置である。
請求項4に係る発明は、前記負荷算出部は、前記送り軸のトルクから送り軸の摩擦に相当するトルク分を差し引いたトルクから主軸に作用する力を算出することを特徴とする請求項1〜3のいずれか一つに記載の数値制御装置である。
According to a third aspect of the present invention, the load calculating unit is an acceleration obtained by multiplying the acceleration of the feed shaft acquired by the control unit or the detector by inertia from the torque of the feed shaft acquired by the physical data acquiring unit. The numerical controller according to claim 1, wherein a force acting on the main shaft is calculated from a torque obtained by subtracting a minute torque.
The invention according to claim 4 is characterized in that the load calculating unit calculates a force acting on the main shaft from a torque obtained by subtracting a torque corresponding to the friction of the feed shaft from the torque of the feed shaft. It is a numerical control apparatus as described in any one of -3.

本発明により、切削状態を示す切削信号を監視し、非切削時は、従来通り主軸の回転速度や回転時間を積算し、切削時は、回転速度や回転時間に主軸に作用する力に応じた重みを乗じて積算し、切削時の主軸に作用する負荷の影響を積算値に考慮し、より精度よく交換時期を見積もることが可能な、主軸を支持するベアリングの寿命を推定する機能を備えた数値制御装置を提供できる。   According to the present invention, the cutting signal indicating the cutting state is monitored. When not cutting, the rotation speed and rotation time of the main spindle are integrated as usual, and at the time of cutting, the rotation speed and the rotation time correspond to the force acting on the main spindle. A function that estimates the life of the bearing that supports the spindle, which can be estimated with a weight and integrated, taking into account the influence of the load acting on the spindle at the time of cutting in the integrated value, and more accurately estimating the replacement time. A numerical control device can be provided.

本発明の数値制御装置を説明するブロック図である。It is a block diagram explaining the numerical control apparatus of this invention. 各軸が互いに直交するX,Y,Zの3軸で、主軸がZ軸方向に移動する機械構成における主軸に作用する合力を説明する図である。It is a figure explaining the resultant force which acts on the main axis | shaft in the machine structure where each axis | shaft is three axes | shafts of X, Y, and Z orthogonal to each other, and a main axis | shaft moves to a Z-axis direction. 主軸に作用する重みを考慮するかしないかによって、ベアリングの寿命を判断する指標値に差がでることを説明する図である。It is a figure explaining the difference in the index value which judges the lifetime of a bearing depending on whether the weight which acts on a main shaft is considered. ベアリングの寿命を判断する指標値を算出する処理を説明するフロー図である。It is a flowchart explaining the process which calculates the index value which judges the lifetime of a bearing.

以下、本発明の実施形態を図面と共に説明する。
本発明は、工作機械の主軸を支持するベアリングの寿命値を求めるのではなく、寿命値と比較する指標値を算出する。指標値は、ベアリングが支持する主軸の回転時間を単純に積算するのではなく、主軸に作用する力の影響を考慮した上で積算する。これによって、寿命値が固定値であっても、主軸に作用する力の影響が考慮されるので、精度よくベアリングの寿命を判定することが可能になる。なお、本明細書では、指標値、積算値、および回転時間を同じ符号Mを用いて説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The present invention does not calculate the life value of the bearing that supports the spindle of the machine tool, but calculates an index value to be compared with the life value. The index value is not calculated simply by integrating the rotation time of the main shaft supported by the bearing, but is calculated taking into consideration the influence of the force acting on the main shaft. As a result, even if the life value is a fixed value, the influence of the force acting on the main shaft is taken into consideration, so that it is possible to accurately determine the life of the bearing. In the present specification, the index value, the integrated value, and the rotation time will be described using the same symbol M.

<実施形態1>
図1は本発明の数値制御装置を説明するブロック図である。数値制御装置20は工作機械10の機構部に備わったサーボモータ11によって工作機械の各軸が駆動制御される。 工作機械の主軸を支持するベアリングの寿命は、摩耗や金属疲労等の蓄積の影響を受けるため、交換時期を判定するのに使われる指標値としては、ベアリングが支持する主軸の回転速度や回転時間の累積値が有効である。しかし、ベアリングの寿命は、主軸に作用する力の影響を受けるため、単純に主軸の回転速度や回転時間を積算するだけでは指標値としては不十分である。
<Embodiment 1>
FIG. 1 is a block diagram illustrating a numerical control apparatus according to the present invention. In the numerical control device 20, each axis of the machine tool is driven and controlled by a servo motor 11 provided in a mechanical part of the machine tool 10. The life of a bearing that supports the spindle of a machine tool is affected by accumulation of wear, metal fatigue, etc., so the index values used to determine the replacement time are the rotation speed and rotation time of the spindle that the bearing supports. The cumulative value of is valid. However, since the life of the bearing is affected by the force acting on the main shaft, it is not sufficient as an index value to simply integrate the rotation speed and rotation time of the main shaft.

例えば、ベアリングが支持する主軸を駆動させた場合、同じ総回転数でも主軸に作用する力の大きさ(電流の大きさ)によってベアリングの寿命が異なる。主軸にかかる力が大きいとベアリングにかかる力も大きくなるので、必然的に寿命が短くなり、ベアリングにかかる力が小さいと寿命が長くなる。   For example, when the main shaft supported by the bearing is driven, the life of the bearing varies depending on the magnitude of the force (the magnitude of the current) acting on the main shaft even at the same total rotational speed. When the force applied to the main shaft is large, the force applied to the bearing also increases, so the life is inevitably shortened, and when the force applied to the bearing is small, the life is extended.

そこで、実施形態1では、切削状態を示す切削信号を監視し、主軸が被加工物を加工する切削状態にある場合は、主軸の回転速度や回転時間に主軸に作用する力に応じた重みを乗算して積算する。一方、切削信号が、加工状態でない非切削状態である場合は、重みを乗算せずに積算する。これにより、主軸とワークが接触している切削中は、主軸に作用する力の影響を指標値に考慮することができるので、単純に積算する場合に比べて精度よく交換時期を見積もることができる。   Therefore, in the first embodiment, a cutting signal indicating a cutting state is monitored, and when the main shaft is in a cutting state for processing a workpiece, a weight corresponding to the force acting on the main shaft is applied to the rotation speed and the rotation time of the main shaft. Multiply and multiply. On the other hand, when the cutting signal is a non-cutting state that is not a machining state, the weights are integrated without multiplication. As a result, during cutting when the spindle and workpiece are in contact, the influence of the force acting on the spindle can be taken into account in the index value, so that the replacement time can be estimated with higher accuracy than in the case of simple integration. .

具体的には、数値制御装置20の物理データ取得部22において、主軸の回転速度V(kΔt)と送り軸のトルクS(kΔt)(k=0,1,2,3….)を、工作機械10の各駆動軸(モータ)を制御する制御部21、又は、駆動軸に取り付けられた検出器(図示せず)から所定の周期Δt毎に取得する。そして、負荷算出部23において物理データ取得部で取得した送り軸のトルクS(kΔt)から、主軸に作用する力D(kΔt)を算出する。   Specifically, in the physical data acquisition unit 22 of the numerical controller 20, the rotation speed V (kΔt) of the main shaft and the torque S (kΔt) (k = 0, 1, 2, 3,. It is acquired every predetermined period Δt from the control unit 21 that controls each drive shaft (motor) of the machine 10 or a detector (not shown) attached to the drive shaft. Then, the load calculation unit 23 calculates the force D (kΔt) acting on the main shaft from the torque S (kΔt) of the feed shaft acquired by the physical data acquisition unit.

図2は、各軸が互いに直交するX、Y、Zの3軸で、主軸がZ軸方向に移動する機械構成を図示している。テーブル34上に載置されたワーク33を、主軸30に装着された工具32によって加工する。Z軸の位置を固定した場合、X軸のトルクをSx(kΔt)、Y軸のトルクをSy(kΔt)とすると、主軸にかかる力は、数1式に示すように、X、Y軸の合力D(kΔt)になる。合力D(kΔt)は主軸に垂直に作用する力であるが、ここでは合力“D(kΔt)≒ベアリングに作用する力”としている。なお、主軸の構成と上記の主軸に作用する力D(kΔt)をもとにベアリング31に作用する力を求めてもよい。   FIG. 2 illustrates a mechanical configuration in which each axis is three axes of X, Y, and Z orthogonal to each other and the main axis moves in the Z-axis direction. The workpiece 33 placed on the table 34 is processed by a tool 32 attached to the spindle 30. When the Z-axis position is fixed and the X-axis torque is Sx (kΔt) and the Y-axis torque is Sy (kΔt), the force applied to the main axis is expressed by the X and Y axes as shown in Equation (1). The resultant force is D (kΔt). The resultant force D (kΔt) is a force acting perpendicularly to the main shaft, but here the resultant force is “D (kΔt) ≈force acting on the bearing”. The force acting on the bearing 31 may be obtained based on the configuration of the main shaft and the force D (kΔt) acting on the main shaft.

次に、重み抽出部25において、負荷算出部23で算出した値D(kΔt)をもとに主軸の回転速度V(kΔt)に乗算する重みE(kΔt)を、予め与えられた力Dと重みE(D)の対応テーブルから抽出する。重みE(D)は、実測値やシミュレーション結果などから求められる。 Next, in the weight extraction unit 25, a weight E (kΔt) that is multiplied by the spindle rotational speed V (kΔt) based on the value D (kΔt) calculated by the load calculation unit 23 is given as a force D k given in advance. And a weight E (D k ) correspondence table. The weight E (D k ) is obtained from an actual measurement value or a simulation result.

例えば、主軸と被加工物が接触していない非切削状態で、所定の速度Vで駆動し続けた時の寿命をLとする。そして、送り軸が主軸と被加工物の相対的な位置を制御して主軸に力Dを加えている切削状態で、所定の速度Vで駆動し続けた時の寿命をL(D)とすると、切削時の寿命は、非切削時のL(D)/L倍になる。したがって、主軸の回転速度V(kΔt)に乗算する重みE(D)としては、切削時の寿命を非切削時の寿命で割った値L(D)/Lなどが考えられる。 For example, let L k be the lifetime when the spindle is continuously driven at a predetermined speed V k in a non-cutting state where the spindle and workpiece are not in contact. Then, in a cutting state in which the feed shaft controls the relative position between the main shaft and the workpiece and applies a force D k to the main shaft, the life when the drive shaft continues to be driven at a predetermined speed V k is expressed as L (D k ), The lifetime at the time of cutting is L (D k ) / L k times that at the time of non-cutting. Therefore, as the weight E (D k ) multiplied by the rotation speed V (kΔt) of the spindle, a value L (D k ) / L k obtained by dividing the life at the time of cutting by the life at the time of non-cutting can be considered.

次に、切削フラグ監視部24において制御部21から得られる切削、非切削の信号(フラグ)をもとに主軸が切削状態にあるか、非切削状態にあるかを監視する。切削信号は、工作機械のNCプログラム上のG01、G03などの切削送りのコードや、主軸の負荷が所定値よりも大きくなった場合に切削状態とみなして生成される。   Next, the cutting flag monitoring unit 24 monitors whether the spindle is in a cutting state or a non-cutting state based on a cutting / non-cutting signal (flag) obtained from the control unit 21. The cutting signal is generated as a cutting state when a cutting feed code such as G01 and G03 on the NC program of the machine tool or a load on the spindle exceeds a predetermined value.

切削状態にある場合、重み抽出部25で抽出された重みE(D(kΔt))は、積算部26において回転速度V(kΔt)に乗算され、数2式に示すように第2の回転速度V’(kΔt)として算出される。そして、数3式に示すように、重みを考慮した第2の回転速度V’(kΔt)に所定の周期Δtを乗算した値の絶対値を積算部26において積算し、指標値Mを算出する。一方、非切削時は、切削時に比べて主軸に直接力が作用しないので、数4式に示すように回転速度V(kΔt)に所定の周期Δtを乗算した値の絶対値をそのまま積算し、指標値Mとする。   When in the cutting state, the weight E (D (kΔt)) extracted by the weight extraction unit 25 is multiplied by the rotation speed V (kΔt) in the integration unit 26, and the second rotation speed as shown in Equation 2 is obtained. Calculated as V ′ (kΔt). Then, as shown in Formula 3, the absolute value of a value obtained by multiplying the second rotation speed V ′ (kΔt) in consideration of the weight by a predetermined period Δt is integrated in the integrating unit 26, and the index value M is calculated. . On the other hand, since the force does not act directly on the main spindle when not cutting, the absolute value of the value obtained by multiplying the rotational speed V (kΔt) by a predetermined period Δt as shown in Equation 4 is integrated as it is, The index value is M.

図3は、(a)主軸に作用する力Dに応じた重みE(D)と、(b)主軸の回転速度V(kΔt)と、(c)主軸の回転速度V(kΔt)に重みE(D(kΔt))を乗じた値V’(kΔt)とその積算値(指標値)M’を示し、積算値(指標値)Mは主軸の回転速度V(kΔt)を単純に積算した値になる。なお、ここでは所定の周期Δtを1としている。このように重みを考慮するか、しないかによって指標値Mの値が違ってくることがわかる。 FIG. 3 shows (a) the weight E (D k ) corresponding to the force D k acting on the main shaft, (b) the main shaft rotation speed V (kΔt), and (c) the main shaft rotation speed V (kΔt). A value V ′ (kΔt) multiplied by a weight E (D (kΔt)) and its integrated value (index value) M ′ are shown. The integrated value (index value) M simply integrates the rotation speed V (kΔt) of the spindle. It becomes the value. Here, the predetermined period Δt is 1. Thus, it can be seen that the index value M varies depending on whether or not the weight is taken into consideration.

こうして算出された指標値Mは、記憶部27に記憶されて、保守のために利用される。例えば、指標値Mを表示器等の出力部(図示せず)に出力して、その結果をもとにオペレータが交換時期かどうかを判断する。また、予め定められた交換時期の目安と指標値を比較して、指標値が上回った場合に交換時期が近づいていることを警告したり、機械を停止させたりする。その他には、指標値と交換時期の目安とを比較しながら、ベアリングの寿命が近づいている場合や、ベアリングを長く使いたい場合には、動作条件の設定を自動的にゆるめて運転する。   The index value M calculated in this way is stored in the storage unit 27 and used for maintenance. For example, the index value M is output to an output unit (not shown) such as a display, and the operator determines whether it is time for replacement based on the result. Also, the index value is compared with a predetermined standard for replacement time, and if the index value exceeds, a warning is given that the replacement time is approaching, or the machine is stopped. In addition, while comparing the index value and the guideline for replacement, if the bearing life is approaching or if you want to use the bearing for a long time, the operation condition is automatically relaxed.

<実施形態2>
実施形態2では、主軸の回転時間M(所定の周期Δtの積算値)(注:回転時間は積算値の一つの例であるので積算値を表すMを用いた。)を算出する。回転信号監視部(図示せず)において、制御部21から回転状態信号(フラグ)を取得し、主軸が回転中か停止中かを監視する。例えば、NCプログラム上で主軸の回転指令であるS指令が0以外の値の場合は回転中とみなし、0の場合は停止中とみなす。
<Embodiment 2>
In the second embodiment, the rotation time M of the main spindle (the integrated value of the predetermined period Δt) (Note: Since the rotation time is an example of the integrated value, M representing the integrated value is used) is calculated. A rotation signal monitoring unit (not shown) acquires a rotation state signal (flag) from the control unit 21 and monitors whether the spindle is rotating or stopped. For example, when the S command, which is the rotation command of the spindle, is a value other than 0 on the NC program, it is regarded as rotating, and when it is 0, it is regarded as stopped.

そして、積算部26において、回転状態信号が回転中、且つ、切削信号が非切削状態である場合、数5式に示すように所定の周期Δtを積算して回転時間Mを算出する。一方、回転状態信号が回転中、且つ、切削信号が切削状態である場合、数6式に示すように所定の周期Δtに重み抽出部25で抽出した重みE(D(kΔt))を乗算した第2の所定の周期Δt’を積算して回転時間Mを算出する。   Then, when the rotation state signal is rotating and the cutting signal is a non-cutting state, the integration unit 26 calculates a rotation time M by integrating a predetermined period Δt as shown in Equation 5. On the other hand, when the rotation state signal is rotating and the cutting signal is the cutting state, the predetermined period Δt is multiplied by the weight E (D (kΔt)) extracted by the weight extraction unit 25 as shown in Equation 6. The rotation time M is calculated by integrating the second predetermined period Δt ′.

ここで、図1に示される数値制御装置20で実行される指標値(積算値)Mを求める処理を図4により説明する。図4はベアリングの寿命を判断する指標値を算出する処理を説明するフロー図である。以下、各ステップに従って説明する。
●[ステップSA01]kとMを初期値(=0)とする。
●[ステップSA02]ベアリングが支持する主軸の回転速度V(kΔt)と送り軸のトルクS(kΔt)を取得する。
●[ステップSA03]送り軸のトルクS(kΔt)から主軸に作用する力D(kΔt)を算出する。
●[ステップSA04]主軸に作用する力D(kΔt)に応じた重みE(D(kΔt))を算出する。
●[ステップSA05]切削時か否か判断し、切削時のとき(YES)、ステップSA07へ移行し、切削時ではないとき(NO)、ステップSA06へ移行する。
●[ステップSA06]回転速度V(kΔt)を指標値(積算値)Mに積算し、ステップSA09へ移行する。
●[ステップSA07]主軸の回転速度V(kΔt)に重みE(D(kΔt))を乗算し、第2の回転速度V’(kΔt)を算出する。
●[ステップSA08]第2の回転速度V’(kΔt)を指標値(積算値)Mに積算する。
●[ステップSA09]積算値Mを記憶部に記憶する。
●[ステップSA10]所定の周期Δt経過後、kに1を加算した値を新たにkとし、ステップSA02に戻る。
Here, the process for obtaining the index value (integrated value) M executed by the numerical controller 20 shown in FIG. 1 will be described with reference to FIG. FIG. 4 is a flowchart for explaining processing for calculating an index value for judging the life of the bearing. Hereinafter, it demonstrates according to each step.
[Step SA01] k and M are set to initial values (= 0).
[Step SA02] The rotational speed V (kΔt) of the main shaft supported by the bearing and the torque S (kΔt) of the feed shaft are acquired.
[Step SA03] The force D (kΔt) acting on the main shaft is calculated from the torque S (kΔt) of the feed shaft.
[Step SA04] The weight E (D (kΔt)) corresponding to the force D (kΔt) acting on the main shaft is calculated.
[Step SA05] It is determined whether or not it is during cutting. When cutting (YES), the process proceeds to Step SA07. When it is not during cutting (NO), the process proceeds to Step SA06.
[Step SA06] The rotational speed V (kΔt) is integrated with the index value (integrated value) M, and the process proceeds to Step SA09.
[Step SA07] The rotation speed V (kΔt) of the spindle is multiplied by the weight E (D (kΔt)) to calculate a second rotation speed V ′ (kΔt).
[Step SA08] The second rotational speed V ′ (kΔt) is integrated with the index value (integrated value) M.
[Step SA09] The integrated value M is stored in the storage unit.
[Step SA10] After a predetermined period Δt has elapsed, a value obtained by adding 1 to k is newly set as k, and the process returns to step SA02.

上述したフローチャートを補足して説明する。フローチャートの各ステップの処理と図1の数値制御装置20の各部との対応を説明すると、ステップSA02の処理は物理データ取得部22、ステップSA03の処理は負荷算出部23、ステップSA04の処理は重み抽出部25、ステップSA05は切削フラグ監視部24、ステップSA06〜ステップSA08は積算部26、ステップSA09の記憶部は記憶部27に対応する。   A supplementary explanation of the flowchart described above will be given. The correspondence between the processing of each step of the flowchart and each unit of the numerical control device 20 of FIG. 1 will be described. The processing of step SA02 is the physical data acquisition unit 22, the processing of step SA03 is the load calculation unit 23, and the processing of step SA04 is the weight. The extraction unit 25, step SA05 corresponds to the cutting flag monitoring unit 24, steps SA06 to SA08 correspond to the integration unit 26, and the storage unit of step SA09 corresponds to the storage unit 27.

<実施形態3,4>
送り軸のトルクS(kΔt)は、送り軸の加減速に伴うトルクA(kΔt)と摩擦に伴うトルクF(kΔt)を含んでいるため、主軸にかかるトルクS’(kΔt)だけを抽出するためには、数7式に示すようにS(kΔt)から加減速分のトルクA(kΔt)と摩擦分のトルクF(kΔt)を差し引く必要がある。
<Embodiments 3 and 4>
The feed shaft torque S (kΔt) includes the torque A (kΔt) associated with acceleration / deceleration of the feed shaft and the torque F (kΔt) associated with friction, so only the torque S ′ (kΔt) applied to the main shaft is extracted. For this purpose, it is necessary to subtract the torque A (kΔt) for acceleration / deceleration and the torque F (kΔt) for friction from S (kΔt) as shown in Equation 7.

加減速分のトルクは、送り軸を駆動するモータにかかるイナーシャJに各駆動軸に取り付けられた検出器や、制御部から得られる加速度a(kΔt)を乗じることで求められる。加速度a(kΔt)は、位置や速度を微分することで求めてもよい。又、摩擦分のトルクF(kΔt)は、モータを駆動する際の静止摩擦や動摩擦から算出される。   The torque for acceleration / deceleration is obtained by multiplying the inertia J applied to the motor driving the feed shaft by the detector attached to each drive shaft and the acceleration a (kΔt) obtained from the control unit. The acceleration a (kΔt) may be obtained by differentiating the position and speed. Further, the frictional torque F (kΔt) is calculated from static friction and dynamic friction when the motor is driven.

10 工作機械
11 サーボモータ

20 数値制御装置
21 制御部
22 物理データ取得部
23 負荷算出部
24 切削フラグ監視部
25 重み抽出部
26 積算部
27 記憶部

30 主軸
31 ベアリング
32 工具
33 ワーク
34 テーブル
10 Machine tools 11 Servo motors

DESCRIPTION OF SYMBOLS 20 Numerical control apparatus 21 Control part 22 Physical data acquisition part 23 Load calculation part 24 Cutting flag monitoring part 25 Weight extraction part 26 Accumulation part 27 Storage part

30 Spindle 31 Bearing 32 Tool 33 Work 34 Table

Claims (4)

工作機械の主軸を支持するベアリングの寿命を推定する機能を備えた工作機械を制御する数値制御装置において、
前記主軸の回転速度と送り軸のトルクを、駆動軸を制御する制御部、又は、各駆動軸に取り付けられた検出器から所定の周期毎に取得する物理データ取得部と、
前記制御部が出力する切削状態を示す切削信号を監視する切削信号監視部と、
前記物理データ取得部で取得した送り軸のトルクから主軸に作用する力を算出する負荷算出部と、
前記負荷算出部で算出した主軸に作用する力に応じた重みを予め与えられたテーブルから抽出する重み抽出部と、
前記切削信号が非切削状態にある場合、前記主軸の回転速度を所定の周期毎に積算し、
前記切削信号が切削状態にある場合、前記物理データ取得部で取得した前記主軸の回転速度に前記重み抽出部で抽出した重みを乗算した第2の主軸の回転速度を所定の周期毎に積算する第1積算部と、
前記第1積算部で積算した積算値を記憶する記憶部と、
を備え、
前記積算値に基づいて前記ベアリングの寿命を推定することを特徴とする数値制御装置。
In a numerical control device for controlling a machine tool having a function of estimating the life of a bearing that supports a spindle of a machine tool,
A rotation speed of the main shaft and torque of the feed shaft, a control unit that controls the drive shaft, or a physical data acquisition unit that acquires a predetermined period from a detector attached to each drive shaft;
A cutting signal monitoring unit for monitoring a cutting signal indicating a cutting state output by the control unit;
A load calculation unit for calculating a force acting on the main shaft from the torque of the feed shaft acquired by the physical data acquisition unit;
A weight extraction unit that extracts a weight according to the force acting on the spindle calculated by the load calculation unit from a table given in advance;
When the cutting signal is in a non-cutting state, the rotational speed of the spindle is integrated every predetermined period,
When the cutting signal is in a cutting state, the rotation speed of the second spindle obtained by multiplying the rotation speed of the spindle acquired by the physical data acquisition unit by the weight extracted by the weight extraction unit is integrated every predetermined period. A first integrating unit;
A storage unit for storing the integrated value integrated by the first integrating unit;
With
A numerical controller that estimates the life of the bearing based on the integrated value.
工作機械の主軸を支持するベアリングの寿命を推定する機能を備えた工作機械を制御する数値制御装置において、
前記主軸の回転速度と送り軸のトルクを、駆動軸を制御する制御部、又は、各駆動軸に取り付けられた検出器から所定の周期毎に取得する物理データ取得部と、
前記制御部が出力する切削状態を示す切削信号を監視する切削信号監視部と、
前記物理データ取得部で取得した送り軸のトルクから主軸に作用する力を算出する負荷算出部と、
前記負荷算出部で算出した主軸に作用する力に応じた重みを予め与えられたテーブルから抽出する重み抽出部と、
前記主軸が回転中か停止中かを示す回転状態信号を監視する回転信号監視部と、
記回転状態信号が回転中、且つ、前記切削信号が非切削状態の場合、前記所定の周期を積算し、前記回転状態信号が回転中、且つ、前記切削信号が切削状態の場合、前記所定の周期に前記重み抽出部で抽出した重みを乗算した第2の所定の周期を前記所定の周期毎に積算する第2積算部と、
前記第2積算部で積算した積算値を記憶する記憶部と、
を備え、
前記積算値に基づいて前記ベアリングの寿命を推定することを特徴とする数値制御装置。
In a numerical control device for controlling a machine tool having a function of estimating the life of a bearing that supports a spindle of a machine tool,
A rotation speed of the main shaft and torque of the feed shaft, a control unit that controls the drive shaft, or a physical data acquisition unit that acquires a predetermined period from a detector attached to each drive shaft;
A cutting signal monitoring unit for monitoring a cutting signal indicating a cutting state output by the control unit;
A load calculation unit for calculating a force acting on the main shaft from the torque of the feed shaft acquired by the physical data acquisition unit;
A weight extraction unit that extracts a weight according to the force acting on the spindle calculated by the load calculation unit from a table given in advance;
A rotation signal monitoring unit the main shaft to monitor the rotational state signal indicating whether or stopped rotating,
Before SL during rotation state signal is rotated, and, when the cutting signal is non-cutting state, and integrating the predetermined period, in the rotation state signal is rotated, and, when the cutting signal is cutting state, the predetermined A second integration unit that integrates a second predetermined period obtained by multiplying the period extracted by the weight extracted by the weight extraction unit for each predetermined period ;
A storage unit for storing the integrated value integrated by the second integrating unit;
With
A numerical controller that estimates the life of the bearing based on the integrated value.
前記負荷算出部は、前記物理データ取得部で取得した前記送り軸のトルクから前記制御部、又は、前記検出器で取得した送り軸の加速度にイナーシャを乗じた加速度分のトルクを差し引いたトルクから主軸に作用する力を算出することを特徴とする請求項1または2に記載の数値制御装置。   From the torque obtained by subtracting the torque corresponding to the acceleration obtained by multiplying the acceleration of the feed axis acquired by the control unit or the detector from the torque of the feed axis acquired by the physical data acquisition unit. The numerical control device according to claim 1, wherein a force acting on the main shaft is calculated. 前記負荷算出部は、前記送り軸のトルクから送り軸の摩擦に相当するトルク分を差し引いたトルクから主軸に作用する力を算出することを特徴とする請求項1〜3のいずれか一つに記載の数値制御装置。   The load calculation unit calculates a force acting on the main shaft from a torque obtained by subtracting a torque corresponding to the friction of the feed shaft from the torque of the feed shaft. The numerical controller described.
JP2013104090A 2013-05-16 2013-05-16 A numerical controller with a function to estimate the life of the bearing that supports the spindle Active JP5674859B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013104090A JP5674859B2 (en) 2013-05-16 2013-05-16 A numerical controller with a function to estimate the life of the bearing that supports the spindle
DE102014006904.4A DE102014006904B4 (en) 2013-05-16 2014-05-09 A numerical control device having a function of estimating a life end of a support bearing spindle
US14/276,115 US9157831B2 (en) 2013-05-16 2014-05-13 Numerical control device having function of estimating expiration of life of bearing supporting spindle
CN201410208858.7A CN104166371B (en) 2013-05-16 2014-05-16 Possesses the numerical control device of the function in the life-span of the bearing of presumption supporting spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013104090A JP5674859B2 (en) 2013-05-16 2013-05-16 A numerical controller with a function to estimate the life of the bearing that supports the spindle

Publications (2)

Publication Number Publication Date
JP2014223700A JP2014223700A (en) 2014-12-04
JP5674859B2 true JP5674859B2 (en) 2015-02-25

Family

ID=51831452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013104090A Active JP5674859B2 (en) 2013-05-16 2013-05-16 A numerical controller with a function to estimate the life of the bearing that supports the spindle

Country Status (4)

Country Link
US (1) US9157831B2 (en)
JP (1) JP5674859B2 (en)
CN (1) CN104166371B (en)
DE (1) DE102014006904B4 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6193911B2 (en) 2015-04-13 2017-09-06 ファナック株式会社 Machine tools with inspection function for spindle deterioration
DE102015212285B3 (en) * 2015-07-01 2016-10-27 Schaeffler Technologies AG & Co. KG Linear guide system and method for performing measurements on a linear guide system
JP6637687B2 (en) * 2015-07-01 2020-01-29 オークマ株式会社 Spindle load monitoring device for machine tools
JP5997330B1 (en) * 2015-07-31 2016-09-28 ファナック株式会社 Machine learning apparatus capable of determining whether or not spindle replacement is required, spindle replacement determination apparatus, control apparatus, machine tool and production system, and machine learning method
JP6392843B2 (en) 2016-12-28 2018-09-19 ファナック株式会社 Machine tool, production management system, and method for predicting and detecting tool life
JP6499707B2 (en) * 2017-04-03 2019-04-10 ファナック株式会社 Simulation device, program generation device, control device, and computer display method
JP6693927B2 (en) * 2017-10-11 2020-05-13 ファナック株式会社 Control device
EP3758219A4 (en) * 2018-02-21 2021-11-03 Kabushiki Kaisha Yaskawa Denki Motor control system, motor control device, and bearing life diagnosis method
JP7097268B2 (en) * 2018-09-07 2022-07-07 株式会社ジャノメ Press equipment, terminal equipment, ball screw estimated life calculation method and program
CN109522650B (en) * 2018-11-16 2022-05-10 吉林大学 Method for evaluating service life of electric spindle without sudden failure information
JP7387368B2 (en) * 2019-10-04 2023-11-28 オークマ株式会社 Machine tool spindle monitoring device and spindle monitoring method
CN111618655B (en) * 2019-11-29 2021-12-28 东莞先知大数据有限公司 Quantitative evaluation method for health degree of ball screw of numerical control machine tool

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH416190A (en) 1964-12-10 1966-06-30 Bbc Brown Boveri & Cie Procedure and arrangement for counting the total permissible operating hours of thermal machines
US4386407A (en) * 1980-08-11 1983-05-31 The Bendix Corporation Lathe control system
DE3382298D1 (en) * 1982-01-12 1991-07-04 Mitsubishi Electric Corp NUMERICALLY CONTROLLED MACHINE TOOL.
US4444061A (en) 1982-03-26 1984-04-24 Camtech Inc. Force and torque sensor for machine tools
JPH0569275A (en) * 1991-09-12 1993-03-23 Fanuc Ltd Numerical control device
JPH05208343A (en) * 1992-01-28 1993-08-20 Mori Seiki Co Ltd Numerical control device with life managing function
JPH0751993A (en) * 1993-08-06 1995-02-28 Fanuc Ltd Machine element life estimating method for cnc
JPH07195256A (en) * 1993-11-26 1995-08-01 Omron Corp Control unit and machine tool therewith as well as torque measuring instrument and tool breakage detector
JPH09272044A (en) * 1996-04-05 1997-10-21 Hitachi Seiki Co Ltd Detecting method for cutting torque in machine tool and its device
US6266572B1 (en) * 1996-11-07 2001-07-24 Okuma Corporation Apparatus for generating a numerical control command according to cut resistance value and cut torque value of machining simulation
JP2001350510A (en) * 2000-06-06 2001-12-21 Mori Seiki Co Ltd Machine tool maintenance management system
KR100548874B1 (en) * 2002-03-01 2006-02-02 도시바 기카이 가부시키가이샤 Numerical control unit having function for detecting the nicked edge of tool
JP2004295348A (en) 2003-03-26 2004-10-21 Mori Seiki Co Ltd Maintenance management system of machine tool
JP2011247660A (en) * 2010-05-25 2011-12-08 Mitsubishi Heavy Ind Ltd Life monitoring method of bearing
JP5644374B2 (en) 2010-10-27 2014-12-24 株式会社ジェイテクト Machine tool spindle state detection device
JP2014092398A (en) * 2012-11-01 2014-05-19 C I Kasei Co Ltd Bearing replacement timing estimation system

Also Published As

Publication number Publication date
DE102014006904A1 (en) 2014-11-20
JP2014223700A (en) 2014-12-04
CN104166371A (en) 2014-11-26
US9157831B2 (en) 2015-10-13
CN104166371B (en) 2016-09-28
DE102014006904B4 (en) 2021-10-14
US20140338468A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP5674859B2 (en) A numerical controller with a function to estimate the life of the bearing that supports the spindle
US20200356069A1 (en) Machine tool management system
JP4299761B2 (en) Thermal displacement correction method and thermal displacement correction apparatus for machine tool
JP6309936B2 (en) Control device with coolant monitoring function
JP5416238B2 (en) Waveform display device with data management function
US20150194805A1 (en) Numerical control apparatus
JP6311635B2 (en) Numerical control device and control method
JP2016226150A (en) Motor control system comprising function for detecting abnormality of brake, and brake abnormality detection method
JP2009080752A (en) Controller of machine tool having collision detection function
JP2018026118A (en) Diagnostic method of bearing in feed screw device
JP6966166B2 (en) Machine tool feed shaft operating status display device and operating status display method
JP2019030954A (en) Machine tool and method for calculating degree of abrasion of tool
JP2013196327A (en) Cutting distance computing device for multi-axis processing machine
JP2016045878A (en) Numerical control device indicating information for shortening cycle time
JP5860074B2 (en) Numerical control system for machine tools with efficient periodic inspection of parts
JP5660850B2 (en) Vibration display device
JP2018192485A (en) Mold press device and mold press method
JP2014091187A (en) Tool abnormality detection device, and tool abnormality detection method
JP2018028865A (en) Machine with rotation axis
WO2021261418A1 (en) Tool diagnostic device and tool diagnostic method
JP2009075954A (en) Nc controller and recording medium
TW201313378A (en) Gib fastening state assessment method and device
JP2003271213A (en) Moving axis monitoring device and method therefor, moving axis monitoring program and computer readable recording medium therewith
JP2013027967A (en) Machine tool
JP2018097844A (en) Machine tool and method for controlling machine tool

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R150 Certificate of patent or registration of utility model

Ref document number: 5674859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150