WO2020048577A1 - Energieeffiziente unterdruckdestillation - Google Patents

Energieeffiziente unterdruckdestillation Download PDF

Info

Publication number
WO2020048577A1
WO2020048577A1 PCT/EP2018/025226 EP2018025226W WO2020048577A1 WO 2020048577 A1 WO2020048577 A1 WO 2020048577A1 EP 2018025226 W EP2018025226 W EP 2018025226W WO 2020048577 A1 WO2020048577 A1 WO 2020048577A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
basin
vacuum distillation
energy
evaporation
Prior art date
Application number
PCT/EP2018/025226
Other languages
English (en)
French (fr)
Inventor
Michael Lukas Dong Yong Prochazka
Original Assignee
Michael Lukas Dong Yong Prochazka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michael Lukas Dong Yong Prochazka filed Critical Michael Lukas Dong Yong Prochazka
Priority to PCT/EP2018/025226 priority Critical patent/WO2020048577A1/de
Publication of WO2020048577A1 publication Critical patent/WO2020048577A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/046Treatment of water, waste water, or sewage by heating by distillation or evaporation under vacuum produced by a barometric column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • B01D3/103Vacuum distillation by using a barometric column
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Definitions

  • the energy-efficient vacuum distillation is based on the following principles:
  • That water flows from a basin with a higher water level into a basin with a lower water level until the water level is level, even if the two water basins are connected by a water-filled pipe which runs in between above the water level of the basins .
  • the heart of the energy-efficient vacuum distillation is the vacuum distillation unit, which consists of the evaporation unit and the condensation unit.
  • the evaporation unit and the condensation unit are connected to one another in such a way that they can be suppressed.
  • the evaporation unit is a basin several meters deep.
  • the condensation unit consists of a heat sink or a cooling device, under which there is a condensation water collecting basin.
  • the heat sink or the cooling device in the condensation unit must be dimensioned in such a way that the amount of water which evaporates in the evaporation unit condenses again and becomes water without difficulty.
  • the condensate collecting basin is exactly as deep as the basin of the evaporation unit, but can be many times smaller in the horizontal area.
  • the first regulation basin is for the incoming water, the second regulation basin for the outflowing water and the third regulation basin for the distilled water. It should be noted that these may be small, but must be as deep as the evaporation basin and the condensate collection basin. The bottom and the upper edge of all basins must be horizontal at the same level.
  • the two regulation basins for the inlet and the outlet of the water are connected to the bottom of the evaporation basin, so that water can flow into the evaporation basin from the inflow regulation basin and then flow out of the evaporation basin into the outlet regulation basin. It is important that the connection is located so far in the basin that the entire connection is always below the water level, so that no air can get into the vacuum distillation unit through the connection.
  • the third regulation basin with the distilled water is connected at the bottom to the condensation water collecting basin, so that water can flow from the condensation water basin into the regulation basin.
  • the connection between the two basins is always below the water level, so that no air can get into the vacuum distillation unit.
  • a water heater should be installed in front of the inflow regulation basin or between the inflow regulation basin and the evaporation basin.
  • the boiling point of the water is reduced by the pressure prevailing in the evaporation unit, so that the water does not have to be heated up so much to evaporate. Nevertheless, a certain temperature difference between the water in the evaporation unit and the condensation unit is necessary because the steam has to condense again and the temperature has to be lower than that of the water in the evaporation unit.
  • the negative pressure in the negative pressure distillation unit is achieved by gravity, the weight of the water and the volume of the water.
  • the Suppression is brought about by a difference of several meters in the height of the water level, which is formed between the height of the water levels of the two basins of the vacuum distillation unit and the height of the water levels of the three regulation basins. Due to the connections that exist between the pools of the vacuum distillation unit and the control tanks, the weight by gravity wants to balance the height of the water levels.
  • the vacuum distillation unit is encapsulated, so that no air can take the place of water, there is a negative pressure and the suction of the vacuum does not allow the water to escape from the pools of the vacuum distillation unit as it would like and to compensate for the height of the water levels.
  • the height of the water level in operation is such that the regulation basins all have a low water level, but the water level of the two basins in the vacuum distillation unit is high, so that the difference in the height of both water levels is several meters is. For example, for physical reasons, the difference at sea level in water cannot be more than 9.81 meters.
  • the negative pressure becomes smaller, the water levels in the pools of the negative pressure distillation unit decrease and the evaporation in the evaporation unit stops. In return, more steam will condense into water and the oppression increases again, but such a pendulum effect is not desirable because the efficiency of the process decreases.
  • the size of the negative pressure, the difference in the heights of the water levels in the pools and the temperatures at which the work is carried out depend on the environmental conditions, such as the outside temperature or the height of the system's location above sea level.
  • the water will start to boil and evaporate in the upper layers due to the oppression that prevails here.
  • the steam condenses on the cooler or on the Condensation device and is collected in the condensate collecting basin. From there, the water flows into the regulation basin with the distilled water. It is intended that only a part of the water evaporates in the evaporation basin, since the remaining water, which now has a higher concentration of impurities (for example salt), rinses out of the evaporation basin. To achieve this, it is only necessary to keep the water level in the inflow regulation basin somewhat higher than that in the outflow regulation basin.
  • impurities for example salt
  • the energy-efficient vacuum distillation is suitable for use in a seawater desalination plant to obtain drinking water, but can also be used elsewhere for distillation purposes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Die energieeffiziente Unterdruckdestillation sorgt durch den Unterdruck für einen tieferen Siedepunkt und hat zur Folge, dass weniger Energie für das Erwärmen des Wassers notwendig ist. Der konstant herrschende Unterdruck, der in der Unterdruckdestillationseinheit herrscht, wird durch die Schwerkraft und das Gewicht des Wassers zustande gebracht. Sie eignet sich hervorragend zum Einsatz in einer Meerwasserentsalzungsanlage zur Gewinnung von Trinkwasser.

Description

Energieeffiziente Unterdruckdestillation
Beschreibung:
Die energieeffiziente Unterdruckdestillation basiert auf folgenden Prinzipien:
1. Auf dem Prinzip der herkömmlichen Destillation, indem verunreinigtes Wasser erhitzt wird bis das Wasser verdampft, der Dampf dann abge- kühlt wird und so zu sauberem Wasser kondensiert, dass dann aufgefan- gen wird.
2. Dass die Temperatur des Siedepunkts von Wasser mit fallendem Druck sinkt.
3. Die Nutzung des Eigengewichts des Wassers um einen Unterdrück zu er- zeugen.
4. Dass Wasser von einem Becken mit höherem Wasserspiegel in ein Be- cken mit tieferem Wasserspiegel fließt, bis der Wasserspiegel ausgegli- chen ist, auch wenn die beiden Wasserbecken über ein wassergefülltes Rohr verbunden sind, welches zwischendurch oberhalb des Wasserspie- gels der Becken verläuft.
Aufbau der Anlage: Das Herzstück der energieeffizienten Unterdruckdestillation ist die Unterdruck- destillationseinheit, die aus der Verdampfungseinheit und der Kondensations- einheit besteht. Die Verdampfungseinheit und die Kondensationseinheit sind so miteinander verbunden, dass in ihnen ein Unterdrück bestehen kann.
Die Verdampfungseinheit ist ein mehrere Meter tiefes Becken. Die Kondensationseinheit besteht aus einem Kühlkörper oder einer Kühlvor- richtung, unter dem sich ein Kondenswasserauffangbecken befindet. Der Kühl- körper bzw. die Kühlvorrichtung in der Kondensationseinheit muss so dimensi- oniert sein, dass ohne Schwierigkeiten die Menge Wasser, die in der Verdamp- fungseinheit verdampft wieder kondensiert und zu Wasser wird. Das Kondens- wasserauffangbecken ist genau so tief wie das Becken der Verdampfungsein- heit, kann jedoch in der horizontalen Fläche ein vielfaches kleiner sein.
Neben dem Verdampfungsbecken und dem Kondenswasserauffangbecken be- finden sich noch drei Regulierungsbecken. Das erste Regulierungsbecken ist für das zulaufende Wasser, das zweite Regulierungsbecken für das ablaufende Wasser und das dritte Regulierungsbecken ist für das destillierte Wasser. Zu beachten ist, dass diese zwar klein sein können, jedoch genau so tief sein müs- sen wie das Verdampfungsbecken und das Kondenswasserauffangbecken. Der Boden und der obere Rand aller Becken müssen in der Horizontalen auf glei- chem Niveau liegen.
Die beiden Regulierungsbecken für den Zulauf und den Ablauf des Wasser sind unten mit dem Verdampfungsbecken verbunden, sodass aus dem Zulaufregu- lierungsbecken Wasser in das Verdampfungsbecken hineinfließen und vom Verdampfungsbecken dann in das Ablaufregulierungsbecken herausfließen kann. Wichtig ist, dass die Verbindung soweit unten in den Becken angesiedelt ist, dass sich die gesamte Verbindung immer unterhalb der Wasserspiegel be- findet, damit durch die Verbindung keine Luft in die Unterdruckdestillations- einheit gelangen kann.
Das dritte Regulierungsbecken mit dem destillierten Wasser ist unten mit dem Kondenswasserauffangbecken verbunden, so dass Wasser aus dem Kondens- wasserauffangbecken in das Regulierungsbecken fließen kann. Auch hier muss sich die Verbindung zwischen den beiden Becken immer unterhalb der Wasser- spiegel befinden, so dass keine Luft in die Unterdruckdestillationseinheit gelan- gen kann.
Vor dem Zulaufregulierungsbecken oder zwischen dem Zulaufregulierungsbe- cken und dem Verdampfungsbecken ist sollte ein Wassererhitzer eingebaut werden.
Es ist bis zu einem gewissen Maße möglich, die Regulierungsbecken weniger hoch zu machen und anstelle dessen Ventile und Pumpen zu benutzen. Aller- dings macht dies das Aufbauen des Unterdrucks energieaufwändiger.
Zum Verständnis der Funktionsweise der energieeffizienten Unterdruckdestil- lation ist es hilfreich ein Verständnis vom herkömmlichen Destillationsverfah- ren zu haben. Beim herkömmlichen Destillationsverfahren wird unreines Was- ser bis zum Kochen gebracht, so dass das Wasser verdampft. Der Dampf kon- densiert indem er abgekühlt und das Kondenswasser bzw. destillierte Wasser aufgefangen wird.
Bei der energieeffizienten Unterdruckdestillation wird der Siedepunkt des Wassers durch den Unterdrück der in der Verdampfungseinheit herrscht her- untergesetzt, so dass das Wasser nicht so stark aufgeheizt werden muss, um zu verdampfen. Ein gewisserTemperaturunterschied zwischen dem Wasser in der Verdampfungseinheit und der Kondensationseinheit ist trotz allem notwendig, da der Dampf wieder kondensieren muss und dazu die Temperatur tiefer sein muss, als der des Wassers in der Verdampfungseinheit.
Der Unterdrück in der Unterdruckdestillationseinheit wird durch die Schwer- kraft, das Gewicht des Wassers und das Volumen des Wassers erreicht. Der Unterdrück wird durch eine mehrere Meter große Differenz der Höhe der Was- serspiegel zustande gebracht, die zwischen der Höhe der Wasserspiegel der beiden Becken der Unterdruckdestillationseinheit und der Höhe der Wasser- spiegel der drei Regulierungsbecken gebildet wird. Durch die Verbindungen die zwischen den Becken der Unterdruckdestillationseinheit und den Regulie- rungsbecken bestehen, will das Gewicht durch die Schwerkraft die Höhe der Wasserspiegel ausgleichen. Da jedoch die Unterdruckdestillationseinheit abge- kapselt ist, und so keine Luft anstelle des Wassers treten kann, entsteht ein Unterdrück und durch die Sogwirkung des Unterdrucks kann das Wasser nicht wie es möchte aus den Becken der Unterdruckdestillationseinheit entweichen und die Höhe der Wasserspiegel ausgleichen. Wie groß die Differenz der Höhe der Wasserspiegel ist hängt davon ab, wie groß der Unterdrück sein soll und bei welcher Temperatur das Wasser anfangen soll zu kochen. Unter der Höhe der Wasserspiegel der drei Regulierungsbecken gibt es nur minimale Differen- zen, durch die beispielsweise die Flussrichtung vom Regulierungsbecken mit dem zulaufenden Wasser durch das Verdampfungsbecken und dann in das Re- gulierungsbecken des ablaufenden Wassers gesteuert werden kann. Ebenso ist die Höhe der Wasserspiegel der beiden Becken in der Unterdruckdestillations- einheit annähernd identisch.
Wir werden nun den Lauf des Wassers in der energieeffizienten Unterdruck- destillation anschauen. Die Höhe der Wasserspiegel ist im Betrieb so, dass die Regulierungsbecken alle einen niedrigen Wasserspiegel aufweisen, der Was- serspiegel der beiden Becken in der Unterdruckdestillationseinheit jedoch hoch ist, dass die Differenz der Höhe beider Wasserspiegel mehrere Meter beträgt. Beispielsweise kann die Differenz aus physikalischen Gründen auf Meereshöhe bei Wasser nicht mehr als 9,81 Meter betragen.
Nun läuft erst Wasser in das Zulaufregulierungsbecken. Dieses kann schon vor- gewärmt sein, kann aber auch noch zwischen dem Zulaufregulierungsbecken und dem Verdampfungsbecken aufgewärmt werden. Im Falle dessen, dass der Kondensationskörper, an dem der Dampf kondensiert, unter die Wassertem- peratur im Verdampfungsbecken gekühlt wird, muss das Wasser im Zulauf gar nicht erwärmt werden. Eine Kombination zwischen dem Aufwärmen des zulau- fenden Wassers und kühlen des Kühlers ist auch möglich. Wichtig ist nur, dass ein genug großer Temperaturunterschied zwischen dem Wasser im Verdamp- fungsbecken und dem Kondensationskühler inklusiver dem Kondenswas- serauffangbeckens besteht. Um den Unterdrück in der Unterdruckdestillations- einheit zu halten, ist es wichtig, dass die Menge an Wasser, die in der Verdamp- fungseinheit verdampft in der Kondensationseinheit wieder zu Wasser wird. Wenn mehr verdampft als zu Wasser wird, wird der Unterdrück kleiner, die Wasserspiegel in den Becken der Unterdruckdestillationseinheit sinken und die Verdampfung in der Verdampfungseinheit stoppt. Es wird im Gegenzuge zwar mehr Dampf zu Wasser kondensieren, und der Unterdrück steigt wieder, doch eine solche Pendelwirkung ist nicht wünschenswert, da die Effizienz des Pro- zesses abnimmt. Die Größe des Unterdrucks, die Differenz der Höhen der Was- serspiegel der Becken und die Temperaturen, mit denen gearbeitet werden ist abhängig von den Umweltgegebenheiten, wie zum Beispiel der Außentempe- ratur oder die Höhe des Standorts der Anlage über dem Meeresspiegel.
Wenn das Wasser nun im Verdampfungsbecken ist, wird das Wasser durch den Unterdrück der hier herrscht, in den oberen Schichten anfangen zu kochen und verdampfen. Der Dampf kondensiert am Kühler bzw. an der Kondensierungsvorrichtung und wird im Kondenswasserauffangbecken gesam- melt. Von dort fließt das Wasser in das Regulierungsbecken mit dem destillier- ten Wasser. Es ist gewollt, dass nur ein Teil des Wassers im Verdampfungsbe- cken verdampft, da das restliche Wasser, dass nun eine höhere Konzentration an Verunreinigungen (beispielsweise Salz) aufweist, aus dem Verdampfungs- becken spült. Um dies zu erreichen ist es nur notwendig, den Wasserspiegel im Zulaufregulierungsbecken etwas höher zu halten, als den im Ablaufregulie- rungsbecken.
Die energieeffiziente Unterdruckdestillation eignet sich zum Einsatz in einer Meerwasserentsalzungsanlage um Trinkwasser zu gewinnen, kann aber auch anderwärtig zu Destillationszwecken eingesetzt werden.

Claims

Anspruch:
Ich erhebe Anspruch auf das Verfahren der energieeffizienten Unterdruck- destillation, in der die Destillation - also das Verdampfen und Kondensieren - in einer abgekapselten Umgebung stattfindet, in der ein Unterdrück herrscht, und dieser Unterdrück durch eine Differenz der Höhen der Wasserspiegel, die zwischen den Wasserspiegeln im Innern der Unterdruckdestillationseinheit und der Wasserspiegel außerhalb der Unterdruckdestillationseinheit zustande kommt.
Ich erhebe Anspruch auf die Anwendung der Regulierungsbecken zur Vereinfa- chung des Betriebs der Wartung und Steuerung in Verbindung mit dem ener- gieeffizienten Unterdruckdestillationsverfahren.
Weiter erhebe ich Anspruch, wenn es sich bei der Destillation um andere Flüs- sigkeiten als Wasser handelt, solang das energieeffiziente Unterdruckdestilla- tionsverfahren zum Einsatz kommt.
PCT/EP2018/025226 2018-09-04 2018-09-04 Energieeffiziente unterdruckdestillation WO2020048577A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/025226 WO2020048577A1 (de) 2018-09-04 2018-09-04 Energieeffiziente unterdruckdestillation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/025226 WO2020048577A1 (de) 2018-09-04 2018-09-04 Energieeffiziente unterdruckdestillation

Publications (1)

Publication Number Publication Date
WO2020048577A1 true WO2020048577A1 (de) 2020-03-12

Family

ID=64051512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/025226 WO2020048577A1 (de) 2018-09-04 2018-09-04 Energieeffiziente unterdruckdestillation

Country Status (1)

Country Link
WO (1) WO2020048577A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354011A (zh) * 2021-06-22 2021-09-07 中谷宏(海南)实业有限公司 一种高楼落差负压蒸发环保净水装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2493171A1 (fr) * 1980-11-06 1982-05-07 Bailet Victor Bouilleur-evaporateur-concentrateur-distillateur atmospherique basse pression faible temperature
DE102006021453A1 (de) * 2006-05-09 2007-11-15 Andreas Buchmann Energiegewinnung mittels Wasserentsalzungsanlage mit Schwerkraftunterstütztem Vakuum und einer Wasserturbine
DE102015109119A1 (de) * 2015-06-09 2016-12-15 Robert Wichelmann Vorrichtung und Verfahren zur Entsalzung von Meerwasser durch Vakuumdestillation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2493171A1 (fr) * 1980-11-06 1982-05-07 Bailet Victor Bouilleur-evaporateur-concentrateur-distillateur atmospherique basse pression faible temperature
DE102006021453A1 (de) * 2006-05-09 2007-11-15 Andreas Buchmann Energiegewinnung mittels Wasserentsalzungsanlage mit Schwerkraftunterstütztem Vakuum und einer Wasserturbine
DE102015109119A1 (de) * 2015-06-09 2016-12-15 Robert Wichelmann Vorrichtung und Verfahren zur Entsalzung von Meerwasser durch Vakuumdestillation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354011A (zh) * 2021-06-22 2021-09-07 中谷宏(海南)实业有限公司 一种高楼落差负压蒸发环保净水装置

Similar Documents

Publication Publication Date Title
DE4431546A1 (de) Verfahren und Vorrichtung zum Entsalzen von Meerwasser
DE102015224723A1 (de) Vorrichtung und Verfahren zur Wärmerückgewinnung aus Abwasser eines mit Warmwasser arbeitenden Geräts
WO2020048577A1 (de) Energieeffiziente unterdruckdestillation
DE202011051461U1 (de) Mobile Solar-Wasserentsalzungsanlage
EP3448813B1 (de) Meerwasserentsalzungsvorrichtung zum entsalzen von meerwasser
DE202012009318U1 (de) Solare Meerwasserentsalzungsanlage
DE102011007292A1 (de) Anlage zur Entsalzung von salzhaltigem Roh- bzw. Brauchwasser
DE4C (de) Kontinuirlicher Maischdestillirapparat mit eigenthümlicher Maisch- u. Spirituskolonne, neuem Maischregulator und neuem Schlemperegulator
DE19915818A1 (de) Solare Trinkwassergewinnung aus Meer- bzw. Brackwasser mittels einer Entsalzungsanlage nach dem Baukastenprinzip
WO2004098744A1 (de) Vorrichtung zur destillation
DE102013016626B4 (de) Vorrichtung und Verfahren zur Aufbereitung von Flüssigkeiten
DE102020215951A1 (de) Wasseraufbereitungsanlage
DE4239636A1 (de) Automatische mit Sonnenenergie betriebene Wasserentsalzungsanlage
DE244559C (de)
DE202015008376U1 (de) Aquarium-Entsalzer und Heizer
DE3515292C1 (de) Schwimmbadanlage,insbesondere Hallenbadanlage,mit einem normalen Schwimmbecken und einem Warmwasserbecken
DE102021212334A1 (de) Wasseraufbereitungsanlage
DE2258670C2 (de) Vorrichtung zur Trinkwasseraufbereitung
DE884502C (de) Vorrichtung zum Regeln eines ueberspeisten Hochdruck-Roehren-dampferzeugers mit Zwanglauf
AT301459B (de) Verfahren und vielstufige Anlage zur Destillation einer Flüssigkeit
DE2633100A1 (de) Waermepumpenanlage
DE513287C (de) Vorrichtung zum Erhoehen der Waermeverwertung in dampfgeheizten Apparaten
DE102010011313A1 (de) Abwasserwärmerückgewinnungsanlage
DE729903C (de) Verdampferkondensator
DE2144635A1 (de) Anlage zur verhinderung von vereisung in einem mit niedriger temperatur betriebenen verdampfer einer kaelteanlage unter verwendung von abwaerme

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18795934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18795934

Country of ref document: EP

Kind code of ref document: A1