WO2020048401A1 - 一种紧凑型气体-气体换热管及其制造和使用方法 - Google Patents

一种紧凑型气体-气体换热管及其制造和使用方法 Download PDF

Info

Publication number
WO2020048401A1
WO2020048401A1 PCT/CN2019/103749 CN2019103749W WO2020048401A1 WO 2020048401 A1 WO2020048401 A1 WO 2020048401A1 CN 2019103749 W CN2019103749 W CN 2019103749W WO 2020048401 A1 WO2020048401 A1 WO 2020048401A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
heat transfer
transfer tube
fin group
fluid
Prior art date
Application number
PCT/CN2019/103749
Other languages
English (en)
French (fr)
Inventor
黄志强
郑开云
Original Assignee
上海发电设备成套设计研究院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海发电设备成套设计研究院有限责任公司 filed Critical 上海发电设备成套设计研究院有限责任公司
Priority to US17/250,815 priority Critical patent/US20210310752A1/en
Priority to JP2021512388A priority patent/JP2021535994A/ja
Priority to KR1020217008099A priority patent/KR102559356B1/ko
Priority to EP19858007.8A priority patent/EP3848664A4/en
Publication of WO2020048401A1 publication Critical patent/WO2020048401A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/20Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F2001/428Particular methods for manufacturing outside or inside fins

Definitions

  • the invention relates to a heat exchange tube for heat transfer, belongs to the technical field of high-efficiency compact heat exchangers, and particularly relates to a compact gas-gas heat exchange tube and a method for manufacturing and using the same.
  • heat transfer tubes are the basic heat exchange devices, which are widely used in shell and tube heat exchangers, tube sheet heat exchangers, tube fin heat exchangers, boilers, and tube heaters.
  • a conventional heat transfer tube is used in a supercritical carbon dioxide circulation device in the form of a light pipe, the heat exchange area will be very large, and it will not be able to achieve an efficient heat exchange effect in a limited space, nor will it meet the supercritical carbon dioxide circulation device. Requirements for efficiency and volume.
  • Adding fins to the heat transfer tube can expand the heat transfer surface, and simultaneously increase the heat transfer surface and increase the heat transfer coefficient, thereby improving the heat transfer performance.
  • the fin plane of the existing finned tube is perpendicular to the axial direction of the tube, that is, the lateral fin, which belongs to incomplete countercurrent heat exchange.
  • the technical problem to be solved by the present invention is: how to achieve complete countercurrent and efficient heat transfer under heat exchange conditions with limited space and small average temperature difference of the number of tubes.
  • the technical solution of the present invention is to provide a compact gas-gas heat exchange tube, including:
  • Heat transfer tube used to separate the fluid inside and outside the tube, and realize the heat transfer of the fluid inside and outside the tube by means of convection and heat conduction;
  • Inner fins used to expand the inner heat exchange surface of the heat transfer tube to form micro-flow channels with an equivalent diameter of 0.5mm to 5mm, to separate the fluid in the tube and flow along the axial direction of the heat transfer tube, and to generate turbulence and enhance convective heat transfer. group;
  • Holes are provided in the fins of the inner fin group or / and the outer fin group.
  • a positioning tube for fixing an inner fin group is provided inside the heat transfer tube, and the positioning tube is coaxially disposed inside the heat transfer tube.
  • One end of each fin in the inner fin group is connected to the positioning tube. ⁇ ⁇ Phase connection.
  • the fin structure of the inner fin group is a structure in which a tube center extends radially to a tube wall.
  • the fins of the inner fin group have a "Y" structure.
  • the inner fin group is a metal sheet or a thin strip radially parallel to the heat transfer tube, and the inner fin group is connected to the inner wall of the heat transfer tube.
  • the inner fin group is a metal foil or thin strip arranged in a circumferential structure around the positioning tube, and the surface of the metal foil or thin strip is axially parallel to the heat transfer tube.
  • the width of the metal foil or ribbon is 1/4 to 1 of the inner diameter of the heat transfer tube, and the thickness of the metal foil or ribbon is 0.2 mm to 1.5 mm.
  • the outer fin group is a metal foil or thin strip arranged in a circumferentially symmetrical structure around the heat transfer tube, and a surface of the metal foil or thin strip is axially parallel to the heat transfer tube.
  • the outer fin group is a metal sheet or a thin strip radially parallel to the heat transfer tube, and the outer fin group is connected to an outer wall of the heat transfer tube.
  • the width of the metal foil or ribbon is 1/4 to 1 of the inner diameter of the heat transfer tube, and the thickness of the metal foil or ribbon is 0.2 mm to 3 mm.
  • the holes on each fin of the inner fin group are of any shape; the holes on each fin of the outer fin group are of any shape.
  • the positioning tube is a hollow tube.
  • the heat transfer tube is a metal tube capable of withstanding a specified temperature and pressure
  • the metal tube may be a tube of any cross section or a special-shaped tube.
  • the inner fin group and the outer fin group are fixedly connected with a heat transfer tube.
  • the invention provides a method for manufacturing the above-mentioned compact gas-gas heat exchange tube, the steps are:
  • Step 1 forming a heat transfer tube, which is used to separate the fluid inside and outside the tube, and realize heat transfer by the fluid inside and outside the tube through convection and heat conduction;
  • Step 2 The inner fin group is set on the inner heat exchange surface of the heat transfer tube, and the inner fin group is provided with holes; the inner fin group is used to expand the inner heat exchange surface of the heat transfer tube to form an equivalent diameter of 0.5 mm ⁇ 5mm micro-flow channel, which separates the fluid in the tube and flows along the axial direction of the heat transfer tube, while generating turbulence and enhancing convective heat transfer;
  • Step 3 The outer fin group is set on the outer heat exchange surface of the heat transfer tube, and the outer fin group is provided with holes; the outer fin group is used to expand the outer heat exchange surface of the heat transfer tube to form a microfluid. Channel, constrains the reverse flow of the fluid outside the tube along the axial direction of the heat transfer tube, and at the same time produces a turbulent effect to enhance convective heat transfer.
  • the invention also provides a method for manufacturing the above-mentioned compact gas-gas heat exchange tube, the steps are:
  • Step 1 Forming a heat transfer tube (1), which is used to separate the fluid inside and outside the tube, and realize heat transfer by the fluid inside and outside the tube by means of convection and heat conduction;
  • Step 2 a positioning tube (4) for fixing the inner fin group (3) is arranged inside the heat transfer tube (1), and the positioning tube (4) is coaxially arranged inside the heat transfer tube (1);
  • Step 3 Set the inner fin group (3) on the inner heat exchange surface of the heat transfer tube (1), one end of each fin in the inner fin group (3) is in phase with the positioning tube (4) Connection; holes are formed in the inner fin group (3); the inner fin group (3) is used to expand the inner heat transfer surface of the heat transfer tube (1) to form a micro-flow channel with an equivalent diameter of 0.5mm to 5mm, and the inside of the tube is separated The fluid flows along the axial direction of the heat transfer tube (1), and at the same time, it generates turbulence and enhances convective heat transfer;
  • Step 4 The outer fin group (2) is set on the outer heat exchange surface of the heat transfer tube (1), and the outer fin group (2) is provided with holes; the outer fin group (2) is used for expansion
  • the outer heat transfer surface of the heat transfer tube (1) forms a micro-flow channel, restricting the backflow of the fluid outside the tube along the axial direction of the heat transfer tube (1), and at the same time, a turbulent effect is generated to enhance convective heat transfer.
  • the inner fin group (3) is connected to the inner wall of the heat transfer tube (1) to which the outer fin group (2) is fixed.
  • the invention provides a method for using a compact gas-gas heat exchange tube including a positioning tube.
  • the steps are: arranging at least one heat transfer tube in a heat exchanger; and the fluid in the tube of the heat transfer tube passes from the heat exchanger.
  • the fluid inlet end of the tube is input, and flows along the inside of the heat transfer tube to the outlet end of the heat transfer tube, and then to the fluid outlet end of the heat exchanger; during the flow, the fluid in the tube of the heat transfer tube and the inner fin group and the inside of the heat transfer tube Convective heat transfer process on the surface;
  • the fluid outside the tube of the heat transfer tube is input from the fluid inlet end of the heat exchanger, flows along the outside of the heat transfer tube and the fluid inside the heat transfer tube, and flows to the fluid outlet end of the heat exchanger;
  • the heat transfer process occurs between the fluid outside the tube of the heat transfer tube, the outer surface of the heat transfer tube, and the outer fin group, and a heat transfer process occurs between the outer fin group, the heat transfer tube, and the inner fin group.
  • the invention also provides a method for using a compact gas-gas heat exchange tube including a positioning tube, the steps are: arranging at least one heat transfer tube in a heat exchanger; and the fluid in the tube of the heat transfer tube is removed from the heat exchanger The fluid inlet end of the tube is input, and flows along the inside of the heat transfer tube to the outlet end of the heat transfer tube, and then to the fluid outlet end of the heat exchanger. During the flow, the fluid in the tube of the heat transfer tube and the inner fin group, the positioning tube and Convection heat transfer process on the inner surface of the heat transfer tube;
  • the fluid outside the tube of the heat transfer tube is input from the fluid inlet end of the heat exchanger, flows along the outside of the heat transfer tube and the fluid inside the heat transfer tube, and flows to the fluid outlet end of the heat exchanger;
  • the heat transfer process occurs between the fluid outside the tube of the heat transfer tube, the outer surface of the heat transfer tube, and the outer fin group, and a heat transfer process occurs between the outer fin group, the heat transfer tube, the inner fin group, and the positioning tube.
  • the fluid in the tube of the heat transfer tube passes through the holes in the fins of the inner fin group and flows along the heat transfer tube in the axial direction;
  • the fluid outside the tube of the heat transfer tube passes through the holes on the fins of the outer fin group and flows axially along the heat transfer tube;
  • the fluid inside and outside the tube of the heat transfer tube is heat exchanged countercurrently; the inner fin group expands the inner heat transfer surface of the heat transfer tube and forms a micro-flow channel to constrain the fluid in the tube to flow in the axial direction of the heat transfer tube at the same time.
  • the compact gas-gas heat exchange tube provided by the present invention has the following beneficial effects:
  • the invention provides a compact gas-to-gas heat exchange tube, which realizes complete countercurrent and efficient heat transfer in a limited space and a small average temperature difference between the number of tubes.
  • the equivalent diameter of 0.5mm ⁇ 5mm micro-flow channel can well improve the heat exchange efficiency, generate a certain turbulence effect, and fully reduce the quality of the heat transfer tube.
  • the present invention will provide enough effective heat exchange area and arrange them compactly, which not only saves the equipment space size, but also reduces the weight of each area to reduce the overall weight and manufacturing cost of the equipment.
  • Figure 1 is a schematic diagram of a supercritical carbon dioxide circulation system
  • FIG. 2 is a schematic view of an outer transverse fin and an inner longitudinal fin type compact gas-gas heat exchange tube provided in Embodiment 1; (a) a sectional view; (b) a front view;
  • FIG. 3 is a schematic view of an outer transverse fin and an inner longitudinal fin compact gas-gas heat exchange tube provided in Embodiment 2; (a) a sectional view; (b) a front view;
  • FIG. 4 is a schematic view of an outer transverse fin and an inner transverse fin compact gas-gas heat exchange tube provided in Embodiment 3; (a) a sectional view; (b) a front view;
  • FIG. 5 is a schematic view of an outer transverse fin and an inner transverse fin compact gas-gas heat exchange tube provided in Embodiment 4; (a) a sectional view; (b) a front view;
  • FIG. 6 is a schematic view of an outer longitudinal fin and an inner longitudinal fin compact gas-gas heat exchange tube provided in Embodiment 5; (a) a sectional view; (b) a front view;
  • FIG. 7 is a schematic diagram of a circular tube with an outer longitudinal fin and an inner longitudinal fin in Embodiment 5; FIG.
  • FIG. 8 is a schematic diagram of an outer longitudinal fin and an inner transverse fin compact gas-gas heat exchange tube provided in Embodiment 6; (a) a sectional view; (b) a front view;
  • FIG. 9 is a schematic structural diagram of a micro-channel heat exchanger
  • FIG. 10 is a schematic structural diagram of a printed circuit board
  • FIG. 11 is an overall schematic diagram of a heat exchanger
  • FIG. 2 is a schematic diagram of a compact gas-gas heat exchange tube provided in this embodiment.
  • the compact gas-gas heat exchange tube includes:
  • the outer fin group 2 is arranged on the heat exchange surface on the outside of the heat transfer tube 1 and forms a micro-flow channel with an equivalent diameter of 0.5 mm to restrict the fluid flowing outside the tube along the axial direction of the heat transfer tube 1.
  • Each outer fin of the outer fin group 2 is a metal sheet radially parallel to the heat transfer tube 1, the width of the metal sheet is 1/4 of the inner diameter of the heat transfer tube 1, and the thickness is 1 mm;
  • Each fin has holes, and when the fluid outside the tube passes through the outer fins and the holes on the outer fins, it creates a turbulent effect and enhances convective heat transfer;
  • the inner fin group 3 is provided on the inner heat exchange surface of the heat transfer tube 1, and forms a micro-flow channel with an equivalent diameter of 0.5 mm, and the fluid in the partition tube flows along the axial direction of the heat transfer tube 1.
  • Each fin of the inner fin group 3 is a metal sheet parallel to the axial direction of the heat transfer tube 1, the width of the metal sheet is 1/4 of the inner diameter of the heat transfer tube 1, and the thickness is 1 mm; each fin of the inner fin group 3 is The fins form a diffusive shape with one end connected to the positioning tube 4 and the other end extending toward the tube wall of the heat transfer tube 1.
  • Each fin on the inner fin group 3 has a hole. When the fluid in the tube passes through the inner fin and the inner fin, When the holes are formed, the turbulence effect is generated and the convective heat transfer is enhanced.
  • the heat exchange tube is further characterized by one or more of the following, which can be combined in any number or order, for example: each fin of the inner fin group 3 extends to one end of the inner wall of the heat transfer tube 1 and can be connected with The heat transfer tubes 1 are connected or not connected; the positioning tube 4 may be a solid tube or a hollow tube.
  • FIG. 3 is a schematic diagram of a compact gas-gas heat exchange tube provided in this embodiment.
  • the compact gas-gas heat exchange tube includes:
  • the outer fin group 2 is arranged on the heat exchange surface on the outside of the heat transfer tube 1 and forms a micro-flow channel with an equivalent diameter of 0.5 mm to 1 mm to restrain the fluid outside the tube from flowing axially along the heat transfer tube 1.
  • Each outer fin of the outer fin group 2 is a metal thin strip parallel to the heat transfer tube 1 in a radial direction.
  • the width of the metal thin strip is 1/2 of the inner diameter of the heat transfer tube 1 and the thickness is 0.5 mm.
  • the outer fin group 2 Each of the fins has holes, and when the fluid outside the tube passes through the outer fins and the holes on the outer fins, a turbulent effect is generated and convective heat transfer is enhanced.
  • the inner fin group 3 is provided on the inner heat exchange surface of the heat transfer tube 1 and forms a micro flow channel with an equivalent diameter of 1 mm, which divides the fluid in the tube and flows along the axial direction of the heat transfer tube 1.
  • Each fin of the inner fin group 3 is a "Y" -shaped metal foil parallel to the axial direction of the heat transfer tube 1, and the width of the metal foil is 1/2 of the inner diameter of the heat transfer tube 1, and the thickness is 0.5 mm.
  • One end of the group 3 is connected to the positioning tube 4, and the other end extends toward the tube wall of the heat transfer tube 1.
  • Each fin on the inner fin group 3 is provided with a hole. When the fluid in the tube passes through the inner fin and the hole on the inner fin, a turbulence effect is generated and convective heat transfer is enhanced.
  • the heat exchange tube is further characterized by one or more of the following, which can be combined in any number or order, for example: each fin of the inner fin group 3 extends to one end of the inner wall of the heat transfer tube 1 and can be connected with The heat transfer tubes 1 are connected or not connected; the positioning tube 4 may be a solid tube or a hollow tube.
  • FIG. 4 is a schematic diagram of a compact gas-gas heat exchange tube provided in this embodiment.
  • the compact gas-gas heat exchange tube includes:
  • the outer fin group 2 is provided on the heat exchange surface on the outer side of the heat transfer tube 1 and forms a micro-flow channel with an equivalent diameter of 2 mm to restrict the fluid flowing outside the tube along the axial direction of the heat transfer tube 1.
  • Each outer fin of the outer fin group 2 is a metal sheet radially parallel to the heat transfer tube 1, the width of the metal sheet is 1/3 of the inner diameter of the heat transfer tube 1, and the thickness is 1.5 mm.
  • Each fin is provided with an oval-shaped hole. When the fluid outside the tube passes through the outer fin and the hole on the outer fin, a turbulence effect is generated and convective heat transfer is enhanced.
  • the inner fin group 3 is arranged on the heat exchange surface on the inner side of the heat transfer tube 1 and forms a micro flow channel with an equivalent diameter of 1 mm.
  • the fluid in the partition tube flows along the axial direction of the heat transfer tube 1.
  • Each fin of the inner fin group 3 is a metal sheet parallel to the heat transfer tube 1 in a radial direction, and the width of the metal sheet is the same as the inner diameter of the heat transfer tube 1, and the thickness is 1.5 mm.
  • Each fin on the inner fin group 3 is provided with an oval hole. When the fluid in the tube passes through the inner fin and the hole on the inner fin, a turbulence effect is generated and convective heat transfer is enhanced.
  • the heat exchange tube is further characterized by one or more of the following, which can be combined in any number or order, for example: each fin of the inner fin group 3 extends to one end of the inner wall of the heat transfer tube 1 and can be connected with The heat transfer tubes 1 are connected or not connected; the holes of each fin of the inner fin group 3 may be arranged symmetrically or randomly.
  • FIG. 5 is a schematic diagram of a compact gas-gas heat exchange tube provided in this embodiment.
  • the compact gas-gas heat exchange tube includes:
  • the outer fin group 2 is provided on the heat exchange surface outside the heat transfer tube 1 and forms micro-channels with an equivalent diameter of 2mm to 4mm to restrict the fluid flowing outside the tube in the axial direction of the heat transfer tube 1.
  • Each outer fin of the outer fin group 2 is a metal sheet radially parallel to the heat transfer tube 1, the width of the metal sheet is 2/3 of the inner diameter of the heat transfer tube 1, and the thickness is 0.8 mm.
  • Each fin is provided with an oval-shaped hole. When the fluid outside the tube passes through the outer fin and the hole on the outer fin, a turbulence effect is generated and convective heat transfer is enhanced.
  • the inner heat exchange surface provided on the inner surface of the heat transfer tube 1 forms a micro flow channel with an equivalent diameter of 2 mm, and the inner fin group 3 which divides the fluid in the tube and flows along the axial direction of the heat transfer tube 1.
  • Each fin of the inner fin group 3 is a metal sheet parallel to the heat transfer tube 1 in the radial direction.
  • the metal sheet has a width equal to the inner diameter of the heat transfer tube 1 and a thickness of 2.5 mm.
  • Each fin on the inner fin group 3 is provided with a circular hole.
  • the heat exchange tube is further characterized by one or more of the following, which can be combined in any number or order, for example: each fin of the inner fin group 3 extends to one end of the inner wall of the heat transfer tube 1 and The heat transfer tubes are connected or not connected; the holes of each fin of the inner fin group 3 may be arranged symmetrically or randomly.
  • FIG. 6 is a schematic diagram of a compact gas-gas heat exchange tube provided in this embodiment.
  • the compact gas-gas heat exchange tube includes:
  • the outer fin group 2 is provided on the heat exchange surface on the outer side of the heat transfer tube 1 and forms a micro-flow channel with an equivalent diameter of 3mm to 5mm to restrict the fluid flowing outside the tube along the axial direction of the heat transfer tube 1.
  • Each outer fin of the outer fin group 2 is a metal sheet parallel to the axial direction of the heat transfer tube 1.
  • the width of the metal sheet is 3/4 of the inner diameter of the heat transfer tube 1, and the thickness is 1.5 mm.
  • Each fin has holes, and when the fluid outside the tube passes through the outer fins and the holes on the outer fins, a turbulent effect is generated and convective heat transfer is enhanced.
  • An inner fin group 3 is provided on the inner heat exchange surface of the heat transfer tube 1 to form a micro-flow channel with an equivalent diameter of 1.5 mm, which divides the fluid in the tube and flows along the heat transfer tube 1 in the axial direction.
  • Each fin of the inner fin group 3 is a metal sheet parallel to the axial direction of the heat transfer tube 1.
  • Each fin of the inner fin group 3 forms a diffused shape from the center to the periphery extending from one end to the positioning tube 4 and the other end extending toward the tube wall of the heat transfer tube.
  • Each fin on the inner fin group 3 is opened Holes, when the fluid in the tube passes through the inner fins and holes in the inner fins, a turbulence effect is generated and convective heat transfer is enhanced.
  • FIG. 7 is an expanded schematic diagram of an inner longitudinal fin circular tube with an outer longitudinal fin.
  • a is the equivalent diameter of the inner fin 3
  • b is the equivalent diameter of the outer fin 2
  • t is the wall thickness of the heat transfer tube 1.
  • the heat exchange tube is further characterized by one or more of the following, which can be combined in any number or order.
  • Each fin of the inner fin group 3 extends to one end of the inner wall of the heat transfer tube, and may or may not be connected.
  • the positioning tube 4 may be a solid tube or a hollow tube; the outer fin group The holes in each fin of 2 or inner fin group 3 may be arranged symmetrically or asymmetrically.
  • FIG. 8 is a schematic diagram of a compact gas-gas heat exchange tube provided in this embodiment.
  • the compact gas-gas heat exchange tube includes:
  • the outer fin group 2 is provided on the heat exchange surface on the outer side of the heat transfer tube 1 and forms a micro-flow channel with an equivalent diameter of 3mm to 5mm to restrict the fluid flowing outside the tube along the axial direction of the heat transfer tube 1.
  • Each outer fin of the outer fin group 2 is a metal sheet parallel to the axial direction of the heat transfer tube 1, and the width of the metal sheet is the same as the inner diameter of the heat transfer tube 1, and the thickness is 1.2 mm.
  • the fins are provided with holes. When the fluid outside the tube passes through the outer fins and the holes on the outer fins, a turbulent effect is generated and convective heat transfer is enhanced.
  • the inner fin group 3 is provided on the heat exchange surface on the inner side of the heat transfer tube 1 to form a micro-flow channel with an equivalent diameter of 1 mm, which divides the fluid in the tube and flows along the heat transfer tube 1 in the axial direction.
  • Each of the fins of the inner fin group 3 is a metal sheet parallel to the heat transfer tube 1 in the radial direction.
  • the width of the metal foil is the same as the inner diameter of the heat transfer tube 1, and the thickness is 3 mm.
  • Each fin on the inner fin group 3 is provided with an oval hole. When the fluid in the tube passes through the inner fin and the hole on the inner fin, a turbulent effect is generated and convective heat transfer is enhanced.
  • the heat exchange tube is further characterized by one or more points, which can be combined in any number or order.
  • each fin of the inner fin group 3 extends to one end of the inner wall of the heat transfer tube and can communicate with the heat transfer tube.
  • the heat pipes are connected or not connected.
  • the holes of each fin of the inner fin group 3 may be arranged symmetrically or randomly.
  • Step 1 forming a heat transfer tube 1 for separating the fluid inside and outside the tube, and realizing heat transfer between the fluid inside and outside the tube by means of convection and heat conduction;
  • Step 2 Set the inner fin group 3 on the inner heat transfer surface of the heat transfer tube 1; the inner fin group 3 is used to expand the inner heat transfer surface of the heat transfer tube 1 to form a micro-equivalent diameter of 0.5 mm to 5 mm.
  • the flow channel divides the fluid in the tube and flows along the axial direction of the heat transfer tube 1 while generating turbulence and enhancing convective heat transfer;
  • Step 3 Set the outer fin group 2 on the outer heat transfer surface of the heat transfer tube 1; the outer fin group 2 is used to expand the outer heat transfer surface of the heat transfer tube 1 to form a micro-channel to restrict the fluid outside the tube Counter-current flow along the heat transfer tube 1 at the same time, while generating turbulence, enhancing convective heat transfer;
  • Holes are opened in the inner fin group 3 or / and the outer fin group 2.
  • the manufacturing method may also be combined with one or more of the following restrictions in any number and order.
  • a positioning tube 4 for fixing an inner fin group 3 is provided inside the heat transfer tube 1, and the positioning tube 4 is coaxially provided inside the heat transfer tube 1.
  • the inner fin One end of each fin in the group 3 is connected to the positioning tube 4.
  • the inner fin group 3 is connected to the inner wall of the heat transfer tube 1 to which the outer fin group 2 is fixed.
  • this embodiment further provides a method for using the foregoing compact gas-gas heat exchange tube, including the following steps:
  • Step 1 The heat transfer tube is processed into the required specifications according to the overall design of the heat exchanger, including the specifications of the heat transfer tube, the specifications of the inner fin group, and the specifications of the outer fin group, and is installed as a component on the heat exchanger.
  • Medium such as: tube bundles made into shell and tube heat exchangers.
  • the middle part M is the inner and outer fin area, and the inner and outer fin heat exchange tubes are used; the two ends S are the non-fin area, and the finless heat exchange tube is used.
  • Step 2 Arrange at least one heat transfer tube 1 in the shell and tube heat exchanger housing, and the fluid in the heat transfer tube 1 flows from the fluid inlet end 5 of the heat exchanger (such as the tube of the shell and tube heat exchanger). (Inlet of the tank) input, and flows along the inner side of the heat transfer tube 1 to the outlet end of the heat transfer tube 1.
  • the fluid inlet end 5 of the heat exchanger such as the tube of the shell and tube heat exchanger. (Inlet of the tank) input, and flows along the inner side of the heat transfer tube 1 to the outlet end of the heat transfer tube 1.
  • the fluid in the heat transfer tube 1 and the inner surface of the heat transfer tube 1 perform a heat transfer process;
  • the fluid inlet end 7 of the heat exchanger (such as: the shell inlet of the shell-and-tube heat exchanger) is input, and flows along the outside of the heat transfer tube 1 to the fluid inside the tube, and flows to the fluid outlet end 8 of the heat exchanger; the fluid inside the tube It is input from the fluid inlet end 5 of the heat exchanger, and flows toward the fluid outside the tube along the inside of the heat transfer tube, to the fluid outlet end 6 of the heat exchanger, the fluid outside the tube 1 and the outer surface of the heat transfer tube 1,
  • the outer fin group performs a heat transfer process, a heat transfer process occurs between the heat transfer tube and the outer fin group and the inner fin group, and the fluid in the tube performs a heat transfer process with the inner surface of the heat transfer tube and the inner fin group.
  • the fluid in the tube of each heat transfer tube 1 is input from the inlet end of the heat transfer tube 1 (such as the inlet of a tube box of a shell and tube heat exchanger), and flows along the inside of the heat transfer tube 1 to the heat transfer tube 1.
  • the fluid in the tube of the heat transfer tube 1 performs a convective heat transfer process with the inner surfaces of the inner fin group, the positioning tube, and the heat transfer tube of the heat transfer tube 1.
  • the fluid outside the tube of the heat transfer tube 1 is input from the fluid inlet end of the heat exchanger (for example, the shell inlet of the shell-and-tube heat exchanger), and flows along the outside of the heat transfer tube 1 and the fluid inside the tube of the heat transfer tube 1 toward To the fluid outlet end of the heat exchanger; the fluid outside the tube passes through the holes of the outer fin group and flows along the heat transfer tube 1 axially.
  • the fluid outside the tube performs a heat transfer process with the outer surface of the heat transfer tube 1 and the outer fin group, and a heat conduction process occurs between the outer fin group, the heat transfer tube, the inner fin group, and the positioning tube.
  • FIG. 9 is a schematic structural diagram of a micro-channel heat exchanger, where c represents a lateral equivalent diameter of the micro-tube heat exchanger, and d represents a longitudinal equivalent diameter of the micro-tube heat exchanger.
  • FIG. 10 is a schematic structural diagram of a printed circuit board, where e is an equivalent diameter of a printed circuit board heat exchanger.
  • the following uses the equivalent diameter of 2mm and the same unit volume as an example to calculate the compactness of the following three structural heat exchangers, which are expressed by the surface area of the solid in contact with the gas in the unit volume and the areal density (m 2 / m 3 )
  • the compactness of the present invention is comparable to other methods.
  • the areal density per unit volume is significantly strengthened, and at the same time, the effect of strengthening around the flow is produced.
  • the heat exchanger device made by the present invention can achieve smaller external dimensions and lighter weight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Fuel Cell (AREA)

Abstract

本发明提供了一种紧凑型气体-气体换热管,包括:用于分隔管内和管外的流体,并通过对流、热传导方式实现管内、外流体传热的传热管;用于扩展传热管的内侧换热表面,形成微流道,分隔管内流体并沿传热管轴向流动,同时产生扰流作用、增强对流换热的内翅片组;用于扩展传热管的外侧换热表面,形成微流道,约束管外流体沿传热管轴向的逆流,同时产生扰流作用、增强对流换热的外翅片组;所述内翅片组或/和外翅片组的翅片上均设有孔洞。本发明还提供了紧凑型气体-气体换热管的制造和使用方法。本发明在有限空间且管数平均温差小的换热工况下的实现了完全逆流高效传热,节约了设备空间尺寸,同时减少了每个面积的重量以降低总体重量和制造成本。

Description

一种紧凑型气体-气体换热管及其制造和使用方法
本申请要求于2018年09月05日在中国专利局递交的、申请号为“201811030768.8”、发明名称为“一种紧凑型气体-气体换热管及其制造和使用方法”的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种用于传热的换热管,属于高效紧凑换热器技术领域,具体涉及一种紧凑型气体-气体换热管及其制造和使用方法。
背景技术
近年来,新型的动力循环发电技术发展迅速,出现了以氦气、氢气、二氧化碳、有机化合物等为工质的循环发电系统,其中以超临界二氧化碳作为工质的循环系统最有发展前景。第四代核电、太阳能热发电、舰船等新的应用领域,正在开发基于超临界二氧化碳布雷顿循环发电技术,如图1所示。循环回路中的二氧化碳工质处于超临界态,对流换热特性与高压气体-气体换热器相似。
在各类工业用换热器中,传热管是基本的换热器件,广泛应用于管壳式换热器、管板换热器、管翅换热器、锅炉、管式加热器等。但是,常规的传热管如果以光管的形式用于超临界二氧化碳循环装置中,那么换热面积将非常庞大,无法在有限空间中实现高效的换热效果,也无法满足超临界二氧化碳循环装置对于效率和体积方面的要求。
对传热管增加翅片可以扩展换热表面,可同时增加传热表面和提高传热系数,从而提高换热性能。现有的翅片管的翅片平面与管子轴向垂直,即横向翅片,属于不完全逆流换热。
发明内容
本发明要解决的技术问题是:如何在有限空间且管数平均温差小的换热工况下实现完全逆流高效传热。
为了解决上述技术问题,本发明的技术方案是提供一种紧凑型气体-气体换热管,包括:
用于分隔管内和管外的流体,并通过对流、热传导的方式实现管内、外流体传热的传热管;
用于扩展传热管的内侧换热表面,形成当量直径0.5mm~5mm的微流道,分隔管内流体并沿传热管轴向流动,同时产生扰流作用、增强对流换热的内翅片组;
用于扩展传热管的外侧换热表面,形成微流道,约束管外流体沿传热管轴向的逆流,同时产生扰流作用、增强对流换热的外翅片组;
所述内翅片组或/和外翅片组的翅片上均设有孔洞。
优选地,所述传热管内部设有用于固定内翅片组的定位管,定位管同轴设于传热管内部,所述内翅片组中的每个翅片的一端均与定位管相连接。
优选地,所述内翅片组的翅片结构呈管中心向管壁径向延伸结构。
优选地,所述内翅片组的翅片呈“Y”型结构。
优选地,所述内翅片组是与所述传热管径向平行的金属薄片或薄带,且所述内翅片组与所述传热管的内壁连接。
优选地,所述内翅片组是围绕所述定位管布置成周向结构的金属薄片或薄带,且所述金属薄片或薄带表面与所述传热管轴向平行。
更优选地,所述金属薄片或薄带的宽度为传热管内径的1/4~1,所述金属薄片或薄带的厚度为0.2mm~1.5mm。
优选地,所述外翅片组是围绕所述传热管布置成周向对称结构的金属薄片或薄带,且所述金属薄片或薄带表面与所述传热管轴向平行。
优选地,所述外翅片组是与所述传热管径向平行的金属薄片或薄带,且所述外翅片组与所述传热管的外壁连接。
更优选地,所述金属薄片或薄带的宽度为传热管内径的1/4~1,所述金属薄片或薄带的厚度为0.2mm~3mm。
优选地,所述内翅片组的每个翅片上的孔洞为任意形状;所述外翅片组的每个翅片上的孔洞为任意形状。
优选地,所述定位管为空心的管。
优选地,所述传热管为可承受规定温度和压力的金属管,所述金属管可以任意截面管或异型管。
优选地,将所述内翅片组和外翅片组与传热管固定连接。
本发明提供了一种上述的紧凑型气体-气体换热管的制造方法,步骤为:
步骤1:形成传热管,所述传热管用于分隔管内和管外的流体,并通过对流、热传导的方式实现管内、外流体传热;
步骤2:将内翅片组设置在所述传热管的内侧换热表面,内翅片组上开有孔洞;内翅片组用于扩展传热管的内侧换热表面,形成当量直径0.5mm~5mm的微流道,分隔管内流体并沿传热管轴向流动,同时产生扰流作用,增强对流换热;
步骤3:将外翅片组设置在所述传热管的外侧换热表面,外翅片组上均开有孔洞;外翅片组用于扩展传热管的外侧换热表面,形成微流道,约束管外流体沿传热管轴向的逆流,同时产生扰流作用,增强对流换热。
本发明还提供了一种上述的紧凑型气体-气体换热管的制造方法,步骤为:
步骤1:形成传热管(1),所述传热管(1)用于分隔管内和管外的流体,并通过对流、热传导的方式实现管内、外流体传热;
步骤2:在所述传热管(1)内部设置有用于固定内翅片组(3)的定位管(4),定位管(4)同轴设于传热管(1)的内部;
步骤3:将内翅片组(3)设置在所述传热管(1)的内侧换热表面,内翅片组(3)中的每个翅片的一端均与定位管(4)相连接;内翅片组(3)上开有孔洞;内翅片组(3)用于扩展传热管(1)的内侧换热表面,形成当量直径0.5mm~5mm的微流道,分隔管内流体并沿传热管(1)轴向流动,同时产生扰流作用,增强对流换热;
步骤4:将外翅片组(2)设置在所述传热管(1)的外侧换热表面,外翅片组(2)上均开有孔洞;外翅片组(2)用于扩展传热管(1)的外侧换热表面,形成微流道,约束管外流体沿传热管(1)轴向的逆流,同时产生扰流作用,增强对流换热。
优选地,上述两种制造方法中,所述步骤2中,内翅片组(3)与固定有所述外翅片组(2)的所述传热管(1)的内壁相连接。
本发明提供了一种含有定位管的紧凑型气体-气体换热管的使用方法,步骤为:将至少1根传热管排列于换热器中;传热管的管内流体从换热器的管内流体进口端输入,沿传热管内侧流向传热管的出口端,进而流向换热器的管内流体出口端;流动过程中,传热管的管内流体与内翅片组及传热管内侧表面进行对流传热过程;
传热管的管外流体从换热器的管外流体进口端输入,沿传热管外侧与传热管的管内流体相向流动,流向所述换热器的管外流体出口端;流动过程中,传热管的管外流体与传热管外侧表面、外翅片组进行传热过程,外翅片组、传热管、内翅片组之间发生热传导过程。
本发明还提供了一种含有定位管的紧凑型气体-气体换热管的使用方法,步骤为:将至少1根传热管排列于换热器中;传热管的管内流体从换热器的管内流体进口端输入,沿传热管内侧流向传热管的出口端,进而流向换热器的管内流体出口端;流动过程中,传热管的管内流体与内翅片组、定位管及传热管内侧表面进行对流传热过程;
传热管的管外流体从换热器的管外流体进口端输入,沿传热管外侧与传热管的管内流体相向流动,流向所述换热器的管外流体出口端;流动过程中,传热管的管外流体与传热管外侧表面、外翅片组进行传热过程,外翅片组、传热管、内翅片组和定位管之间发生热传导过程。
优选地,所述内翅片组的翅片上设有孔洞时,传热管的管内流体从内翅片组翅片上的孔洞通过,沿所述传热管轴向流动;所述外翅片组的翅片上设有孔洞时,传热管的管外流体从外翅片组翅片上的孔洞通过,沿所述传热管轴向流动;
传热管的管内流体和管外流体逆流换热;内翅片组扩展传热管的内侧换热表面,并形成微流道约束管内流体沿传热管轴向逆流,同时产生扰流作用、增强对流换热;外翅片组扩展传热管的外侧换热表面,并形成微流道约束管外流体沿传热管轴向逆流,同时产生扰流作用、增强对流换热。
与现有技术相比,本发明提供的紧凑型气体-气体换热管具有如下有益效果:
本发明提供了一种紧凑型气体-气体换热管,实现了在有限空间且管数平均温差小的换热工况下的完全逆流高效传热。
1、管内、外流体实现完全逆流换热,可实现相对小的管数平均温差传热。
2、通过沿传热管内外表面布置不同的翅片组结构,起到充分的扰流作用,提高对流传热系数,有效扩展换热表面积。
3、当量直径0.5mm~5mm微流道能够很好地实现换热效率的提升,产生一定的扰流作用,并充分的减轻了传热管的质量。
4、可用于制造高效紧凑换热器,尤其适用于气体-气体换热工况或回热器。
5、本发明将提供足够多的有效换热面积并紧凑布置在一起,既节约设备空间尺寸,同时减少每个面积的重量以降低设备总体重量和制造成本。
附图说明
图1为超临界二氧化碳循环系统示意图;
图2为实施例1提供的外横向翅片内纵向翅片式紧凑型气体-气体换热管示意图;(a)剖视图;(b)主视图;
图3为实施例2提供的外横向翅片内纵向翅片式紧凑型气体-气体换热管示意图;(a)剖视图;(b)主视图;
图4为实施例3提供的外横向翅片内横向翅片式紧凑型气体-气体换热管示意图;(a)剖视图;(b)主视图;
图5为实施例4提供的外横向翅片内横向翅片式紧凑型气体-气体换热管示意图;(a)剖视图;(b)主视图;
图6为实施例5提供的外纵向翅片内纵向翅片式紧凑型气体-气体换热管示意图;(a)剖视图;(b)主视图;
图7为实施例5中,外纵向翅片内纵向翅片圆形管展开示意图;
图8为实施例6提供的外纵向翅片内横向翅片式紧凑型气体-气体换热管示意图;(a)剖视图;(b)主视图;
图9为微通道换热器的结构示意图;
图10为印刷线路版结构示意图;
图11为换热器整体示意图;
附图标记说明:
1—传热管,2—外翅片组,3—内翅片组,4—定位管。
具体实施方式
下面结合具体实施例,进一步阐述本发明。
实施例1
图2为本实施例提供的紧凑型气体-气体换热管示意图,所述的紧凑型气体-气体换热管包括:
传热管1;
设于传热管1外侧换热表面,并形成当量直径0.5mm微流道,约束管外流体沿传热管1轴向流动的外翅片组2。外翅片组2的每个外翅片为与传热管1径向平行的金属薄片,金属薄片宽度为传热管1内径的1/4,厚度为1mm;外翅片组2上的每个翅片都开有孔洞,当管外流体通过外翅片及外翅片上的孔洞时,便产生扰流作用并增强对流换热;
设于传热管1的内侧换热表面,并形成当量直径0.5mm微流道,分隔管内流体沿传热管1轴向流动的内翅片组3。内翅片组3的每个翅片为与传热管1轴向平行的金属薄片,金属薄片宽度为传热管1内径的1/4,厚度为1mm;内翅片组3的每个翅片形成一端连接定位管4,另一端向传热管1的管壁延伸的扩散状,内翅片组3上的每个翅片都开有孔洞,当管内流体通过内翅片及内翅片上的孔洞时,便产生扰流作用并增强对流换热。
在一些实施方式中,换热管的特征还在于以下一点或多点,其可以任何数量或顺序结合,比如:内翅片组3的每个翅片延伸至传热管1内壁的一端可与传热管1相连接,也可不连接;定位管4可选实心管,也可为空心管。
实施例2
图3为本实施例提供的紧凑型气体-气体换热管示意图,所述的紧凑型气体-气体换热管包括:
传热管1;
设于传热管1外侧换热表面,并形成当量直径0.5mm~1mm微流道,约束管外流体沿传热管1轴向流动的外翅片组2。外翅 片组2的每个外翅片为与传热管1径向平行的金属薄带,金属薄带宽度为传热管1内径的1/2,厚度为0.5mm,外翅片组2上的每个翅片都开有孔洞,当管外流体通过外翅片及外翅片上的孔洞时,便产生扰流作用并增强对流换热。
设于传热管1的内侧换热表面,并形成当量直径1mm微流道,分隔管内流体并沿传热管1轴向流动的内翅片组3。内翅片组3的每个翅片为与传热管1轴向平行的“Y”型的金属薄片,金属薄片宽度为传热管1内径的1/2,厚度为0.5mm,内翅片组3的一端连接定位管4,另一端向传热管1的管壁延伸。内翅片组3上的每个翅片都开有孔洞,当管内流体通过内翅片及内翅片上的孔洞时,便产生扰流作用并增强对流换热。
在一些实施方式中,换热管的特征还在于以下一点或多点,其可以任何数量或顺序结合,比如:内翅片组3的每个翅片延伸至传热管1内壁的一端可与传热管1相连接,也可不连接;定位管4可选实心管,也可为空心管。
实施例3
图4为本实施例提供的紧凑型气体-气体换热管示意图,所述的紧凑型气体-气体换热管包括:
传热管1;
设于传热管1外侧换热表面,并形成当量直径2mm微流道,约束管外流体沿传热管1轴向流动的外翅片组2。外翅片组2的每个外翅片为与传热管1径向平行的金属薄片,金属薄片宽度为传热管1内径的1/3,厚度为1.5mm,外翅片组2上的每个翅片都开有椭圆形孔洞,当管外流体通过外翅片及外翅片上的孔洞时,便产生扰流作用并增强对流换热。
设于传热管1内侧换热表面,并形成当量直径1mm微流道,分隔管内流体沿传热管1轴向流动的内翅片组3。内翅片组3的每个翅片为与传热管1径向平行的金属薄片,金属薄片宽度为传热管1内径的相同,厚度为1.5mm。内翅片组3上的每个翅片都开有椭圆形孔洞,当管内流体通过内翅片及内翅片上的孔洞时,便产生扰流作用并增强对流换热。
在一些实施方式中,换热管的特征还在于以下一点或多点,其可以任何数量或顺序结合,比如:内翅片组3的每个翅片延伸至传热管1内壁的一端可与传热管1相连接,也可不连接;内翅片组3的每个翅片的孔洞可对称排列,也可随意排列。
实施例4
图5为本实施例提供的紧凑型气体-气体换热管示意图,所述的紧凑型气体-气体换热管包括:
传热管1;
设于传热管1外侧换热表面,并形成当量直径2mm~4mm微流道,约束管外流体沿传热管1轴向的流动的外翅片组2。外翅片组2的每个外翅片为与传热管1径向平行的金属薄片,金属薄片宽度为传热管1内径的2/3,厚度为0.8mm,外翅片组2上的每个翅片都开有椭圆形孔洞,当管外流体通过外翅片及外翅片上的孔洞时,便产生扰流作用并增强对流换热。
设于传热管1的内侧换热表面,形成当量直径2mm微流道,分隔管内流体并沿传热管1轴向流动的内翅片组3。内翅片组3的每个翅片为与传热管1径向平行的金属薄片,金属薄片宽度为传热管1内径相同,厚度为2.5mm。内翅片组3上的每个翅片都开有圆形孔洞,当管内流体通过内翅片及内翅片上的孔洞时,便产生扰流作用并增强对流换热。
在一些实施方式中,换热管的特征还在于以下一点或多点,其可以任何数量或顺序结合,比如:内翅片组3的每个翅片延伸至传热管1内壁的一端可与传热管相连接,也可不连接;内翅片组3的每个翅片的孔洞可对称排列,也可随意排列。
实施例5
图6为本实施例提供的紧凑型气体-气体换热管示意图,所述的紧凑型气体-气体换热管包括:
传热管1;
设于传热管1外侧换热表面,并形成当量直径3mm~5mm微流道,约束管外流体沿传热管1轴向流动的外翅片组2。外翅片组2的每个外翅片为与传热管1轴向平行的金属薄片,金属薄片宽度为传热管1内径的3/4,厚度为1.5mm,外翅片组2上的每个翅片都开有孔洞,当管外流体通过外翅片及外翅片上的孔洞时,便产生扰流作用并增强对流换热。
设于传热管1的内侧换热表面,形成当量直径1.5mm微流道,分隔管内流体并沿传热管1轴向流动的内翅片组3。内翅片组3的每个翅片为与传热管1轴向平行的金属薄片。内翅片组3的每个翅片形成一端连接定位管4,另一端向传热管的管壁延伸的从中心向周边的扩散状,内翅片组3上的每个翅片都开有孔洞,当管内流体通过内翅片及内翅片上的孔洞时便产生扰流作用 并增强对流换热。
图7为外纵向翅片内纵向翅片圆形管展开示意图。图7中,a为内翅片3的当量直径,b为外翅片2的当量直径,t为传热管1的壁厚。
在一些实施方式中,换热管的特征还在于以下一点或多点,其可以任何数量或顺序结合。内翅片组3的每个翅片延伸至传热管内壁的一端可与传热管相连接,也可不连接,比如:定位管4可选实心管,也可为空心管;外翅片组2或内翅片组3的每个翅片上的孔洞可对称排列,也可不对称排列。
实施例6
图8为本实施例提供的紧凑型气体-气体换热管示意图,所述的紧凑型气体-气体换热管包括:
传热管1;
设于传热管1外侧换热表面,并形成当量直径3mm~5mm微流道,约束管外流体沿传热管1轴向流动的外翅片组2。外翅片组2的每个外翅片为与传热管1轴向平行的金属薄片,金属薄片宽度与传热管1内径相同,厚度为1.2mm,外翅片组2上的每个翅片都开有孔洞,当管外流体通过外翅片及外翅片上的孔洞时,便产生扰流作用并增强对流换热。
设于传热管1内侧换热表面,形成当量直径1mm微流道,分隔管内流体并沿传热管1轴向流动的内翅片组3。内翅片组3的每个翅片为与传热管1径向平行的金属薄片。金属薄片宽度与传热管1内径相同,厚度为3mm。内翅片组3上的每个翅片都开有椭圆孔洞,当管内流体通过内翅片及内翅片上的孔洞时,便产生扰流作用并增强对流换热。
在一些实施方式中,换热管的特征还在于以下一点或多点,其可以任何数量或顺序结合,比如:内翅片组3的每个翅片延伸至传热管内壁的一端可与传热管相连接,也可不连接。内翅片组3的每个翅片的孔洞可对称排列,也可随意排列。
实施例7
本实施例提供了一种紧凑型气体-气体换热管的制造方法:
步骤1:形成传热管1,所述传热管1用于分隔管内和管外的流体,并通过对流、热传导的方式实现管内、外流体传热;
步骤2:将内翅片组3设置在所述传热管1的内侧换热表面;内翅片组3用于扩展传热管1的内侧换热表面,形成当量直径0.5mm~5mm的微流道,分隔管内流体并沿传热管1轴向流动,同时产生扰流作用,增强对流换热;
步骤3:将外翅片组2设置在所述传热管1的外侧换热表面;外翅片组2用于扩展传热管1的外侧换热表面,形成微流道,约束管外流体沿传热管1轴向逆流,同时产生扰流作用,增强对流换热;
在所述内翅片组3或/和外翅片组2上均开有孔洞。
该制造方法还可与以下的一种或多种相关的限定,以任何数量和顺序组合。
在一个或多个实施方式中,将所述传热管1内部设置有用于固定内翅片组3的定位管4,定位管4同轴设于传热管1的内部,所述内翅片组3中的每个翅片的一端与定位管4相连接。
在一个或多个实施方式中,内翅片组3与固定有外翅片组2的传热管1内壁相连接。
结合图11,本实施例还提供了上述紧凑型气体-气体换热管的使用方法,包括如下步骤:
步骤1:将上述传热管按照换热器的总体设计加工成所需规格,包括传热管的规格、内翅片组的规格、外翅片组的规格,并作为部件安装于换热器中(如:制造成管壳式换热器的管束)。换热器中,中部M为内外翅片区域,采用内外翅片的换热管;两端S为无翅片区域,采用无翅片的换热管。
步骤2:将至少一根传热管1排列于管壳式换热器壳体中,传热管1内流体从换热器的管内流体进口端5(如:管壳式换热器的管箱进口)输入,沿传热管1内侧流向传热管1的出口端,流动过程中传热管1管内流体与传热管1内侧表面进行传热过程;传热管1外流体从换热器的管外流体进口端7(如:管壳式换热器的壳体进口)输入,沿传热管1外侧与管内流体相向流动,流向换热器的管外流体出口端8;管内流体从换热器的管内流体进口端5输入,沿传热管内侧与管外流体相向流动,流向换热器的管内流体出口端6,传热管1管外流体与传热管1外侧表面、外翅片组进行传热过程,传热管和外翅片组与内翅片组之间发生热传导过程,管内流体与传热管内侧表面、内翅片组进行传热过程。
在一个或多个实施方式中,每根传热管1的管内流体从传热管1的进口端(如:管壳式换热器的管箱进口)输入,沿传热管1内侧流向传热管1的出口端。流动过程中,传热管1的管内流体与传热管1的内翅片组、定位管及传热管的内侧表面进行对流传热过程。
传热管1的管外流体从换热器的管外流体进口端(如:管壳式换热器的壳体进口)输入,沿传热管1外侧与传热管1的管内流体相向流动,流向换热器的管外流体出口端;管外流体从外翅片组的孔洞通过,沿传热管1轴向流动。流动过程中,管外流体与传热管1的外侧表面和外翅片组进行传热过程,外翅片组、传热管、内翅片组和定位管之间发生热传导过程。
图9为微通道换热器的结构示意图,其中,c表示微管式换热器的横向当量直径,d表示微管式换热器的纵向当量直径。
图10为印刷线路版结构示意图,其中,e为印刷线路板式换热器的当量直径。
以下以当量直径2mm以及相同的单位体积为例,计算如下三种结构换热器的紧凑程度,用单位体积内气体所接触到的固体表面积数值,面密度(m 2/m 3)来表达:
Figure PCTCN2019103749-appb-000001
从以上的计算结果可以看出,本发明的紧凑程度与其他方法相当,当采用孔洞结构后,单位体积的面密度有明显加强,同时产生绕流强化效果。用本发明制作的换热器设备,可以达到更小的外形尺寸和更轻的重量。
以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。

Claims (19)

  1. 一种紧凑型气体-气体换热管,其特征在于,包括:
    用于分隔管内和管外的流体,并通过对流、热传导的方式实现管内、外流体传热的传热管(1);
    用于扩展传热管(1)的内侧换热表面,形成当量直径0.5mm~5mm的微流道,分隔管内流体并沿传热管(1)轴向流动,同时产生扰流作用、增强对流换热的内翅片组(3);
    用于扩展传热管(1)的外侧换热表面,形成微流道,约束管外流体沿传热管(1)轴向的逆流,同时产生扰流作用、增强对流换热的外翅片组(2);
    所述内翅片组(3)或/和外翅片组(2)的翅片上均设有孔洞。
  2. 如权利要求1所述的一种紧凑型气体-气体换热管,其特征在于:所述传热管(1)内部设有用于固定内翅片组(3)的定位管(4),所述定位管(4)同轴设于传热管(1)内部,所述内翅片组(3)中的每个翅片的一端均与定位管(4)相连接。
  3. 如权利要求1所述的一种紧凑型气体-气体换热管,其特征在于:所述内翅片组(3)的翅片结构呈管中心向管壁径向延伸结构。
  4. 如权利要求1所述的一种紧凑型气体-气体换热管,其特征在于:所述内翅片组(3)的翅片呈“Y”型结构。
  5. 如权利要求1所述的一种紧凑型气体-气体换热管,其特征在于:所述内翅片组(3)是与所述传热管(1)径向平行的金属薄片或薄带,且所述内翅片组(3)与所述传热管(1)的内壁连接。
  6. 如权利要求2所述的一种紧凑型气体-气体换热管,其特征在于:所述内翅片组(3)是围绕所述定位管(4)布置成周向结构的金属薄片或薄带,且所述金属薄片或薄带表面与所述传热管(1)轴向平行。
  7. 如权利要求5或6所述的一种紧凑型气体-气体换热管,其特征在于:所述金属薄片或薄带的宽度为传热管内径的1/4~1,所述金属薄片或薄带的厚度为0.2mm~1.5mm。
  8. 如权利要求1所述的一种紧凑型气体-气体换热管,其特征在于:所述外翅片组(2)是围绕所述传热管(1)布置成周向对称结构的金属薄片或薄带,且所述金属薄片或薄带表面与所述传热管(1)轴向平行。
  9. 如权利要求1所述的一种紧凑型气体-气体换热管,其特征在于:所述外翅片组(2)是与所述传热管(1)径向平行的金属薄片或薄带,且所述外翅片组(2)与所述传热管(1)的外壁连接。
  10. 如权利要求8或9所述的一种紧凑型气体-气体换热管,其特征在于:所述金属薄片或薄带的宽度为传热管内径的1/4~1,所述金属薄片或薄带的厚度为0.2mm~3mm。
  11. 如权利要求2所述的一种紧凑型气体-气体换热管,其特征在于:所述定位管(4)为空心的管。
  12. 如权利要求1所述的一种紧凑型气体-气体换热管,其特征在于:所述传热管(1)为金属管。
  13. 如权利要求1所述的一种紧凑型气体-气体换热管,其特征在于:所述内翅片组(3)、外翅片组(2)均与所述传热管(1)固定连接。
  14. 一种如权利要求1所述的紧凑型气体-气体换热管的制造方法,其特征在于,步骤为:
    步骤1:形成传热管(1),所述传热管(1)用于分隔管内和管外的流体,并通过对流、热传导的方式实现管内、外流体传热;
    步骤2:将内翅片组(3)设置在所述传热管(1)的内侧换热表面,内翅片组(3)上开有孔洞;内翅片组(3)用于扩展传热管(1)的内侧换热表面,形成当量直径0.5mm~5mm的微流道,分隔管内流体并沿传热管(1)轴向流动,同时产生扰流作用,增强对流换热;
    步骤3:将外翅片组(2)设置在所述传热管(1)的外侧换热表面,外翅片组(2)上均开有孔洞;外翅片组(2)用于扩展传热管(1)的外侧换热表面,形成微流道,约束管外流体沿传热管(1)轴向的逆流,同时产生扰流作用,增强对流换热。
  15. 一种如权利要求2所述的紧凑型气体-气体换热管的制造方法,其特征在于,步骤为:
    步骤1:形成传热管(1),所述传热管(1)用于分隔管内和管外的流体,并通过对流、热传导的方式实现管内、外流体传 热;
    步骤2:在所述传热管(1)内部设置有用于固定内翅片组(3)的定位管(4),定位管(4)同轴设于传热管(1)的内部;
    步骤3:将内翅片组(3)设置在所述传热管(1)的内侧换热表面,内翅片组(3)中的每个翅片的一端均与定位管(4)相连接;内翅片组(3)上开有孔洞;内翅片组(3)用于扩展传热管(1)的内侧换热表面,形成当量直径0.5mm~5mm的微流道,分隔管内流体并沿传热管(1)轴向流动,同时产生扰流作用,增强对流换热;
    步骤4:将外翅片组(2)设置在所述传热管(1)的外侧换热表面,外翅片组(2)上均开有孔洞;外翅片组(2)用于扩展传热管(1)的外侧换热表面,形成微流道,约束管外流体沿传热管(1)轴向的逆流,同时产生扰流作用,增强对流换热。
  16. 如权利要求14或15所述的一种紧凑型气体-气体换热管的制造方法,其特征在于:所述步骤2中,内翅片组(3)与固定有所述外翅片组(2)的所述传热管(1)的内壁相连接。
  17. 一种如权利要求1所述的紧凑型气体-气体换热管的使用方法,其特征在于,步骤为:将至少1根传热管(1)排列于换热器中;传热管(1)的管内流体从换热器的管内流体进口端输入,沿传热管内侧流向传热管(1)的出口端,进而流向换热器的管内流体出口端;流动过程中,传热管(1)的管内流体与内翅片组(3)及传热管(1)内侧表面进行对流传热过程;
    传热管(1)的管外流体从换热器的管外流体进口端输入,沿传热管(1)外侧与传热管(1)的管内流体相向流动,流向所述换热器的管外流体出口端;流动过程中,传热管(1)的管外流体与传热管(1)外侧表面、外翅片组(2)进行传热过程,外翅片组(2)、传热管(1)、内翅片组(3)之间发生热传导过程。
  18. 一种如权利要求2所述的紧凑型气体-气体换热管的使用方法,其特征在于,步骤为:将至少1根传热管(1)排列于换热器中;传热管(1)的管内流体从换热器的管内流体进口端输入,沿传热管内侧流向传热管(1)的出口端,进而流向换热器的管内流体出口端;流动过程中,传热管(1)的管内流体与内翅片组(3)、定位管(4)及传热管(1)内侧表面进行对流传热过程;
    传热管(1)的管外流体从换热器的管外流体进口端输入,沿传热管(1)外侧与传热管(1)的管内流体相向流动,流向所述换热器的管外流体出口端;流动过程中,传热管(1)的管外流体与传热管(1)外侧表面、外翅片组(2)进行传热过程,外翅片组(2)、传热管(1)、内翅片组(3)和定位管(4)之间发生热传导过程。
  19. 一种如权利要求17或18所述的紧凑型气体-气体换热管的使用方法,其特征在于:所述内翅片组(3)的翅片上设有孔洞时,传热管(1)的管内流体从内翅片组(3)翅片上的孔洞通过,沿所述传热管(1)轴向流动;所述外翅片组(2)的翅片上设有孔洞时,传热管(1)的管外流体从外翅片组(2)翅片上的孔洞通过,沿所述传热管(1)轴向流动;
    传热管(1)的管内流体和管外流体逆流换热;内翅片组(3)扩展传热管(1)的内侧换热表面,并形成微流道约束管内流体沿传热管(1)轴向逆流,同时产生扰流作用、增强对流换热;外翅片组(2)扩展传热管(1)的外侧换热表面,并形成微流道约束管外流体沿传热管(1)轴向逆流,同时产生扰流作用、增强对流换热。
PCT/CN2019/103749 2018-09-05 2019-08-30 一种紧凑型气体-气体换热管及其制造和使用方法 WO2020048401A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/250,815 US20210310752A1 (en) 2018-09-05 2019-08-30 Compact gas-gas heat exchange tube and manufacturing and use methods therefor
JP2021512388A JP2021535994A (ja) 2018-09-05 2019-08-30 コンパクト型気体−気体熱交換管、並びにその製造及び使用方法
KR1020217008099A KR102559356B1 (ko) 2018-09-05 2019-08-30 콤팩트형 가스-가스 열교환 튜브 및 이의 제조와 사용 방법
EP19858007.8A EP3848664A4 (en) 2018-09-05 2019-08-30 COMPACT GAS-GAS HEAT EXCHANGER TUBE AND MANUFACTURING AND USE OF IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811030768.8A CN109059601A (zh) 2018-09-05 2018-09-05 一种紧凑型气体-气体换热管及其制造和使用方法
CN201811030768.8 2018-09-05

Publications (1)

Publication Number Publication Date
WO2020048401A1 true WO2020048401A1 (zh) 2020-03-12

Family

ID=64758440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103749 WO2020048401A1 (zh) 2018-09-05 2019-08-30 一种紧凑型气体-气体换热管及其制造和使用方法

Country Status (6)

Country Link
US (1) US20210310752A1 (zh)
EP (1) EP3848664A4 (zh)
JP (1) JP2021535994A (zh)
KR (1) KR102559356B1 (zh)
CN (1) CN109059601A (zh)
WO (1) WO2020048401A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107976101B (zh) 2017-12-22 2023-07-14 上海发电设备成套设计研究院有限责任公司 一种外翅片换热管的使用方法
CN109059601A (zh) * 2018-09-05 2018-12-21 上海发电设备成套设计研究院有限责任公司 一种紧凑型气体-气体换热管及其制造和使用方法
CN110296609A (zh) * 2019-05-23 2019-10-01 江苏华冶钙业有限公司 一种氧化钙煅烧炉的烟气中央处理系统
CN112487681B (zh) * 2020-11-30 2022-05-17 北京航空航天大学 一种考虑制造约束的阵列微流道换热器性能优化方法
CN114575785B (zh) * 2022-05-06 2022-07-26 四川安硕石油工程技术服务有限公司 油气井超临界二氧化碳压裂用井口加热装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101067530A (zh) * 2006-05-02 2007-11-07 三星光州电子株式会社 用于冰箱的热交换器
CN201344755Y (zh) * 2009-01-13 2009-11-11 胡琪 内纵外横高翅换热管
CN201434621Y (zh) * 2009-07-14 2010-03-31 西安石油大学 传热管外流体多股螺旋流壳管式换热器
US20120222845A1 (en) * 2011-03-01 2012-09-06 Kinder Lee M Coaxial Gas-Liquid Heat Exchanger With Thermal Expansion Connector
CN105605960A (zh) * 2015-12-23 2016-05-25 山东大学 一种内翅片连通的扁平换热管
CN109059601A (zh) * 2018-09-05 2018-12-21 上海发电设备成套设计研究院有限责任公司 一种紧凑型气体-气体换热管及其制造和使用方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1469689A (fr) * 1965-02-23 1967-02-17 Brown Fintube Co Tube à ailettes et son procédé de fabrication
JPS5258855U (zh) * 1975-10-28 1977-04-28
JPS5756077Y2 (zh) * 1976-07-13 1982-12-03
SE455813B (sv) * 1982-12-29 1988-08-08 Hypeco Ab Vermevexlare der atminstone kanalen for det ena mediet er uppdelad i ett stort antal stromningsmessigt parallellkopplade kanaler, varvid turbulens undviks
JPS59125391A (ja) * 1983-01-07 1984-07-19 Matsushita Electric Ind Co Ltd 熱交換器
JP2002350092A (ja) * 2001-05-28 2002-12-04 Kawasaki Heavy Ind Ltd 熱交換器とこれを用いたガスタービン装置
KR20030097212A (ko) * 2002-06-20 2003-12-31 서울금속산업주식회사 이중관의 열교환기를 갖는 보일러
CN201954999U (zh) * 2011-03-04 2011-08-31 杭州杭氧换热设备有限公司 开孔平直高效内翅换热管
GB2525536B (en) * 2013-02-19 2019-05-08 Mitsubishi Electric Corp Heat exchanger having concentric pipes including intermediate heat transfer pipe and refrigeration cycle apparatus including the heat exchanger
KR20150053833A (ko) * 2013-11-07 2015-05-19 신상용 핀 파이프형 열교환기
KR101864983B1 (ko) 2017-01-24 2018-06-05 두산중공업 주식회사 초임계 이산화탄소 발전 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101067530A (zh) * 2006-05-02 2007-11-07 三星光州电子株式会社 用于冰箱的热交换器
CN201344755Y (zh) * 2009-01-13 2009-11-11 胡琪 内纵外横高翅换热管
CN201434621Y (zh) * 2009-07-14 2010-03-31 西安石油大学 传热管外流体多股螺旋流壳管式换热器
US20120222845A1 (en) * 2011-03-01 2012-09-06 Kinder Lee M Coaxial Gas-Liquid Heat Exchanger With Thermal Expansion Connector
CN105605960A (zh) * 2015-12-23 2016-05-25 山东大学 一种内翅片连通的扁平换热管
CN109059601A (zh) * 2018-09-05 2018-12-21 上海发电设备成套设计研究院有限责任公司 一种紧凑型气体-气体换热管及其制造和使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3848664A4

Also Published As

Publication number Publication date
EP3848664A4 (en) 2021-11-17
JP2021535994A (ja) 2021-12-23
US20210310752A1 (en) 2021-10-07
EP3848664A1 (en) 2021-07-14
KR102559356B1 (ko) 2023-07-24
CN109059601A (zh) 2018-12-21
KR20210046045A (ko) 2021-04-27

Similar Documents

Publication Publication Date Title
WO2020048401A1 (zh) 一种紧凑型气体-气体换热管及其制造和使用方法
EP3702712B1 (en) Outer fin heat exchange tube and use method therefor
JP3154409B2 (ja) 凝縮器−熱交換器複合装置
JP2015155792A (ja) 熱交換器ならびにそれを製造および使用する方法
WO2012085337A1 (en) A shell and tube heat exchanger
CN207832003U (zh) 外翅片换热管
JPH06180194A (ja) 多管式熱交換器
CN209877730U (zh) 紧凑型气体-气体换热管
JP2010164244A (ja) 一次伝面型熱交換器
JPH11183062A (ja) 二重管式熱交換器
CN210892797U (zh) 一种u形管式热交换器管箱结构
WO2001007857A1 (en) Enhanced crossflow heat transfer
JP2005147480A (ja) 多流体熱交換器
CN212006837U (zh) 一种双面高肋翅片管式换热器
CN212006848U (zh) 一种波节管换热器
CN221302040U (zh) 一种用于制取蒸汽的高效管壳换热装置
SU1810732A1 (ru) Teплooбmehhиk
CN221198110U (zh) 一种单侧管板气液管式换热器
CN217585451U (zh) 一种适用于航空发动机的板式空-油预冷器
JPS6034938Y2 (ja) ヒ−トパイプ式熱交換器
CN113883926A (zh) 一种s系列换热单元
CN205825083U (zh) 一种烟气余热回收器
JP2018054216A (ja) シェルアンドチューブ式熱交換器
JPS59173687A (ja) 積層形熱交換器
JPH04164A (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217008099

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019858007

Country of ref document: EP

Effective date: 20210406