WO2020047969A1 - 舵机控制方法、装置和存储介质 - Google Patents

舵机控制方法、装置和存储介质 Download PDF

Info

Publication number
WO2020047969A1
WO2020047969A1 PCT/CN2018/112837 CN2018112837W WO2020047969A1 WO 2020047969 A1 WO2020047969 A1 WO 2020047969A1 CN 2018112837 W CN2018112837 W CN 2018112837W WO 2020047969 A1 WO2020047969 A1 WO 2020047969A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering gear
digital signal
angle
desired angle
controller
Prior art date
Application number
PCT/CN2018/112837
Other languages
English (en)
French (fr)
Inventor
欧阳建军
Original Assignee
深圳市天博智科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市天博智科技有限公司 filed Critical 深圳市天博智科技有限公司
Publication of WO2020047969A1 publication Critical patent/WO2020047969A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Definitions

  • the present application relates to the technical field of steering gear control, and in particular, to a steering gear control method, device, and storage medium.
  • the current steering gear when controlling the rotation, only drives the motor of the steering gear according to the signal sent by the controller to realize the rotation of the steering gear.
  • the rotation angle of the steering gear deviates, the actual steering angle and the desired angle of the steering gear cannot be obtained
  • the angle of the lens is poor, so accurate control cannot be performed when the angle is deviated.
  • the actual deflection angle of the steering gears is likely to change. Therefore, how to accurately adjust when there is an error between the actual rotation angle and the desired angle of the steering gear is a technical problem urgently needed by those skilled in the art.
  • the main purpose of this application is to provide a steering gear control method, device, and storage medium, which are aimed at solving the problem of inaccurate rotation angle of the steering gear in the prior art.
  • the steering gear control method includes the following steps:
  • An actual angle of rotation of the steering gear is detected by an angle detection circuit, and an angle difference is calculated according to the desired angle;
  • the step between receiving the digital signal sent by the controller and the step of obtaining a desired angle according to the digital signal includes:
  • the method includes:
  • the detection circuit includes a temperature detection circuit and a voltage detection circuit
  • the state parameters include a steering gear operating temperature and a power supply voltage
  • the step of determining whether the steering gear operates normally according to the state parameters includes:
  • a comparison is made according to the operating temperature of the steering gear and a preset normal temperature range of the steering gear, and a comparison is made between the power supply voltage and the preset normal voltage range of the steering gear to determine whether the steering gear is operating normally.
  • the method further includes:
  • the function mode is motion control, obtaining a desired rotation angle, a desired rotation speed, and a desired number of rotations of the steering gear according to the digital signal;
  • the step of receiving a digital signal sent by the controller, obtaining a desired angle based on the digital signal, and generating a driving signal according to the desired angle includes:
  • a corresponding instruction is parsed to obtain a desired angle
  • a driving signal is generated.
  • the step of converting the digital signal according to the received digital signal sent by the controller includes:
  • the high-frequency digital signal sent by the controller is received through a bus buffer, and the high-frequency digital signal is converted into a full-duplex serial signal by using the bus buffer.
  • the present application also provides a steering gear control device
  • the steering gear control device includes: a memory, a processor, and a steering gear control stored in the memory and operable on the processor.
  • a program that, when executed by the processor, implements the steps of the method described above.
  • the present application also provides a computer-readable storage medium, where the computer-readable storage medium stores a steering gear control program, and when the steering gear control program is executed by a processor, the above-mentioned implementation is implemented. Steps of the steering gear control method.
  • the processor receives a signal sent by the controller, obtains a desired angle of rotation of the steering gear according to the signal of the controller, and controls the operation of the motor through a driving signal so that the steering gear rotates.
  • the actual rotation angle of the steering gear and the expected angle will produce an error.
  • the rotation of the steering gear is controlled according to the angle difference between the actual rotation angle and the expected angle, so that the rudder The rotation angle of the servo is in accordance with the desired angle, thereby improving the accuracy of the servo operation.
  • FIG. 1 is a schematic structural diagram of a device for a hardware operating environment involved in a solution according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a first embodiment of a steering gear control method of the present application
  • FIG. 3 is a schematic flowchart of a second embodiment and a fourth embodiment of a steering gear control method of the present application
  • FIG. 4 is a schematic flowchart of a third embodiment of a steering gear control method of the present application.
  • FIG. 5 is a detailed flowchart of a step of obtaining a desired angle according to the digital signal and generating a driving signal according to the desired angle in FIG. 1.
  • FIG. 1 is a schematic structural diagram of a device for a hardware operating environment involved in the solution of the embodiment of the present application.
  • the terminal may include a processor 1001, such as a CPU, a communication bus 1002, a user interface 1003, a network interface 1004, and a memory 1005.
  • the communication bus 1002 is used to implement connection and communication between these components.
  • the user interface 1003 may include a display screen, an input unit such as a keyboard, and the optional user interface 1003 may further include a standard wired interface and a wireless interface.
  • the network interface 1004 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface).
  • the memory 1005 may be a high-speed RAM memory or a non-volatile memory. memory), such as disk storage.
  • the memory 1005 may optionally be a storage device independent of the foregoing processor 1001.
  • the terminal may further include a camera, RF (Radio Frequency) circuits, sensors, audio circuits, WiFi modules, and more.
  • sensors such as light sensors, motion sensors, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor, wherein the ambient light sensor may adjust the brightness of the display screen according to the brightness of the ambient light, and the proximity sensor may turn off the display screen and / or when the hardware device is moved to the ear.
  • a gravity acceleration sensor can detect the magnitude of acceleration in various directions (generally three axes). It can detect the magnitude and direction of gravity when it is stationary.
  • the hardware device can also be equipped with other sensors such as gyroscope, barometer, hygrometer, thermometer, infrared sensor, etc., here No longer.
  • terminal structure shown in FIG. 1 does not constitute a limitation on the terminal, and may include more or fewer components than shown in the figure, or some components may be combined, or different components may be arranged.
  • the memory 1005 as a computer storage medium may include an operating system, a network communication module, a user interface module, and a steering gear control program.
  • the network interface 1004 is mainly used to connect to the background server and perform data communication with the background server;
  • the user interface 1003 is mainly used to connect to the client (user) and perform data communication with the client;
  • the processor 1001 can be used to call the servo control program stored in the memory 1005 and perform the following operations:
  • An actual angle of rotation of the steering gear is detected by an angle detection circuit, and an angle difference is calculated according to the desired angle;
  • the processor 1001 may call a steering gear control program stored in the memory 1005, and further perform the following operations:
  • the processor 1001 may call a steering gear control program stored in the memory 1005, and further perform the following operations:
  • the detection circuit includes a temperature detection circuit and a voltage detection circuit
  • the state parameters include a steering gear operating temperature and a power supply voltage.
  • the processor 1001 may call a steering gear control program stored in the memory 1005, and further perform the following operations:
  • a comparison is made according to the operating temperature of the steering gear and a preset normal temperature range of the steering gear, and a comparison is made between the power supply voltage and the preset normal voltage range of the steering gear to determine whether the steering gear is operating normally.
  • the processor 1001 may call a steering gear control program stored in the memory 1005, and further perform the following operations:
  • the function mode is motion control, obtaining a desired rotation angle, a desired rotation speed, and a desired number of rotations of the steering gear according to the digital signal;
  • the processor 1001 may call a steering gear control program stored in the memory 1005, and further perform the following operations:
  • a corresponding instruction is parsed to obtain a desired angle
  • a driving signal is generated.
  • FIG. 2 is a schematic flowchart of a first embodiment of a steering gear control method of the present application.
  • the steering gear control method includes the following steps:
  • Step S10 receiving a digital signal sent by the controller
  • the steering gear is a kind of position (angle) servo driver, which is suitable for those control systems that require constant angle change and can be maintained. At present, it has been widely used in aircraft and submarine models and remote control robots.
  • Analog servos generally do not have a central processing unit. They consist of a reduction gear set, a DC motor, an angle sensor, and an analog circuit. Externally, the steering angle is controlled by a PWM signal.
  • the steering gear with a processor added to the steering gear is a digital steering gear.
  • the digital steering gear is different from the exemplary analog steering gear.
  • the analog steering gear needs to continuously send PWM signals to it to keep it in the prescribed position.
  • digital servos can respond to signals at the controller with a higher frequency, respond faster, and be softer during the acceleration and deceleration of the servos, which can provide higher accuracy and stronger Stability and reduce jitter of the servo.
  • the application of the steering gear control method to a digital steering gear is taken as an example.
  • the digital steering gear is provided with a processor, and the processor can receive digital signals sent by the controller or the upper computer.
  • the controller or the upper computer refers to A device that can communicate with the processor of the servo through signals and send instructions to control the precise operation of the servo. After receiving the digital signal sent by the controller, the servo can get the corresponding command based on the digital signal sent by the controller , And drive the steering gear according to the instructions.
  • Step S20 Obtain a desired angle according to the digital signal, generate a driving signal according to the desired angle, and send the driving signal to a motor of the steering gear to drive the steering gear to rotate;
  • the processor parses the digital signal to obtain the specific instruction contained in the digital signal sent by the controller, that is, the desired angle.
  • the desired angle refers to the angle that the controller sends to the servo to request the servo to rotate.
  • the corresponding driving signal is generated according to the value of the desired angle.
  • the driving signal refers to a signal sent by the processor to the motor of the steering gear, and the driving signal includes parameters of the motor operation.
  • the driving signal can control the start and stop of the motor, control the motor running time, and then control the rotation angle of the steering gear.
  • the driving signal can also control the power output by the motor. Furthermore, the speed at which the output shaft of the steering gear rotates is changed.
  • the driving signal enables the user to control the rotation angle of the steering gear and the speed at which the steering gear rotates.
  • the processor sends the generated driving signal to the motor of the steering gear.
  • the motor can drive the output shaft of the steering gear to rotate, so that the output shaft of the steering gear rotates.
  • the motor runs according to the instruction of the driving signal. The angle matches the desired angle.
  • the digital signal is converted into a driving signal for driving the motor, and the driving signal is sent to the motor in the steering gear to drive the motor to rotate, thereby rotating the steering gear.
  • This solution can convert the command sent by the controller into a drive signal that can be recognized by the motor, so that the servo can quickly respond to the command from the controller and complete the angular rotation of the servo.
  • the driving signal is used to control the motor operation to accurately control the time and power of the motor, so that the rotation angle of the servo meets the desired angle contained in the digital signal sent by the controller, which increases the accuracy of the servo control.
  • Step S30 An actual angle of rotation of the steering gear is detected by an angle detection circuit, and an angle difference is calculated according to the desired angle;
  • the angle detection circuit is connected to the processor and can detect the rotation angle of the steering gear when the steering gear is running.
  • the motor in the steering gear receives the driving signal and runs, the steering gear rotates through a certain angle, and the angle of the steering gear rotation is detected by the angle detection circuit to obtain the actual rotation angle of the steering gear.
  • the steering gear contains a driving mechanism, The transmission mechanism and output mechanism, when each mechanism inside the steering gear is worn out due to long-term operation, the actual rotation angle of the steering gear is not consistent with the expected angle. Therefore, if the actual rotation angle of the steering gear is different from the expected angle, then According to the actual angle and the desired angle, the difference between the two angles is calculated, that is, the angle difference.
  • the transmission mechanism inside the servo can be a reduction mechanism. After the servo motor is driven by the reduction mechanism, the torque of the output shaft of the servo increases, which can be provided when the power of the servo motor is low. Large torque, but after the reduction gear transmission, due to the reduced speed, the actual angle of the output shaft rotation of the steering gear is not consistent with the expected angle, and an angular difference will also occur.
  • the rotation angle of the steering gear is required to be very accurate.
  • the actual rotation angle of the steering gear is detected by the angle detection circuit, and the angle difference is obtained by comparing with the desired angle. Controlling the steering gear to further rotate according to the angle difference can improve the accuracy of the steering gear.
  • Step S40 Control the steering gear to rotate to a desired angle according to the angle difference.
  • the processor can generate a new driving signal according to the angle difference, and send the driving signal to the motor in the steering gear to control the rotation of the motor In order to adjust the rotation angle of the steering gear, the rotation angle of the steering gear conforms to the desired angle.
  • the steering gear can also generate a driving signal that controls the rotation speed of the steering gear according to the angle difference to control the rotation speed of the steering gear.
  • the processor can accurately control the steering gear to rotate according to the high-precision PID algorithm that uses the angle control as the outer ring and the speed control as the inner ring stored in the processor, so that The machine meets the requirements of the controller and improves the precision and controllability of the servo.
  • the step of receiving a digital signal sent by the controller and the step S20 the step of obtaining a desired angle according to the digital signal include:
  • Step S50 Obtain a functional mode of the steering gear according to the digital signal.
  • the processor after the processor obtains the digital signal sent by the controller, it can obtain the function instruction from the digital signal.
  • the function instruction is an instruction from the controller to control the functional mode of the servo.
  • the servo is in different functional modes. Can achieve different functions.
  • the processor obtains the desired angle of the steering gear according to the digital signal sent by the controller, and then controls the rotation of the steering gear.
  • the processor can control the steering gear to enter different functional modes. Under different functional modes, the steering gear can implement different functions to enhance the practicality and diversity of the steering gear. Implement different functions in different environments.
  • the method includes:
  • step S53 receiving a status parameter sent by the detection circuit, and judging whether the steering gear operates normally according to the status parameter;
  • Step S531 if yes, control the steering gear to run
  • Step S532 if not, control the status indicator in the steering gear to indicate a failure.
  • the function instruction obtained according to the digital signal is fault detection.
  • the processor controls the servo to enter the fault detection mode and receives the signal sent by the detection circuit in the servo. State parameters of the steering gear.
  • the processor judges whether the steering gear is in a normal operating state according to the received state parameters. When the state parameter indicates that the steering gear is operating normally, the processor judges that the steering gear is normally operating and continues to control the steering gear to run; when the state parameter represents the steering gear When the status does not meet the normal running status, the processor controls the status indicator in the steering gear to start, and transmits the fault status of the steering gear to the outside through the status indicator to remind the user that the steering gear needs to be inspected and maintained.
  • step S53 the step of judging whether the steering gear operates normally according to the state parameter includes:
  • a comparison is made according to the operating temperature of the steering gear and a preset normal temperature range of the steering gear, and a comparison is made between the power supply voltage and the preset normal voltage range of the steering gear to determine whether the steering gear is operating normally.
  • the detection circuit includes a temperature detection circuit and a voltage detection circuit.
  • the temperature detection circuit is used to detect the temperature inside the servo.
  • the processor has a preset temperature range for the normal operation of the servo. When the processor obtains the servo detected by the temperature detection circuit, After the internal temperature, the temperature is compared with the normal temperature range. If the internal temperature of the servo is in the normal temperature range, the servo is considered to be operating normally. If the internal temperature of the servo is outside the normal temperature range, it is judged that the servo has failed. .
  • the voltage detection circuit is used to detect the power supply voltage of the servo.
  • the processor has a preset power supply voltage range required for normal operation of the servo.
  • the processor obtains the power supply voltage of the servo detected by the voltage detection circuit, , Compare the power supply voltage with the normal power supply voltage range. If the power supply voltage of the servo is in the range of the power supply voltage that can make the servo operate normally, the servo is considered to be operating normally. Range of the power supply voltage, it is judged that the servo has malfunctioned.
  • the status indicator may be an LED status indicator, and the LED status indicator may indicate that the steering gear is in a normal operating state or a fault state by displaying different colors, or indicates a corresponding fault state by blinking.
  • the processor can determine whether the servo has failed by receiving the state parameters of the servo detected by the detection circuit, and use the status indicator to indicate to the user in response to the fault status, so that the servo is in an abnormal state.
  • the status is detected in time, which improves the applicability of the steering gear in different environments, so that users can easily observe the status of the steering gear.
  • the method further includes:
  • Step S51 when the function mode is motion control, obtain a desired rotation angle, a desired rotation speed, and a desired number of rotations of the steering gear according to the digital signal;
  • Step S52 Generate a driving signal according to the desired rotation angle, the desired rotation speed, and the desired number of rotations, and send the driving signal to a motor of the steering gear to drive the steering gear to rotate. .
  • the processor controls the servo to enter the motion mode, and obtains the controller signal contained in the digital signal.
  • the processor After obtaining the rotation parameters such as the desired rotation angle, the desired rotation speed, and the desired number of rotations of the servo, the processor generates a driving signal for controlling the motor operation according to the rotation parameters. And send the drive signal to the motor inside the servo, so that the servo runs according to the rotation parameters.
  • the controller can send digital signals to control the continuous rotation of the servo, and control the speed of the servo rotation and the number of turns of the servo, and also control the rotation angle of the servo.
  • the steering gear can be controlled by the controller to perform precise rotation to realize the rotation of the steering gear.
  • FIG. 5 is a schematic flowchart of an embodiment of a steering gear control method of the present application.
  • the step S20, obtaining a desired angle based on the digital signal, and generating a driving signal according to the desired angle includes:
  • the processor After the processor receives the digital signal sent by the controller, because the digital signal sent by the controller is a high-frequency digital signal data packet with a special protocol, the processor needs to process the digital signal to convert the high-frequency digital signal into a signal that the processor can Identify the data mode and analyze the corresponding instructions of the controller to control the operation of the steering gear to obtain the desired angle that the controller expects the steering gear to rotate. After obtaining the corresponding instruction, the processor needs to convert it into a drive signal that can be recognized by the motor to control the motor's operation and achieve the rotation of the steering gear.
  • a bus buffer is provided between the controller and the processor, and the bus buffer can receive a high-frequency digital signal data packet sent by the controller and convert it into a signal that can be recognized by the processor.
  • the bus buffer can convert a high-frequency digital signal into a signal in a full-duplex serial communication mode, so that the processor can identify it.
  • the digital signal sent by the controller is converted through the bus buffer, which makes it easier for the processor to analyze the digital signal sent by the controller, and speeds up the reaction speed of the servo.
  • an embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium of the present application stores a steering gear control program, and when the steering gear control program is executed by a processor, the steps of the steering gear control method described above are implemented.
  • the methods in the above embodiments can be implemented by means of software plus a necessary universal hardware platform, and of course, also by hardware, but in many cases the former is better.
  • Implementation Based on such an understanding, the technical solution of this application that is essentially or contributes to the existing technology can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium (such as ROM / RAM) as described above. , Magnetic disk, optical disc), including a number of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in the embodiments of the present application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

一种舵机控制方法、装置和存储介质,包括以下步骤:接收控制器发送的数字信号(S10);根据所述数字信号得到期望角度,根据所述期望角度生成驱动信号,并将所述驱动信号发送至所述舵机的电机,以驱动所述舵机进行转动(S20);通过角度检测电路检测所述舵机旋转的实际角度,根据所述期望角度,计算得出角度差(S30);根据所述角度差,控制所述舵机转动至期望角度(S40)。

Description

舵机控制方法、装置和存储介质
技术领域
本申请涉及舵机控制技术领域,尤其涉及一种舵机控制方法、装置和存储介质。
背景技术
随着近几年自动化设备应用的拓展,舵机的需求越来越广泛,各种应用场合对舵机的控制方式都提出了更高的要求。目前的舵机,在控制转动的时候,仅仅根据控制器发送的信号驱动舵机的电机运行,实现舵机转动,当舵机转动的角度出现偏差时,无法获取舵机实际偏转角度与期望角度的角度差,因此在角度出现偏差时无法进行准确的控制。且大部分舵机在未运行状态时被外力所控制发生偏转后,易使得舵机实际偏转角度发生变化。因此,如何在舵机实际转动角度和期望角度存在误差时能够精准地进行调节是本领域技术人员目前亟需解决的一项技术问题。
发明内容
本申请的主要目的在于提供一种舵机控制方法、装置和存储介质,旨在解决现有技术中舵机转动角度不精准的问题。
为实现上述目的,本申请提供一种舵机控制方法,所述舵机控制方法应用于控制舵机旋转,所述舵机控制方法包括以下步骤:
接收控制器发送的数字信号;
根据所述数字信号得到期望角度,根据所述期望角度生成驱动信号,并将所述驱动信号发送至所述舵机的电机,以驱动所述舵机进行转动;
通过角度检测电路检测所述舵机旋转的实际角度,根据所述期望角度,计算得出角度差;
根据所述角度差,控制所述舵机转动至期望角度。
可选地,所述接收控制器发送的数字信号的步骤和根据所述数字信号得到期望角度的步骤之间包括:
根据所述数字信号获取舵机的功能模式;
当所述功能模式为角度控制时,执行步骤:根据所述数字信号得到期望角度。
可选地,所述根据所述数字信号获取舵机的功能模式的步骤之后包括:
当所述功能模式为故障检测时,接收检测电路发送的状态参数;
根据所述状态参数,判断所述舵机是否正常运行;
若是,则控制所述舵机运行;
若否,则控制所述舵机中状态指示器指示故障。
可选地,所述检测电路包括温度检测电路和电压检测电路,所述状态参数包括舵机运行温度和电源电压,所述根据所述状态参数,判断所述舵机是否正常运行的步骤包括:
根据所述舵机运行温度和预设的舵机正常的温度范围进行对比,以及根据所述电源电压和预设的舵机正常电压范围进行对比,判断所述舵机是否正常运行。
可选地,所述根据所述数字信号获取舵机的功能模式的步骤之后还包括:
当所述功能模式为运动控制时,根据所述数字信号,获取舵机的期望旋转角度、期望旋转速度和期望旋转圈数;
根据所述期望旋转角度、所述期望旋转速度和所述期望旋转圈数,生成驱动信号,并将所述驱动信号发送至所述舵机的电机,以驱动所述舵机进行转动。
可选地,所述接收控制器发送的数字信号,根据所述数字信号得到期望角度,根据所述期望角度生成驱动信号的步骤包括:
根据接收到的控制器发送的数字信号,对所述数字信号进行转换;
根据转换后的所述数字信号,解析出相应的指令,获得期望角度;
根据所述指令,生成驱动信号。
可选地,所述根据接收到的控制器发送的数字信号,对所述数字信号进行转换的步骤包括:
通过总线缓冲器接收控制器发送的高频数字信号,利用所述总线缓冲器将所述高频数字信号转换成全双工串行信号。
此外,为实现上述目的,本申请还提供一种舵机控制装置,所述舵机控制装置包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的舵机控制程序,所述舵机控制程序被所述处理器执行时实现如上所述的方法的步骤。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有舵机控制程序,所述舵机控制程序被处理器执行时实现如上所述的舵机控制方法的步骤。
在本申请中,处理器通过接收控制器发送的信号,根据控制器的信号得出舵机旋转的期望角度,并通过驱动信号控制电机运行,使得舵机旋转。但在实际过程中,舵机实际旋转角度与期望角度会产生误差,通过角度检测电路检测到舵机实际旋转角度后,根据实际旋转角度与期望角度的角度差,控制舵机旋转,以使得舵机旋转的角度符合期望角度,从而提升舵机运转的精准性。
附图说明
图1是本申请实施例方案涉及的硬件运行环境的装置结构示意图;
图2为本申请舵机控制方法第一实施例的流程示意图;
图3为本申请舵机控制方法第二实施例和第四实施例的流程示意图;
图4为本申请舵机控制方法第三实施例的流程示意图;
图5为图1中根据所述数字信号得到期望角度,根据所述期望角度生成驱动信号的步骤的细化流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
如图1所示,图1是本申请实施例方案涉及的硬件运行环境的装置结构示意图。
如图1所示,该终端可以包括:处理器1001,例如CPU,通信总线1002,用户接口1003,网络接口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选的用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
可选地,终端还可以包括摄像头、RF(Radio Frequency,射频)电路,传感器、音频电路、WiFi模块等等。其中,传感器比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示屏的亮度,接近传感器可在硬件设备移动到耳边时,关闭显示屏和/或背光。作为运动传感器的一种,重力加速度传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别硬件设备姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;当然,硬件设备还可配置陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
本领域技术人员可以理解,图1中示出的终端结构并不构成对终端的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储介质的存储器1005中可以包括操作系统、网络通信模块、用户接口模块以及舵机控制程序。
在图1所示的终端中,网络接口1004主要用于连接后台服务器,与后台服务器进行数据通信;用户接口1003主要用于连接客户端(用户端),与客户端进行数据通信;而处理器1001可以用于调用存储器1005中存储的舵机控制程序,并执行以下操作:
接收控制器发送的数字信号;
根据所述数字信号得到期望角度,根据所述期望角度生成驱动信号,并将所述驱动信号发送至所述舵机的电机,以驱动所述舵机进行转动;
通过角度检测电路检测所述舵机旋转的实际角度,根据所述期望角度,计算得出角度差;
根据所述角度差,控制所述舵机转动至期望角度。
进一步地,处理器1001可以调用存储器1005中存储的舵机控制程序,还执行以下操作:
根据所述数字信号获取舵机的功能模式;
当所述功能模式为角度控制时,执行步骤:根据所述数字信号得到期望角度。
进一步地,处理器1001可以调用存储器1005中存储的舵机控制程序,还执行以下操作:
当所述功能模式为故障检测时,接收检测电路发送的状态参数;
根据所述状态参数,判断所述舵机是否正常运行;
若是,则控制所述舵机运行;
若否,则控制所述舵机中状态指示器指示故障。
进一步地,所述检测电路包括温度检测电路和电压检测电路,所述状态参数包括舵机运行温度和电源电压,处理器1001可以调用存储器1005中存储的舵机控制程序,还执行以下操作:
根据所述舵机运行温度和预设的舵机正常的温度范围进行对比,以及根据所述电源电压和预设的舵机正常电压范围进行对比,判断所述舵机是否正常运行。
进一步地,处理器1001可以调用存储器1005中存储的舵机控制程序,还执行以下操作:
当所述功能模式为运动控制时,根据所述数字信号,获取舵机的期望旋转角度、期望旋转速度和期望旋转圈数;
根据所述期望旋转角度、所述期望旋转速度和所述期望旋转圈数,生成驱动信号,并将所述驱动信号发送至所述舵机的电机,以驱动所述舵机进行转动。
进一步地,处理器1001可以调用存储器1005中存储的舵机控制程序,还执行以下操作:
根据接收到的控制器发送的数字信号,对所述数字信号进行转换;
根据转换后的所述数字信号,解析出相应的指令,获得期望角度;
根据所述指令,生成驱动信号。
请参照图2,图2为本申请舵机控制方法第一实施例的流程示意图,其中,所述舵机控制方法包括如下步骤:
步骤S10,接收控制器发送的数字信号;
舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。目前,在飞机、潜艇模型,遥控机器人中已经得到了普遍应用。模拟舵机一般没有中央处理器,由减速速齿轮组、直流电机、角度传感器和模拟电路组成的,外部通过PWM信号控制舵机旋转的角度。而在舵机中加入了处理器的舵机为数字舵机,数字舵机区别于示例性的模拟舵机,模拟舵机需要给它不停的发送PWM信号,才能让它保持在规定的位置或者让它按照某个速度转动,数字舵机则只需要发送一次PWM信号就能保持在规定的某个位置。因此,与模拟舵机相比,数字舵机能够以更高的频率响应控制器端的信号,反应迅速,在舵机加速和减速的过程中也更为柔和,能够提供更高的精度以及更强的稳定性,并减少舵机的抖动。
本实施例中,以该舵机控制方法在数字舵机上的应用为例,数字舵机上设置有处理器,处理器能够接受控制器或者上位机发送的数字信号,控制器或上位机指的是能够与舵机的处理器通过信号进行通讯,并且发出指令控制舵机精准运转的一种装置,舵机在接收到控制器发送的数字信号后,能够根据控制器发送的数字信号得出相应指令,并根据指令驱动舵机运转。
步骤S20,根据所述数字信号得到期望角度,根据所述期望角度生成驱动信号,并将所述驱动信号发送至所述舵机的电机,以驱动所述舵机进行转动;
在处理器获取到控制器发送的数字信号后,处理器对数字信号进行解析,得到控制器发送的数字信号中包含的具体指令,即期望角度。期望角度指控制器向舵机发送的要求舵机旋转的角度。处理器在得到期望角度后,根据期望角度的数值生成相应的驱动信号,驱动信号是指处理器向舵机的电机发送的信号,驱动信号包含电机运转的参数。驱动信号通过控制电机的启动与停止,控制电机运转的时间,进而控制舵机旋转的角度;驱动信号还能够控制电机输出的功率,电机运转带动舵机的输出轴旋转,改变电机运转的功率能够进而改变舵机输出轴旋转的速度,因此,驱动信号能够用户控制舵机旋转的角度与舵机旋转的速度。具有处理器将生成的驱动信号发送至舵机的电机内,电机运转能够驱动舵机的输出轴转动,实现舵机的输出轴旋转,电机根据驱动信号的指令进行运转,即能够使得舵机旋转的角度符合期望角度。
在处理器获取到数字信号后,将数字信号转化为驱动电机运转的驱动信号,并将驱动信号发送给舵机内的电机,以驱动电机运转,进而使舵机旋转。该方案能够将控制器发送的指令转化成电机所能够识别的驱动信号,使舵机快速响应控制器的指令,完成舵机的角度旋转。同时,通过驱动信号控制电机运转,能够准确地控制电机运转的时间和功率,使得舵机旋转的角度符合控制器发送的数字信号中包含的期望角度,增加了舵机控制的精准性。
步骤S30,通过角度检测电路检测所述舵机旋转的实际角度,根据所述期望角度,计算得出角度差;
舵机内部还设置有角度检测电路,角度检测电路与处理器相连接,能够在舵机运转时检测舵机旋转的角度。在舵机内的电机接收到驱动信号并运转时,舵机旋转过一定角度,通过角度检测电路对舵机旋转的角度进行检测,得到舵机旋转的实际角度,由于舵机内部包含驱动机构、传动机构和输出机构,在舵机内部的各个机构由于长期运转而产生磨损等损耗时,舵机实际旋转的角度与期望角度并不一致,因此,若舵机旋转的实际角度与期望角度不同,则根据实际角度与期望角度,计算出两个角度之间的差值,即角度差。需要说明的是,舵机内部的传动机构可以是减速机构,舵机电机运转在经过减速机构传动后,舵机输出轴的扭矩增大,能够在舵机的电机运转时的功率较低时提供较大扭矩,但在减速机构传动后,由于转速降低,舵机的输出轴转动的实际角度与期望角度之间不一致,也会产生角度差。
舵机的转动角度要求十分精准,通过角度检测电路检测舵机实际转动的角度,并与期望角度比较,得到角度差,根据角度差来控制舵机进一步转动,能够提升舵机的精准性。
步骤S40,根据所述角度差,控制所述舵机转动至期望角度。
在获得舵机转动的角度差,即实际转动的角度与期望角度的差值后,处理器能够根据角度差生成新的驱动信号,并将驱动信号发送至舵机内的电机中,控制电机转动以调整舵机转动的角度,使得舵机旋转的角度符合期望角度。同样地,舵机还能够根据角度差生成控制舵机旋转速度的驱动信号,以控制舵机旋转的速度。
在处理器控制舵机的旋转角度与旋转速度时,处理器能够根据处理器内部存储的以角度控制为外环,速度控制为内环的高精度PID算法精准地控制舵机进行旋转,使得舵机满足控制器的指令要求,提升舵机的精度与可控性。
进一步地,参照图3,可选地,在一实施例中,在所述步骤S10,接收控制器发送的数字信号的步骤和所述步骤S20,根据所述数字信号得到期望角度的步骤之间包括:
步骤S50,根据所述数字信号获取舵机的功能模式;
当所述功能模式为角度控制时,执行步骤:根据所述数字信号得到期望角度。
在本实施例中,处理器获取到控制器发送的数字信号后,能够从数字信号中获取到功能指令,功能指令是控制器发出的控制舵机功能模式的指令,舵机在不同的功能模式下能够实现不同的功能。当根据功能指令使舵机进入角度控制模式时,处理器根据控制器发送的数字信号获取到舵机的期望角度,进而控制舵机旋转。
通过控制器发送的功能指令,处理器能够控制舵机进入不同的功能模式,在不同的功能模式下舵机能够实现不同的功能,以提升舵机的实用性与多样性,在不同的需求以及不同的环境下实现不同的功能。
进一步地,参照图4,可选地,在一实施例中,在所述步骤S50,根据所述数字信号获取舵机的功能模式的步骤之后包括:
当所述功能模式为故障检测时,步骤S53,接收检测电路发送的状态参数,根据所述状态参数,判断所述舵机是否正常运行;
步骤S531,若是,则控制所述舵机运行;
步骤S532,若否,则控制所述舵机中状态指示器指示故障。
在本实施例中,处理器获取到控制器发送的数字信号后,根据数字信号获取到的功能指令为故障检测,处理器控制舵机进入故障检测模式,并接收舵机内的检测电路发送的舵机的状态参数。处理器根据接受到的状态参数,判断舵机是否处于正常运行状态,当状态参数表示舵机正常运行时,处理器判断舵机正常运行,并继续控制舵机进行运转;当状态参数表示舵机状态不符合正常运行状态时,处理器控制舵机中的状态指示器启动,通过状态指示器向外界传递舵机的故障状态,以提醒用户舵机需要进行检测维修。
进一步地,可选地,在一实施例中,在步骤S53,根据所述状态参数,判断所述舵机是否正常运行的步骤包括:
根据所述舵机运行温度和预设的舵机正常的温度范围进行对比,以及根据所述电源电压和预设的舵机正常电压范围进行对比,判断所述舵机是否正常运行。
检测电路包括温度检测电路和电压检测电路,温度检测电路用于检测舵机内部的温度,处理器内部预先设置有舵机正常运行的温度范围,当处理器获取到温度检测电路检测到的舵机内部温度后,将该温度与正常的温度范围进行对比,若舵机内部温度处于正常的温度范围,则认为舵机正常运行,若舵机内部温度超出正常的温度范围,则判断舵机产生故障。同样地,电压检测电路用于检测舵机的电源电压,处理器内部预先设置有舵机正常运行的所需电源电压的范围,当处理器获取到电压检测电路检测到的舵机的电源电压后,将该电源电压与正常的电源电压范围进行对比,若舵机电源电压处于能够使舵机正常运行的电源电压的范围,则认为舵机正常运行,若舵机电源电压超出使舵机正常运行的电源电压的范围,则判断舵机产生故障。
可选地,状态指示器可为LED状态指示器,LED状态指示器可通过显示不同颜色指示舵机处于正常运行状态或故障状态,或通过闪烁指示相应故障状态。
在舵机处于故障检测模式时,处理器能够通过接收检测电路检测到的舵机的状态参数,判断舵机是否发生故障,并利用状态指示器向用户指示响应故障状态,使舵机在非正常状态时及时被检测,提升舵机的在不同环境下的适用性,使用户能够简便地对舵机状态进行观察。
进一步地,继续参照图3,可选地,在一实施例中,在所述步骤S50,根据所述数字信号获取舵机的功能模式的步骤之后还包括:
步骤S51,当所述功能模式为运动控制时,根据所述数字信号,获取舵机的期望旋转角度、期望旋转速度和期望旋转圈数;
步骤S52,根据所述期望旋转角度、所述期望旋转速度和所述期望旋转圈数,生成驱动信号,并将所述驱动信号发送至所述舵机的电机,以驱动所述舵机进行转动。
在本实施例中,处理器获取到控制器发送的数字信号后,根据数字信号获取到的功能指令为运动控制,处理器控制舵机进入运动模式,并获取数字信号中所包含的控制器发送的舵机的期望旋转角度、期望旋转速度和期望旋转圈数,获取舵机的期望旋转角度、期望旋转速度和期望旋转圈数等旋转参数后,处理器根据旋转参数生成控制电机运转的驱动信号,并将驱动信号发送至舵机内部的电机,使得舵机根据旋转参数进行运转。
在舵机进入运动模式时,控制器能够发送数字信号,以控制舵机进行连续旋转,并且控制舵机旋转的速度和舵机旋转的圈数,并且还能够控制舵机的旋转角度。舵机能够被控制器控制进行精准的转动,实现舵机的旋转。
请参照图5,图5为本申请舵机控制方法一实施例的流程示意图,其中,所述步骤S20,根据所述数字信号得到期望角度,根据所述期望角度生成驱动信号的步骤包括:
S21,根据接收到的控制器发送的数字信号,对所述数字信号进行转换;
S22,根据转换后的所述数字信号,解析出相应的指令,获得期望角度;
S23,根据所述指令,生成驱动信号。
处理器接收到控制器发送的数字信号后,由于控制器发送的数字信号为具有特殊协议的高频数字信号数据包,处理器需要对数字信号进行处理,将高频数字信号转换成处理器能够识别的数据方式,并解析出控制器控制舵机运转的相应指令,以获得控制器期望舵机旋转的期望角度。在获取到相应指令后,处理器需要将其转化成电机能够识别的驱动信号,以控制电机运转,实现舵机的旋转。
可选地,控制器与处理器之间设置有总线缓冲器,总线缓冲器能够接受控制器发送的高频数字信号数据包,并将其转换为处理器能够识别的信号。具体地,总线缓冲器能够将高频数字信号转换成全双工串行通讯方式下的信号,以便于处理器能够进行识别。通过总线缓冲器对控制器发送的数字信号进行转换,能够使得处理器便于解析控制器发送的数字信号,使舵机运转的反应速度加快。
此外本申请实施例还提出一种计算机可读存储介质。
本申请计算机可读存储介质上存储有舵机控制程序,所述舵机控制程序被处理器执行时实现如上述所述的舵机控制方法的步骤。
其中,在所述处理器上运行的舵机控制程序被执行时所实现的方法可参照本申请舵机控制方法各个实施例,在此不再赘述。
可以理解的是,在本说明书的描述中,参考术语“一实施例”、“另一实施例”、“其他实施例”、 或“第一实施例~第N实施例”等的描述意指结合该实施例或示例描述的具体特征、 结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种舵机控制方法,其中,包括以下步骤:
    接收控制器发送的数字信号;
    根据所述数字信号得到期望角度,根据所述期望角度生成驱动信号,并将所述驱动信号发送至所述舵机的电机,以驱动所述舵机进行转动;
    通过角度检测电路检测所述舵机旋转的实际角度,根据所述期望角度,计算得出角度差;
    根据所述角度差,控制所述舵机转动至期望角度。
  2. 如权利要求1所述的舵机控制方法,其中,所述接收控制器发送的数字信号的步骤和根据所述数字信号得到期望角度的步骤之间包括:
    根据所述数字信号获取舵机的功能模式;
    当所述功能模式为角度控制时,执行步骤:根据所述数字信号得到期望角度。
  3. 如权利要求2所述的舵机控制方法,其中,所述根据所述数字信号获取舵机的功能模式的步骤之后包括:
    当所述功能模式为故障检测时,接收检测电路发送的状态参数;
    根据所述状态参数,判断所述舵机是否正常运行;
    若是,则控制所述舵机运行;
    若否,则控制所述舵机中状态指示器指示故障。
  4. 如权利要求3所述的舵机控制方法,其中,所述检测电路包括温度检测电路和电压检测电路,所述状态参数包括舵机运行温度和电源电压,所述根据所述状态参数,判断所述舵机是否正常运行的步骤包括:
    根据所述舵机运行温度和预设的舵机正常的温度范围进行对比,以及根据所述电源电压和预设的舵机正常电压范围进行对比,判断所述舵机是否正常运行。
  5. 如权利要求2所述的舵机控制方法,其中,所述根据所述数字信号获取舵机的功能模式的步骤之后还包括:
    当所述功能模式为运动控制时,根据所述数字信号,获取舵机的期望旋转角度、期望旋转速度和期望旋转圈数;
    根据所述期望旋转角度、所述期望旋转速度和所述期望旋转圈数,生成驱动信号,并将所述驱动信号发送至所述舵机的电机,以驱动所述舵机进行转动。
  6. 如权利要求1所述的舵机控制方法,其中,所述接收控制器发送的数字信号,根据所述数字信号得到期望角度,根据所述期望角度生成驱动信号的步骤包括:
    根据接收到的控制器发送的数字信号,对所述数字信号进行转换;
    根据转换后的所述数字信号,解析出相应的指令,获得期望角度;
    根据所述指令,生成驱动信号。
  7. 如权利要求2所述的舵机控制方法,其中,所述接收控制器发送的数字信号,根据所述数字信号得到期望角度,根据所述期望角度生成驱动信号的步骤包括:
    根据接收到的控制器发送的数字信号,对所述数字信号进行转换;
    根据转换后的所述数字信号,解析出相应的指令,获得期望角度;
    根据所述指令,生成驱动信号。
  8. 如权利要求3所述的舵机控制方法,其中,所述接收控制器发送的数字信号,根据所述数字信号得到期望角度,根据所述期望角度生成驱动信号的步骤包括:
    根据接收到的控制器发送的数字信号,对所述数字信号进行转换;
    根据转换后的所述数字信号,解析出相应的指令,获得期望角度;
    根据所述指令,生成驱动信号。
  9. 如权利要求4所述的舵机控制方法,其中,所述接收控制器发送的数字信号,根据所述数字信号得到期望角度,根据所述期望角度生成驱动信号的步骤包括:
    根据接收到的控制器发送的数字信号,对所述数字信号进行转换;
    根据转换后的所述数字信号,解析出相应的指令,获得期望角度;
    根据所述指令,生成驱动信号。
  10. 如权利要求5所述的舵机控制方法,其中,所述接收控制器发送的数字信号,根据所述数字信号得到期望角度,根据所述期望角度生成驱动信号的步骤包括:
    根据接收到的控制器发送的数字信号,对所述数字信号进行转换;
    根据转换后的所述数字信号,解析出相应的指令,获得期望角度;
    根据所述指令,生成驱动信号。
  11. 一种舵机控制装置,其中,所述舵机控制装置包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的舵机控制程序,所述舵机控制程序被所述处理器执行时实现步骤:
    接收控制器发送的数字信号;
    根据所述数字信号得到期望角度,根据所述期望角度生成驱动信号,并将所述驱动信号发送至所述舵机的电机,以驱动所述舵机进行转动;
    通过角度检测电路检测所述舵机旋转的实际角度,根据所述期望角度,计算得出角度差;
    根据所述角度差,控制所述舵机转动至期望角度。
  12. 如权利要求11所述的舵机控制装置,其中,所述接收控制器发送的数字信号的步骤和根据所述数字信号得到期望角度的步骤之间包括:
    根据所述数字信号获取舵机的功能模式;
    当所述功能模式为角度控制时,执行步骤:根据所述数字信号得到期望角度。
  13. 如权利要求12所述的舵机控制装置,其中,所述根据所述数字信号获取舵机的功能模式的步骤之后包括:
    当所述功能模式为故障检测时,接收检测电路发送的状态参数;
    根据所述状态参数,判断所述舵机是否正常运行;
    若是,则控制所述舵机运行;
    若否,则控制所述舵机中状态指示器指示故障。
  14. 如权利要求13所述的舵机控制装置,其中,所述检测电路包括温度检测电路和电压检测电路,所述状态参数包括舵机运行温度和电源电压,所述根据所述状态参数,判断所述舵机是否正常运行的步骤包括:
    根据所述舵机运行温度和预设的舵机正常的温度范围进行对比,以及根据所述电源电压和预设的舵机正常电压范围进行对比,判断所述舵机是否正常运行。
  15. 如权利要求12所述的舵机控制装置,其中所述根据所述数字信号获取舵机的功能模式的步骤之后还包括:
    当所述功能模式为运动控制时,根据所述数字信号,获取舵机的期望旋转角度、期望旋转速度和期望旋转圈数;
    根据所述期望旋转角度、所述期望旋转速度和所述期望旋转圈数,生成驱动信号,并将所述驱动信号发送至所述舵机的电机,以驱动所述舵机进行转动。
  16. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有舵机控制程序,所述舵机控制程序被处理器执行时实现步骤:
    接收控制器发送的数字信号;
    根据所述数字信号得到期望角度,根据所述期望角度生成驱动信号,并将所述驱动信号发送至所述舵机的电机,以驱动所述舵机进行转动;
    通过角度检测电路检测所述舵机旋转的实际角度,根据所述期望角度,计算得出角度差;
    根据所述角度差,控制所述舵机转动至期望角度。
  17. 如权利要求16所述的计算机可读存储介质,其中,所述接收控制器发送的数字信号的步骤和根据所述数字信号得到期望角度的步骤之间包括:
    根据所述数字信号获取舵机的功能模式;
    当所述功能模式为角度控制时,执行步骤:根据所述数字信号得到期望角度。
  18. 如权利要求17所述的计算机可读存储介质,其中,所述根据所述数字信号获取舵机的功能模式的步骤之后包括:
    当所述功能模式为故障检测时,接收检测电路发送的状态参数;
    根据所述状态参数,判断所述舵机是否正常运行;
    若是,则控制所述舵机运行;
    若否,则控制所述舵机中状态指示器指示故障。
  19. 如权利要求18所述的计算机可读存储介质,其中,所述检测电路包括温度检测电路和电压检测电路,所述状态参数包括舵机运行温度和电源电压,所述根据所述状态参数,判断所述舵机是否正常运行的步骤包括:
    根据所述舵机运行温度和预设的舵机正常的温度范围进行对比,以及根据所述电源电压和预设的舵机正常电压范围进行对比,判断所述舵机是否正常运行。
  20. 如权利要求17所述的计算机可读存储介质,其中,所述根据所述数字信号获取舵机的功能模式的步骤之后还包括:
    当所述功能模式为运动控制时,根据所述数字信号,获取舵机的期望旋转角度、期望旋转速度和期望旋转圈数;
    根据所述期望旋转角度、所述期望旋转速度和所述期望旋转圈数,生成驱动信号,并将所述驱动信号发送至所述舵机的电机,以驱动所述舵机进行转动。
PCT/CN2018/112837 2018-09-06 2018-10-31 舵机控制方法、装置和存储介质 WO2020047969A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811036795.6A CN109308080A (zh) 2018-09-06 2018-09-06 舵机控制方法、系统、装置和存储介质
CN201811036795.6 2018-09-06

Publications (1)

Publication Number Publication Date
WO2020047969A1 true WO2020047969A1 (zh) 2020-03-12

Family

ID=65224622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112837 WO2020047969A1 (zh) 2018-09-06 2018-10-31 舵机控制方法、装置和存储介质

Country Status (2)

Country Link
CN (1) CN109308080A (zh)
WO (1) WO2020047969A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111638731B (zh) * 2020-06-10 2022-10-25 深圳全智能机器人科技有限公司 舵机及其控制方法、可读存储介质
CN111934595A (zh) * 2020-08-11 2020-11-13 陕西凯迪乐网络科技有限公司 一种舵机运行状态设置方法及装置
CN112197695A (zh) * 2020-09-30 2021-01-08 苏州臻迪智能科技有限公司 一种电机角度测量方法、系统、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106773651A (zh) * 2016-12-31 2017-05-31 深圳市优必选科技有限公司 舵机临界点锁位方法和装置
CN107116556A (zh) * 2017-06-29 2017-09-01 深圳诺欧博智能科技有限公司 一种舵机控制方法、舵机控制系统、舵机和机器人
CN206497367U (zh) * 2016-11-08 2017-09-15 广州奥睿智能科技有限公司 舵机控制系统和舵机
CN107977021A (zh) * 2017-11-28 2018-05-01 佛山市安尔康姆航空科技有限公司 一种云台舵机的控制方法
CN108062114A (zh) * 2016-11-08 2018-05-22 广州奥睿智能科技有限公司 舵机控制方法、控制系统和舵机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833336B (zh) * 2010-04-28 2012-01-04 北京航空航天大学 一种共轴式无人直升机的双余度姿态控制系统及调试方法
CN202906826U (zh) * 2012-06-12 2013-04-24 湖北三江航天红峰控制有限公司 一体化的数字电动舵伺服系统
CN104407625A (zh) * 2014-09-26 2015-03-11 北京博创尚和科技有限公司 一种数字舵机
CN107253214A (zh) * 2017-07-31 2017-10-17 南京阿凡达机器人科技有限公司 一种扩展型数码舵机及其工作方法
CN107678431A (zh) * 2017-10-12 2018-02-09 广东嘉腾机器人自动化有限公司 单舵机控制方法、装置及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206497367U (zh) * 2016-11-08 2017-09-15 广州奥睿智能科技有限公司 舵机控制系统和舵机
CN108062114A (zh) * 2016-11-08 2018-05-22 广州奥睿智能科技有限公司 舵机控制方法、控制系统和舵机
CN106773651A (zh) * 2016-12-31 2017-05-31 深圳市优必选科技有限公司 舵机临界点锁位方法和装置
CN107116556A (zh) * 2017-06-29 2017-09-01 深圳诺欧博智能科技有限公司 一种舵机控制方法、舵机控制系统、舵机和机器人
CN107977021A (zh) * 2017-11-28 2018-05-01 佛山市安尔康姆航空科技有限公司 一种云台舵机的控制方法

Also Published As

Publication number Publication date
CN109308080A (zh) 2019-02-05

Similar Documents

Publication Publication Date Title
WO2020047969A1 (zh) 舵机控制方法、装置和存储介质
EP3664974A1 (en) Mobile home robot and controlling method of the mobile home robot
WO2019137218A1 (zh) 马达振动控制方法、移动终端以及计算机可读存储介质
WO2016072635A1 (en) User terminal device and method for control thereof and system for providing contents
WO2013118941A1 (en) Portable device and method for controlling the same
CN107430407A (zh) 模式控制系统及方法,及使用其的手持云台、可移动平台
WO2018143607A1 (ko) 스킬 기반 로봇 프로그래밍 장치 및 방법
WO2017119538A1 (ko) 그래픽 사용자 인터페이스의 프로토타입 제작 방법 및 그 장치
WO2017088304A1 (zh) 基于调温器的变频空调控制装置、终端、系统及方法
WO2021031334A1 (zh) 空调系统及其空调控制方法、空调控制装置
WO2020189868A1 (en) Display apparatus and controlling method of the display apparatus
WO2019233190A1 (zh) 基于显示终端的文本转语音方法、显示终端及存储介质
WO2021054782A1 (ko) 비행 실시 전 진단 비행을 수행하는 무인 비행 장치 및 방법
WO2019114587A1 (zh) 虚拟现实终端的信息处理方法、装置及可读存储介质
WO2019209075A1 (ko) 외부 전자 장치를 제어하는 전자 장치 및 방법
WO2018169374A1 (ko) 전자 장치 및 그 제어 방법
WO2020093707A1 (zh) 空调器控制方法、空调器及计算机可读存储介质
WO2019114565A1 (zh) 空气调节器的调节方法、装置以及存储介质
WO2017052061A1 (ko) Gpos 연동형 실시간 로봇 제어 시스템 및 이를 이용한 실시간 디바이스 제어 시스템
WO2017138708A1 (en) Electronic apparatus and sensor arrangement method thereof
WO2019066541A1 (en) INPUT DEVICE, ELECTRONIC DEVICE, SYSTEM COMPRISING THE SAME, AND CORRESPONDING CONTROL METHOD
WO2021017332A1 (zh) 语音控制报错方法、电器及计算机可读存储介质
WO2016122153A1 (en) Display apparatus and control method thereof
WO2019172616A1 (ko) 메시지 수신 알림 방법 및 이를 지원하는 전자 장치
WO2020199329A1 (zh) 家电的控制检测方法、联网模块、空调器及控制终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932597

Country of ref document: EP

Kind code of ref document: A1