WO2020046033A1 - 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 및 그 제조방법 - Google Patents

전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 및 그 제조방법 Download PDF

Info

Publication number
WO2020046033A1
WO2020046033A1 PCT/KR2019/011116 KR2019011116W WO2020046033A1 WO 2020046033 A1 WO2020046033 A1 WO 2020046033A1 KR 2019011116 W KR2019011116 W KR 2019011116W WO 2020046033 A1 WO2020046033 A1 WO 2020046033A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating layer
layer
transmission line
nanoflon
coating
Prior art date
Application number
PCT/KR2019/011116
Other languages
English (en)
French (fr)
Inventor
김병남
강경일
Original Assignee
주식회사 센서뷰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 센서뷰 filed Critical 주식회사 센서뷰
Priority to EP19855146.7A priority Critical patent/EP3826033A4/en
Priority to US17/269,561 priority patent/US20210328321A1/en
Priority to CN201980056921.0A priority patent/CN113168942A/zh
Priority to JP2021534105A priority patent/JP2021534705A/ja
Publication of WO2020046033A1 publication Critical patent/WO2020046033A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/003Manufacturing lines with conductors on a substrate, e.g. strip lines, slot lines
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/06Insulating conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/081Microstriplines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/088Stacked transmission lines

Definitions

  • the present invention relates to a transmission line, and more particularly, to a transmission line using a nanostructure material formed by electrospinning a liquid resin at high pressure and a method of manufacturing the same.
  • Low loss and high performance transmission lines are required to transmit or process very high frequency signals with low loss.
  • losses in transmission lines are classified into conductor losses due to metal and dielectric losses due to dielectric.
  • the loss caused by the dielectric material becomes larger as the dielectric constant of the dielectric becomes higher, and the power loss becomes larger as the resistance becomes larger.
  • the problem to be solved by the present invention was created to meet the need for the low loss and high performance transmission line described above, the loss tangent in the state of low permittivity and low dielectric constant to reduce the loss of the transmission line by the dielectric It is to provide a transmission line using a coating of nanostructured material formed by electrospinning and a method for manufacturing the same, which can reduce a loss tangent value.
  • the first coating layer coated with an insulating material is formed on the top and the second coating layer coated with an insulating material on the bottom
  • a first nanoflon layer made of the formed nanoflon A first pattern formed by etching the first conductive layer formed on the first coating layer;
  • the first pattern may include a ground line and a signal line formed by etching the first conductive layer.
  • Transmission line using the coating of the nanostructured material formed by the electrospinning according to the present invention is located on the first pattern formed on the first coating layer and the first coating layer exposed by the etching, the upper portion of the insulating material A second nanoflon layer having a coated third coating layer; And a second ground (GND) layer formed on the third coating layer.
  • Transmission line using the coating of the nanostructured material formed by the electrospinning according to the present invention is located on the first pattern formed on the first coating layer and the first coating layer exposed by the etching, the upper portion of the insulating material A second nanoflon layer having a coated third coating layer; A second ground (GND) layer formed on the third coating layer; An upper portion having a fourth coating layer coated with an insulating material, and a lower portion having a fifth coating layer coated with an insulating material and formed on the second ground (GND) layer; A second conductive layer formed on the fourth coating layer; And a second pattern formed by etching the second conductive layer and transmitting a signal.
  • the second pattern includes a ground (GND) terminal formed by etching the second conductive layer and a signal line transmitting a signal.
  • the transmission line using the coating of the nanostructured material formed by the electrospinning according to the present invention is located on the second pattern formed on the fourth coating layer and the fourth coating layer exposed by the etching, and is formed with an insulating material thereon.
  • the positioning is characterized in that the adhesive tape, the adhesive or the adhesive tape is applied by heat bonding heat applied.
  • the first to sixth coating layers are PI (Poly Imide), the conductive layer is characterized in that the copper (Cu).
  • the transmission line manufacturing method using the coating of the nanostructure material formed by the electrospinning according to the present invention for achieving the technical problem the first nanoflon layer made of nanoflon coated with an insulating material on the upper and lower portions of the first Forming a first coating layer, and forming a second coating layer below the first coating layer; Forming a first conductive layer on the first coating layer; Etching the first conductive layer to form a first pattern for transmitting and receiving a signal; And forming a first ground (GND) layer on the second coating layer, wherein the nanoflon is a nanostructured material formed by electrospinning a liquid resin at high pressure.
  • GND first ground
  • the forming of the first pattern may include etching the first conductive layer to form a ground line and a signal line.
  • an upper portion is formed of an insulating material on a first pattern formed on the first coating layer and the first coating layer exposed by etching.
  • GND ground
  • the first pattern formed on the first coating layer and the first coating layer exposed by the etching is coated with an insulating material on the top Positioning a second nanoflon layer having a third coating layer; And forming a second ground (GND) layer on the third coating layer.
  • GND second ground
  • the transmission line manufacturing method using the coating of the nanostructure material formed by the electrospinning according to the present invention by coating an insulating material on the upper and lower portions of the third nanoflon layer made of nanoflon, to form a fourth coating layer on the upper, Forming a fifth coating layer on the lower portion; Positioning the third nanopron layer on the second ground (GND) layer, on which a fourth coating layer is coated, and on which a fifth coating layer is coated; Forming a second conductive layer on the fourth coating layer; And etching the second conductive layer to form a second pattern for transmitting and receiving a signal.
  • GND second ground
  • the transmission line manufacturing method using the coating of the nanostructure material formed by the electrospinning according to the present invention on the second pattern formed on the second coating layer and the fourth coating layer exposed by the etching, as an insulating material on the top Positioning a fourth nanoflon layer on which a coated sixth coating layer is formed; And forming a third ground (GND) layer on the fourth nanoflon layer.
  • the positioning is characterized in that the adhesive tape, the adhesive or the adhesive tape is applied by heat bonding heat applied.
  • the transmission line and the manufacturing method using the coating of the nanostructure material according to the present invention by using the nanostructure material formed by electrospinning the resin at high pressure as the dielectric of the transmission line, the dielectric constant of the dielectric It is possible to reduce the loss tangent value at a small and low permittivity.
  • the transmission line according to the present invention can be used as a low-loss flat cable to reduce the transmission loss of the ultra-high frequency signals of the 3.5GHz and 28GHz band used in 5G mobile communication (5G Network).
  • Figure 1 shows an example of a device for producing nanoflon by electrospinning.
  • FIG. 2 shows an example of a stripline transmission line.
  • Figure 3 (a) is a cross-sectional view of a first embodiment of a transmission line using a nano-structured material by electrospinning according to the present invention and Figure 3 (b) is a first nanoflon coated with an insulating material upper and lower The layers are shown.
  • FIG. 4 is a cross-sectional view of a transmission line showing adhesion with a first nanoflon layer according to a transmission line using a nanostructured material by electrospinning according to the present invention.
  • FIG. 5 is a cross-sectional view of a second embodiment of a transmission line using nanostructured material by electrospinning according to the present invention.
  • FIG. 6 is a cross-sectional view of a third embodiment of a transmission line using nanostructured material by electrospinning according to the present invention.
  • FIG. 7 is a cross-sectional view of a transmission line showing adhesion with a second nanoflon layer according to a transmission line using a nanostructured material by electrospinning according to the present invention.
  • FIG. 8 is a cross-sectional view of a fourth embodiment of a transmission line using nanostructured material by electrospinning according to the present invention.
  • FIG. 9 is a cross-sectional view of a fifth embodiment of a transmission line using nanostructured material by electrospinning according to the present invention.
  • FIG. 10 is a cross-sectional view of a sixth embodiment of a transmission line using nanostructured material by electrospinning according to the present invention.
  • FIG. 11 shows a first embodiment of a method for manufacturing a transmission line using a nanostructure material formed by electrospinning according to the present invention.
  • FIG. 12 shows a second embodiment of a method for manufacturing a transmission line using a nanostructure material formed by an electrical discharge according to the present invention.
  • Figure 13 shows a third embodiment of a method for manufacturing a transmission line using a nanostructure material according to the present invention.
  • FIG 14 shows a fourth embodiment of a method for manufacturing a transmission line using a nanostructure material formed by electrospinning according to the present invention.
  • 15A, 15B and 15C illustrate a fifth embodiment of a method for manufacturing a transmission line using a nanostructured material formed by electrospinning according to the present invention.
  • 16A and 16B illustrate a sixth embodiment of a method for manufacturing a transmission line using a nanostructured material formed by electrospinning according to the present invention.
  • 17A and 17B illustrate a seventh embodiment of a method for manufacturing a transmission line using a nanostructured material formed by electrospinning according to the present invention.
  • the nanostructure material refers to a material formed by electrospinning a liquid resin at a high pressure, and is referred to herein as a nanoflon.
  • 1 illustrates an example of an apparatus for manufacturing nanoflon by electrospinning, injecting a polymer solution 120 of a polymer into a syringe 110 to apply a high voltage 130 to a syringe 110 and a substrate to be radiated.
  • the polymer solution is flowed at a constant rate, electricity is applied to the liquid suspended at the end of the capillary by surface tension, and a nano-sized thin thread 140 is formed.
  • Nanoflon is a material formed by stacking nanofibers.
  • Examples of the polymer material used for electrospinning include PU (polyurethane), PVDF (polyvinylidine Diflouride), Nylon (polyamide), and PAN (polyacrlonitrile). Nanoflon has low dielectric constant and high air so that it can be used as dielectric of transmission line.
  • an example of the stripline transmission line may include a signal line 210 for transmitting a signal, a dielectric 220 surrounding the signal line 210, and a conductor 230 serving as an outer shield.
  • Figure 3 (a) is a cross-sectional view of a first embodiment of a transmission line using a nanostructure material formed by electrospinning according to the present invention.
  • a first embodiment of a transmission line using a nanostructure material according to the present invention includes a first nanoflon layer 310, a first coating layer 320, and a second coating layer 330. And a first pattern 350 and a first ground (GND) layer 360.
  • the first nanoflon layer 310 is made of nanoflon, and has a first coating layer 320 coated with an insulating material on the upper portion and a lower portion coated with the insulating material on the lower portion, as shown in FIG.
  • a first nanoflon layer 310 having a second coating layer 330 is provided.
  • the first coating layer 320 is coated on the first nanoflon layer 310 with an insulating material
  • the second coating layer 330 is coated under the first nanoflon layer 310 with an insulating material.
  • the insulating material is a material capable of preventing the etching solution from being absorbed.
  • a polymer having a high thermal durability may be used, and a polymer organic compound (PI) may be used.
  • the first pattern 350 may be formed by etching the first conductive layer 340 formed on the first coating layer 320, and serves as a transmission line through which a signal is transmitted through the transmission line.
  • the first ground layer 350 is formed below the first nanoflon layer 310.
  • FIG. 4 is a cross-sectional view of a second embodiment of a transmission line using a nanostructure material formed by electrospinning according to the present invention.
  • the second embodiment of the transmission line using the nanostructure material according to the present invention forms the first pattern 350 of the first embodiment of the transmission line using the nanostructure material according to the present invention.
  • the ground lines 410 and 420 are further formed, and the first pattern 350 is used as the signal line. That is, the first conductive layer 340 is etched to form ground lines 410 and 420 and a signal line 430.
  • FIG. 5 is a cross-sectional view of a third embodiment of a transmission line using a nanostructure material formed by electrospinning according to the present invention.
  • the third embodiment of the transmission line using a nanostructure material formed by electrospinning according to the present invention is a first embodiment of the transmission line using a nanostructure material according to the present invention (Fig. 3
  • the second nanoflon layer 510 may be disposed on the first pattern 350 formed on the first coating layer 320 and the first coating layer 320 exposed by the etching.
  • the adhesion may be made by thermal bonding by applying heat to the adhesive tape, the adhesive or the adhesive tape.
  • the second ground layer 630 is formed on the third coating layer 520.
  • FIG. 6 is a cross-sectional view of a transmission line showing adhesion to a second nanoflon layer 510 according to the present invention, and reference numeral 525 denotes a second nanoflon layer 510, a first coating layer 320, and a first one. Adhesion of the pattern 350 is shown.
  • FIG. 7 is a cross-sectional view of a fourth embodiment of a transmission line using a nanostructure material formed by electrospinning according to the present invention.
  • the fourth embodiment of the transmission line using the nanostructure material according to the present invention is insulated from the top in the third embodiment (FIG. 5) of the transmission line using the nanostructure material according to the present invention.
  • a third nanoflon layer 710 having a fourth coating layer 720 coated with a material and a fifth coating layer 730 coated with an insulating material is formed on the bottom thereof, and the fourth coating layer 720 is formed on the fourth coating layer 720.
  • Two patterns 750 are formed.
  • the second pattern 750 is formed by etching the second conductive layer 740 formed on the fourth coating layer 720 and is used as a signal line for transmitting a signal.
  • the fifth embodiment of the transmission line using the nanostructure material according to the present invention forms the second pattern 750 of the fourth embodiment of the transmission line using the nanostructure material according to the present invention.
  • the ground lines 810 and 820 are further formed, and the second pattern 830 is used as a signal line. That is, the second conductive layer 740 is etched to form ground lines 910 and 920 and a signal line 930.
  • FIG. 9 is a cross-sectional view of a sixth embodiment of a transmission line using a nanostructure material formed by electrospinning according to the present invention.
  • the sixth embodiment of a transmission line using a nanostructure material according to the present invention is insulated from the fourth embodiment of the transmission line using the nanostructure material according to the present invention (FIG. 7). It further comprises a fourth nanoflon layer 1910 having a sixth coating layer 920 coated with a material and a third ground layer 930 formed on the sixth coating layer 920.
  • the fourth nanoflon layer 910 may be disposed on the second pattern 750 formed on the fourth coating layer 720 and the fourth coating layer 720 exposed by the etching. It may be made by, the adhesion may be made by thermal bonding by applying heat to the adhesive tape, pressure-sensitive adhesive or adhesive tape.
  • the third ground layer 930 may be formed on the sixth coating layer 920.
  • FIG. 10 is a cross-sectional view of a transmission line showing adhesion with a fourth nanoflon layer 910 according to the present invention, and reference numeral 1075 denotes a fourth nanoflon layer 910, a fourth coating layer 720, and a second. Adhesion of the pattern 750 is shown.
  • Figure 11 shows a first embodiment as another embodiment for a transmission line manufacturing method using a nanostructure material formed by electrospinning according to the present invention.
  • the upper and lower portions of the first nanoflon layer 1110 made of nanoflon are coated with an insulating material.
  • the first coating layer 1120 is formed on the first nanoflon layer 1110, and the second coating layer 1130 is formed below the first nanoflon layer 1110.
  • a first conductive layer 1140 is formed on the first coating layer 1120.
  • the first conductive layer 2130 is etched to form a first pattern 2140 for transmitting and receiving signals.
  • the first ground (GND) layer 1150 is positioned under the first nanoflon layer 2110.
  • FIG. 12 shows a second embodiment of a method for manufacturing a transmission line using a nanostructure material formed by an electrical discharge according to the present invention.
  • a twelfth embodiment of a method for manufacturing a transmission line using a nanostructure material according to the present invention is a method of manufacturing a transmission line using a nanostructure material according to the present invention as shown in (c) of FIG.
  • the ground lines 1210 and 1220 are further formed, and the first pattern 1150 is used as a signal line. That is, the first conductive layer 1140 may be etched to form ground lines 1210 and 2220 and a signal line 1230.
  • FIG. 13 shows a third embodiment of a method for manufacturing a transmission line using a nanostructure material according to the present invention.
  • FIG. 13A is a result of the first embodiment of the method for manufacturing a transmission line using a nanostructured material formed by electrospinning according to the present invention shown in FIG. 11C.
  • the second nanoflon layer 1310 having the third coating layer 1320 formed with the top coated with an insulating material is placed on the result of the first embodiment of the transmission line manufacturing method.
  • the third coating layer 1320 is formed on the first pattern 2150 formed on the first coating layer 1120 of the first embodiment of the transmission line manufacturing method and the first coating layer 1120 exposed by etching.
  • the formed second nanoflon layer 1310 may be bonded 1325.
  • the second ground layer 1330 may be formed on the third coating layer 1320.
  • the positioning can be accomplished through adhesion 1325.
  • the adhesion 1325 may be performed by using an adhesive tape or an adhesive or by applying heat to the adhesive material.
  • FIG. 14 shows a fourth embodiment of a method for manufacturing a transmission line using a nanostructure material formed by electrospinning according to the present invention.
  • FIG. 14A is a second embodiment of the method for manufacturing a transmission line using the nanostructured material formed by electrospinning according to the present invention shown in FIG. 12.
  • the second nanoflon layer 1410 having the top coated with an insulating material and having the third coating layer 1420 formed thereon is positioned.
  • the flon layer 1410 may be bonded 1425.
  • the adhesion 1425 may be made through thermal bonding using adhesive tape or adhesive or by applying heat to the adhesive material.
  • the second ground layer 1430 may be formed on the third coating layer 1410.
  • 15A, 15B and 15C illustrate a fifth embodiment of a method for manufacturing a transmission line using a nanostructured material formed by electrospinning according to the present invention.
  • the upper and lower portions of the third nanoflon layer 1510 made of nanoflon are coated with an insulating material.
  • a fourth coating layer 1520 is formed on the third nanoflon layer 1510, and a fifth coating layer 1530 is formed below the third nanoflon layer 1510.
  • a fourth coating layer 1520 is disposed on the upper portion of the second ground layer 1330 of the transmission line, which is a result of the third embodiment of the present invention, shown in FIG. 13B.
  • the third nanoflon layer 1510 having the fifth coating layer 1530 formed thereon is positioned below.
  • the second conductive layer 1540 is formed on the fourth coating layer 1520.
  • the second conductive layer 1540 is etched to form a second pattern 1550 for transmitting and receiving signals.
  • FIG. 16A and 16B illustrate a sixth embodiment of a method for manufacturing a transmission line using a nanostructured material formed by electrospinning according to the present invention.
  • FIG. 16A illustrates a second conductive layer 1540 formed on the fourth coating layer 1520 as shown in FIG. 15B in the fifth embodiment of the present invention.
  • FIG. 16C after the second conductive layer 1540 is formed on the fourth coating layer 1520, the signal lines 1610 and ground lines 1620 and 1630 which transmit and receive signals by etching the second conductive layer 1540 are etched. ).
  • FIG. 17A and 17B illustrate a seventh embodiment of a method for manufacturing a transmission line using a nanostructured material formed by electrospinning according to the present invention.
  • FIG. 17A is a result of a fifth embodiment of a method for manufacturing a transmission line using a nanostructured material formed by electrospinning according to the present invention shown in FIG. 15C.
  • the fourth nanoflon layer 1710 having the sixth coating layer 1720 formed thereon is coated with an insulating material on the resultant of the fifth embodiment of the transmission line manufacturing method.
  • the sixth coating layer 1720 may be formed on the second pattern 1550 formed on the fifth coating layer 1520 of the fifth embodiment of the transmission line manufacturing method and the fifth coating layer 1520 exposed by etching.
  • the formed fourth nanoflon layer 1710 may be adhered to 1725. Thereafter, the third ground layer 1730 may be formed on the sixth coating layer 1720. The positioning can be accomplished through adhesion 1725.
  • the adhesion 1725 may be made by using an adhesive tape or an adhesive or by applying heat to the adhesive material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Waveguides (AREA)

Abstract

본 발명은 나노구조 물질을 이용한 전송선로 및 그 제조방법에 관한 것으로서, 그 나노구조 물질을 이용한 전송선로는 상부에는 절연물질로 코팅된 제1코팅층이 형성되고 하부에는 절연물질로 코팅된 제2코팅층이 형성된 나노플론으로 이루어지는 제1나노플론층; 제1코팅층 상에 형성된 제1도전층을 식각하여 형성된 제1패턴; 및 제2코팅층 하부에 형성된 제1접지(GND)층을 포함하고, 나노플론은 액상의 수지를 고압에서 전기방사하여 형성된 나노구조의 물질이다. 본 발명에 의하면, 수지를 고압에서 전기방사하여 형성된 나노구조 물질을 전송선로의 유전체로 사용함으로써, 전송선로의 유전체의 유전율(permittivity)이 작고 유전율이 낮은 상태에서 손실 탄젠트 값을 줄일 수 있다. 또한 본 발명에 따른 나노구조 물질을 이용한 전송선로는 5세대 이동통신(5G Network)에서 사용되는 3.5GHz 및 28GHz 대역의 초고주파 신호의 전송 손실을 줄이기 위한 저손실 평면케이블(flat cable)로 사용될 수 있다.

Description

전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 및 그 제조방법
본 발명은 전송선로에 관한 것으로서, 특히 액상의 수지를 고압에서 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 및 그 제조방법에 관한 것이다.
초고주파 신호를 적은 손실로 전송하거나 처리하기 위해서는 저손실 및 고성능의 전송선로가 필요하다. 일반적으로 전송선로에서의 손실은 크게 금속에 의한 도전체 손실과 유전체에 의한 유전체 손실로 구분된다. 특히 유전체에 의한 손실은 유전체의 유전율이 높을수록 커지고 저항이 클수록 전력손실이 커진다.
따라서 초고주파 신호 전송을 위한 저손실 및 고성능의 전송선로를 제조하기 위해서는 유전율(loss tangent)이 작고, 손실 탄젠트(loss tangent) 값이 작은 물질을 사용하는 것이 필요하다. 특히 5세대 이동통신(5G Network)에서 사용되는 3.5GHz 및 28GHz 대역의 주파수를 갖는 신호를 효율적으로 전송하기 위해서는 초고주파 대역에서도 손실이 작은 전송선로의 중요성은 더욱 커지고 있다.
본 발명이 해결하고자 하는 과제는 상술한 저손실 및 고성능의 전송선로에 대한 필요성을 충족하기 위해 창출된 것으로서, 유전체에 의한 전송선로의 손실을 줄이기 위해 유전율(permittivity)이 작고 유전율이 낮은 상태에서 손실 탄젠트(loss tangent) 값을 줄일 수 있는, 전기방사에 의해 형성된 나노구조 물질의 코팅을 이용한 전송선로 및 그 제조방법을 제공하는 것이다.
상기 기술적 과제를 이루기 위한 본 발명에 의한 전기방사에 의해 형성된 나노구조 물질의 코팅을 이용한 전송선로는, 상부에는 절연물질로 코팅된 제1코팅층이 형성되고 하부에는 절연물질로 코팅된 제2코팅층이 형성된 나노플론으로 이루어지는 제1나노플론층; 상기 제1코팅층 상에 형성된 제1도전층을 식각하여 형성된 제1패턴; 및 상기 제2코팅층 하부에 형성된 제1접지(GND)층을 포함하고, 상기 나노플론은 액상의 수지를 고압에서 전기방사하여 형성된 나노구조의 물질이다.
상기 제1패턴은 기 제1도전층을 식각하여 이루어진 접지선과 신호선을 포함하는 것을 특징으로 한다.
본 발명에 의한 전기방사에 의해 형성된 나노구조 물질의 코팅을 이용한 전송선로는, 상기 제1코팅층 상에 형성된 제1패턴과 상기 식각에 의해 노출된 제1코팅층 상에 위치하며, 상부는 절연물질로 코팅된 제3코팅층을 구비하는 제2나노플론층; 및 상기 제3코팅층 상에 형성된 제2접지(GND)층 더 포함한다.
본 발명에 의한 전기방사에 의해 형성된 나노구조 물질의 코팅을 이용한 전송선로는, 상기 제1코팅층 상에 형성된 제1패턴과 상기 식각에 의해 노출된 제1코팅층 상에 위치하며, 상부는 절연물질로 코팅된 제3코팅층을 구비하는 제2나노플론층; 상기 제3코팅층 상에 형성된 제2접지(GND)층; 상부는 절연물질로 코팅된 제4코팅층을 구비하며, 하부는 절연물질로 코팅된 제5코팅층을 구비하고, 상기 제2접지(GND)층 상에 형성된 제3나노플론층; 상기 제4코팅층 상에 형성된 제2도전층; 및 상기 제2도전층을 식각하여 형성되며 신호를 전송하는 제2패턴을 더 포함한다. 상기 제2패턴은 상기 상기 제2도전층을 식각하여 형성되는 접지(GND)단자와 신호를 전송하는 신호선을 포함한다.
본 발명에 의한 전기방사에 의해 형성된 나노구조 물질의 코팅을 이용한 전송선로는, 상기 제4코팅층 상에 형성된 제2패턴과 상기 식각에 의해 노출된 제4코팅층 상에 위치하며, 상부에 절연물질로 코팅된 제6코팅층을 구비하는 제4나노플론층; 및 상기 제6코팅층 상에 형성된 제3접지(GND)층을 더 포함한다.
상기 위치하는 것은 접착 테이프, 점착제 또는 접착테이프에 열을 가한 열접착에 의해 접착되는 것을 특징으로 한다. 상기 제1코팅층 내지 제6코팅층은 PI(Poly Imide)이고, 도전층은 구리(Cu)인 것을 특징으로 한다.
상기 기술적 과제를 이루기 위한 본 발명에 의한 전기방사에 의해 형성된 나노구조 물질의 코팅을 이용한 전송선로 제조방법은, 나노플론으로 이루어지는 제1나노플론층 상부 및 하부에 절연물질로 코팅하여 상기 상부에 제1코팅층을 형성하고, 상기 하부에 제2코팅층을 형성하는 단계; 상기 제1코팅층에 제1도전층을 형성하는 단계; 상기 제1도전층을 식각하여 신호를 송수신하는 제1패턴을 형성하는 단계; 및 상기 제2코팅층에 제1접지(GND)층을 형성하는 단계를 포함하고, 상기 나노플론은 액상의 수지를 고압에서 전기방사하여 형성된 나노구조의 물질이다.
상기 제1패턴 형성 단계는 상기 제1도전층을 식각하여 접지선 및 신호선을 형성하는 것을 특징으로 한다.
본 발명에 의한 전기방사에 의해 형성된 나노구조 물질의 코팅을 이용한 전송선로 제조방법은, 상기 제1코팅층 상에 형성된 제1패턴과 상기 식각에 의해 노출된 제1코팅층 상에, 상부가 절연물질로 코팅된 제3코팅층을 구비하는 제2나노플론층을 위치하는 단계; 및 상기 제3코팅층 상에 제2접지(GND)층을 형성하는 단계를 더 포함한다.
본 발명에 의한 전기방사에 의해 형성된 나노구조 물질의 코팅을 이용한 전송선로 제조방법은, 상기 제1코팅층 상에 형성된 제1패턴과 상기 식각에 의해 노출된 제1코팅층에 상부가 절연물질로 코팅된 제3코팅층을 구비한 제2나노플론층을 위치하는 단계; 및 상기 제3코팅층 상에 제2접지(GND)층을 형성하는 단계를 더 포함한다.
본 발명에 의한 전기방사에 의해 형성된 나노구조 물질의 코팅을 이용한 전송선로 제조방법은, 나노플론으로 이루어지는 제3나노플론층 상부 및 하부에 절연물질로 코팅하여 상기 상부에 제4코팅층을 형성하고, 상기 하부에 제5코팅층을 형성하는 단계; 상기 제2접지(GND)층 상에, 상부에는 제4코팅층이 코팅되고 하부에는 제5코팅층이 코팅된 상기 제3나노프론층을 위치하는 단계; 상기 제4코팅층 상에 제2도전층을 형성하는 단계; 및 상기 제2도전층을 식각하여 신호를 송수신하는 제2패턴을 형성하는 단계를 더 포함한다.
본 발명에 의한 전기방사에 의해 형성된 나노구조 물질의 코팅을 이용한 전송선로 제조방법은, 상기 제2코팅층 상에 형성된 제2패턴과 상기 식각에 의해 노출된 제4코팅층 상에, 상부에 절연물질로 코팅된 제6코팅층이 형성된 제4나노플론층을 위치하는 단계; 및 상기 제4나노플론층 상에 제3접지(GND)층을 형성하는 단계를 더 포함한다. 상기 위치하는 것은 접착 테이프, 점착제 또는 접착테이프에 열을 가한 열접착에 의해 접착되는 것을 특징으로 한다.
본 발명에 따른 나노구조 물질의 코팅을 이용한 전송선로 및 그 제조방법에 의하면, 수지를 고압에서 전기방사하여 형성된 나노구조 물질을 전송선로의 유전체로 사용함으로써, 전송선로의 유전체의 유전율(permittivity)이 작고 유전율이 낮은 상태에서 손실 탄젠트 값을 줄일 수 있다.
특히, 본 발명에 따른 전송선로는 5세대 이동통신(5G Network)에서 사용되는 3.5GHz 및 28GHz 대역의 초고주파 신호의 전송 손실을 줄이기 위한 저손실 평면케이블(flat cable)로 사용될 수 있다.
도 1은 전기방사를 통해 나노플론을 제조하는 장치의 일 예를 나타낸 것이다.
도 2는 스트립라인 전송선로에 대한 일 예를 나타낸 것이다.
도 3의 (a)는 본 발명에 따른 전기방사에 의한 나노구조 물질을 이용한 전송선로에 대한 제1 실시예의 단면도이고 도 3의 (b)는 상부와 하부가 절연물질로 코팅된 제1나노플론층을 나타낸 것이다.
도 4는 본 발명에 따른 전기방사에 의한 나노구조 물질을 이용한 전송선로에 따른 제1나노플론층과의 접착을 나타내는 전송선로의 단면을 나타낸 것이다.
도 5는 본 발명에 따른 전기방사에 의한 나노구조 물질을 이용한 전송선로에 대한 제2 실시예의 단면도이다.
도 6은 본 발명에 따른 전기방사에 의한 나노구조 물질을 이용한 전송선로에 대한 제3 실시예의 단면도이다.
도 7은 본 발명에 따른 전기방사에 의한 나노구조 물질을 이용한 전송선로에 따른 제2나노플론층과의 접착을 나타내는 전송선로의 단면을 나타낸 것이다.
도 8은 본 발명에 따른 전기방사에 의한 나노구조 물질을 이용한 전송선로에 대한 제4 실시예의 단면도이다.
도 9는 본 발명에 따른 전기방사에 의한 나노구조 물질을 이용한 전송선로에 대한 제5 실시예의 단면도이다.
도 10은 본 발명에 따른 전기방사에 의한 나노구조 물질을 이용한 전송선로에 대한 제6 실시예의 단면도이다.
도 11은 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법에 대한 제1실시예를 나타낸 것이다.
도 12는 본 발명에 따른 전기방상에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법에 대한 제2실시예를 나타낸 것이다.
도 13는 본 발명에 따른 나노구조 물질을 이용한 전송선로 제조방법에 대한 제3실시예를 나타낸 것이다.
도 14는 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법에 대한 제4실시예를 나타낸 것이다.
도 15a, 도 15b 및 도 15c는 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법에 대한 제5실시예를 나타낸 것이다.
도 16a 및 도 16b는 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법에 대한 제6실시예를 나타낸 것이다.
도 17a 및 도 17b는 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법에 대한 제7실시예를 나타낸 것이다.
이하, 첨부된 도면을 참조로 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 일 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
먼저, 본 발명에 따른 나노구조 물질을 이용한 전송선로에서 사용되는 나누구조 물질에 대해 설명하기로 한다. 상기 나노구조물질은 액상의 수지를 고압에서 전기방사(Electrospinning)하여 형성된 물질을 말하며, 본 명세서에서 나노플론(Nanoflon)이라 칭하기로 한다. 도 1은 전기방사를 통해 나노플론을 제조하는 장치의 일 예를 나타낸 것으로서, 주사기(110)에 고분자의 폴리머 용액(120)을 주입하여 주사기(110)와 방사할 기판 사에 고전압(130)을 가하고, 폴리머 용액을 일정한 속도로 흘려주면 표면장력에 의해 전기가 모세관 끝에 매달려 있는 액체에 가해지면서 나노 크기의 가는 실(140)이 만들어지고 시간이 지나면 부직포 형태의 나노구조의 물질인 나노섬유(150)가 쌓이게 된다. 이렇게 나노섬유가 쌓여 형성된 물질이 나노플론이다. 전기방사에 사용되는 고분자 물질의 예를 들면 PU(polyurethane), PVDF(polyvinylidine Diflouride), Nylon(polyamide), PAN(polyacrlonitrile) 등이 있다. 나노플론은 유전율이 낮고 공기가 많아 전송선로의 유전체로 사용될 수 있다.
도 2는 스트립라인 전송선로에 대한 일 예를 나타낸 것이다. 도 2를 참조하면, 스트립라인 전송선로에 대한 일 예는 신호를 전송하는 신호선(210)과 신호선(210)을 감싸고 있는 유전체(220) 및 outer shield 역할을 하는 도체(230)로 이루어질 수 있다.
도 3의 (a)는 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로에 대한 제1실시예의 단면도이다. 도 3의 (a)를 참조하면, 본 발명에 따른 나노구조 물질을 이용한 전송선로에 대한 제1실시예는 제1나노플론층(310), 제1코팅층(320), 제2코팅층(330), 제1패턴(350) 및 제1접지(GND)층(360)을 포함하여 이루어진다. 제1나노플론층(310)은 나노플론으로 이루어지며, 도 3의 (b)에 도시된 바와 같이 상부에는 절연물질로 코팅된 제1코팅층(320)을 구비하며, 하부에는 절연물질로 코팅된 제2코팅층(330)을 구비한 제1나노플론층(310)을 구비한다.
제1코팅층(320)은 절연물질로 제1나노플론층(310) 상부에 코팅된 것이며, 제2코팅층(330)은 절연물질로 제1나노플론층(310) 하부에 코팅된 것이다. 상기 절연물질은 에칭용액이 흡수되는 것을 막을 수 있는 물질로서, 예를 들어 열적 내구성이 높은 플라스틱으로 고분자 유기 화합물인 PI(PolyImide)가 사용될 수 있다.
제1패턴(350)은 제1코팅층(320) 상에 형성된 제1도전층(340)을 식각(etching)하여 형성될 수 있으며, 전송선로를 통해 신호가 전송되는 전송선 역할을 한다. 그리고 제1접지층(350)이 제1나노플론층(310) 하부에 형성된다.
도 4는 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로에 대한 제2실시예의 단면도이다. 도 4를 참조하면, 본 발명에 따른 나노구조 물질을 이용한 전송선로에 대한 제2실시예는 상술한 본 발명에 따른 나노구조 물질을 이용한 전송선로의 제1실시예의 제1패턴(350)을 형성할 때 접지선(410, 420)를 더 형성하고, 제1패턴(350)은 신호선으로 사용된다. 즉, 상기 제1도전층(340)을 식각하여 접지선(410, 420)와 신호선(430)를 형성한다.
도 5는 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로에 대한 제3실시예의 단면도이다. 도 5를 참조하면, 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로에 대한 제3실시예는 상술한 본 발명에 따른 나노구조 물질을 이용한 전송선로의 제1실시예(도 3)에 상부에 절연물질로 코팅된 제3코팅층(520)이 형성된 제2나노플론층(510)과 제2접지(GND)층(530)을 더 포함하여 이루어진다.
제2나노플론층(510)은 제1코팅층(320) 상에 형성된 제1패턴(350)과 상기 식각에 의해 노출된 제1코팅층(320) 상에 위치할 수 있으며, 상기 위치는 접착에 의해 이루어질 수 있으며, 상기 접착은 접착 테이프, 점착제 또는 접착테이프에 열을 가한 열접착에 의해 이루어질 수 있다. 제2접지층(630)은 제3코팅층(520) 상에 형성된다.
도 6은 본 발명에 따른 제2나노플론층(510)과의 접착을 나타내는 전송선로의 단면을 나타낸 것으로서, 참조번호 525는 제2나노플론층(510)과 제1코팅층(320) 및 제1패턴(350)의 접착을 나타낸다.
도 7은 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로에 대한 제4실시예의 단면도이다. 도 7을 참조하면, 본 발명에 따른 나노구조 물질을 이용한 전송선로에 대한 제4실시예는 상술한 본 발명에 따른 나노구조 물질을 이용한 전송선로의 제3실시예(도 5)에 상부에 절연물질로 코팅된 제4코팅층(720)을 구비하고, 하부에 절연물질로 코팅된 제5코팅층(730)을 구비한 제3나노플론층(710)이 형성되며, 제4코팅층(720)에 제2패턴(750)이 형성된다.
제2패턴(750)은 제4코팅층(720) 상에 형성된 제2도전층(740)을 식각하여 형성되며 신호를 전송하는 신호선으로 사용된다.
도 8은 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로에 대한 제5실시예의 단면도이다. 도 8을 참조하면, 본 발명에 따른 나노구조 물질을 이용한 전송선로에 대한 제5실시예는 상술한 본 발명에 따른 나노구조 물질을 이용한 전송선로의 제4실시예의 제2패턴(750)을 형성할 때 접지선(810, 820)를 더 형성하고, 제2패턴(830)은 신호선으로 사용된다. 즉, 상기 제2도전층(740)을 식각하여 접지선(910, 920)와 신호선(930)를 형성한다.
도 9는 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로에 대한 제6실시예의 단면도이다. 도 9를 참조하면, 본 발명에 따른 나노구조 물질을 이용한 전송선로에 대한 제6실시예는 상술한 본 발명에 따른 나노구조 물질을 이용한 전송선로의 제4실시예(도 7)에 상부가 절연물질로 코팅된 제6코팅층(920)을 구비한 제4나노플론층(1910)과 제6코팅층(920)에 형성된 제3접지층(930)을 더 포함하여 이루어진다.
제4나노플론층(910)은 제4코팅층(720) 상에 형성된 제2패턴(750)과 상기 식각에 의해 노출된 제4코팅층(720) 상에 위치할 수 있으며, 상기 위치하는 것은 접착에 의해 이루어질 수 있으며, 상기 접착은 접착 테이프, 점착제 또는 접착테이프에 열을 가한 열접착에 의해 이루어질 수 있다. 제3접지층(930)은 제6코팅층(920) 상에 형성될 수 있다.
도 10은 본 발명에 따른 제4나노플론층(910)과의 접착을 나타내는 전송선로의 단면을 나타낸 것으로서, 참조번호 1075는 제4나노플론층(910)과 제4코팅층(720) 및 제2패턴(750)의 접착을 나타낸다.
한편, 도 11은 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법에 대한 다른 실시예로서 제1실시예를 나타낸 것이다. 도 11의 (a)를 참조하면, 나노플론으로 이루어지는 제1나노플론층(1110) 상부와 하부를 절연물질로 코팅한다. 이렇게 되면 제1나노플론층(1110) 상부에 제1코팅층(1120)이 형성되고, 제1나노플론층(1110) 하부에 제2코팅층(1130)이 형성된다. 도 11의 (b)를 참조하면, 제1코팅층(1120) 상에 제1도전층(1140)을 형성한다.
도 11의 (c)를 참조하면, 제1도전층(2130)을 식각하여 신호를 송수신하는 제1패턴(2140)을 형성한다. 제1나노플론층(2110) 하부에 제1접지(GND)층(1150)을 위치시킨다.
도 12는 본 발명에 따른 전기방상에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법에 대한 제2실시예를 나타낸 것이다. 도 12를 참조하면, 본 발명에 따른 나노구조 물질을 이용한 전송선로 제조방법에 대한 제12실시예는 도 21의 (c)에 도시된 바와 같이 본 발명에 따른 나노구조 물질을 이용한 전송선로 제조방법의 제11실시예의 제1패턴(1150)을 형성할 때 접지선(1210, 1220)를 더 형성하고, 제1패턴(1150)은 신호선으로 사용된다. 즉, 상기 제1도전층(1140)을 식각하여 접지선(1210, 2220)와 신호선(1230)를 형성할 수 있다.
도 13는 본 발명에 따른 나노구조 물질을 이용한 전송선로 제조방법에 대한 제3실시예를 나타낸 것이다. 도 13의 (a)는 도 11의 (c)에 도시된, 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법에 대한 제1실시예의 결과물이다. 도 13 (b)에 도시된 바와 같이 상기 전송선로 제조방법의 제1실시예의 결과물에, 상부가 절연물질로 코팅되어 제3코팅층(1320)이 형성된 제2나노플론층(1310)을 위치시킨다. 예를 들어, 전송선로 제조방법의 제1실시예의 제1코팅층(1120) 상에 형성된 제1패턴(2150)과 식각에 의해 노출된 제1코팅층(1120) 상에 상기 제3코팅층(1320)이 형성된 제2나노플론층(1310)을 접착(1325)할 수 있다. 또한 제3코팅층(1320) 상에 제2접지층(1330)을 형성할 수 있다. 상기 위치시키는 것은 접착(1325)을 통해 이룰 수 있다. 상기 접착(1325)는 접착테이프나 접착제를 사용하거나 접착물질에 열을 가하여 열접착을 통해 이루어질 수 있다.
도 14는 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법에 대한 제4실시예를 나타낸 것이다. 또한 도 14의 (a)는 도 12에 도시된, 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법에 대한 제2실시예이다. 도 14의 (b)에 도시된 바와 같이 상기 전송선로 제조방법의 제2실시예의 결과물에, 상부가 절연물질로 코팅되어 제3코팅층(1420)이 형성된 제2나노플론층(1410)을 위치시킨다. 예를 들어, 전송선로 제조방법의 제2실시예의 제1코팅층(1120) 상에 형성된 접지선(1210, 1220) 및 신호선(1230)과 식각에 의해 노출된 제1코팅층(2120) 상에 제2나노플론층(1410)을 접착(1425)할 수 있다. 상기 접착(1425)는 접착테이프나 접착제를 사용하거나 접착 물질에 열을 가하여 열 접착을 통해 이루어질 수 있다. 그리고 제3코팅층(1410) 상에 제2접지층(1430)을 형성할 수 있다.
도 15a, 도 15b 및 도 15c는 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법에 대한 제5실시예를 나타낸 것이다. 먼저, 도 15a를 참조하면, 나노플론으로 이루어지는 제3나노플론층(1510) 상부와 하부를 절연물질로 코팅한다. 이렇게 되면 제3나노플론층(1510) 상부에 제4코팅층(1520)이 형성되고, 제3나노플론층(1510) 하부에 제5코팅층(1530)이 형성된다.
도 15b를 참조하면, 도 13의 (b)에 도시된 본 발명의 제3실시예의 결과물인 전송선로의 제2접지층(1330) 상부에 도 15a에 도시된 상부에는 제4코팅층(1520)이 형성되고 하부에는 제5코팅층(1530)이 형성된 제3나노플론층(1510)을 위치시킨다. 그리고 나서, 제4코팅층(1520) 상에 제2도전층(1540)을 형성한다. 도 15c를 참조하면, 제4코팅층(1520) 상에 제2도전층(1540)을 형성한 후, 제2도전층(1540)을 식각하여 신호를 송수신하는 제2패턴(1550)을 형성한다.
도 16a 및 도 16b는 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법에 대한 제6실시예를 나타낸 것이다. 도 16a는 상술한 본 발명의 제5실시예에서 도 15b에 나타낸 바와 같이, 제4코팅층(1520) 상에 제2도전층(1540)을 형성한 것이다. 도 16c를 참조하면, 제4코팅층(1520) 상에 제2도전층(1540)을 형성한 후, 제2도전층(1540)을 식각하여 신호를 송수신하는 신호선(1610)과 접지선(1620, 1630)을 형성한다.
도 17a 및 도 17b는 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법에 대한 제7실시예를 나타낸 것이다. 도 17a는 도 15c에 도시된, 본 발명에 따른 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법에 대한 제5실시예의 결과물이다. 도 17 b에 도시된 바와 같이 상기 전송선로 제조방법의 제5실시예의 결과물에, 상부가 절연물질로 코팅되어 제6코팅층(1720)이 형성된 제4나노플론층(1710)을 위치시킨다. 예를 들어, 전송선로 제조방법의 제5실시예의 제5코팅층(1520) 상에 형성된 제2패턴(1550)과 식각에 의해 노출된 제5코팅층(1520) 상에, 제6코팅층(1720)이 형성된 제4나노플론층(1710)을 접착(1725)할 수 있다. 그리고 나서 제6코팅층(1720) 상에 제3접지층(1730)을 형성할 수 있다. 상기 위치시키는 것은 접착(1725)을 통해 이룰 수 있다. 상기 접착(1725)은 접착테이프나 접착제를 사용하거나 접착물질에 열을 가하여 열접착을 통해 이루어질 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 등록청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (15)

  1. 상부에는 절연물질로 코팅된 제1코팅층이 형성되고 하부에는 절연물질로 코팅된 제2코팅층이 형성된 나노플론으로 이루어지는 제1나노플론층;
    상기 제1코팅층 상에 형성된 제1도전층을 식각하여 형성된 제1패턴; 및
    상기 제2코팅층 하부에 형성된 제1접지(GND)층을 포함하고,
    상기 나노플론은 액상의 수지를 고압에서 전기방사하여 형성된 나노구조의 물질인, 나노구조 물질을 이용한 전송선로.
  2. 제1항에 있어서, 상기 제1패턴은
    상기 제1도전층을 식각하여 이루어진 접지선과 신호선을 포함하는 것을 특징으로 하는 나노구조 물질을 이용한 전송선로.
  3. 제1항에 있어서,
    상기 제1코팅층 상에 형성된 제1패턴과 상기 식각에 의해 노출된 제1코팅층 상에 위치하며, 상부는 절연물질로 코팅된 제3코팅층을 구비하는 제2나노플론층; 및
    상기 제3코팅층 상에 형성된 제2접지(GND)층 더 포함하는, 나노구조 물질을 이용한 전송선로.
  4. 제1항에 있어서,
    상기 제1코팅층 상에 형성된 제1패턴과 상기 식각에 의해 노출된 제1코팅층 상에 위치하며, 상부는 절연물질로 코팅된 제3코팅층을 구비하는 제2나노플론층;
    상기 제3코팅층 상에 형성된 제2접지(GND)층;
    상부는 절연물질로 코팅된 제4코팅층을 구비하며, 하부는 절연물질로 코팅된 제5코팅층을 구비하고, 상기 제2접지(GND)층 상에 형성된 제3나노플론층;
    상기 제4코팅층 상에 형성된 제2도전층:
    상기 제2도전층을 식각하여 형성되며 신호를 전송하는 제2패턴을 더 포함하는 나노구조 물질의 코팅을 이용한 전송선로.
  5. 제4항에 있어서, 상기 제2패턴은
    상기 상기 제2도전층을 식각하여 형성되는 접지(GND)단자와 신호를 전송하는 신호선을 포함하는 것을 특징으로 하는 나노구조 물질을 이용한 전송선로.
  6. 제4항에 있어서,
    상기 제4코팅층 상에 형성된 제2패턴과 상기 식각에 의해 노출된 제4코팅층 상에 위치하며, 상부에 절연물질로 코팅된 제6코팅층을 구비하는 제4나노플론층; 및
    상기 제6코팅층 상에 형성된 제3접지(GND)층을 더 포함하는, 나노구조 물질의 코팅을 이용한 전송선로.
  7. 제4항 또는 제6항에 있어서, 상기 위치하는 것은
    접착 테이프, 점착제 또는 접착테이프에 열을 가한 열접착에 의해 접착되는 것을 특징으로 하는, 나노구조 물질을 이용한 전송선로.
  8. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 제1코팅층 내지 제6코팅층은 PI(Poly Imide)이고, 도전층은 구리(Cu)인 것을 특징으로 하는, 나노구조 물질의 코팅을 이용한 전송선로.
  9. 나노플론으로 이루어지는 제1나노플론층 상부 및 하부에 절연물질로 코팅하여 상기 상부에 제1코팅층을 형성하고, 상기 하부에 제2코팅층을 형성하는 단계;
    상기 제1코팅층에 제1도전층을 형성하는 단계;
    상기 제1도전층을 식각하여 신호를 송수신하는 제1패턴을 형성하는 단계; 및
    상기 제2코팅층에 제1접지(GND)층을 형성하는 단계를 포함하고,
    상기 나노플론은 액상의 수지를 고압에서 전기방사하여 형성된 나노구조의 물질인 것을 특징으로 하는, 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법.
  10. 제9항에 있어서, 상기 제1패턴 형성 단계는
    상기 제1도전층을 식각하여 접지선 및 신호선을 형성하는 것을 특징으로 하는, 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법.
  11. 제9항에 있어서,
    상기 제1코팅층 상에 형성된 제1패턴과 상기 식각에 의해 노출된 제1코팅층 상에, 상부가 절연물질로 코팅된 제3코팅층을 구비하는 제2나노플론층을 위치하는 단계; 및
    상기 제3코팅층 상에 제2접지(GND)층을 형성하는 단계를 더 포함하는, 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법.
  12. 제9항에 있어서,
    상기 제1코팅층 상에 형성된 제1패턴과 상기 식각에 의해 노출된 제1코팅층에 상부가 절연물질로 코팅된 제3코팅층을 구비한 제2나노플론층을 위치하는 단계; 및
    상기 제3코팅층 상에 제2접지(GND)층을 형성하는 단계를 더 포함하는, 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법.
  13. 제12항에 있어서,
    나노플론으로 이루어지는 제3나노플론층 상부 및 하부에 절연물질로 코팅하여 상기 상부에 제4코팅층을 형성하고, 상기 하부에 제5코팅층을 형성하는 단계;
    상기 제2접지(GND)층 상에, 상부에는 제4코팅층이 코팅되고 하부에는 제5코팅층이 코팅된 상기 제3나노프론층을 형성하는 단계;
    상기 제4코팅층 상에 제2도전층을 형성하는 단계; 및
    상기 제2도전층을 식각하여 신호를 송수신하는 제2패턴을 형성하는 단계를 더 포함하는, 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법.
  14. 제13항에 있어서,
    상기 제4코팅층 상에 형성된 제2패턴과 상기 식각에 의해 노출된 제4코팅층 상에, 상부에 절연물질로 코팅된 제6코팅층이 형성된 제4나노플론층이 위치하는 단계; 및
    상기 제4나노플론층 상에 제3접지(GND)층을 형성하는 단계를 더 포함하는, 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법.
  15. 제11항 내지 제13항 중 어느 한 항에 있어서, 상기 위치하는 것은
    접착 테이프, 점착제 또는 접착테이프에 열을 가한 열접착에 의해 접착되는 것을 특징으로 하는, 전기방사에 의해 형성된 나노구조 물질의 코팅을 이용한 전송선로 제조방법.
PCT/KR2019/011116 2018-08-31 2019-08-30 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 및 그 제조방법 WO2020046033A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19855146.7A EP3826033A4 (en) 2018-08-31 2019-08-30 TRANSMISSION LINE WITH NANOSTRUCTURAL MATERIAL MANUFACTURED BY ELECTRIC SPIDERS AND METHOD FOR MANUFACTURING IT
US17/269,561 US20210328321A1 (en) 2018-08-31 2019-08-30 Transmission line using nanostructured material formed through electrospinning and method of manufacturing the transmission line
CN201980056921.0A CN113168942A (zh) 2018-08-31 2019-08-30 使用通过静电纺丝形成的纳米结构材料的传输线和制造该传输线的方法
JP2021534105A JP2021534705A (ja) 2018-08-31 2019-08-30 電界紡糸によって形成されたナノ構造物質を利用した伝送線路及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0103930 2018-08-31
KR1020180103930A KR20200025917A (ko) 2018-08-31 2018-08-31 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2020046033A1 true WO2020046033A1 (ko) 2020-03-05

Family

ID=69645211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011116 WO2020046033A1 (ko) 2018-08-31 2019-08-30 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 및 그 제조방법

Country Status (7)

Country Link
US (1) US20210328321A1 (ko)
EP (1) EP3826033A4 (ko)
JP (1) JP2021534705A (ko)
KR (1) KR20200025917A (ko)
CN (1) CN113168942A (ko)
TW (1) TW202027097A (ko)
WO (1) WO2020046033A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200025914A (ko) * 2018-08-31 2020-03-10 주식회사 센서뷰 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법
KR102545498B1 (ko) * 2021-10-29 2023-06-21 하이비스 주식회사 고주파 안테나 구조 및 그 형성방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100262758B1 (ko) * 1996-07-27 2000-08-01 정명식 다층 구조의 초고주파 전송회로
KR20100094896A (ko) * 2009-02-19 2010-08-27 나노캠텍주식회사 평면 직선형 스트립 전송 선로 및 이의 제조 방법
EP2338666A1 (en) * 2009-12-22 2011-06-29 Eurocopter Deutschland GmbH Semi-finished product and preform used to manufacture a part made form composite material
KR20130042908A (ko) * 2011-10-19 2013-04-29 삼성전자주식회사 다층회로형 안테나 패키지
KR20160019851A (ko) * 2014-08-12 2016-02-22 삼성전기주식회사 프리프레그 및 그 제조 방법, 및 이를 이용한 인쇄 회로 기판 및 그 제조 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002111324A (ja) * 2000-09-28 2002-04-12 Toshiba Corp 信号伝送用回路基板、その製造方法及びそれを用いた電子機器
JP2003264348A (ja) * 2002-03-07 2003-09-19 Sony Corp 高周波モジュール
JP2005236956A (ja) * 2004-01-20 2005-09-02 Matsushita Electric Ind Co Ltd マイクロ波伝送線路
JP4182016B2 (ja) * 2004-03-11 2008-11-19 日本電気株式会社 伝送線路型素子及びその作製方法
JP4943247B2 (ja) * 2007-07-04 2012-05-30 日本メクトロン株式会社 マイクロストリップライン構造およびその製造方法
US8400237B2 (en) * 2007-10-09 2013-03-19 Panasonic Corporation Circuit device including a nano-composite dielectric film
US8013254B2 (en) * 2008-02-15 2011-09-06 Gigalane Co. Ltd. Printed circuit board
JP6285638B2 (ja) * 2013-04-25 2018-02-28 日本メクトロン株式会社 プリント配線板およびプリント配線板製造方法
CN103173873B (zh) * 2013-05-03 2015-08-12 中原工学院 一种多喷头组合式喷气静电纺丝机
KR101715224B1 (ko) * 2015-03-30 2017-03-13 고려대학교 산학협력단 투명 전극 제조 방법 및 투명 전극 제조 장치
US10153531B2 (en) * 2015-09-07 2018-12-11 Vayyar Imaging Ltd. Multilayer microwave filter
JP6414697B2 (ja) * 2015-09-25 2018-10-31 サムソン エレクトロ−メカニックス カンパニーリミテッド. プリプレグ及びその製造方法、及びこれを用いた印刷回路基板及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100262758B1 (ko) * 1996-07-27 2000-08-01 정명식 다층 구조의 초고주파 전송회로
KR20100094896A (ko) * 2009-02-19 2010-08-27 나노캠텍주식회사 평면 직선형 스트립 전송 선로 및 이의 제조 방법
EP2338666A1 (en) * 2009-12-22 2011-06-29 Eurocopter Deutschland GmbH Semi-finished product and preform used to manufacture a part made form composite material
KR20130042908A (ko) * 2011-10-19 2013-04-29 삼성전자주식회사 다층회로형 안테나 패키지
KR20160019851A (ko) * 2014-08-12 2016-02-22 삼성전기주식회사 프리프레그 및 그 제조 방법, 및 이를 이용한 인쇄 회로 기판 및 그 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3826033A4 *

Also Published As

Publication number Publication date
TW202027097A (zh) 2020-07-16
KR20200025917A (ko) 2020-03-10
JP2021534705A (ja) 2021-12-09
US20210328321A1 (en) 2021-10-21
EP3826033A4 (en) 2021-08-18
CN113168942A (zh) 2021-07-23
EP3826033A1 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
WO2017209427A1 (ko) 플렉시블 전자파 차폐시트 및 그를 구비한 전자기기
WO2017209429A1 (ko) 초박형 전자파 차폐시트 및 그를 구비한 전자기기
WO2020046033A1 (ko) 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 및 그 제조방법
WO2017052274A1 (ko) 3층 유전체 및 4층 그라운드 레이어 구조를 갖는 연성회로기판
WO2017052048A1 (ko) 벤딩 내구성이 개선된 연성회로기판 및 그 제조방법
WO2017052046A1 (ko) 벤딩 내구성이 개선된 연성회로기판
CN104112891B (zh) 信号传输电缆和柔性印刷电路板
WO2018203640A1 (ko) 안테나 모듈
WO2019107798A1 (ko) 다중 와이어를 선으로 하는 안테나 선 형성을 위한 와이어 임베딩 헤드
WO2017138744A1 (ko) 연성회로기판
WO2020046028A1 (ko) 나노구조 물질을 이용한 전송선로 및 그 제조방법
WO2020046031A1 (ko) 전기방사에 의해 형성된 나노구조 물질을 이용한 전송선로 제조방법
WO2018038475A1 (ko) 감압성 점착테이프, 그의 제조방법 및 그를 구비한 전자기기
WO2021040225A1 (ko) 안테나 패키지의 제조 방법
WO2018182327A1 (ko) 반도체 패키지 테스트 소켓 및 그 제작방법
WO2016171353A1 (ko) 커브드형 리지드 기판 및 이를 이용한 3차원 안테나 제조방법
CN108738232A (zh) 一种双层柔性线路板
WO2016148429A1 (ko) 연성회로기판
WO2021040226A1 (ko) 안테나 패키지
WO2021080317A1 (ko) 소형 기기용 안테나 모듈
WO2020153642A1 (ko) 플렉서블 케이블 점퍼 구조체 및 이를 제조하는 방법
WO2023191383A1 (ko) 전자기판용 연성동박적층판 및 연성인쇄회로기판
WO2012093868A2 (ko) 자성 시트 회로기판 및 그 제조 방법
WO2017074033A1 (ko) 다중 대역 패치 안테나 모듈
WO2023153539A1 (ko) 차량용 이더넷 케이블

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019855146

Country of ref document: EP

Effective date: 20210216

ENP Entry into the national phase

Ref document number: 2021534105

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE