WO2020045942A1 - Transfer device - Google Patents

Transfer device Download PDF

Info

Publication number
WO2020045942A1
WO2020045942A1 PCT/KR2019/010896 KR2019010896W WO2020045942A1 WO 2020045942 A1 WO2020045942 A1 WO 2020045942A1 KR 2019010896 W KR2019010896 W KR 2019010896W WO 2020045942 A1 WO2020045942 A1 WO 2020045942A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
magnet
chamber
roller
drive shaft
Prior art date
Application number
PCT/KR2019/010896
Other languages
French (fr)
Korean (ko)
Inventor
전수환
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2020045942A1 publication Critical patent/WO2020045942A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67709Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations using magnetic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67706Mechanical details, e.g. roller, belt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/6773Conveying cassettes, containers or carriers

Definitions

  • the present invention relates to a conveying apparatus, and more particularly, to a conveying apparatus capable of reducing conveyance energy as a conveying apparatus for conveying a vertical carrier, even if the weight of the carrier to which the substrate is attached increases.
  • a conveying apparatus is an apparatus which conveys the carrier with a board
  • the magnetic force for carrier injury there are two methods using a permanent magnet and an electromagnet
  • the electromagnet is disadvantageous in terms of cost and management by analyzing the position of the carrier, which is disadvantageous in terms of cost and management, and implements a conveying device in the vacuum chamber There is a constraint.
  • the magnetic levitation device using permanent magnets can restrain the X, Y, Z degrees of freedom while the carrier is in a stable state.However, when the carrier is conveyed, the central axis between the permanent magnets is shifted and left and right repulsion forces may occur. In this case, there is a disadvantage that the permanent magnet alone cannot be restored.
  • the attraction force due to the different polarities of the permanent magnets has self-resilience, and no separate alignment is necessary.
  • conveyance is impossible and a forced restraint device is required.
  • the vertical conveying apparatus for conveying carriers standing up in the vertical direction is advantageous because the carriers are held vertically and conveyed with little deformation and particle set-up of the large-area substrate, but the center of gravity is low and the conductivity is high. There is a disadvantage in that the flow and vibration are large, and stable floating or conveying is difficult.
  • An object of the present invention is to provide a conveying apparatus capable of reducing conveying energy even if the weight of a carrier on which a substrate is attached increases as a conveying apparatus for conveying a vertical carrier.
  • Another object of the present invention is to provide a conveying apparatus capable of self-recovery due to magnetic levitation by an attractive force on an upper portion of a carrier.
  • Still another object of the present invention is to provide a conveying apparatus capable of non-contact conveying by a motor or a permanent magnet.
  • a conveying apparatus for conveying a vertical carrier located in the chamber, a carrier standing in the vertical direction, a carrier magnet attached to the upper portion of the carrier, and a carrier magnet
  • a chamber magnet having a different polarity than the carrier magnet, a rack magnet under the carrier, a pinion magnet disposed apart from the rack magnet, a first drive shaft to which the pinion magnet is attached, and a first drive shaft It includes a motor for rotating the motor, a first roller connected to the first drive shaft, and a second drive shaft disposed under the carrier and rotated by the rotation of the first roller.
  • the carrier is moved in the vertical direction by the rotation of the second drive shaft.
  • the first roller and the second drive shaft are spaced apart, and when the carrier descends in the vertical direction, the first roller and the second drive shaft contact each other.
  • the second roller is fixed to the chamber.
  • the cylindrical pinion magnet rotates by the rotation of the first drive shaft, and the rack magnet is moved in the horizontal direction in accordance with the rotation of the pinion magnet.
  • the carrier in the horizontal movement of the carrier, the carrier is moved in the horizontal direction by the attraction force between the pinion magnet and the rack magnet.
  • the cylindrical pinion magnet includes the N pole and the S pole formed in the diagonal direction.
  • a conveying apparatus for achieving the above object is a conveying apparatus for conveying a vertical carrier located in the chamber, a carrier standing in the vertical direction, a carrier magnet attached to the upper portion of the carrier, A chamber magnet having a different polarity than the carrier magnet and attached to the chamber, a first drive shaft rotated by a motor, a first roller connected to the first drive shaft, and disposed below the carrier, The rotation of the roller includes a second drive shaft that rotates.
  • a conveying apparatus is a conveying apparatus for conveying a vertical carrier located in a chamber, which is spaced apart from a carrier standing up in the vertical direction, a carrier magnet attached to an upper portion of the carrier, and a carrier magnet.
  • a chamber magnet having a polarity different from that of the carrier magnet, a rack magnet below the carrier, a pinion magnet disposed to be spaced apart from the rack magnet, a first drive shaft to which the pinion magnet is attached, a motor to rotate the first drive shaft;
  • the carrier is moved in the vertical direction by the rotation of the second drive shaft.
  • non-contact conveyance is enabled by a motor or a permanent magnet.
  • the carrier upon floating of the carrier in the vertical direction, the carrier is aligned by the attractive force between the carrier magnet and the chamber magnet. Thereby, non-contact conveyance is enabled by a motor or a permanent magnet.
  • the second roller is fixed to the chamber.
  • carrier position alignment is possible, and conveying particles can be reduced by minimizing flow.
  • the cylindrical pinion magnet rotates by the rotation of the first drive shaft, and the rack magnet is moved in the horizontal direction in accordance with the rotation of the pinion magnet.
  • non-contact conveyance is enabled by a motor or a permanent magnet.
  • the carrier in the horizontal movement of the carrier, the carrier is moved in the horizontal direction by the attraction force between the pinion magnet and the rack magnet.
  • non-contact conveyance is enabled by a motor or a permanent magnet.
  • the cylindrical pinion magnet includes the N pole and the S pole formed in the diagonal direction. Accordingly, stable precision driving force can be transmitted regardless of the position between the magnets.
  • the conveying apparatus is a conveying apparatus for conveying the vertical carrier located in the chamber, spaced apart from the carrier standing up in the vertical direction, the carrier magnet attached to the upper portion of the carrier, A chamber magnet attached to the chamber and having a different polarity than the carrier magnet, a first drive shaft rotated by a motor, a first roller connected to the first drive shaft, and disposed under the carrier, It includes a second drive shaft that rotates.
  • FIG. 1 is a front view of a conveying apparatus according to an embodiment of the present invention.
  • FIG. 2 is a side view of the conveying apparatus of FIG. 1.
  • FIG. 2 is a side view of the conveying apparatus of FIG. 1.
  • FIG. 3 is an enlarged view illustrating a portion of FIG. 2 enlarged.
  • FIGS. 4A to 7B are views referred to for description of the conveying apparatus of FIGS. 1 to 3.
  • module and “unit” for components used in the following description are merely given in consideration of ease of preparation of the present specification, and do not impart any particular meaning or role by themselves. Therefore, the “module” and “unit” may be used interchangeably.
  • FIG. 1 is a front view of a conveying apparatus according to an embodiment of the present invention
  • FIG. 2 is a side view of the conveying apparatus of FIG. 1
  • FIG. 3 is an enlarged view of an enlarged partial region ARa of FIG. 2.
  • the conveying apparatus 100 is a conveying apparatus 100 for conveying a carrier CARR located in a chamber CHAMBER.
  • the substrate SUB is attached to the carrier CARR, and the substrate at this time may be various substrates such as a display substrate and a semiconductor substrate.
  • the substrate may be an OLED substrate.
  • the substrate SUB requires various processes such as vapor deposition, and thus, the carrier CARR to which the substrate SUB is attached is required.
  • the present invention proposes a vertical transfer type conveying apparatus with less deformation and substrate settling of a substrate for floating and conveying a carrier.
  • the conveying energy can be reduced, and in the case of non-contact, the magnetic levitation and the self conveying method are used.
  • the conveying apparatus 100 includes a carrier CARR standing up in the vertical direction (y-axis direction), a carrier magnet CAFMGT attached to an upper portion of the carrier CARR, and a carrier.
  • the first drive shaft RDS which is spaced apart from the magnet CAFMGT and attached to the chamber CHAMBER, is rotated by a chamber magnet CBFMGT having a different polarity than the carrier magnet CAFMGT, and rotated by the motor MTR.
  • the first roller KRROL connected to the driving shaft RDS and the second driving shaft UDS may be disposed below the carrier CARR and rotated by the rotation of the first roller KRROL.
  • the carrier CARR is driven by an attraction force corresponding to the weight of the carrier CARR between the carrier magnet CAFMGT on the carrier CARR to be conveyed and the chamber magnet CBFMGT on the fixed chamber CHAMBER.
  • the motor MTR or the permanent magnet rises or falls in the vertical direction (y-axis direction). Accordingly, non-contact conveyance is possible by the motor MTR or the permanent magnet, and as the conveying apparatus 100 which conveys the vertical carrier CARR, even if the weight of the carrier CARR to which the substrate SUB is attached increases, conveyance energy is increased. Can be reduced.
  • the carrier (CARR) can be moved in the vertical direction (y-axis direction).
  • non-contact conveyance is enabled by the motor MTR or a permanent magnet.
  • the cylindrical pinion magnet PNMGT rotates by the rotation of the first drive shaft RDS, and the rack magnet RAMGT moves in the horizontal direction (x-axis direction) as the pinion magnet PNMGT rotates. Is moved. Thereby, non-contact conveyance is enabled by the motor MTR or a permanent magnet.
  • the carrier CARR floats in the vertical direction (y-axis direction)
  • the carrier CARR is aligned by the attraction force between the carrier magnet CAFMGT and the chamber magnet CBFMGT.
  • non-contact conveyance is enabled by the motor MTR or a permanent magnet.
  • the first roller KRROL and the second drive shaft UDS are spaced apart, and when the carrier CARR descends in the vertical direction (y-axis direction), The first roller KRROL and the second driving shaft UDS may contact each other.
  • the chamber CHAMBER and the carrier magnet CAFMGT are arranged in a line without a gap so that there is no difference in floating force for each position of the carrier CARR in the chamber CHAMBER.
  • the conveying apparatus 100 the rack magnet (RAMGT) under the carrier (CARR), the pinion magnet (PNMGT) and spaced apart from the rack magnet (RAMGT), pinion magnet (PNMGT) ) Is attached to the first drive shaft (RDS), the motor (MTR) for rotating the first drive shaft (RDS), the first roller (KRROL) connected to the first drive shaft (RDS), the lower part of the carrier (CARR)
  • the second driving shaft (UDS) is disposed in the, by the rotation of the first roller (KRROL) may further include.
  • the carrier CARR when the carrier CARR is moved in the horizontal direction (x-axis direction), the carrier CARR is moved in the horizontal direction (x-axis direction) by the attraction force between the pinion magnet PNMGT and the rack magnet RAMGT. Thereby, non-contact conveyance is enabled by the motor MTR or a permanent magnet.
  • the first drive shaft RDS and the first roller KRROL rotate together with the rotation of the motor MTR.
  • non-contact conveyance is enabled by the motor MTR or a permanent magnet.
  • the conveying apparatus 100 which concerns on the Example of this invention may further be equipped with the 2nd roller LOROL for fixing the position of the carrier CARR in the vertical direction (y-axis direction).
  • the phenomenon of sticking between the magnets due to the floating attraction force can restrain the lower part of the carrier CARR fixed to the chamber CHAMBER to determine the Y-direction (injury direction) carrier CARR position.
  • the force received by the second roller can be offset by the weight of the carrier (CARR) due to its own weight by receiving only the force other than the carrier (CARR) weight to the floating force.
  • CARR carrier
  • CARR carrier
  • the distance between the carrier magnet CAFMGT and the chamber magnet CBFMGT can be fixed by the second roller LOROL when the carrier CARR floats in the vertical direction (y-axis direction). Accordingly, on the other hand, by the second roller LOROL, the carrier CARR position alignment is possible, and the transport particles can be reduced by minimizing the flow.
  • the conveying apparatus 100 may include a plurality of pinion magnets PNMGT and a plurality of second rollers LOROL corresponding thereto, as shown in FIG. 1.
  • the plurality of pinion magnets PNMGT can be used to carry out the horizontal direction (x-axis direction), and even if some of the plurality of pinion magnets PNMGT fail, the remaining pinion magnets PNMGT are used. , Stable conveyance is possible.
  • the second roller LOROL is fixed to the chamber CHAMBER.
  • the second roller LOLOL alignment of the carrier CARR is possible, and transportation particles can be reduced by minimizing the flow.
  • the floating force decreases, the carrier flows in the x-axis direction, and the positioning of the carrier may not occur, and a collision may occur.
  • conveying pitching (for example, up and down fluctuations) may occur in the discontinuous section, which is a position where the floating magnet between the vacuum chambers (CHAMBER) cannot exist.
  • the floating magnets are arranged at a predetermined interval, but conveying pitching (for example, up and down fluctuations) may occur depending on the presence or absence of the floating magnet when carrying the carrier CARR.
  • the magnetic force is weak due to the attraction force between the magnet and the magnetic body
  • the magnetic body may be generated corrosion-resistant particles in the vacuum chamber (CHAMBER).
  • the vertical chamber CHAMBER floats under the carrier CARR, the relatively long distance CARR may be vulnerable to flow or vibration.
  • CARR attraction type magnetic levitation device
  • CHAMBER vacuum chamber
  • the conveying apparatus 100 as a magnetic levitation method, when the injury, the carrier magnet (CAFMGT) and the chamber magnet (CBFMGT) arranged in a different polarity to rise by the attraction between the magnets to generate the carrier particles Can be minimized.
  • CAFMGT carrier magnet
  • CBFMGT chamber magnet
  • the magnet is attached to the upper portion of the chamber (CHAMBER) without gaps, it is possible to maintain a constant floating force, such as no change in the floating force for each position of the carrier (CARR) in the chamber (CHAMBER).
  • the second roller LOROL is restrained under the carrier CARR, and when the carrier CARR is conveyed, the second roller LOROL rotates according to the carrier CARR conveying speed to lower the frictional resistance, thereby generating particles. Can be minimized.
  • the force received by the second roller LOROL is the weight of the carrier CARR due to its own weight as the weight of the carrier CARR is subtracted from the floating attraction force.
  • the conveying apparatus 100 since the self-recovery can be performed by the carrier (ARRR) upper manpower magnetic levitation device and the lower conveying device, it is possible to align the position without a separate device and the carrier (CARR) conduction Prevention is possible.
  • ARRR carrier
  • CARR carrier conduction Prevention
  • the conveying apparatus 100 applies the first roller KRROL to the pinion magnet PNMGT shaft so that the carrier CARR lower drive shaft UDS is a roller when the carrier CARR falls. It comes in contact with (KRROL) to enable friction drive.
  • the friction drive between the drive shaft (UDS) and the roller (KRROL) is the most widely used method in the vacuum chamber (CHAMBER), it is possible to quickly respond in the event of an abnormality in the magnetic levitation device, do not stop the production of the substrate, etc. And mass production is possible without changing conditions.
  • the rack magnets are arranged evenly under the L-shaped carrier (CARR), a plurality of drive shafts (RDS, UDS) are arranged on the lower side of the chamber (CHAMBER), the drive shaft (RDS) perpendicular to the travel direction
  • the pinion magnet PNMGT to rotate the pinion magnet PNMGT
  • the rotational movement of the drive shaft RDS can be transferred to the carrier CARR by linear movement, and at this time, the attraction force between the permanent magnets PNMGT and RAMGT.
  • Non-contact conveyance is possible by using only.
  • FIGS. 4A to 7B are views referred to for description of the conveying apparatus of FIGS. 1 to 3.
  • FIG. 4A is a diagram showing the rise of the carrier CARR in the vertical direction (y-axis direction).
  • the carrier CARR floats upward due to the attraction force between the carrier magnet CAFMGT and the chamber magnet CBFMGT. Thereby, non-contact conveyance is possible by permanent magnets CAFMGT and CBFMGT.
  • FIG. 4B is a diagram showing the descending of the carrier CARR in the vertical direction (y-axis direction).
  • the carrier CARR is lowered downward by the attraction force between the carrier magnet CAFMGT and the chamber magnet CBFMGT or by the rotation of the motor MTR. Thereby, non-contact conveyance is possible by the motor MTR or the permanent magnets CAFMGT, CBFMGT.
  • FIG. 5 is a view for explaining the operation of the rack magnet (RAMGT) and pinion magnet (PNMGT) arranged to be spaced apart from each other.
  • the pinion magnet PNMGT is a cylindrical magnet and may be disposed below the rack magnet RAMGT.
  • the N pole and the S pole may be alternately arranged, and the rack magnet RAMGT may also be alternately arranged with the N pole and the S pole.
  • the rack magnet RAMGT moves in the horizontal direction (x-axis direction) by the rotation of the pinion magnet PNMGT, and as a result, the carrier CARR standing up in the vertical direction (y-axis direction) becomes the horizontal direction ( x-axis direction).
  • FIG. 6 is a diagram illustrating an arrangement of N and S poles in the pinion magnet PNMGT of FIG. 5.
  • the cylindrical pinion magnet PNMGT includes an N pole and an S pole that are alternately formed in an oblique direction axisa. Accordingly, stable precision driving force can be transmitted regardless of the position between the magnets.
  • the N pole and the S pole are alternately arranged on the basis of the diagonal direction axisa, which is between the horizontal direction (x axis direction) and the vertical direction (y axis direction).
  • the pinion magnet According to the structure of the pinion magnet (PNMGT), it is magnetized in an oblique line, it is possible to transmit a stable precision drive force without affecting the position between the rack magnet (RAMGT) and the pinion magnet (PNMGT).
  • FIG. 7A is a diagram illustrating a flow phenomenon of a carrier
  • FIG. 7B is a diagram illustrating a conduction phenomenon of a carrier.
  • CAFMGT carrier magnet
  • CBFMGT chamber magnet
  • a magnet may be disposed on the chamber CHAMBER so as to be attached without a gap. According to this, since there is no change in the floating force for each position of the carrier (CARR) in the chamber (CHAMBER), it can be aligned while reducing the flow phenomenon or conduction phenomenon as shown in the figure.
  • the 2nd roller LOROL for positioning of the carrier CARR is used.
  • the second roller LOROL Since the second roller LOROL is fixed to the chamber CHAMBER and rotates, the second roller LOROL can restrain the lower portion of the carrier CARR, and as a result, the flow phenomenon or the conduction phenomenon as shown in the drawing is reduced, Can be aligned.

Abstract

The present invention relates to a transfer device. A transfer device for transferring a vertical carrier positioned in a chamber, according to an embodiment of the present invention, comprises: a carrier standing upright in the vertical direction; a carrier magnet attached to the upper portion of the carrier; a chamber magnet attached to the chamber and spaced apart from the carrier magnet, the chamber magnet having a polarity different from that of the carrier magnet; a rack magnet on the lower portion of the carrier; a pinion magnet disposed to be spaced apart from the rack magnet; a first driving shaft to which the pinion magnet is attached; a motor for rotating the first driving shaft; a first roller connected to the first driving shaft; and a second driving shaft disposed on the lower portion of the carrier and rotated by rotation of the first roller. The transfer device comprises a processor for controlling the rate at which filament cartridges are supplied, based on information. Accordingly, the transfer device for transferring a vertical carrier can reduce transfer energy even if the weight of the carrier to which a substrate is attached increases.

Description

반송 장치Conveying device
본 발명은 반송 장치에 관한 것이며, 더욱 상세하게는 수직 캐리어를 반송하는 반송 장치로서 기판이 부착되는 캐리어의 중량이 커지더라도 반송 에너지를 저감할 수 있는 반송 장치에 관한 것이다.The present invention relates to a conveying apparatus, and more particularly, to a conveying apparatus capable of reducing conveyance energy as a conveying apparatus for conveying a vertical carrier, even if the weight of the carrier to which the substrate is attached increases.
반송 장치는, 진공 챔버 내에서 기판이 부착된 케리어를 반송하는 장치이다.A conveying apparatus is an apparatus which conveys the carrier with a board | substrate in a vacuum chamber.
한편, 케리어의 하중이 커질수록, 구동력을 전달을 위해, 기계적인 마찰이 필수적이지만, 자기력을 이용한 자기 부상장치의 경우, 반송시 발생하는 파티클을 최소화할 수 있게 된다.On the other hand, as the load of the carrier increases, mechanical friction is essential for transmitting the driving force, but in the case of a magnetic flotation device using magnetic force, particles generated during transportation can be minimized.
한편, 케리어 부상을 위한 자기력은, 영구자석과 전자석을 이용한 두 가지 방법이 있으며, 전자석은 케리어 위치를 분석하여 정밀 제어하는 장치가 필요하여 비용이나 관리 측면에서 불리하고, 진공 챔버 내에 반송 장치를 구현하는데 제약조건이 있다.On the other hand, the magnetic force for carrier injury, there are two methods using a permanent magnet and an electromagnet, the electromagnet is disadvantageous in terms of cost and management by analyzing the position of the carrier, which is disadvantageous in terms of cost and management, and implements a conveying device in the vacuum chamber There is a constraint.
한편, 영구자석을 이용한 자기 부상장치는, 케리어 정지 상태에서 X,Y,Z 자유도를 모두 구속하여 안정적인 부상이 가능하나, 케리어 반송시, 영구 자석 간 중심축이 어긋나 좌, 우 반발력이 발생할 수 있으며, 이러한 경우, 영구자석만으로는 복원이 불가하다는 단점이 있다.On the other hand, the magnetic levitation device using permanent magnets can restrain the X, Y, Z degrees of freedom while the carrier is in a stable state.However, when the carrier is conveyed, the central axis between the permanent magnets is shifted and left and right repulsion forces may occur. In this case, there is a disadvantage that the permanent magnet alone cannot be restored.
한편, 영구자석의 상이한 극성에 의한 인력은 자기 복원력이 있어, 별도의 정렬이 불필요하지만, 영구 자석 사가 붙어버리는 경우, 반송이 불가하므로 강제 구속장치가 필요하다.On the other hand, the attraction force due to the different polarities of the permanent magnets has self-resilience, and no separate alignment is necessary. However, when the permanent magnet yarns stick together, conveyance is impossible and a forced restraint device is required.
한편, 수직 방향으로 기립된 캐리어를 반송하는 수직형 반송 장치는, 케리어를 수직으로 세워 반송함으로써 대면적 기판의 변형과 파티클 안착이 적어 유리하지만, 무게 중심이 낮고, 전도 가능성이 높아, 반송 시, 유동 및 진동이 크며, 안정적인 부상 또는 반송이 난해하다는 단점이 있다.On the other hand, the vertical conveying apparatus for conveying carriers standing up in the vertical direction is advantageous because the carriers are held vertically and conveyed with little deformation and particle set-up of the large-area substrate, but the center of gravity is low and the conductivity is high. There is a disadvantage in that the flow and vibration are large, and stable floating or conveying is difficult.
본 발명의 목적은, 수직 캐리어를 반송하는 반송 장치로서 기판이 부착되는 캐리어의 중량이 커지더라도 반송 에너지를 저감할 수 있는 반송 장치를 제공함에 있다.An object of the present invention is to provide a conveying apparatus capable of reducing conveying energy even if the weight of a carrier on which a substrate is attached increases as a conveying apparatus for conveying a vertical carrier.
본 발명의 다른 목적은, 캐리어 상부에서 인력에 의한 자기 부상으로 자기 복원이 가능한 반송 장치를 제공함에 있다.Another object of the present invention is to provide a conveying apparatus capable of self-recovery due to magnetic levitation by an attractive force on an upper portion of a carrier.
본 발명의 또 다른 목적은, 캐리어 위치 정렬이 가능하며, 유동 최소화로 반송 파티클 감소가 가능한 반송 장치를 제공함에 있다.It is still another object of the present invention to provide a conveying device capable of aligning a carrier and reducing conveying particles by minimizing flow.
본 발명의 또 다른 목적은, 모터 또는 영구 자석에 의해 비접촉 반송이 가능한 반송 장치를 제공함에 있다.Still another object of the present invention is to provide a conveying apparatus capable of non-contact conveying by a motor or a permanent magnet.
상기 목적을 달성하기 위한 본 발명의 실시예에 따른 반송 장치는, 챔버 내에 위치하는 수직 캐리어를 반송하는 반송 장치로서, 수직 방향으로 기립된 캐리어와, 캐리어의 상부에 부착되는 캐리어 자석과, 캐리어 자석에 이격되어, 챔버에 부착되며, 캐리어 자석과 상이한 극성의 챔버 자석과, 캐리어 하부의 랙 자석과, 랙 자석과 이격되어 배치되는 피니언 자석과, 피니언 자석이 부착되는 제1 구동축과, 제1 구동축을 회전시키는 모터와, 제1 구동축에 연결되는 제1 롤러와, 캐리어의 하부에 배치되며, 제1 롤러의 회전에 의해, 회전하는 제2 구동축을 포함한다.A conveying apparatus according to an embodiment of the present invention for achieving the above object is a conveying apparatus for conveying a vertical carrier located in the chamber, a carrier standing in the vertical direction, a carrier magnet attached to the upper portion of the carrier, and a carrier magnet A chamber magnet having a different polarity than the carrier magnet, a rack magnet under the carrier, a pinion magnet disposed apart from the rack magnet, a first drive shaft to which the pinion magnet is attached, and a first drive shaft It includes a motor for rotating the motor, a first roller connected to the first drive shaft, and a second drive shaft disposed under the carrier and rotated by the rotation of the first roller.
한편, 제2 구동축의 회전에 의해, 캐리어가 수직 방향으로 이동된다.On the other hand, the carrier is moved in the vertical direction by the rotation of the second drive shaft.
한편, 캐리어의 수직 방향으로의 부상시, 캐리어 자석과 챔버 자석 사이의 인력에 의해, 캐리어가 정렬된다.On the other hand, upon floating of the carrier in the vertical direction, the carrier is aligned by the attractive force between the carrier magnet and the chamber magnet.
한편, 캐리어의 수직 방향 부상시, 제1 롤러와 제2 구동축은 이격되며, 캐리어의 수직 방향 하강시, 제1 롤러와 제2 구동축은 접촉한다.On the other hand, when the carrier rises in a vertical direction, the first roller and the second drive shaft are spaced apart, and when the carrier descends in the vertical direction, the first roller and the second drive shaft contact each other.
한편, 캐리어의 수직 방향의 위치 고정을 위한 제2 롤러를 더 구비하며, 제2 롤러에 의해, 캐리어의 수직 방향으로의 부상시, 캐리어 자석과 챔버 자석 사이의 거리가 고정된다.On the other hand, further comprising a second roller for fixing the position of the carrier in the vertical direction, by the second roller, the distance between the carrier magnet and the chamber magnet is fixed when the carrier in the vertical direction.
한편, 제2 롤러는, 챔버에 고정된다.On the other hand, the second roller is fixed to the chamber.
한편, 제1 구동축의 회전에 의해, 원통 형상의 피니언 자석이 회전하며, 피니언 자석의 회전에 따라, 랙 자석이, 수평 방향으로 이동된다.On the other hand, the cylindrical pinion magnet rotates by the rotation of the first drive shaft, and the rack magnet is moved in the horizontal direction in accordance with the rotation of the pinion magnet.
한편, 캐리어의 수평 방향 이동시, 피니언 자석과 랙 자석 사이의 인력에 의해, 캐리어가, 수평 방향으로 이동된다.On the other hand, in the horizontal movement of the carrier, the carrier is moved in the horizontal direction by the attraction force between the pinion magnet and the rack magnet.
한편, 원통 형상의 피니언 자석은, 사선 방향으로 형성된 N극과 S극을 포함한다.On the other hand, the cylindrical pinion magnet includes the N pole and the S pole formed in the diagonal direction.
한편, 모터의 회전에 의해, 제1 구동축과, 제1 롤러가 함께 회전한다.On the other hand, by the rotation of the motor, the first drive shaft and the first roller rotate together.
상기 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 반송 장치는, 챔버 내에 위치하는 수직 캐리어를 반송하는 반송 장치로서, 수직 방향으로 기립된 캐리어와, 캐리어의 상부에 부착되는 캐리어 자석과, 캐리어 자석에 이격되어, 챔버에 부착되며, 캐리어 자석과 상이한 극성의 챔버 자석과, 모터에 의해 회전하는 제1 구동축과, 제1 구동축에 연결되는 제1 롤러와, 캐리어의 하부에 배치되며, 제1 롤러의 회전에 의해, 회전하는 제2 구동축을 포함한다.A conveying apparatus according to another embodiment of the present invention for achieving the above object is a conveying apparatus for conveying a vertical carrier located in the chamber, a carrier standing in the vertical direction, a carrier magnet attached to the upper portion of the carrier, A chamber magnet having a different polarity than the carrier magnet and attached to the chamber, a first drive shaft rotated by a motor, a first roller connected to the first drive shaft, and disposed below the carrier, The rotation of the roller includes a second drive shaft that rotates.
본 발명의 실시예에 따른 반송 장치는, 챔버 내에 위치하는 수직 캐리어를 반송하는 반송 장치로서, 수직 방향으로 기립된 캐리어와, 캐리어의 상부에 부착되는 캐리어 자석과, 캐리어 자석에 이격되어, 챔버에 부착되며, 캐리어 자석과 상이한 극성의 챔버 자석과, 캐리어 하부의 랙 자석과, 랙 자석과 이격되어 배치되는 피니언 자석과, 피니언 자석이 부착되는 제1 구동축과, 제1 구동축을 회전시키는 모터와, 제1 구동축에 연결되는 제1 롤러와, 캐리어의 하부에 배치되며, 제1 롤러의 회전에 의해, 회전하는 제2 구동축을 포함한다. 이에 따라, 모터 또는 영구 자석에 의해 비접촉 반송이 가능하며, 수직 캐리어를 반송하는 반송 장치로서 기판이 부착되는 캐리어의 중량이 커지더라도 반송 에너지를 저감할 수 있게 된다.A conveying apparatus according to an embodiment of the present invention is a conveying apparatus for conveying a vertical carrier located in a chamber, which is spaced apart from a carrier standing up in the vertical direction, a carrier magnet attached to an upper portion of the carrier, and a carrier magnet. A chamber magnet having a polarity different from that of the carrier magnet, a rack magnet below the carrier, a pinion magnet disposed to be spaced apart from the rack magnet, a first drive shaft to which the pinion magnet is attached, a motor to rotate the first drive shaft; And a first roller connected to the first drive shaft, and a second drive shaft disposed under the carrier and rotating by the first roller. Thereby, non-contact conveyance is possible by a motor or a permanent magnet, and as a conveying apparatus which conveys a vertical carrier, conveyance energy can be reduced even if the weight of the carrier on which a board | substrate is attached becomes large.
한편, 캐리어 상부에서 인력에 의한 자기 부상으로 자기 복원이 가능하게 된다. 한편, 자기 부상 방식에도 불구하고, 캐리어의 형상이 간단하여, 제조 비용이 저감될 수 있다.On the other hand, magnetic recovery is possible due to magnetic levitation due to the attraction in the upper portion of the carrier. On the other hand, despite the magnetic levitation method, the shape of the carrier is simple, so that the manufacturing cost can be reduced.
한편, 이상이 발생하더라도 캐리어 낙하, 반송 중지 등이 발생하지 않고, 제1 롤러를 이용한 지속 반송이 가능하게 된다.On the other hand, even if an abnormality occurs, carrier dropping, conveyance stoppage, etc. do not occur, and continuous conveyance using the first roller becomes possible.
한편, 비접촉 반송 방식으로서, 반송시 파티클 감소가 가능하며, 정밀 제어 장치가 불필요하여, 제조 비용 저감, 및 고장 가능성이 저감되게 된다.On the other hand, as a non-contact conveying method, particles can be reduced during conveyance, and a precision control device is unnecessary, thereby reducing manufacturing costs and the possibility of failure.
한편, 복수의 피니언 자석을 이용하여 수평 방향의 반송을 수행함으로써, 복수의 피니언 자석 중 일부가 고장이더라도, 나머지 피니언 자석을 이용하여, 안정적인 반송이 가능하게 된다.On the other hand, by carrying out the horizontal conveyance using a plurality of pinion magnets, even if some of the plurality of pinion magnets fail, stable conveyance is possible using the remaining pinion magnets.
한편, 제2 구동축의 회전에 의해, 캐리어가 수직 방향으로 이동된다. 이에 따라, 모터 또는 영구 자석에 의해 비접촉 반송이 가능하게 된다.On the other hand, the carrier is moved in the vertical direction by the rotation of the second drive shaft. Thereby, non-contact conveyance is enabled by a motor or a permanent magnet.
한편, 캐리어의 수직 방향으로의 부상시, 캐리어 자석과 챔버 자석 사이의 인력에 의해, 캐리어가 정렬된다. 이에 따라, 모터 또는 영구 자석에 의해 비접촉 반송이 가능하게 된다.On the other hand, upon floating of the carrier in the vertical direction, the carrier is aligned by the attractive force between the carrier magnet and the chamber magnet. Thereby, non-contact conveyance is enabled by a motor or a permanent magnet.
한편, 캐리어의 수직 방향의 위치 고정을 위한 제2 롤러를 더 구비하며, 제2 롤러에 의해, 캐리어의 수직 방향으로의 부상시, 캐리어 자석과 챔버 자석 사이의 거리가 고정된다. 한편, 제2 롤러에 의해, 캐리어 위치 정렬이 가능하며, 유동 최소화로 반송 파티클 감소가 가능하게 된다.On the other hand, further comprising a second roller for fixing the position of the carrier in the vertical direction, by the second roller, the distance between the carrier magnet and the chamber magnet is fixed when the carrier in the vertical direction. On the other hand, by the second roller, carrier position alignment is possible, and conveying particles can be reduced by minimizing flow.
한편, 제2 롤러는, 챔버에 고정된다. 한편, 제2 롤러에 의해, 캐리어 위치 정렬이 가능하며, 유동 최소화로 반송 파티클 감소가 가능하게 된다.On the other hand, the second roller is fixed to the chamber. On the other hand, by the second roller, carrier position alignment is possible, and conveying particles can be reduced by minimizing flow.
한편, 제1 구동축의 회전에 의해, 원통 형상의 피니언 자석이 회전하며, 피니언 자석의 회전에 따라, 랙 자석이, 수평 방향으로 이동된다. 이에 따라, 모터 또는 영구 자석에 의해 비접촉 반송이 가능하게 된다.On the other hand, the cylindrical pinion magnet rotates by the rotation of the first drive shaft, and the rack magnet is moved in the horizontal direction in accordance with the rotation of the pinion magnet. Thereby, non-contact conveyance is enabled by a motor or a permanent magnet.
한편, 캐리어의 수평 방향 이동시, 피니언 자석과 랙 자석 사이의 인력에 의해, 캐리어가, 수평 방향으로 이동된다. 이에 따라, 모터 또는 영구 자석에 의해 비접촉 반송이 가능하게 된다.On the other hand, in the horizontal movement of the carrier, the carrier is moved in the horizontal direction by the attraction force between the pinion magnet and the rack magnet. Thereby, non-contact conveyance is enabled by a motor or a permanent magnet.
한편, 원통 형상의 피니언 자석은, 사선 방향으로 형성된 N극과 S극을 포함한다. 이에 따라, 자석 간의 위치에 관계 없이, 안정적인 정밀 구동력 전달이 가능하게 된다.On the other hand, the cylindrical pinion magnet includes the N pole and the S pole formed in the diagonal direction. Accordingly, stable precision driving force can be transmitted regardless of the position between the magnets.
한편, 모터의 회전에 의해, 제1 구동축과, 제1 롤러가 함께 회전한다. 이에 따라, 모터 또는 영구 자석에 의해 비접촉 반송이 가능하게 된다.On the other hand, by the rotation of the motor, the first drive shaft and the first roller rotate together. Thereby, non-contact conveyance is enabled by a motor or a permanent magnet.
한편, 본 발명의 다른 실시예에 따른 반송 장치는, 챔버 내에 위치하는 수직 캐리어를 반송하는 반송 장치로서, 수직 방향으로 기립된 캐리어와, 캐리어의 상부에 부착되는 캐리어 자석과, 캐리어 자석에 이격되어, 챔버에 부착되며, 캐리어 자석과 상이한 극성의 챔버 자석과, 모터에 의해 회전하는 제1 구동축과, 제1 구동축에 연결되는 제1 롤러와, 캐리어의 하부에 배치되며, 제1 롤러의 회전에 의해, 회전하는 제2 구동축을 포함한다. 이에 따라, 모터 또는 영구 자석에 의해 비접촉 반송이 가능하며, 수직 캐리어를 반송하는 반송 장치로서 기판이 부착되는 캐리어의 중량이 커지더라도 반송 에너지를 저감할 수 있게 된다.On the other hand, the conveying apparatus according to another embodiment of the present invention is a conveying apparatus for conveying the vertical carrier located in the chamber, spaced apart from the carrier standing up in the vertical direction, the carrier magnet attached to the upper portion of the carrier, A chamber magnet attached to the chamber and having a different polarity than the carrier magnet, a first drive shaft rotated by a motor, a first roller connected to the first drive shaft, and disposed under the carrier, It includes a second drive shaft that rotates. Thereby, non-contact conveyance is possible by a motor or a permanent magnet, and as a conveying apparatus which conveys a vertical carrier, conveyance energy can be reduced even if the weight of the carrier on which a board | substrate is attached becomes large.
도 1은 본 발명의 실시예에 따른 반송 장치의 정면도이다.1 is a front view of a conveying apparatus according to an embodiment of the present invention.
도 2는 도 1의 반송 장치의 측면도이다.FIG. 2 is a side view of the conveying apparatus of FIG. 1. FIG.
도 3은 도 2의 일부 영역을 확대한 확대도이다.3 is an enlarged view illustrating a portion of FIG. 2 enlarged.
도 4a 내지 도 7b는 도 1 내지 도 3의 반송 장치의 설명에 참조되는 도면이다. 4A to 7B are views referred to for description of the conveying apparatus of FIGS. 1 to 3.
이하에서는 도면을 참조하여 본 발명을 보다 상세하게 설명한다. Hereinafter, with reference to the drawings will be described the present invention in more detail.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 단순히 본 명세서 작성의 용이함만이 고려되어 부여되는 것으로서, 그 자체로 특별히 중요한 의미 또는 역할을 부여하는 것은 아니다. 따라서, 상기 "모듈" 및 "부"는 서로 혼용되어 사용될 수도 있다.The suffixes "module" and "unit" for components used in the following description are merely given in consideration of ease of preparation of the present specification, and do not impart any particular meaning or role by themselves. Therefore, the "module" and "unit" may be used interchangeably.
도 1은 본 발명의 실시예에 따른 반송 장치의 정면도이고, 도 2는 도 1의 반송 장치의 측면도이며, 도 3은 도 2의 일부 영역(ARa)을 확대한 확대도이다.1 is a front view of a conveying apparatus according to an embodiment of the present invention, FIG. 2 is a side view of the conveying apparatus of FIG. 1, and FIG. 3 is an enlarged view of an enlarged partial region ARa of FIG. 2.
도면을 참조하면, 본 발명의 실시예에 따른 반송 장치(100)는, 챔버(CHAMBER) 내에 위치하는 캐리어(CARR)를 반송하는 반송 장치(100)이다. Referring to the drawings, the conveying apparatus 100 according to the embodiment of the present invention is a conveying apparatus 100 for conveying a carrier CARR located in a chamber CHAMBER.
캐리어(CARR)에는, 기판(SUB)이 부착되며, 이때의 기판은, 디스플레이 기판, 반도체 기판 등 다양한 기판일 수 있다. 예를 들어, 기판은, OLED 기판일 수도 있다.The substrate SUB is attached to the carrier CARR, and the substrate at this time may be various substrates such as a display substrate and a semiconductor substrate. For example, the substrate may be an OLED substrate.
한편, 진공 챔버(CHAMBER) 내에서, 기판(SUB)은, 증착 등 다양한 공정이 필요하며, 이에 따라, 기판(SUB)이 부착된 캐리어(CARR)의 이동이 필요하다.On the other hand, in the vacuum chamber CHAMBER, the substrate SUB requires various processes such as vapor deposition, and thus, the carrier CARR to which the substrate SUB is attached is required.
본 발명에서는, 캐리어의 부상 및 반송을 위해, 기판의 변형과 파티클 안착이 적은, 수직 이동형 반송 장치를 제안한다.The present invention proposes a vertical transfer type conveying apparatus with less deformation and substrate settling of a substrate for floating and conveying a carrier.
또한, 수직 방향으로 기립된 캐리어를 반송시, 반송 에너지를 저감할 수 있는 방안으로, 비접촉시, 자기 부상 및 자기 반송 방식을 이용하는 것으로 한다.In addition, in the case of conveying the carrier standing up in the vertical direction, the conveying energy can be reduced, and in the case of non-contact, the magnetic levitation and the self conveying method are used.
이를 위해, 본 발명의 실시예에 따른 반송 장치(100)는, 수직 방향(y축 방향)으로 기립된 캐리어(CARR)와, 캐리어(CARR)의 상부에 부착되는 캐리어 자석(CAFMGT)과, 캐리어 자석(CAFMGT)에 이격되어, 챔버(CHAMBER)에 부착되며, 캐리어 자석(CAFMGT)과 상이한 극성의 챔버 자석(CBFMGT)과, 모터(MTR)에 의해 회전하는 제1 구동축(RDS)과, 제1 구동축(RDS)에 연결되는 제1 롤러(KRROL)와, 캐리어(CARR)의 하부에 배치되며, 제1 롤러(KRROL)의 회전에 의해, 회전하는 제2 구동축(UDS)을 포함할 수 있다. To this end, the conveying apparatus 100 according to the embodiment of the present invention includes a carrier CARR standing up in the vertical direction (y-axis direction), a carrier magnet CAFMGT attached to an upper portion of the carrier CARR, and a carrier. The first drive shaft RDS, which is spaced apart from the magnet CAFMGT and attached to the chamber CHAMBER, is rotated by a chamber magnet CBFMGT having a different polarity than the carrier magnet CAFMGT, and rotated by the motor MTR. The first roller KRROL connected to the driving shaft RDS and the second driving shaft UDS may be disposed below the carrier CARR and rotated by the rotation of the first roller KRROL.
이러한 방식에 의하면, 반송하는 캐리어(CARR) 상부의 캐리어 자석(CAFMGT)과 고정된 챔버(CHAMBER) 상부의 챔버 자석(CBFMGT) 사이의, 캐리어(CARR) 중량에 대응하는 인력에 의해, 캐리어(CARR)가 수직 방향(y축 방향)으로 부상 또는 하강하게 된다. 이에 따라, 모터(MTR) 또는 영구 자석에 의해 비접촉 반송이 가능하며, 수직 캐리어(CARR)를 반송하는 반송 장치(100)로서 기판(SUB)이 부착되는 캐리어(CARR)의 중량이 커지더라도 반송 에너지를 저감할 수 있게 된다.According to this method, the carrier CARR is driven by an attraction force corresponding to the weight of the carrier CARR between the carrier magnet CAFMGT on the carrier CARR to be conveyed and the chamber magnet CBFMGT on the fixed chamber CHAMBER. ) Rises or falls in the vertical direction (y-axis direction). Accordingly, non-contact conveyance is possible by the motor MTR or the permanent magnet, and as the conveying apparatus 100 which conveys the vertical carrier CARR, even if the weight of the carrier CARR to which the substrate SUB is attached increases, conveyance energy is increased. Can be reduced.
한편, 캐리어(CARR) 상부에서 인력에 의한 자기 부상으로 자기 복원이 가능하게 된다. 한편, 자기 부상 방식에도 불구하고, 캐리어(CARR)의 형상이 간단하여, 제조 비용이 저감될 수 있다.On the other hand, self-repair is possible due to the magnetic levitation caused by the manpower on the carrier CARR. On the other hand, despite the magnetic levitation method, the shape of the carrier CARR is simple, so that the manufacturing cost can be reduced.
한편, 이상이 발생하더라도 캐리어(CARR) 낙하, 반송 중지 등이 발생하지 않고, 제1 롤러(KRROL)를 이용한 지속 반송이 가능하게 된다.On the other hand, even if an abnormality occurs, the carrier CARR falls, the conveyance stoppage does not occur, and continuous conveyance using the first roller KRROL becomes possible.
한편, 비접촉 반송 방식으로서, 반송시 파티클 감소가 가능하며, 정밀 제어 장치가 불필요하여, 제조 비용 저감, 및 고장 가능성이 저감되게 된다.On the other hand, as a non-contact conveying method, particles can be reduced during conveyance, and a precision control device is unnecessary, thereby reducing manufacturing costs and the possibility of failure.
한편, 제2 구동축(UDS)의 회전에 의해, 캐리어(CARR)가 수직 방향(y축 방향)으로 이동될 수 있다. 이에 따라, 모터(MTR) 또는 영구 자석에 의해 비접촉 반송이 가능하게 된다.On the other hand, by the rotation of the second drive shaft (UDS), the carrier (CARR) can be moved in the vertical direction (y-axis direction). Thereby, non-contact conveyance is enabled by the motor MTR or a permanent magnet.
한편, 제1 구동축(RDS)의 회전에 의해, 원통 형상의 피니언 자석(PNMGT)이 회전하며, 피니언 자석(PNMGT)의 회전에 따라, 랙 자석(RAMGT)이, 수평 방향(x축 방향)으로 이동된다. 이에 따라, 모터(MTR) 또는 영구 자석에 의해 비접촉 반송이 가능하게 된다.On the other hand, the cylindrical pinion magnet PNMGT rotates by the rotation of the first drive shaft RDS, and the rack magnet RAMGT moves in the horizontal direction (x-axis direction) as the pinion magnet PNMGT rotates. Is moved. Thereby, non-contact conveyance is enabled by the motor MTR or a permanent magnet.
한편, 캐리어(CARR)의 수직 방향(y축 방향)으로의 부상시, 캐리어 자석(CAFMGT)과 챔버 자석(CBFMGT) 사이의 인력에 의해, 캐리어(CARR)가 정렬된다. 이에 따라, 모터(MTR) 또는 영구 자석에 의해 비접촉 반송이 가능하게 된다.On the other hand, when the carrier CARR floats in the vertical direction (y-axis direction), the carrier CARR is aligned by the attraction force between the carrier magnet CAFMGT and the chamber magnet CBFMGT. Thereby, non-contact conveyance is enabled by the motor MTR or a permanent magnet.
특히, 캐리어(CARR)의 수직 방향(y축 방향) 부상시, 제1 롤러(KRROL)와 제2 구동축(UDS)은 이격되며, 캐리어(CARR)의 수직 방향(y축 방향) 하강시, 제1 롤러(KRROL)와 제2 구동축(UDS)은 접촉할 수 있다.In particular, when the carrier CARR rises in the vertical direction (y-axis direction), the first roller KRROL and the second drive shaft UDS are spaced apart, and when the carrier CARR descends in the vertical direction (y-axis direction), The first roller KRROL and the second driving shaft UDS may contact each other.
한편, 챔버(CHAMBER) 및 캐리어 자석(CAFMGT)이 간격 없이 일렬배열되어 챔버(CHAMBER) 내 캐리어(CARR)의 위치 별로 부상력의 차가 발생하지 않게 된다. On the other hand, the chamber CHAMBER and the carrier magnet CAFMGT are arranged in a line without a gap so that there is no difference in floating force for each position of the carrier CARR in the chamber CHAMBER.
한편, 본 발명의 실시예에 따른 반송 장치(100)는, 캐리어(CARR) 하부의 랙 자석(RAMGT)과, 랙 자석(RAMGT)과 이격되어 배치되는 피니언 자석(PNMGT)과, 피니언 자석(PNMGT)이 부착되는 제1 구동축(RDS)과, 제1 구동축(RDS)을 회전시키는 모터(MTR)와, 제1 구동축(RDS)에 연결되는 제1 롤러(KRROL)와, 캐리어(CARR)의 하부에 배치되며, 제1 롤러(KRROL)의 회전에 의해, 회전하는 제2 구동축(UDS)을 더 포함할 수 있다.On the other hand, the conveying apparatus 100 according to the embodiment of the present invention, the rack magnet (RAMGT) under the carrier (CARR), the pinion magnet (PNMGT) and spaced apart from the rack magnet (RAMGT), pinion magnet (PNMGT) ) Is attached to the first drive shaft (RDS), the motor (MTR) for rotating the first drive shaft (RDS), the first roller (KRROL) connected to the first drive shaft (RDS), the lower part of the carrier (CARR) The second driving shaft (UDS) is disposed in the, by the rotation of the first roller (KRROL) may further include.
한편, 캐리어(CARR)의 수평 방향(x축 방향) 이동시, 피니언 자석(PNMGT)과 랙 자석(RAMGT) 사이의 인력에 의해, 캐리어(CARR)가, 수평 방향(x축 방향)으로 이동된다. 이에 따라, 모터(MTR) 또는 영구 자석에 의해 비접촉 반송이 가능하게 된다.On the other hand, when the carrier CARR is moved in the horizontal direction (x-axis direction), the carrier CARR is moved in the horizontal direction (x-axis direction) by the attraction force between the pinion magnet PNMGT and the rack magnet RAMGT. Thereby, non-contact conveyance is enabled by the motor MTR or a permanent magnet.
한편, 모터(MTR)의 회전에 의해, 제1 구동축(RDS)과, 제1 롤러(KRROL)가 함께 회전한다. 이에 따라, 모터(MTR) 또는 영구 자석에 의해 비접촉 반송이 가능하게 된다.On the other hand, the first drive shaft RDS and the first roller KRROL rotate together with the rotation of the motor MTR. Thereby, non-contact conveyance is enabled by the motor MTR or a permanent magnet.
한편, 본 발명의 실시예에 따른 반송 장치(100)는, 캐리어(CARR)의 수직 방향(y축 방향)의 위치 고정을 위한 제2 롤러(LOROL)를 더 구비할 수 있다.On the other hand, the conveying apparatus 100 which concerns on the Example of this invention may further be equipped with the 2nd roller LOROL for fixing the position of the carrier CARR in the vertical direction (y-axis direction).
이러한 제2 롤러(LOROL)에 의해, 부상 인력으로 자석 간 붙는 현상은 챔버(CHAMBER)에 고정된 캐리어(CARR)의 하부를 구속하여 Y방향(부상 방향) 캐리어(CARR) 위치를 결정할 수 있다.By the second roller LOLOL, the phenomenon of sticking between the magnets due to the floating attraction force can restrain the lower part of the carrier CARR fixed to the chamber CHAMBER to determine the Y-direction (injury direction) carrier CARR position.
한편, 제2 롤러(LOROL)가 받는 힘은 부상 인력에 캐리어(CARR) 중량을 제외한 힘만 받아 자중에 의한 캐리어(CARR) 중량이 상쇄될 수 있다. 한편, 제2 롤러는 캐리어(CARR)에 닿고 있어도 자유 회전이 가능하여 반송 마찰저항이 낮게 된다. On the other hand, the force received by the second roller (LOROL) can be offset by the weight of the carrier (CARR) due to its own weight by receiving only the force other than the carrier (CARR) weight to the floating force. On the other hand, even if the second roller is in contact with the carrier CARR, the free rotation is possible and the conveying frictional resistance is low.
그리고, 제2 롤러(LOROL)에 의해, 캐리어(CARR)의 수직 방향(y축 방향)으로의 부상시, 캐리어 자석(CAFMGT)과 챔버 자석(CBFMGT) 사이의 거리가 고정될 수 있다. 이에 따라, 한편, 제2 롤러(LOROL)에 의해, 캐리어(CARR) 위치 정렬이 가능하며, 유동 최소화로 반송 파티클 감소가 가능하게 된다.The distance between the carrier magnet CAFMGT and the chamber magnet CBFMGT can be fixed by the second roller LOROL when the carrier CARR floats in the vertical direction (y-axis direction). Accordingly, on the other hand, by the second roller LOROL, the carrier CARR position alignment is possible, and the transport particles can be reduced by minimizing the flow.
한편, 본 발명의 실시예에 따른 반송 장치(100)는, 도 1과 같이, 복수의 피니언 자석(PNMGT)과, 그에 대응하는 복수의 제2 롤러(LOROL)를 구비할 수 있다.Meanwhile, the conveying apparatus 100 according to the embodiment of the present invention may include a plurality of pinion magnets PNMGT and a plurality of second rollers LOROL corresponding thereto, as shown in FIG. 1.
이에 의하면, 복수의 피니언 자석(PNMGT)을 이용하여 수평 방향(x축 방향)의 반송을 수행할 수 있으며, 복수의 피니언 자석(PNMGT) 중 일부가 고장이더라도, 나머지 피니언 자석(PNMGT)을 이용하여, 안정적인 반송이 가능하게 된다. According to this, the plurality of pinion magnets PNMGT can be used to carry out the horizontal direction (x-axis direction), and even if some of the plurality of pinion magnets PNMGT fail, the remaining pinion magnets PNMGT are used. , Stable conveyance is possible.
한편, 제2 롤러(LOROL)는, 챔버(CHAMBER)에 고정된다. 한편, 제2 롤러(LOROL)에 의해, 캐리어(CARR) 위치 정렬이 가능하며, 유동 최소화로 반송 파티클 감소가 가능하게 된다.On the other hand, the second roller LOROL is fixed to the chamber CHAMBER. On the other hand, by the second roller LOLOL, alignment of the carrier CARR is possible, and transportation particles can be reduced by minimizing the flow.
한편, 종래의 척력형 자기 부상 장치의 경우, 반송시 유동에 의한 부상용 자석 간의 중심축이 어긋나 좌,우 반발력이 발생하며, 자기 복원이 불가하다는 단점이 있다.On the other hand, in the case of the conventional repulsion type magnetic levitation device, the central axis between the floating magnet due to the flow during the transfer is left, the right and left repulsion force occurs, there is a disadvantage that the self-restore.
또한, 종래의 척력형 자기 부상 장치의 경우, 부상력 저하, 캐리어의 x축 방향 유동이 발생하며, 캐리어의 위치 결정이 안되어 충돌이 발생할 수 있다.In addition, in the case of the conventional repulsion type magnetic levitation device, the floating force decreases, the carrier flows in the x-axis direction, and the positioning of the carrier may not occur, and a collision may occur.
또한, 종래의 척력형 자기 부상 장치에서, 부상 자석의 좌,우 반발력을 제어하고자 좌,우 가이드 롤러를 적용할 경우, 반송 충격으로 롤러 파손이 잦고, 충격에 의한 파티클이 발생할 수 있다.In addition, in the conventional repulsive magnetic levitation device, when the left and right guide rollers are applied to control the left and right repulsive force of the floating magnet, the roller is frequently damaged by the conveying shock, and particles may be generated by the impact.
한편, 종래의 척력형 자기 부상 장치에서, 진공 챔버(CHAMBER) 간 부상 자석이 존재할 수 없는 위치인, 불연속 구간에서는 반송 피칭(예를 들어, 상하 동요)이 발생할 수 있다.On the other hand, in the conventional repulsive magnetic levitation device, conveying pitching (for example, up and down fluctuations) may occur in the discontinuous section, which is a position where the floating magnet between the vacuum chambers (CHAMBER) cannot exist.
한편, 종래의 척력형 자기 부상 장치의 경우, 반열 또는 자석 파손에 의한 부상 자기력 감소 시 감지가 불가능하며, 부상 자석 간 충돌이 발생할 수 있다.On the other hand, in the case of the conventional repulsion type magnetic levitation device, it is impossible to detect when the floating magnetic force is reduced by the half row or the magnet breakage, and collision between the floating magnets may occur.
한편, 종래의 인력형 자기 부상 장치의 경우, 부상 자석이 일정 간격을 두고 배열되나, 캐리어(CARR) 반송시, 부상 자석의 유무에 따라 반송 피칭(예를 들어, 상하 동요)이 발생할 수 있다.On the other hand, in the case of the conventional attraction type magnetic levitating device, the floating magnets are arranged at a predetermined interval, but conveying pitching (for example, up and down fluctuations) may occur depending on the presence or absence of the floating magnet when carrying the carrier CARR.
또한, 종래의 인력형 자기 부상 장치의 경우, 자석과 자성체 사이의 인력으로 자기력이 약하며, 자성체는 진공 챔버(CHAMBER) 내에서 내식성이 떨어져 파티클이 발생할 수 있다.In addition, in the case of the conventional attraction type magnetic levitation device, the magnetic force is weak due to the attraction force between the magnet and the magnetic body, the magnetic body may be generated corrosion-resistant particles in the vacuum chamber (CHAMBER).
한편, 종래의 인력형 자기 부상 장치의 경우, 수직형 챔버(CHAMBER)일 경우 캐리어(CARR) 하부에서 부상하기 때문에, 상대적으로 거리가 먼 캐리어(CARR) 상부는 유동 또는 진동에 취약할 수 있다.Meanwhile, in the case of the conventional attraction type magnetic levitation device, since the vertical chamber CHAMBER floats under the carrier CARR, the relatively long distance CARR may be vulnerable to flow or vibration.
한편, 종래의 인력형 자기 부상 장치의 경우, ‘ㄷ’자 캐리어(CARR) 형상으로서, 부피가 크고 복잡해서 진공 챔버(CHAMBER)의 크기가 커지고 제조 비용이 증대되며, 주변 장치와 호환성이 떨어지는 단점이 있다.On the other hand, the conventional attraction type magnetic levitation device, 'C' shaped carrier (CARR) shape, bulky and complex, the size of the vacuum chamber (CHAMBER) increases, the manufacturing cost increases, incompatibility with peripheral devices There is this.
한편, 종래의 전자석 부상 및 반송 장치의 경우, 반송시, 캐리어(CARR) 위치를 정밀 분석하는 센서, 정밀 제어하는 프로그램, 반송력을 발생하는 전자석 코일, 진공 챔버(CHAMBER)에 전원을 인가하는 공급장치 등이 필요하며, 이에 따라, 제조 비용, 관리가 불리하다는 단점이 있다.On the other hand, in the case of a conventional electromagnet floating and conveying apparatus, a supply for supplying power to a sensor for precisely analyzing a carrier (CARR) position, a program for precise control, an electromagnet coil for generating a conveying force, and a vacuum chamber (CHAMBER) during conveyance. An apparatus or the like is required, and accordingly, manufacturing costs and management are disadvantageous.
한편, 종래의 전자석 부상 및 반송 장치의 경우, 부상시, 캐리어(CARR)의 부상 위치를 판단하여, 고속 제어를 위해, 높은 주파수가 필요하며, 높은 주파수에서 공진이 발생하여 캐리어(CARR)에 진동이 발생하게 된다.On the other hand, in the case of the conventional electromagnet floating and conveying apparatus, when the injury, the floating position of the carrier (CARR) is judged, for high speed control, a high frequency is required, and resonance occurs at a high frequency, causing vibration in the carrier (CARR). This will occur.
한편, 종래의 전자석 부상 및 반송 장치에서의 수직 캐리어 방식의 경우, 무게 중심이 낮고, 구조적으로 안정적이지 못해 전도, 유동 가능성이 높은 단점이 있다.On the other hand, in the case of the vertical carrier type in the conventional electromagnet floating and conveying device, there is a disadvantage that the center of gravity is low, structurally stable, high conduction, the possibility of flow.
한편, 본 발명의 실시예에 따른 반송 장치(100)는, 자기 부상 방식으로서, 부상시, 캐리어 자석(CAFMGT)과 챔버 자석(CBFMGT)을 상이한 극성으로 배열하여 자석 간 인력으로 부상함으로써 반송 파티클 발생을 최소화할 수 있게 된다.On the other hand, the conveying apparatus 100 according to the embodiment of the present invention, as a magnetic levitation method, when the injury, the carrier magnet (CAFMGT) and the chamber magnet (CBFMGT) arranged in a different polarity to rise by the attraction between the magnets to generate the carrier particles Can be minimized.
한편, 챔버(CHAMBER) 상부에는 자석이 간격 없이 붙어 있어, 챔버(CHAMBER) 내 캐리어(CARR) 위치 별로 부상력에 변화가 없는 등, 일정한 부상력을 유지할 수 있게 된다.On the other hand, the magnet is attached to the upper portion of the chamber (CHAMBER) without gaps, it is possible to maintain a constant floating force, such as no change in the floating force for each position of the carrier (CARR) in the chamber (CHAMBER).
한편, 캐리어(CARR) 상부에서 영구 자석 간의 인력으로 부상 또는 구속함으로써, 수직방향으로 기립된 캐리어(CARR)를 안정적으로 부상할 수 있게 된다.On the other hand, by floating or restrained by the attraction between the permanent magnets on the carrier (CARR), it is possible to stably rise the carrier (CARR) standing in the vertical direction.
한편, 캐리어(CARR)의 위치 결정시, 부상 인력으로 자석 간에 붙는 현상이 챔버(CHAMBER)에 고정된 제2 롤러(LOROL)에 의해, 방지될 수 있다. On the other hand, when positioning the carrier CARR, the phenomenon of sticking between the magnets by the floating attraction force can be prevented by the second roller LOROL fixed to the chamber CHAMBER.
구체적으로, 제2 롤러(LOROL)로 캐리어(CARR) 하부를 구속하며, 캐리어(CARR) 반송시에는 캐리어(CARR) 반송 속도에 따라 제2 롤러(LOROL)가 회전하여 마찰 저항을 낮춤으로써 파티클 발생을 최소화할 수 있게 된다.Specifically, the second roller LOROL is restrained under the carrier CARR, and when the carrier CARR is conveyed, the second roller LOROL rotates according to the carrier CARR conveying speed to lower the frictional resistance, thereby generating particles. Can be minimized.
이때, 제2 롤러(LOROL)가 받는 힘은, 부상 인력에 캐리어(CARR) 중량을 제외한 것으로서, 자중에 의한 캐리어(CARR) 중량이 상쇄된다.At this time, the force received by the second roller LOROL is the weight of the carrier CARR due to its own weight as the weight of the carrier CARR is subtracted from the floating attraction force.
한편, 본 발명의 실시예에 따른 반송 장치(100)는, 캐리어(CARR) 상부 인력 자기 부상 장치와 하부 반송장치로 자기 복원이 가능하므로, 별도의 장치 없이 위치정렬이 가능하고 캐리어(CARR) 전도 방지가 가능하게 된다.On the other hand, the conveying apparatus 100 according to the embodiment of the present invention, since the self-recovery can be performed by the carrier (ARRR) upper manpower magnetic levitation device and the lower conveying device, it is possible to align the position without a separate device and the carrier (CARR) conduction Prevention is possible.
한편, 본 발명의 실시예에 따른 반송 장치(100)는, 피니언 자석(PNMGT) 축에 제1 롤러(KRROL)를 적용하여 캐리어(CARR) 낙하 시 캐리어(CARR) 하부 구동 축(UDS)은 롤러(KRROL)에 닿아 마찰 구동이 가능하게 된다.Meanwhile, the conveying apparatus 100 according to the embodiment of the present invention applies the first roller KRROL to the pinion magnet PNMGT shaft so that the carrier CARR lower drive shaft UDS is a roller when the carrier CARR falls. It comes in contact with (KRROL) to enable friction drive.
한편, 구동 축(UDS)과 롤러(KRROL) 간의 마찰 구동은 진공 챔버(CHAMBER)에서 가장 범용으로 사용하는 방식으로서, 자기 부상 장치에 이상이 발생할 경우 신속한 대응이 가능하며, 기판 등의 생산을 멈추지 않고 조건 변경없이 양산이 가능하게 된다.On the other hand, the friction drive between the drive shaft (UDS) and the roller (KRROL) is the most widely used method in the vacuum chamber (CHAMBER), it is possible to quickly respond in the event of an abnormality in the magnetic levitation device, do not stop the production of the substrate, etc. And mass production is possible without changing conditions.
한편, L형 캐리어(CARR) 하부에, 랙 자석(RAMGT)을 일렬 균등 배열하고, 챔버(CHAMBER) 하부 측면에는 복수의 구동축(RDS,UDS)을 배치하고, 주행 방향과 수직인 구동축(RDS)에 피니언 자석(PNMGT)을 고정하여 피니언 자석(PNMGT)을 회전함으로써, 구동축(RDS)의 회전운동을 캐리어(CARR)에 직선운동으로 바꾸어 전달할 수 있으며, 이때, 영구 자석(PNMGT,RAMGT) 간의 인력만을 사용함으로 비접촉 반송이 가능하게 된다.On the other hand, the rack magnets (RAMGT) are arranged evenly under the L-shaped carrier (CARR), a plurality of drive shafts (RDS, UDS) are arranged on the lower side of the chamber (CHAMBER), the drive shaft (RDS) perpendicular to the travel direction By fixing the pinion magnet PNMGT to rotate the pinion magnet PNMGT, the rotational movement of the drive shaft RDS can be transferred to the carrier CARR by linear movement, and at this time, the attraction force between the permanent magnets PNMGT and RAMGT. Non-contact conveyance is possible by using only.
도 4a 내지 도 7b는 도 1 내지 도 3의 반송 장치의 설명에 참조되는 도면이다.4A to 7B are views referred to for description of the conveying apparatus of FIGS. 1 to 3.
먼저, 도 4a는, 캐리어(CARR)의 수직 방향(y축 방향)으로의 부상을 도시한 도면이다. 도면을 참조하면, 캐리어 자석(CAFMGT)과 챔버 자석(CBFMGT) 사이의 인력에 의해, 캐리어(CARR)가, 상부 방향으로 부상하게 된다. 이에 따라, 영구 자석(CAFMGT,CBFMGT)에 의해 비접촉 반송이 가능하게 된다.First, FIG. 4A is a diagram showing the rise of the carrier CARR in the vertical direction (y-axis direction). Referring to the drawings, the carrier CARR floats upward due to the attraction force between the carrier magnet CAFMGT and the chamber magnet CBFMGT. Thereby, non-contact conveyance is possible by permanent magnets CAFMGT and CBFMGT.
다음, 도 4b는, 캐리어(CARR)의 수직 방향(y축 방향)으로의 하강을 도시한 도면이다. 도면을 참조하면, 캐리어 자석(CAFMGT)과 챔버 자석(CBFMGT) 사이의 인력 또는 모터(MTR)의 회전에 의해, 캐리어(CARR)가, 하부 방향으로 하강하게 된다. 이에 따라, 모터(MTR) 또는 영구 자석(CAFMGT,CBFMGT)에 의해 비접촉 반송이 가능하게 된다.Next, FIG. 4B is a diagram showing the descending of the carrier CARR in the vertical direction (y-axis direction). Referring to the drawings, the carrier CARR is lowered downward by the attraction force between the carrier magnet CAFMGT and the chamber magnet CBFMGT or by the rotation of the motor MTR. Thereby, non-contact conveyance is possible by the motor MTR or the permanent magnets CAFMGT, CBFMGT.
도 5는 서로 이격되어 배치되는 랙 자석(RAMGT)과 피니언 자석(PNMGT)의 동작에 대해 설명하는 도면이다.5 is a view for explaining the operation of the rack magnet (RAMGT) and pinion magnet (PNMGT) arranged to be spaced apart from each other.
도면을 참조하면, 피니언 자석(PNMGT)은, 원통형 자석으로서, 랙 자석(RAMGT)의 하부에 배치될 수 있다.Referring to the drawings, the pinion magnet PNMGT is a cylindrical magnet and may be disposed below the rack magnet RAMGT.
피니언 자석(PNMGT)은, N극과 S극이 교대로 배치될 수 있으며, 랙 자석(RAMGT)도, N극과 S극이 교대로 배치될 수 있다.In the pinion magnet PNMGT, the N pole and the S pole may be alternately arranged, and the rack magnet RAMGT may also be alternately arranged with the N pole and the S pole.
피니언 자석(PNMGT)의 회전에 의해, 랙 자석(RAMGT)과 피니언 자석(PNMGT) 사이에 인력이 발생하며, 이에 따라, 랙 자석(RAMGT)이, 수평 방향(x 축 방향)으로 이동하게 된다.Due to the rotation of the pinion magnet PNMGT, an attraction force is generated between the rack magnet RAMGT and the pinion magnet PNMGT, whereby the rack magnet RAMGT is moved in the horizontal direction (x axis direction).
따라서, 피니언 자석(PNMGT)의 회전에 의해, 랙 자석(RAMGT)이 수평 방향(x 축 방향)으로 이동하며, 결국, 수직 방향(y축 방향)으로 기립된 캐리어(CARR)가, 수평 방향(x 축 방향)으로 반송되게 된다.Therefore, the rack magnet RAMGT moves in the horizontal direction (x-axis direction) by the rotation of the pinion magnet PNMGT, and as a result, the carrier CARR standing up in the vertical direction (y-axis direction) becomes the horizontal direction ( x-axis direction).
도 6은 도 5의 피니언 자석(PNMGT) 내의 N극과 S극의 배열을 도시한 도면이다.FIG. 6 is a diagram illustrating an arrangement of N and S poles in the pinion magnet PNMGT of FIG. 5.
도면을 참조하면, 원통 형상의 피니언 자석(PNMGT)은, 사선 방향(axisa)으로 교대로 형성된 N극과 S극을 포함한다. 이에 따라, 자석 간의 위치에 관계 없이, 안정적인 정밀 구동력 전달이 가능하게 된다.Referring to the drawings, the cylindrical pinion magnet PNMGT includes an N pole and an S pole that are alternately formed in an oblique direction axisa. Accordingly, stable precision driving force can be transmitted regardless of the position between the magnets.
도면에서는, 수평 방향(x 축 방향)과, 수직 방향(y축 방향)의 사이인, 사선 방향(axisa)을 기준으로, N극과 S극이 교대로 배치되는 것을 예시한다.In the figure, the N pole and the S pole are alternately arranged on the basis of the diagonal direction axisa, which is between the horizontal direction (x axis direction) and the vertical direction (y axis direction).
이러한 피니언 자석(PNMGT)의 구조에 의하면, 사선으로 자화되어, 랙 자석(RAMGT)과 피니언 자석(PNMGT) 사이의 위치에 영향 없이 안정적인 정밀 구동력 전달이 가능하게 된다.According to the structure of the pinion magnet (PNMGT), it is magnetized in an oblique line, it is possible to transmit a stable precision drive force without affecting the position between the rack magnet (RAMGT) and the pinion magnet (PNMGT).
도 7a는 캐리어의 유동 현상을 나타내는 도면이며, 도 7b는 캐리어의 전도 현상을 나타내는 도면이다.FIG. 7A is a diagram illustrating a flow phenomenon of a carrier, and FIG. 7B is a diagram illustrating a conduction phenomenon of a carrier.
도면을 참조하면, 캐리어 자석(CAFMGT)과, 챔버 자석(CBFMGT) 사이에서, 인력이 약한 경우, 도면과 같은 유동 현상 또는 전도 현상이 발생할 수 있다.Referring to the drawings, when the attraction force is weak between the carrier magnet (CAFMGT) and the chamber magnet (CBFMGT), a flow phenomenon or conduction phenomenon as shown in the drawing may occur.
이러한 유동 현상 또는 전도 현상을 방지하기 위해, 본 발명에서는, 챔버(CHAMBER) 상부에는 자석이 간격 없이 붙어 있도록 배치할 수 있다. 이에 의하면, 챔버(CHAMBER) 내 캐리어(CARR) 위치 별로 부상력에 변화가 없으므로, 도면과 같은 유동 현상 또는 전도 현상이 저감되면서, 정렬될 수 있다.In order to prevent such flow phenomenon or conduction phenomenon, in the present invention, a magnet may be disposed on the chamber CHAMBER so as to be attached without a gap. According to this, since there is no change in the floating force for each position of the carrier (CARR) in the chamber (CHAMBER), it can be aligned while reducing the flow phenomenon or conduction phenomenon as shown in the figure.
한편, 이러한 유동 현상 또는 전도 현상을 방지하기 위해, 본 발명에서는, 캐리어(CARR)의 위치 결정을 위한, 제2 롤러(LOROL)를 사용한다.On the other hand, in order to prevent such flow phenomenon or conduction phenomenon, in this invention, the 2nd roller LOROL for positioning of the carrier CARR is used.
제2 롤러(LOROL)는, 챔버(CHAMBER)에 고정되어 회전하므로, 제2 롤러(LOROL)로 캐리어(CARR) 하부를 구속할 수 있으며, 결국, 도면과 같은 유동 현상 또는 전도 현상이 저감되면서, 정렬될 수 있다.Since the second roller LOROL is fixed to the chamber CHAMBER and rotates, the second roller LOROL can restrain the lower portion of the carrier CARR, and as a result, the flow phenomenon or the conduction phenomenon as shown in the drawing is reduced, Can be aligned.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안될 것이다.In addition, although the preferred embodiment of the present invention has been shown and described above, the present invention is not limited to the specific embodiments described above, but the technical field to which the invention belongs without departing from the spirit of the invention claimed in the claims. Of course, various modifications can be made by those skilled in the art, and these modifications should not be individually understood from the technical spirit or the prospect of the present invention.

Claims (14)

  1. 챔버 내에 위치하는 수직 캐리어를 반송하는 반송 장치에 있어서,In the conveying apparatus which conveys the vertical carrier located in a chamber,
    수직 방향으로 기립된 캐리어;A carrier standing up in the vertical direction;
    상기 캐리어의 상부에 부착되는 캐리어 자석;A carrier magnet attached to an upper portion of the carrier;
    상기 캐리어 자석에 이격되어, 상기 챔버에 부착되며, 상기 캐리어 자석과 상이한 극성의 챔버 자석;A chamber magnet spaced apart from the carrier magnet and attached to the chamber, the chamber magnet having a different polarity than the carrier magnet;
    캐리어 하부의 랙 자석;A rack magnet under the carrier;
    상기 랙 자석과 이격되어 배치되는 피니언 자석;A pinion magnet spaced apart from the rack magnet;
    상기 피니언 자석이 부착되는 제1 구동축;A first drive shaft to which the pinion magnet is attached;
    상기 제1 구동축을 회전시키는 모터;A motor for rotating the first drive shaft;
    상기 제1 구동축에 연결되는 제1 롤러;A first roller connected to the first drive shaft;
    상기 캐리어의 하부에 배치되며, 상기 제1 롤러의 회전에 의해, 회전하는 제2 구동축;을 포함하는 것을 특징으로 하는 반송 장치.And a second drive shaft disposed under the carrier and rotated by the rotation of the first roller.
  2. 제1항에 있어서,The method of claim 1,
    상기 제2 구동축의 회전에 의해, 상기 캐리어가 상기 수직 방향으로 이동되는 것을 특징으로 하는 반송 장치.The carrier is moved in the vertical direction by the rotation of the second drive shaft.
  3. 제1항에 있어서,The method of claim 1,
    상기 캐리어의 상기 수직 방향으로의 부상시, 상기 캐리어 자석과 상기 챔버 자석 사이의 인력에 의해, 상기 캐리어가 정렬되는 것을 특징으로 하는 반송 장치.And the carrier is aligned by the attractive force between the carrier magnet and the chamber magnet when the carrier floats in the vertical direction.
  4. 제1항에 있어서,The method of claim 1,
    상기 캐리어의 상기 수직 방향 부상시, 상기 제1 롤러와 상기 제2 구동축은 이격되며, When the vertical rise of the carrier, the first roller and the second drive shaft is spaced apart,
    상기 캐리어의 상기 수직 방향 하강시, 상기 제1 롤러와 상기 제2 구동축은 접촉하는 것을 특징으로 하는 반송 장치.And said first roller and said second drive shaft are in contact with each other when the carrier descends in the vertical direction.
  5. 제1항에 있어서,The method of claim 1,
    상기 캐리어의 상기 수직 방향의 위치 고정을 위한 제2 롤러;를 더 구비하며, And a second roller for fixing the position of the carrier in the vertical direction.
    상기 제2 롤러에 의해, 상기 캐리어의 상기 수직 방향으로의 부상시, 상기 캐리어 자석과 상기 챔버 자석 사이의 거리가 고정되는 것을 특징으로 하는 반송 장치.A distance between the carrier magnet and the chamber magnet is fixed by the second roller when the carrier floats in the vertical direction.
  6. 제1항에 있어서,The method of claim 1,
    상기 제2 롤러는, 상기 챔버에 고정되는 것을 특징으로 하는 반송 장치.The said 2nd roller is fixed to the said chamber, The conveying apparatus characterized by the above-mentioned.
  7. 제1항에 있어서,The method of claim 1,
    상기 제1 구동축의 회전에 의해, 원통 형상의 상기 피니언 자석이 회전하며, 상기 피니언 자석의 회전에 따라, 상기 랙 자석이, 수평 방향으로 이동되는 것을 특징으로 하는 반송 장치.The cylindrical pinion magnet is rotated by the rotation of the first drive shaft, and the rack magnet is moved in the horizontal direction in accordance with the rotation of the pinion magnet.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 캐리어의 상기 수평 방향 이동시, 상기 피니언 자석과 상기 랙 자석 사이의 인력에 의해, 상기 캐리어가, 상기 수평 방향으로 이동되는 것을 특징으로 하는 반송 장치.The carrier is moved in the horizontal direction by the attractive force between the pinion magnet and the rack magnet during the horizontal movement of the carrier.
  9. 제1항에 있어서,The method of claim 1,
    원통 형상의 상기 피니언 자석은, 사선 방향으로 형성된 N극과 S극을 포함하는 것을 특징으로 하는 반송 장치.The cylindrical pinion magnet includes an N pole and an S pole formed in an oblique direction.
  10. 제1항에 있어서,The method of claim 1,
    상기 모터의 회전에 의해, 상기 제1 구동축과, 상기 제1 롤러가 함께 회전하는 것을 특징으로 하는 반송 장치.The first drive shaft and the first roller rotate together with the rotation of the motor.
  11. 챔버 내에 위치하는 수직 캐리어를 반송하는 반송 장치에 있어서,In the conveying apparatus which conveys the vertical carrier located in a chamber,
    수직 방향으로 기립된 캐리어;A carrier standing up in the vertical direction;
    상기 캐리어의 상부에 부착되는 캐리어 자석;A carrier magnet attached to an upper portion of the carrier;
    상기 캐리어 자석에 이격되어, 상기 챔버에 부착되며, 상기 캐리어 자석과 상이한 극성의 챔버 자석;A chamber magnet spaced apart from the carrier magnet and attached to the chamber, the chamber magnet having a different polarity than the carrier magnet;
    모터에 의해 회전하는 제1 구동축; A first drive shaft rotated by a motor;
    제1 구동축에 연결되는 제1 롤러; A first roller connected to the first drive shaft;
    상기 캐리어의 하부에 배치되며, 상기 제1 롤러의 회전에 의해, 회전하는 제2 구동축;을 포함하는 것을 특징으로 하는 반송 장치.And a second drive shaft disposed under the carrier and rotated by the rotation of the first roller.
  12. 제11항에 있어서,The method of claim 11,
    상기 제2 구동축의 회전에 의해, 상기 캐리어가 상기 수직 방향으로 이동되는 것을 특징으로 하는 반송 장치.The carrier is moved in the vertical direction by the rotation of the second drive shaft.
  13. 제11항에 있어서,The method of claim 11,
    상기 캐리어의 상기 수직 방향으로의 부상시, 상기 캐리어 자석과 상기 챔버 자석 사이의 인력에 의해, 상기 캐리어가 정렬되는 것을 특징으로 하는 반송 장치.And the carrier is aligned by the attractive force between the carrier magnet and the chamber magnet when the carrier floats in the vertical direction.
  14. 제11항에 있어서,The method of claim 11,
    상기 캐리어의 상기 수직 방향 부상시, 상기 제1 롤러와 상기 제2 구동축은 이격되며, When the vertical rise of the carrier, the first roller and the second drive shaft is spaced apart,
    상기 캐리어의 상기 수직 방향 하강시, 상기 제1 롤러와 상기 제2 구동축은 접촉하는 것을 특징으로 하는 반송 장치.And said first roller and said second drive shaft are in contact with each other when the carrier descends in the vertical direction.
PCT/KR2019/010896 2018-08-27 2019-08-27 Transfer device WO2020045942A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180100135A KR102090645B1 (en) 2018-08-27 2018-08-27 Conveying apparatus
KR10-2018-0100135 2018-08-27

Publications (1)

Publication Number Publication Date
WO2020045942A1 true WO2020045942A1 (en) 2020-03-05

Family

ID=69643052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010896 WO2020045942A1 (en) 2018-08-27 2019-08-27 Transfer device

Country Status (2)

Country Link
KR (1) KR102090645B1 (en)
WO (1) WO2020045942A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022073588A1 (en) * 2020-10-06 2022-04-14 Applied Materials, Inc. Carrier transport system, carrier therefor, vacuum processing apparatus, and method of transportation of a carrier in a vacuum chamber
CN114641435A (en) * 2020-05-13 2022-06-17 应用材料公司 Roller transport system carrier, roller transport system and vacuum treatment device
CN114981471A (en) * 2020-05-13 2022-08-30 应用材料公司 Carrier transport system, carrier for substrate, vacuum processing apparatus, and method for transporting carrier in vacuum chamber
CN115158964A (en) * 2022-08-03 2022-10-11 中国电子科技集团公司第二十四研究所 Device for power transmission in sealed environment and use method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289556A (en) * 2004-03-31 2005-10-20 Anelva Corp Substrate carrying device
JP2007091463A (en) * 2005-08-30 2007-04-12 Daifuku Co Ltd Article conveyance facility
KR20080104479A (en) * 2007-05-28 2008-12-03 엘지디스플레이 주식회사 Apparatus for transferring substrates
KR20120016837A (en) * 2010-08-17 2012-02-27 (주)가온솔루션 Device for transmitting driving force and controlling flatness of non-contact rail of moving system using magnet
KR101271112B1 (en) * 2011-02-01 2013-06-04 (주)이루자 Vaccum processing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005289556A (en) * 2004-03-31 2005-10-20 Anelva Corp Substrate carrying device
JP2007091463A (en) * 2005-08-30 2007-04-12 Daifuku Co Ltd Article conveyance facility
KR20080104479A (en) * 2007-05-28 2008-12-03 엘지디스플레이 주식회사 Apparatus for transferring substrates
KR20120016837A (en) * 2010-08-17 2012-02-27 (주)가온솔루션 Device for transmitting driving force and controlling flatness of non-contact rail of moving system using magnet
KR101271112B1 (en) * 2011-02-01 2013-06-04 (주)이루자 Vaccum processing apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114641435A (en) * 2020-05-13 2022-06-17 应用材料公司 Roller transport system carrier, roller transport system and vacuum treatment device
CN114981471A (en) * 2020-05-13 2022-08-30 应用材料公司 Carrier transport system, carrier for substrate, vacuum processing apparatus, and method for transporting carrier in vacuum chamber
WO2022073588A1 (en) * 2020-10-06 2022-04-14 Applied Materials, Inc. Carrier transport system, carrier therefor, vacuum processing apparatus, and method of transportation of a carrier in a vacuum chamber
CN115158964A (en) * 2022-08-03 2022-10-11 中国电子科技集团公司第二十四研究所 Device for power transmission in sealed environment and use method thereof

Also Published As

Publication number Publication date
KR102090645B1 (en) 2020-03-18
KR20200023767A (en) 2020-03-06

Similar Documents

Publication Publication Date Title
WO2020045942A1 (en) Transfer device
KR101288599B1 (en) Apparatus for transferring substrates
WO2015182806A1 (en) System for levitating mobile terminal
KR100707390B1 (en) Apparatus for carring glass
WO2019177348A1 (en) Display apparatus
WO2011102648A2 (en) Substrate processing system and substrate transferring method
WO2017217816A1 (en) Substrate processing apparatus
WO2012150814A2 (en) Stamp for large-area image transfer, and large-area image transfer equipment using same
WO2016036019A1 (en) Substrate conveyor apparatus
WO2022092803A1 (en) Belt conveyor device for conveying wafer storage container to be used in semiconductor manufacturing
WO2017018592A1 (en) Hybrid alignment
WO2014189192A1 (en) Apparatus and method for synchronizing roll-to-roll transfer equipment
WO2019203531A1 (en) Micro device transfer method and transfer apparatus, and electronic product using same
WO2014051331A1 (en) Plasma enhanced chemical vapor deposition device
WO2019182260A1 (en) Inline thin film processing device
WO2019231081A1 (en) Conveyor system
WO2015170792A1 (en) Method for packaging semiconductor elements and apparatus for carrying out the method
KR20080103753A (en) Apparatus for transferring substrates
WO2020045846A1 (en) Magnetic levitation transfer device
WO2021107207A1 (en) Magnetic levitation transfer apparatus
WO2020091162A1 (en) Contactless vertical transfer device using linear motor
KR101743955B1 (en) Maglev-type substrate transfer apparatus
WO2009096739A2 (en) Generator and wind power generating system comprising same
WO2015102420A1 (en) Lifting device for substrate transfer apparatus and substrate transfer apparatus comprising same
WO2020149437A1 (en) Reversing apparatus for transferring display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853777

Country of ref document: EP

Kind code of ref document: A1