WO2020045829A1 - 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법 - Google Patents

공조기 방식 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법 Download PDF

Info

Publication number
WO2020045829A1
WO2020045829A1 PCT/KR2019/009277 KR2019009277W WO2020045829A1 WO 2020045829 A1 WO2020045829 A1 WO 2020045829A1 KR 2019009277 W KR2019009277 W KR 2019009277W WO 2020045829 A1 WO2020045829 A1 WO 2020045829A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
indoor
outside air
temperature
room
Prior art date
Application number
PCT/KR2019/009277
Other languages
English (en)
French (fr)
Inventor
박광만
Original Assignee
(주)지플러스 생명과학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180102622A external-priority patent/KR101926644B1/ko
Priority claimed from KR1020180119163A external-priority patent/KR101931750B1/ko
Application filed by (주)지플러스 생명과학 filed Critical (주)지플러스 생명과학
Priority to EP19853679.9A priority Critical patent/EP3845056A1/en
Priority to US17/271,212 priority patent/US20210212269A1/en
Priority to CN201980060730.1A priority patent/CN112739199A/zh
Publication of WO2020045829A1 publication Critical patent/WO2020045829A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G31/00Soilless cultivation, e.g. hydroponics
    • A01G31/02Special apparatus therefor
    • A01G31/06Hydroponic culture on racks or in stacked containers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/18Greenhouses for treating plants with carbon dioxide or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/02Treatment of plants with carbon dioxide
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/246Air-conditioning systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0003Exclusively-fluid systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention relates to an environmental control system of an air conditioner-type hermetic plant factory and a control method thereof, and more particularly, to provide an optimal indoor environment in consideration of both a plant for manufacturing pharmaceuticals and an operator in an hermetic plant factory and to save energy. It relates to an environmental control system of an air conditioner type hermetic plant factory and a control method thereof.
  • a closed plant factory In order to produce pharmaceutical manufacturing plants, a closed plant factory is used to artificially control the cultivation environment and to prevent external infection or pest invasion by bacteria, viruses, fungi, etc., and is also called a bio clean room.
  • hermetic plant factory is mainly a factory for producing plants for pharmaceutical manufacture, it is very important to maintain the indoor environment in predetermined conditions.
  • the hermetic plant factory has a problem in that the working environment of the worker is poor when considering only the cultivation conditions of the plant and the work efficiency is lowered.
  • the environmental control system of the air conditioner-type hermetic plant factory is a hermetic plant in a hermetic plant factory equipped with artificial lighting for storing a plurality of tray members in which a plant for pharmaceutical manufacture is accommodated and providing light energy to the plant.
  • An outdoor air damper installed in an air supply duct for supplying air to a room of a factory, and controlling an inflow rate of outside air flowing into the air supply duct;
  • An exhaust damper installed in an exhaust duct for discharging air from the indoor unit to adjust a flow rate of the indoor air discharged from the indoor unit;
  • a circulating air damper installed in a connection duct connecting the air supply duct and the air exhaust duct, and controlling a flow rate of the circulating air circulated back to the room after being discharged from the room;
  • a CO 2 supply device for supplying CO 2 to the air introduced into the room;
  • a humidifying coil for humidifying the air introduced into the room; Cold and hot water coil for heating or cooling the air flowing into the room;
  • An outside air sensor unit including an outside air temperature sensor measuring a temperature of the outside air, an outside air humidity sensor measuring a relative humidity of the outside air, and an outside air CO 2 sensor measuring a CO 2 concentration of the outside air;
  • An indoor sensor unit including an indoor temperature sensor measuring a
  • an environmental control system of an airtight type hermetic plant factory in which a plurality of tray members in which a plant for manufacturing a medicine is accommodated is stacked, and which is provided with artificial lighting for providing light energy to the plant.
  • An outdoor air damper installed in an air supply duct for supplying air to the interior of the hermetic plant factory, and controlling an inflow rate of external air introduced into the air supply duct;
  • An exhaust damper installed in an exhaust duct for discharging air from the indoor unit to adjust a flow rate of the indoor air discharged from the indoor unit;
  • a circulating air damper installed in a connection duct connecting the air supply duct and the air exhaust duct, and controlling a flow rate of the circulating air circulated back to the room after being discharged from the room;
  • a CO 2 supply device for supplying CO 2 to the air introduced into the room;
  • a humidifying coil for humidifying the air introduced into the room; Cold and hot water coil for heating or cooling the air flowing into the room;
  • An outside air sensor unit including an outside air temperature sensor measuring a temperature of the outside air, an outside air humidity sensor measuring a relative humidity of the outside air, and an outside air CO 2 sensor measuring a CO 2 concentration of the outside air;
  • An indoor sensor unit including an indoor temperature sensor measuring
  • an environmental control system of an airtight type hermetic plant factory in which a plurality of tray members in which a plant for manufacturing a medicine is accommodated is stacked, and which is provided with artificial lighting for providing light energy to the plant.
  • An outdoor air damper installed in an air supply duct for supplying air to the interior of the hermetic plant factory, and controlling an inflow rate of external air introduced into the air supply duct;
  • An exhaust damper installed in an exhaust duct for discharging air from the indoor unit to adjust a flow rate of the indoor air discharged from the indoor unit;
  • a circulating air damper installed in a connection duct connecting the air supply duct and the air exhaust duct, and controlling a flow rate of the circulating air circulated back to the room after being discharged from the room;
  • a CO 2 supply device for supplying CO 2 to the air introduced into the room;
  • a humidifying coil for humidifying the air introduced into the room; Cold and hot water coil for heating or cooling the air flowing into the room;
  • An outside air sensor unit including an outside air temperature sensor measuring a temperature of the outside air, an outside air humidity sensor measuring a relative humidity of the outside air, and an outside air CO 2 sensor measuring a CO 2 concentration of the outside air;
  • An indoor sensor unit including an indoor temperature sensor measuring
  • an environmental control system of an airtight type hermetic plant factory in which a plurality of tray members in which a plant for manufacturing a medicine is accommodated is stacked, and which is provided with artificial lighting for providing light energy to the plant.
  • An outdoor air damper installed in an air supply duct for supplying air to the interior of the hermetic plant factory, and controlling an inflow rate of external air introduced into the air supply duct;
  • An exhaust damper installed in an exhaust duct for discharging air from the indoor unit to adjust a flow rate of the indoor air discharged from the indoor unit;
  • a circulating air damper installed in a connection duct connecting the air supply duct and the air exhaust duct, and controlling a flow rate of the circulating air circulated back to the room after being discharged from the room;
  • a CO 2 supply device for supplying CO 2 to the air introduced into the room;
  • a humidifying coil for humidifying the air introduced into the room; Cold and hot water coil for heating or cooling the air flowing into the room;
  • An outside air sensor unit including an outside air temperature sensor measuring a temperature of the outside air, an outside air humidity sensor measuring a relative humidity of the outside air, and an outside air CO 2 sensor measuring a CO 2 concentration of the outside air;
  • An indoor sensor unit including an indoor temperature sensor measuring
  • an environmental control system of an airtight type hermetic plant factory in which a plurality of tray members in which a plant for manufacturing a medicine is accommodated is stacked, and which is provided with artificial lighting for providing light energy to the plant.
  • An outdoor air damper installed in an air supply duct for supplying air to the interior of the hermetic plant factory, and controlling an inflow rate of external air introduced into the air supply duct;
  • An exhaust damper installed in an exhaust duct for discharging air from the indoor unit to adjust a flow rate of the indoor air discharged from the indoor unit;
  • a circulating air damper installed in a connection duct connecting the air supply duct and the air exhaust duct, and controlling a flow rate of the circulating air circulated back to the room after being discharged from the room;
  • a CO 2 supply device for supplying CO 2 to the air introduced into the room;
  • a humidifying coil for humidifying the air introduced into the room; Cold and hot water coil for heating or cooling the air flowing into the room;
  • An outside air sensor unit including an outside air temperature sensor measuring a temperature of the outside air, an outside air humidity sensor measuring a relative humidity of the outside air, and an outside air CO 2 sensor measuring a CO 2 concentration of the outside air;
  • An indoor sensor unit including an indoor temperature sensor measuring
  • the hermetic plant factory for cultivating plants for the manufacture of medicines is installed in the air supply duct for supplying air into the room to adjust the flow rate of the outside air flowing into the air supply duct
  • a humidifying coil installed in the air supply unit to humidify the air flowing into the room, and the air supply duct installed in the air supply duct.
  • the sensor unit When controlled by an air conditioner including a cold and hot water coil for heating or cooling the air to be used, the sensor unit measures the temperature and relative humidity of the indoor air at regular time intervals, and measures the temperature and relative humidity of the outside air of the hermetic plant factory at regular time intervals.
  • CO 2 sensor is CO 2 concentration measurement step of measuring a predetermined time interval the CO 2 concentration of the interior and; If the CO 2 concentration of the CO 2 concentration in the room measured at the measuring step the preset upper limit value or more, the outdoor air introduced to the control ventilated to different settings for the outside air introduction rate according to the difference in temperature and the temperature of the ambient air of the room air Performing a control mode; If the CO 2 is less than the said upper limit CO 2 concentration in the room measured by the concentration measurement step is a pre-set lower
  • the environmental control equipment of the hermetic plant factory according to the present invention can save energy while maintaining the optimal environment for the production of plants for pharmaceutical production through the introduction of appropriate outside air, and provide a pleasant environment for workers as well as plants in the daytime mode. There is an advantage to this.
  • FIG. 1 is a view showing an environmental control system of an air conditioner type closed plant factory according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the environmental control system of the hermetic plant factory shown in FIG.
  • thermo-hygrostat type closed plant factory is a view showing an environmental control system of a packaged thermo-hygrostat type closed plant factory according to a second embodiment of the present invention.
  • FIG. 4 is a block diagram showing the configuration of the environmental control system of the hermetic plant factory shown in FIG.
  • 5 to 7 is a flow chart illustrating an environmental control method of a closed plant factory according to an embodiment of the present invention.
  • the hermetic plant factory is a facility for cultivating a plant for manufacturing medicines (hereinafter, referred to as "plant").
  • plant a facility for cultivating a plant for manufacturing medicines
  • the hermetic plant factory is controlled to the optimum environment for cultivating the plant, and is sealed to prevent external infection or invasion of pests. Since the hermetic plant factory controls the environment for the plant, the temperature is controlled to about 25 ° C., the humidity is 40 to 80%, and the CO 2 concentration is 800 to 1500 ppm. As conditions have, environmental control is different.
  • artificial lighting (not shown) is provided to provide light energy to the plant to allow the plant to photosynthesize.
  • the artificial light (not shown) must have a very high illumination density because it must provide photosynthetic energy necessary for the growth of the plant.
  • the artificial light may have an illumination density of about 200 W / m 2 . Therefore, the hermetic plant factory has a large internal heating load due to the artificial lighting, and a cooling load due to the internal heating load is also very large. Therefore, it is necessary to control the room temperature and humidity using an air conditioner method or a packaged thermo-hygrostat method. Do.
  • the said plants include hydroponic cultivation plants, such as Ventamiana.
  • the plant is used to infiltrate plant tissue with Agrobacterium transformed with a gene encoding a protein to induce transient expression of a foreign protein in the plant.
  • the hermetic plant factory may also be provided with a device for injecting infiltration solution into the tissue of the plant.
  • FIG. 1 is a view showing an environmental control system of an air conditioner type closed plant factory according to a first embodiment of the present invention.
  • 2 is a block diagram showing the configuration of the environmental control system of the hermetic plant factory shown in FIG.
  • the environmental control system of the hermetic plant factory is an air conditioner system.
  • the air conditioner system is a system in which outside air is introduced and cooled or heated, humidified or dehumidified and then supplied to the room.
  • the environmental control system of the air conditioner-type hermetic plant factory includes an air supply duct 10, an outdoor air damper 11, an air supply fan 12, an air exhaust duct 20, an air damper 21, an air exhaust fan 22, and a connection duct. 30, circulating air damper 31, CO 2 supply device 40, humidification coil 42, cold and hot water coil 44, reheat coil 46, hepa filter 48, outside air sensor unit 50, It includes an indoor sensor unit 60, the human body sensor 70 and the controller 80.
  • the air supply duct 10 is a flow path for supplying mixed air mixed with outside air or outside air and circulating air to the room R.
  • the outdoor air damper 11 is a damper that is provided at one side of the air supply duct 10 and adjusts an inflow flow rate of external air flowing into the air supply duct 10.
  • the air supply fan 12 is a fan provided inside the air supply duct 10 to blow air supplied to the room R. As shown in FIG.
  • the exhaust duct 20 is a flow path for discharging air from the room R. As shown in FIG.
  • the exhaust damper 21 is a damper that is provided at one side of the exhaust duct 20 to adjust the flow rate of the indoor air discharged from the exhaust duct 20.
  • the exhaust fan 22 is a fan provided inside the exhaust duct 20 to blow air discharged from the room R. As shown in FIG.
  • connection duct 30 connects the air supply duct 10 and the air exhaust duct 20 to circulate some of the indoor air discharged through the air exhaust duct 20 to the air supply duct 10. to be.
  • the circulating air damper 31 is a damper provided in the connection duct 30 to adjust the flow rate of the circulating air that is discharged from the room R and circulated back to the room.
  • the CO 2 supply device 40 is installed inside the air supply duct 10 to supply CO 2 to the air flowing into the room. Since the plant requires CO 2 for photosynthesis, CO 2 can be supplied as needed.
  • the humidification coil 42 is installed inside the air supply duct 10 to humidify the air flowing into the room.
  • the humidification coil 42 is provided between the cold / hot water coil 44 and the CO 2 supply device 40.
  • the cold / hot water coil 44 is a device that is installed inside the air supply duct 10 to heat or cool the air flowing into the room.
  • the reheat coil 46 is installed on a flow path connecting the air supply duct 10 and the room R to reheat the air that has been supercooled during the cooling and dehumidification process in the air supply duct 10.
  • the HEPA filter 48 is installed on a flow path connecting the air supply duct 10 and the room R to filter the air supplied to the room R.
  • the outside air sensor unit 50 is provided in the air supply duct 10, an outside air temperature sensor 51 measuring the temperature of the outside air, an outside air humidity sensor 52 measuring the relative humidity of the outside air, and It includes an outside-air CO 2 sensor 53 for measuring the CO 2 concentration in ambient air.
  • the indoor sensor unit 60 is installed in the exhaust duct 20 and measures an indoor temperature sensor 61 for measuring a temperature of indoor air discharged from the room R, and measures relative humidity of the indoor air.
  • the indoor humidity sensor 62, and the indoor CO 2 sensor 63 for measuring the CO 2 concentration of the indoor air.
  • the human body sensor 70 is installed in the room (R) to detect the human body present in the room (R). Since the environment (R) is usually controlled only by considering the plant, the environment for the human body should also be considered when a person, such as a worker, enters and exits, and the environment of the room (R) may change due to the human body.
  • the human body sensor 70 for detecting the human body should be provided.
  • the mixed air temperature sensor 72 for measuring the temperature of the mixed air mixed with the indoor air and the outside air at the location where the indoor air and the outdoor air introduced through the connection duct 30 inside the air supply duct 10 is mixed. ) Can be installed.
  • the control unit 80 whether the artificial light (not shown) is turned on, the human body sensor 70, the indoor CO 2 sensor 63, the room temperature sensor 61, the room humidity sensor 62
  • the outdoor air damper 11 and the exhaust damper according to detection signals of the outside air temperature sensor 51, the outside air humidity sensor 52, the outside air CO 2 sensor 53, and the mixed air temperature sensor 72. 21) and by controlling the operation of the circulating air damper 31, to control the indoor environment in any one of the air fresh air control mode, enthalpy control mode, indoor circulation mode.
  • FIG. 3 is a view showing an environmental control system of a packaged thermo-hygrostat type closed plant factory according to a second embodiment of the present invention.
  • 4 is a block diagram showing the configuration of the environmental control system of the hermetic plant factory shown in FIG.
  • the environmental control system of the hermetic plant factory according to the second embodiment of the present invention is different from the first embodiment in that the package-type thermo-hygrostat system.
  • the package-type thermo-hygrostat method is a method in which the thermo-hygrostat 100 is installed in the room R of the hermetic plant factory, and the thermo-hygrostat 100 supplies air harmonized with a preset temperature and a preset humidity. . Therefore, in the thermo-hygrostat system, a humidification coil or a reheat coil required for an air conditioner system is not separately installed on the external air introduction flow path.
  • thermo-hygrostat 100 Environmental control system of the hermetic plant factory, the thermo-hygrostat 100, air damper 110, air supply fan 112, exhaust damper 120, exhaust fan 122, CO 2 supply device 140, hepa
  • the filter 148, the outdoor sensor 150, the indoor sensor 160, the human body sensor 170, and the controller 180 are included.
  • the outside air damper 110 is installed on a flow path for supplying outside air to the room R to adjust the flow rate of outside air.
  • the air supply fan 112 is a fan for blowing air supplied to the room R.
  • the exhaust damper 120 is provided on a passage for discharging indoor air from the room R, and regulates the flow rate of the discharged indoor air.
  • the exhaust fan 122 is a fan for blowing air discharged from the room (R).
  • the CO 2 supply device 140 is a device for directly supplying CO 2 to the room. Since the plant requires CO 2 for photosynthesis, CO 2 can be supplied as needed.
  • the hepa filter 148 is installed on a flow path for supplying outside air to the room R, and filters the air supplied to the room R. Therefore, it is possible to prevent external infection and infestation of pests.
  • the outside air sensor unit 150 is provided on a flow path for supplying the outside or the outside air of the hermetic plant factory to the room R.
  • the outside air sensor unit 150 includes an outside air temperature sensor 151 measuring the temperature of the outside air, an outside air humidity sensor 152 measuring the relative humidity of the outside air, and an outside air measuring the CO 2 concentration of the outside air. CO 2 sensor 153.
  • the indoor sensor unit 160 is provided on a passage for discharging indoor air from the room R or the room R.
  • the indoor sensor unit 160 an indoor temperature sensor 161 for measuring the temperature of the indoor air discharged from the room (R), an indoor humidity sensor 162 for measuring the relative humidity of the indoor air, and the An indoor CO 2 sensor 163 for measuring the CO 2 concentration of the indoor air.
  • the human body sensor 170 is installed in the room (R) to detect the human body present in the room (R). Since the environment (R) is usually controlled only by considering the plant, the environment for the human body should also be considered when a person, such as a worker, enters and exits, and the environment of the room (R) may change due to the human body.
  • the human body sensor 170 for detecting the human body should be provided.
  • the controller 180 determines whether the artificial light (not shown) is turned on, the human body sensor 170, the indoor CO 2 sensor 163, the room temperature sensor 161, the room humidity sensor 162 According to the detection signal of the outside air temperature sensor 151, the outside air humidity sensor 152, the outside air CO 2 sensor 153, the mixed air temperature sensor 172, the outside air intake control mode, enthalpy control mode, indoor circulation Perform indoor environment control in any of the modes.
  • 5 to 7 is a flow chart illustrating an environmental control method of a closed plant factory according to an embodiment of the present invention.
  • the environmental control system of the hermetic plant factory has been described by dividing it into an air conditioner type and a package type thermo-hygrostat type, but the control method will be described in an integrated manner.
  • the room R is maintained at a preset temperature and a preset humidity.
  • the temperature of the indoor air and the relative humidity of the indoor air, the temperature of the outside air and the relative humidity of the outside air are measured at regular intervals.
  • the controller performs a day / night setting step of setting the day / night mode.
  • the said daytime mode is a fine instrument in which the said artificial illumination is lighted and photosynthesis of the said plant is performed.
  • the night mode is a memorization in which the artificial light is turned off to perform only the breathing action of the plant.
  • the hermetic plant factory is a place where the environmental control is made in consideration of the plant, the activity of the plant varies depending on whether the day mode or night mode, the control according to this is different.
  • the photosynthesis must be performed in the day mode, the CO 2 concentration is more important than the night mode.
  • the breathing of the plant is made in the night mode, since supplying the outside air does not affect the CO 2 concentration required for plant growth, cooling can be achieved by using the outside air to achieve energy saving. Therefore, the environmental control varies according to the day mode and the night mode.
  • the controller may determine whether the enthalpy control mode, which will be described later, is set, and if the enthalpy control mode is set, the controller may perform the introduction of outside air.
  • the controller performs a human body detecting step of determining whether the human body is detected in the room (S3).
  • the worker can work while entering and leaving the room (R), if the CO 2 concentration of the room (R) is too high may cause a problem in the worker's breathing, the room due to the worker It may also affect the CO 2 concentration of (R). That is, in the day mode, the concentration of CO 2 in the room R should be controlled so as not to exceed 1000 ppm. Therefore, in the daytime mode, the human body sensing step is performed to determine the presence or absence of an operator.
  • the controller performs an outdoor air intake control mode (S100) for ventilating by setting different air intake rates differently according to a difference between the temperature of the indoor air and the temperature of the outside air.
  • the external air control mode (S100) will be described in detail later.
  • the indoor CO 2 concentration is less than the lower limit, it may be determined that the indoor CO 2 concentration is not high, and thus it may be determined that the indoor CO 2 concentration is not affected. Therefore, when the CO 2 concentration in the room is less than the lower limit, the CO 2 concentration is continuously measured to confirm the state.
  • the enthalpy control mode for introducing the outside air by comparing the enthalpy of the indoor air with the enthalpy of the outside air, and the indoor circulation mode for circulating the indoor air without introducing the outside air.
  • the enthalpy control mode check step for checking which one is set is performed.
  • the controller compares the CO 2 concentration of the room with a predetermined lower limit value (S6).
  • the enthalpy control mode check step is performed.
  • Equation 1 The calculation method of the enthalpy is shown in Equation 1.
  • c a is the specific pressure specific heat of dry air (1,005 J / kgK, 0.240 kcal / kg ⁇ °C)
  • c v is the constant pressure specific heat of steam (1,846 J / kg K, 0.441 kcal / kg ⁇ ⁇ )
  • r 0 represents the latent heat of evaporation of 0 ⁇ ⁇ (2,5012103J / kg, 597.5 kcal / kg).
  • Equation 2 The method of calculating the absolute humidity x is shown in Equation 2.
  • P is atmospheric pressure and Pw represents the partial pressure of water vapor.
  • the atmospheric pressure P is calculated by Equation 3, and the partial pressure of water vapor Pw is calculated by Equation 4.
  • Z is the altitude above sea level (m)
  • T 0ab is the atmospheric pressure at sea level in the standard atmosphere.
  • RH relative humidity (%)
  • P ws saturated steam pressure (kPa)
  • Equation 1 When the enthalpy of the indoor air and the enthalpy of the outside air are obtained by Equation 1, the difference between the enthalpy of the indoor air and the enthalpy of the outside air is calculated.
  • the difference between the enthalpy of the indoor air and the enthalpy of the outside air may be referred to as enthalpy energy.
  • the enthalpy of the indoor air is compared with the enthalpy of the outside air (S9).
  • step S1 When the enthalpy of the outside air exceeds the enthalpy of the indoor air, the process returns to step S1 of measuring the temperature and humidity so as not to introduce the outside air.
  • the temperature of the outside air is compared with a preset indoor set temperature.
  • the process returns to step S1 of measuring the temperature and humidity so as not to introduce the outside air.
  • the temperature of the outside air is less than or equal to the indoor set temperature, it is determined whether the relative humidity of the outside air is within a preset set humidity range.
  • step S1 When the relative humidity of the outside air is out of the set humidity range, the process returns to step S1 of measuring the temperature and the humidity so as not to introduce the outside air.
  • the outside air inflow control mode (S100) is performed.
  • the latent heat load for humidification or dehumidification may be increased when the outside air is introduced, so that the economic efficiency may be lowered, so that the outside air is controlled to introduce outside air when the relative humidity of the outside air is within the set humidity range. do.
  • the amount of supply of the outside air is controlled differently according to the difference between the temperature of the indoor air and the temperature of the outside air.
  • the air supply amount of the outside air is controlled by adjusting the opening degree of the outdoor air damper and the exhaust damper when the environmental control system is the air conditioner type, and the air supply fan and the exhaust fan are rotated when the package type thermo-hygrostat method is used. It can be adjusted by hand control or pole change.
  • the environmental control system is the air conditioner type or the packaged thermo-hygrostat.
  • the air conditioner type control method is as follows.
  • the exhaust damper, the outside air damper, and the circulating air damper are opened at a preset maximum opening degree (S103) (S104).
  • the said minimum value is 5 degreeC
  • the said maximum opening degree is demonstrated to an example as being 100% opening degree.
  • the exhaust damper, the outside air damper, and the circulating air damper may be used to determine the temperature of the indoor air and the outside air. Open according to the opening rate set in proportion to the difference in temperature (S105) (S106).
  • the said maximum value is demonstrated as an example of being 10 degreeC.
  • the minimum opening degree is set in advance.
  • control method is as follows.
  • the exhaust damper and the external air damper are opened at a preset maximum opening degree (S111).
  • the maximum opening degree is 100%.
  • the said minimum value is 5 degreeC and the said maximum operation rate is 100% and demonstrates it as an example.
  • the said maximum value is demonstrated as an example of being 10 degreeC.
  • the minimum operation rate is set in advance.
  • the indoor circulation mode (S200) is not performed.
  • the outside air introduction control controls differently according to the daytime mode in which the plant has photosynthesis and the night mode in which the plant has only the respiratory action, the outside air can be introduced more efficiently.
  • the indoor environment can be controlled to the optimum environment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

본 발명에 따른 밀폐형 식물 공장의 환경제어 설비는, 적절한 외기 도입을 통해 의약품 제조용 식물 생산을 위한 최적의 환경으로 유지하면서도 에너지를 절약할 수 있으며, 주간 모드시에 식물 뿐만 아니라 작업자에게도 쾌적한 환경을 제공할 수 있는 이점이 있다. 또한, 식물이 광합성 작용을 하는 주간 모드시에는 CO2 농도를 고려하여 외기 도입을 제어하고, 식물이 호흡 작용만을 하는 야간 모드시에는 CO2 영향이 없으므로 외기를 이용하여 냉방함으로써, 에너지 절감이 가능하다. 또한, 상기 실내의 CO2 농도가 상기 상한값과 상기 하한값 사이의 범위에 들 경우, 실내외 공기의 엔탈피차에 의해 외기 도입을 제어하기 때문에, 적절한 외기 도입이 가능하고, 외기를 이용한 냉방을 통해 에너지를 절감시킬 수 있다.

Description

공조기 방식 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법
본 발명은 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법에 관한 것으로서, 보다 상세하게는 밀폐형 식물 공장 내의 의약품 제조용 식물과 작업자를 모두 고려하여 최적의 실내 환경을 제공하고, 에너지를 절감할 수 있는 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법에 관한 것이다.
의약품 제조용 식물을 생산하기 위해서는 재배 환경을 인위적으로 조절하고, 세균, 바이러스, 곰팡이 등에 의한 외부 감염이나 병해충의 침입을 방지하기 위하여 밀폐형 식물 공장 방식이 사용되고 있으며, 바이오 크린룸이라고도 한다.
밀폐형 식물 공장은, 주로 의약품 제조용 식물을 생산하기 위한 공장이므로, 실내 환경을 미리 설정된 조건으로 유지하는 것이 매우 중요하다.
그러나, 밀폐형 식물 공장은, 식물의 재배 조건만을 고려할 경우 작업자의 작업 환경은 열악해져 작업 효율성이 저하되는 문제점이 있다.
또한, 밀폐형 식물 공장은, 태양광을 대신하여 인공 조명을 사용하기 때문에, 인공 조명으로 인한 내부 발열 부하가 매우 크므로 냉방 부하가 매우 커서 에너지 소모가 매우 큰 문제점이 있다.
본 발명의 목적은, 의약품 제조용 식물과 작업자를 모두 고려한 최적의 실내 환경을 제공할 수 있는 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법을 제공하는 것이다.
본 발명에 따른 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템은, 의약품 제조용 식물이 수용된 복수의 트레이 부재들이 적치되고, 상기 식물에 빛 에너지를 제공하는 인공 조명이 구비된 밀폐형 식물 공장에 있어서, 상기 밀폐형 식물 공장의 실내로 공기를 공급하는 급기 덕트에 설치되어, 상기 급기 덕트로 유입되는 외기의 유입 유량을 조절하는 외기 댐퍼와; 상기 실내에서 공기를 배출하는 배기 덕트에 설치되어, 상기 실내로부터 배출되는 실내 공기의 유량을 조절하는 배기 댐퍼와; 상기 급기 덕트와 상기 배기 덕트를 연결하는 연결 덕트에 설치되어, 상기 실내에서 배출된 후 다시 상기 실내로 순환되는 순환공기의 유량을 조절하는 순환공기 댐퍼와; 상기 실내로 유입되는 공기에 CO2를 공급하는 CO2 공급장치와; 상기 실내로 유입되는 공기를 가습하는 가습코일과; 상기 실내로 유입되는 공기를 가열 또는 냉각시키는 냉온수 코일과; 상기 외기의 온도를 측정하는 외기 온도센서와, 상기 외기의 상대습도를 측정하는 외기 습도센서와, 상기 외기의 CO2 농도를 측정하는 외기 CO2센서를 포함하는 외기 센서부와; 상기 실내 공기의 온도를 측정하는 실내 온도센서와, 상기 실내 공기의 상대습도를 측정하는 실내 습도센서와, 상기 실내 공기의 CO2 농도를 측정하는 실내 CO2센서를 포함하는 실내 센서부와; 상기 실내의 인체를 감지하는 인체감지센서와; 상기 인공 조명이 점등되어 상기 식물이 광합성을 하는 주간 모드시, 상기 인체감지센서에서 인체가 감지되고, 상기 실내 CO2센서에서 측정한 CO2농도가 미리 설정된 상한값 이상이면, 상기 실내 공기의 온도와 상기 외기의 온도의 차이에 따라 외기 도입율을 다르게 설정하여 환기하는 외기도입 제어모드를 수행한다.
본 발명의 다른 측면에 따른 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템은, 의약품 제조용 식물이 수용된 복수의 트레이 부재들이 적치되고, 상기 식물에 빛 에너지를 제공하는 인공 조명이 구비된 밀폐형 식물 공장에 있어서, 상기 밀폐형 식물 공장의 실내로 공기를 공급하는 급기 덕트에 설치되어, 상기 급기 덕트로 유입되는 외기의 유입 유량을 조절하는 외기 댐퍼와; 상기 실내에서 공기를 배출하는 배기 덕트에 설치되어, 상기 실내로부터 배출되는 실내 공기의 유량을 조절하는 배기 댐퍼와; 상기 급기 덕트와 상기 배기 덕트를 연결하는 연결 덕트에 설치되어, 상기 실내에서 배출된 후 다시 상기 실내로 순환되는 순환공기의 유량을 조절하는 순환공기 댐퍼와; 상기 실내로 유입되는 공기에 CO2를 공급하는 CO2 공급장치와; 상기 실내로 유입되는 공기를 가습하는 가습코일과; 상기 실내로 유입되는 공기를 가열 또는 냉각시키는 냉온수 코일과; 상기 외기의 온도를 측정하는 외기 온도센서와, 상기 외기의 상대습도를 측정하는 외기 습도센서와, 상기 외기의 CO2 농도를 측정하는 외기 CO2센서를 포함하는 외기 센서부와; 상기 실내 공기의 온도를 측정하는 실내 온도센서와, 상기 실내 공기의 상대습도를 측정하는 실내 습도센서와, 상기 실내 공기의 CO2 농도를 측정하는 실내 CO2센서를 포함하는 실내 센서부와; 상기 실내의 인체를 감지하는 인체감지센서와; 상기 인공 조명이 소등되어 상기 식물이 호흡하는 야간 모드시, 상기 실내 공기의 엔탈피와 상기 외기의 엔탈피를 비교하여 외기를 도입하는 엔탈피 제어모드와, 외기를 도입하지 않고 실내공기를 순환시키는 실내순환모드 중 어느 하나가 설정되었는지 판단하고, 설정된 모드로 환기를 제어하는 제어부를 포함한다.
본 발명의 다른 측면에 따른 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템은, 의약품 제조용 식물이 수용된 복수의 트레이 부재들이 적치되고, 상기 식물에 빛 에너지를 제공하는 인공 조명이 구비된 밀폐형 식물 공장에 있어서, 상기 밀폐형 식물 공장의 실내로 공기를 공급하는 급기 덕트에 설치되어, 상기 급기 덕트로 유입되는 외기의 유입 유량을 조절하는 외기 댐퍼와; 상기 실내에서 공기를 배출하는 배기 덕트에 설치되어, 상기 실내로부터 배출되는 실내 공기의 유량을 조절하는 배기 댐퍼와; 상기 급기 덕트와 상기 배기 덕트를 연결하는 연결 덕트에 설치되어, 상기 실내에서 배출된 후 다시 상기 실내로 순환되는 순환공기의 유량을 조절하는 순환공기 댐퍼와; 상기 실내로 유입되는 공기에 CO2를 공급하는 CO2 공급장치와; 상기 실내로 유입되는 공기를 가습하는 가습코일과; 상기 실내로 유입되는 공기를 가열 또는 냉각시키는 냉온수 코일과; 상기 외기의 온도를 측정하는 외기 온도센서와, 상기 외기의 상대습도를 측정하는 외기 습도센서와, 상기 외기의 CO2 농도를 측정하는 외기 CO2센서를 포함하는 외기 센서부와; 상기 실내 공기의 온도를 측정하는 실내 온도센서와, 상기 실내 공기의 상대습도를 측정하는 실내 습도센서와, 상기 실내 공기의 CO2 농도를 측정하는 실내 CO2센서를 포함하는 실내 센서부와; 상기 실내의 인체를 감지하는 인체감지센서와; 상기 인공 조명의 점등 또는 소등 여부, 상기 인체감지센서에 따른 인체의 감지여부를 반영하여 상기 밀폐형 식물 공장의 환기를 조절하는 제어부를 포함한다.
본 발명의 다른 측면에 따른 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템은, 의약품 제조용 식물이 수용된 복수의 트레이 부재들이 적치되고, 상기 식물에 빛 에너지를 제공하는 인공 조명이 구비된 밀폐형 식물 공장에 있어서, 상기 밀폐형 식물 공장의 실내로 공기를 공급하는 급기 덕트에 설치되어, 상기 급기 덕트로 유입되는 외기의 유입 유량을 조절하는 외기 댐퍼와; 상기 실내에서 공기를 배출하는 배기 덕트에 설치되어, 상기 실내로부터 배출되는 실내 공기의 유량을 조절하는 배기 댐퍼와; 상기 급기 덕트와 상기 배기 덕트를 연결하는 연결 덕트에 설치되어, 상기 실내에서 배출된 후 다시 상기 실내로 순환되는 순환공기의 유량을 조절하는 순환공기 댐퍼와; 상기 실내로 유입되는 공기에 CO2를 공급하는 CO2 공급장치와; 상기 실내로 유입되는 공기를 가습하는 가습코일과; 상기 실내로 유입되는 공기를 가열 또는 냉각시키는 냉온수 코일과; 상기 외기의 온도를 측정하는 외기 온도센서와, 상기 외기의 상대습도를 측정하는 외기 습도센서와, 상기 외기의 CO2 농도를 측정하는 외기 CO2센서를 포함하는 외기 센서부와; 상기 실내 공기의 온도를 측정하는 실내 온도센서와, 상기 실내 공기의 상대습도를 측정하는 실내 습도센서와, 상기 실내 공기의 CO2 농도를 측정하는 실내 CO2센서를 포함하는 실내 센서부와; 상기 실내의 인체를 감지하는 인체감지센서와; 상기 인공 조명의 점등 또는 소등 여부, 상기 인체감지센서에 따른 인체의 감지여부, 및 상기 실내 CO2센서에서 측정한 CO2농도를 반영하여 상기 밀폐형 식물 공장의 환기를 조절하는 제어부를 포함한다.
본 발명의 다른 측면에 따른 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템은, 의약품 제조용 식물이 수용된 복수의 트레이 부재들이 적치되고, 상기 식물에 빛 에너지를 제공하는 인공 조명이 구비된 밀폐형 식물 공장에 있어서, 상기 밀폐형 식물 공장의 실내로 공기를 공급하는 급기 덕트에 설치되어, 상기 급기 덕트로 유입되는 외기의 유입 유량을 조절하는 외기 댐퍼와; 상기 실내에서 공기를 배출하는 배기 덕트에 설치되어, 상기 실내로부터 배출되는 실내 공기의 유량을 조절하는 배기 댐퍼와; 상기 급기 덕트와 상기 배기 덕트를 연결하는 연결 덕트에 설치되어, 상기 실내에서 배출된 후 다시 상기 실내로 순환되는 순환공기의 유량을 조절하는 순환공기 댐퍼와; 상기 실내로 유입되는 공기에 CO2를 공급하는 CO2 공급장치와; 상기 실내로 유입되는 공기를 가습하는 가습코일과; 상기 실내로 유입되는 공기를 가열 또는 냉각시키는 냉온수 코일과; 상기 외기의 온도를 측정하는 외기 온도센서와, 상기 외기의 상대습도를 측정하는 외기 습도센서와, 상기 외기의 CO2 농도를 측정하는 외기 CO2센서를 포함하는 외기 센서부와; 상기 실내 공기의 온도를 측정하는 실내 온도센서와, 상기 실내 공기의 상대습도를 측정하는 실내 습도센서와, 상기 실내 공기의 CO2 농도를 측정하는 실내 CO2센서를 포함하는 실내 센서부와; 상기 실내의 인체를 감지하는 인체감지센서와; 상기 인공 조명의 점등 또는 소등 여부, 상기 인체감지센서에 따른 인체의 감지여부, 상기 실내 공기의 엔탈피, 및 상기 외기의 엔탈피를 반영하여 상기 밀폐형 식물 공장의 환기를 조절하는 제어부를 포함한다.
본 발명에 따른 공조기 방식 밀폐형 식물 공장의 환경 제어방법은, 의약품 제조용 식물을 재배하는 밀폐형 식물 공장은, 실내로 공기를 공급하는 급기 덕트에 설치되어 상기 급기 덕트로 유입되는 외기의 유입 유량을 조절하는 외기 댐퍼와, 상기 실내에서 공기를 배출하는 배기 덕트에 설치되어 상기 실내로부터 배출되는 실내 공기의 유량을 조절하는 배기 댐퍼와, 상기 급기 덕트와 상기 배기 덕트를 연결하는 연결 덕트에 설치되어, 상기 실내에서 배출된 후 다시 상기 실내로 순환되는 순환공기의 유량을 조절하는 순환공기 댐퍼와, 상기 급기 덕트에 설치되어, 상기 실내로 유입되는 공기에 CO2를 공급하는 CO2 공급장치와, 상기 급기 덕트에 설치되어, 상기 실내로 유입되는 공기를 가습하는 가습코일과, 상기 급기 덕트에 설치되어, 상기 실내로 유입되는 공기를 가열 또는 냉각시키는 냉온수 코일을 포함하여 공조기 방식으로 제어되면, 센서부가 실내 공기의 온도와 상대습도를 일정 시간 간격으로 측정하고, 상기 밀폐형 식물 공장의 외기의 온도와 상대습도를 일정 시간 간격으로 측정하는 온/습도 측정단계와; 제어부가 상기 밀폐형 식물 공장의 실내에 구비된 인공 조명이 점등되어 상기 식물의 광합성이 이루어지는 주간 모드와, 상기 인공 조명이 소등되어 상기 식물의 호흡만 이루어지는 야간 모드 중 어느 하나를 설정하는 주야간 설정단계와; 상기 주야간 설정단계에서 상기 주간 모드로 설정되면, 상기 실내에서 인체감지센서가 인체 감지 여부를 판단하는 인체감지단계와; 상기 인체감지단계에서 인체가 감지되면, CO2센서가 상기 실내의 CO2 농도를 일정 시간 간격으로 측정하는 CO2 농도 측정단계와; 상기 CO2 농도 측정단계에서 측정된 상기 실내의 CO2 농도가 미리 설정된 상한값 이상이면, 상기 제어부가 상기 실내 공기의 온도와 상기 외기의 온도의 차이에 따라 외기 도입율을 다르게 설정하여 환기하는 외기도입 제어모드를 수행하는 단계와; 상기 CO2 농도 측정단계에서 측정된 상기 실내의 CO2 농도가 상기 상한값 미만이고 미리 설정된 하한값 이상이면, 상기 실내 공기의 엔탈피와 상기 외기의 엔탈피를 비교하여 외기를 도입하는 엔탈피 제어모드와, 외기를 도입하지 않고 실내공기를 순환시키는 실내순환모드 중 어느 하나가 설정되었는지 확인하는 엔탈피제어모드 확인단계와; 상기 엔탈피제어모드 확인단계에서 상기 엔탈피 제어모드가 설정되었다고 판단되면, 상기 실내 공기의 엔탈피와 상기 외기의 엔탈피를 계산하고, 상기 실내 공기의 엔탈피, 상기 외기의 엔탈피, 상기 외기의 온도, 상기 외기의 상대습도에 따라 상기 외기도입 제어모드의 수행 여부를 판단하는 단계와; 상기 주야간 설정단계에서 상기 야간 모드로 설정되면, 상기 제어부는 상기 엔탈피 제어모드와 상기 실내순환모드 중 어느 하나가 설정되었는지 확인하는 단계를 포함한다.
본 발명에 따른 밀폐형 식물 공장의 환경제어 설비는, 적절한 외기 도입을 통해 의약품 제조용 식물 생산을 위한 최적의 환경으로 유지하면서도 에너지를 절약할 수 있으며, 주간 모드시에 식물 뿐만 아니라 작업자에게도 쾌적한 환경을 제공할 수 있는 이점이 있다.
또한, 식물이 광합성 작용을 하는 주간 모드시에는 CO2 농도를 고려하여 외기 도입을 제어하고, 식물이 호흡 작용만을 하는 야간 모드시에는 CO2 영향이 없으므로 외기를 이용하여 냉방함으로써, 에너지 절감이 가능하다.
또한, 상기 실내의 CO2 농도가 상기 상한값과 상기 하한값 사이의 범위에 들 경우, 실내외 공기의 엔탈피차에 의해 외기 도입을 제어하기 때문에, 적절한 외기 도입이 가능하고, 외기를 이용한 냉방을 통해 에너지를 절감시킬 수 있다.
도 1은 본 발명의 제1실시예에 따른 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템을 나타낸 도면이다.
도 2는 도 1에 도시된 밀폐형 식물 공장의 환경 제어 시스템의 구성이 도시된 블록도이다.
도 3은 본 발명의 제2실시예에 따른 패키지형 항온항습기 방식 밀폐형 식물 공장의 환경 제어 시스템을 나타낸 도면이다.
도 4는 도 3에 도시된 밀폐형 식물 공장의 환경 제어 시스템의 구성이 도시된 블록도이다.
도 5 내지 도 7은 본 발명의 실시예에 따른 밀폐형 식물 공장의 환경 제어 방법이 도시된 순서도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 대해 설명하면, 다음과 같다.
본 발명의 실시예에 따른 밀폐형 식물 공장은, 의약품 제조용 식물(이하, '식물'이라 칭함)을 재배하기 위한 시설이다. 상기 밀폐형 식물 공장은 상기 식물을 재배하기 위한 최적의 환경으로 제어하고, 외부 감염이나 해충 등의 침입을 방지하기 위해 밀폐된다. 상기 밀폐형 식물 공장은, 상기 식물을 대상으로 환경을 제어하는 것이므로, 온도는 약 25℃, 습도는 40~80%, CO2 농도는 800~1500ppm 으로 제어되며, 사람을 대상으로 공조하는 실과는 다른 조건을 가지므로 환경 제어도 다르다.
상기 밀폐형 식물 공장의 실내(R)에는, 상기 식물에 빛 에너지를 제공하여 상기 식물이 광합성을 하도록 하는 인공 조명(미도시)이 구비된다. 상기 인공 조명(미도시)은, 상기 식물의 성장에 필요한 광합성 에너지를 제공해야 하므로, 매우 높은 조명 밀도를 가져야 한다. 상기 인공 조명은 약 200W/m2의 조명 밀도를 가질 수 있다. 따라서, 상기 밀폐형 식물 공장은 상기 인공 조명으로 인해 내부 발열 부하가 크고, 내부 발열 부하로 인한 냉방 부하도 매우 크기 때문에, 공조기 방식 또는 패키지형 항온항습기 방식을 이용하여 실내 온도 및 습도를 제어하는 것이 필요하다.
상기 밀폐형 식물 공장의 실내(R)에는 상기 식물(P)이 수용되는 복수의 트레이 부재들이 적치된다.
상기 식물은, 벤타미아나 등 수경 재배하는 식물이 포함된다. 상기 식물은, 식물체 내 외래단백질의 일시적 발현을 유도하기 위해서 단백질을 암호화하는 유전자로 형질전환된 아그로박테리움을 식물 조직에 침윤시키는 데 사용된다. 상기 밀폐형 식물 공장은, 상기 식물의 조직에 침윤 용액을 주입시키는 장치도 함께 구비될 수 있다.
도 1은 본 발명의 제1실시예에 따른 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템을 나타낸 도면이다. 도 2는 도 1에 도시된 밀폐형 식물 공장의 환경 제어 시스템의 구성이 도시된 블록도이다.
도 1 및 도 2를 참조하면, 상기 밀폐형 식물 공장의 환경 제어 시스템은, 공조기 방식이다.
상기 공조기 방식은, 외기를 도입하여, 외기를 냉각 또는 가열, 가습 또는 제습을 한 후 실내로 공급하는 방식이다.
상기 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템은, 급기 덕트(10), 외기 댐퍼(11), 급기팬(12), 배기 덕트(20), 배기 댐퍼(21), 배기팬(22), 연결덕트(30), 순환공기 댐퍼(31), CO2 공급장치(40), 가습 코일(42), 냉온수 코일(44), 재열코일(46), 헤파필터(48), 외기 센서부(50), 실내 센서부(60), 인체감지센서(70) 및 제어부(80)를 포함한다.
상기 급기 덕트(10)는, 외기 또는 외기와 순환공기가 혼합된 혼합 공기를 상기 실내(R)로 공급하기 위한 유로이다.
상기 외기 댐퍼(11)는, 상기 급기 덕트(10)의 일측에 설치되어, 상기 급기 덕트(10)로 유입되는 외기의 유입 유량을 조절하는 댐퍼이다.
상기 급기팬(12)은, 상기 급기 덕트(10)의 내부에 구비되어, 상기 실내(R)로 공급되는 공기를 송풍하는 팬이다.
상기 배기 덕트(20)는, 상기 실내(R)로부터 공기를 배출하기 위한 유로이다.
상기 배기 댐퍼(21)는, 상기 배기 덕트(20)의 일측에 설치되어, 상기 배기 덕트(20)로부터 배출되는 실내 공기의 유량을 조절하는 댐퍼이다.
상기 배기팬(22)은, 상기 배기 덕트(20)의 내부에 구비되어, 상기 실내(R)로부터 배출되는 공기를 송풍하는 팬이다.
상기 연결덕트(30)는, 상기 급기 덕트(10)와 상기 배기 덕트(20)를 연결하여, 상기 배기 덕트(20)를 통해 배출되는 실내 공기 중 일부를 상기 급기 덕트(10)로 순환시키는 유로이다.
상기 순환공기 댐퍼(31)는, 상기 연결덕트(30)의 내부에 구비되어, 상기 실내(R)에서 배출된 후 다시 상기 실내로 순환되는 순환공기의 유량을 조절하는 댐퍼이다.
상기 CO2 공급장치(40)는, 상기 급기 덕트(10)의 내부에 설치되어, 상기 실내로 유입되는 공기에 CO2를 공급하는 장치이다. 상기 식물은 광합성을 할 때 CO2를 필요로 하기 때문에, 필요에 따라 CO2를 공급할 수 있다.
상기 가습 코일(42)은, 상기 급기 덕트(10)의 내부에 설치되어, 상기 실내로 유입되는 공기를 가습시키는 장치이다. 상기 가습 코일(42)은, 상기 냉온수 코일(44)과 상기 CO2 공급장치(40) 사이에 구비된다.
상기 냉온수 코일(44)은, 상기 급기 덕트(10)의 내부에 설치되어, 상기 실내로 유입되는 공기를 가열 또는 냉각시키는 장치이다.
상기 재열코일(46)은, 상기 급기 덕트(10)와 상기 실내(R)를 연결하는 유로 상에 설치되어, 상기 급기 덕트(10)에서 냉각 제습과정시 과냉되어 나온 공기를 재가열하는 장치이다.
상기 헤파필터(48)는, 상기 급기 덕트(10)와 상기 실내(R)를 연결하는 유로 상에 설치되어, 상기 실내(R)로 공급되는 공기를 필터링한다.
상기 외기 센서부(50)는, 상기 급기 덕트(10)에 설치되어 상기 외기의 온도를 측정하는 외기 온도센서(51)와, 상기 외기의 상대습도를 측정하는 외기 습도센서(52)와, 상기 외기의 CO2 농도를 측정하는 외기 CO2센서(53)를 포함한다.
상기 실내 센서부(60)는, 상기 배기 덕트(20)에 설치되어, 상기 실내(R)로부터 배출되는 실내 공기의 온도를 측정하는 실내 온도센서(61)와, 상기 실내 공기의 상대습도를 측정하는 실내 습도센서(62)와, 상기 실내 공기의 CO2 농도를 측정하는 실내 CO2센서(63)를 포함한다.
상기 인체감지센서(70)는, 상기 실내(R)에 설치되어, 상기 실내(R)에 존재하는 인체를 감지한다. 상기 실내(R)는 평상시에는 상기 식물만으로 고려하여 환경이 제어되는 바, 작업자 등의 사람의 출입시 인체를 위한 환경도 고려되어야 하고, 상기 인체로 인해 상기 실내(R)의 환경이 변할 수도 있으므로 인체 여부를 감지하는 상기 인체감지센서(70)가 구비되어야 한다.
또한, 상기 급기 덕트(10)의 내부에서 상기 연결 덕트(30)를 통해 유입된 실내 공기와 외기가 혼합되는 위치에는 실내 공기와 외기가 혼합된 혼합 공기의 온도를 측정하는 혼합공기 온도센서(72)가 설치될 수 있다.
상기 제어부(80)는, 상기 인공 조명(미도시)의 점등 여부, 상기 인체감지센서(70), 상기 실내 CO2센서(63), 상기 실내 온도 센서(61), 상기 실내 습도 센서(62), 상기 외기 온도 센서(51), 상기 외기 습도 센서(52), 상기 외기 CO2센서(53), 상기 혼합공기 온도센서(72)의 감지 신호에 따라 상기 외기 댐퍼(11), 상기 배기 댐퍼(21) 및 상기 순환공기 댐퍼(31)의 작동을 제어하여, 외기도입 제어모드, 엔탈피 제어모드, 실내순환모드 중 어느 하나로 실내 환경 제어를 수행한다.
도 3은 본 발명의 제2실시예에 따른 패키지형 항온항습기 방식 밀폐형 식물 공장의 환경 제어 시스템을 나타낸 도면이다. 도 4는 도 3에 도시된 밀폐형 식물 공장의 환경 제어 시스템의 구성이 도시된 블록도이다.
도 3 및 도 4를 참조하면, 본 발명의 제2실시예에 따른 밀폐형 식물 공장의 환경 제어 시스템은, 패키지형 항온항습기 방식인 점이 상기 제1실시예와 상이하다.
상기 패키지형 항온항습기 방식은, 상기 밀폐형 식물 공장의 실내(R)에 항온항습기(100)가 설치되어, 상기 항온항습기(100)가 미리 설정된 온도와 미리 설정된 습도로 조화된 공기를 공급하는 방식이다. 따라서, 상기 항온항습기 방식은 공조기 방식에 필요한 가습 코일이나 재열 코일이 외기 도입 유로 상에 별도로 설치되지 않는다.
상기 밀폐형 식물 공장의 환경 제어 시스템은, 상기 항온항습기(100), 외기 댐퍼(110), 급기팬(112), 배기 댐퍼(120), 배기팬(122), CO2 공급장치(140), 헤파필터(148), 외기 센서부(150), 실내 센서부(160), 인체감지센서(170) 및 제어부(180)를 포함한다.
상기 외기 댐퍼(110)는, 외기를 상기 실내(R)로 공급하는 유로 상에 설치되어 외기의 유입유량을 조절한다.
상기 급기팬(112)은, 상기 실내(R)로 공급되는 공기를 송풍하는 팬이다.
상기 배기 댐퍼(120)는, 상기 실내(R)로부터 실내 공기를 배출하는 유로 상에 설치되어, 배출되는 실내 공기의 유량을 조절한다.
상기 배기팬(122)은, 상기 실내(R)로부터 배출되는 공기를 송풍하는 팬이다.
상기 CO2 공급장치(140)는, 상기 실내에 CO2를 직접 공급하는 장치이다. 상기 식물은 광합성을 할 때 CO2를 필요로 하기 때문에, 필요에 따라 CO2를 공급할 수 있다.
상기 헤파필터(148)는, 외기를 상기 실내(R)로 공급하는 유로 상에 설치되어, 상기 실내(R)로 공급되는 공기를 필터링한다. 따라서, 외부 감염이나 해충의 침입을 방지할 수 있다.
상기 외기 센서부(150)는, 상기 밀폐형 식물 공장의 외부 또는 외기를 상기 실내(R)로 공급하는 유로 상에 설치된다. 상기 외기 센서부(150)는, 상기 외기의 온도를 측정하는 외기 온도센서(151)와, 상기 외기의 상대습도를 측정하는 외기 습도센서(152)와, 상기 외기의 CO2 농도를 측정하는 외기 CO2센서(153)를 포함한다.
상기 실내 센서부(160)는, 상기 실내(R) 또는 상기 실내(R)로부터 실내 공기를 배출하는 유로 상에 설치된다. 상기 실내 센서부(160)는, 상기 실내(R)로부터 배출되는 실내 공기의 온도를 측정하는 실내 온도센서(161)와, 상기 실내 공기의 상대습도를 측정하는 실내 습도센서(162)와, 상기 실내 공기의 CO2 농도를 측정하는 실내 CO2센서(163)를 포함한다.
상기 인체감지센서(170)는, 상기 실내(R)에 설치되어, 상기 실내(R)에 존재하는 인체를 감지한다. 상기 실내(R)는 평상시에는 상기 식물만으로 고려하여 환경이 제어되는 바, 작업자 등의 사람의 출입시 인체를 위한 환경도 고려되어야 하고, 상기 인체로 인해 상기 실내(R)의 환경이 변할 수도 있으므로 인체 여부를 감지하는 상기 인체감지센서(170)가 구비되어야 한다.
상기 제어부(180)는, 상기 인공 조명(미도시)의 점등 여부, 상기 인체감지센서(170), 상기 실내 CO2센서(163), 상기 실내 온도 센서(161), 상기 실내 습도 센서(162), 상기 외기 온도 센서(151), 상기 외기 습도 센서(152), 상기 외기 CO2센서(153), 상기 혼합공기 온도센서(172)의 감지 신호에 따라 외기도입 제어모드, 엔탈피 제어모드, 실내순환모드 중 어느 하나로 실내 환경 제어를 수행한다.
도 5 내지 도 7은 본 발명의 실시예에 따른 밀폐형 식물 공장의 환경 제어 방법이 도시된 순서도이다.
도 5 내지 도 7을 참조하여, 본 발명의 실시예에 따른 밀폐형 식물 공장의 환경 제어방법에 대해 설명한다.
상기 밀폐형 식물 공장의 환경 제어 시스템은, 공조기 방식과 패키지형 항온항습기 방식으로 구분하여 설명하였으나, 제어방법은 통합적으로 설명한다.
상기 밀폐형 식물 공장의 가동시, 상기 실내(R)가 미리 설정된 온도와 미리 설정된 습도로 유지된다.
상기 밀폐형 식물 공장의 가동과 환경 제어가 시작되면, 실내 공기의 온도와 실내 공기의 상대습도, 외기의 온도와 외기의 상대습도를 일정시간 간격으로 측정한다.(S1)
또한, 상기 제어부는, 주/야간 모드를 설정하는 주야간 설정단계를 수행한다.(S2)
상기 주간 모드는, 상기 인공 조명이 점등되어 상기 식물의 광합성이 이루어지는 명기이다. 상기 야간 모드는, 상기 인공 조명이 소등되어 상기 식물의 호흡 작용만 이루어지는 암기이다. 상기 밀폐형 식물 공장은, 식물을 고려하여 환경제어가 이루어지는 곳이므로, 주간 모드인지 야간모드인지에 따라 식물이 활동이 달라지므로 이에 따른 제어가 달라진다. 또한, 상기 주간 모드시에는 광합성이 이루어져야 하기 때문에, 상기 CO2 농도가 야간 모드시보다 중요하다. 또한, 야간 모드시에는 식물의 호흡이 이루어지기 때문에, 외기를 바로 공급해도 식물 성장에 필요한 CO2 농도에는 영향이 없으므로 외기를 이용하여 냉방하여 에너지 절감을 이룰 수 있다. 따라서, 주간 모드와 야간 모드에 따라 환경 제어가 달라진다.
상기 주야간 설정단계(S2)에서, 상기 야간 모드로 설정되면, 상기 야간 모드시에는 CO2 농도가 중요하지 않으므로 CO2 농도는 측정하지 않는다. 상기 야간 모드시, 상기 제어부는 후술하는 상기 엔탈피 제어모드가 설정되었는지 판단하고, 상기 엔탈피 제어모드가 설정되면 그에 따른 외기 도입을 수행할 수 있다.
상기 주야간 설정단계(S2)에서, 상기 주간 모드로 설정되면, 상기 제어부는 상기 실내에서 인체가 감지되었는지 여부를 판단하는 인체감지단계를 수행한다.(S3)
상기 주간 모드시에는 작업자가 상기 실내(R)를 출입하면서 작업을 할 수 있으므로, 상기 실내(R)의 CO2 농도가 너무 높을 경우 작업자의 호흡에 문제가 발생할 수도 있고, 상기 작업자로 인해 상기 실내(R)의 CO2 농도에 영향을 줄 수도 있다. 즉, 상기 주간 모드시에는 상기 실내(R)의 CO2 농도가 1000ppm을 넘지 않도록 제어해야 한다. 따라서, 상기 주간 모드시에는 작업자의 유무를 파악하기 위해 인체감지단계를 수행한다.
상기 인체감지단계(S3)에서 인체가 감지되면, 상기 실내의 CO2 농도를 일정 시간 간격으로 측정하는 CO2 농도 측정단계를 수행한다.(S4)
상기 CO2 농도 측정단계(S4)에서 측정된 상기 실내의 CO2 농도를 미리 설정된 상한값과 비교한다.(S5)
상기 실내의 CO2 농도를 미리 설정된 상한값 이상이면, 상기 제어부가 상기 실내 공기의 온도와 상기 외기의 온도의 차이에 따라 외기 도입율을 다르게 설정하여 환기하는 외기도입 제어모드(S100)를 수행한다. 상기 외기도입 제어모드(S100)는 뒤에서 상세히 설명하기로 한다.
상기 CO2 농도 측정단계(S4)에서 측정된 상기 실내의 CO2 농도가 상기 상한값 미만이면, 상기 실내의 CO2 농도를 미리 설정된 하한값과 비교한다.(S6)
상기 실내의 CO2 농도가 상기 하한값 미만이면, 상기 실내의 CO2 농도가 높지 않다고 판단하여 작업자의 작업 환경에 영향을 주지 않는다고 판단할 수 있다. 따라서, 상기 실내의 CO2 농도가 상기 하한값 미만이면, 상기 CO2 농도를 계속해서 측정하며 상태를 확인한다.
한편, 상기 실내의 CO2 농도가 상기 하한값 이상이면, 상기 실내 공기의 엔탈피와 상기 외기의 엔탈피를 비교하여 외기를 도입하는 엔탈피 제어모드와, 외기를 도입하지 않고 실내공기를 순환시키는 실내순환모드 중 어느 하나가 설정되었는지 확인하는 엔탈피제어모드 확인단계를 수행한다.(S7)
한편, 상기 인체감지단계(S3)에서 인체가 감지되지 않으면, 상기 제어부는 상기 실내의 CO2 농도를 미리 설정된 하한값과 비교한다.(S6)
상기 실내의 CO2 농도가 상기 하한값 이상이면, 상기 엔탈피제어모드 확인단계를 수행한다.(S7)
상기 엔탈피제어모드 확인단계(S7)에서 상기 엔탈피 제어모드가 설정되었다고 판단되면, 상기 실내 공기의 엔탈피와 상기 외기의 엔탈피를 계산한다.(S8)
상기 엔탈피의 계산방법은 수학식 1과 같다.
Figure PCTKR2019009277-appb-M000001
수학식 1에서, T= 온도, ca 는 건조공기의 정압비열(1,005J/kg·K, 0.240kcal/kg·℃),cv 는 증기의 정압비열(1,846J/kg·K, 0.441kcal/kg·℃), r0는 0℃물의 증발잠열(2,501ㅧ103J/kg, 597.5kcal/kg)을 나타낸다.
상기 절대습도(x)를 계산하는 방법은 수학식 2와 같다.
Figure PCTKR2019009277-appb-M000002
여기서, P는 대기압이고, Pw는 수증기 분압을 나타낸다.
상기 대기압(P)은 수학식 3에 의해 계산되고, 상기 수증기 분압(Pw)은 수학식 4에 의해 계산된다.
Figure PCTKR2019009277-appb-M000003
여기서,P0는 표준대기의 해수면에서 대기압(=101.325kPa(760mmHg)), Z는 해발고도(m)이고, T0ab는 288.15K(=15+273.15)
여기서, T0ab는 표준 대기의 해수면에서의 대기압이다.
Figure PCTKR2019009277-appb-M000004
여기서, RH 는 상대습도(%)이고, Pws 는 포화수증기압(kPa)이며, 수학식 5에 의해 계산된다.
Figure PCTKR2019009277-appb-M000005
여기서, Tab[k]=T+273.15이다.
상기 수학식 1에 의해 실내 공기의 엔탈피와 외기의 엔탈피를 각각 구하면, 상기 실내 공기의 엔탈피와 외기의 엔탈피의 차이를 계산한다. 상기 실내 공기의 엔탈피와 외기의 엔탈피의 차이를 엔탈피 에너지라 할 수 있다.
상기 실내 공기의 엔탈피와 상기 외기의 엔탈피를 비교한다.(S9)
상기 외기의 엔탈피가 상기 실내 공기의 엔탈피를 초과하면, 외기 도입을 하지 않도록 상기 온도와 습도를 측정하는 단계(S1)로 돌아간다.
상기 외기의 엔탈피가 상기 실내 공기의 엔탈피 이하이면, 상기 외기의 온도를 미리 설정된 실내 설정온도와 비교한다.(S10)
상기 외기의 온도가 상기 실내 설정온도를 초과하면, 외기 도입을 하지 않도록 상기 온도와 습도를 측정하는 단계(S1)로 돌아간다.
상기 외기의 온도가 상기 실내 설정온도 이하이면, 상기 외기의 상대습도가 미리 설정된 설정습도범위이내인지 판단한다.(S11)
상기 외기의 상대습도가 상기 설정습도범위를 벗어나면, 외기 도입을 하지 않도록 상기 온도와 습도를 측정하는 단계(S1)로 돌아간다.
상기 외기의 상대습도가 상기 설정습도범위 이내이면, 상기 외기도입 제어모드(S100)를 수행한다.
상기 밀폐형 식물 공장의 실내를 항온항습 상태로 유지시, 외기 도입시 가습 또는 제습을 위한 잠열부하가 커져 경제성이 저하될 수 있으므로, 상기 외기의 상대습도가 상기 설정습도 범위 이내일때 외기를 도입하도록 제어한다.
도 6을 참조하면, 상기 외기도입 제어모드(S100)를 설명한다.
상기 외기도입 제어모드(S100)에서는, 상기 실내공기의 온도와 상기 외기의 온도의 차이를 계산한다.(S101)
외기 도입시, 외기 도입으로 인한 온도 변화에 의해 식물이 스트레스 받는 것을 방지하기 위해, 상기 실내공기의 온도와 상기 외기의 온도의 차이에 따라 외기의 급기량을 다르게 제어한다.
상기 외기의 급기량은, 상기 환경 제어 시스템이 상기 공조기 방식일 때는 상기 외기 댐퍼와 상기 배기 댐퍼의 개도 조절을 통해 조절하며, 상기 패키지형 항온합습기 방식일 때는 상기 급기 팬과 상기 배기 팬의 회전수 제어나 극수 제어(pole change)를 통해 조절할 수 있다.
따라서, 상기 환경 제어 시스템이 상기 공조기 방식인지 상기 패키지형 항온항습기인지를 판단한다.(S102)
상기 외기도입 제어모드이고, 상기 공조기 방식인 경우 제어방법은 다음과 같다.
상기 실내공기의 온도와 상기 외기의 온도의 차이가 미리 설정된 최소값 이하이면, 상기 배기 댐퍼, 상기 외기 댐퍼 및 상기 순환공기 댐퍼를 미리 설정된 최대 개도로 개방한다.(S103)(S104)
여기서, 상기 최소값은 5℃이고, 상기 최대 개도는 100% 개도인 것으로 예를 들어 설명한다.
또한, 상기 실내공기의 온도와 상기 외기의 온도의 차이가 상기 최소값을 초과하고, 미리 설정된 최대값 이하이면, 상기 배기 댐퍼, 상기 외기 댐퍼 및 상기 순환공기 댐퍼를 상기 실내공기의 온도와 상기 외기의 온도의 차이에 비례하게 설정된 개도율에 따라 개방한다.(S105)(S106)
여기서, 상기 최대값은 10℃인 것으로 예를 들어 설명한다.
또한, 상기 실내공기의 온도와 상기 외기의 온도의 차이가 상기 최대값을 초과하면, 상기 배기 댐퍼, 상기 외기 댐퍼 및 상기 순환공기 댐퍼를 미리 설정된 최소 개도로 개방한다.(S107)(S108)
여기서, 상기 최소 개도는, 미리 설정된다.
한편, 상기 외기도입 제어모드이고, 상기 패키지형 항온항습기 방식인 경우 제어방법은 다음과 같다.
상기 배기 댐퍼와 상기 외기 댐퍼를 미리 설정된 최대 개도로 개방한다.(S111)
여기서, 상기 최대 개도는 100% 개도인 것으로 예를 들어 설명한다.
또한, 상기 실내공기의 온도와 상기 외기의 온도의 차이가 미리 설정된 최소값 이하이면, 상기 급기팬과 상기 배기 팬을 미리 설정된 최대 가동율로 작동을 제어한다.(S112)(S113)
여기서, 상기 최소값은 5℃이고, 상기 최대 가동율은 100%인 것으로 예를 들어 설명한다.
또한, 상기 실내공기의 온도와 상기 외기의 온도의 차이가 상기 최소값을 초과하고, 미리 설정된 최대값 이하이면, 상기 급기팬과 상기 배기팬을 상기 온도의 차이에 비례하게 설정된 가동율로 작동을 제어한다.(S114)(S115)
여기서, 상기 최대값은 10℃인 것으로 예를 들어 설명한다.
또한, 상기 실내공기의 온도와 상기 외기의 온도의 차이가 상기 최대값을 초과하면, 상기 급기팬과 상기 배기팬을 미리 설정된 최소 가동율로 작동을 제어한다.(S116)(S117)
여기서, 상기 최소 가동율은 미리 설정된다.
한편, 상기 엔탈피제어모드 확인단계(S8)에서 상기 엔탈피제어모드가 설정되지 않고, 상기 실내순환모드(S200)가 설정되었다고 판단되면, 외기 도입을 하지 않는 상기 실내순환모드(S200)를 수행한다.
도 7을 참조하면, 상기 실내순환모드(S200)시, 상기 공조기 방식인지 상기 패키지형 항온항습기인지를 판단한다.(S201)
상기 공조기 방식이면, 상기 배기 댐퍼, 상기 외기 댐퍼 및 상기 순환공기 댐퍼를 모두 닫는다.(S202)
상기 항온항습기 방식이면, 상기 배기 댐퍼와 상기 외기 댐퍼를 모두 닫고, 상기 급기팬과 상기 배기팬을 모두 정지시킨다.(S203)(S204)
상기와 같이, 상기 실내의 CO2 농도가 상기 상한값과 상기 하한값 사이의 범위에 들 경우, 실내외 공기의 엔탈피차에 의해 외기 도입을 제어하기 때문에, 적절한 외기 도입이 가능하고, 외기를 이용한 냉방을 통해 에너지를 절감시킬 수 있다.
또한, 식물이 광합성 작용을 하는 주간 모드시와 식물이 호흡 작용만을 하는 야간 모드시에 따라 외기 도입 제어를 다르게 제어함으로써, 보다 효율적으로 외기 도입이 이루어질 수 있다.
또한, 주간 모드시, 식물과 함께 작업자도 고려함으로써, 실내 환경을 최적의 환경으로 제어할 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
본 발명을 이용하면, 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템을 제조할 수 있다.

Claims (16)

  1. 의약품 제조용 식물이 수용된 복수의 트레이 부재들이 적치되고, 상기 식물에 빛 에너지를 제공하는 인공 조명이 구비된 밀폐형 식물 공장에 있어서,
    상기 밀폐형 식물 공장의 실내로 공기를 공급하는 급기 덕트에 설치되어, 상기 급기 덕트로 유입되는 외기의 유입 유량을 조절하는 외기 댐퍼와;
    상기 실내에서 공기를 배출하는 배기 덕트에 설치되어, 상기 실내로부터 배출되는 실내 공기의 유량을 조절하는 배기 댐퍼와;
    상기 급기 덕트와 상기 배기 덕트를 연결하는 연결 덕트에 설치되어, 상기 실내에서 배출된 후 다시 상기 실내로 순환되는 순환공기의 유량을 조절하는 순환공기 댐퍼와;
    상기 실내로 유입되는 공기에 CO2를 공급하는 CO2 공급장치와;
    상기 실내로 유입되는 공기를 가습하는 가습코일과;
    상기 실내로 유입되는 공기를 가열 또는 냉각시키는 냉온수 코일과;
    상기 외기의 온도를 측정하는 외기 온도센서와, 상기 외기의 상대습도를 측정하는 외기 습도센서와, 상기 외기의 CO2 농도를 측정하는 외기 CO2센서를 포함하는 외기 센서부와;
    상기 실내 공기의 온도를 측정하는 실내 온도센서와, 상기 실내 공기의 상대습도를 측정하는 실내 습도센서와, 상기 실내 공기의 CO2 농도를 측정하는 실내 CO2센서를 포함하는 실내 센서부와;
    상기 실내의 인체를 감지하는 인체감지센서와;
    상기 인공 조명이 점등되어 상기 식물이 광합성을 하는 주간 모드시, 상기 인체감지센서에서 인체가 감지되고, 상기 실내 CO2센서에서 측정한 CO2농도가 미리 설정된 상한값 이상이면, 상기 실내 공기의 온도와 상기 외기의 온도의 차이에 따라 외기 도입율을 다르게 설정하여 환기하는 외기도입 제어모드를 수행하는 제어부를 포함하는 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템.
  2. 의약품 제조용 식물이 수용된 복수의 트레이 부재들이 적치되고, 상기 식물에 빛 에너지를 제공하는 인공 조명이 구비된 밀폐형 식물 공장에 있어서,
    상기 밀폐형 식물 공장의 실내로 공기를 공급하는 급기 덕트에 설치되어, 상기 급기 덕트로 유입되는 외기의 유입 유량을 조절하는 외기 댐퍼와;
    상기 실내에서 공기를 배출하는 배기 덕트에 설치되어, 상기 실내로부터 배출되는 실내 공기의 유량을 조절하는 배기 댐퍼와;
    상기 급기 덕트와 상기 배기 덕트를 연결하는 연결 덕트에 설치되어, 상기 실내에서 배출된 후 다시 상기 실내로 순환되는 순환공기의 유량을 조절하는 순환공기 댐퍼와;
    상기 실내로 유입되는 공기에 CO2를 공급하는 CO2 공급장치와;
    상기 실내로 유입되는 공기를 가습하는 가습코일과;
    상기 실내로 유입되는 공기를 가열 또는 냉각시키는 냉온수 코일과;
    상기 외기의 온도를 측정하는 외기 온도센서와, 상기 외기의 상대습도를 측정하는 외기 습도센서와, 상기 외기의 CO2 농도를 측정하는 외기 CO2센서를 포함하는 외기 센서부와;
    상기 실내 공기의 온도를 측정하는 실내 온도센서와, 상기 실내 공기의 상대습도를 측정하는 실내 습도센서와, 상기 실내 공기의 CO2 농도를 측정하는 실내 CO2센서를 포함하는 실내 센서부와;
    상기 실내의 인체를 감지하는 인체감지센서와;
    상기 인공 조명이 소등되어 상기 식물이 호흡하는 야간 모드시, 상기 실내 공기의 엔탈피와 상기 외기의 엔탈피를 비교하여 외기를 도입하는 엔탈피 제어모드와, 외기를 도입하지 않고 실내공기를 순환시키는 실내순환모드 중 어느 하나가 설정되었는지 판단하고, 설정된 모드로 환기를 제어하는 제어부를 포함하는 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템.
  3. 의약품 제조용 식물이 수용된 복수의 트레이 부재들이 적치되고, 상기 식물에 빛 에너지를 제공하는 인공 조명이 구비된 밀폐형 식물 공장에 있어서,
    상기 밀폐형 식물 공장의 실내로 공기를 공급하는 급기 덕트에 설치되어, 상기 급기 덕트로 유입되는 외기의 유입 유량을 조절하는 외기 댐퍼와;
    상기 실내에서 공기를 배출하는 배기 덕트에 설치되어, 상기 실내로부터 배출되는 실내 공기의 유량을 조절하는 배기 댐퍼와;
    상기 급기 덕트와 상기 배기 덕트를 연결하는 연결 덕트에 설치되어, 상기 실내에서 배출된 후 다시 상기 실내로 순환되는 순환공기의 유량을 조절하는 순환공기 댐퍼와;
    상기 실내로 유입되는 공기에 CO2를 공급하는 CO2 공급장치와;
    상기 실내로 유입되는 공기를 가습하는 가습코일과;
    상기 실내로 유입되는 공기를 가열 또는 냉각시키는 냉온수 코일과;
    상기 외기의 온도를 측정하는 외기 온도센서와, 상기 외기의 상대습도를 측정하는 외기 습도센서와, 상기 외기의 CO2 농도를 측정하는 외기 CO2센서를 포함하는 외기 센서부와;
    상기 실내 공기의 온도를 측정하는 실내 온도센서와, 상기 실내 공기의 상대습도를 측정하는 실내 습도센서와, 상기 실내 공기의 CO2 농도를 측정하는 실내 CO2센서를 포함하는 실내 센서부와;
    상기 실내의 인체를 감지하는 인체감지센서와;
    상기 인공 조명의 점등 또는 소등 여부, 상기 인체감지센서에 따른 인체의 감지여부를 반영하여 상기 밀폐형 식물 공장의 환기를 조절하는 제어부를 포함하는 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템.
  4. 의약품 제조용 식물이 수용된 복수의 트레이 부재들이 적치되고, 상기 식물에 빛 에너지를 제공하는 인공 조명이 구비된 밀폐형 식물 공장에 있어서,
    상기 밀폐형 식물 공장의 실내로 공기를 공급하는 급기 덕트에 설치되어, 상기 급기 덕트로 유입되는 외기의 유입 유량을 조절하는 외기 댐퍼와;
    상기 실내에서 공기를 배출하는 배기 덕트에 설치되어, 상기 실내로부터 배출되는 실내 공기의 유량을 조절하는 배기 댐퍼와;
    상기 급기 덕트와 상기 배기 덕트를 연결하는 연결 덕트에 설치되어, 상기 실내에서 배출된 후 다시 상기 실내로 순환되는 순환공기의 유량을 조절하는 순환공기 댐퍼와;
    상기 실내로 유입되는 공기에 CO2를 공급하는 CO2 공급장치와;
    상기 실내로 유입되는 공기를 가습하는 가습코일과;
    상기 실내로 유입되는 공기를 가열 또는 냉각시키는 냉온수 코일과;
    상기 외기의 온도를 측정하는 외기 온도센서와, 상기 외기의 상대습도를 측정하는 외기 습도센서와, 상기 외기의 CO2 농도를 측정하는 외기 CO2센서를 포함하는 외기 센서부와;
    상기 실내 공기의 온도를 측정하는 실내 온도센서와, 상기 실내 공기의 상대습도를 측정하는 실내 습도센서와, 상기 실내 공기의 CO2 농도를 측정하는 실내 CO2센서를 포함하는 실내 센서부와;
    상기 실내의 인체를 감지하는 인체감지센서와;
    상기 인공 조명의 점등 또는 소등 여부, 상기 인체감지센서에 따른 인체의 감지여부, 및 상기 실내 CO2센서에서 측정한 CO2농도를 반영하여 상기 밀폐형 식물 공장의 환기를 조절하는 제어부를 포함하는 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템.
  5. 의약품 제조용 식물이 수용된 복수의 트레이 부재들이 적치되고, 상기 식물에 빛 에너지를 제공하는 인공 조명이 구비된 밀폐형 식물 공장에 있어서,
    상기 밀폐형 식물 공장의 실내로 공기를 공급하는 급기 덕트에 설치되어, 상기 급기 덕트로 유입되는 외기의 유입 유량을 조절하는 외기 댐퍼와;
    상기 실내에서 공기를 배출하는 배기 덕트에 설치되어, 상기 실내로부터 배출되는 실내 공기의 유량을 조절하는 배기 댐퍼와;
    상기 급기 덕트와 상기 배기 덕트를 연결하는 연결 덕트에 설치되어, 상기 실내에서 배출된 후 다시 상기 실내로 순환되는 순환공기의 유량을 조절하는 순환공기 댐퍼와;
    상기 실내로 유입되는 공기에 CO2를 공급하는 CO2 공급장치와;
    상기 실내로 유입되는 공기를 가습하는 가습코일과;
    상기 실내로 유입되는 공기를 가열 또는 냉각시키는 냉온수 코일과;
    상기 외기의 온도를 측정하는 외기 온도센서와, 상기 외기의 상대습도를 측정하는 외기 습도센서와, 상기 외기의 CO2 농도를 측정하는 외기 CO2센서를 포함하는 외기 센서부와;
    상기 실내 공기의 온도를 측정하는 실내 온도센서와, 상기 실내 공기의 상대습도를 측정하는 실내 습도센서와, 상기 실내 공기의 CO2 농도를 측정하는 실내 CO2센서를 포함하는 실내 센서부와;
    상기 실내의 인체를 감지하는 인체감지센서와;
    상기 인공 조명의 점등 또는 소등 여부, 상기 인체감지센서에 따른 인체의 감지여부, 상기 실내 공기의 엔탈피, 및 상기 외기의 엔탈피를 반영하여 상기 밀폐형 식물 공장의 환기를 조절하는 제어부를 포함하는 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템.
  6. 청구항 1에 있어서,
    상기 제어부는,
    상기 주간 모드시, 상기 인체감지센서에서 인체가 감지되고, 상기 실내 CO2센서에서 측정한 CO2농도가 상기 상한값 미만이고 상기 하한값 이상이면, 상기 실내 공기의 엔탈피와 상기 외기의 엔탈피를 비교하여 외기를 도입하는 엔탈피 제어모드가 설정되었는지 판단하고,
    상기 엔탈피 제어모드가 설정되었다고 판단되면, 상기 실내 공기의 엔탈피와 상기 외기의 엔탈피를 계산하여 비교하고,
    상기 외기의 엔탈피가 상기 실내 공기의 엔탈피 이하이면, 상기 외기의 온도를 미리 설정된 실내 설정온도와 비교하고,
    상기 외기의 온도가 상기 실내 설정온도 이하이면, 외기의 상대습도가 미리 설정된 설정습도범위이내인지 판단하고,
    상기 외기의 상대습도가 상기 설정습도범위 이내이면, 상기 외기도입 제어모드를 수행하는 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템.
  7. 청구항 6에 있어서,
    상기 제어부는,
    상기 외기도입 제어모드시,
    상기 실내공기의 온도와 상기 외기의 온도의 차이가 미리 설정된 최소값 이하이면, 상기 배기 댐퍼, 상기 외기 댐퍼 및 상기 순환공기 댐퍼를 미리 설정된 최대 개도로 개방하고,
    상기 실내공기의 온도와 상기 외기의 온도의 차이가 상기 최소값을 초과하고, 미리 설정된 최대값 이하이면, 상기 배기 댐퍼, 상기 외기 댐퍼 및 상기 순환공기 댐퍼를 상기 온도의 차이에 비례하게 설정된 개도율에 따라 개방하고,
    상기 실내공기의 온도와 상기 외기의 온도의 차이가 상기 최대값을 초과하면, 상기 배기 댐퍼, 상기 외기 댐퍼 및 상기 순환공기 댐퍼를 미리 설정된 최소 개도로 개방하는 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템.
  8. 청구항 2에 있어서,
    상기 제어부는,
    상기 엔탈피 제어모드가 설정되었다고 판단되면, 상기 실내 공기의 엔탈피와 상기 외기의 엔탈피를 계산하여 비교하고,
    상기 외기의 엔탈피가 상기 실내 공기의 엔탈피 이하이면, 상기 외기의 온도를 미리 설정된 실내 설정온도와 비교하고,
    상기 외기의 온도가 상기 실내 설정온도 이하이면, 외기의 상대습도가 미리 설정된 설정습도범위이내인지 판단하고,
    상기 외기의 상대습도가 상기 설정습도범위 이내이면, 상기 외기도입 제어모드를 수행하는 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템.
  9. 청구항 2에 있어서,
    상기 제어부는,
    상기 실내순환모드가 설정되었다고 판단되면,
    상기 배기 댐퍼, 상기 외기 댐퍼 및 상기 순환공기 댐퍼를 모두 닫는 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템.
  10. 의약품 제조용 식물을 재배하는 밀폐형 식물 공장은, 실내로 공기를 공급하는 급기 덕트에 설치되어 상기 급기 덕트로 유입되는 외기의 유입 유량을 조절하는 외기 댐퍼와, 상기 실내에서 공기를 배출하는 배기 덕트에 설치되어 상기 실내로부터 배출되는 실내 공기의 유량을 조절하는 배기 댐퍼와, 상기 급기 덕트와 상기 배기 덕트를 연결하는 연결 덕트에 설치되어, 상기 실내에서 배출된 후 다시 상기 실내로 순환되는 순환공기의 유량을 조절하는 순환공기 댐퍼와, 상기 급기 덕트에 설치되어, 상기 실내로 유입되는 공기에 CO2를 공급하는 CO2 공급장치와, 상기 급기 덕트에 설치되어, 상기 실내로 유입되는 공기를 가습하는 가습코일과, 상기 급기 덕트에 설치되어, 상기 실내로 유입되는 공기를 가열 또는 냉각시키는 냉온수 코일을 포함하여 공조기 방식으로 제어되면,
    센서부가 실내 공기의 온도와 상대습도를 일정 시간 간격으로 측정하고, 상기 밀폐형 식물 공장의 외기의 온도와 상대습도를 일정 시간 간격으로 측정하는 온/습도 측정단계와;
    제어부가 상기 밀폐형 식물 공장의 실내에 구비된 인공 조명이 점등되어 상기 식물의 광합성이 이루어지는 주간 모드와, 상기 인공 조명이 소등되어 상기 식물의 호흡만 이루어지는 야간 모드 중 어느 하나를 설정하는 주야간 설정단계와;
    상기 주야간 설정단계에서 상기 주간 모드로 설정되면, 상기 실내에서 인체감지센서가 인체 감지 여부를 판단하는 인체감지단계와;
    상기 인체감지단계에서 인체가 감지되면, CO2센서가 상기 실내의 CO2 농도를 일정 시간 간격으로 측정하는 CO2 농도 측정단계와;
    상기 CO2 농도 측정단계에서 측정된 상기 실내의 CO2 농도가 미리 설정된 상한값 이상이면, 상기 제어부가 상기 실내 공기의 온도와 상기 외기의 온도의 차이에 따라 외기 도입율을 다르게 설정하여 환기하는 외기도입 제어모드를 수행하는 단계와;
    상기 CO2 농도 측정단계에서 측정된 상기 실내의 CO2 농도가 상기 상한값 미만이고 미리 설정된 하한값 이상이면, 상기 실내 공기의 엔탈피와 상기 외기의 엔탈피를 비교하여 외기를 도입하는 엔탈피 제어모드와, 외기를 도입하지 않고 실내공기를 순환시키는 실내순환모드 중 어느 하나가 설정되었는지 확인하는 엔탈피제어모드 확인단계와;
    상기 엔탈피제어모드 확인단계에서 상기 엔탈피 제어모드가 설정되었다고 판단되면, 상기 실내 공기의 엔탈피와 상기 외기의 엔탈피를 계산하고, 상기 실내 공기의 엔탈피, 상기 외기의 엔탈피, 상기 외기의 온도, 상기 외기의 상대습도에 따라 상기 외기도입 제어모드의 수행 여부를 판단하는 단계와;
    상기 주야간 설정단계에서 상기 야간 모드로 설정되면, 상기 제어부는 상기 엔탈피 제어모드와 상기 실내순환모드 중 어느 하나가 설정되었는지 확인하는 단계를 포함하는 공조기 방식 밀폐형 식물 공장의 환경 제어방법.
  11. 청구항 10에 있어서,
    상기 인체감지단계에서 상기 인체가 감지되지 않으면, 상기 제어부는 상기 실내의 CO2 농도가 상기 하한값 이상인지 판단하고,
    상기 실내의 CO2 농도가 상기 하한값 이상이면, 상기 제어부는 상기 엔탈피 제어모드와 상기 실내순환모드 중 어느 하나가 설정되었는지 확인하는 공조기 방식 밀폐형 식물 공장의 환경 제어방법.
  12. 청구항 10에 있어서,
    상기 엔탈피제어모드 확인단계에서 상기 엔탈피 제어모드가 설정되었다고 판단되면, 상기 실내 공기의 엔탈피와 상기 외기의 엔탈피를 계산하여 비교하고,
    상기 외기의 엔탈피가 상기 실내 공기의 엔탈피 이하이면, 상기 외기의 온도를 미리 설정된 실내 설정온도와 비교하고,
    상기 외기의 온도가 상기 실내 설정온도 이하이면, 상기 외기의 상대습도가 미리 설정된 설정습도범위이내인지 판단하고,
    상기 외기의 상대습도가 상기 설정습도범위 이내이면, 상기 외기도입 제어모드를 수행하는 공조기 방식 밀폐형 식물 공장의 환경 제어방법.
  13. 청구항 10에 있어서,
    상기 외기도입 제어모드는,
    상기 실내공기의 온도와 상기 외기의 온도의 차이가 미리 설정된 최소값 이하이면, 상기 배기 댐퍼, 상기 외기 댐퍼 및 상기 순환공기 댐퍼를 미리 설정된 최대 개도로 개방하는 공조기 방식 밀폐형 식물 공장의 환경 제어방법.
  14. 청구항 13에 있어서,
    상기 외기도입 제어모드시,
    상기 실내공기의 온도와 상기 외기의 온도의 차이가 상기 최소값을 초과하고, 미리 설정된 최대값 이하이면,
    상기 배기 댐퍼, 상기 외기 댐퍼 및 상기 순환공기 댐퍼를 상기 실내공기의 온도와 상기 외기의 온도의 차이에 비례하게 설정된 개도율에 따라 개방하는 공조기 방식 밀폐형 식물 공장의 환경 제어방법.
  15. 청구항 14에 있어서,
    상기 외기도입 제어모드시,
    상기 실내공기의 온도와 상기 외기의 온도의 차이가 상기 최대값을 초과하면,
    상기 배기 댐퍼, 상기 외기 댐퍼 및 상기 순환공기 댐퍼를 미리 설정된 최소 개도로 개방하는 공조기 방식 밀폐형 식물 공장의 환경 제어방법.
  16. 청구항 13에 있어서,
    상기 엔탈피제어모드 확인단계에서 상기 실내순환모드가 설정되었다고 판단되면,
    상기 배기 댐퍼, 상기 외기 댐퍼 및 상기 순환공기 댐퍼를 모두 닫는 공조기 방식 밀폐형 식물 공장의 환경 제어방법.
PCT/KR2019/009277 2018-08-30 2019-07-25 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법 WO2020045829A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19853679.9A EP3845056A1 (en) 2018-08-30 2019-07-25 System for controlling environment of air conditioner-type closed plant factory and control method thereof
US17/271,212 US20210212269A1 (en) 2018-08-30 2019-07-25 System for controlling environment of air conditioner-type closed plant factory and control method thereof
CN201980060730.1A CN112739199A (zh) 2018-08-30 2019-07-25 空调器方式封闭型植物工厂的环境控制系统及其控制方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0119163 2018-08-30
KR1020180102622A KR101926644B1 (ko) 2018-08-30 2018-08-30 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법
KR10-2018-0102622 2018-08-30
KR1020180119163A KR101931750B1 (ko) 2018-10-05 2018-10-05 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법

Publications (1)

Publication Number Publication Date
WO2020045829A1 true WO2020045829A1 (ko) 2020-03-05

Family

ID=69645854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009277 WO2020045829A1 (ko) 2018-08-30 2019-07-25 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법

Country Status (4)

Country Link
US (1) US20210212269A1 (ko)
EP (1) EP3845056A1 (ko)
CN (1) CN112739199A (ko)
WO (1) WO2020045829A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113738158A (zh) * 2021-09-06 2021-12-03 德润建安工程集团有限公司 一种建筑节能式房屋
US20230345885A1 (en) * 2020-05-12 2023-11-02 Lala Corporation Indoor environment adjustment method and indoor environment adjustment system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111226658A (zh) * 2020-03-06 2020-06-05 山东农业大学 基于分布式主动循环的温室空气质量调控系统及方法
TWI789825B (zh) * 2021-07-13 2023-01-11 魏榮宗 空調系統
US20230210062A1 (en) * 2021-12-31 2023-07-06 Sinowell (Shanghai) Co., Ltd. Greenhouse plant growth monitoring system
CN114982534A (zh) * 2022-06-06 2022-09-02 合肥创农生物科技有限公司 一种植物工厂空气控制系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011015655A (ja) * 2009-07-10 2011-01-27 Dyna Air Kk ハウス用換気装置およびハウス用空気調和システム
KR20150042429A (ko) * 2013-10-11 2015-04-21 신농(주) 농업시설 제어방법
KR101703170B1 (ko) * 2016-03-09 2017-02-07 농업회사법인 알투팜스 주식회사 식물공장의 환경제어 시스템 및 이를 이용한 환경제어 방법
KR101869890B1 (ko) * 2017-06-16 2018-07-23 주식회사 엑스트림팜 농업회사법인 가정용 식물공장 시스템
KR101889217B1 (ko) * 2017-03-07 2018-08-16 이규도 식물재배용 공조장치
KR101931750B1 (ko) * 2018-10-05 2018-12-24 (주)지플러스 생명과학 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법
KR101926644B1 (ko) * 2018-08-30 2019-03-07 (주)지플러스 생명과학 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2272080B (en) * 1992-10-28 1996-01-10 Toshiba Kk Air conditioning apparatus capable of operating in cooling mode and heating mode
US6427461B1 (en) * 2000-05-08 2002-08-06 Lennox Industries Inc. Space conditioning system with outdoor air and refrigerant heat control of dehumidification of an enclosed space
KR20020031367A (ko) * 2002-03-26 2002-05-01 윤대성 외기의 엔탈피를 이용한 공기조화기
CN100553443C (zh) * 2006-04-19 2009-10-28 中国农业大学 密闭式完全利用人工光的环境控制型植物工厂
CN205161353U (zh) * 2015-12-09 2016-04-20 开县春秋农业开发有限公司 一种基于物联网的温室监控装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011015655A (ja) * 2009-07-10 2011-01-27 Dyna Air Kk ハウス用換気装置およびハウス用空気調和システム
KR20150042429A (ko) * 2013-10-11 2015-04-21 신농(주) 농업시설 제어방법
KR101703170B1 (ko) * 2016-03-09 2017-02-07 농업회사법인 알투팜스 주식회사 식물공장의 환경제어 시스템 및 이를 이용한 환경제어 방법
KR101889217B1 (ko) * 2017-03-07 2018-08-16 이규도 식물재배용 공조장치
KR101869890B1 (ko) * 2017-06-16 2018-07-23 주식회사 엑스트림팜 농업회사법인 가정용 식물공장 시스템
KR101926644B1 (ko) * 2018-08-30 2019-03-07 (주)지플러스 생명과학 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법
KR101931750B1 (ko) * 2018-10-05 2018-12-24 (주)지플러스 생명과학 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230345885A1 (en) * 2020-05-12 2023-11-02 Lala Corporation Indoor environment adjustment method and indoor environment adjustment system
CN113738158A (zh) * 2021-09-06 2021-12-03 德润建安工程集团有限公司 一种建筑节能式房屋
CN113738158B (zh) * 2021-09-06 2022-03-25 德润建安工程集团有限公司 一种建筑节能式房屋

Also Published As

Publication number Publication date
CN112739199A (zh) 2021-04-30
EP3845056A1 (en) 2021-07-07
US20210212269A1 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
WO2020045829A1 (ko) 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법
WO2020111435A1 (ko) 밀폐형 식물 공장의 분진 제어 시스템 및 이의 제어방법
KR101931750B1 (ko) 공조기 방식 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법
WO2021201382A1 (ko) 감염병 차단 음압 공조시스템
Blowers et al. Ventilation of operating-theatres.
WO2018230766A1 (ko) 중앙 냉난방 설비의 개별 제어 시스템
KR101926644B1 (ko) 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법
KR101982817B1 (ko) 패키지형 항온항습기 방식 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법
WO2022255670A1 (ko) 아쿠아포닉스 스마트팜
WO2020045830A1 (ko) 패키지형 항온항습기 방식 밀폐형 식물 공장의 환경 제어 시스템 및 이의 제어방법
WO2021157844A1 (en) Air conditioner and method for controlling the same
WO2021251688A1 (ko) 바이오 3차원 프린터용 챔버 환경 제어 장치
CN207922391U (zh) 一种高精度恒温恒湿控制监测装置
WO2022098061A1 (ko) 바이오에어로졸 제거 성능 평가 시스템 및 방법
KR101150303B1 (ko) 버섯 농작물 재배 장치
JP4116780B2 (ja) 生細胞観察用顕微鏡温度制御装置
WO2016167419A1 (ko) 저온형 버섯재배용 공조시스템
WO2023282385A1 (ko) 바이오 공조 시스템 및 방법
CN209042667U (zh) 一种实验室综合排风运行智能监控系统
WO2018221900A1 (ko) 이중의 흡기 루트를 구비하는 공조 시스템
KR20170104057A (ko) 수술실을 포함하는 클린룸 공조시스템
JP2536240B2 (ja) 植物栽培装置
JPS5596855A (en) Method of ventilating windowless barn
CN203385134U (zh) 蚕种催青、保种室的换气装置
CN207802956U (zh) 作物幼苗生长培育箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019853679

Country of ref document: EP

Effective date: 20210330