WO2023282385A1 - 바이오 공조 시스템 및 방법 - Google Patents

바이오 공조 시스템 및 방법 Download PDF

Info

Publication number
WO2023282385A1
WO2023282385A1 PCT/KR2021/012092 KR2021012092W WO2023282385A1 WO 2023282385 A1 WO2023282385 A1 WO 2023282385A1 KR 2021012092 W KR2021012092 W KR 2021012092W WO 2023282385 A1 WO2023282385 A1 WO 2023282385A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
diffuser
air conditioning
bio
ventilation unit
Prior art date
Application number
PCT/KR2021/012092
Other languages
English (en)
French (fr)
Inventor
이현우
Original Assignee
주식회사 유러스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유러스 filed Critical 주식회사 유러스
Publication of WO2023282385A1 publication Critical patent/WO2023282385A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • F24F1/0038Indoor units, e.g. fan coil units characterised by introduction of outside air to the room in combination with simultaneous exhaustion of inside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/28Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/003Ventilation in combination with air cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light

Definitions

  • the present invention relates to a bio-air conditioning system and method, and more particularly, to a bio-air conditioning system and method using a floor air conditioning method of lower air supply and upper exhaust and capable of integrated management of an air conditioner or an air conditioner, a ventilation unit, and an air purifier. It's about
  • Air conditioners such as air conditioners and air conditioners are installed to provide a more comfortable indoor environment to humans by discharging cold and hot air into the room to adjust the indoor temperature and purify the indoor air to create a comfortable indoor environment.
  • an air conditioner includes an indoor unit configured as a heat exchanger and installed indoors, and an outdoor unit configured as a compressor and a heat exchanger to supply refrigerant to the indoor unit.
  • an air purifier is a device that purifies polluted indoor air by sucking indoor air into the main body and passing it through a purification filter to supply the indoor air back to the indoor space.
  • the existing air conditioning system is made by individually controlling each system, and a system that integrates cooling, air cleaning, sterilization, and ventilation has not yet been implemented at home and abroad.
  • the existing air conditioning system has an upper air supply and upper intake structure, and polluted air is discharged in a mixed state with the supplied air, which is inefficient.
  • polluted air is discharged in a mixed state with the supplied air, which is inefficient.
  • Patent Document 001 Republic of Korea Patent No. 10-0650108 (registered on November 20, 2006)
  • An object of the present invention is to minimize and control the spread of the virus indoors by attracting pollutants such as fine dust or viruses to the upper part of the non-breathing section by forming a low-speed airflow in the room by lower air supply and upper exhaust by using a floor air conditioning method. It removes fine dust and sterilizes viruses through the bio-air conditioning system, prevents high-temperature or low-temperature air from being supplied to the room at high speed for comfortable cooling and heating, and controls the bio-air conditioning system even when supplying outside air. It is to provide a bio-air conditioning system and method capable of integratedly managing an air conditioner or an air conditioner, a ventilation unit, and an air cleaning diffuser by supplying indoor air through the air supply system.
  • an air conditioner or air conditioner, an air cleaning diffuser, a suction part, a plurality of ducts, and a ventilation unit are connected to the system to collect environmental information for controlling each of them in a floor air conditioning method, and a local management server that controls each of the air conditioner or air conditioner, suction unit, air cleaning diffuser, and ventilation unit based on the environmental information, and the floor air conditioning method is used to perform air conditioning in a lower air supply and upper exhaust method in an indoor space.
  • An air purifying diffuser is disposed on the lower part where the floor is located, and a suction diffuser is disposed on the upper part where the ceiling is located to perform air conditioning.
  • the environmental information includes at least one of temperature and humidity information, CO2 concentration, VOCs concentration, fine dust concentration, air supply, exhaust, and airflow.
  • the air cleaning diffuser includes a control board for controlling the air cleaning diffuser, a sensor for detecting fine dust, VOCs, CO2 or temperature and humidity, and a controllable number of revolutions or airflow amount according to ventilation, purification, cooling and heating mode conditions.
  • It includes a blower, an air purifying filter capable of collecting fine dust and viruses on the inner surface of the filter, and a UVC sterilization LED that irradiates only the inside of the filter and does not leak the light to the outside by the filter wall, and the local management server It is characterized in that, based on the collected environmental information, the cooling temperature and humidity of the air conditioner is controlled, or the ventilation of the air conditioner, air conditioner, air cleaning diffuser, suction diffuser, or ventilation unit is controlled to turn on/off.
  • the suction unit pressurizes the suction diffuser dedicated to air cleaning circulation to secure the stability of the indoor ascending airflow and minimize the indoor stagnant area to prevent the spread of viruses indoors and increase the efficiency of removing fine dust, and the suction diffuser for strong suction. It includes a blower and a damper to prevent reverse flow, and is characterized in that the local server controls it based on the collected environmental information.
  • the ventilation unit includes a ventilation unit duct that can be connected to the bio-air conditioning system, a damper that prevents the indoor air from flowing back to the ventilation unit supply port, a ventilation unit distributor that can distribute outdoor air to each duct, and a distributor. And a ventilation unit distribution duct connecting to each duct from
  • a bio-air conditioning system characterized by a system in which the outside air, which may contain fine dust or viruses, is transferred to an air cleaning diffuser through a duct, and is purified and sterilized through a filter and UVC of the air cleaning diffuser, and then supplied to the room.
  • the system air conditioner which cannot supply or exhaust outside air, is integrated with a ventilation unit, and includes a ventilation unit supply air blower and a ventilation unit exhaust blower provided inside the ventilation unit, and the supply air volume of the ventilation unit supply air blower
  • a positive pressure chamber can be formed by increasing the exhaust air volume or a negative pressure chamber can be formed by increasing the exhaust air volume to the supply air volume.
  • the air conditioner or air conditioner integrated with a damper on one side and the ventilation unit for air supply and exhaust are integrated with the plurality of ducts and placed in the upper part of the indoor space, and at least one reverse flow does not occur in the plurality of ducts
  • a suction diffuser equipped with a pressurized blower and a backflow prevention damper (BDD) is provided, the duct is disposed downward to the indoor floor, and an air cleaning diffuser is provided at the end of the duct toward the floor, the floor
  • BDD backflow prevention damper
  • the air-conditioning system supply air is supplied from the lower part through the air purifying diffuser through the ventilation unit, the air conditioner or the air conditioner, and all the air from the upper intake part passes through the duct, and the low-speed purified air supplied by the air purifying diffuser is supplied indoors.
  • the contaminated air supplied to the air cleaning diffuser through the duct is purified on the inner surface of the air cleaning filter mounted on the air cleaning diffuser, and UVC light harmful to humans is removed. It is characterized in that sterilization is performed without being exposed using the filter wall, and then air is supplied from the lower part.
  • an air conditioner or an air conditioner having a damper on one side and the duct are integrated and disposed above the indoor space, and a plurality of ducts are provided with at least one purification suction diffuser for purifying air circulation, and the duct is It is arranged to extend downward to the indoor floor, and an air purifying diffuser is provided at the end of the duct toward the floor, and the air supplied to the floor air conditioning system is supplied from an air conditioner or air conditioner to supply a comfortable temperature without discomfort to the room.
  • a low temperature corresponding to 10 ⁇ 12 °C or a high temperature corresponding to 35 ⁇ 40 °C is mixed with the air sucked from the upper suction diffuser to control it to a comfortable temperature, and the controlled air is purified through the air cleaning diffuser, It is characterized in that it is systemized to supply low-speed air of 1.2 m / s or less after sterilization.
  • the local management server includes an air conditioner, an air conditioner, an air cleaning diffuser, and a collection unit that collects environment information through internal communication with a ventilation unit; a prediction unit that determines whether the sensing error is within the allowable error range by receiving the environmental information collected from the collection unit and comparing whether the corresponding environmental information operates within each standard tolerance range; A control unit that learns with a neural network learning model based on environment information sensed within a normal operating range and controls each device with a control value; It further includes a statistical learning unit that collects all data on the environment information collected from the collection unit, the prediction result of the prediction unit, and the control information of the control unit, and generates statistical data based on the collected data.
  • an air conditioner, an air conditioner, an air purifying diffuser, and a ventilation unit are connected to collect environmental information, and based on the environmental information, the air conditioner, the air conditioner, the air purifying diffuser, and the ventilation unit respectively
  • a bio-air conditioning method using a local management server controlled by a floor air-conditioning method comprising: collecting, by the local management server, environmental information about indoor temperature and humidity, air supply, exhaust, and airflow from each device;
  • the local management server includes a step of performing on/off control of cooling temperature and humidity, an air conditioner, an air cleaning diffuser, or a ventilation unit based on the collected environmental information
  • the floor air conditioning method is air conditioning in an upper air supply and upper exhaust method in the indoor space. It is characterized in that an air cleaning diffuser located on the lower part of the floor is disposed and a suction diffuser is disposed on the upper part where the ceiling is located so as not to perform air conditioning.
  • the local management server periodically utilizes a predictive model to compare a sensing error of sensing information corresponding to environmental information with a standard tolerance range to determine whether or not it is normal;
  • the local management server calculates the determination result and transmits it to the set management terminal and control server; further includes.
  • the local management server generates evaluation information that is an evaluation result using an evaluation model that evaluates the prediction model using the prediction result of the prediction model, and upgrades the evaluation model by learning using the evaluation information. includes;
  • the bio-conditioning system of the present invention minimizes the spread of viruses while performing efficient air-conditioning by forming low-speed airflow at the top by lower air supply and upper exhaust in a floor air-conditioning method while providing integrated functions of heating and cooling, air cleaning, sterilization, and ventilation. There are advantages to doing so.
  • the floor air conditioning method helps save energy by reducing the cooling load due to a longer period of use for outdoor air cooling, and can satisfy a relatively more comfortable indoor environment by using outdoor air. .
  • the transmission path of virus-infected particles can be greatly alleviated by removing harmful particles from the breathing area of residents with much less indoor mixing compared to ceiling air conditioning. If applied, indoor transmission by viruses can be greatly reduced.
  • the floor air conditioning method achieves stratification of indoor temperature, so that small particles floating in the living and breathing areas are pushed to the upper fabric along with warm air by air currents, and returned from the ceiling to remove virus particles, realizing a comfortable indoor space.
  • UVC installed in the air cleaning diffuser directly sterilizes viruses, which is a different system from the previously applied air conditioning method, and can improve indoor air quality, which has increased importance due to COVID-19.
  • FIG. 1 is a block diagram showing the configuration of a bio-air conditioning system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the internal configuration of the bio-air conditioning system of FIG. 1 in detail.
  • FIG. 3 is a flowchart of a bio-air conditioning method according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of the configuration of a bio-air conditioning system for stabilizing low-speed airflow in a lower air supply and upper exhaust system.
  • FIG. 5 is a view showing safe air purification and sterilization through the filter inner surface of the air cleaning diffuser.
  • FIG. 6 is a view showing an example of an integrated form in which a ceiling type air conditioner and a ventilation unit are integrated.
  • FIG. 7 is a diagram showing a pressure blower, which is a detailed configuration of the suction diffuser 150, and a BDD (damper) configuration for preventing backflow.
  • FIG. 8 is a view showing an installation example of the bio-air conditioning system of the present invention.
  • FIG. 9 is an exemplary view comparing air flow changes in a conventional upper air supply and upper exhaust mixed air conditioning method (A) and a lower air supply and upper exhaust substitution air conditioning method (B) of the present invention.
  • a 'terminal' may be a wireless communication device that ensures portability and mobility, and may be, for example, any type of handheld-based wireless communication device such as a smart phone, a tablet PC, or a laptop computer.
  • the 'terminal' may also be a wired communication device such as a PC capable of accessing another terminal or server through a wired/wireless communication network.
  • the wired/wireless communication network 500 refers to a connection structure capable of exchanging information between nodes such as terminals and servers, such as a local area network (LAN) and a wide area network (WAN). , the Internet (WWW: World Wide Web), wired and wireless data communications networks, telephone networks, and wired and wireless television communications networks.
  • LAN local area network
  • WAN wide area network
  • WWW World Wide Web
  • wireless data communication networks examples include 3G, 4G, 5G, 3rd Generation Partnership Project (3GPP), Long Term Evolution (LTE), World Interoperability for Microwave Access (WIMAX), Wi-Fi, Bluetooth communication, infrared communication, ultrasonic communication, visible light communication (VLC: Visible Light Communication), LiFi, and the like, but are not limited thereto.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • WIMAX World Interoperability for Microwave Access
  • Wi-Fi Bluetooth communication
  • infrared communication ultrasonic communication
  • VLC Visible Light Communication
  • LiFi and the like, but are not limited thereto.
  • FIG. 1 is a block diagram showing the configuration of a bio-air conditioning system according to an embodiment of the present invention
  • FIG. 2 is a block diagram showing the internal configuration of the bio-air conditioning system of FIG. 1 in detail.
  • the bio-conditioning system of the present invention includes an air conditioner or air conditioner 110, a damper 120, an air cleaning diffuser 130, a ventilation unit 140, and a suction diffuser 150 connected to a local management server 200 for integrated management.
  • a local management server 200 for integrated management.
  • the device connected to the local management server 200 may also include a heating device such as a heater.
  • the local management server 200 is an environment for controlling each device from the connected air conditioner or air conditioner 110, damper 120, air cleaning diffuser 130, ventilation unit 140, and suction diffuser 150 in a floor air conditioning method Collect information.
  • Environmental information for example, temperature and humidity information corresponding to the cooling condition of the air conditioner or air conditioner 110, temperature and humidity information of the suction diffuser 150, air cleaning diffuser 130 or ventilation unit 140, CO2 concentration, VOC concentration, fine dust It can be concentration, air supply amount, exhaust amount, etc., and a separate sensor for this may be installed in each device.
  • the local management server 200 may control each device in an appropriate state based on the collected environment information.
  • the damper 120, the air cleaning diffuser 130, the ventilation unit 140, or the suction diffuser 150 may be controlled to turn on/off.
  • the air cleaning diffuser 130 performs an air cleaning function, and the configuration of the air cleaning diffuser is a control board for controlling the air cleaning diffuser 130, a detection sensor (fine dust, VOC, CO2, temperature and humidity), a blower (rotation number or airflow control), air purification filter 131, UV-C (132) and sterilization LED.
  • the air cleaning diffuser 130 transmits the environmental information detected by the sensor to the local management server 200, and is configured to perform both the air cleaning function and the sterilization function based on the environmental information under the control of the local management server 200. do.
  • the UVC (ultraviolet ray) LED of the air purifying diffuser can sterilize infectious viruses.
  • UVC is installed inside the filter to prevent UVC light harmful to the human body from being exposed to the outside, and the effect of sterilization can be maximized.
  • the sterilization method of the UVC (ultraviolet ray) LED method of the air purifying diffuser will also be applicable to other sterilization methods according to technological advances in the future.
  • VAV variable air volume
  • bio-air conditioning system of the present invention employs a floor air conditioning method in which an air cleaning diffuser 130 is disposed on the floor and a suction diffuser 150 is disposed on the ceiling to use a lower air supply and upper exhaust method in an indoor space. collaboration takes place
  • the bio-air conditioning system structure for this purpose is integrated with a ventilation unit 140 and a damper 120 in a ceiling type air conditioner or air conditioner 110, and , A plurality (eg, four) of ducts 100 are connected to the air conditioner or air conditioner 110 vertically and horizontally, respectively, and the duct 100 is bent toward the inside of the room and continues to the floor of the room, with the end facing the floor.
  • an air cleaning diffuser By installing an air cleaning diffuser, air conditioning is performed in a lower air supply and upper exhaust system.
  • the ventilation unit 140 for supplying and exhausting air is connected to the duct 100 connected to one side of the existing ceiling-type air conditioner or air conditioner 110, and the air cleaning diffuser 130 is integrated and disposed at the end of the duct.
  • a plurality of ducts 100 are connected to the top, bottom and left and right of the air conditioner or air conditioner 110, respectively, and at least one suction diffuser 150 is provided in the duct 100 adjacent to the air conditioner or air conditioner 110.
  • the suction diffuser 150 provided in the plurality of ducts is provided with a pressure blower 151 and a backflow prevention damper (BDD, 152) to prevent at least one backflow from occurring.
  • BDD backflow prevention damper
  • the duct 100 is arranged to extend downward to the indoor floor, and an air cleaning diffuser 130 is provided at an end of the duct 100 toward the floor.
  • the air of the air conditioner or air conditioner 110 is adjusted in the required heat amount by the damper 120, and the regulated air is mixed with the indoor upper air sucked through the indoor upper suction diffuser 150 to form a duct Air is supplied from the lower part through the air cleaning diffuser 130 via 100.
  • ventilation is performed by supplying air from the lower part through the air cleaning diffuser 130 through the air supplied from the ventilation unit 140 through the duct 100 .
  • indoor air purification is such that indoor polluted air with an upward airflow is sucked from the upper part through the suction diffuser 150, and the air is sucked from the lower part through the air purifying diffuser 130 through the duct 100. supply is made
  • the upper air supply method and the upper exhaust air method supply air at a relatively high temperature (e.g., 18°C) when cooling, and a relatively low temperature (e.g., 18°C) when heating. 28°C), the period of use of outdoor air cooling is extended, which reduces the cooling load and helps to save energy, and the use of outdoor air can satisfy a relatively more comfortable indoor environment.
  • a relatively high temperature e.g., 18°C
  • a relatively low temperature e.g., 18°C
  • the air supply inlet of the ventilation unit 140 is connected to the ventilation unit duct 141 so that all outside air can be operated in the bio-air conditioning system, and the ventilation unit distributor 142, the ventilation unit distribution duct ( 143) and is connected to the duct 100 of the bio-air conditioning system.
  • the ventilation unit 140 includes a ventilation unit duct 141 that can be connected to the bio-air conditioning system, a damper 120 that prevents the back flow of indoor air to the ventilation unit supply port, and outside air that can be distributed to each duct. It includes a ventilation unit distributor 142 and a ventilation unit distribution duct 143 connecting to each duct from the distributor.
  • FIG. 9 a significant difference between the floor air conditioning method (FIG. 9B) and the existing ceiling air conditioning method (FIG. 9A) lies in the speed and distribution of air flow.
  • air conditioning is performed only from the floor to the living area at a height of 2m, and temperature stratification with the non-residential area at a height of 2m or more is achieved, so that the lower air maintains a pleasant state and the polluted air above is returned and ventilated.
  • the polluted air in the room is not mixed or recirculated, and the contaminated air is guided upward and pushed out to be treated through the return of the ceiling. Therefore, it is effective in improving air quality.
  • the floor air conditioning method is to form a low-speed, stable air flow to prevent the spread of viruses by performing lower air supply and upper exhaust air, This is to prevent the virus from spreading throughout the room.
  • the lower part of the indoor space (1.75 m or less), which is the residential space, is first purified through the lower supply air, and at this time, the supply air speed must be within 1.25 m / s, and the vertical upward air flow speed can be maintained at 0.05 m / s or less.
  • a return diffuser may be configured by installing a plurality of suction diffusers 150 for exhaust in the ceiling duct 100 in order to eliminate congested areas throughout the room.
  • the collected fine dust virus is sterilized by the filter and UVC LED installed in the air cleaning diffuser.
  • the local management server 200 may serve to manage and control floor air conditioning efficiently, and for this purpose, each device such as an air conditioner or air conditioner 110, a damper 120, an air cleaning diffuser 130 , To collect various environmental information from the ventilation unit 140.
  • the local management server 200 also includes a collection unit 210, a prediction unit 220, a control unit 230, a statistical learning unit 240, an evaluation evolution unit 250, and a database 260. more includes
  • the collection unit 210 collects environmental information through internal communication with each device such as the air conditioner or air conditioner 110, the damper 120, the air cleaning diffuser 130, and the ventilation unit 140.
  • the prediction unit 220 receives the environmental information collected from the collecting unit 210 and compares whether the corresponding environmental information values operate within each standard tolerance range, thereby determining whether the sensing error is within the tolerance range. Through this, it is possible to determine whether the corresponding device including the sensor (or sensor inside), such as the air conditioner or air conditioner 110, the damper 120, the air cleaning diffuser 130, and the ventilation unit 140) is operating normally.
  • the sensor or sensor inside
  • the prediction unit 220 may generate a prediction model for errors or malfunctions of the sensor based on a prediction model using at least one machine learning or neural network learning algorithm using the environmental information as an input variable, and predicting the prediction model Using the result, it is possible to determine the allowable error range of the sensor, and determine whether the sensor normally operates within the allowable error range.
  • the learning algorithm may be, for example, a support vector machine (SVM), a convolutional neural network (CNN), or a recurrent neural network (RNN), which are advantageous for pattern learning.
  • SVM support vector machine
  • CNN convolutional neural network
  • RNN recurrent neural network
  • the collection of sensing information may be stopped, and a warning alarm may be transmitted to the integrated server 300 or the management terminal 400, and the type of warning alarm may be step-by-step. (e.g. normal, caution, abnormal).
  • the tolerance set in the manual may be reflected according to the sensor design at the time of shipment of the initial sensor.
  • converting the sensing information into a frequency domain and learning or analyzing it at a later stage is particularly important for changing the trend of sensor data.
  • FFT Fast Fourier Transformation
  • the prediction unit 220 may utilize the failure counter to prevent erroneous determination of a temporary error even when the error range of the sensor is out of the allowable error range.
  • the fault counter is a method of notifying the integration server 300 or management terminal 400 by determining that the error range of the sensor is greater than a specific number of times (standard counter value) as a failure or performance degradation when the error range of the sensor is greater than the standard tolerance. .
  • the above-mentioned failure counter is reset to 0 when the operating time exceeds a certain range or reset to 0 when the corresponding sensor is off, so that the counter value continues to accumulate and causes problems that may occur. can also prevent them.
  • the controller 230 learns with a neural network learning model based on the sensed environment information within the normal operating range, so that each device can be controlled with an optimal control value.
  • Specific control values may include the on/off time of the air conditioner or air conditioner 110, the damper 120, the air purifying diffuser 130 or the ventilation unit 140, the temperature and humidity, the amount of air supply, the amount of exhaust, and the amount of air blown.
  • the result is reflected in the input variable of the learning model again for retraining, and the optimal value is added to or subtracted from the alpha value, which is the learning correction value, so that the optimal control value can be continuously corrected.
  • the statistical learning unit 240 collects all data about the environment information collected from the collection unit 210, the prediction result of the prediction unit 220, and the control information of the control unit 230, and collects various statistics based on the collected data. Data can be generated, and by applying a learning model, as the amount of collected data increases, big data can be used to generate comprehensive statistical data on sensing/control history, prediction/diagnosis result list, events, management details, etc. In addition, based on these statistical data, it is also possible to generate evaluation data that evaluates the state of management or maintenance required for optimization.
  • the statistics learning unit 240 may systematically show information collected through a monitoring program so that statistical data can be used as monitoring data.
  • the evaluation evolution unit 250 calculates the prediction accuracy of the prediction result by utilizing an evaluation model generated in advance for prediction verification based on the prediction result of the prediction model described above, and performs learning to be sensitive to prediction error according to the prediction accuracy.
  • the prediction model can be upgraded, and as repeated learning is repeated, the prediction model is continuously upgraded and adapted, which ultimately results in prediction. Even if there is no , it is possible to achieve self-evolution that allows the weights or variables of the prediction model to be adjusted and corrected by itself.
  • the variables of the model are adjusted according to the pattern to go through an adaptation step in which upgrades are continuously performed, and the models that have undergone the adaptation step are ultimately self-evolution is possible.
  • the prediction model and the evaluation model may be a prediction model and an evaluation model based on an artificial neural network, a radial basis function (RBF) neural network, an SVM algorithm, and the like.
  • RBF radial basis function
  • sensing information, prediction results, and evaluation information of predictive models and evaluation models are converted into big data, and big data is periodically updated. By upgrading and adapting according to the changed patterns of big data, the reliability of the model can be guaranteed.
  • the model undergoes an adaptation step in which upgrade is continuously performed by adjusting variables of the model according to the pattern.
  • the evaluation evolution unit 250 receives re-evaluation information reevaluated for the evaluation model that has performed the prediction model and diagnostic model evaluation, learns and adapts problems of the evaluation model based on the neural network learning algorithm with the provided re-evaluation information,
  • the above-described evaluation model may be upgraded.
  • the database 260 is systematically stored and managed through a plurality of databases 260 subdivided by category by classifying sensing information, control information, error prediction results, evaluation results, etc., and can be managed so that the corresponding information is provided upon request. there is.
  • the integration server 300 is connected to the local management server 200 through a wired/wireless communication network 500, and is a server for integrated management of a plurality of local management servers 200 located in each local area, and a central manager periodically It can be installed to monitor the local management servers 200 and manage them integrally.
  • the integration server 300 may collect environment information, control information, prediction and evaluation results, statistical data, and the like from each local management server 200 .
  • the management terminal 400 is an IoT device owned by the manager, and may be a portable terminal, and can be monitored so that the manager can check the status of the local management server 200 wherever it is located, and the integrated server 300 and Similarly, environmental information, control information, prediction and evaluation results, statistical data, etc. may be collected and displayed through a terminal screen.
  • the experimental standard is that the laboratory size is 3.2m (W) X 3.2m (L) X 3.8m (H), the air cleaning ability is 12 equilibrium, the sample is 1 conventional air conditioning method, 3 air conditioning methods of the present invention, Fine dust was injected with a smoke bomb, and the test time was 30 minutes.
  • the conditions of the sample are the ceiling air conditioning method with upper 650mm air supply (existing air conditioner product) in the case of sample 1, and the floor air conditioning method with upper exhaust and lower air supply of the present invention in the case of samples 2,3,4, and samples 2,3,4 is the difference in the position and height of the inlet, respectively, and is 650 mm, 1650 mm, and 2200 mm, respectively.
  • samples 2,3,4 is the difference in the position and height of the inlet, respectively, and is 650 mm, 1650 mm, and 2200 mm, respectively.
  • an air conditioner or air conditioner 110 and an air cleaning diffuser were connected, and a diffuser for auxiliary exhaust was also added.
  • FIG. 3 is a flowchart of a bio-air conditioning method according to an embodiment of the present invention.
  • the local management server 200 of the bio-air conditioning system collects environmental information about indoor temperature and humidity, fine dust, VOCs, CO2, air supply, exhaust, and airflow from each device (S401).
  • the local management server 200 determines an operation mode based on the collected environmental information, controls the cooling temperature and humidity, or controls the on/off of the damper 120, the air cleaning diffuser 130, or the ventilation unit 140, and also controls the indoor Air flow control according to temperature conditions is performed (S402, S403, S404).
  • the local management server 200 may periodically utilize a predictive model to compare the sensing error of the sensing information corresponding to the environmental information with a standard allowable error range to determine whether it is normal (S405).
  • the local management server 200 calculates the determination result and transmits it to the set management terminal 400 and control server (S406).
  • the local management server 200 may generate evaluation information that is an evaluation result by using an evaluation model that evaluates the prediction model using the prediction result of the prediction model, and upgrade the evaluation model by learning using the evaluation information ( S407, S408).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

본 발명의 일 실시예에 따른 바이오 공조 시스템은, 에어컨 또는 공조기를 활용하여 공기청정 디퓨져 및 환기 유닛과 연결되어 각각을 바닥 공조 방식으로 제어하기 위한 환경정보를 수집하고, 상기 환경정보를 토대로 상기 에어컨 또는 공조기, 공기청정 디퓨져, 흡입디퓨져 및 환기 유닛 각각을 제어하는 로컬 관리서버를 포함하며, 상기 바닥 공조 방식은 실내 공간에서 하부급기, 상부배기 방식으로 공조를 수행하기 위해 바닥이 위치한 하부에 공기청정 디퓨져가 배치되고, 천장이 위치한 상부에 흡입 디퓨져가 배치되어 공조가 이루어지는 것을 특징으로 한다.

Description

바이오 공조 시스템 및 방법
본 발명은 바이오 공조 시스템 및 방법에 관한 것으로, 더욱 상세하게는 하부급기, 상부배기의 바닥 공조 방식을 이용하며, 에어컨 또는 공조기, 환기 유닛 및 공기 청정기를 통합 관리할 수 있는 바이오 공조 시스템 및 방법에 관한 것이다.
에어컨, 공조기 등의 공기조화기는 쾌적한 실내 환경을 조성하기 위해 실내로 냉온의 공기를 토출하여, 실내 온도를 조절하고, 실내공기를 정화하도록 함으로서 인간에게 보다 쾌적한 실내 환경을 제공하기 위해 설치된다. 일반적으로 공기조화기는 열교환기로 구성되어 실내에 설치되는 실내기와, 압축기 및 열교환기 등으로 구성되어 실내기로 냉매를 공급하는 실외기를 포함한다.
또한 공기청정기란 실내의 공기를 본체내부로 흡입하고 정화필터 등에 통과시켜 다시 실내로 공급하는 작용을 수행하여 오염된 실내공기를 정화하는 장치이다.
최근에 소개되는 공기청정기는 공기정화 기능에 부가하여 실내의 묵은 공기를 외부로 내보내는 동시에 실외의 신선한 공기를 실내로 유입하는 환기 기능이 부가된 것도 제시되고 있다.
한편, 2000년대부터 이어지던 미세먼지가 최근 사회적인 이슈로 부각 되면서 공기청정기 시장이 급격히 커지고 있다.
그러나 외부 미세먼지로 문을 열 수 없는 상황에서 공기청정기 가동으로 미세먼지 농도를 줄이더라도 실내에 적체되는 이산화탄소(CO₂), 휘발성유기화합물(VOCs), 라돈, 폼알데하이드(HCHO) 등 유해가스를 해결할 수는 없다는 점이 국민의 불안을 가중시키고 있으며, 2020년 초 촉발된 세계적인 코로나19 팬데믹에서 실내 감염 예방이 최대 국정 이슈로 떠올라 환기산업이 다시 주목받고 있다.
비대면 산업이 각광받는 가운데서도 대면 상황이 불가피한 경우가 많아 환기시스템은 중요도의 차원을 넘어 반드시 해법을 제시해야만 하는 책임을 강요받고 있다. 향후 빈번한 감염병 유행이 발생한다는 우려를 감안하면 환기 시장의 중요성은 더욱 커질 전망이다.
이와 같은 많은 황사, 미세먼지 등의 환경문제로 인하여 공기정화 및 조화 기능을 제공하는 공조 시스템에 대한 관심이 증가하는 추세에 있으며, 상술한 냉난방, 공기 조화, 환기 기능을 같이 수행하기 위한 공조 시스템이 구축되고 있다.
하지만 기존의 공조 시스템은 개별적으로 구성된 시스템에서 각각 제어하여 이루어지는 것이고, 냉방, 공기청정, 제균, 환기를 통합한 시스템은 국내외에서 아직 구현되지 못하고 있다.
또한 냉방 중 미세먼지, 바이러스 등의 환경 문제를 동시에 해결하고 에너지의 효율적인 운영을 위하여 모든 공조는 시스템적인 통합 관리가 필요하다.
더욱이 기존의 공조시스템은 상부급기, 상부흡기 구조를 이루고 있어, 오염된 공기가 급기된 공기와 혼합된 상태로 배출이 되어 비효율적이며, 이와 같은 급배기 구조에서는 고속의 급기 기류와 중간 높이 상에 형성되는 혼합 기류로 인해 실내 거주자 간에 전염 바이러스가 확산될 가능성이 커지는 문제도 있었다.
따라서, 전술한 문제를 해결하기 위하여 냉난방, 공기청정, 제균, 환기를 통합한 기능을 제공하면서, 하부급기, 상부배기에 의한 상부 저속 기류를 형성하여 효율적인 공기 조화를 수행하면서 실내에서 바이러스 확산을 최소화할 수 있는 바이오 공조 시스템 및 방법에 대한 연구가 필요하게 되었다.
[선행기술문헌]
[특허문헌]
(특허문헌 001) 대한민국 등록 특허 제10-0650108호(2006년11월20일 등록))
본 발명의 목적은 바닥 공조 방식을 이용하여, 하부급기, 상부배기에 의한 실내의 저속 기류를 형성하여 미세먼지 또는 바이러스 등 오염물질을 비호흡 구간인 상부로 유인하여 바이러스 실내 확산을 최소화하며, 통제된 바이오 공조 시스템계를 통하여 미세먼지 제거 및 바이러스 살균을 실시하며, 쾌적한 냉난방을 위하여 고온 또는 저온의 공기가 고속으로 실내로 공급되지 않게 하며, 외부의 공기를 공급할 시에도 통제된 바이오 공조 시스템계를 통하여 실내 급기가 이루어져 에어컨 또는 공조기, 환기 유닛 및 공기청정 디퓨져를 통합 관리할 수 있는 바이오 공조 시스템 및 방법을 제공하는 것이다.
본 발명의 일 실시예에 따른 바이오 공조 시스템은, 에어컨 또는 공조기와 공기청정 디퓨져, 흡입부, 복수의 덕트 및 환기 유닛이 시스템으로 연결되어 각각을 바닥 공조 방식으로 제어하기 위한 환경정보를 수집하고, 상기 환경정보를 토대로 상기 에어컨 또는 공조기, 흡입부, 공기청정 디퓨져 및 환기 유닛 각각을 제어하는 로컬 관리서버를 포함하며, 상기 바닥 공조 방식은 실내 공간에서 하부급기, 상부배기 방식으로 공조를 수행하기 위해 바닥이 위치한 하부에 공기청정 디퓨져가 배치되고, 천장이 위치한 상부에 흡입 디퓨져가 배치되어 공조가 이루어지는 것을 특징으로 한다.
상기에 있어서, 상기 환경정보는 온습도정보, CO2 농도, VOCs 농도, 미세먼지 농도, 급기량, 배기량, 송풍량 중 적어도 어느 하나를 포함한다.
상기에 있어서, 상기 공기청정 디퓨져는 공기청정 디퓨져를 제어하기 위한 제어보드와, 미세먼지, VOCs, CO2 또는 온습도를 감지하는 감지센서와, 환기, 정화, 냉난방 모드 조건에 따라 회전수 또는 송풍량 제어 가능한 송풍기와, 필터 내부면에 미세먼지와 바이러스를 포집 할 수 있는 공기정화 필터와, 필터 내부만을 조사하며 그 빛이 필터벽에 의하여 외부로 누출 시키지 않는 UVC 살균 LED를 포함하며, 상기 로컬 관리서버는 상기 수집된 환경정보를 토대로 상기 에어컨의 냉방 온습도를 제어하거나, 상기 에어컨, 공조기, 공기청정 디퓨져, 흡입 디퓨져 또는 환기 유닛의 송풍을 온/오프하도록 제어하는 것을 특징으로 한다.
상기에 있어서, 상기 흡입부는 실내 상승 기류의 안정성을 확보하고 실내 정체 구역을 최소화하여, 바이러스 실내 확산을 방지하고 미세먼지 제거 효율을 높이기 위한 공기청정 순환 전용 흡입 디퓨져와, 강한 흡입을 위한 흡입 디퓨져 가압 송풍기와, 역류를 방지 하도록 댐퍼를 포함하며, 상기 수집된 환경정보를 토대로 로컬서버가 제어하는 것을 특징으로 한다.
상기에 있어서, 상기 환기 유닛은 바이오 공조시스템과 연결할 수 있는 환기 유닛 덕트와, 환기 유닛 급기구로의 실내공기의 역류를 방지하는 댐퍼와, 외기를 각 덕트에 분배할 수 있는 환기 유닛 분배기와, 분배기로부터 각 덕트에 연결하는 환기 유닛 분배 덕트를 포함하며,
상기의 미세먼지 또는 바이러스가 포함될 수 있는 외기를 덕트를 통하여 공기청정 디퓨져로 이송되며, 상기 공기청정 디퓨져의 필터 및 UVC를 통하여 정화 및 살균을 실시 후 실내 급기하는 시스템을 특징으로 하는 바이오 공조 시스템.
상기에 있어서, 상기 환기 또는 외기 급배기가 불가능한 시스템 에어컨을 환기 유닛과 통합 구성하여, 환기 유닛 내부에 구비된 환기 유닛 급기 송풍기와 환기 유닛 배기 송풍기를 포함하며, 상기 환기 유닛 급기 송풍기의 급기 풍량을 배기 풍량보다 많게 하여 양압실을 형성하거나 배기 풍량을 급기 풍량보다 많게 하여 음압실을 형성할 수 있으며, 모든 외기는 덕트를 통하여 상기 공기청정 디퓨져로 이송되며, 상기 공기청정 디퓨져를 통하여 정화 및 살균을 실시 후 실내 하부 급기하는 것을 특징으로 한다.
상기에 있어서, 일측에 댐퍼를 통합한 에어컨 또는 공조기와 급기와 배기를 위한 상기 환기 유닛을 상기 복수의 덕트와 통합하여 실내공간 상부에 배치하고, 상기 복수의 덕트에는 적어도 하나의 역류가 발생하지 않도록 가압 송풍기, 역류방지 댐퍼(BDD)가 구비된 흡입 디퓨져가 마련되고, 상기 덕트가 실내의 하방을 향해 실내 바닥까지 이어지도록 배치되며, 상기 덕트의 바닥을 향하는 단부에는 공기청정 디퓨져가 마련되어, 상기 바닥 공조 방식의 시스템 급기는 상기 환기 유닛, 에어컨 또는 공조기, 상층부 흡입부의 모든 공기가 덕트를 거쳐 상기 공기청정 디퓨져를 통하여 하부에서 급기가 이루어지고, 공기청정 디퓨져에 의해 급기된 저속의 정화된 공기는 실내의 오염된 공기의 실내 기류를 0.08m/s 이하의 상방 기류를 형성시켜 오염공기를 비호흡 구간인 실내 상부로 유인하여 실내 거주공간의 바이러스 확산을 최소화하고 미세먼지 제거 능력을 향상시키며, 실내 상부로 유인된 오염공기는 실내 상부의 흡입 디퓨져에서 재흡입이 이루어지도록 시스템화된 것을 특징으로 한다.
상기에 있어서, 상기 바닥 공조 방식의 급기 시스템은 상기 덕트를 통하여 공기청정 디퓨져로 공급된 오염공기는 공기청정 디퓨져에 장착된 공기정화 필터 내부면에서 오염공기 정화를 실시하고, 사람에게 유해한 UVC 빛은 필터벽을 이용해 노출되지 않으면서 살균이 이루어지게한 후 하부에서 급기가 이루어지도록 하는 것을 특징으로 한다.
상기에 있어서, 일측에 댐퍼를 통합한 에어컨 또는 공조기와 상기 덕트를 통합하여 실내공간 상부에 배치하고, 복수의 덕트에는 적어도 하나의 공기 청정 순환을 위한 정화용 흡입 디퓨져가 마련되고, 상기 덕트가 실내의 하방을 향해 실내 바닥까지 이어지도록 배치되며, 상기 덕트의 바닥을 향하는 단부에는 공기청정 디퓨져가 마련되어, 상기 바닥 공조 방식의 시스템 급기는 실내로 불쾌감이 없는 쾌적한 온도를 공급하기 위하여 에어컨 또는 공조기에서 급기되는 10~12℃에 해당하는 저온 또는 35~40℃에 해당하는 고온의 온도를 상부의 상기 흡입 디퓨져에서 흡입된 공기와 혼합하여 쾌적한 온도로 제어하며, 제어된 공기는 상기 공기청정 디퓨져를 통하여 정화, 살균 후 1.2m/s 이하의 저속 급기가 되도록 시스템화된 것을 특징으로 한다.
상기에 있어서, 상기 로컬 관리서버는 에어컨, 공조기, 공기청정 디퓨져, 환기 유닛과 내부 통신에 의해 각각 환경정보를 수집하는 수집부; 상기 수집부로부터 수집된 환경정보를 전달받아 해당 환경정보가 기준이 되는 각 허용오차 범위 내에서 작동하는지 비교함으로써, 센싱 오차가 허용오차 범위 내에 있는지 판단하는 예측부; 정상 작동 범위 내의 센싱된 환경 정보를 토대로 신경망 학습모델로 학습하여, 제어값으로 각 장치를 제어할 수 있도록 하는 제어부; 상기 수집부로부터 수집되는 환경정보, 예측부의 예측결과, 제어부의 제어정보에 대한 모든 데이터를 수집하고, 수집된 데이터를 근거로 통계 자료를 생성하는 통계학습부를 더 포함한다.
본 발명의 일 실시예에 따른 바이오 공조 방법은, 에어컨, 공조기, 공기청정 디퓨져 및 환기 유닛이 연결되어 환경정보를 수집하고, 상기 환경정보를 토대로 상기 에어컨, 공조기, 공기청정 디퓨져 및 환기 유닛 각각을 바닥 공조 방식으로 제어하는 로컬 관리서버를 이용한 바이오 공조 방법에 있어서, 상기 로컬 관리서버는 각 장치들로부터 실내 온습도, 급기량, 배기량, 송풍량에 대한 환경정보를 수집하는 단계; 상기 로컬 관리서버는 수집된 환경정보를 토대로 냉방 온습도, 공조기, 공기청정 디퓨져 또는 환기 유닛의 온오프 제어를 수행하는 단계를 포함하며, 상기 바닥 공조 방식은 실내 공간에서 상부급기, 상부배기 방식으로 공조를 수행하지 않토록, 바닥 하부에 위치한 공기청정 디퓨져가 배치되고, 천장이 위치한 상부에 흡입 디퓨져가 배치되어 공조가 이루어지는 것을 특징으로 한다.
상기에 있어서, 상기 로컬 관리서버는 주기적으로 예측모델을 활용하여 환경정보에 해당하는 센싱정보의 센싱 오차를 기준이 되는 허용 오차 범위와 비교하여 정상 유무를 판단하는 단계; 상기 로컬 관리서버는 판단 결과를 산출하고, 설정된 관리단말 및 통제서버로 전송하는 단계;를 더 포함한다.
상기에 있어서, 상기 로컬 관리서버는 예측 모델의 예측 결과를 이용하여 예측 모델을 평가하는 평가 모델을 이용하여 평가 결과인 평가정보를 생성하고, 평가정보를 이용하여 학습에 의해 평가 모델을 업그레이드하는 단계;를 포함한다.
본 발명의 바이오 공조 시스템은 냉난방, 공기청정, 제균, 환기를 통합한 기능을 제공하면서, 바닥 공조 방식으로 하부급기, 상부배기에 의한 상부 저속 기류를 형성하여 효율적인 공기 조화를 수행하면서 바이러스 확산을 최소화할 수 있는 장점이 있다.
또한 바닥 공조 방식은 상부급기, 상부배기 방식인 천장 공조 방식 대비하여, 외기냉방 사용 기간이 길어져 냉방부하가 절감돼 에너지 절감에 도움이 되며, 외기 사용으로 상대적으로 더 쾌적한 실내 환경을 충족시킬 수 있다.
또한 바닥에서 천장으로의 자연스런 공기 흐름으로 인해 천장 공조 대비 훨씬 적은 실내의 공기혼합으로 거주자의 호흡 영역에서 유해한 입자를 제거해 바이러스 감염 입자의 전달 경로를 크게 완화할 수 있게 된다.
또한 기존의 강한 기류의 공조 시스템을 저속기류로 개선하여, 공기 중 전파되는 바이러스 전염 없는 안전한 냉난방이 가능하도록 하며, 위생적으로 바이러스를 포집하고 살균 처리할 수 있다.
또한, 바닥에서 천장으로 공기 흐름으로 인해 천장공조 대비 훨씬 적은 실내의 혼합으로 거주자의 호흡 영역에서 유해한 입자를 제거해 바이러스 감염 입자의 전달 경로를 크게 완화할 수 있으며, 이와 같이 실내의 공기질 향상은 바닥공조를 적용하면 바이러스에 의한 실내 전염을 크게 줄일 수 있다.
또한 바닥 공조 방식은 실내의 온도 성층화를 이뤄 실제 거주구역과 호흡 구역에 떠다니던 작은 입자들이 기류에 의해 따뜻한 공기와 함께 상부 천으로 밀려나게 되고 천장에서 리턴되어 바이러스 입자가 제거돼 쾌적한 실내공간을 구현할 수 있으며, 공기청정 디퓨저에 설치된 UVC가 직접 바이러스 살균을 실시하며, 이는 기존에 적용된 공조 방식과 다른 시스템으로, 코로나19로 중요성이 가중된 실내 공기질을 개선할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 바이오 공조 시스템의 구성을 보인 블록도이다.
도 2는 도 1의 바이오 공조 시스템의 내부 구성을 세부적으로 보인 블록도이다.
도 3은 본 발명의 일 실시예에 따른 바이오 공조 방법의 순서도이다.
도 4는 하부 급기, 상부 배기 방식의 저속 기류 안정화를 위한 바이오 공조 시스템의 구성 예시를 보여주는 도면이다.
도 5는 공기청정 디퓨져의 필터 내부면을 통하여 안전한 공기정화 및 살균을 보여주는 도면이다.
도 6은 천장형 에어컨과 환기 유닛이 일체화된 통합 형태 예시를 보여주는 도면이다.
도 7은 흡입 디퓨져(150)의 세부 구성인 가압 송풍기 및 역류 방지를 위한 BDD(댐퍼) 구성을 보여주는 도면이다.
도 8은 본 발명의 바이오 공조 시스템의 설치 예시를 보여주는 도면이다.
도 9는 종래의 상부급기, 상부배기 방식의 혼합 공조 방식(A)과 본 발명의 하부급기 상부배기 방식의 치환 공조 방식(B)에서의 기류 변화를 비교한 예시 도면이다.
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 다만, 본 발명의 사상은 제시되는 실시예에 제한되지 아니하고, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 구성요소를 추가, 변경, 삭제 등을 통하여, 퇴보적인 다른 발명이나 본 발명 사상의 범위 내에 포함되는 다른 실시예를 용이하게 제안할 수 있을 것이나, 이 또한 본원 발명 사상 범위 내에 포함된다고 할 것이다. 또한, 각 실시예의 도면에 나타나는 동일한 사상의 범위 내의 기능이 동일한 구성요소는 동일한 참조부호를 사용하여 설명한다.
또한 본 명세서에서 ‘단말’은 휴대성 및 이동성이 보장된 무선 통신 장치일 수 있으며, 예를 들어 스마트폰, 태블릿 PC 또는 노트북 등과 같은 모든 종류의 핸드헬드(Handheld) 기반의 무선 통신 장치일 수 있다. 또한, ‘단말’은 유무선 통신망을 통해 다른 단말 또는 서버 등에 접속할 수 있는 PC 등의 유선 통신 장치인 것도 가능하다.
또한, 유무선 통신망(500)은 단말들 및 서버들과 같은 각각의 노드 상호 간에 정보 교환이 가능한 연결 구조를 의미하는 것으로, 근거리 통신망(LAN: Local Area Network), 광역 통신망(WAN: Wide Area Network), 인터넷 (WWW: World Wide Web), 유무선 데이터 통신망, 전화망, 유무선 텔레비전 통신망 등을 포함한다.
무선 데이터 통신망의 일례에는 3G, 4G, 5G, 3GPP(3rd Generation Partnership Project), LTE(Long Term Evolution), WIMAX(World Interoperability for Microwave Access), 와이파이(Wi-Fi), 블루투스 통신, 적외선 통신, 초음파 통신, 가시광 통신(VLC: Visible Light Communication), 라이파이(LiFi) 등이 포함되나 이에 한정되지는 않는다.
도 1은 본 발명의 일 실시예에 따른 바이오 공조 시스템의 구성을 보인 블록도이며, 도 2는 도 1의 바이오 공조 시스템의 내부 구성을 세부적으로 보인 블록도이다.
본 발명의 바이오 공조 시스템은 에어컨 또는 공조기(110), 댐퍼(120), 공기청정 디퓨져(130), 환기 유닛(140), 흡입 디퓨져(150)가 연결되어 통합 관리하는 로컬 관리서버(200)를 포함한다. 또한 로컬 관리서버(200)에 연결되는 장치는 히터와 같은 난방장치도 포함될 수 있음은 물론이다.
로컬 관리서버(200)는 연결된 에어컨 또는 공조기(110), 댐퍼(120), 공기청정 디퓨져(130), 환기 유닛(140), 흡입 디퓨져(150)로부터 각 장치들을 바닥 공조 방식으로 제어하기 위한 환경정보를 수집한다.
환경정보는 예컨대, 에어컨 또는 공조기(110)의 냉방 조건에 해당하는 온습도정보, 흡입 디퓨져(150), 공기청정 디퓨져(130) 또는 환기 유닛(140)의 온습도정보, CO2 농도, VOC 농도, 미세먼지 농도, 급기량, 배기량 등이 될 수 있으며, 이를 위한 별도의 센서가 각 장치에 설치될 수도 있다.
로컬 관리서버(200)는 수집된 환경정보를 토대로 각 장치를 적합한 상태로 제어할 수 있다.
구체적으로 냉방 온습도를 조절하도록 제어하거나, 댐퍼(120), 공기청정 디퓨져(130), 환기 유닛(140) 또는 흡입 디퓨져(150)의 송풍을 온/오프하도록 제어할 수 있다.
공기청정 디퓨져(130)는 공기청정 기능을 하며, 공기청정 디퓨져의 구성은 공기청정 디퓨져(130)를 제어하기 위한 제어보드, 감지 센서(미세먼지, VOC, CO2, 온습도), 송풍기(회전수 또는 송풍량 제어 가능), 공기정화 필터(131), UV-C(132) 살균 LED를 포함한다.
공기청정 디퓨져(130)는 센서로부터 감지된 환경정보를 로컬 관리서버(200)에 전송하고, 로컬 관리서버(200)의 제어하에 환경정보를 토대로 공기청정 기능과 살균 기능을 같이 수행할 수 있도록 구성된다.
특히, 공기청정 디퓨져의 UVC(자외선) LED는 전염성 바이러스를 살균 처리할 수 있도록 하였다. 이때 UVC를 필터 내부에 설치하여 인체에 유해한 UVC 빛이 외부 노출되지 않도록 하고 살균의 효과를 극대화할 수 있다. 또한 공기청정 디퓨저의 UVC(자외선) LED 방식의 살균 방식도 향후 기술진보에 따라 다른 살균방식으로의 적용도 가능할 것이다.
또한, 실내부하에 따라 송풍기의 송풍량을 조절하는 가변풍량(VAV)방식으로 실내 재실자의 요구에 맞게 댐퍼(120)의 개방(Open)과 폐쇄(Close)를 비례 제어해 실내 설정 온도를 유지할 수 있다.
또한, 본 발명의 바이오 공조 시스템은 실내 공간에서 하부급기 및 상부배기 방식을 사용하기 위해 바닥에 공기청정 디퓨져(130)가 배치되고, 천장에 흡입 디퓨져(150)가 배치되는 바닥 공조 방식을 채용하여 공조가 이루어진다.
이를 위한 본 발명의 일 실시예에 따른 바이오 공조 시스템 구조는 도 4 내지 도 6,8을 참조하면, 천장형 에어컨 또는 공조기(110)에 환기 유닛(140), 댐퍼(120)를 통합하여 배치하고, 복수(예: 4개)의 덕트(100)를 에어컨 또는 공조기(110) 상하 및 좌우로 각각 연결하고, 덕트(100)가 실내의 하방을 향해 절곡되어 실내 바닥까지 이어지며, 바닥을 향하는 단부에는 공기청정 디퓨저가 설치됨으로써, 하부급기, 상부배기 방식으로 공조가 이루어지도록 하는 것이다.
즉, 기존의 천장형 에어컨 또는 공조기(110)의 일측에 연결된 덕트(100)에 급기와 배기를 위한 환기 유닛(140)이 연결되고, 덕트 말단에 공기청정 디퓨져(130) 통합하여 배치된다.
또한 복수의 덕트(100)를 상기 에어컨 또는 공조기(110)의 상하 및 좌우로 각각 연결하며, 상기 에어컨 또는 공조기(110)에 인접한 덕트(100)에는 적어도 하나의 흡입 디퓨져(150)가 마련된다.
나아가 상기 복수의 덕트에 마련되는 흡입 디퓨저(150)는 도 7에 도시된 바와 같이, 적어도 하나의 역류가 발생하지 않도록 가압 송풍기(151), 역류방지 댐퍼(BDD, 152)가 구비된다.
상기 덕트(100)가 실내의 하방을 향해 실내 바닥까지 이어지도록 배치되며, 상기 덕트(100)의 바닥을 향하는 단부에는 공기청정 디퓨져(130)가 마련된다.
이와 같은 구조에서 냉난방 시 상기 에어컨 또는 공조기(110)의 공기는 댐퍼(120)에 의해 필요 열량이 조절되며, 조절된 공기는 실내 상부 흡입디퓨져(150)를 통해 흡인된 실내 상부 공기와 혼합하여 덕트(100)를 거쳐 상기 공기청정 디퓨져(130)를 통하여 하부에서 급기가 이루어진다.
또한, 환기는 상기 환기 유닛(140)에서 공급된 공기가 덕트(100)를 거쳐 상기 공기청정 디퓨져(130)를 통하여 하부에서 급기가 이루어진다.
또한, 실내의 공기정화는 상방 기류가 형성된 실내 오염된 공기는 상기 흡입 디퓨져(150)를 통하여 상부에서 흡입을 이루어지도록 하고 공기가 덕트(100)를 거쳐 상기 공기청정 디퓨져(130)를 통하여 하부에서 급기가 이루어진다.
바닥 공조 방식은 상부급기, 상부배기 방식의 천장 공조 방식은 고온, 저온의 공기를 고속으로 급기하는 것 대비 급기온도를 냉방시에는 상대적으로 높은 온도(예컨대 18℃) 난방시에는 상대적으로 낮은 (예컨대 28℃)로 공급함, 외기냉방 사용 기간이 길어져 냉방부하가 절감돼 에너지 절감에 도움이 되며 외기사용으로 상대적으로 더 쾌적한 실내 환경을 충족시킬 수 있다.
도 6을 참조하면, 환기 시 모든 외기는 바이오 공조 시스템 내에서 운영될 수 있도록 환기 유닛(140)의 급기구는 환기 유닛 덕트(141)와 연결되어 환기 유닛 분배기(142), 환기 유닛 분배 덕트(143)로 이어져 바이오 공조 시스템의 덕트(100)와 연결된다. 이렇게 연결된 바이오 공조 덕트계의 도 4와 같이 모든 공기는 공기청정 유닛을 통해 정화 살균 후 실내 하부급기가 이루어지도록 하여 실내 공기질을 관리할 수 있다. 즉, 환기 유닛(140)은 바이오 공조시스템과 연결할 수 있는 환기 유닛 덕트(141)와, 환기 유닛 급기구로의 실내공기의 역류를 방지하는 댐퍼(120)와, 외기를 각 덕트에 분배할 수 있는 환기 유닛 분배기(142)와, 분배기로부터 각 덕트에 연결하는 환기 유닛 분배 덕트(143)를 포함한다.
도 9를 참조하면, 바닥 공조 방식(도 9의 B)과 기존 천장 공조 방식(도 9의 A)의 큰 차이점은 기류의 속도와 분포에 있다.
바닥 공조 방식을 적용하면 냉방시 천장 공조 방식보다 높은 취출온도(18℃)와 낮은 풍속(1.25m/s이하)으로 바닥 취출구에서 공급된다.
이렇게 공기가 실내로 유입되면 바닥으로부터 2m 높이의 거주 구역까지만 공조가 이뤄지며, 2m 이상 높이의 비거주구역과 온도 성층화를 이뤄 하부 공기는 쾌적한 상태를 유지하고 상부의 오염된 공기는 리턴되어 환기가 이뤄진다.
이로써 실내 재실자의 호흡으로 뿜어진 오염된 입자들은 서서히 상부로 올라가 환기되며 거주구역은 신선한 공기만 유지돼 쾌적한 환경을 유지할 수 있는 것이다.
즉, 바닥 공조 방식은 기존의 천장형 시스템 에어컨 또는 공조기(110)가 설치된 곳과 다르게 실내의 오염된 공기가 혼합 또는 재순환되지 않고 오염된 공기를 상부로 유도시켜 밀어내 천장의 리턴을 통해 처리하기 때문에 공기질 향상에 효과적인 것이다.
바닥 공조 방식은 하부급기, 상부배기를 이루어 실내 기류를 바이러스 확산이 되지 않도록 저속의 안정적 기류를 형성하는 공조를 하는 것이며, 저속 하부급기를 실시하고 비호흡 구간인 상부 수직 방향으로 실내 기류를 유지하여 바이러스가 실내 전체로 확산되지 않도록 하는 것이다.
구체적으로 하부 급기를 통하여 주거 공간인 실내 하부(1.75m 이하)를 우선 정화를 시키며 이때 급기 속도는 1.25m/s 이내이어야 하며, 수직 상승 기류 속도는0.05m/s 이하로 유지시킬 수 있다.
또한, 실내 전반의 정체 구역을 제거하기 위하여 천장 덕트(100)에 다수의 배기용 흡입 디퓨져(150)를 설치하여 리턴 디퓨져를 구성할 수 있다.
실내 천장 상층부(1.75m 이상)로 유인된 오염물질은 도 4 및 도 8에 도시된 바와 같이, 흡입 디퓨져(150)에 설치된 리턴 디퓨져로 흡입되어 정화하기 위한 공기청정 디퓨져로 안전하게 포집되도록 한다.
포집된 미세먼지 바이러스는 공기청정 디퓨져 내에 설치된 필터 및 UVC LED에 의하여 살균 처리된다.
또한 로컬 관리서버(200)는 바닥 공조가 효율적으로 이루어지도록 관리하고 제어하기 위한 역할을 수행할 수 있으며, 이를 위해 각 장치인 에어컨 또는 공조기(110), 댐퍼(120), 공기청정 디퓨저(130), 환기 유닛(140)으로부터 각종 환경정보를 수집하는 것이다.
로컬 관리서버(200)는 또한 도 2를 참조하면 세부적으로 수집부(210), 예측부(220), 제어부(230), 통계학습부(240), 평가진화부(250), 데이터베이스(260)를 더 포함한다.
수집부(210)는 각 장치인 에어컨 또는 공조기(110), 댐퍼(120), 공기청정 디퓨져(130), 환기 유닛(140)과 내부 통신에 의해 각각 환경정보를 수집한다.
예측부(220)는 상기 수집부(210)로부터 수집된 환경정보를 전달받아 해당 환경정보 값들이 기준이 되는 각 허용오차 범위 내에서 작동하는지 비교함으로써, 센싱 오차가 허용오차 범위 내에 있는지 판단할 수 있으며, 이를 통해 센서(또는 내부에 센서)가 포함된 해당 장치 예컨대 에어컨 또는 공조기(110), 댐퍼(120), 공기청정 디퓨져(130), 환기 유닛(140))가 정상 작동하는지 유무를 판단할 수 있다.
나아가 예측부(220)는 상기 환경정보를 입력변수로 한 적어도 하나 이상의 머신러닝 또는 신경망 학습 알고리즘을 이용한 예측 모델을 기반으로 센서의 오차나 오작동 등에 대한 예측 모델을 생성할 수 있으며, 예측 모델의 예측 결과를 이용하여 센서의 허용 오차 범위를 판단하고, 허용 오차 범위 내에서 센서의 정상 작동 유무를 판단할 수 있다.
학습 알고리즘으로는 예컨대, 패턴 학습에 유리한 서포트 벡터 머신(SVM), 컨벌루션 신경망(CNN), 순환신경망(RNN) 등이 될 수 있다.
예측부(220)의 예측 결과에 따라 정상 작동이 아니라고 판단되는 경우에는 센싱정보 수집을 중단하고, 통합서버(300)나 관리단말(400)로 경고 알람을 전송할 수 있으며, 경고 알람의 형태는 단계별(예컨대 정상, 주의, 비정상)로 설정될 수 있다.
또한 기준이 되는 허용오차는 학습 초기에는 수집된 센싱정보가 존재하지 않기 때문에, 초기 센서의 출하시 센서 설계에 따라 매뉴얼에서 정해진 허용 오차가 반영될 수 있다.
또한 예측부(220)에서 센싱정보를 처리하는 경우, 시계열적인 데이터셋을 신경망을 통해 학습시키는 것보다, 센싱정보를 주파수 도메인으로 변환하여 이후 단계에서 학습이나 분석하는 것이 특히, 센서 데이터의 변화 추이가 중요한 상황에서는 효과적일 수 있고, 이러한 주파수 도메인의 변환에는 보다 구체적으로 패스트-푸리에-변환(FFT: Fast Fourier Transformation)이 바람직하다.
또한, 예측부(220)는 센서의 오차 범위가 허용 오차 범위를 벗어난 경우라 하더라도, 일시적인 오류에 대한 오판을 방지하기 위해 고장 카운터를 활용할 수 있다.
고장 카운터는 센서의 오차 범위가 기준이 되는 허용 오차 보다 큰 경우가 특정 횟수(기준 카운터값) 이상일 때에만 고장이나 성능 저하로 판단하여 통합서버(300)나 관리단말(400)에 통지하는 방법이다.
해당 방식의 경우 회귀적(recursive)으로 오류를 판단하는 방식으로 상술했던 일시적인 노이즈 등으로 인한 오판 가능성을 낮출 수 있게 된다.
또한 상술한 고장 카운터는 동작 시간이 특정 범위를 넘어가는 경우 다시 0으로 리셋(reset)하거나, 해당 센서가 Off 되는 경우 다시 0으로 리셋하는 방식으로 해서, 카운터 값이 계속되어 누적되어 생길 수 있는 문제점들을 방지할 수도 있다.
제어부(230)는 정상 작동 범위 내의 센싱된 환경 정보를 토대로 신경망 학습모델로 학습하여, 최적의 제어값으로 각 장치를 제어할 수 있도록 한다.
구체적인 제어값으로는 에어컨 또는 공조기(110), 댐퍼(120), 공기청정 디퓨져(130) 또는 환기 유닛(140)의 온/오프 시간, 온습도, 급기량, 배기량, 송풍량 등이 될 수 있으며, 학습 결과는 재트레이닝을 위해 다시 학습모델의 입력변수에 반영하여 최적값은 학습 보정치인 알파값으로 가감됨으로써, 최적의 제어값을 지속적으로 보정할 수 있도록 한다.
통계학습부(240)는 수집부(210)로부터 수집되는 환경정보, 예측부(220)의 예측결과, 제어부(230)의 제어정보에 대한 모든 데이터를 수집하고, 수집된 데이터를 근거로 각종 통계 자료를 생성할 수 있으며, 학습모델을 적용하여, 수집된 데이터양이 증가할수록 빅데이터를 활용하여 센싱/제어이력, 예측/진단 결과 리스트, 이벤트, 관리 내역 등 에 대한 포괄적인 통계자료를 생성할 수 있을 뿐만 아니라, 이들 통계자료를 기반으로 최적화에 필요한 관리 상태나 유지보수 상태를 평가한 평가자료를 생성할 수도 있다.
특히 통계학습부(240)는 통계자료를 모니터링 자료로 활용하도록 모니터링 프로그램을 통하여 수집된 정보를 체계적으로 보여줄 수 있다.
평가진화부(250)는 상술한 예측 모델의 예측 결과를 토대로 예측 검증을 위해 미리 생성한 평가 모델을 활용하여 예측 결과의 예측정확도를 산출하고, 예측정확도에 따른 예측 오차에 대해 민감하도록 학습을 수행하여 예측 모델의 가중치나 변수를 조정할 수 있도록 함으로써, 예측 모델의 업그레이드를 수행할 수 있으며, 반복된 학습을 거듭할수록 예측 모델 업그레이드가 지속적으로 이루어져 적응(Adaptation)해 나갈 수 있으며 이를 통해 궁극적으로 예측 결과가 없더라도 예측 모델의 가중치나 변수를 스스로 조정하고 보정할 수 있도록 하는 자가 진화(selfevolution)를 이룰 수도 있다.
구체적으로는, 예측 모델의 수행결과 예측값들이 일정한 패턴을 나타내면, 패턴에 따라 해당 모델의 변수를 조정하여 업그레이드가 지속적으로 이루어지는 적응 단계를 거치게 되고, 적응 단계를 거친 해당 모델들은 인공지능 알고리즘에 의해 궁극적으로 스스로 자가 진화가 가능해진다.
여기서 예측 모델 및 평가 모델은 인공신경망(Artificial Neural Network), RBF(Radial Basis Function) 신경망, SVM 알고리즘 등을 기반으로 한 예측 모델 및 평가 모델일 수 있다.
또한 센싱정보, 예측 결과 및 예측 모델과 평가 모델의 평가정보는 빅데이터화되고, 빅데이터는 주기적으로 갱신되기 때문에, 빅데이터를 이용하여 예측 모델 뿐만 아니라, 이들 모델을 평가하기 위한 평가 모델을 주기적으로 업그레이드하여 빅데이터의 변화된 패턴에 따라 적응(Adaptation)할 수 있게 함으로써, 해당 모델의 신뢰성을 보장할 수 있게 할 수 있다.
즉, 예측값들이 일정한 패턴을 나타내면, 패턴에 따라 해당 모델의 변수를 조정하여 업그레이드가 지속적으로 이루어지는 적응 단계를 거치게 된다.
또한, 적응 단계를 거친 해당 모델들은 인공지능 알고리즘에 의해 궁극적으로 스스로 자가 진화(self-evolution)가 가능해진다.
따라서, 평가진화부(250)는 예측 모델 및 진단 모델 평가를 수행한 평가 모델에 대해서 재평가한 재평가정보를 제공받고, 제공받은 재평가정보로 평가모델의 문제점을 신경망 학습 알고리즘 기반으로 학습하고 적응하여, 상술한 평가모델의 업그레이드를 수행할 수도 있다.
데이터베이스(260)는 센싱정보, 제어정보, 오차 예측 결과, 평가 결과 등에 대하여 분류하여 카테고리별로 세분화된 복수의 데이터베이스(260)를 통하여 체계적으로 저장되어 관리되고, 요청시 해당 정보가 제공되도록 관리될 수 있다.
통합서버(300)는 유무선 통신망(500)을 통하여 로컬 관리서버(200)와 연결되며, 로컬 지역마다 위치한 다수의 로컬 관리서버(200)를 통합 관리하기 위한 서버이고, 중앙 관제소 등에서 중앙 관리자가 주기적으로 로컬 관리서버(200)들을 모니터링하고, 통합적으로 관리하기 위해 설치될 수 있다.
이를 위해 통합서버(300)는 각 로컬 관리서버(200)로부터 환경정보, 제어정보, 예측 및 평가 결과, 통계자료 등을 수집할 수 있다.
또한 관리단말(400)은 관리자가 소지한 IoT 기기로서, 휴대형 단말기가 될 수 있으며, 관리자가 어디에 위치하든 로컬 관리서버(200)의 상태를 확인할 수 있도록 모니터링할 수 있으며, 통합서버(300)와 유사하게 환경정보, 제어정보, 예측 및 평가 결과, 통계자료 등을 수집하여 단말 화면을 통하여 표시될 수 있다.
나아가, 본 발명의 바이오 공조 시스템의 기류 분포 및 정화능력을 확인하기 위해 종래의 공기조화 시스템과 동일 조건으로 실험을 하였다.
실험 기준은 실험실 규격이 3.2m(W)X 3.2m(L)X 3.8m(H)이며, 공기 청정 능력이 12평형이고, 시료는 종래 공조방식 1개, 본 발명의 공조방식 3개이며, 미세먼지는 연막탄을 투입하였으며, 시험 시간은 30분으로 진행하였다.
시료의 조건은 시료 1의 경우 상부 650mm 급기(기존 공조기 제품)인 천장 공조 방식이고, 시료 2,3,4의 경우 본 발명의 상부 배기, 하부 급기인 바닥 공조 방식이고, 시료 2,3,4는 각각 흡입부의 위치, 높이의 차이가 있는 것이며, 각각 650mm, 1650mm, 2200mm 인 것이다. 또한 시료 4에는 에어컨 또는 공조기(110)과 공기청정 디퓨저를 연결하고, 보조 배기용 디퓨저도 추가하였다.
그 실험 결과는 도 10에 도시하고 있으며, 실험 결과에서 보듯이, 시료 1에서 시료 4로 갈수록 공기 정화 능력이 향상됨을 알 수 있으며, 특히 시료 1과 본 발명의 바닥 공조 방식이 적용되는 시료 2~4의 비교시 공기 정화 능력이 확연히 차이가 나는 것을 알 수 있다.
도 3은 본 발명의 일 실시예에 따른 바이오 공조 방법의 순서도이다.
바이오 공조 시스템의 로컬 관리서버(200)는 각 장치들로부터 실내 온습도, 미세먼지, VOCs, CO2, 급기량, 배기량, 송풍량에 대한 환경정보를 수집한다(S401).
로컬 관리서버(200)는 수집된 환경정보를 토대로 운전 모드를 결정하고, 냉방 온습도 조절이나 댐퍼(120), 공기청정 디퓨져(130) 또는 환기 유닛(140)의 온오프 제어를 수행하며, 또한 실내온도 조건에 따른 기류 제어를 수행한다(S402, S403, S404).
또한 로컬 관리서버(200)는 주기적으로 예측모델을 활용하여 환경정보에 해당하는 센싱정보의 센싱 오차를 기준이 되는 허용 오차 범위와 비교하여 정상 유무를 판단할 수 있다(S405).
또한 로컬 관리서버(200)는 판단 결과를 산출하고, 설정된 관리단말(400) 및 통제서버로 전송한다(S406).
로컬 관리서버(200)는 예측 모델의 예측 결과를 이용하여 예측 모델을 평가하는 평가 모델을 이용하여 평가 결과인 평가정보를 생성하고, 평가정보를 이용하여 학습에 의해 평가 모델을 업그레이드할 수 있다(S407, S408).
[부호의 설명]
100 ; 덕트
110 ; 에어컨 또는 공조기
120 ; 댐퍼
130 ; 공기청정 디퓨져
131 ; 공기정화 필터
132 ; UVC (살균장치)
140 ; 환기 유닛
141 ; 환기 유닛 덕트
142 ; 환기 유닛 분배기
143 ; 환기 유닛 환기 유닛 분배 덕트
150 ; 흡입 디퓨져(흡입부)
151 ; 흡입 디퓨져 가압 송풍기
152 ; 흡입 디퓨져 BDD 댐퍼
200 ; 로컬 관리서버
210 ; 수집부
220 ; 예측부
230 ; 제어부
240 ; 통계학습부
250 ; 평가진화부
260 ; 데이터베이스
300 ; 통합서버
400 ; 관리단말
500 ; 유무선 통신망

Claims (13)

  1. 에어컨 또는 공조기와 공기청정 디퓨져, 흡입부, 복수의 덕트 및 환기 유닛이 시스템으로 연결되어 각각을 바닥 공조 방식으로 제어하기 위한 환경정보를 수집하고, 상기 환경정보를 토대로 상기 에어컨 또는 공조기, 흡입부, 공기청정 디퓨져 및 환기 유닛 각각을 제어하는 로컬 관리서버를 포함하며,
    상기 바닥 공조 방식은 실내 공간에서 하부급기, 상부배기 방식으로 공조를 수행하기 위해 바닥이 위치한 하부에 공기청정 디퓨져가 배치되고, 천장이 위치한 상부에 실내 상승 기류의 안정성을 확보하고 실내 정체 구역을 최소화하여, 바이러스 실내 확산을 방지하고 미세먼지 제거 효율을 높이기 위한 공기청정 순환 전용 흡입 디퓨져가 배치되어 공조가 이루어지는 것을 특징으로 하는 바이오 공조 시스템.
  2. 제1항에 있어서,
    상기 환경정보는
    온습도정보, CO2 농도, VOCs 농도, 미세먼지 농도, 급기량, 배기량, 송풍량 중 적어도 어느 하나를 포함하는 바이오 공조 시스템.
  3. 제1항에 있어서,
    상기 공기청정 디퓨져는
    공기청정 디퓨져를 제어하기 위한 제어보드와,
    미세먼지, VOCs, CO2 또는 온습도를 감지하는 감지센서와,
    환기, 정화, 냉난방 모드 조건에 따라 회전수 또는 송풍량 제어 가능한 송풍기와,
    필터 내부면에 미세먼지와 바이러스를 포집할 수 있는 공기정화 필터와,
    필터 내부만을 조사하며 그 빛이 필터벽에 의하여 외부로 누출 시키지 않는 UVC 살균 LED를 포함하며,
    상기 로컬 관리서버는
    상기 수집된 환경정보를 토대로 상기 에어컨의 냉방 온습도를 제어하거나, 상기 에어컨, 공조기, 공기청정 디퓨져, 흡입 디퓨져 또는 환기 유닛의 송풍을 온/오프하도록 제어하는 것을 특징으로 하는 바이오 공조 시스템.
  4. 제1항에 있어서,
    상기 흡입부는
    실내 상승 기류의 안정성을 확보하고 실내 정체 구역을 최소화하여, 바이러스 실내 확산을 방지하고 미세먼지 제거 효율을 높이기 위한 공기청정 순환 전용 흡입 디퓨져와,
    강한 흡입을 위한 흡입 디퓨져 가압 송풍기와,
    역류를 방지 하도록 댐퍼를 포함하며,
    상기 수집된 환경정보를 토대로 로컬서버가 제어하는 것을 특징으로 하는 바이오 공조 시스템.
  5. 제1항에 있어서,
    상기 환기 유닛은
    바이오 공조 시스템과 연결할 수 있는 환기 유닛 덕트와,
    환기 유닛 급기구로의 실내공기의 역류를 방지하는 댐퍼와,
    외기를 각 덕트에 분배할 수 있는 환기 유닛 분배기와,
    분배기로부터 각 덕트에 연결하는 환기 유닛 분배 덕트를 포함하며,
    상기의 미세먼지 또는 바이러스가 포함될 수 있는 외기를 덕트를 통하여 공기청정 디퓨져로 이송되며, 상기 공기청정 디퓨져의 필터 및 UVC를 통하여 정화 및 살균을 실시 후 실내 급기하는 시스템을 특징으로 하는 바이오 공조 시스템.
  6. 제5항에 있어서,
    상기 환기 또는 외기 급배기가 불가능한 시스템 에어컨을 환기 유닛과 통합 구성하여, 환기 유닛 내부에 구비된 환기 유닛 급기 송풍기와 환기 유닛 배기 송풍기를 포함하며,
    상기 환기 유닛 급기 송풍기의 급기 풍량을 배기 풍량보다 많게 하여 양압실을 형성하거나 배기 풍량을 급기 풍량보다 많게 하여 음압실을 형성할 수 있으며,
    모든 외기는 덕트를 통하여 상기 공기청정 디퓨져로 이송되며,
    상기 공기청정 디퓨져를 통하여 정화 및 살균을 실시 후 실내 하부 급기하는 것을 특징으로 하는 바이오 공조 시스템.
  7. 제1항에 있어서,
    일측에 댐퍼를 통합한 에어컨 또는 공조기와 급기와 배기를 위한 상기 환기 유닛을 상기 복수의 덕트와 통합하여 실내공간 상부에 배치하고,
    상기 복수의 덕트에는 적어도 하나의 역류가 발생하지 않도록 가압 송풍기, 역류방지 댐퍼(BDD)가 구비된 흡입 디퓨져가 마련되고,
    상기 덕트가 실내의 하방을 향해 실내 바닥까지 이어지도록 배치되며,
    상기 덕트의 바닥을 향하는 단부에는 공기청정 디퓨져가 마련되어,
    상기 바닥 공조 방식의 시스템 급기는
    상기 환기 유닛, 에어컨 또는 공조기, 상층부 흡입부의 모든 공기가 덕트를 거쳐 상기 공기청정 디퓨져를 통하여 하부에서 급기가 이루어지고,
    공기청정 디퓨져에 의해 급기된 저속의 정화된 공기는 실내의 오염된 공기의 실내 기류를 0.08m/s 이하의 상방 기류를 형성시켜 오염공기를 비호흡 구간인 실내 상부로 유인하여 실내 거주공간의 바이러스 확산을 최소화하고 미세먼지 제거 능력을 향상시키며, 실내 상부로 유인된 오염공기는 실내 상부의 흡입 디퓨져에서 재흡입이 이루어지도록 시스템화된 것을 특징으로 하는 바이오 공조 시스템.
  8. 제6항에 있어서,
    상기 바닥 공조 방식의 급기 시스템은
    상기 덕트를 통하여 공기청정 디퓨져로 공급된 오염공기는 공기청정 디퓨져에 장착된 공기정화 필터 내부면에서 오염공기 정화를 실시하고,
    사람에게 유해한 UVC 빛은 필터벽을 이용해 노출되지 않으면서 살균이 이루어지게 한 후 하부에서 급기가 이루어지도록 하는 것을 특징으로 하는 바이오 공조 시스템.
  9. 제1항에 있어서,
    일측에 댐퍼를 통합한 에어컨 또는 공조기와 상기 덕트를 통합하여 실내공간 상부에 배치하고,
    복수의 덕트에는 적어도 하나의 흡입 디퓨져가 마련되고,
    상기 덕트가 실내의 하방을 향해 실내 바닥까지 이어지도록 배치되며,
    상기 덕트의 바닥을 향하는 단부에는 공기청정 디퓨져가 마련되어,
    상기 바닥 공조 방식의 시스템 급기는
    실내로 불쾌감이 없는 쾌적한 온도를 공급하기 위하여 에어컨 또는 공조기에서 급기되는 10~12℃에 해당하는 저온 또는 35~40℃에 해당하는 고온의 온도를 상부의 상기 흡입 디퓨져에서 흡입된 공기와 혼합하여 쾌적한 온도로 제어하며,
    제어된 공기는 상기 공기청정 디퓨져를 통하여 정화, 살균 후 1.2m/s 이하의 저속 급기가 되도록 시스템화된 것을 특징으로 하는 바이오 공조 시스템.
  10. 제2항에 있어서,
    상기 로컬 관리서버는
    에어컨, 공조기, 공기청정 디퓨져, 환기 유닛과 내부 통신에 의해 각각 환경정보를 수집하는 수집부;
    상기 수집부로부터 수집된 환경정보를 전달받아 해당 환경정보가 기준이 되는 각 허용오차 범위 내에서 작동하는지 비교함으로써, 센싱 오차가 허용오차 범위 내에 있는지 판단하는 예측부;
    정상 작동 범위 내의 센싱된 환경 정보를 토대로 신경망 학습모델로 학습하여, 제어값으로 각 장치를 제어할 수 있도록 하는 제어부;
    상기 수집부로부터 수집되는 환경정보, 예측부의 예측결과, 제어부의 제어정보에 대한 모든 데이터를 수집하고, 수집된 데이터를 근거로 통계 자료를 생성하는 통계학습부
    를 더 포함하는 바이오 공조 시스템.
  11. 에어컨, 공조기, 공기청정 디퓨져 및 환기 유닛이 연결되어 환경정보를 수집하고, 상기 환경정보를 토대로 상기 에어컨, 공조기, 공기청정 디퓨져 및 환기 유닛 각각을 바닥 공조 방식으로 제어하는 로컬 관리서버를 이용한 바이오 공조 방법에 있어서,
    상기 로컬 관리서버는 각 장치들로부터 실내 온습도, 급기량, 배기량, 송풍량에 대한 환경정보를 수집하는 단계;
    상기 로컬 관리서버는 수집된 환경정보를 토대로 냉방 온습도, 공조기, 공기청정 디퓨져 또는 환기 유닛의 온오프 제어를 수행하는 단계를 포함하며,
    상기 바닥 공조 방식은
    실내 공간에서 상부급기, 상부배기 방식으로 공조를 수행하지 않토록, 바닥 하부에 위치한 공기청정 디퓨져가 배치되고, 천장이 위치한 상부에 흡입 디퓨져가 배치되어 공조가 이루어지는 것을 특징으로 하는 바이오 공조 방법.
  12. 제11항에 있어서,
    상기 로컬 관리서버는 주기적으로 예측모델을 활용하여 환경정보에 해당하는 센싱정보의 센싱 오차를 기준이 되는 허용 오차 범위와 비교하여 정상 유무를 판단하는 단계;
    상기 로컬 관리서버는 판단 결과를 산출하고, 설정된 관리단말 및 통제서버로 전송하는 단계;
    를 더 포함하는 바이오 공조 방법.
  13. 제12항에 있어서,
    상기 로컬 관리서버는 예측 모델의 예측 결과를 이용하여 예측 모델을 평가하는 평가 모델을 이용하여 평가 결과인 평가정보를 생성하고, 평가정보를 이용하여 학습에 의해 평가 모델을 업그레이드하는 단계;
    를 포함하는 바이오 공조 방법.
PCT/KR2021/012092 2021-07-09 2021-09-07 바이오 공조 시스템 및 방법 WO2023282385A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210090308A KR102362793B1 (ko) 2021-07-09 2021-07-09 바이오 공조 시스템 및 방법
KR10-2021-0090308 2021-07-09

Publications (1)

Publication Number Publication Date
WO2023282385A1 true WO2023282385A1 (ko) 2023-01-12

Family

ID=80325200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012092 WO2023282385A1 (ko) 2021-07-09 2021-09-07 바이오 공조 시스템 및 방법

Country Status (2)

Country Link
KR (1) KR102362793B1 (ko)
WO (1) WO2023282385A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102613073B1 (ko) * 2022-12-30 2023-12-14 번창시스템 주식회사 탄소중립 형 ehp-erv 융복합 제어 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3895497B2 (ja) * 1999-04-26 2007-03-22 株式会社竹中工務店 空調換気装置
KR20070052445A (ko) * 2005-11-17 2007-05-22 엘지전자 주식회사 공기 조화 시스템
KR101408988B1 (ko) * 2013-05-09 2014-07-02 정동환 살균 처리가 가능한 외부 디퓨져 여과필터
KR20180046873A (ko) * 2017-10-18 2018-05-09 주식회사 티이 바닥공조시스템 및 이의 제어방법
KR102085130B1 (ko) * 2019-03-11 2020-03-05 (주)클라우드앤 에너지 절감형 공조기 관리장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100650108B1 (ko) 2005-10-04 2006-11-27 주식회사 경동에버런 환기기능이 구비된 공기청정기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3895497B2 (ja) * 1999-04-26 2007-03-22 株式会社竹中工務店 空調換気装置
KR20070052445A (ko) * 2005-11-17 2007-05-22 엘지전자 주식회사 공기 조화 시스템
KR101408988B1 (ko) * 2013-05-09 2014-07-02 정동환 살균 처리가 가능한 외부 디퓨져 여과필터
KR20180046873A (ko) * 2017-10-18 2018-05-09 주식회사 티이 바닥공조시스템 및 이의 제어방법
KR102085130B1 (ko) * 2019-03-11 2020-03-05 (주)클라우드앤 에너지 절감형 공조기 관리장치

Also Published As

Publication number Publication date
KR102362793B1 (ko) 2022-02-15

Similar Documents

Publication Publication Date Title
WO2021201382A1 (ko) 감염병 차단 음압 공조시스템
US9593859B2 (en) Clean zone HVAC system
WO2018230766A1 (ko) 중앙 냉난방 설비의 개별 제어 시스템
WO2023282385A1 (ko) 바이오 공조 시스템 및 방법
CN105556215A (zh) 用于监测和确保建筑中的空气质量的方法和设备
CN105180296A (zh) 用于降低空气传播污染物的系统和方法
WO2020197065A1 (en) Air conditioner and method for controlling the same
WO2021225305A1 (ko) 인공지능 공기정화 시스템
CN208815638U (zh) 一种除臭通风系统
KR20220064426A (ko) IoT 기반의 전열교환 환기 시스템
WO2022098061A1 (ko) 바이오에어로졸 제거 성능 평가 시스템 및 방법
WO2020189838A1 (ko) 환기장치용 온도조절장치
KR20220102085A (ko) 살균기능을 가지는 창문형 에어컨장치
JPH11201511A (ja) 空気浄化システム
CN111576937A (zh) 一种装配式自动控制多梯度负压隔离单元
CN206540264U (zh) 一种医院中央空调系统
CN112158703B (zh) 一种电梯轿厢换气系统和方法
CN117029124A (zh) 生化空调系统以及方法
KR20220146246A (ko) 공동주택 음압시스템
CN112229031A (zh) 一种商用空气净化器控制系统和控制方法
KR102236135B1 (ko) IoT 기반 멸균 열회수 환기 시스템
Vasilev et al. Implemented PLC System Controlling the Air Purification in a Hospital, Operating With Radioactive Isotopes
WO2022059910A1 (ko) 공기 조화 장치 및 이를 이용한 실내 압력 제어 방법
JP2002106906A (ja) 給排気処理システム
JP7485175B2 (ja) 換気装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21949424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21949424

Country of ref document: EP

Kind code of ref document: A1