WO2020045378A1 - Semiconductor element - Google Patents

Semiconductor element Download PDF

Info

Publication number
WO2020045378A1
WO2020045378A1 PCT/JP2019/033407 JP2019033407W WO2020045378A1 WO 2020045378 A1 WO2020045378 A1 WO 2020045378A1 JP 2019033407 W JP2019033407 W JP 2019033407W WO 2020045378 A1 WO2020045378 A1 WO 2020045378A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
element layer
semiconductor
dmax
thermoelectric element
Prior art date
Application number
PCT/JP2019/033407
Other languages
French (fr)
Japanese (ja)
Inventor
亘 森田
邦久 加藤
豪志 武藤
祐馬 勝田
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2020539461A priority Critical patent/JP7348192B2/en
Publication of WO2020045378A1 publication Critical patent/WO2020045378A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur

Definitions

  • the present invention relates to a semiconductor device.
  • thermoelectric conversion element a thermoelectric conversion module having a thermoelectric effect such as a Seebeck effect or a Peltier effect allows direct mutual conversion between thermal energy and electric energy.
  • thermoelectric conversion element a configuration of a so-called ⁇ -type thermoelectric conversion element is known as the thermoelectric conversion element.
  • ⁇ type usually, a pair of electrodes which are separated from each other are provided on a substrate, and, for example, a P type thermoelectric element is placed on a negative electrode, an N type thermoelectric element is placed on the other electrode, and similarly separated from each other. And the upper surfaces of both thermoelectric elements are connected to the electrodes of the opposing substrate.
  • thermoelectric conversion element a so-called in-plane type thermoelectric conversion element.
  • the in-plane type usually arranges a plurality of thermoelectric elements so that N-type thermoelectric elements and P-type thermoelectric elements are alternately arranged, and for example, connects the lower or upper electrodes of the thermoelectric elements in series. It is configured by connecting.
  • Patent Document 1 discloses a method of directly forming a pattern of a thermoelectric element layer by a screen printing method or the like using a thermoelectric semiconductor composition containing a resin or the like, including a viewpoint of thinning by thinning, as a thermoelectric element layer. I have.
  • thermoelectric element layer As disclosed in Patent Document 1, a method of forming a thermoelectric element as a pattern layer directly on an electrode or a substrate by a screen printing method or the like using a thermoelectric semiconductor composition composed of a thermoelectric semiconductor material, a heat-resistant resin, or the like is obtained.
  • the shape controllability of the thermoelectric element layer is not sufficient, and bleeding occurs at the edge of the thermoelectric element layer at the electrode interface or the substrate interface, whereby the shape of the thermoelectric element layer may be broken.
  • the shape of the thermoelectric element layer is formed to be formed in a rectangular parallelepiped shape (including a cubic shape) from the viewpoint of thermoelectric performance and manufacturability, the actual cross-sectional shape is substantially semi-elliptical (described later).
  • thermoelectric element layer it may not be possible to obtain a desired thickness, and it may not be possible to control the region of the upper surface of the thermoelectric element layer to be uniform and flat. Therefore, when the above-described ⁇ -type thermoelectric conversion element is configured, the area of the junction between the upper surface of the obtained thermoelectric element layer and the electrode facing the electrode cannot be sufficiently increased, and the interface resistance and the thermal resistance increase. In some cases, the thermoelectric performance is reduced, and the thermoelectric performance inherent in the thermoelectric element layer cannot be sufficiently obtained. Furthermore, when an in-plane thermoelectric element is configured, the cross-sectional area of the thermoelectric element layer is reduced, and the electric resistance is increased, which may lead to a decrease in thermoelectric performance. As described above, when forming the thermoelectric element layers, it is important to improve the shape controllability of each thermoelectric element layer from the viewpoint of improving the thermoelectric performance and increasing the degree of integration.
  • an object of the present invention is to provide a thermoelectric conversion element including a thermoelectric element layer having a controlled cross-sectional shape, having excellent thermoelectric performance when a semiconductor element is used as a thermoelectric conversion element.
  • Dmax an area of a vertical section including a central portion of the semiconductor element layer
  • Xmax a thickness of the vertical section
  • the maximum value Dmax of the thickness in the thickness direction of the vertical section is the upper and lower ends of the thickness in the thickness direction of the vertical section when a vertical line is formed on the substrate in the vertical section of the semiconductor element layer. Means the maximum distance (thickness) between two intersections obtained when the vertical line intersects with the vertical line.
  • the maximum value Xmax of the length in the width direction of the longitudinal section is obtained by drawing a parallel line parallel to the substrate.
  • thermoelectric conversion element using the semiconductor element according to (1), wherein the semiconductor material is a thermoelectric semiconductor material, and the semiconductor element includes a thermoelectric element layer made of a thermoelectric semiconductor composition containing the thermoelectric semiconductor material. .
  • thermoelectric semiconductor composition further contains a heat-resistant resin.
  • thermoelectric conversion element according to item 1.
  • the heat-resistant resin is a polyimide resin, a polyamide resin, a polyamide-imide resin, or an epoxy resin.
  • the thermoelectric semiconductor composition further contains an ionic liquid and / or an inorganic ionic compound.
  • the condition (A) satisfies 0.83 ⁇ S / (Dmax ⁇ Xmax) ⁇ 1.00, and the condition (B) satisfies Dmax ⁇ 50 ⁇ m or (Dmax / Xmax) ⁇ 0.08.
  • the thermoelectric conversion element according to any one of the above (1) to (6).
  • thermoelectric conversion element having a thermoelectric element layer having a controlled cross-sectional shape and having excellent thermoelectric performance when a semiconductor element is used as a thermoelectric conversion element.
  • FIG. 1 is a cross-sectional configuration diagram illustrating an example of a thermoelectric conversion element including a thermoelectric element layer having a controlled longitudinal cross-section according to the present invention. It is a figure for explaining the definition of the longitudinal section of a thermoelectric element layer when the semiconductor element of the present invention is used for a thermoelectric conversion element. It is sectional drawing for demonstrating the longitudinal cross section of the thermoelectric element layer used for the thermoelectric conversion element of the Example of this invention, or a comparative example. It is explanatory drawing which shows an example of the manufacturing method of the thermoelectric element layer by the pattern frame arrangement / separation method used for this invention in order of a process. It is explanatory drawing which shows an example of the manufacturing method of the thermoelectric conversion element by the pattern layer arrangement method used for this invention in order of a process.
  • the semiconductor device of the present invention is a semiconductor device including a semiconductor device layer made of a semiconductor composition including a semiconductor material on a substrate, and has a vertical cross-sectional area including a central portion of the semiconductor device layer, S ( ⁇ m 2 );
  • S ⁇ m 2
  • the vertical section of the semiconductor element layer has the following It is characterized by satisfying the conditions (A) and (B).
  • the maximum value Dmax of the thickness in the thickness direction of the vertical section is the upper and lower ends of the thickness in the thickness direction of the vertical section when a vertical line is formed on the substrate in the vertical section of the semiconductor element layer. Means the maximum distance (thickness) between two intersections obtained when the vertical line intersects with the vertical line.
  • the maximum value Xmax of the length in the width direction of the longitudinal section is obtained by drawing a parallel line parallel to the substrate.
  • the semiconductor material is a thermoelectric semiconductor material
  • the semiconductor element is a thermoelectric conversion element using the semiconductor element, including a thermoelectric element layer made of a thermoelectric semiconductor composition containing the thermoelectric semiconductor material.
  • thermoelectric element layer When the semiconductor element layer satisfying the above conditions (A) and (B) is used as a thermoelectric element layer, it is preferable from the viewpoint of thermoelectric performance and manufacturability.
  • the area of the upper surface of the thermoelectric element layer tends to be flat, and the area of the junction between the upper surface of the thermoelectric element layer and the opposing electrode is sufficient, and the interface resistance and thermal resistance
  • the thermoelectric element layer originally has a thermoelectric element. This leads to sufficient performance, resulting in improved thermoelectric performance.
  • the area of the longitudinal section becomes large, the electric resistance of the thermoelectric element layer decreases, so that when an in-plane thermoelectric conversion element is formed, the thermoelectric performance is improved.
  • FIG. 2 is a view for explaining a longitudinal section of a thermoelectric element layer when the semiconductor element of the present invention is used for a thermoelectric conversion element
  • FIG. 2 (a) is a plan view of the thermoelectric element layer 4, and FIG.
  • the layer 4 has a length X in the width direction and a length Y in the depth direction.
  • (B) is a vertical section of the thermoelectric element layer 4, and the vertical section includes the central portion C of (a).
  • a hatched portion (rectangle in the figure) having a length X and a thickness D obtained when cut between AA ′ in the width direction.
  • the longitudinal section of the thermoelectric element layer is likely to be substantially square” means that it is easy to become a rectangle such as a rectangle or a square including a trapezoid.
  • FIG. 1 is a cross-sectional configuration view showing an example of a thermoelectric conversion element provided with a thermoelectric element layer having a controlled vertical cross-sectional shape according to the present invention.
  • the thermoelectric conversion element 1 has an N-type thermoelectric element on an electrode 3a of a substrate 2a. It has an element layer 4a and a P-type thermoelectric element layer 4b, and further has a counter electrode substrate having an electrode 3b on a substrate 2b on the upper surface of the N-type thermoelectric element layer 4a and the P-type thermoelectric element layer 4b. Adjacent N-type thermoelectric element layers 4a and P-type thermoelectric element layers 4b are arranged so as to be electrically connected in series with the electrodes 3b on the substrate 2b interposed therebetween, and are configured as ⁇ -type thermoelectric conversion elements.
  • thermoelectric element layer The thermoelectric element layer (hereinafter sometimes referred to as “thermoelectric element layer thin film”) constituting the thermoelectric conversion element of the present invention is made of a thermoelectric semiconductor composition containing a thermoelectric semiconductor material on a substrate.
  • the thermoelectric semiconductor material preferably contains a heat-resistant resin, and from the viewpoint of thermoelectric performance, more preferably, the thermoelectric semiconductor material (hereinafter sometimes referred to as “thermoelectric semiconductor fine particles”).
  • thermoelectric semiconductor fine particles A heat-resistant resin, and a thermoelectric semiconductor composition containing an ionic liquid and / or an inorganic ionic compound.
  • thermoelectric element layer ⁇ Vertical cross section of thermoelectric element layer> The longitudinal section of the thermoelectric element layer used in the present invention will be described with reference to the drawings.
  • FIG. 3 is a cross-sectional view for explaining a vertical cross section of a thermoelectric element layer used in a thermoelectric conversion element according to an example of the present invention or a comparative example, and (a) illustrates a thermoelectric element layer 4s used in Comparative Example 1.
  • the thermoelectric element layer 4s has a vertical section (cross-sectional area S) having a maximum value Xmax of the length in the width direction and a maximum value Dmax of the thickness in the thickness direction, and the vertical section is approximately half. It is elliptical.
  • B is a vertical cross section of the thermoelectric element layer 4t used in Example 1, and the vertical cross section of the thermoelectric element layer 4t has a maximum value Xmax in the width direction and a maximum thickness in the thickness direction.
  • thermoelectric element layer 4u used in Example 2, which has a maximum value Xmax in the width direction and a maximum value Dmax in the thickness direction (cross-sectional area). S), and the longitudinal section is substantially square (rectangular).
  • the area of the vertical section is S ( ⁇ m 2 ), and the maximum value of the thickness in the thickness direction of the vertical section is
  • Dmax ( ⁇ m) and the maximum value of the length of the vertical section in the width direction are Xmax ( ⁇ m)
  • the vertical section of the thermoelectric element layer needs to satisfy the following conditions (A) and (B). .
  • Condition (A) requires that S / (Dmax ⁇ Xmax) be 0.75 ⁇ S / (Dmax ⁇ Xmax) ⁇ 1.00.
  • S / (Dmax ⁇ Xmax) is less than 0.75, the vertical cross section of the thermoelectric element layer tends to be semi-elliptical, and is unlikely to be substantially square.
  • the shape of the thermoelectric element layer it is difficult to have a substantially rectangular parallelepiped shape (including a substantially cubic shape), a desired constant thickness cannot be obtained, and a flat region on the upper surface of the thermoelectric element layer becomes small. .
  • the area of the longitudinal section is reduced.
  • S / (Dmax ⁇ Xmax) is preferably at least 0.78, more preferably at least 0.83, even more preferably at least 0.90, particularly preferably at least 0.95.
  • Condition (B) requires that Dmax ⁇ 10 ⁇ m or (Dmax / Xmax) ⁇ 0.03.
  • Dmax is less than 10 ⁇ m or Dmax / Xmax is less than 0.03
  • the longitudinal section is less likely to be a semi-ellipse by a coating method such as screen printing and stencil printing, and the shape of the thermoelectric element layer
  • it may be easier to control the shape into a substantially rectangular parallelepiped shape but when used as a thermoelectric element layer, problems such as a decrease in efficiency of thermoelectric performance and a decrease in integration may occur.
  • Dmax is 10 ⁇ m or more, or Dmax / Xmax is 0.03 or more
  • the longitudinal section tends to be semi-elliptical, and the shape of the thermoelectric element layer is substantially rectangular parallelepiped. (Including a substantially cubic shape).
  • Dmax is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, and still more preferably 150 ⁇ m or more.
  • Dmax / Xmax is preferably 0.05 or more, more preferably 0.08 or more, further preferably 0.08 to 3.00, particularly preferably 0.09 to 1.50, and most preferably 0.10 to 1. 1.00.
  • the longitudinal section tends to be substantially square, and the shape of the thermoelectric element layer can be easily controlled to be substantially rectangular (including substantially cubic). This leads to higher efficiency and higher integration of thermoelectric performance.
  • thermoelectric element layer constituting the thermoelectric conversion element
  • the vertical cross section of the thermoelectric element layer is likely to be substantially rectangular, and the shape of the thermoelectric element layer is reduced.
  • the thermoelectric element layer can be easily controlled to have a substantially rectangular parallelepiped shape (including a substantially cubic shape), and a desired constant thickness can be obtained.
  • the upper surface region of the thermoelectric element layer can easily become a flat surface. The area of the junction between the upper surface of the first electrode and the opposing electrode is sufficiently large, and an increase in interface resistance and thermal resistance is suppressed.
  • the electric resistance of the thermoelectric element layer decreases. In any case, the thermoelectric performance is improved.
  • thermoelectric semiconductor material used in the present invention, that is, the thermoelectric semiconductor material contained in the thermoelectric element layer is not particularly limited as long as it can generate a thermoelectromotive force by applying a temperature difference.
  • P-type bismuth telluride, N-type bismuth telluride, etc. bismuth - telluride thermoelectric semiconductor material
  • GeTe telluride based thermoelectric semiconductor materials such as PbTe
  • antimony - tellurium based thermoelectric semiconductor material ZnSb, Zn 3 Sb 2, Zn 4 Sb 3 , etc.
  • Zinc-antimony-based thermoelectric semiconductor material silicon-germanium-based thermoelectric semiconductor material such as SiGe; bismuth selenide-based thermoelectric semiconductor material such as Bi 2 Se 3 ; ⁇ -FeSi 2 , CrSi 2 , MnSi 1.73 , Mg 2 Si Etc .; oxide-based thermoelectric semiconductor materials; FeVAl, F VAlSi, Heusler materials such FeVTiAl, such sulfide-based thermoelectric semiconductor materials, such as TiS 2 is used.
  • thermoelectric semiconductor material a bismuth-tellurium-based thermoelectric semiconductor material, a telluride-based thermoelectric semiconductor material, an antimony-tellurium-based thermoelectric semiconductor material, or a bismuth selenide-based thermoelectric semiconductor material is preferable.
  • a bismuth-tellurium-based thermoelectric semiconductor material such as P-type bismuth telluride or N-type bismuth telluride is more preferable.
  • P-type bismuth telluride those having a carrier as a hole and a Seebeck coefficient as a positive value, for example, those represented by Bi X Te 3 Sb 2-X are preferably used.
  • X is preferably 0 ⁇ X ⁇ 0.8, and more preferably 0.4 ⁇ X ⁇ 0.6.
  • the Seebeck coefficient and the electrical conductivity increase, which is preferable because characteristics as a P-type thermoelectric element are maintained.
  • the N-type bismuth telluride preferably has an electron carrier and a negative Seebeck coefficient and is preferably represented by, for example, Bi 2 Te 3-Y Se Y.
  • the Seebeck coefficient and the electric conductivity increase, and the characteristics as an N-type thermoelectric element are preferably maintained.
  • thermoelectric semiconductor fine particles used in the thermoelectric semiconductor composition are obtained by pulverizing the above-described thermoelectric semiconductor material to a predetermined size using a pulverizer or the like.
  • the blending amount of the thermoelectric semiconductor fine particles in the thermoelectric semiconductor composition is preferably 30 to 99% by mass. More preferably, it is 50 to 96% by mass, still more preferably 70 to 95% by mass.
  • the Seebeck coefficient absolute value of the Peltier coefficient
  • the decrease in electric conductivity is suppressed, and only the heat conductivity is reduced, so that high thermoelectric performance is exhibited.
  • a film having sufficient film strength and flexibility is obtained, which is preferable.
  • the average particle size of the thermoelectric semiconductor fine particles is preferably 10 nm to 200 ⁇ m, more preferably 10 nm to 30 ⁇ m, further preferably 50 nm to 10 ⁇ m, and particularly preferably 1 to 6 ⁇ m. Within the above range, uniform dispersion is facilitated, and electric conductivity can be increased.
  • the method of pulverizing the thermoelectric semiconductor material to obtain thermoelectric semiconductor fine particles is not particularly limited, and may be pulverized to a predetermined size by a known pulverizer such as a jet mill, a ball mill, a bead mill, a colloid mill, and a roller mill. .
  • the average particle size of the thermoelectric semiconductor fine particles was obtained by measuring with a laser diffraction particle size analyzer (manufactured by Malvern, Mastersizer 3000), and was defined as the median value of the particle size distribution.
  • thermoelectric semiconductor particles are preferably heat-treated in advance (the "heat treatment” here is different from the “annealing treatment” performed in the annealing step in the present invention).
  • the thermoelectric semiconductor particles have improved crystallinity, and further, since the surface oxide film of the thermoelectric semiconductor particles is removed, the Seebeck coefficient or the Peltier coefficient of the thermoelectric conversion material increases, and the thermoelectric performance index further increases. Can be improved.
  • the heat treatment is not particularly limited, but before preparing the thermoelectric semiconductor composition, the gas flow rate is controlled so as not to adversely affect the thermoelectric semiconductor particles, under an atmosphere of an inert gas such as nitrogen or argon.
  • the reaction is preferably performed under a reducing gas atmosphere such as hydrogen or under vacuum conditions, and more preferably under a mixed gas atmosphere of an inert gas and a reducing gas.
  • a reducing gas atmosphere such as hydrogen or under vacuum conditions
  • a mixed gas atmosphere of an inert gas and a reducing gas is usually preferable that the temperature is lower than the melting point of the fine particles and at 100 to 1500 ° C. for several minutes to several tens of hours.
  • thermoelectric semiconductor composition used in the present invention it is preferable to use a heat-resistant resin from the viewpoint of annealing the thermoelectric semiconductor material at a high temperature after forming the thermoelectric element layer. It acts as a binder between the thermoelectric semiconductor materials (thermoelectric semiconductor particles), can increase the flexibility of the thermoelectric conversion module, and facilitates the formation of a thin film by coating or the like.
  • the heat-resistant resin is not particularly limited. However, when a thin film of the thermoelectric semiconductor composition is subjected to crystal growth of thermoelectric semiconductor particles by annealing or the like, various properties such as mechanical strength and thermal conductivity of the resin are used. A heat-resistant resin that maintains its physical properties without deterioration is preferred.
  • the heat-resistant resin is preferably a polyamide resin, a polyamide-imide resin, a polyimide resin, or an epoxy resin, which has higher heat resistance and does not adversely affect the crystal growth of the thermoelectric semiconductor particles in the thin film, and has excellent flexibility.
  • a polyamide resin, a polyamideimide resin, and a polyimide resin are more preferable.
  • a polyimide resin is more preferable as the heat-resistant resin from the viewpoint of adhesion to the polyimide film.
  • the polyimide resin is a general term for polyimide and its precursor.
  • the heat-resistant resin preferably has a decomposition temperature of 300 ° C or higher.
  • the decomposition temperature is in the above range, as described later, even when the thin film made of the thermoelectric semiconductor composition is annealed, the flexibility can be maintained without losing the function as a binder.
  • the heat-resistant resin preferably has a mass reduction rate at 300 ° C. by thermogravimetry (TG) of 10% or less, more preferably 5% or less, and still more preferably 1% or less. . If the mass reduction rate is within the above range, as described later, even when the thin film made of the thermoelectric semiconductor composition is annealed, the flexibility of the thermoelectric element layer can be maintained without losing the function as a binder. .
  • TG thermogravimetry
  • the compounding amount of the heat-resistant resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 1 to 20% by mass, and further preferably 2 to 15% by mass. % By mass.
  • the compounding amount of the heat-resistant resin is within the above range, it functions as a binder of the thermoelectric semiconductor material, facilitates formation of a thin film, and obtains a film having both high thermoelectric performance and high film strength.
  • the ionic liquid used in the present invention is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist as a liquid in any temperature range of -50 to 500 ° C.
  • Ionic liquids have features such as extremely low vapor pressure, non-volatility, excellent thermal stability and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, as a conductive auxiliary agent, it is possible to effectively suppress a decrease in electric conductivity between the thermoelectric semiconductor particles. Further, the ionic liquid has a high polarity based on the aprotic ionic structure and has excellent compatibility with the heat-resistant resin, so that the electric conductivity of the thermoelectric element layer can be made uniform.
  • ionic liquids can be used.
  • nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and derivatives thereof; amine cations of tetraalkylammonium and derivatives thereof; phosphines such as phosphonium, trialkylsulfonium and tetraalkylphosphonium systems cations and their derivatives; and cationic components, such as lithium cations and derivatives thereof, Cl -, AlCl 4 -, Al 2 Cl 7 -, ClO 4 - chloride or ion, Br -, etc.
  • the cation component of the ionic liquid is a pyridinium cation and a derivative thereof from the viewpoints of high-temperature stability, compatibility with the thermoelectric semiconductor fine particles and the resin, and suppression of a decrease in electric conductivity in the gap between the thermoelectric semiconductor fine particles.
  • the anionic component of the ionic liquid preferably contains a halide anion, and more preferably contains at least one selected from Cl ⁇ , Br ⁇ and I ⁇ .
  • the ionic liquid in which the cation component contains a pyridinium cation and a derivative thereof include 4-methyl-butylpyridinium chloride, 3-methyl-butylpyridinium chloride, 4-methyl-hexylpyridinium chloride, and 3-methyl-hexylpyridinium.
  • Chloride 4-methyl-octylpyridinium chloride, 3-methyl-octylpyridinium chloride, 3,4-dimethyl-butylpyridinium chloride, 3,5-dimethyl-butylpyridinium chloride, 4-methyl-butylpyridinium tetrafluoroborate, 4- Methyl-butylpyridinium hexafluorophosphate, 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, 1-butyl-4- Chill pyridinium iodide and the like. Of these, 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, and 1-butyl-4-methylpyridinium iodide are preferred.
  • the ionic liquid in which the cation component contains an imidazolium cation and a derivative thereof include [1-butyl-3- (2-hydroxyethyl) imidazolium bromide] and [1-butyl-3- (2 -Hydroxyethyl) imidazolium tetrafluoroborate], 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3 -Methylimidazolium chloride, 1-octyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium bromide, 1-dodecyl-3-methylimidazolium chloride, 1-tetradecyl-3-methylimida Lithium chloride, 1-ethyl-3-methyl
  • [1-butyl-3- (2-hydroxyethyl) imidazolium bromide] and [1-butyl-3- (2-hydroxyethyl) imidazolium tetrafluoroborate] are preferable.
  • the above ionic liquid preferably has an electric conductivity of 10 ⁇ 7 S / cm or more, more preferably 10 ⁇ 6 S / cm or more.
  • the electric conductivity is in the above range, a decrease in electric conductivity between the thermoelectric semiconductor particles can be effectively suppressed as a conductive auxiliary agent.
  • the ionic liquid preferably has a decomposition temperature of 300 ° C or higher.
  • the decomposition temperature is in the above range, as described later, even when the thin film of the thermoelectric element layer made of the thermoelectric semiconductor composition is annealed, the effect as the conductive auxiliary agent can be maintained.
  • the ionic liquid has a mass reduction rate at 300 ° C. by thermogravimetry (TG) of preferably 10% or less, more preferably 5% or less, and still more preferably 1% or less. .
  • TG thermogravimetry
  • the blending amount of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 20% by mass.
  • the blending amount of the ionic liquid is within the above range, a decrease in electric conductivity is effectively suppressed, and a film having high thermoelectric performance is obtained.
  • the inorganic ionic compound used in the present invention is a compound composed of at least a cation and an anion.
  • the inorganic ionic compound is solid at room temperature, has a melting point at any temperature in the temperature range of 400 to 900 ° C., and has characteristics such as high ionic conductivity. It is possible to suppress a decrease in the electric conductivity between the thermoelectric semiconductor particles.
  • a metal cation is used as the cation.
  • the metal cation include an alkali metal cation, an alkaline earth metal cation, a typical metal cation, and a transition metal cation, and an alkali metal cation or an alkaline earth metal cation is more preferable.
  • the alkali metal cation include Li + , Na + , K + , Rb + , Cs +, and Fr + .
  • Examples of the alkaline earth metal cation include Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ .
  • anion examples include F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , CN ⁇ , NO 3 ⁇ , NO 2 ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , and CrO 4 2.
  • -, HSO 4 -, SCN - , BF 4 -, PF 6 - and the like.
  • a cation component such as potassium cation, sodium cation, or lithium cations, Cl -, AlCl 4 -, Al 2 Cl 7 -, ClO 4 - chloride or ion, Br -, etc. of bromide ion, I -, etc.
  • iodide ions fluoride ions such as BF 4 ⁇ and PF 6 ⁇ , halide anions such as F (HF) n ⁇ and anion components such as NO 3 ⁇ , OH ⁇ and CN ⁇ .
  • the cation component of the inorganic ionic compound is potassium. , Sodium, and lithium.
  • the anionic component of the inorganic ionic compound preferably contains a halide anion, and more preferably contains at least one selected from Cl ⁇ , Br ⁇ , and I ⁇ .
  • the inorganic ionic compound in which the cation component contains a potassium cation include KBr, KI, KCl, KF, KOH, and K 2 CO 3 . Among them, KBr and KI are preferable.
  • Specific examples of the inorganic ionic compound in which the cation component contains a sodium cation include NaBr, NaI, NaOH, NaF, and Na 2 CO 3 . Of these, NaBr and NaI are preferred.
  • Specific examples of the inorganic ionic compound whose cation component includes a lithium cation include LiF, LiOH, and LiNO 3 . Among them, LiF and LiOH are preferable.
  • the above-mentioned inorganic ionic compound preferably has an electric conductivity of 10 ⁇ 7 S / cm or more, more preferably 10 ⁇ 6 S / cm or more.
  • the electric conductivity is in the above range, reduction in electric conductivity between the thermoelectric semiconductor particles can be effectively suppressed as a conductive auxiliary agent.
  • the inorganic ionic compound preferably has a decomposition temperature of 400 ° C or higher.
  • the decomposition temperature is in the above range, as described later, even when the thin film of the thermoelectric element layer made of the thermoelectric semiconductor composition is annealed, the effect as the conductive auxiliary agent can be maintained.
  • the inorganic ionic compound preferably has a mass reduction rate at 400 ° C. by thermogravimetry (TG) of 10% or less, more preferably 5% or less, and more preferably 1% or less. More preferred.
  • TG thermogravimetry
  • the compounding amount of the inorganic ionic compound in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 10% by mass. .
  • the amount of the inorganic ionic compound is within the above range, a decrease in electric conductivity can be effectively suppressed, and as a result, a film having improved thermoelectric performance can be obtained.
  • the total content of the inorganic ionic compound and the ionic liquid in the thermoelectric semiconductor composition is preferably from 0.01 to 50% by mass, Preferably it is 0.5 to 30% by mass, more preferably 1.0 to 10% by mass.
  • thermoelectric semiconductor composition used in the present invention in addition to the components other than the above, if necessary, further dispersant, film forming aid, light stabilizer, antioxidant, tackifier, plasticizer, colorant, Other additives such as a resin stabilizer, a filler, a pigment, a conductive filler, a conductive polymer, and a curing agent may be included. These additives can be used alone or in combination of two or more.
  • thermoelectric semiconductor composition used in the present invention is not particularly limited, and the thermoelectric semiconductor particles and the heat-resistant resin can be obtained by a known method such as an ultrasonic homogenizer, a spiral mixer, a planetary mixer, a disperser, and a hybrid mixer.
  • the thermoelectric semiconductor composition may be prepared by adding the ionic liquid and / or the inorganic ionic compound, the other additives as needed, and the solvent, and mixing and dispersing the mixture.
  • the solvent examples include solvents such as toluene, ethyl acetate, methyl ethyl ketone, alcohol, tetrahydrofuran, methylpyrrolidone, and ethyl cellosolve. These solvents may be used alone or as a mixture of two or more.
  • the solid content concentration of the thermoelectric semiconductor composition is not particularly limited as long as the composition has a viscosity suitable for coating.
  • thermoelectric element layer is formed on a substrate or an electrode using a coating liquid or the like made of the thermoelectric semiconductor composition.
  • a method for producing a thermoelectric element layer satisfying the conditions (A) and (B) constituting the thermoelectric conversion element of the present invention include the following methods (P), (Q) and (R).
  • P Multilayer printing method
  • Q Pattern frame arrangement / peeling method
  • R Pattern layer arrangement method
  • thermoelectric element layer (Multilayer printing method) The multi-layer printing method, using a coating liquid or the like composed of a thermoelectric semiconductor composition, on the substrate, or at the same position on the electrode, using a screen plate having a desired pattern, a stencil plate, a screen printing method, a stencil
  • This is a method in which printing is performed a plurality of times by a printing method or the like to form a thick thermoelectric element layer in which thin films of a plurality of thermoelectric element layers are stacked. Specifically, first, a coating film to be a thin film of the first thermoelectric element layer is formed, and the obtained coating film is dried to form a thin film of the first thermoelectric element layer.
  • thermoelectric element layer a coating film to be a thin film of the second thermoelectric element layer is formed on the thin film of the thermoelectric element layer obtained in the first layer, and the obtained coating film is dried. Thereby, a thin film of the second thermoelectric element layer is formed.
  • a coating film to be a thin film of the third and subsequent thermoelectric element layers is formed on the thin film of the thermoelectric element layer obtained immediately before, and the obtained coating film is dried. Thus, a thin film of the third and subsequent thermoelectric element layers is formed. By repeating this process a desired number of times, a thick thermoelectric element layer in which a plurality of thin thermoelectric element layers are stacked can be obtained.
  • thermoelectric element layer satisfying the above conditions (A) and (B) can be obtained.
  • the pattern frame arrangement / peeling method is to provide a pattern frame having an opening separated on a substrate, fill the opening with a thermoelectric semiconductor composition, dry, and peel the pattern frame from the substrate.
  • This is a method for forming a thermoelectric element layer having excellent shape controllability reflecting the shape of the opening of the pattern frame.
  • FIG. 4 is an explanatory view showing an example of a method of manufacturing a thermoelectric element layer by a pattern frame arrangement / peeling method used in the present invention in the order of steps;
  • (A) is sectional drawing which shows the aspect which the pattern frame was made to oppose on the board
  • thermoelectric element layer is formed in the opening 13 having the opening 13s of the pattern frame 12 made of the stainless steel 12 'prepared in (b).
  • thermoelectric semiconductor composition containing a thermoelectric semiconductor material and a thermoelectric semiconductor composition containing an N-type thermoelectric semiconductor material are respectively filled in predetermined openings 13, and a thermoelectric semiconductor composition containing a P-type thermoelectric semiconductor material filled in the openings 13 Drying the thermoelectric semiconductor composition including the material and the N-type thermoelectric semiconductor material to form a P-type thermoelectric element layer 14b and an N-type thermoelectric element layer 14a;
  • (D) is a cross-sectional view showing an embodiment in which the pattern frame is peeled off from the filled thermoelectric element layer to obtain only the thermoelectric element layer, and the pattern frame 12 is formed by forming a P-type thermoelectric element layer 14b and an N-type thermoelectric element layer.
  • thermoelectric element layer 14b and the N-type thermoelectric element layer 14a as self-supporting layers are obtained by peeling off from the layer 14a.
  • the drying method, the case where a solvent is used in the preparation of the thermoelectric semiconductor composition, and the like are the same as the above-described multilayer printing method.
  • a thermoelectric element layer used for a thermoelectric conversion element can be obtained.
  • a thermoelectric element layer satisfying the conditions (A) and (B) can be easily obtained.
  • the pattern layer disposing method is to provide a pattern layer made of a layer containing a resin having an opening which is spaced apart on an electrode of a substrate, fill the opening with a thermoelectric semiconductor composition, and dry it to form an opening in the pattern layer. This is a method for forming a thermoelectric element layer having excellent shape controllability in which the shape of a portion is reflected.
  • thermoelectric semiconductor composition including a P-type thermoelectric semiconductor material in the separated opening
  • thermoelectric semiconductor composition containing an object and an N-type thermoelectric semiconductor material the thermoelectric semiconductor composition containing the P-type thermoelectric semiconductor material and the N-type thermoelectric semiconductor material filled in the spaced openings.
  • a step of drying the thermoelectric semiconductor composition to obtain a P-type thermoelectric element layer and an N-type thermoelectric element layer.
  • FIG. 5 is an explanatory view showing an example of a method for manufacturing a thermoelectric conversion element by a pattern layer arrangement method used in the present invention in the order of steps;
  • A is a sectional view after an electrode is formed on a substrate, and an electrode 23a is formed on a substrate 22a;
  • B is a cross-sectional view after forming a layer containing a resin on the electrode, and forming a layer 24 ′ containing a resin on the electrode 23a;
  • C) is a plan view of the pattern layer after processing the layer containing the resin (electrodes are not shown), and
  • (c ') is the pattern layer when cut between AA' in (c). Is a cross-sectional view of FIG.
  • thermoelectric semiconductor composition containing a P-type thermoelectric semiconductor material and an N-type thermoelectric semiconductor material.
  • thermoelectric semiconductor compositions are filled and dried to form an N-type thermoelectric element layer 26a and a P-type thermoelectric element layer 26b;
  • (E) is a cross-sectional view showing a mode in which the upper surface of the thermoelectric element layer obtained in (d) is opposed to and bonded to an electrode on a substrate facing the thermoelectric element layer, and has an upper surface of the thermoelectric element layer and an electrode 23b.
  • a counter electrode substrate made of the substrate 22b is joined.
  • the drying method, the case where a solvent is used in the preparation of the thermoelectric semiconductor composition, and the like are the same as those in the above-described multilayer printing method and pattern frame arrangement / peeling method.
  • a ⁇ -type thermoelectric conversion element can be obtained.
  • by using the pattern layer arrangement method it is possible to easily obtain a ⁇ -type thermoelectric conversion element including a thermoelectric element layer satisfying the conditions (A) and (B).
  • the pattern frame arrangement / peeling method or the pattern layer arrangement method it is more preferable to use the pattern frame arrangement / peeling method or the pattern layer arrangement method, and from the viewpoint that the longitudinal section can be easily controlled to a substantially rectangular parallelepiped shape, More preferably, a peeling method is used.
  • the viscosity of the coating liquid composed of the thermoelectric semiconductor composition is appropriately adjusted depending on the blending amount of the thermoelectric semiconductor material, the thickness of the thermoelectric element layer, and the dimensions of the pattern.
  • 1 Pa ⁇ s to 1000 Pa ⁇ s preferably 5 Pa ⁇ s to 500 Pa ⁇ s, more preferably 10 Pa ⁇ s to 300 Pa ⁇ s, and still more preferably 30 Pa ⁇ s to 200 Pa ⁇ s at 25 ° C. and 5 s ⁇ 1. is there.
  • the thickness of the thin film of the thermoelectric element layer made of the thermoelectric semiconductor composition when used as a ⁇ -type thermoelectric conversion element, from the viewpoint of using a screen printing method, a stencil printing method, etc., 50 ⁇ m or more, 1 mm or less, Preferably it is 80 ⁇ m or more and 1 mm or less, more preferably 100 ⁇ m or more and 700 ⁇ m or less, further preferably 150 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the thin film of the thermoelectric element layer made of the thermoelectric semiconductor composition is 10 ⁇ m or more, 300 ⁇ m or less, preferably 10 ⁇ m or more from the viewpoint of flexibility. It is 200 ⁇ m or less, more preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • an annealing treatment In the present invention, it is preferable to perform an annealing treatment after the formation of the thermoelectric element layer.
  • the annealing treatment is not particularly limited, but is usually performed under a controlled gas flow rate, under an inert gas atmosphere such as nitrogen or argon, under a reducing gas atmosphere, or under vacuum conditions.
  • the annealing temperature is usually 100 to 600 ° C.
  • reaction for several minutes to several tens of hours, preferably 150 to 600 ° C., for several minutes to several tens of hours, and more preferably 250 to tens of hours.
  • the reaction is performed at 600 ° C. for several minutes to several tens of hours, more preferably at 250 to 550 ° C. for several minutes to tens of hours.
  • the substrate is not particularly limited, but from the viewpoint of thinness and flexibility, it is possible to use a resin film which does not affect the decrease in the electric conductivity of the thermoelectric element layer and the increase in the heat conductivity. it can. Above all, even when the thin film of the thermoelectric element layer made of the thermoelectric semiconductor composition is excellent in flexibility, the performance of the thermoelectric element layer can be maintained without thermally deforming the substrate, and the heat resistance and the dimensions can be maintained. From the viewpoint of high stability, a polyimide film, a polyamide film, a polyetherimide film, a polyaramid film, or a polyamideimide film is preferable. Further, from the viewpoint of high versatility, a polyimide film is particularly preferable.
  • the thickness of the resin film is preferably from 1 to 1000 ⁇ m, more preferably from 5 to 500 ⁇ m, and still more preferably from 10 to 100 ⁇ m, from the viewpoints of flexibility, heat resistance and dimensional stability. Further, the resin film preferably has a 5% weight loss temperature measured by thermogravimetric analysis of 300 ° C. or higher, more preferably 400 ° C. or higher. The heating dimensional change measured at 200 ° C. in accordance with JIS K7133 (1999) is preferably 0.5% or less, more preferably 0.3% or less. The linear expansion coefficient measured in accordance with JIS K7197 (2012) is 0.1 ppm ⁇ ° C. -1 to 50 ppm ⁇ ° C. -1 and 0.1 ppm ⁇ ° C. -1 to 30 ppm ⁇ ° C. -1 Is more preferred.
  • an insulating material such as glass or ceramic may be used as the substrate used in the present invention.
  • the thickness of the substrate is preferably 100 to 1200 ⁇ m, more preferably 200 to 800 ⁇ m, and further preferably 400 to 700 ⁇ m, from the viewpoint of process and dimensional stability.
  • Electrode examples of the metal material of the electrodes of the thermoelectric conversion element used in the present invention include copper, gold, nickel, aluminum, rhodium, platinum, chromium, palladium, stainless steel, molybdenum, tin, and alloys containing any of these metals.
  • the thickness of the electrode layer is preferably 10 nm to 200 ⁇ m, more preferably 30 nm to 150 ⁇ m, and still more preferably 50 nm to 120 ⁇ m. When the thickness of the electrode layer is within the above range, the electric conductivity is high, the resistance is low, and sufficient strength as an electrode is obtained.
  • the electrodes are formed using the above-described metal material.
  • a method of forming an electrode after providing an electrode on which a pattern is not formed on a resin film, a predetermined physical or chemical treatment mainly using a photolithography method, or a combination thereof, or the like, is used. Or a method of directly forming an electrode pattern by a screen printing method, an ink jet method, or the like.
  • Examples of a method for forming an electrode on which no pattern is formed include PVD (physical vapor deposition) such as vacuum deposition, sputtering, and ion plating, or CVD (chemical vapor deposition) such as thermal CVD and atomic layer deposition (ALD).
  • Dry processes such as vapor phase epitaxy
  • various coatings such as dip coating, spin coating, spray coating, gravure coating, die coating, and doctor blade
  • wet processes such as electrodeposition, silver salt methods ,
  • a vacuum film forming method such as a vacuum evaporation method and a sputtering method, an electrolytic plating method, and an electroless plating method are preferable.
  • the pattern can be easily formed with a hard mask such as a metal mask interposed therebetween, depending on the size and dimensional accuracy requirements of the formed pattern.
  • thermoelectric conversion element layer In the thermoelectric conversion element used in the present invention, a bonding material layer can be used for bonding the thermoelectric element layer and the electrode.
  • the bonding material used for the bonding material layer include a solder material, a conductive adhesive, a sintered bonding agent, and the like, and in this order, a solder layer, a conductive adhesive layer, a sintered bonding agent layer, and the like. It is preferably formed on.
  • “conductive” means that the electrical resistivity is less than 1 ⁇ 10 6 ⁇ ⁇ m.
  • the solder material constituting the solder layer may be appropriately selected in consideration of the heat-resistant temperature of the material constituting the thermoelectric conversion element, and the conductivity and thermal conductivity of the solder layer.
  • the thickness (after heating and cooling) of the solder layer is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, further preferably 30 to 130 ⁇ m, and particularly preferably 40 to 120 ⁇ m. When the thickness of the solder layer is in this range, it is easy to obtain the adhesion of the thermoelectric conversion material to the chip and the electrode.
  • solder material As a method of applying the solder material, a known method such as stencil printing, screen printing, and dispensing method may be used.
  • the heating temperature varies depending on the solder material, resin film, and the like used, but is usually at 150 to 280 ° C. for 3 to 20 minutes.
  • the conductive adhesive constituting the conductive adhesive layer is not particularly limited, and examples thereof include a conductive paste.
  • the conductive paste include a copper paste, a silver paste, and a nickel paste.
  • an epoxy resin, an acrylic resin, a urethane resin, and the like are used.
  • a method of applying the conductive adhesive a known method such as a screen printing and a dispensing method may be used.
  • the thickness of the conductive adhesive layer is preferably from 10 to 200 ⁇ m, more preferably from 20 to 150 ⁇ m, further preferably from 30 to 130 ⁇ m, and particularly preferably from 40 to 120 ⁇ m.
  • the sintering bonding agent constituting the sintering bonding agent layer is not particularly limited, and examples thereof include a sintering paste and the like.
  • the sintering paste is made of, for example, micron-sized metal powder and nano-sized metal particles, and is different from the conductive adhesive in that metal is directly bonded by sintering, and is an epoxy resin, an acrylic resin, a urethane.
  • a binder such as a resin may be included.
  • the sintering paste include a silver sintering paste and a copper sintering paste.
  • a method of applying the sintered bonding agent layer a known method such as screen printing, stencil printing, or a dispensing method may be used.
  • the sintering conditions vary depending on the metal material used and the like, but are usually at 100 to 300 ° C. for 30 to 120 minutes.
  • Commercially available sintered bonding agents include, for example, sintering paste (manufactured by Kyocera Corporation, product name: CT2700R7S) and sintered metal bonding material (manufactured by Nihon Handa, product name: MAX102) as silver sintering paste. Can be used.
  • the thickness of the sintered bonding agent layer is preferably 10 to 200 ⁇ m, more preferably 20 to 150 ⁇ m, further preferably 30 to 130 ⁇ m, and particularly preferably 40 to 120 ⁇ m.
  • thermoelectric conversion element When the semiconductor element of the present invention is used as a thermoelectric conversion element, a thermoelectric conversion element having excellent thermoelectric performance is obtained by satisfying the conditions (A) and (B) in the longitudinal section of the obtained thermoelectric element layer. be able to. Further, it is possible to realize high integration of the thermoelectric element layer.
  • thermoelectric conversion elements produced in the examples and comparative examples were performed by the following methods.
  • A) Evaluation of Electric Resistance Value The electric resistance value between the extraction electrode portions of the thermoelectric element layer of the obtained thermoelectric conversion element was measured at 25 ° C. ⁇ 50 by a digital hi-tester (manufactured by Hioki Electric Co., Ltd., model name: 3801-50). It was measured in an environment of% RH.
  • thermoelectric semiconductor material constituting the thermoelectric semiconductor composition is used as thermoelectric semiconductor particles.
  • P-type bismuth telluride Bi 0.4 Te 3 Sb 1.6 manufactured by Kojundo Chemical Laboratory, particle size: 180 ⁇ m
  • a planetary ball mill Premium line P, manufactured by Fritsch Japan KK.
  • the particles were pulverized in a nitrogen gas atmosphere to produce thermoelectric semiconductor particles T1 having an average particle size of 1.2 ⁇ m.
  • thermoelectric semiconductor particles obtained by the pulverization were subjected to particle size distribution measurement using a laser diffraction type particle size analyzer (manufactured by Malvern, Mastersizer 3000). Further, N-type bismuth telluride Bi 2 Te 3 (manufactured by Kojundo Chemical Laboratory, particle size: 180 ⁇ m), which is a bismuth-tellurium-based thermoelectric semiconductor material, is pulverized in the same manner as described above, and thermoelectric semiconductor fine particles having an average particle size of 1.4 ⁇ m. T2 was produced.
  • Coating liquid (P) 90 parts by mass of the obtained fine particles T1 of the P-type bismuth-tellurium-based thermoelectric semiconductor material, and a polyamic acid (poly (pyromellitic dianhydride-co-4,4, manufactured by Sigma-Aldrich Co.) '-Oxydianiline) amic acid solution, 5 parts by mass of a solvent: N-methylpyrrolidone, solid content concentration: 15% by mass), and [1-butyl-3- (2-hydroxyethyl) imidazolium bromide] as an ionic liquid
  • a coating liquid (P) comprising a thermoelectric semiconductor composition in which 5 parts by mass were mixed and dispersed was prepared.
  • the viscosity of the coating liquid (P) was 170 Pa ⁇ s.
  • Coating liquid (N) 90 parts by mass of the obtained fine particles T2 of the N-type bismuth-tellurium-based thermoelectric semiconductor material, and a polyamic acid (poly (pyromellitic dianhydride-co-4,4, manufactured by Sigma-Aldrich Co.) '-Oxydianiline) amic acid solution, 5 parts by mass of a solvent: N-methylpyrrolidone, solid content concentration: 15% by mass), and [1-butyl-3- (2-hydroxyethyl) imidazolium bromide] as an ionic liquid
  • a coating liquid (N) composed of a thermoelectric semiconductor composition in which 5 parts by mass were mixed and dispersed was prepared.
  • the viscosity of the coating liquid (N) was 190 Pa ⁇ s.
  • thermoelectric element layer ⁇ Formation of thermoelectric element layer>
  • the above-mentioned coating is performed on an electrode (4.0 mm long ⁇ 1.5 mm wide ⁇ 10 ⁇ m thick) provided on a lower polyimide film substrate (manufactured by Dupont Toray, Kapton 200H, 100 mm ⁇ 100 mm, thickness: 50 ⁇ m).
  • the liquid (P) was applied three times by a stencil printing method as follows (multilayer printing method). First, using a coating liquid (P), printing was performed at a predetermined position with a first stencil plate having a plate thickness of 30 ⁇ m and dried. Next, a third stencil plate having a plate thickness of 80 ⁇ m was printed and dried on the printing layer formed with the first stencil plate having a plate thickness of 30 ⁇ m.
  • the temperature was increased at a heating rate of 5 K / min, and the temperature was maintained at 325 ° C. for 1 hour to grow fine particles of the thermoelectric semiconductor material to form a P-type thermoelectric element layer.
  • the upper polyimide film substrate (having the same specifications except for the arrangement of the electrodes of the lower polyimide film substrate, the arrangement of the electrodes is such that 100 pairs of P-type thermoelectric element layers and N-type thermoelectric element layers are alternately arranged in series, Then, the coating liquid (N) was used for printing and drying at a predetermined position with a second stencil plate having a plate thickness of 30 ⁇ m using a coating liquid (N).
  • printing was performed with a fourth stencil plate having a plate thickness of 80 ⁇ m on the printing layer formed with the second stencil plate having a plate thickness of 30 ⁇ m, followed by drying. Further, printing was performed with a sixth stencil plate having a plate thickness of 150 ⁇ m on the printing layer formed with the fourth stencil plate having a plate thickness of 80 ⁇ m, and dried. Thereafter, by annealing, 100 N-type thermoelectric element layers of the same size of 1.5 mm ⁇ 1.5 mm on which the N-type thermoelectric element layers obtained by three-layer printing were arranged were provided. The thicknesses of the P-type thermoelectric element layer and the N-type thermoelectric element layer were all 160 ⁇ m.
  • PF141-LT7HOF 10, manufactured by Nihon Solder Co., Ltd.
  • 100 pairs of P-type thermoelectric element layers and N-type thermoelectric element layers are alternately arranged in series, and electrically connected.
  • a ⁇ -type thermoelectric conversion element (Peltier cooling element) connected in series was produced.
  • the distance between the centers of the P-type thermoelectric element layer and the N-type thermoelectric element layer formed on the electrodes of the lower polyimide film substrate was 2.5 mm, and the distance between the P-type thermoelectric element layers on the electrodes of the upper polyimide film substrate was 2.5 mm.
  • the distance between each center and the N-type thermoelectric element layer was 2.5 mm.
  • thermoelectric conversion element of Example 2 ( ⁇ -type thermoelectric conversion element) was produced in the same manner as in Example 1 except that the formation of the thermoelectric element layer was performed by the following pattern frame arrangement / peeling method. .
  • the lower polyimide film substrate manufactured by Du Pont-Toray Co., Ltd., Kapton 200H, 100 mm ⁇ 100 mm, thickness: 50 ⁇ m
  • the lower polyimide film substrate was designed to have spaced openings (openings: 1.5 mm ⁇ 1.5 mm, Number of openings: 200, distance between centers of openings corresponding to formation of a pair of P-type thermoelectric element layers and N-type thermoelectric element layers: 2.5 mm)
  • a pattern frame having a plate thickness of 200 ⁇ m was provided.
  • thermoelectric element layer Is filled with the above-mentioned coating liquids (P) and (N), dried, and the pattern frame is peeled off from the substrate to form a 1.5 mm ⁇ 1.5 mm P-type thermoelectric element layer and an N-type thermoelectric element.
  • a total of 100 pairs of element layers were provided.
  • the thicknesses of the thermoelectric element layers after the annealing treatment were all 160 ⁇ m.
  • thermoelectric conversion element of Example 3 ( ⁇ -type thermoelectric conversion element) was produced in the same manner as in Example 1, except that the formation of the thermoelectric element layer was performed by the following pattern layer arrangement method.
  • the lower polyimide film substrate (manufactured by Du Pont-Toray Co., Ltd., Kapton 200H, 100 mm ⁇ 100 mm, thickness: 50 ⁇ m) was designed to have spaced openings (openings: 1.5 mm ⁇ 1.5 mm, Number of openings: 200, distance between centers of openings corresponding to formation of a pair of P-type thermoelectric element layers and N-type thermoelectric element layers: 2.5 mm)
  • Pattern layer made of a 250 ⁇ m-thick polyimide resin layer Is filled with the above-described coating liquids (P) and (N) in the openings, and dried to form a pair of a 1.5 mm ⁇ 1.5 mm P-type thermoelectric element layer and an N-type thermoelectric element layer
  • thermoelectric element ⁇ -type thermoelectric conversion element
  • thermoelectric element layer was formed in the same manner as in Example 1 except that the thermoelectric element layer was formed by the following pattern frame arrangement / peeling method, and the thermoelectric conversion element was formed into an in-plane type. A conversion element (in-plane type thermoelectric conversion element) was manufactured.
  • thermoelectric element layer by pattern frame arrangement / peeling method A polyimide film substrate (manufactured by Toray DuPont, Kapton 200H, 100 mm ⁇ 100 mm, thickness: 50 ⁇ m) has an opening (aperture 1.0 mm ⁇ width 6.0 mm ⁇ thickness 10 ⁇ m) spaced apart (opening) : 1.0 mm ⁇ 1.0 mm, number of openings: 200, distance between centers of openings corresponding to formation of a pair of P-type thermoelectric element layers and N-type thermoelectric element layers: 2.0 mm) An 80 ⁇ m pattern frame is provided, the openings are filled with the above-mentioned coating liquids (P) and (N), dried, and the pattern frame is peeled off from the substrate to obtain a 1.0 mm ⁇ 1.0 mm.
  • thermoelectric element layers and N-type thermoelectric element layers were provided.
  • the temperature was increased at a heating rate of 5 K / min, and the temperature was maintained at 325 ° C. for 1 hour to grow fine particles of a thermoelectric semiconductor material, thereby forming a P-type thermoelectric element layer and an N-type thermoelectric element layer.
  • the thicknesses of the thermoelectric element layers after the annealing were all 60 ⁇ m.
  • thermoelectric conversion element of Comparative Example 1 was produced in the same manner as in Example 1 except that only one thermoelectric element layer was formed using a stencil plate having a plate thickness of 235 ⁇ m when forming the thermoelectric element layer.
  • the thicknesses of the thermoelectric element layers after the annealing treatment were all 160 ⁇ m.
  • Comparative Example 2 Comparative Example 2 was prepared in the same manner as in Comparative Example 1 except that the viscosity of the coating solutions (P) and (N) was adjusted to 70 Pa ⁇ s by adding N-methylpyrrolidone. Was manufactured.
  • thermoelectric element layer of Comparative Example 3 (in-plane type) was formed in the same manner as in Example 5 except that the thermoelectric element layer was formed by a one-layer printing method using a stencil plate having a plate thickness of 80 ⁇ m. Thermoelectric conversion element). The thicknesses of the thermoelectric element layers after the annealing were all 60 ⁇ m.
  • thermoelectric conversion elements of Examples 1 to 4 having the thermoelectric element layers having the vertical cross sections satisfying the conditions (A) and (B) are different.
  • thermoelectric conversion elements of Comparative Examples 1 and 2 having a thermoelectric element layer having a longitudinal section that does not satisfy the condition (A) It can be seen that the resistance value is low and high thermoelectric performance can be obtained.
  • the example 5 when the example 5 is compared with the comparative example 3, the example 5 clearly has a lower electric resistance value between the electrode portions and can obtain a higher thermoelectric performance. You can see that.
  • thermoelectric conversion element included in the semiconductor element of the present invention
  • the thermoelectric conversion element including the thermoelectric element layer having the vertical section satisfying the conditions (A) and (B) has a substantially rectangular parallelepiped shape.
  • the thermoelectric element layer and the electrode can be easily controlled, and the electric resistance of the thermoelectric element layer can be controlled to be small. Therefore, improvement in thermoelectric performance can be expected.
  • the thermoelectric conversion element of the present invention since the thermoelectric conversion element of the present invention has excellent controllability of the shape of the thermoelectric element layer, high integration can be expected.
  • thermoelectric conversion element By using the above-mentioned thermoelectric conversion element as a module, power generation that converts exhaust heat from various types of combustion furnaces such as factories, waste combustion furnaces, cement combustion furnaces, exhaust gas from automobiles and exhaust heat from electronic devices into electricity It is conceivable to apply to the application.
  • a cooling application in the field of electronic devices, for example, a CPU (Central Processing Unit) used for a smart phone, various computers, and the like, a CMOS (Complementary Metal Oxide Semiconductor Image Sensor), a CCD (Charge Coupled Image) sensor of a CCD (Charge Coupled), and the like.
  • the present invention can be applied to temperature control of various sensors such as MEMS (Micro Electro Mechanical Systems) and other light receiving elements.
  • thermoelectric conversion element 2a substrate 2b: substrate 3a: electrode 3b: electrodes 4, 4s, 4t, 4u: thermoelectric element layer 4a: N-type thermoelectric element layer 4b: P-type thermoelectric element layer 11: substrate 12: pattern frame 12 ': Stainless steel 13s: Opening 13d: Opening depth (pattern frame thickness) 13: Opening 14a: N-type thermoelectric element layer 14b: P-type thermoelectric element layers 22a, 22b: Substrates 23a, 23b: Electrode 24: Pattern layer 24 ': Layer containing resin 25: Opening 25s: Opening 26a: N-type Thermoelectric element layer 26b: P-type thermoelectric element layer X: Length (width direction) Xmax: Maximum value of length in width direction (longitudinal section) Y: Length (depth direction) D: Thickness (thickness direction) Dmax: maximum value of thickness in the thickness direction (longitudinal section) S: Area of longitudinal section

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

This semiconductor element contains a semiconductor element layer formed from a semiconductor composition containing a semiconductor material on a substrate; when the semiconductor element is used as a thermoelectric conversion element, the semiconductor element provides a thermoelectric conversion element provided with a thermoelectric element layer which has excellent thermoelectric performance and of which the sectional shape has been controlled. Defining S(μm2) as the area of the vertical section including the center part of the semiconductor element layer, Dmax(μm) as the maximum value of the thickness-direction thickness of the vertical section and Xmax (μm) as the maximum value of the width-direction length of the vertical section, the vertical section of the semiconductor element layer satisfies conditions (A) and (B) below. (A) 0.75 ≤ S / (Dmax×Xmax) ≤ 1.00 (B) Dmax ≥ 10 μm, or (Dmax/Xmax) ≥ 0.03

Description

半導体素子Semiconductor element
 本発明は、半導体素子に関する。 << The present invention relates to a semiconductor device.
 従来から、半導体素子を熱電変換素子として用いることで、エネルギーの有効利用手段の一つとして、ゼーベック効果やペルチェ効果などの熱電効果を有する熱電変換モジュールにより、熱エネルギーと電気エネルギーとを直接相互変換するようにした装置がある。
 この中で、前記熱電変換素子として、いわゆるπ型の熱電変換素子の構成が知られている。π型は、通常、互いに離間するー対の電極を基板上に設け、例えば、―方の電極の上にP型熱電素子を、他方の電極の上にN型熱電素子を、同じく互いに離間して設け、両方の熱電素子の上面を対向する基板の電極に接続することで構成されている。また、いわゆるインプレーン型の熱電変換素子の使用が知られている。インプレーン型は、通常、N型熱電素子とP型熱電素子とが交互に配置されるように、複数の熱電素子を配列して、例えば、熱電素子の下部同士又は上部同士の電極を直列に接続することで構成されている。
Conventionally, by using a semiconductor element as a thermoelectric conversion element, as one of effective means of energy utilization, a thermoelectric conversion module having a thermoelectric effect such as a Seebeck effect or a Peltier effect allows direct mutual conversion between thermal energy and electric energy. There are devices designed to do this.
Among them, a configuration of a so-called π-type thermoelectric conversion element is known as the thermoelectric conversion element. In the π type, usually, a pair of electrodes which are separated from each other are provided on a substrate, and, for example, a P type thermoelectric element is placed on a negative electrode, an N type thermoelectric element is placed on the other electrode, and similarly separated from each other. And the upper surfaces of both thermoelectric elements are connected to the electrodes of the opposing substrate. Further, use of a so-called in-plane type thermoelectric conversion element is known. The in-plane type usually arranges a plurality of thermoelectric elements so that N-type thermoelectric elements and P-type thermoelectric elements are alternately arranged, and for example, connects the lower or upper electrodes of the thermoelectric elements in series. It is configured by connecting.
 近年、熱電変換素子の薄型化、高集積化を含む熱電性能の向上等の要求がある。特許文献1では、熱電素子層として、薄膜化による薄型化の観点も含め、樹脂等を含む熱電半導体組成物を用い、スクリーン印刷法等により直接熱電素子層のパターンを形成する方法が開示されている。 In recent years, there has been a demand for improvement of thermoelectric performance including thinning and high integration of thermoelectric conversion elements. Patent Document 1 discloses a method of directly forming a pattern of a thermoelectric element layer by a screen printing method or the like using a thermoelectric semiconductor composition containing a resin or the like, including a viewpoint of thinning by thinning, as a thermoelectric element layer. I have.
国際公開第2016/104615号International Publication No. WO 2016/104615
 しかしながら、特許文献1のように、熱電半導体材料、耐熱性樹脂等からなる熱電半導体組成物をスクリーン印刷法等で電極上、又は基板上に熱電素子を直接パターン層として形成する方法では、得られた熱電素子層の形状制御性が十分ではなく、電極界面、又は基板界面において熱電素子層の端部に滲みが発生することにより熱電素子層の形状が崩れてしまうことがある。例えば、熱電性能及び製造容易性の観点から熱電素子層の形状を直方体状(立方体状含む)に形成することを意図して形成する場合には、実際の断面形状は概ね半楕円状(後述する、図3(a)参照)となり、所望の厚さを得られないことはもとより、熱電素子層の上面の領域を均一な平坦に制御することができない場合がある。このため、前述したπ型熱電変換素子を構成する場合には、得られた熱電素子層の上面と対向する電極との接合部の面積が十分とれず、界面抵抗や熱抵抗が増大することにより、熱電性能が低下してしまい、熱電素子層が本来有する熱電性能を十分引き出すことができない場合がある。さらに、インプレーン型熱電素子を構成する場合には、熱電素子層の断面の面積が小さくなることから、電気抵抗が増大するため、熱電性能の低下に繋がることがある。このように、熱電素子層の形成に際しては、熱電性能の向上、また、高集積化の観点から、個々の熱電素子層の形状制御性を向上させることが重要となっている。 However, as disclosed in Patent Document 1, a method of forming a thermoelectric element as a pattern layer directly on an electrode or a substrate by a screen printing method or the like using a thermoelectric semiconductor composition composed of a thermoelectric semiconductor material, a heat-resistant resin, or the like is obtained. In addition, the shape controllability of the thermoelectric element layer is not sufficient, and bleeding occurs at the edge of the thermoelectric element layer at the electrode interface or the substrate interface, whereby the shape of the thermoelectric element layer may be broken. For example, when the shape of the thermoelectric element layer is formed to be formed in a rectangular parallelepiped shape (including a cubic shape) from the viewpoint of thermoelectric performance and manufacturability, the actual cross-sectional shape is substantially semi-elliptical (described later). 3 (a)), it may not be possible to obtain a desired thickness, and it may not be possible to control the region of the upper surface of the thermoelectric element layer to be uniform and flat. Therefore, when the above-described π-type thermoelectric conversion element is configured, the area of the junction between the upper surface of the obtained thermoelectric element layer and the electrode facing the electrode cannot be sufficiently increased, and the interface resistance and the thermal resistance increase. In some cases, the thermoelectric performance is reduced, and the thermoelectric performance inherent in the thermoelectric element layer cannot be sufficiently obtained. Furthermore, when an in-plane thermoelectric element is configured, the cross-sectional area of the thermoelectric element layer is reduced, and the electric resistance is increased, which may lead to a decrease in thermoelectric performance. As described above, when forming the thermoelectric element layers, it is important to improve the shape controllability of each thermoelectric element layer from the viewpoint of improving the thermoelectric performance and increasing the degree of integration.
 本発明は、上記を鑑み、半導体素子を熱電変換素子として用いた時に、優れた熱電性能を有する、断面形状が制御された熱電素子層を備えた熱電変換素子を提供することを課題とする。 In view of the above, an object of the present invention is to provide a thermoelectric conversion element including a thermoelectric element layer having a controlled cross-sectional shape, having excellent thermoelectric performance when a semiconductor element is used as a thermoelectric conversion element.
 上記課題を解決するために、本発明は、以下の(1)~(7)を提供する。
(1)基板上に半導体材料を含む半導体組成物からなる半導体素子層を含む半導体素子であって、前記半導体素子層の中央部を含む縦断面の面積をS(μm)、縦断面の厚さ方向の厚さの最大値をDmax(μm)、縦断面の幅方向の長さの最大値をXmax(μm)とした場合、前記半導体素子層の前記縦断面が、以下の条件(A)及び(B)を満たす、半導体素子。
(A)0.75≦S/(Dmax×Xmax)≦1.00
(B)Dmax≧10μm、もしくは(Dmax/Xmax)≧0.03
 ここで、縦断面の厚さ方向の厚さの最大値Dmaxは、前記半導体素子層の前記縦断面において、前記基板上に垂線を立てた時に前記縦断面の厚さ方向の厚さの上下端と該垂線とが交差した際に得られる2交点間の最大の距離(厚さ)を意味し、縦断面の幅方向の長さの最大値Xmaxは、前記基板に平行な平行線を引いた時に前記縦断面の幅方向の長さの左右端と該平行線とが交差した際に得られる2交点間の最大の距離(長さ)を意味する。
(2)前記半導体材料が熱電半導体材料であり、前記半導体素子が前記熱電半導体材料を含む熱電半導体組成物からなる熱電素子層を含む、上記(1)に記載の半導体素子を用いた熱電変換素子。
(3)前記熱電半導体組成物が、さらに、耐熱性樹脂を含む、上記(2)に記載の熱電変換素子。
(4)前記熱電半導体材料が、ビスマス-テルル系熱電半導体材料、テルライド系熱電半導体材料、アンチモン-テルル系熱電半導体材料、又はビスマスセレナイド系熱電半導体材料である、上記(2)又は(3)に記載の熱電変換素子。
(5)前記耐熱性樹脂が、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、又はエポキシ樹脂である、上記(2)~(4)のいずれかに記載の熱電変換素子。
(6)前記熱電半導体組成物が、さらに、イオン液体及び/又は無機イオン性化合物を含む、上記(2)~(5)のいずれかに記載の熱電変換素子。
(7)前記条件(A)が、0.83≦S/(Dmax×Xmax)≦1.00、かつ前記条件(B)が、Dmax≧50μm、もしくは(Dmax/Xmax)≧0.08である、上記(1)~(6)のいずれかに記載の熱電変換素子。
In order to solve the above problems, the present invention provides the following (1) to (7).
(1) A semiconductor element including a semiconductor element layer made of a semiconductor composition containing a semiconductor material on a substrate, wherein an area of a vertical section including a central portion of the semiconductor element layer is S (μm 2 ), and a thickness of the vertical section is When the maximum value of the thickness in the width direction is Dmax (μm) and the maximum value of the length in the width direction of the vertical section is Xmax (μm), the vertical section of the semiconductor element layer has the following condition (A). And (B).
(A) 0.75 ≦ S / (Dmax × Xmax) ≦ 1.00
(B) Dmax ≧ 10 μm or (Dmax / Xmax) ≧ 0.03
Here, the maximum value Dmax of the thickness in the thickness direction of the vertical section is the upper and lower ends of the thickness in the thickness direction of the vertical section when a vertical line is formed on the substrate in the vertical section of the semiconductor element layer. Means the maximum distance (thickness) between two intersections obtained when the vertical line intersects with the vertical line. The maximum value Xmax of the length in the width direction of the longitudinal section is obtained by drawing a parallel line parallel to the substrate. Sometimes it means the maximum distance (length) between two intersections obtained when the left and right ends of the length in the width direction of the vertical cross section and the parallel line intersect.
(2) The thermoelectric conversion element using the semiconductor element according to (1), wherein the semiconductor material is a thermoelectric semiconductor material, and the semiconductor element includes a thermoelectric element layer made of a thermoelectric semiconductor composition containing the thermoelectric semiconductor material. .
(3) The thermoelectric conversion element according to (2), wherein the thermoelectric semiconductor composition further contains a heat-resistant resin.
(4) The thermoelectric semiconductor material according to (2) or (3), wherein the thermoelectric semiconductor material is a bismuth-tellurium thermoelectric semiconductor material, a telluride thermoelectric semiconductor material, an antimony-tellurium thermoelectric semiconductor material, or a bismuth selenide thermoelectric semiconductor material. 3. The thermoelectric conversion element according to item 1.
(5) The thermoelectric conversion element according to any of (2) to (4), wherein the heat-resistant resin is a polyimide resin, a polyamide resin, a polyamide-imide resin, or an epoxy resin.
(6) The thermoelectric conversion element according to any one of (2) to (5), wherein the thermoelectric semiconductor composition further contains an ionic liquid and / or an inorganic ionic compound.
(7) The condition (A) satisfies 0.83 ≦ S / (Dmax × Xmax) ≦ 1.00, and the condition (B) satisfies Dmax ≧ 50 μm or (Dmax / Xmax) ≧ 0.08. The thermoelectric conversion element according to any one of the above (1) to (6).
 本発明によれば、半導体素子を熱電変換素子として用いた時に、優れた熱電性能を有する、断面形状が制御された熱電素子層を備えた熱電変換素子を提供することができる。 According to the present invention, it is possible to provide a thermoelectric conversion element having a thermoelectric element layer having a controlled cross-sectional shape and having excellent thermoelectric performance when a semiconductor element is used as a thermoelectric conversion element.
の縦断面の形状が制御された熱電素子層を備えた
本発明の縦断面の形状が制御された熱電素子層を備えた熱電変換素子の一例を示す断面構成図である。 本発明の半導体素子を熱電変換素子に用いた時の熱電素子層の縦断面の定義を説明するための図である。 本発明の実施例又は比較例の熱電変換素子に用いた熱電素子層の縦断面を説明するための断面図である。 本発明に用いたパターン枠配置/剥離法による熱電素子層の製造方法の一例を工程順に示す説明図である。 本発明に用いたパターン層配置法による熱電変換素子の製造方法の一例を工程順に示す説明図である。
Equipped with a thermoelectric element layer whose longitudinal cross-section was controlled
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional configuration diagram illustrating an example of a thermoelectric conversion element including a thermoelectric element layer having a controlled longitudinal cross-section according to the present invention. It is a figure for explaining the definition of the longitudinal section of a thermoelectric element layer when the semiconductor element of the present invention is used for a thermoelectric conversion element. It is sectional drawing for demonstrating the longitudinal cross section of the thermoelectric element layer used for the thermoelectric conversion element of the Example of this invention, or a comparative example. It is explanatory drawing which shows an example of the manufacturing method of the thermoelectric element layer by the pattern frame arrangement / separation method used for this invention in order of a process. It is explanatory drawing which shows an example of the manufacturing method of the thermoelectric conversion element by the pattern layer arrangement method used for this invention in order of a process.
[熱電変換素子]
 本発明の半導体素子は、基板上に半導体材料を含む半導体組成物からなる半導体素子層を含む半導体素子であって、前記半導体素子層の中央部を含む縦断面の面積をS(μm)、縦断面の厚さ方向の厚さの最大値をDmax(μm)、縦断面の幅方向の長さの最大値をXmax(μm)とした場合、前記半導体素子層の前記縦断面が、以下の条件(A)及び(B)を満たすことを特徴としている。
(A)0.75≦S/(Dmax×Xmax)≦1.00
(B)Dmax≧10μm、もしくは(Dmax/Xmax)≧0.03
 ここで、縦断面の厚さ方向の厚さの最大値Dmaxは、前記半導体素子層の前記縦断面において、前記基板上に垂線を立てた時に前記縦断面の厚さ方向の厚さの上下端と該垂線とが交差した際に得られる2交点間の最大の距離(厚さ)を意味し、縦断面の幅方向の長さの最大値Xmaxは、前記基板に平行な平行線を引いた時に前記縦断面の幅方向の長さの左右端と該平行線とが交差した際に得られる2交点間の最大の距離(長さ)を意味する。
 本発明の半導体素子を構成する半導体素子層の縦断面が、前記の条件(A)、(B)を満たすことにより、半導体素子層の縦断面が略四角形になりやすくなり、半導体素子層の形状としては略直方体状(略立方体状含む)に制御されやすくなり、性能向上及び高集積化の観点から好ましい。
 前記半導体材料が熱電半導体材料であり、前記半導体素子が前記熱電半導体材料を含む熱電半導体組成物からなる熱電素子層を含む、前記半導体素子を用いた熱電変換素子であることが好ましい。
 前記の条件(A)、(B)を満たす前記半導体素子層を熱電素子層として用いた時に、熱電性能及び製造容易性の観点から好ましい。所望の厚さを得られることはもとより、熱電素子層の上面の領域が平坦な面になりやすく、熱電素子層の上面と対向する電極との接合部の面積が十分とれ、界面抵抗や熱抵抗の増大が抑制され、π型熱電変換素子又はインプレーン型熱電変換素子を構成する際、特に電極との接合部の面積が広いπ型熱電変換素子にあっては、熱電素子層が本来有する熱電性能を十分引き出すことに繋がり、結果的に熱電性能が向上する。加えて、縦断面の面積が大きくなることから、熱電素子層の電気抵抗が減少するため、インプレーン型熱電変換素子を構成する場合には、熱電性能が向上する。
[Thermoelectric conversion element]
The semiconductor device of the present invention is a semiconductor device including a semiconductor device layer made of a semiconductor composition including a semiconductor material on a substrate, and has a vertical cross-sectional area including a central portion of the semiconductor device layer, S (μm 2 ); When the maximum value of the thickness in the thickness direction of the vertical section is Dmax (μm) and the maximum value of the length in the width direction of the vertical section is Xmax (μm), the vertical section of the semiconductor element layer has the following It is characterized by satisfying the conditions (A) and (B).
(A) 0.75 ≦ S / (Dmax × Xmax) ≦ 1.00
(B) Dmax ≧ 10 μm or (Dmax / Xmax) ≧ 0.03
Here, the maximum value Dmax of the thickness in the thickness direction of the vertical section is the upper and lower ends of the thickness in the thickness direction of the vertical section when a vertical line is formed on the substrate in the vertical section of the semiconductor element layer. Means the maximum distance (thickness) between two intersections obtained when the vertical line intersects with the vertical line. The maximum value Xmax of the length in the width direction of the longitudinal section is obtained by drawing a parallel line parallel to the substrate. Sometimes it means the maximum distance (length) between two intersections obtained when the left and right ends of the length in the width direction of the vertical cross section and the parallel line intersect.
When the longitudinal section of the semiconductor element layer constituting the semiconductor element of the present invention satisfies the above conditions (A) and (B), the longitudinal section of the semiconductor element layer is likely to be substantially square, and the shape of the semiconductor element layer Is easily controlled into a substantially rectangular parallelepiped shape (including a substantially cubic shape), which is preferable from the viewpoints of performance improvement and high integration.
Preferably, the semiconductor material is a thermoelectric semiconductor material, and the semiconductor element is a thermoelectric conversion element using the semiconductor element, including a thermoelectric element layer made of a thermoelectric semiconductor composition containing the thermoelectric semiconductor material.
When the semiconductor element layer satisfying the above conditions (A) and (B) is used as a thermoelectric element layer, it is preferable from the viewpoint of thermoelectric performance and manufacturability. In addition to obtaining the desired thickness, the area of the upper surface of the thermoelectric element layer tends to be flat, and the area of the junction between the upper surface of the thermoelectric element layer and the opposing electrode is sufficient, and the interface resistance and thermal resistance When a π-type thermoelectric conversion element or an in-plane type thermoelectric conversion element is configured, particularly in the case of a π-type thermoelectric conversion element having a large joint area with an electrode, the thermoelectric element layer originally has a thermoelectric element. This leads to sufficient performance, resulting in improved thermoelectric performance. In addition, since the area of the longitudinal section becomes large, the electric resistance of the thermoelectric element layer decreases, so that when an in-plane thermoelectric conversion element is formed, the thermoelectric performance is improved.
 本明細書において、「半導体素子層の中央部を含む縦断面」の定義を、図2を用いて説明する。図2は、本発明の半導体素子を熱電変換素子に用いた時の熱電素子層の縦断面を説明するための図であり、(a)は、熱電素子層4の平面図であり、熱電素子層4は、幅方向に長さX、奥行き方向に長さYを有し、(b)は、熱電素子層4の縦断面であり、縦断面は、前記(a)の中央部Cを含み、幅方向にA-A’間で切断した時に得られる長さX、厚さDを有する斜線部(図では長方形)を意味する。
 また、本明細書において、「熱電素子層の縦断面が略四角形になりやすい」とは、台形を含め、長方形又は正方形等の矩形になりやすい、という意味である。
In this specification, the definition of “longitudinal section including the central portion of the semiconductor element layer” will be described with reference to FIG. FIG. 2 is a view for explaining a longitudinal section of a thermoelectric element layer when the semiconductor element of the present invention is used for a thermoelectric conversion element, and FIG. 2 (a) is a plan view of the thermoelectric element layer 4, and FIG. The layer 4 has a length X in the width direction and a length Y in the depth direction. (B) is a vertical section of the thermoelectric element layer 4, and the vertical section includes the central portion C of (a). , A hatched portion (rectangle in the figure) having a length X and a thickness D obtained when cut between AA ′ in the width direction.
Further, in the present specification, "the longitudinal section of the thermoelectric element layer is likely to be substantially square" means that it is easy to become a rectangle such as a rectangle or a square including a trapezoid.
 図1は、本発明の縦断面の形状が制御された熱電素子層を備えた熱電変換素子の一例を示す断面構成図であり、熱電変換素子1は、基板2aの電極3a上にN型熱電素子層4a及びP型熱電素子層4bを備え、さらに、N型熱電素子層4a及びP型熱電素子層4bの上面に、基板2b上に電極3bを有する対向電極基板を備えており、交互に隣接するN型熱電素子層4a及びP型熱電素子層4bが、基板2b上の電極3bを介在し電気的に直列接続するように配置され、π型熱電変換素子として構成されている。 FIG. 1 is a cross-sectional configuration view showing an example of a thermoelectric conversion element provided with a thermoelectric element layer having a controlled vertical cross-sectional shape according to the present invention. The thermoelectric conversion element 1 has an N-type thermoelectric element on an electrode 3a of a substrate 2a. It has an element layer 4a and a P-type thermoelectric element layer 4b, and further has a counter electrode substrate having an electrode 3b on a substrate 2b on the upper surface of the N-type thermoelectric element layer 4a and the P-type thermoelectric element layer 4b. Adjacent N-type thermoelectric element layers 4a and P-type thermoelectric element layers 4b are arranged so as to be electrically connected in series with the electrodes 3b on the substrate 2b interposed therebetween, and are configured as π-type thermoelectric conversion elements.
(熱電素子層)
 本発明の熱電変換素子を構成する熱電素子層(以下、「熱電素子層の薄膜」ということがある。)は、基板上に熱電半導体材料を含む熱電半導体組成物からなる。熱電素子層の形状安定性の観点から、熱電半導体材料には耐熱性樹脂を含むことが好ましく、熱電性能の観点から、より好ましくは、熱電半導体材料(以下、「熱電半導体微粒子」ということがある。)、耐熱性樹脂、並びにイオン液体及び/又は無機イオン性化合物を含む熱電半導体組成物からなる。
(Thermoelectric element layer)
The thermoelectric element layer (hereinafter sometimes referred to as “thermoelectric element layer thin film”) constituting the thermoelectric conversion element of the present invention is made of a thermoelectric semiconductor composition containing a thermoelectric semiconductor material on a substrate. From the viewpoint of the shape stability of the thermoelectric element layer, the thermoelectric semiconductor material preferably contains a heat-resistant resin, and from the viewpoint of thermoelectric performance, more preferably, the thermoelectric semiconductor material (hereinafter sometimes referred to as “thermoelectric semiconductor fine particles”). ), A heat-resistant resin, and a thermoelectric semiconductor composition containing an ionic liquid and / or an inorganic ionic compound.
〈熱電素子層の縦断面〉
 本発明に用いる熱電素子層の縦断面について、図を用いて説明する。
<Vertical cross section of thermoelectric element layer>
The longitudinal section of the thermoelectric element layer used in the present invention will be described with reference to the drawings.
 図3は、本発明の実施例又は比較例の熱電変換素子に用いた熱電素子層の縦断面を説明するための断面図であり、(a)は、比較例1で用いた熱電素子層4sの縦断面であり、熱電素子層4sは、幅方向の長さの最大値Xmax、厚さ方向の厚さの最大値Dmaxを有する縦断面(断面積S)を有し、縦断面は概ね半楕円になっている。また、(b)は、実施例1で用いた熱電素子層4tの縦断面であり、熱電素子層4tの縦断面は、幅方向の長さの最大値Xmax、厚さ方向の厚さの最大値Dmaxを有する縦断面(断面積S)を有し、縦断面は、略四角形(概ね台形)になっている。さらに、(c)は、実施例2で用いた熱電素子層4uの縦断面であり、幅方向の長さの最大値Xmax、厚さ方向の厚さの最大値Dmaxを有する縦断面(断面積S)を有し、縦断面は略四角形(長方形)になっている。 FIG. 3 is a cross-sectional view for explaining a vertical cross section of a thermoelectric element layer used in a thermoelectric conversion element according to an example of the present invention or a comparative example, and (a) illustrates a thermoelectric element layer 4s used in Comparative Example 1. The thermoelectric element layer 4s has a vertical section (cross-sectional area S) having a maximum value Xmax of the length in the width direction and a maximum value Dmax of the thickness in the thickness direction, and the vertical section is approximately half. It is elliptical. (B) is a vertical cross section of the thermoelectric element layer 4t used in Example 1, and the vertical cross section of the thermoelectric element layer 4t has a maximum value Xmax in the width direction and a maximum thickness in the thickness direction. It has a vertical section (cross-sectional area S) having the value Dmax, and the vertical section is substantially quadrangular (generally trapezoidal). Further, (c) is a longitudinal section of the thermoelectric element layer 4u used in Example 2, which has a maximum value Xmax in the width direction and a maximum value Dmax in the thickness direction (cross-sectional area). S), and the longitudinal section is substantially square (rectangular).
 本発明の半導体素子に含まれる熱電変換素子を構成する熱電素子層の中央部を含む縦断面において、縦断面の面積をS(μm)、縦断面の厚さ方向の厚さの最大値をDmax(μm)、縦断面の幅方向の長さの最大値をXmax(μm)とした場合、前記熱電素子層の前記縦断面が、以下の条件(A)、(B)を満たすことを要する。
(A)0.75≦S/(Dmax×Xmax)≦1.00
(B)Tmax≧10μm、もしくは(Dmax/Xmax)≧0.03
In the vertical section including the center of the thermoelectric element layer constituting the thermoelectric conversion element included in the semiconductor element of the present invention, the area of the vertical section is S (μm 2 ), and the maximum value of the thickness in the thickness direction of the vertical section is When Dmax (μm) and the maximum value of the length of the vertical section in the width direction are Xmax (μm), the vertical section of the thermoelectric element layer needs to satisfy the following conditions (A) and (B). .
(A) 0.75 ≦ S / (Dmax × Xmax) ≦ 1.00
(B) Tmax ≧ 10 μm or (Dmax / Xmax) ≧ 0.03
 条件(A)は、S/(Dmax×Xmax)が0.75≦S/(Dmax×Xmax)≦1.00であることを要する。S/(Dmax×Xmax)が0.75未満であると、熱電素子層の縦断面が半楕円になりやすくなり略四角形になりにくくなる。熱電素子層の形状にあっては、略直方体状(略立方体状含む)になりにくくなり、所望の一定の厚さが得られず、熱電素子層の上面において平坦な面になる領域が小さくなる。加えて、縦断面の面積が小さくなる。S/(Dmax×Xmax)は、0.78以上が好ましく、より好ましく0.83以上、さらに好ましくは0.90以上、特に好ましくは0.95以上である。 Condition (A) requires that S / (Dmax × Xmax) be 0.75 ≦ S / (Dmax × Xmax) ≦ 1.00. When S / (Dmax × Xmax) is less than 0.75, the vertical cross section of the thermoelectric element layer tends to be semi-elliptical, and is unlikely to be substantially square. In the shape of the thermoelectric element layer, it is difficult to have a substantially rectangular parallelepiped shape (including a substantially cubic shape), a desired constant thickness cannot be obtained, and a flat region on the upper surface of the thermoelectric element layer becomes small. . In addition, the area of the longitudinal section is reduced. S / (Dmax × Xmax) is preferably at least 0.78, more preferably at least 0.83, even more preferably at least 0.90, particularly preferably at least 0.95.
 条件(B)は、Dmax≧10μm、もしくは(Dmax/Xmax)≧0.03であることを要する。
 Dmaxが10μm未満、もしくは、Dmax/Xmaxが0.03未満であると、スクリーン印刷、ステンシル印刷法等の塗工法では、縦断面が半楕円になりにくくなり、熱電素子層の形状にあっては、略直方体状等に制御しやすくなる場合があるが、熱電素子層として用いる場合、熱電性能の効率低下、集積の低下等の問題が生じる場合がある。
 Dmaxが10μm以上、もしくはDmax/Xmaxが0.03以上ではスクリーン印刷、ステンシル印刷法等の塗工法では、縦断面が半楕円になりやすくなり、熱電素子層の形状にあっては、略直方体状(略立方体状含む)に制御することが難しくなる。
 Dmaxは好ましくは50μm以上、より好ましくは100μm以上、さらに好ましくは150μm以上である。また、Dmax/Xmaxは好ましくは0.05以上、より好ましくは0.08以上、さらに好ましくは0.08~3.00、特に好ましくは0.09~1.50、最も好ましくは0.10~1.00である。Dmax、もしくはDmax/Xmaxが上記の範囲であると、縦断面が略四角形になりやすくなり、熱電素子層の形状にあっては、略直方体状(略立方体状含む)に制御することが容易になり、熱電性能の高効率化、高集積化に繋がる。
Condition (B) requires that Dmax ≧ 10 μm or (Dmax / Xmax) ≧ 0.03.
When Dmax is less than 10 μm or Dmax / Xmax is less than 0.03, the longitudinal section is less likely to be a semi-ellipse by a coating method such as screen printing and stencil printing, and the shape of the thermoelectric element layer In some cases, it may be easier to control the shape into a substantially rectangular parallelepiped shape, but when used as a thermoelectric element layer, problems such as a decrease in efficiency of thermoelectric performance and a decrease in integration may occur.
When Dmax is 10 μm or more, or Dmax / Xmax is 0.03 or more, in a coating method such as screen printing or stencil printing, the longitudinal section tends to be semi-elliptical, and the shape of the thermoelectric element layer is substantially rectangular parallelepiped. (Including a substantially cubic shape).
Dmax is preferably 50 μm or more, more preferably 100 μm or more, and still more preferably 150 μm or more. Further, Dmax / Xmax is preferably 0.05 or more, more preferably 0.08 or more, further preferably 0.08 to 3.00, particularly preferably 0.09 to 1.50, and most preferably 0.10 to 1. 1.00. When Dmax or Dmax / Xmax is within the above range, the longitudinal section tends to be substantially square, and the shape of the thermoelectric element layer can be easily controlled to be substantially rectangular (including substantially cubic). This leads to higher efficiency and higher integration of thermoelectric performance.
 熱電変換素子を構成する熱電素子層の縦断面が、前記の条件(A)、(B)の範囲であると、熱電素子層の縦断面が略四角形になりやすくなり、熱電素子層の形状にあっては、略直方体状(略立方体状含む)に制御されやすくなり、所望の一定の厚さを得られることはもとより、熱電素子層の上面の領域が平坦な面になりやすく、熱電素子層の上面と対向する電極との接合部の面積が十分とれ、界面抵抗や熱抵抗の増大が抑制される。加えて縦断面の面積が大きくなることから、熱電素子層の電気抵抗が減少する。いずれの場合においても、熱電性能が向上する。 When the vertical cross section of the thermoelectric element layer constituting the thermoelectric conversion element is in the range of the above-described conditions (A) and (B), the vertical cross section of the thermoelectric element layer is likely to be substantially rectangular, and the shape of the thermoelectric element layer is reduced. In this case, the thermoelectric element layer can be easily controlled to have a substantially rectangular parallelepiped shape (including a substantially cubic shape), and a desired constant thickness can be obtained. In addition, the upper surface region of the thermoelectric element layer can easily become a flat surface. The area of the junction between the upper surface of the first electrode and the opposing electrode is sufficiently large, and an increase in interface resistance and thermal resistance is suppressed. In addition, since the area of the vertical section becomes large, the electric resistance of the thermoelectric element layer decreases. In any case, the thermoelectric performance is improved.
(熱電半導体材料)
 本発明に用いる熱電半導体材料、すなわち、熱電素子層に含まれる熱電半導体材料としては、温度差を付与することにより、熱起電力を発生させることができる材料であれば特に制限されず、例えば、P型ビスマステルライド、N型ビスマステルライド等のビスマス-テルル系熱電半導体材料;GeTe、PbTe等のテルライド系熱電半導体材料;アンチモン-テルル系熱電半導体材料;ZnSb、ZnSb2、ZnSb等の亜鉛-アンチモン系熱電半導体材料;SiGe等のシリコン-ゲルマニウム系熱電半導体材料;BiSe等のビスマスセレナイド系熱電半導体材料;β―FeSi、CrSi、MnSi1.73、MgSi等のシリサイド系熱電半導体材料;酸化物系熱電半導体材料;FeVAl、FeVAlSi、FeVTiAl等のホイスラー材料、TiS等の硫化物系熱電半導体材料等が用いられる。
 これらの中で、ビスマス-テルル系熱電半導体材料、テルライド系熱電半導体材料、アンチモン-テルル系熱電半導体材料、又はビスマスセレナイド系熱電半導体材料が好ましい。
(Thermoelectric semiconductor material)
The thermoelectric semiconductor material used in the present invention, that is, the thermoelectric semiconductor material contained in the thermoelectric element layer is not particularly limited as long as it can generate a thermoelectromotive force by applying a temperature difference. P-type bismuth telluride, N-type bismuth telluride, etc. bismuth - telluride thermoelectric semiconductor material; GeTe, telluride based thermoelectric semiconductor materials such as PbTe; antimony - tellurium based thermoelectric semiconductor material; ZnSb, Zn 3 Sb 2, Zn 4 Sb 3 , etc. Zinc-antimony-based thermoelectric semiconductor material; silicon-germanium-based thermoelectric semiconductor material such as SiGe; bismuth selenide-based thermoelectric semiconductor material such as Bi 2 Se 3 ; β-FeSi 2 , CrSi 2 , MnSi 1.73 , Mg 2 Si Etc .; oxide-based thermoelectric semiconductor materials; FeVAl, F VAlSi, Heusler materials such FeVTiAl, such sulfide-based thermoelectric semiconductor materials, such as TiS 2 is used.
Among these, a bismuth-tellurium-based thermoelectric semiconductor material, a telluride-based thermoelectric semiconductor material, an antimony-tellurium-based thermoelectric semiconductor material, or a bismuth selenide-based thermoelectric semiconductor material is preferable.
 さらに、熱電性能の観点から、P型ビスマステルライド又はN型ビスマステルライド等のビスマス-テルル系熱電半導体材料であることがより好ましい。
 前記P型ビスマステルライドは、キャリアが正孔で、ゼーベック係数が正値であり、例えば、BiTeSb2-Xで表わされるものが好ましく用いられる。この場合、Xは、好ましくは0<X≦0.8であり、より好ましくは0.4≦X≦0.6である。Xが0より大きく0.8以下であるとゼーベック係数と電気伝導率が大きくなり、P型熱電素子としての特性が維持されるので好ましい。
 また、前記N型ビスマステルライドは、キャリアが電子で、ゼーベック係数が負値であり、例えば、BiTe3-YSeで表わされるものが好ましく用いられる。この場合、Yは、好ましくは0≦Y≦3(Y=0の時:BiTe)であり、より好ましくは0<Y≦2.7である。Yが0以上3以下であるとゼーベック係数と電気伝導率が大きくなり、N型熱電素子としての特性が維持されるので好ましい。
Further, from the viewpoint of thermoelectric performance, a bismuth-tellurium-based thermoelectric semiconductor material such as P-type bismuth telluride or N-type bismuth telluride is more preferable.
As the P-type bismuth telluride, those having a carrier as a hole and a Seebeck coefficient as a positive value, for example, those represented by Bi X Te 3 Sb 2-X are preferably used. In this case, X is preferably 0 <X ≦ 0.8, and more preferably 0.4 ≦ X ≦ 0.6. When X is greater than 0 and 0.8 or less, the Seebeck coefficient and the electrical conductivity increase, which is preferable because characteristics as a P-type thermoelectric element are maintained.
The N-type bismuth telluride preferably has an electron carrier and a negative Seebeck coefficient and is preferably represented by, for example, Bi 2 Te 3-Y Se Y. In this case, Y is preferably 0 ≦ Y ≦ 3 (when Y = 0: Bi 2 Te 3 ), and more preferably 0 <Y ≦ 2.7. When Y is 0 or more and 3 or less, the Seebeck coefficient and the electric conductivity increase, and the characteristics as an N-type thermoelectric element are preferably maintained.
 熱電半導体組成物に用いる熱電半導体微粒子は、前述した熱電半導体材料を、微粉砕装置等により、所定のサイズまで粉砕したものである。 熱 The thermoelectric semiconductor fine particles used in the thermoelectric semiconductor composition are obtained by pulverizing the above-described thermoelectric semiconductor material to a predetermined size using a pulverizer or the like.
 熱電半導体微粒子の前記熱電半導体組成物中の配合量は、好ましくは、30~99質量%である。より好ましくは、50~96質量%であり、さらに好ましくは、70~95質量%である。熱電半導体微粒子の配合量が、上記範囲内であれば、ゼーベック係数(ペルチェ係数の絶対値)が大きく、また電気伝導率の低下が抑制され、熱伝導率のみが低下するため高い熱電性能を示すとともに、十分な皮膜強度、屈曲性を有する膜が得られ好ましい。 配合 The blending amount of the thermoelectric semiconductor fine particles in the thermoelectric semiconductor composition is preferably 30 to 99% by mass. More preferably, it is 50 to 96% by mass, still more preferably 70 to 95% by mass. When the blending amount of the thermoelectric semiconductor fine particles is within the above range, the Seebeck coefficient (absolute value of the Peltier coefficient) is large, and the decrease in electric conductivity is suppressed, and only the heat conductivity is reduced, so that high thermoelectric performance is exhibited. In addition, a film having sufficient film strength and flexibility is obtained, which is preferable.
 熱電半導体微粒子の平均粒径は、好ましくは、10nm~200μm、より好ましくは、10nm~30μm、さらに好ましくは、50nm~10μm、特に好ましくは、1~6μmである。上記範囲内であれば、均一分散が容易になり、電気伝導率を高くすることができる。
 前記熱電半導体材料を粉砕して熱電半導体微粒子を得る方法は特に限定されず、ジェットミル、ボールミル、ビーズミル、コロイドミル、ローラーミル等の公知の微粉砕装置等により、所定のサイズまで粉砕すればよい。
 なお、熱電半導体微粒子の平均粒径は、レーザー回折式粒度分析装置(Malvern社製、マスターサイザー3000)にて測定することにより得られ、粒径分布の中央値とした。
The average particle size of the thermoelectric semiconductor fine particles is preferably 10 nm to 200 μm, more preferably 10 nm to 30 μm, further preferably 50 nm to 10 μm, and particularly preferably 1 to 6 μm. Within the above range, uniform dispersion is facilitated, and electric conductivity can be increased.
The method of pulverizing the thermoelectric semiconductor material to obtain thermoelectric semiconductor fine particles is not particularly limited, and may be pulverized to a predetermined size by a known pulverizer such as a jet mill, a ball mill, a bead mill, a colloid mill, and a roller mill. .
The average particle size of the thermoelectric semiconductor fine particles was obtained by measuring with a laser diffraction particle size analyzer (manufactured by Malvern, Mastersizer 3000), and was defined as the median value of the particle size distribution.
 また、熱電半導体微粒子は、事前に熱処理されたものであることが好ましい(ここでいう「熱処理」とは本発明でいうアニール処理工程で行う「アニール処理」とは異なる)。熱処理を行うことにより、熱電半導体微粒子は、結晶性が向上し、さらに、熱電半導体微粒子の表面酸化膜が除去されるため、熱電変換材料のゼーベック係数又はペルチェ係数が増大し、熱電性能指数をさらに向上させることができる。熱処理は、特に限定されないが、熱電半導体組成物を調製する前に、熱電半導体微粒子に悪影響を及ぼすことがないように、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、同じく水素等の還元ガス雰囲気下、または真空条件下で行うことが好ましく、不活性ガス及び還元ガスの混合ガス雰囲気下で行うことがより好ましい。具体的な温度条件は、用いる熱電半導体微粒子に依存するが、通常、微粒子の融点以下の温度で、かつ100~1500℃で、数分~数十時間行うことが好ましい。 The thermoelectric semiconductor particles are preferably heat-treated in advance (the "heat treatment" here is different from the "annealing treatment" performed in the annealing step in the present invention). By performing the heat treatment, the thermoelectric semiconductor particles have improved crystallinity, and further, since the surface oxide film of the thermoelectric semiconductor particles is removed, the Seebeck coefficient or the Peltier coefficient of the thermoelectric conversion material increases, and the thermoelectric performance index further increases. Can be improved. The heat treatment is not particularly limited, but before preparing the thermoelectric semiconductor composition, the gas flow rate is controlled so as not to adversely affect the thermoelectric semiconductor particles, under an atmosphere of an inert gas such as nitrogen or argon. The reaction is preferably performed under a reducing gas atmosphere such as hydrogen or under vacuum conditions, and more preferably under a mixed gas atmosphere of an inert gas and a reducing gas. The specific temperature condition depends on the thermoelectric semiconductor fine particles to be used, but it is usually preferable that the temperature is lower than the melting point of the fine particles and at 100 to 1500 ° C. for several minutes to several tens of hours.
(耐熱性樹脂)
 本発明に用いる熱電半導体組成物には、熱電素子層を形成後、熱電半導体材料を高温度でアニール処理を行う観点から、耐熱性樹脂を用いることが好ましい。熱電半導体材料(熱電半導体微粒子)間のバインダーとして働き、熱電変換モジュールの屈曲性を高めることができるとともに、塗布等による薄膜の形成が容易になる。該耐熱性樹脂は、特に制限されるものではないが、熱電半導体組成物からなる薄膜をアニール処理等により熱電半導体微粒子を結晶成長させる際に、樹脂としての機械的強度及び熱伝導率等の諸物性が損なわれず維持される耐熱性樹脂が好ましい。
 前記耐熱性樹脂は、耐熱性がより高く、且つ薄膜中の熱電半導体微粒子の結晶成長に悪影響を及ぼさないという点から、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、エポキシ樹脂が好ましく、屈曲性に優れるという点からポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂がより好ましい。後述する基板として、ポリイミドフィルムを用いた場合、該ポリイミドフィルムとの密着性などの点から、耐熱性樹脂としては、ポリイミド樹脂がより好ましい。なお、本発明においてポリイミド樹脂とは、ポリイミド及びその前駆体を総称する。
(Heat-resistant resin)
In the thermoelectric semiconductor composition used in the present invention, it is preferable to use a heat-resistant resin from the viewpoint of annealing the thermoelectric semiconductor material at a high temperature after forming the thermoelectric element layer. It acts as a binder between the thermoelectric semiconductor materials (thermoelectric semiconductor particles), can increase the flexibility of the thermoelectric conversion module, and facilitates the formation of a thin film by coating or the like. The heat-resistant resin is not particularly limited. However, when a thin film of the thermoelectric semiconductor composition is subjected to crystal growth of thermoelectric semiconductor particles by annealing or the like, various properties such as mechanical strength and thermal conductivity of the resin are used. A heat-resistant resin that maintains its physical properties without deterioration is preferred.
The heat-resistant resin is preferably a polyamide resin, a polyamide-imide resin, a polyimide resin, or an epoxy resin, which has higher heat resistance and does not adversely affect the crystal growth of the thermoelectric semiconductor particles in the thin film, and has excellent flexibility. In this respect, a polyamide resin, a polyamideimide resin, and a polyimide resin are more preferable. When a polyimide film is used as a substrate described later, a polyimide resin is more preferable as the heat-resistant resin from the viewpoint of adhesion to the polyimide film. In the present invention, the polyimide resin is a general term for polyimide and its precursor.
 前記耐熱性樹脂は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、バインダーとして機能が失われることなく、屈曲性を維持することができる。 分解 The heat-resistant resin preferably has a decomposition temperature of 300 ° C or higher. When the decomposition temperature is in the above range, as described later, even when the thin film made of the thermoelectric semiconductor composition is annealed, the flexibility can be maintained without losing the function as a binder.
 また、前記耐熱性樹脂は、熱重量測定(TG)による300℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる薄膜をアニール処理した場合でも、バインダーとして機能が失われることなく、熱電素子層の屈曲性を維持することができる。 Further, the heat-resistant resin preferably has a mass reduction rate at 300 ° C. by thermogravimetry (TG) of 10% or less, more preferably 5% or less, and still more preferably 1% or less. . If the mass reduction rate is within the above range, as described later, even when the thin film made of the thermoelectric semiconductor composition is annealed, the flexibility of the thermoelectric element layer can be maintained without losing the function as a binder. .
 前記耐熱性樹脂の前記熱電半導体組成物中の配合量は、0.1~40質量%、好ましくは0.5~20質量%、より好ましくは、1~20質量%、さらに好ましくは2~15質量%である。前記耐熱性樹脂の配合量が、上記範囲内であると、熱電半導体材料のバインダーとし機能し、薄膜の形成がしやすくなり、しかも高い熱電性能と皮膜強度が両立した膜が得られる。 The compounding amount of the heat-resistant resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 1 to 20% by mass, and further preferably 2 to 15% by mass. % By mass. When the compounding amount of the heat-resistant resin is within the above range, it functions as a binder of the thermoelectric semiconductor material, facilitates formation of a thin film, and obtains a film having both high thermoelectric performance and high film strength.
(イオン液体)
 本発明で用いるイオン液体は、カチオンとアニオンとを組み合わせてなる溶融塩であり、-50~500℃の温度領域のいずれかの温度領域において、液体で存在し得る塩をいう。イオン液体は、蒸気圧が極めて低く不揮発性であること、優れた熱安定性及び電気化学安定性を有していること、粘度が低いこと、かつイオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を効果的に抑制することができる。また、イオン液体は、非プロトン性のイオン構造に基づく高い極性を示し、耐熱性樹脂との相溶性に優れるため、熱電素子層の電気伝導率を均一にすることができる。
(Ionic liquid)
The ionic liquid used in the present invention is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist as a liquid in any temperature range of -50 to 500 ° C. Ionic liquids have features such as extremely low vapor pressure, non-volatility, excellent thermal stability and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, as a conductive auxiliary agent, it is possible to effectively suppress a decrease in electric conductivity between the thermoelectric semiconductor particles. Further, the ionic liquid has a high polarity based on the aprotic ionic structure and has excellent compatibility with the heat-resistant resin, so that the electric conductivity of the thermoelectric element layer can be made uniform.
 イオン液体は、公知または市販のものが使用できる。例えば、ピリジニウム、ピリミジニウム、ピラゾリウム、ピロリジニウム、ピペリジニウム、イミダゾリウム等の窒素含有環状カチオン化合物及びそれらの誘導体;テトラアルキルアンモニウムのアミン系カチオン及びそれらの誘導体;ホスホニウム、トリアルキルスルホニウム、テトラアルキルホスホニウム等のホスフィン系カチオン及びそれらの誘導体;リチウムカチオン及びその誘導体等のカチオン成分と、Cl、AlCl 、AlCl 、ClO 等の塩化物イオン、Br等の臭化物イオン、I等のヨウ化物イオン、BF 、PF 等のフッ化物イオン、F(HF) 等のハロゲン化物アニオン、NO 、CHCOO、CFCOO、CHSO 、CFSO 、(FSO、(CFSO、(CFSO、AsF 、SbF 、NbF 、TaF 、F(HF)n、(CN)、CSO 、(CSO、CCOO、(CFSO)(CFCO)N等のアニオン成分とから構成されるものが挙げられる。 Known or commercially available ionic liquids can be used. For example, nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and derivatives thereof; amine cations of tetraalkylammonium and derivatives thereof; phosphines such as phosphonium, trialkylsulfonium and tetraalkylphosphonium systems cations and their derivatives; and cationic components, such as lithium cations and derivatives thereof, Cl -, AlCl 4 -, Al 2 Cl 7 -, ClO 4 - chloride or ion, Br -, etc. of bromide ion, I -, etc. Ion, BF 4 , fluoride ion such as PF 6 , halide anion such as F (HF) n , NO 3 , CH 3 COO , CF 3 COO , CH 3 SO 3 , CF 3 SO 3 -, FSO 2) 2 N -, ( CF 3 SO 2) 2 N -, (CF 3 SO 2) 3 C -, AsF 6 -, SbF 6 -, NbF 6 -, TaF 6 -, F (HF) n -, Anions such as (CN) 2 N , C 4 F 9 SO 3 , (C 2 F 5 SO 2 ) 2 N , C 3 F 7 COO , (CF 3 SO 2 ) (CF 3 CO) N And a component.
 上記のイオン液体の中で、高温安定性、熱電半導体微粒子及び樹脂との相溶性、熱電半導体微粒子間隙の電気伝導率の低下抑制等の観点から、イオン液体のカチオン成分が、ピリジニウムカチオン及びその誘導体、イミダゾリウムカチオン及びその誘導体から選ばれる少なくとも1種を含むことが好ましい。イオン液体のアニオン成分が、ハロゲン化物アニオンを含むことが好ましく、Cl、Br及びIから選ばれる少なくとも1種を含むことがさらに好ましい。 Among the above ionic liquids, the cation component of the ionic liquid is a pyridinium cation and a derivative thereof from the viewpoints of high-temperature stability, compatibility with the thermoelectric semiconductor fine particles and the resin, and suppression of a decrease in electric conductivity in the gap between the thermoelectric semiconductor fine particles. , And at least one selected from imidazolium cations and derivatives thereof. The anionic component of the ionic liquid preferably contains a halide anion, and more preferably contains at least one selected from Cl , Br and I .
 カチオン成分が、ピリジニウムカチオン及びその誘導体を含むイオン液体の具体的な例として、4-メチル-ブチルピリジニウムクロライド、3-メチル-ブチルピリジニウムクロライド、4-メチル-ヘキシルピリジニウムクロライド、3-メチル-ヘキシルピリジニウムクロライド、4-メチル-オクチルピリジニウムクロライド、3-メチル-オクチルピリジニウムクロライド、3、4-ジメチル-ブチルピリジニウムクロライド、3、5-ジメチル-ブチルピリジニウムクロライド、4-メチル-ブチルピリジニウムテトラフルオロボレート、4-メチル-ブチルピリジニウムヘキサフルオロホスフェート、1-ブチル-4-メチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファート、1-ブチル-4-メチルピリジニウムヨージド等が挙げられる。この中で、1-ブチル-4-メチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファート、1-ブチル-4-メチルピリジニウムヨージドが好ましい。 Specific examples of the ionic liquid in which the cation component contains a pyridinium cation and a derivative thereof include 4-methyl-butylpyridinium chloride, 3-methyl-butylpyridinium chloride, 4-methyl-hexylpyridinium chloride, and 3-methyl-hexylpyridinium. Chloride, 4-methyl-octylpyridinium chloride, 3-methyl-octylpyridinium chloride, 3,4-dimethyl-butylpyridinium chloride, 3,5-dimethyl-butylpyridinium chloride, 4-methyl-butylpyridinium tetrafluoroborate, 4- Methyl-butylpyridinium hexafluorophosphate, 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, 1-butyl-4- Chill pyridinium iodide and the like. Of these, 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, and 1-butyl-4-methylpyridinium iodide are preferred.
 また、カチオン成分が、イミダゾリウムカチオン及びその誘導体を含むイオン液体の具体的な例として、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]、1-エチル-3-メチルイミダゾリウムクロライド、1-エチル-3-メチルイミダゾリウムブロミド、1-ブチル-3-メチルイミダゾリウムクロライド、1-ヘキシル-3-メチルイミダゾリウムクロライド、1-オクチル-3-メチルイミダゾリウムクロライド、1-デシル-3-メチルイミダゾリウムクロライド、1-デシル-3-メチルイミダゾリウムブロミド、1-ドデシル-3-メチルイミダゾリウムクロライド、1-テトラデシル-3-メチルイミダゾリウムクロライド、1-エチル-3-メチルイミダゾリウムテトラフロオロボレート、1-ブチル-3-メチルイミダゾリウムテトラフロオロボレート、1-ヘキシル-3-メチルイミダゾリウムテトラフロオロボレート、1-エチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-メチル-3-ブチルイミダゾリウムメチルスルフェート、1、3-ジブチルイミダゾリウムメチルスルフェート等が挙げられる。この中で、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]が好ましい。 Specific examples of the ionic liquid in which the cation component contains an imidazolium cation and a derivative thereof include [1-butyl-3- (2-hydroxyethyl) imidazolium bromide] and [1-butyl-3- (2 -Hydroxyethyl) imidazolium tetrafluoroborate], 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3 -Methylimidazolium chloride, 1-octyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium bromide, 1-dodecyl-3-methylimidazolium chloride, 1-tetradecyl-3-methylimida Lithium chloride, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-hexyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3 -Methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-methyl-3-butylimidazolium methylsulfate, 1,3-dibutylimidazolium methylsulfate and the like. Among them, [1-butyl-3- (2-hydroxyethyl) imidazolium bromide] and [1-butyl-3- (2-hydroxyethyl) imidazolium tetrafluoroborate] are preferable.
 上記のイオン液体は、電気伝導率が10-7S/cm以上であることが好ましく、10-6S/cm以上であることがより好ましい。電気伝導率が上記の範囲であれば、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を効果的に抑制することができる。 The above ionic liquid preferably has an electric conductivity of 10 −7 S / cm or more, more preferably 10 −6 S / cm or more. When the electric conductivity is in the above range, a decrease in electric conductivity between the thermoelectric semiconductor particles can be effectively suppressed as a conductive auxiliary agent.
 また、上記のイオン液体は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる熱電素子層の薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。 The ionic liquid preferably has a decomposition temperature of 300 ° C or higher. When the decomposition temperature is in the above range, as described later, even when the thin film of the thermoelectric element layer made of the thermoelectric semiconductor composition is annealed, the effect as the conductive auxiliary agent can be maintained.
 また、上記のイオン液体は、熱重量測定(TG)による300℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる熱電素子層の薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。 Further, the ionic liquid has a mass reduction rate at 300 ° C. by thermogravimetry (TG) of preferably 10% or less, more preferably 5% or less, and still more preferably 1% or less. . When the mass reduction rate is in the above range, as described later, even when the thin film of the thermoelectric element layer made of the thermoelectric semiconductor composition is annealed, the effect as the conductive auxiliary agent can be maintained.
 前記イオン液体の前記熱電半導体組成物中の配合量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~20質量%である。前記イオン液体の配合量が、上記の範囲内であれば、電気伝導率の低下が効果的に抑制され、高い熱電性能を有する膜が得られる。 配合 The blending amount of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 20% by mass. When the blending amount of the ionic liquid is within the above range, a decrease in electric conductivity is effectively suppressed, and a film having high thermoelectric performance is obtained.
(無機イオン性化合物)
 本発明で用いる無機イオン性化合物は、少なくともカチオンとアニオンから構成される化合物である。無機イオン性化合物は室温において固体であり、400~900℃の温度領域のいずれかの温度に融点を有し、イオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を抑制することができる。
(Inorganic ionic compound)
The inorganic ionic compound used in the present invention is a compound composed of at least a cation and an anion. The inorganic ionic compound is solid at room temperature, has a melting point at any temperature in the temperature range of 400 to 900 ° C., and has characteristics such as high ionic conductivity. It is possible to suppress a decrease in the electric conductivity between the thermoelectric semiconductor particles.
 カチオンとしては、金属カチオンを用いる。
 金属カチオンとしては、例えば、アルカリ金属カチオン、アルカリ土類金属カチオン、典型金属カチオン及び遷移金属カチオンが挙げられ、アルカリ金属カチオン又はアルカリ土類金属カチオンがより好ましい。
 アルカリ金属カチオンとしては、例えば、Li、Na、K、Rb、Cs及びFr等が挙げられる。
 アルカリ土類金属カチオンとしては、例えば、Mg2+、Ca2+、Sr2+及びBa2+等が挙げられる。
As the cation, a metal cation is used.
Examples of the metal cation include an alkali metal cation, an alkaline earth metal cation, a typical metal cation, and a transition metal cation, and an alkali metal cation or an alkaline earth metal cation is more preferable.
Examples of the alkali metal cation include Li + , Na + , K + , Rb + , Cs +, and Fr + .
Examples of the alkaline earth metal cation include Mg 2+ , Ca 2+ , Sr 2+ and Ba 2+ .
 アニオンとしては、例えば、F、Cl、Br、I、OH、CN、NO 、NO 、ClO、ClO 、ClO 、ClO 、CrO 2-、HSO 、SCN、BF 、PF 等が挙げられる。 Examples of the anion include F , Cl , Br , I , OH , CN , NO 3 , NO 2 , ClO , ClO 2 , ClO 3 , ClO 4 , and CrO 4 2. -, HSO 4 -, SCN - , BF 4 -, PF 6 - , and the like.
 無機イオン性化合物は、公知または市販のものが使用できる。例えば、カリウムカチオン、ナトリウムカチオン、又はリチウムカチオン等のカチオン成分と、Cl、AlCl 、AlCl 、ClO 等の塩化物イオン、Br等の臭化物イオン、I等のヨウ化物イオン、BF 、PF 等のフッ化物イオン、F(HF) 等のハロゲン化物アニオン、NO 、OH、CN等のアニオン成分とから構成されるものが挙げられる。 Known or commercially available inorganic ionic compounds can be used. For example, a cation component such as potassium cation, sodium cation, or lithium cations, Cl -, AlCl 4 -, Al 2 Cl 7 -, ClO 4 - chloride or ion, Br -, etc. of bromide ion, I -, etc. And iodide ions, fluoride ions such as BF 4 and PF 6 , halide anions such as F (HF) n and anion components such as NO 3 , OH and CN −. It is.
 上記の無機イオン性化合物の中で、高温安定性、熱電半導体微粒子及び樹脂との相溶性、熱電半導体微粒子間隙の電気伝導率の低下抑制等の観点から、無機イオン性化合物のカチオン成分が、カリウム、ナトリウム、及びリチウムから選ばれる少なくとも1種を含むことが好ましい。また、無機イオン性化合物のアニオン成分が、ハロゲン化物アニオンを含むことが好ましく、Cl、Br、及びIから選ばれる少なくとも1種を含むことがさらに好ましい。 Among the above-mentioned inorganic ionic compounds, from the viewpoints of high-temperature stability, compatibility with the thermoelectric semiconductor fine particles and the resin, suppression of a decrease in electric conductivity between the thermoelectric semiconductor fine particles, the cation component of the inorganic ionic compound is potassium. , Sodium, and lithium. The anionic component of the inorganic ionic compound preferably contains a halide anion, and more preferably contains at least one selected from Cl , Br , and I .
 カチオン成分が、カリウムカチオンを含む無機イオン性化合物の具体的な例として、KBr、KI、KCl、KF、KOH、KCO等が挙げられる。この中で、KBr、KIが好ましい。
 カチオン成分が、ナトリウムカチオンを含む無機イオン性化合物の具体的な例として、NaBr、NaI、NaOH、NaF、NaCO等が挙げられる。この中で、NaBr、NaIが好ましい。
 カチオン成分が、リチウムカチオンを含む無機イオン性化合物の具体的な例として、LiF、LiOH、LiNO等が挙げられる。この中で、LiF、LiOHが好ましい。
Specific examples of the inorganic ionic compound in which the cation component contains a potassium cation include KBr, KI, KCl, KF, KOH, and K 2 CO 3 . Among them, KBr and KI are preferable.
Specific examples of the inorganic ionic compound in which the cation component contains a sodium cation include NaBr, NaI, NaOH, NaF, and Na 2 CO 3 . Of these, NaBr and NaI are preferred.
Specific examples of the inorganic ionic compound whose cation component includes a lithium cation include LiF, LiOH, and LiNO 3 . Among them, LiF and LiOH are preferable.
 上記の無機イオン性化合物は、電気伝導率が10-7S/cm以上であることが好ましく、10-6S/cm以上であることがより好ましい。電気伝導率が上記範囲であれば、導電補助剤として、熱電半導体微粒子間の電気伝導率の低減を効果的に抑制することができる。 The above-mentioned inorganic ionic compound preferably has an electric conductivity of 10 −7 S / cm or more, more preferably 10 −6 S / cm or more. When the electric conductivity is in the above range, reduction in electric conductivity between the thermoelectric semiconductor particles can be effectively suppressed as a conductive auxiliary agent.
 また、上記の無機イオン性化合物は、分解温度が400℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる熱電素子層の薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。 The inorganic ionic compound preferably has a decomposition temperature of 400 ° C or higher. When the decomposition temperature is in the above range, as described later, even when the thin film of the thermoelectric element layer made of the thermoelectric semiconductor composition is annealed, the effect as the conductive auxiliary agent can be maintained.
 また、上記の無機イオン性化合物は、熱重量測定(TG)による400℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる熱電素子層の薄膜をアニール処理した場合でも、導電補助剤としての効果を維持することができる。 In addition, the inorganic ionic compound preferably has a mass reduction rate at 400 ° C. by thermogravimetry (TG) of 10% or less, more preferably 5% or less, and more preferably 1% or less. More preferred. When the mass reduction rate is in the above range, as described later, even when the thin film of the thermoelectric element layer made of the thermoelectric semiconductor composition is annealed, the effect as the conductive auxiliary agent can be maintained.
 前記無機イオン性化合物の前記熱電半導体組成物中の配合量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~10質量%である。前記無機イオン性化合物の配合量が、上記範囲内であれば、電気伝導率の低下を効果的に抑制でき、結果として熱電性能が向上した膜が得られる。
 なお、無機イオン性化合物とイオン液体とを併用する場合においては、前記熱電半導体組成物中における、無機イオン性化合物及びイオン液体の含有量の総量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~10質量%である。
The compounding amount of the inorganic ionic compound in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and further preferably 1.0 to 10% by mass. . When the amount of the inorganic ionic compound is within the above range, a decrease in electric conductivity can be effectively suppressed, and as a result, a film having improved thermoelectric performance can be obtained.
When the inorganic ionic compound and the ionic liquid are used in combination, the total content of the inorganic ionic compound and the ionic liquid in the thermoelectric semiconductor composition is preferably from 0.01 to 50% by mass, Preferably it is 0.5 to 30% by mass, more preferably 1.0 to 10% by mass.
(その他の添加剤)
 本発明で用いる熱電半導体組成物には、上記以外の成分以外に、必要に応じて、さらに分散剤、造膜助剤、光安定剤、酸化防止剤、粘着付与剤、可塑剤、着色剤、樹脂安定剤、充てん剤、顔料、導電性フィラー、導電性高分子、硬化剤等の他の添加剤を含んでいてもよい。これらの添加剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。
(Other additives)
The thermoelectric semiconductor composition used in the present invention, in addition to the components other than the above, if necessary, further dispersant, film forming aid, light stabilizer, antioxidant, tackifier, plasticizer, colorant, Other additives such as a resin stabilizer, a filler, a pigment, a conductive filler, a conductive polymer, and a curing agent may be included. These additives can be used alone or in combination of two or more.
(熱電半導体組成物の調製方法)
 本発明で用いる熱電半導体組成物の調製方法は、特に制限はなく、超音波ホモジナイザー、スパイラルミキサー、プラネタリーミキサー、ディスパーサー、ハイブリッドミキサー等の公知の方法により、前記熱電半導体微粒子、前記耐熱性樹脂、並びに前記イオン液体及び/又は無機イオン性化合物、必要に応じて前記その他の添加剤、さらに溶媒を加えて、混合分散させ、当該熱電半導体組成物を調製すればよい。
 前記溶媒としては、例えば、トルエン、酢酸エチル、メチルエチルケトン、アルコール、テトラヒドロフラン、メチルピロリドン、エチルセロソルブ等の溶媒などが挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。熱電半導体組成物の固形分濃度としては、該組成物が塗工に適した粘度であればよく、特に制限はない。
(Method of preparing thermoelectric semiconductor composition)
The method for preparing the thermoelectric semiconductor composition used in the present invention is not particularly limited, and the thermoelectric semiconductor particles and the heat-resistant resin can be obtained by a known method such as an ultrasonic homogenizer, a spiral mixer, a planetary mixer, a disperser, and a hybrid mixer. The thermoelectric semiconductor composition may be prepared by adding the ionic liquid and / or the inorganic ionic compound, the other additives as needed, and the solvent, and mixing and dispersing the mixture.
Examples of the solvent include solvents such as toluene, ethyl acetate, methyl ethyl ketone, alcohol, tetrahydrofuran, methylpyrrolidone, and ethyl cellosolve. These solvents may be used alone or as a mixture of two or more. The solid content concentration of the thermoelectric semiconductor composition is not particularly limited as long as the composition has a viscosity suitable for coating.
〈熱電素子層の製造方法〉
 本発明においては、熱電素子層は、前記熱電半導体組成物からなる塗工液等を用い、基板上、又は電極上に形成する。
 本発明の熱電変換素子を構成する前記条件(A)及び(B)を満たす熱電素子層の製造方法としては、下記(P)、(Q)又は(R)に示す方法等が挙げられる。
(P)多層印刷法
(Q)パターン枠配置/剥離法
(R)パターン層配置法
<Method of manufacturing thermoelectric element layer>
In the present invention, the thermoelectric element layer is formed on a substrate or an electrode using a coating liquid or the like made of the thermoelectric semiconductor composition.
Examples of a method for producing a thermoelectric element layer satisfying the conditions (A) and (B) constituting the thermoelectric conversion element of the present invention include the following methods (P), (Q) and (R).
(P) Multilayer printing method (Q) Pattern frame arrangement / peeling method (R) Pattern layer arrangement method
(多層印刷法)
 多層印刷法とは、熱電半導体組成物からなる塗工液等を用い、基板上、又は電極上の同一の位置に、所望のパターンを有するスクリーン版、ステンシル版を用いて、スクリーン印刷法、ステンシル印刷法等により印刷を複数回重ねて行うことにより、複数の熱電素子層の薄膜が積層された厚膜の熱電素子層を形成する方法である。
 具体的には、まず、第1層目の熱電素子層の薄膜となる塗膜を形成し、得られた塗膜を乾燥することにより、第1層目の熱電素子層の薄膜を形成する。次いで、第1層目と同様に、第2層目の熱電素子層の薄膜となる塗膜を第1層目で得られた熱電素子層の薄膜上に形成し、得られた塗膜を乾燥することにより、第2層目の熱電素子層の薄膜を形成する。第3層目以降についても、同様に、第3層目以降の熱電素子層の薄膜となる塗膜を直前に得られた熱電素子層の薄膜上に形成し、得られた塗膜を乾燥することにより、第3層目以降の熱電素子層の薄膜を形成する。このプロセスを所望の回数繰り返し行うことにより、複数の熱電素子層の薄膜が積層された厚膜の熱電素子層が得られる。
 乾燥方法としては、熱風乾燥法、熱ロール乾燥法、赤外線照射法等、従来公知の乾燥方法が採用できる。加熱温度は、通常、80~150℃であり、加熱時間は、加熱方法により異なるが、通常、数秒~数十分である。
 また、熱電半導体組成物の調製において溶媒を使用した場合、加熱温度は、使用した溶媒を乾燥できる温度範囲であれば、特に制限はない。
 多層印刷法を用いることにより、前記条件(A)及び(B)を満たす熱電素子層を得ることができる。
(Multilayer printing method)
The multi-layer printing method, using a coating liquid or the like composed of a thermoelectric semiconductor composition, on the substrate, or at the same position on the electrode, using a screen plate having a desired pattern, a stencil plate, a screen printing method, a stencil This is a method in which printing is performed a plurality of times by a printing method or the like to form a thick thermoelectric element layer in which thin films of a plurality of thermoelectric element layers are stacked.
Specifically, first, a coating film to be a thin film of the first thermoelectric element layer is formed, and the obtained coating film is dried to form a thin film of the first thermoelectric element layer. Next, similarly to the first layer, a coating film to be a thin film of the second thermoelectric element layer is formed on the thin film of the thermoelectric element layer obtained in the first layer, and the obtained coating film is dried. Thereby, a thin film of the second thermoelectric element layer is formed. For the third and subsequent layers, similarly, a coating film to be a thin film of the third and subsequent thermoelectric element layers is formed on the thin film of the thermoelectric element layer obtained immediately before, and the obtained coating film is dried. Thus, a thin film of the third and subsequent thermoelectric element layers is formed. By repeating this process a desired number of times, a thick thermoelectric element layer in which a plurality of thin thermoelectric element layers are stacked can be obtained.
As a drying method, a conventionally known drying method such as a hot air drying method, a hot roll drying method, and an infrared irradiation method can be employed. The heating temperature is usually 80 to 150 ° C., and the heating time varies depending on the heating method, but is usually several seconds to several tens of minutes.
When a solvent is used in the preparation of the thermoelectric semiconductor composition, the heating temperature is not particularly limited as long as the used solvent can be dried.
By using the multilayer printing method, a thermoelectric element layer satisfying the above conditions (A) and (B) can be obtained.
(パターン枠配置/剥離法)
 パターン枠配置/剥離法とは、基板上に離間した開口部を有するパターン枠を設け、前記開口部に熱電半導体組成物を充填し、乾燥し、前記パターン枠を基板上から剥離することで、パターン枠の開口部の形状が反映された形状制御性に優れる熱電素子層を形成する方法である。
 製造工程としては、基板上に開口部を有するパターン枠を設ける工程、前記開口部に前記熱電半導体組成物を充填する工程、前記開口部に充填された前記熱電半導体組成物を乾燥し、熱電素子層を形成する工程、及び前記パターン枠を基板上から剥離する工程を含む。
 パターン枠配置/剥離法を用いた熱電素子層の製造方法の一例を、図を用い具体的に説明する。
 図4は、本発明に用いたパターン枠配置/剥離法による熱電素子層の製造方法の一例を工程順に示す説明図であり、
(a)は基板上にパターン枠を対向させた態様を示す断面図であり、ステンレス鋼12’からなる、開口13s、開口部13、開口部深さ(パターン枠厚)13dを有する、パターン枠12を準備し、基板11とを対向させる;
(b)はパターン枠を基板上に設けた後の断面図であり、パターン枠12を基板11上に設ける;
(c)はパターン枠の開口部に熱電素子層を充填した後の断面図であり、(b)で準備したステンレス鋼12’からなるパターン枠12の開口13sを有する開口部13に、P型熱電半導体材料を含む熱電半導体組成物及びN型熱電半導体材料を含む熱電半導体組成物をそれぞれ所定の開口部13内に充填し、開口部13に充填されたP型熱電半導体材料を含む熱電半導体組成物及びN型熱電半導体材料を含む熱電半導体組成物を乾燥し、P型熱電素子層14b、N型熱電素子層14aを形成する;
(d)はパターン枠を、充填した熱電素子層から剥離し、熱電素子層のみを得る態様を示す断面図であり、パターン枠12を、形成したP型熱電素子層14b、N型熱電素子層14aから剥離し、自立層としてのP型熱電素子層14b、N型熱電素子層14aを得る。
 乾燥方法、また、熱電半導体組成物の調製において溶媒を使用した場合等については、前述した多層印刷法と同じである。
 上記により、熱電変換素子に用いる熱電素子層を得ることができる。
 このように、パターン枠配置/剥離法を用いることにより、前記条件(A)及び(B)を満たす熱電素子層を容易に得ることができる。
(Pattern frame arrangement / peeling method)
The pattern frame arrangement / peeling method is to provide a pattern frame having an opening separated on a substrate, fill the opening with a thermoelectric semiconductor composition, dry, and peel the pattern frame from the substrate. This is a method for forming a thermoelectric element layer having excellent shape controllability reflecting the shape of the opening of the pattern frame.
As a manufacturing process, a step of providing a pattern frame having an opening on a substrate, a step of filling the opening with the thermoelectric semiconductor composition, drying the thermoelectric semiconductor composition filled in the opening, and a thermoelectric element Forming a layer, and separating the pattern frame from the substrate.
An example of a method for manufacturing a thermoelectric element layer using a pattern frame arrangement / peeling method will be specifically described with reference to the drawings.
FIG. 4 is an explanatory view showing an example of a method of manufacturing a thermoelectric element layer by a pattern frame arrangement / peeling method used in the present invention in the order of steps;
(A) is sectional drawing which shows the aspect which the pattern frame was made to oppose on the board | substrate, the pattern frame which consists of stainless steel 12 'and has opening 13s, opening 13, and opening part depth (pattern frame thickness) 13d. 12 is prepared and is made to face the substrate 11;
(B) is a cross-sectional view after the pattern frame is provided on the substrate, and the pattern frame 12 is provided on the substrate 11;
(C) is a cross-sectional view after filling the thermoelectric element layer into the opening of the pattern frame. The P-type is formed in the opening 13 having the opening 13s of the pattern frame 12 made of the stainless steel 12 'prepared in (b). A thermoelectric semiconductor composition containing a thermoelectric semiconductor material and a thermoelectric semiconductor composition containing an N-type thermoelectric semiconductor material are respectively filled in predetermined openings 13, and a thermoelectric semiconductor composition containing a P-type thermoelectric semiconductor material filled in the openings 13 Drying the thermoelectric semiconductor composition including the material and the N-type thermoelectric semiconductor material to form a P-type thermoelectric element layer 14b and an N-type thermoelectric element layer 14a;
(D) is a cross-sectional view showing an embodiment in which the pattern frame is peeled off from the filled thermoelectric element layer to obtain only the thermoelectric element layer, and the pattern frame 12 is formed by forming a P-type thermoelectric element layer 14b and an N-type thermoelectric element layer. The P-type thermoelectric element layer 14b and the N-type thermoelectric element layer 14a as self-supporting layers are obtained by peeling off from the layer 14a.
The drying method, the case where a solvent is used in the preparation of the thermoelectric semiconductor composition, and the like are the same as the above-described multilayer printing method.
As described above, a thermoelectric element layer used for a thermoelectric conversion element can be obtained.
As described above, by using the pattern frame arrangement / peeling method, a thermoelectric element layer satisfying the conditions (A) and (B) can be easily obtained.
(パターン層配置法)
 パターン層配置法とは、基板の電極上に離間した開口部を有する樹脂を含む層からなるパターン層を設け、前記開口部に熱電半導体組成物を充填し、乾燥することにより、パターン層の開口部の形状が反映された形状制御性に優れる熱電素子層を形成する方法である。
 製造工程としては、例えば、π型熱電変換素子を構成する場合、前記電極上に離間した開口部を有するパターン層を形成する工程、前記離間した開口部にP型熱電半導体材料を含む熱電半導体組成物及びN型熱電半導体材料を含む熱電半導体組成物をそれぞれ充填する工程、前記離間した開口部に充填された、前記P型熱電半導体材料を含む熱電半導体組成物及び前記N型熱電半導体材料を含む熱電半導体組成物を乾燥し、P型熱電素子層及びN型熱電素子層を得る工程を含む。
 パターン層配置法を用いた熱電変換素子の製造方法の一例を、図を用い具体的に説明する。
 図5は、本発明に用いたパターン層配置法による熱電変換素子の製造方法の一例を工程順に示す説明図であり、
(a)は基板上に電極を形成した後の断面図であり、基板22a上に電極23aを形成する;
(b)は電極上に樹脂を含む層を形成した後の断面図であり、電極23a上に樹脂を含む層24’を形成する;
(c)は樹脂を含む層を加工した後のパターン層の平面図(電極部は図示せず)であり、(c’)は(c)においてA-A’間で切断した時のパターン層の断面図であり、樹脂を含む層24’を加工し、電極上に離間した、開口25s、開口部25を有するパターン層24を形成する;
(d)はパターン層の開口部に熱電素子層を充填した後の断面図であり、パターン層24の開口部25にP型熱電半導体材料を含む熱電半導体組成物及びN型熱電半導体材料を含む熱電半導体組成物をそれぞれ充填、乾燥し、N型熱電素子層26a、及びP型熱電素子層26bを形成する;
(e)は(d)で得られた熱電素子層の上面と、これに対向する基板上の電極とを対向させ接合する態様を示す断面図であり、熱電素子層の上面と電極23bを有する基板22bからなる対向電極基板とを接合する。
 乾燥方法、また、熱電半導体組成物の調製において溶媒を使用した場合等については、前述した多層印刷法及びパターン枠配置/剥離法の場合と同じである。
 上記により、π型熱電変換素子を得ることができる。
 このように、パターン層配置法を用いることにより、前記条件(A)及び(B)を満たす熱電素子層を備えたπ型熱電変換素子を容易に得ることができる。
(Pattern layer arrangement method)
The pattern layer disposing method is to provide a pattern layer made of a layer containing a resin having an opening which is spaced apart on an electrode of a substrate, fill the opening with a thermoelectric semiconductor composition, and dry it to form an opening in the pattern layer. This is a method for forming a thermoelectric element layer having excellent shape controllability in which the shape of a portion is reflected.
As a manufacturing process, for example, when forming a π-type thermoelectric conversion element, a step of forming a pattern layer having a separated opening on the electrode, a thermoelectric semiconductor composition including a P-type thermoelectric semiconductor material in the separated opening Filling a thermoelectric semiconductor composition containing an object and an N-type thermoelectric semiconductor material, the thermoelectric semiconductor composition containing the P-type thermoelectric semiconductor material and the N-type thermoelectric semiconductor material filled in the spaced openings. A step of drying the thermoelectric semiconductor composition to obtain a P-type thermoelectric element layer and an N-type thermoelectric element layer.
An example of a method for manufacturing a thermoelectric conversion element using the pattern layer arrangement method will be specifically described with reference to the drawings.
FIG. 5 is an explanatory view showing an example of a method for manufacturing a thermoelectric conversion element by a pattern layer arrangement method used in the present invention in the order of steps;
(A) is a sectional view after an electrode is formed on a substrate, and an electrode 23a is formed on a substrate 22a;
(B) is a cross-sectional view after forming a layer containing a resin on the electrode, and forming a layer 24 ′ containing a resin on the electrode 23a;
(C) is a plan view of the pattern layer after processing the layer containing the resin (electrodes are not shown), and (c ') is the pattern layer when cut between AA' in (c). Is a cross-sectional view of FIG. 1, processing a resin-containing layer 24 ′ to form a pattern layer 24 having openings 25 s and openings 25 separated on the electrodes;
(D) is a cross-sectional view after the opening of the pattern layer is filled with the thermoelectric element layer, and the opening 25 of the pattern layer 24 includes a thermoelectric semiconductor composition containing a P-type thermoelectric semiconductor material and an N-type thermoelectric semiconductor material. Each of the thermoelectric semiconductor compositions is filled and dried to form an N-type thermoelectric element layer 26a and a P-type thermoelectric element layer 26b;
(E) is a cross-sectional view showing a mode in which the upper surface of the thermoelectric element layer obtained in (d) is opposed to and bonded to an electrode on a substrate facing the thermoelectric element layer, and has an upper surface of the thermoelectric element layer and an electrode 23b. A counter electrode substrate made of the substrate 22b is joined.
The drying method, the case where a solvent is used in the preparation of the thermoelectric semiconductor composition, and the like are the same as those in the above-described multilayer printing method and pattern frame arrangement / peeling method.
As described above, a π-type thermoelectric conversion element can be obtained.
As described above, by using the pattern layer arrangement method, it is possible to easily obtain a π-type thermoelectric conversion element including a thermoelectric element layer satisfying the conditions (A) and (B).
 上記の中で、高い充填率が得られる観点から、パターン枠配置/剥離法又はパターン層配置法を用いることがより好ましく、縦断面が略直方体状に容易に制御可能な観点からパターン枠配置/剥離法を用いることがさらに好ましい。 Among the above, from the viewpoint of obtaining a high filling rate, it is more preferable to use the pattern frame arrangement / peeling method or the pattern layer arrangement method, and from the viewpoint that the longitudinal section can be easily controlled to a substantially rectangular parallelepiped shape, More preferably, a peeling method is used.
 前記熱電半導体組成物からなる塗工液の粘度は、熱電半導体材料の配合量、熱電素子層の厚さ、パターンの寸法により適宜調整されるが、熱電素子層の形状制御性の観点から、例えば、25℃、5s-1の条件において1Pa・s~1000Pa・s、好ましくは5Pa・s~500Pa・s、より好ましくは10Pa・s~300Pa・s、さらに好ましくは30Pa・s~200Pa・sである。
 また、前記熱電半導体組成物からなる熱電素子層の薄膜の厚さは、π型熱電変換素子として用いる場合には、スクリーン印刷法、ステンシル印刷法等の使用の観点から、50μm以上、1mm以下、好ましくは80μm以上1mm以下、より好ましくは100μm以上700μm以下、さらに好ましくは150μm以上500μm以下である。
 これに対し、インプレーン型熱電変換素子として用いる場合には、前記熱電半導体組成物からなる熱電素子層の薄膜の厚さは、屈曲性の観点から、10μm以上、300μm以下、好ましくは10μm以上、200μm以下、より好ましくは10μm以上、100μm以下である。
The viscosity of the coating liquid composed of the thermoelectric semiconductor composition is appropriately adjusted depending on the blending amount of the thermoelectric semiconductor material, the thickness of the thermoelectric element layer, and the dimensions of the pattern.From the viewpoint of shape controllability of the thermoelectric element layer, for example, 1 Pa · s to 1000 Pa · s, preferably 5 Pa · s to 500 Pa · s, more preferably 10 Pa · s to 300 Pa · s, and still more preferably 30 Pa · s to 200 Pa · s at 25 ° C. and 5 s −1. is there.
The thickness of the thin film of the thermoelectric element layer made of the thermoelectric semiconductor composition, when used as a π-type thermoelectric conversion element, from the viewpoint of using a screen printing method, a stencil printing method, etc., 50 μm or more, 1 mm or less, Preferably it is 80 μm or more and 1 mm or less, more preferably 100 μm or more and 700 μm or less, further preferably 150 μm or more and 500 μm or less.
On the other hand, when used as an in-plane type thermoelectric conversion element, the thickness of the thin film of the thermoelectric element layer made of the thermoelectric semiconductor composition is 10 μm or more, 300 μm or less, preferably 10 μm or more from the viewpoint of flexibility. It is 200 μm or less, more preferably 10 μm or more and 100 μm or less.
(アニール処理)
 本発明では、熱電素子層形成後、アニール処理を行うことが好ましい。アニール処理を行うことで、熱電性能を安定化させるとともに、熱電素子層中の熱電半導体微粒子を結晶成長させることができ、熱電性能をさらに向上させることができる。
 アニール処理は、特に限定されないが、通常、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、還元ガス雰囲気下、または真空条件下で行われ、用いる耐熱性樹脂、イオン液体、無機イオン性化合物等に依存するが、アニール処理の温度は、通常100~600℃で、数分~数十時間、好ましくは150~600℃で、数分~数十時間、より好ましくは250~600℃で、数分~数十時間、さらに好ましくは250~550℃で、数分~数十時間行う。
(Annealing treatment)
In the present invention, it is preferable to perform an annealing treatment after the formation of the thermoelectric element layer. By performing the annealing treatment, the thermoelectric performance can be stabilized, and the thermoelectric semiconductor particles in the thermoelectric element layer can be crystal-grown, so that the thermoelectric performance can be further improved.
The annealing treatment is not particularly limited, but is usually performed under a controlled gas flow rate, under an inert gas atmosphere such as nitrogen or argon, under a reducing gas atmosphere, or under vacuum conditions. Although depending on the inorganic ionic compound and the like, the annealing temperature is usually 100 to 600 ° C. for several minutes to several tens of hours, preferably 150 to 600 ° C., for several minutes to several tens of hours, and more preferably 250 to tens of hours. The reaction is performed at 600 ° C. for several minutes to several tens of hours, more preferably at 250 to 550 ° C. for several minutes to tens of hours.
(基板)
 本発明の熱電変換素子において、基板として、特に制限されないが、薄型、屈曲性の観点から、熱電素子層の電気伝導率の低下、熱伝導率の増加に影響を及ぼさない樹脂フィルムを用いることができる。なかでも、屈曲性に優れ、熱電半導体組成物からなる熱電素子層の薄膜をアニール処理した場合でも、基板が熱変形することなく、熱電素子層の性能を維持することができ、耐熱性及び寸法安定性が高いという点から、ポリイミドフィルム、ポリアミドフィルム、ポリエーテルイミドフィルム、ポリアラミドフィルム、又はポリアミドイミドフィルムが好ましく、さらに、汎用性が高いという点から、ポリイミドフィルムが特に好ましい。
(substrate)
In the thermoelectric conversion element of the present invention, the substrate is not particularly limited, but from the viewpoint of thinness and flexibility, it is possible to use a resin film which does not affect the decrease in the electric conductivity of the thermoelectric element layer and the increase in the heat conductivity. it can. Above all, even when the thin film of the thermoelectric element layer made of the thermoelectric semiconductor composition is excellent in flexibility, the performance of the thermoelectric element layer can be maintained without thermally deforming the substrate, and the heat resistance and the dimensions can be maintained. From the viewpoint of high stability, a polyimide film, a polyamide film, a polyetherimide film, a polyaramid film, or a polyamideimide film is preferable. Further, from the viewpoint of high versatility, a polyimide film is particularly preferable.
 前記樹脂フィルムの厚さは、屈曲性、耐熱性及び寸法安定性の観点から、1~1000μmが好ましく、5~500μmがより好ましく、10~100μmがさらに好ましい。
 また、上記樹脂フィルムは、熱重量分析で測定される5%重量減少温度が300℃以上であることが好ましく、400℃以上であることがより好ましい。JIS K7133(1999)に準拠して200℃で測定した加熱寸法変化率が0.5%以下であることが好ましく、0.3%以下であることがより好ましい。JIS K7197(2012)に準拠して測定した平面方向の線膨脹係数が0.1ppm・℃-1~50ppm・℃-1であり、0.1ppm・℃-1~30ppm・℃-1であることがより好ましい。
The thickness of the resin film is preferably from 1 to 1000 μm, more preferably from 5 to 500 μm, and still more preferably from 10 to 100 μm, from the viewpoints of flexibility, heat resistance and dimensional stability.
Further, the resin film preferably has a 5% weight loss temperature measured by thermogravimetric analysis of 300 ° C. or higher, more preferably 400 ° C. or higher. The heating dimensional change measured at 200 ° C. in accordance with JIS K7133 (1999) is preferably 0.5% or less, more preferably 0.3% or less. The linear expansion coefficient measured in accordance with JIS K7197 (2012) is 0.1 ppm · ° C. -1 to 50 ppm · ° C. -1 and 0.1 ppm · ° C. -1 to 30 ppm · ° C. -1 Is more preferred.
 また、本発明に用いる基板として、ガラス、又はセラミック等の絶縁性材料を用いてもよい。前記基板の厚さは、プロセス及び寸法安定性の観点から、100~1200μmが好ましく、200~800μmがより好ましく、400~700μmがさらに好ましい。 In addition, an insulating material such as glass or ceramic may be used as the substrate used in the present invention. The thickness of the substrate is preferably 100 to 1200 μm, more preferably 200 to 800 μm, and further preferably 400 to 700 μm, from the viewpoint of process and dimensional stability.
(電極)
 本発明に用いる熱電変換素子の電極の金属材料としては、銅、金、ニッケル、アルミニウム、ロジウム、白金、クロム、パラジウム、ステンレス鋼、モリブデン、すず又はこれらのいずれかの金属を含む合金等が挙げられる。
 前記電極の層の厚さは、好ましくは10nm~200μm、より好ましくは30nm~150μm、さらに好ましくは50nm~120μmである。電極の層の厚さが、上記範囲内であれば、電気伝導率が高く低抵抗となり、かつ電極として十分な強度が得られる。
(electrode)
Examples of the metal material of the electrodes of the thermoelectric conversion element used in the present invention include copper, gold, nickel, aluminum, rhodium, platinum, chromium, palladium, stainless steel, molybdenum, tin, and alloys containing any of these metals. Can be
The thickness of the electrode layer is preferably 10 nm to 200 μm, more preferably 30 nm to 150 μm, and still more preferably 50 nm to 120 μm. When the thickness of the electrode layer is within the above range, the electric conductivity is high, the resistance is low, and sufficient strength as an electrode is obtained.
 電極の形成は、前述した金属材料を用いて行う。
 電極を形成する方法としては、樹脂フィルム上にパターンが形成されていない電極を設けた後、フォトリソグラフィー法を主体とした公知の物理的処理もしくは化学的処理、又はそれらを併用する等により、所定のパターン形状に加工する方法、または、スクリーン印刷法、インクジェット法等により直接電極のパターンを形成する方法等が挙げられる。
 パターンが形成されていない電極の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理気相成長法)、もしくは熱CVD、原子層蒸着(ALD)等のCVD(化学気相成長法)等のドライプロセス、又はディップコーティング法、スピンコーティング法、スプレーコーティング法、グラビアコーティング法、ダイコーティング法、ドクターブレード法等の各種コーティングや電着法等のウェットプロセス、銀塩法、電解めっき法、無電解めっき法、金属箔の積層等が挙げられ、電極の材料に応じて適宜選択される。
 本発明に用いる電極には、熱電性能を維持する観点から、高い導電性、高い熱伝導性が求められるため、めっき法や真空成膜法で成膜した電極を用いることが好ましい。高い導電性、高い熱伝導性を容易に実現できることから、真空蒸着法、スパッタリング法等の真空成膜法、および電解めっき法、無電解めっき法が好ましい。形成パターンの寸法、寸法精度の要求にもよるが、メタルマスク等のハードマスクを介在し、容易にパターンを形成することもできる。
The electrodes are formed using the above-described metal material.
As a method of forming an electrode, after providing an electrode on which a pattern is not formed on a resin film, a predetermined physical or chemical treatment mainly using a photolithography method, or a combination thereof, or the like, is used. Or a method of directly forming an electrode pattern by a screen printing method, an ink jet method, or the like.
Examples of a method for forming an electrode on which no pattern is formed include PVD (physical vapor deposition) such as vacuum deposition, sputtering, and ion plating, or CVD (chemical vapor deposition) such as thermal CVD and atomic layer deposition (ALD). Dry processes such as vapor phase epitaxy), various coatings such as dip coating, spin coating, spray coating, gravure coating, die coating, and doctor blade, and wet processes such as electrodeposition, silver salt methods , An electrolytic plating method, an electroless plating method, lamination of a metal foil, and the like, which are appropriately selected according to the material of the electrode.
Since high conductivity and high thermal conductivity are required for the electrode used in the present invention from the viewpoint of maintaining thermoelectric performance, it is preferable to use an electrode formed by a plating method or a vacuum film forming method. Since high conductivity and high thermal conductivity can be easily realized, a vacuum film forming method such as a vacuum evaporation method and a sputtering method, an electrolytic plating method, and an electroless plating method are preferable. The pattern can be easily formed with a hard mask such as a metal mask interposed therebetween, depending on the size and dimensional accuracy requirements of the formed pattern.
(接合材料層)
 本発明に用いる熱電変換素子において、熱電素子層と電極との接合には、接合材料層を用いることができる。
 接合材料層に用いる接合材料としては、ハンダ材料、導電性接着剤、焼結接合剤等が挙げられ、それぞれ、この順に、ハンダ層、導電性接着剤層、焼結接合剤層等として、電極上に形成されることが好ましい。本明細書において導電性とは、電気抵抗率が1×10Ω・m未満のことを指す。
(Joining material layer)
In the thermoelectric conversion element used in the present invention, a bonding material layer can be used for bonding the thermoelectric element layer and the electrode.
Examples of the bonding material used for the bonding material layer include a solder material, a conductive adhesive, a sintered bonding agent, and the like, and in this order, a solder layer, a conductive adhesive layer, a sintered bonding agent layer, and the like. It is preferably formed on. In this specification, “conductive” means that the electrical resistivity is less than 1 × 10 6 Ω · m.
 前記ハンダ層を構成するハンダ材料としては、熱電変換素子を構成する材料の耐熱温度、また、ハンダ層としての導電性、熱伝導性とを考慮し、適宜選択すればよく、Sn、Sn/Pb合金、Sn/Ag合金、Sn/Cu合金、Sn/Sb合金、Sn/In合金、Sn/Zn合金、Sn/In/Bi合金、Sn/In/Bi/Zn合金、Sn/Bi/Pb/Cd合金、Sn/Bi/Pb合金、Sn/Bi/Cd合金、Bi/Pb合金、Sn/Bi/Zn合金、Sn/Bi合金、Sn/Bi/Pb合金、Sn/Pb/Cd合金、Sn/Cd合金等の既知の材料が挙げられる。鉛フリー及び/またはカドミウムフリー、融点、導電性、熱伝導性の観点から、43Sn/57Bi合金、42Sn/58Bi合金、40Sn/56Bi/4Zn合金、48Sn/52In合金、39.8Sn/52In/7Bi/1.2Zn合金のような合金が好ましい。
 ハンダ材料の市販品としては、以下のものが挙げられる。例えば、42Sn/58Bi合金(タムラ製作所社製、製品名:SAM10-401-27)、41Sn/58Bi/Ag合金(ニホンハンダ社製、製品名:PF141-LT7HO)等が使用できる。
 ハンダ層の厚さ(加熱冷却後)は、好ましくは10~200μmであり、より好ましくは20~150μm、さらに好ましくは30~130μm、特に好ましくは40~120μmである。ハンダ層の厚さがこの範囲にあると、熱電変換材料のチップ及び電極との密着性が得やすくなる。
 ハンダ材料を塗布する方法としては、ステンシル印刷、スクリーン印刷、ディスペンシング法等の公知の方法が挙げられる。加熱温度は用いるハンダ材料、樹脂フィルム等により異なるが、通常、150~280℃で3~20分間行う。
The solder material constituting the solder layer may be appropriately selected in consideration of the heat-resistant temperature of the material constituting the thermoelectric conversion element, and the conductivity and thermal conductivity of the solder layer. Sn, Sn / Pb Alloy, Sn / Ag alloy, Sn / Cu alloy, Sn / Sb alloy, Sn / In alloy, Sn / Zn alloy, Sn / In / Bi alloy, Sn / In / Bi / Zn alloy, Sn / Bi / Pb / Cd Alloy, Sn / Bi / Pb alloy, Sn / Bi / Cd alloy, Bi / Pb alloy, Sn / Bi / Zn alloy, Sn / Bi alloy, Sn / Bi / Pb alloy, Sn / Pb / Cd alloy, Sn / Cd Known materials such as alloys can be used. From the viewpoints of lead-free and / or cadmium-free, melting point, electrical conductivity and thermal conductivity, 43Sn / 57Bi alloy, 42Sn / 58Bi alloy, 40Sn / 56Bi / 4Zn alloy, 48Sn / 52In alloy, 39.8Sn / 52In / 7Bi / An alloy such as a 1.2 Zn alloy is preferred.
Commercially available solder materials include the following. For example, a 42Sn / 58Bi alloy (manufactured by Tamura Seisakusho Co., Ltd., product name: SAM10-401-27), a 41Sn / 58Bi / Ag alloy (manufactured by Nihon Handa Co., product name: PF141-LT7HO) and the like can be used.
The thickness (after heating and cooling) of the solder layer is preferably 10 to 200 μm, more preferably 20 to 150 μm, further preferably 30 to 130 μm, and particularly preferably 40 to 120 μm. When the thickness of the solder layer is in this range, it is easy to obtain the adhesion of the thermoelectric conversion material to the chip and the electrode.
As a method of applying the solder material, a known method such as stencil printing, screen printing, and dispensing method may be used. The heating temperature varies depending on the solder material, resin film, and the like used, but is usually at 150 to 280 ° C. for 3 to 20 minutes.
 前記導電性接着剤層を構成する導電性接着剤としては、特に制限されないが、導電ペースト等が挙げられる。導電ペーストとしては、銅ペースト、銀ペースト、ニッケルペースト等が挙げられ、バインダーを使用する場合は、エポキシ樹脂、アクリル樹脂、ウレタン樹脂等が挙げられる。
 導電性接着剤を塗布する方法としては、スクリーン印刷、ディスペンシング法等の公知の方法が挙げられる。
 導電性接着剤層の厚さは、好ましくは10~200μmであり、より好ましくは20~150μm、さらに好ましくは30~130μm、特に好ましくは40~120μmである。
The conductive adhesive constituting the conductive adhesive layer is not particularly limited, and examples thereof include a conductive paste. Examples of the conductive paste include a copper paste, a silver paste, and a nickel paste. When a binder is used, an epoxy resin, an acrylic resin, a urethane resin, and the like are used.
As a method of applying the conductive adhesive, a known method such as a screen printing and a dispensing method may be used.
The thickness of the conductive adhesive layer is preferably from 10 to 200 μm, more preferably from 20 to 150 μm, further preferably from 30 to 130 μm, and particularly preferably from 40 to 120 μm.
 前記焼結接合剤層を構成する焼結接合剤としては、特に制限されないが、シンタリングペースト等が挙げられる。前記シンタリングペーストは、例えば、ミクロンサイズの金属粉とナノサイズの金属粒子等からなり、前記導電性接着剤と異なり、直接金属をシンタリングで接合するものであり、エポキシ樹脂、アクリル樹脂、ウレタン樹脂等のバインダーを含んでいてもよい。
 シンタリングペーストとしては、銀シンタリングペースト、銅シンタリングペースト等が挙げられる。
 焼結接合剤層を塗布する方法としては、スクリーン印刷、ステンシル印刷、ディスペンシング法等の公知の方法が挙げられる。焼結条件は、用いる金属材料等に異なるが、通常、100~300℃で、30~120分間である。
 焼結接合剤の市販品としては、例えば、銀シンタリングペーストとして、シンタリングペースト(京セラ社製、製品名:CT2700R7S)、焼結型金属接合材(ニホンハンダ社製、製品名:MAX102)等が使用できる。
 焼結接合剤層の厚さは、好ましくは10~200μmであり、より好ましくは20~150μm、さらに好ましくは30~130μm、特に好ましくは40~120μmである。
The sintering bonding agent constituting the sintering bonding agent layer is not particularly limited, and examples thereof include a sintering paste and the like. The sintering paste is made of, for example, micron-sized metal powder and nano-sized metal particles, and is different from the conductive adhesive in that metal is directly bonded by sintering, and is an epoxy resin, an acrylic resin, a urethane. A binder such as a resin may be included.
Examples of the sintering paste include a silver sintering paste and a copper sintering paste.
As a method of applying the sintered bonding agent layer, a known method such as screen printing, stencil printing, or a dispensing method may be used. The sintering conditions vary depending on the metal material used and the like, but are usually at 100 to 300 ° C. for 30 to 120 minutes.
Commercially available sintered bonding agents include, for example, sintering paste (manufactured by Kyocera Corporation, product name: CT2700R7S) and sintered metal bonding material (manufactured by Nihon Handa, product name: MAX102) as silver sintering paste. Can be used.
The thickness of the sintered bonding agent layer is preferably 10 to 200 μm, more preferably 20 to 150 μm, further preferably 30 to 130 μm, and particularly preferably 40 to 120 μm.
 本発明の半導体素子を熱電変換素子として用いた場合には、得られた熱電素子層の縦断面が条件(A)及び(B)を満たすことにより、優れた熱電性能を有する熱電変換素子を得ることができる。また、熱電素子層の高集積化を実現することに繋げることができる。 When the semiconductor element of the present invention is used as a thermoelectric conversion element, a thermoelectric conversion element having excellent thermoelectric performance is obtained by satisfying the conditions (A) and (B) in the longitudinal section of the obtained thermoelectric element layer. be able to. Further, it is possible to realize high integration of the thermoelectric element layer.
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 実施例、比較例で作製した熱電変換素子の電気抵抗値の評価、充填率の評価は、以下の方法で行った。
(a)電気抵抗値評価
 得られた熱電変換素子の熱電素子層の取り出し電極部間の電気抵抗値を、ディジタルハイテスタ(日置電機社製、型名:3801-50)により、25℃×50%RHの環境下で測定した。
(b)充填率評価
 得られた熱電変換素子の熱電素子層の中央部を含む縦断面を、デジタルマイクロスコープ(キーエンス社製、型名「VHX-5000」)を用い観察し、縦断面の面積S(μm)、縦断面の厚さ方向の厚さの最大値Dmax(μm)、縦断面の幅方向の長さの最大値Xmax(μm)を測定し、充填率[S/(Dmax×Xmax)]を算出し、評価した。
The evaluation of the electric resistance value and the filling rate of the thermoelectric conversion elements produced in the examples and comparative examples were performed by the following methods.
(A) Evaluation of Electric Resistance Value The electric resistance value between the extraction electrode portions of the thermoelectric element layer of the obtained thermoelectric conversion element was measured at 25 ° C. × 50 by a digital hi-tester (manufactured by Hioki Electric Co., Ltd., model name: 3801-50). It was measured in an environment of% RH.
(B) Filling ratio evaluation A vertical section including the center of the thermoelectric element layer of the obtained thermoelectric conversion element was observed using a digital microscope (manufactured by Keyence Corporation, model name “VHX-5000”), and the area of the vertical section was observed. S (μm 2 ), the maximum value Dmax (μm) of the thickness in the thickness direction of the vertical section, and the maximum value Xmax (μm) of the length in the width direction of the vertical section were measured, and the filling rate [S / (Dmax × Xmax)] was calculated and evaluated.
(実施例1)
 熱電半導体組成物を構成する熱電半導体材料は、熱電半導体微粒子として用いる。
(熱電半導体微粒子の作製)
 ビスマス-テルル系熱電半導体材料であるP型ビスマステルライドBi0.4TeSb1.6(高純度化学研究所製、粒径:180μm)を、遊星型ボールミル(フリッチュジャパン社製、Premium line P-7)を使用し、窒素ガス雰囲気下で粉砕することで、平均粒径1.2μmの熱電半導体微粒子T1を作製した。粉砕して得られた熱電半導体微粒子に関して、レーザー回折式粒度分析装置(Malvern社製、マスターサイザー3000)により粒度分布測定を行った。
 また、ビスマス-テルル系熱電半導体材料であるN型ビスマステルライドBiTe(高純度化学研究所製、粒径:180μm)を上記と同様に粉砕し、平均粒径1.4μmの熱電半導体微粒子T2を作製した。
(Example 1)
The thermoelectric semiconductor material constituting the thermoelectric semiconductor composition is used as thermoelectric semiconductor particles.
(Preparation of thermoelectric semiconductor particles)
P-type bismuth telluride Bi 0.4 Te 3 Sb 1.6 (manufactured by Kojundo Chemical Laboratory, particle size: 180 μm), which is a bismuth-tellurium-based thermoelectric semiconductor material, was mixed with a planetary ball mill (Premium line P, manufactured by Fritsch Japan KK). Using -7), the particles were pulverized in a nitrogen gas atmosphere to produce thermoelectric semiconductor particles T1 having an average particle size of 1.2 μm. The thermoelectric semiconductor particles obtained by the pulverization were subjected to particle size distribution measurement using a laser diffraction type particle size analyzer (manufactured by Malvern, Mastersizer 3000).
Further, N-type bismuth telluride Bi 2 Te 3 (manufactured by Kojundo Chemical Laboratory, particle size: 180 μm), which is a bismuth-tellurium-based thermoelectric semiconductor material, is pulverized in the same manner as described above, and thermoelectric semiconductor fine particles having an average particle size of 1.4 μm. T2 was produced.
(塗工液の調製)
塗工液(P)
 得られたP型ビスマス-テルル系熱電半導体材料の微粒子T1を90質量部、耐熱性樹脂としてポリイミド前駆体であるポリアミック酸(シグマアルドリッチ社製、ポリ(ピロメリト酸二無水物-co-4,4´-オキシジアニリン)アミド酸溶液、溶媒:N-メチルピロリドン、固形分濃度:15質量%)5質量部、及びイオン液体として[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]5質量部を混合分散した熱電半導体組成物からなる塗工液(P)を調製した。塗工液(P)の粘度は170Pa・sであった。
塗工液(N)
 得られたN型ビスマス-テルル系熱電半導体材料の微粒子T2を90質量部、耐熱性樹脂としてポリイミド前駆体であるポリアミック酸(シグマアルドリッチ社製、ポリ(ピロメリト酸二無水物-co-4,4´-オキシジアニリン)アミド酸溶液、溶媒:N-メチルピロリドン、固形分濃度:15質量%)5質量部、及びイオン液体として[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]5質量部を混合分散した熱電半導体組成物からなる塗工液(N)を調製した。塗工液(N)の粘度は190Pa・sであった。
(Preparation of coating liquid)
Coating liquid (P)
90 parts by mass of the obtained fine particles T1 of the P-type bismuth-tellurium-based thermoelectric semiconductor material, and a polyamic acid (poly (pyromellitic dianhydride-co-4,4, manufactured by Sigma-Aldrich Co.) '-Oxydianiline) amic acid solution, 5 parts by mass of a solvent: N-methylpyrrolidone, solid content concentration: 15% by mass), and [1-butyl-3- (2-hydroxyethyl) imidazolium bromide] as an ionic liquid A coating liquid (P) comprising a thermoelectric semiconductor composition in which 5 parts by mass were mixed and dispersed was prepared. The viscosity of the coating liquid (P) was 170 Pa · s.
Coating liquid (N)
90 parts by mass of the obtained fine particles T2 of the N-type bismuth-tellurium-based thermoelectric semiconductor material, and a polyamic acid (poly (pyromellitic dianhydride-co-4,4, manufactured by Sigma-Aldrich Co.) '-Oxydianiline) amic acid solution, 5 parts by mass of a solvent: N-methylpyrrolidone, solid content concentration: 15% by mass), and [1-butyl-3- (2-hydroxyethyl) imidazolium bromide] as an ionic liquid A coating liquid (N) composed of a thermoelectric semiconductor composition in which 5 parts by mass were mixed and dispersed was prepared. The viscosity of the coating liquid (N) was 190 Pa · s.
〈熱電素子層の形成〉
 下部ポリイミドフィルム基板(東レ・デュポン社製、カプトン200H、100mm×100mm、厚さ:50μm)上に設けた電極(縦4.0mm×横1.5mm×厚さ10μm)上に、前述した塗工液(P)を、以下のようにステンシル印刷法により3回に分け塗布した(多層印刷法)。
 まず、塗工液(P)を用い、所定の位置に版厚30μmの第1のステンシル版で印刷、乾燥した。次いで、前記版厚30μmの第1のステンシル版で形成した印刷層の上に版厚80μmの第3のステンシル版で印刷、乾燥した。さらに、前記版厚80μmの第3のステンシル版で形成した印刷層の上に版厚150μmの第5のステンシル版で印刷、乾燥した。その後、アニール処理を行うことにより、3層の重ね印刷により得られたP型熱電素子層が配置された、1.5mm×1.5mmの同一サイズのP型熱電素子層を100個設けた。
 なお、塗工液塗布後の乾燥は、温度150℃で、10分間アルゴン雰囲気下で行い、得られた熱電素子層の薄膜に対するアニール処理は、水素とアルゴンの混合ガス(水素:アルゴン=3体積%:97体積%)雰囲気下で、加温速度5K/minで昇温し、325℃で1時間保持し、熱電半導体材料の微粒子を結晶成長させ、P型熱電素子層とした。
 同様に、上部ポリイミドフィルム基板(下部ポリイミドフィルム基板の電極の配置以外同一仕様であり、電極の配置は、100対のP型熱電素子層とN型熱電素子層とが交互に直列に配置され、かつ電気的に直列接続されるように配置)に、塗工液(N)を用い、所定の位置に版厚30μmの第2のステンシル版で印刷、乾燥した。次いで、前記版厚30μmの第2のステンシル版で形成した印刷層の上に版厚80μmの第4のステンシル版で印刷、乾燥した。さらに、前記版厚80μmの第4のステンシル版で形成した印刷層の上に版厚150μmの第6のステンシル版で印刷、乾燥した。その後、アニール処理を行うことにより、3層の重ね印刷により得られたN型熱電素子層が配置された、1.5mm×1.5mmの同一サイズのN型熱電素子層を100個設けた。
 P型熱電素子層及びN型熱電素子層の厚さは、すべて160μmであった。
<Formation of thermoelectric element layer>
The above-mentioned coating is performed on an electrode (4.0 mm long × 1.5 mm wide × 10 μm thick) provided on a lower polyimide film substrate (manufactured by Dupont Toray, Kapton 200H, 100 mm × 100 mm, thickness: 50 μm). The liquid (P) was applied three times by a stencil printing method as follows (multilayer printing method).
First, using a coating liquid (P), printing was performed at a predetermined position with a first stencil plate having a plate thickness of 30 μm and dried. Next, a third stencil plate having a plate thickness of 80 μm was printed and dried on the printing layer formed with the first stencil plate having a plate thickness of 30 μm. Further, printing was performed with a fifth stencil plate having a plate thickness of 150 μm on the printing layer formed with the third stencil plate having a plate thickness of 80 μm, and dried. Thereafter, by annealing, 100 P-type thermoelectric element layers of the same size of 1.5 mm × 1.5 mm on which the P-type thermoelectric element layers obtained by three-layer printing were arranged were provided.
The drying after the application of the coating liquid was performed at a temperature of 150 ° C. for 10 minutes in an argon atmosphere, and the annealing of the obtained thin film of the thermoelectric element layer was performed using a mixed gas of hydrogen and argon (hydrogen: argon = 3 volumes). %: 97% by volume) In an atmosphere, the temperature was increased at a heating rate of 5 K / min, and the temperature was maintained at 325 ° C. for 1 hour to grow fine particles of the thermoelectric semiconductor material to form a P-type thermoelectric element layer.
Similarly, the upper polyimide film substrate (having the same specifications except for the arrangement of the electrodes of the lower polyimide film substrate, the arrangement of the electrodes is such that 100 pairs of P-type thermoelectric element layers and N-type thermoelectric element layers are alternately arranged in series, Then, the coating liquid (N) was used for printing and drying at a predetermined position with a second stencil plate having a plate thickness of 30 μm using a coating liquid (N). Next, printing was performed with a fourth stencil plate having a plate thickness of 80 μm on the printing layer formed with the second stencil plate having a plate thickness of 30 μm, followed by drying. Further, printing was performed with a sixth stencil plate having a plate thickness of 150 μm on the printing layer formed with the fourth stencil plate having a plate thickness of 80 μm, and dried. Thereafter, by annealing, 100 N-type thermoelectric element layers of the same size of 1.5 mm × 1.5 mm on which the N-type thermoelectric element layers obtained by three-layer printing were arranged were provided.
The thicknesses of the P-type thermoelectric element layer and the N-type thermoelectric element layer were all 160 μm.
 次いで、下部ポリイミドフィルム基板のP型熱電素子層及び電極の上面部に、ハンダ材料(ニホンハンダ社製、PF141-LT7HO F=10)を設け、さらに、上部ポリイミドフィルム基板のN型熱電素子層及び電極の上面部に前述のハンダ材料を設け、熱電素子層及び電極とを接合することで、100対のP型熱電素子層とN型熱電素子層とが交互に直列に配列され、かつ電気的に直列接続された、π型の熱電変換素子(ペルチェ冷却素子)を作製した。
 なお、下部ポリイミドフィルム基板の電極上に形成したP型熱電素子層とN型熱電素子層とのそれぞれの中心間の距離は2.5mm、上部ポリイミドフィルム基板の電極上のP型熱電素子層とN型熱電素子層とのそれぞれの中心間の距離は2.5mmとした。
Next, a solder material (PF141-LT7HOF = 10, manufactured by Nihon Solder Co., Ltd.) was provided on the upper surface of the P-type thermoelectric element layer and the electrodes of the lower polyimide film substrate. By providing the above-mentioned solder material on the upper surface portion of the and bonding the thermoelectric element layers and the electrodes, 100 pairs of P-type thermoelectric element layers and N-type thermoelectric element layers are alternately arranged in series, and electrically connected. A π-type thermoelectric conversion element (Peltier cooling element) connected in series was produced.
The distance between the centers of the P-type thermoelectric element layer and the N-type thermoelectric element layer formed on the electrodes of the lower polyimide film substrate was 2.5 mm, and the distance between the P-type thermoelectric element layers on the electrodes of the upper polyimide film substrate was 2.5 mm. The distance between each center and the N-type thermoelectric element layer was 2.5 mm.
(実施例2)
 実施例1において、熱電素子層の形成を以下のパターン枠配置/剥離法により形成した以外は、実施例1と同様にして、実施例2の熱電変換素子(π型熱電変換素子)を作製した。
〈パターン枠配置/剥離法による熱電素子層の形成〉
 下部ポリイミドフィルム基板(東レ・デュポン社製、カプトン200H、100mm×100mm、厚さ:50μm)の電極上に、離間した開口部を有するように設計された(開口:1.5mm×1.5mm、開口部の数:200個、一対のP型熱電素子層とN型熱電素子層との形成に対応する開口部の中心間の距離:2.5mm)板厚200μmのパターン枠を設け、前記開口部に前述した塗工液(P)及び(N)を充填し、乾燥し、前記パターン枠を基板上から剥離することで、1.5mm×1.5mmのP型熱電素子層及びN型熱電素子層の対をトータルで100対設けた。アニール処理後の熱電素子層の厚さは、すべて160μmであった。
(Example 2)
A thermoelectric conversion element of Example 2 (π-type thermoelectric conversion element) was produced in the same manner as in Example 1 except that the formation of the thermoelectric element layer was performed by the following pattern frame arrangement / peeling method. .
<Formation of thermoelectric element layer by pattern frame arrangement / peeling method>
The lower polyimide film substrate (manufactured by Du Pont-Toray Co., Ltd., Kapton 200H, 100 mm × 100 mm, thickness: 50 μm) was designed to have spaced openings (openings: 1.5 mm × 1.5 mm, Number of openings: 200, distance between centers of openings corresponding to formation of a pair of P-type thermoelectric element layers and N-type thermoelectric element layers: 2.5 mm) A pattern frame having a plate thickness of 200 μm was provided. Is filled with the above-mentioned coating liquids (P) and (N), dried, and the pattern frame is peeled off from the substrate to form a 1.5 mm × 1.5 mm P-type thermoelectric element layer and an N-type thermoelectric element. A total of 100 pairs of element layers were provided. The thicknesses of the thermoelectric element layers after the annealing treatment were all 160 μm.
(実施例3)
 実施例1において、熱電素子層の形成を以下のパターン層配置法により形成した以外は、実施例1と同様にして、実施例3の熱電変換素子(π型熱電変換素子)を作製した。
〈パターン層配置法による熱電素子層の形成〉
 下部ポリイミドフィルム基板(東レ・デュポン社製、カプトン200H、100mm×100mm、厚さ:50μm)の電極上に、離間した開口部を有するように設計された(開口:1.5mm×1.5mm、開口部の数:200個、一対のP型熱電素子層とN型熱電素子層との形成に対応する開口部の中心間の距離:2.5mm)層厚250μmのポリイミド樹脂層からなるパターン層を設け、前記開口部に前述した塗工液(P)及び(N)を充填し、乾燥することにより、1.5mm×1.5mmのP型熱電素子層及びN型熱電素子層の対をトータルで100対設けた。アニール処理後の熱電素子層の厚さは、すべて160μmであった。
(Example 3)
A thermoelectric conversion element of Example 3 (π-type thermoelectric conversion element) was produced in the same manner as in Example 1, except that the formation of the thermoelectric element layer was performed by the following pattern layer arrangement method.
<Formation of thermoelectric element layer by pattern layer arrangement method>
The lower polyimide film substrate (manufactured by Du Pont-Toray Co., Ltd., Kapton 200H, 100 mm × 100 mm, thickness: 50 μm) was designed to have spaced openings (openings: 1.5 mm × 1.5 mm, Number of openings: 200, distance between centers of openings corresponding to formation of a pair of P-type thermoelectric element layers and N-type thermoelectric element layers: 2.5 mm) Pattern layer made of a 250 μm-thick polyimide resin layer Is filled with the above-described coating liquids (P) and (N) in the openings, and dried to form a pair of a 1.5 mm × 1.5 mm P-type thermoelectric element layer and an N-type thermoelectric element layer. A total of 100 pairs were provided. The thicknesses of the thermoelectric element layers after the annealing treatment were all 160 μm.
(実施例4)
 塗工液(P)及び塗工液(N)の粘度を、N-メチルピロリドンを添加することにより70Pa・sに調整し用いた以外は、実施例2と同様にして、実施例4の熱電変換素子(π型熱電変換素子)を作製した。アニール処理後の熱電素子層の厚さは、すべて160μmであった。
(Example 4)
Except that the viscosities of the coating solution (P) and the coating solution (N) were adjusted to 70 Pa · s by adding N-methylpyrrolidone and used, A conversion element (π-type thermoelectric conversion element) was manufactured. The thicknesses of the thermoelectric element layers after the annealing treatment were all 160 μm.
(実施例5)
 実施例1において、熱電素子層の形成を以下のパターン枠配置/剥離法により行い、かつ熱電変換素子をインプレーン型の形状とした以外は、実施例1と同様にして、実施例5の熱電変換素子(インプレーン型熱電変換素子)を作製した。
〈パターン枠配置/剥離法による熱電素子層の形成〉
 ポリイミドフィルム基板(東レ・デュポン社製、カプトン200H、100mm×100mm、厚さ:50μm)の電極(縦1.0mm×横6.0mm×厚さ10μm)上に、離間した開口部を有する(開口:1.0mm×1.0mm、開口部の数:200個、一対のP型熱電素子層とN型熱電素子層との形成に対応する開口部の中心間の距離:2.0mm)板厚80μmのパターン枠を設け、前記開口部に前述した塗工液(P)及び(N)を充填し、乾燥し、前記パターン枠を基板上から剥離することで、1.0mm×1.0mmのP型熱電素子層及びN型熱電素子層の対をトータルで100対設けた。
 なお、塗工液充填後の乾燥は、温度150℃で、10分間アルゴン雰囲気下で行い、得られた熱電素子層の薄膜に対するアニール処理は、水素とアルゴンの混合ガス(水素:アルゴン=3体積%:97体積%)雰囲気下で、加温速度5K/minで昇温し、325℃で1時間保持し、熱電半導体材料の微粒子を結晶成長させ、P型熱電素子層及びN型熱電素子層とした。アニール処理後の熱電素子層の厚さは、すべて60μmであった。
(Example 5)
In Example 1, the thermoelectric element layer was formed in the same manner as in Example 1 except that the thermoelectric element layer was formed by the following pattern frame arrangement / peeling method, and the thermoelectric conversion element was formed into an in-plane type. A conversion element (in-plane type thermoelectric conversion element) was manufactured.
<Formation of thermoelectric element layer by pattern frame arrangement / peeling method>
A polyimide film substrate (manufactured by Toray DuPont, Kapton 200H, 100 mm × 100 mm, thickness: 50 μm) has an opening (aperture 1.0 mm × width 6.0 mm × thickness 10 μm) spaced apart (opening) : 1.0 mm × 1.0 mm, number of openings: 200, distance between centers of openings corresponding to formation of a pair of P-type thermoelectric element layers and N-type thermoelectric element layers: 2.0 mm) An 80 μm pattern frame is provided, the openings are filled with the above-mentioned coating liquids (P) and (N), dried, and the pattern frame is peeled off from the substrate to obtain a 1.0 mm × 1.0 mm. A total of 100 pairs of P-type thermoelectric element layers and N-type thermoelectric element layers were provided.
The drying after filling with the coating liquid was performed at a temperature of 150 ° C. for 10 minutes in an argon atmosphere, and the annealing of the obtained thin film of the thermoelectric element layer was performed using a mixed gas of hydrogen and argon (hydrogen: argon = 3 volumes). %: 97% by volume) In an atmosphere, the temperature was increased at a heating rate of 5 K / min, and the temperature was maintained at 325 ° C. for 1 hour to grow fine particles of a thermoelectric semiconductor material, thereby forming a P-type thermoelectric element layer and an N-type thermoelectric element layer. And The thicknesses of the thermoelectric element layers after the annealing were all 60 μm.
(比較例1)
 実施例1において、熱電素子層形成時に版厚235μmのステンシル版で熱電素子層を1層のみ形成した以外は、実施例1と同様にして、比較例1の熱電変換素子を作製した。アニール処理後の熱電素子層の厚さは、すべて160μmであった。
(Comparative Example 1)
A thermoelectric conversion element of Comparative Example 1 was produced in the same manner as in Example 1 except that only one thermoelectric element layer was formed using a stencil plate having a plate thickness of 235 μm when forming the thermoelectric element layer. The thicknesses of the thermoelectric element layers after the annealing treatment were all 160 μm.
(比較例2)
 比較例1において、塗工液(P)及び(N)の粘度を、N-メチルピロリドンを添加することにより70Pa・sに調整し用いた以外は、比較例1と同様にして、比較例2の熱電変換素子を作製した。
(Comparative Example 2)
Comparative Example 2 was prepared in the same manner as in Comparative Example 1 except that the viscosity of the coating solutions (P) and (N) was adjusted to 70 Pa · s by adding N-methylpyrrolidone. Was manufactured.
(比較例3)
 実施例5において、熱電素子層の形成を、版厚80μmのステンシル版を用い、1層印刷法により形成した以外は、実施例5と同様にして、比較例3の熱電変換素子(インプレーン型熱電変換素子)を作製した。アニール処理後の熱電素子層の厚さは、すべて60μmであった。
(Comparative Example 3)
In Example 5, the thermoelectric element layer of Comparative Example 3 (in-plane type) was formed in the same manner as in Example 5 except that the thermoelectric element layer was formed by a one-layer printing method using a stencil plate having a plate thickness of 80 μm. Thermoelectric conversion element). The thicknesses of the thermoelectric element layers after the annealing were all 60 μm.
 実施例1~5及び比較例1~3で得られた熱電変換素子の電気抵抗値の評価と充填率の評価を行った。評価結果を表1に示す。 評 価 Evaluation of the electric resistance value and the filling factor of the thermoelectric conversion elements obtained in Examples 1 to 5 and Comparative Examples 1 to 3 were performed. Table 1 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より明らかに、π型熱電変換素子の構成で比較した場合、条件(A)及び(B)の規定を満たす縦断面を有する熱電素子層を備えた実施例1~4の熱電変換素子では、条件(A)の規定を満たさない縦断面を有する熱電素子層を備えた比較例1~2の熱電変換素子に比べて、熱電変換素子を構成する熱電素子層の両端の電極部間の電気抵抗値が低く、高い熱電性能が得られることが分かる。インプレーン型熱電変換素子の構成で比較した場合も同様に、実施例5と比較例3を比較すると、実施例5のほうが明らかに電極部間の電気抵抗値が低く、高い熱電性能を得られることが分かる。 It is apparent from Table 1 that when comparing the configurations of the π-type thermoelectric conversion elements, the thermoelectric conversion elements of Examples 1 to 4 having the thermoelectric element layers having the vertical cross sections satisfying the conditions (A) and (B) are different. , Compared with the thermoelectric conversion elements of Comparative Examples 1 and 2 having a thermoelectric element layer having a longitudinal section that does not satisfy the condition (A), It can be seen that the resistance value is low and high thermoelectric performance can be obtained. Similarly, when comparing the configuration of the in-plane thermoelectric conversion element with the configuration of the in-plane type thermoelectric conversion element, when the example 5 is compared with the comparative example 3, the example 5 clearly has a lower electric resistance value between the electrode portions and can obtain a higher thermoelectric performance. You can see that.
 本発明の半導体素子に含まれる熱電変換素子によれば、条件(A)及び(B)の規定を満たす縦断面を有する熱電素子層を備えた熱電変換素子は、熱電素子層の形状が略直方体状に制御されやすくなることから、熱電素子層と電極との接合が優れ、また、熱電素子層の電気抵抗値を小さく制御できることから、熱電性能の向上が期待できる。さらに、本発明の熱電変換素子は、熱電素子層の形状制御性が優れることから、高集積化の実現が期待できる。
 上記の熱電変換素子をモジュールとすることにより、工場や廃棄物燃焼炉、セメント燃焼炉等の各種燃焼炉からの排熱、自動車の燃焼ガス排熱及び電子機器の排熱を電気に変換する発電用途に適用することが考えられる。冷却用途としては、エレクトロニクス機器の分野において、例えば、スマートフォン、各種コンピューター等に用いられるCPU(Central Processing Unit)、また、CMOS(Complementary Metal Oxide Semiconductor Image Sensor)、CCD(Charge Coupled Device)等のイメージセンサー、さらに、MEMS(Micro Electro Mechanical Systems)、その他の受光素子等の各種センサーの温度制御等に適用することが考えられる。
According to the thermoelectric conversion element included in the semiconductor element of the present invention, the thermoelectric conversion element including the thermoelectric element layer having the vertical section satisfying the conditions (A) and (B) has a substantially rectangular parallelepiped shape. The thermoelectric element layer and the electrode can be easily controlled, and the electric resistance of the thermoelectric element layer can be controlled to be small. Therefore, improvement in thermoelectric performance can be expected. Furthermore, since the thermoelectric conversion element of the present invention has excellent controllability of the shape of the thermoelectric element layer, high integration can be expected.
By using the above-mentioned thermoelectric conversion element as a module, power generation that converts exhaust heat from various types of combustion furnaces such as factories, waste combustion furnaces, cement combustion furnaces, exhaust gas from automobiles and exhaust heat from electronic devices into electricity It is conceivable to apply to the application. As a cooling application, in the field of electronic devices, for example, a CPU (Central Processing Unit) used for a smart phone, various computers, and the like, a CMOS (Complementary Metal Oxide Semiconductor Image Sensor), a CCD (Charge Coupled Image) sensor of a CCD (Charge Coupled), and the like. Further, the present invention can be applied to temperature control of various sensors such as MEMS (Micro Electro Mechanical Systems) and other light receiving elements.
1:熱電変換素子
2a:基板
2b:基板
3a:電極
3b:電極
4,4s,4t,4u:熱電素子層
4a:N型熱電素子層
4b:P型熱電素子層
11:基板
12:パターン枠
12’:ステンレス鋼
13s:開口
13d:開口部深さ(パターン枠厚)
13:開口部
14a:N型熱電素子層
14b:P型熱電素子層
22a,22b:基板
23a,23b:電極
24:パターン層
24’:樹脂を含む層
25:開口部
25s:開口
26a:N型熱電素子層
26b:P型熱電素子層
X:長さ(幅方向)
Xmax:幅方向の長さの最大値(縦断面)
Y:長さ(奥行き方向)
D:厚さ(厚さ方向)
Dmax:厚さ方向の厚さの最大値(縦断面)
S:縦断面の面積
1: thermoelectric conversion element 2a: substrate 2b: substrate 3a: electrode 3b: electrodes 4, 4s, 4t, 4u: thermoelectric element layer 4a: N-type thermoelectric element layer 4b: P-type thermoelectric element layer 11: substrate 12: pattern frame 12 ': Stainless steel 13s: Opening 13d: Opening depth (pattern frame thickness)
13: Opening 14a: N-type thermoelectric element layer 14b: P-type thermoelectric element layers 22a, 22b: Substrates 23a, 23b: Electrode 24: Pattern layer 24 ': Layer containing resin 25: Opening 25s: Opening 26a: N-type Thermoelectric element layer 26b: P-type thermoelectric element layer X: Length (width direction)
Xmax: Maximum value of length in width direction (longitudinal section)
Y: Length (depth direction)
D: Thickness (thickness direction)
Dmax: maximum value of thickness in the thickness direction (longitudinal section)
S: Area of longitudinal section

Claims (7)

  1.  基板上に半導体材料を含む半導体組成物からなる半導体素子層を含む半導体素子であって、
     前記半導体素子層の中央部を含む縦断面の面積をS(μm)、縦断面の厚さ方向の厚さの最大値をDmax(μm)、縦断面の幅方向の長さの最大値をXmax(μm)とした場合、前記半導体素子層の前記縦断面が、以下の条件(A)及び(B)を満たす、半導体素子。
    (A)0.75≦S/(Dmax×Xmax)≦1.00
    (B)Dmax≧10μm、もしくは(Dmax/Xmax)≧0.03
     ここで、縦断面の厚さ方向の厚さの最大値Dmaxは、前記半導体素子層の前記縦断面において、前記基板上に垂線を立てた時に前記縦断面の厚さ方向の厚さの上下端と該垂線とが交差した際に得られる2交点間の最大の距離(厚さ)を意味し、縦断面の幅方向の長さの最大値Xmaxは、前記基板に平行な平行線を引いた時に前記縦断面の幅方向の長さの左右端と該平行線とが交差した際に得られる2交点間の最大の距離(長さ)を意味する。
    A semiconductor element including a semiconductor element layer made of a semiconductor composition including a semiconductor material on a substrate,
    The area of the vertical section including the central portion of the semiconductor element layer is S (μm 2 ), the maximum value of the thickness in the thickness direction of the vertical section is Dmax (μm), and the maximum value of the length of the vertical section in the width direction is A semiconductor device in which the vertical section of the semiconductor device layer satisfies the following conditions (A) and (B) when Xmax (μm).
    (A) 0.75 ≦ S / (Dmax × Xmax) ≦ 1.00
    (B) Dmax ≧ 10 μm or (Dmax / Xmax) ≧ 0.03
    Here, the maximum value Dmax of the thickness in the thickness direction of the vertical section is the upper and lower ends of the thickness in the thickness direction of the vertical section when a vertical line is formed on the substrate in the vertical section of the semiconductor element layer. Means the maximum distance (thickness) between two intersections obtained when the vertical line intersects with the vertical line. The maximum value Xmax of the length in the width direction of the longitudinal section is obtained by drawing a parallel line parallel to the substrate. Sometimes it means the maximum distance (length) between two intersections obtained when the left and right ends of the length in the width direction of the vertical cross section and the parallel line intersect.
  2.  前記半導体材料が熱電半導体材料であり、前記半導体素子が前記熱電半導体材料を含む熱電半導体組成物からなる熱電素子層を含む、請求項1に記載の半導体素子を用いた熱電変換素子。 The thermoelectric conversion element using the semiconductor element according to claim 1, wherein the semiconductor material is a thermoelectric semiconductor material, and the semiconductor element includes a thermoelectric element layer made of a thermoelectric semiconductor composition containing the thermoelectric semiconductor material.
  3.  前記熱電半導体組成物が、さらに、耐熱性樹脂を含む、請求項2に記載の熱電変換素子。 The thermoelectric conversion element according to claim 2, wherein the thermoelectric semiconductor composition further contains a heat-resistant resin.
  4.  前記熱電半導体材料が、ビスマス-テルル系熱電半導体材料、テルライド系熱電半導体材料、アンチモン-テルル系熱電半導体材料、又はビスマスセレナイド系熱電半導体材料である、請求項2又は3に記載の熱電変換素子。 4. The thermoelectric conversion element according to claim 2, wherein the thermoelectric semiconductor material is a bismuth-tellurium-based thermoelectric semiconductor material, a telluride-based thermoelectric semiconductor material, an antimony-tellurium-based thermoelectric semiconductor material, or a bismuth selenide-based thermoelectric semiconductor material. .
  5.  前記耐熱性樹脂が、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、又はエポキシ樹脂である、請求項2~4のいずれか1項に記載の熱電変換素子。 The thermoelectric conversion element according to any one of claims 2 to 4, wherein the heat-resistant resin is a polyimide resin, a polyamide resin, a polyamide-imide resin, or an epoxy resin.
  6.  前記熱電半導体組成物が、さらに、イオン液体及び/又は無機イオン性化合物を含む、請求項2~5のいずれか1項に記載の熱電変換素子。 The thermoelectric conversion element according to any one of claims 2 to 5, wherein the thermoelectric semiconductor composition further contains an ionic liquid and / or an inorganic ionic compound.
  7.  前記条件(A)が、0.83≦S/(Dmax×Xmax)≦1.00、かつ前記条件(B)が、Dmax≧50μm、もしくは(Dmax/Xmax)≧0.08である、請求項1~6のいずれか1項に記載の熱電変換素子。
     
    The condition (A) is 0.83 ≦ S / (Dmax × Xmax) ≦ 1.00, and the condition (B) is Dmax ≧ 50 μm or (Dmax / Xmax) ≧ 0.08. 7. The thermoelectric conversion element according to any one of 1 to 6.
PCT/JP2019/033407 2018-08-28 2019-08-27 Semiconductor element WO2020045378A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020539461A JP7348192B2 (en) 2018-08-28 2019-08-27 semiconductor element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018159290 2018-08-28
JP2018-159290 2018-08-28

Publications (1)

Publication Number Publication Date
WO2020045378A1 true WO2020045378A1 (en) 2020-03-05

Family

ID=69644547

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033407 WO2020045378A1 (en) 2018-08-28 2019-08-27 Semiconductor element

Country Status (3)

Country Link
JP (1) JP7348192B2 (en)
TW (1) TW202023073A (en)
WO (1) WO2020045378A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071043A1 (en) * 2020-09-30 2022-04-07 リンテック株式会社 Thermoelectric conversion material layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050426A (en) * 2013-09-04 2015-03-16 富士フイルム株式会社 Thermoelectric conversion element
WO2016147809A1 (en) * 2015-03-18 2016-09-22 リンテック株式会社 Waste heat recovery sheet
WO2018139475A1 (en) * 2017-01-27 2018-08-02 リンテック株式会社 Flexible thermoelectric conversion element and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015050426A (en) * 2013-09-04 2015-03-16 富士フイルム株式会社 Thermoelectric conversion element
WO2016147809A1 (en) * 2015-03-18 2016-09-22 リンテック株式会社 Waste heat recovery sheet
WO2018139475A1 (en) * 2017-01-27 2018-08-02 リンテック株式会社 Flexible thermoelectric conversion element and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022071043A1 (en) * 2020-09-30 2022-04-07 リンテック株式会社 Thermoelectric conversion material layer

Also Published As

Publication number Publication date
JP7348192B2 (en) 2023-09-20
TW202023073A (en) 2020-06-16
JPWO2020045378A1 (en) 2021-09-24

Similar Documents

Publication Publication Date Title
JP6683132B2 (en) Peltier cooling element and manufacturing method thereof
JP7406756B2 (en) Thermoelectric conversion module and its manufacturing method
JP7486949B2 (en) Electrode material for thermoelectric conversion module and thermoelectric conversion module using the same
WO2020045377A1 (en) Manufacturing method of thermoelectric conversion element
WO2019188862A1 (en) Thermoelectric conversion module
WO2020045378A1 (en) Semiconductor element
JP7346427B2 (en) Method for manufacturing chips of thermoelectric conversion material and method for manufacturing thermoelectric conversion modules using chips obtained by the manufacturing method
WO2020071424A1 (en) Chip of thermoelectric conversion material
JP7207858B2 (en) Thermoelectric conversion module
US20230200240A1 (en) Thermoelectric conversion module and manufacturing method therefor
JP7458375B2 (en) Method for manufacturing chips of thermoelectric conversion materials
WO2021193357A1 (en) Thermoelectric conversion module
WO2020203611A1 (en) Method for forming solder receiving layer on chip of thermoelectric conversion material
JP7401361B2 (en) thermoelectric conversion module
WO2021193358A1 (en) Thermoelectric conversion module
WO2023013590A1 (en) Thermoelectric conversion material layer and thermoelectric conversion module
JP2020035818A (en) Thermoelectric conversion element and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539461

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19855113

Country of ref document: EP

Kind code of ref document: A1