JP2015050426A - Thermoelectric conversion element - Google Patents

Thermoelectric conversion element Download PDF

Info

Publication number
JP2015050426A
JP2015050426A JP2013183191A JP2013183191A JP2015050426A JP 2015050426 A JP2015050426 A JP 2015050426A JP 2013183191 A JP2013183191 A JP 2013183191A JP 2013183191 A JP2013183191 A JP 2013183191A JP 2015050426 A JP2015050426 A JP 2015050426A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion layer
substrate
lower electrode
upper electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013183191A
Other languages
Japanese (ja)
Inventor
依里 高橋
Eri Takahashi
依里 高橋
林 直之
Naoyuki Hayashi
直之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2013183191A priority Critical patent/JP2015050426A/en
Priority to PCT/JP2014/072726 priority patent/WO2015033868A1/en
Publication of JP2015050426A publication Critical patent/JP2015050426A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Clocks (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a highly reliable thermoelectric conversion element having a proper upper electrode.SOLUTION: A thermoelectric conversion element includes: a lower electrode formed on a substrate; a thermoelectric conversion layer formed to cover a part of the lower electrode; and an upper electrode formed along on the substrate spaced apart from the lower electrode and a surface of the thermoelectric conversion layer and provided so as to sandwich the thermoelectric conversion layer together with the lower electrode. In the cross-sectional shape of the thermoelectric conversion layer, a region facing the upper electrode and descending toward the substrate is tilted so as to be gradually spaced apart from an end part of the lower electrode in a conduction direction.

Description

本発明は、熱電変換素子に関する。詳しくは、適正な上部電極を有する、信頼性の高い熱電変換素子に関する。   The present invention relates to a thermoelectric conversion element. Specifically, the present invention relates to a highly reliable thermoelectric conversion element having an appropriate upper electrode.

熱エネルギーと電気エネルギーを相互に変換することができる熱電変換材料が、熱によって発電する発電素子やペルチェ素子のような熱電変換素子に用いられている。
熱電変換素子は、熱エネルギーを直接電力に変換することができ、可動部を必要としない等の利点を有する。そのため、熱電変換素子を利用する発電素子は、例えば、焼却炉や工場の各種の設備など、排熱される部位に設けることで、動作コストを掛ける必要なく、簡易に電力を得ることができる。
Thermoelectric conversion materials that can mutually convert thermal energy and electrical energy are used in thermoelectric conversion elements such as power generation elements and Peltier elements that generate electricity by heat.
The thermoelectric conversion element can convert heat energy directly into electric power, and has an advantage that a movable part is not required. For this reason, a power generation element using a thermoelectric conversion element can be easily obtained without incurring operating costs by providing it at a site where heat is exhausted, such as an incinerator or various facilities in a factory.

このような熱電変換素子を利用する熱電変換モジュールとして、特許文献1には、基板の上に配列された熱電変換層を電気的に接続する配線導体の断面形状を、長方形もしくは逆台形状にすることにより、素子の位置ズレと接合部の隙間を無くし、信頼性を向上した熱電変換モジュールが記載されている。   As a thermoelectric conversion module using such a thermoelectric conversion element, Patent Document 1 discloses that the cross-sectional shape of a wiring conductor that electrically connects thermoelectric conversion layers arranged on a substrate is rectangular or inverted trapezoidal. Thus, there is described a thermoelectric conversion module in which the positional deviation of the element and the gap between the joint portions are eliminated and the reliability is improved.

また、特許文献2には、熱電変換素子において、直方体状の熱電変換素子本体の稜および/または頂点を面取り加工した状態とし、その稜および/または頂点をシリカ等の皮膜で覆うことにより、高温環境下での特性低下を抑制した熱電変換素子が記載されている。   Further, in Patent Document 2, in a thermoelectric conversion element, a ridge and / or apex of a rectangular parallelepiped thermoelectric conversion element body is chamfered, and the ridge and / or apex is covered with a film of silica or the like, thereby increasing the temperature. The thermoelectric conversion element which suppressed the characteristic fall under the environment is described.

特開2005−136075号公報Japanese Patent Laying-Open No. 2005-136075 特開2009−32893号公報JP 2009-32893 A

熱電変換素子は、一例として、熱電変換材料を含有する(もしくは熱電変換材料からなる)熱電変換層を、電極対で挟持してなる構成を有し、一方の電極側に熱源を配置して、熱源側と逆側との間で熱電変換層に温度差を生じさせて、発電する。   As an example, the thermoelectric conversion element has a configuration in which a thermoelectric conversion layer containing a thermoelectric conversion material (or made of a thermoelectric conversion material) is sandwiched between electrode pairs, and a heat source is arranged on one electrode side, Electric power is generated by causing a temperature difference in the thermoelectric conversion layer between the heat source side and the opposite side.

このような熱電変換素子を、複数、直列に接続してなる熱電変換モジュールとして、基板表面に形成された下部電極と、下部電極の一部を覆って基板上に形成された熱電変換層と、熱電変換層の上に形成された上部電極とを有する熱電変換素子を一列に配列して、隣り合わせる素子の下部電極と上部電極とを接続する構成が例示される。
この際には、上部電極は、隣接する素子の下部電極に接続されて、基板から熱電変換層の側面に沿って立設するように延在して、熱電変換層の上面に至る形状となる。
As a thermoelectric conversion module in which a plurality of such thermoelectric conversion elements are connected in series, a lower electrode formed on the substrate surface, a thermoelectric conversion layer formed on the substrate covering a part of the lower electrode, A configuration in which thermoelectric conversion elements having an upper electrode formed on a thermoelectric conversion layer are arranged in a line and a lower electrode and an upper electrode of adjacent elements are connected is exemplified.
In this case, the upper electrode is connected to the lower electrode of the adjacent element, extends from the substrate so as to stand along the side surface of the thermoelectric conversion layer, and reaches the upper surface of the thermoelectric conversion layer. .

ところが、従来の熱電変換素子では、この上部電極が適正に形成できずに、薄い部分や破断部が生じてしまい、通電性が低下してしまう。   However, in the conventional thermoelectric conversion element, the upper electrode cannot be properly formed, and a thin portion or a broken portion is generated, and the conductivity is reduced.

さらに、熱電変換素子は、電極間方向における熱電変換層の温度差が大きい程、発電効率を向上できる。従って、効率のよい発電を行うためには、熱電変換層を電極間の方向である程度の大きさにして、この方向に温度差をつける必要が有る。
しかしながら、この際には、熱電変換層の側面に沿って形成する上部電極が、より長くなり、上部電極を適正に形成するのが、より困難になる。
Furthermore, the thermoelectric conversion element can improve power generation efficiency, so that the temperature difference of the thermoelectric conversion layer in the direction between electrodes is large. Therefore, in order to perform efficient power generation, it is necessary to make the thermoelectric conversion layer a certain size in the direction between the electrodes and to make a temperature difference in this direction.
However, in this case, the upper electrode formed along the side surface of the thermoelectric conversion layer becomes longer, and it becomes more difficult to properly form the upper electrode.

本発明の目的は、このような従来技術の問題点を解決することにあり、基板と、下部電極と、熱電変換層と、上部電極とを有する熱電変換素子において、破断部等が無い適正な上部電極を有し、上部電極の破断等に起因する通電性の低下等が無い、高い信頼性を有する熱電変換素子を提供することにある。   An object of the present invention is to solve such problems of the prior art, and in a thermoelectric conversion element having a substrate, a lower electrode, a thermoelectric conversion layer, and an upper electrode, there is no appropriate breakage or the like. It is an object of the present invention to provide a highly reliable thermoelectric conversion element that has an upper electrode and does not have a decrease in conductivity due to breakage of the upper electrode or the like.

このような目的を達成するために、本発明の熱電変換素子は、基板と、
基板の上に形成される下部電極と、
下部電極の一部を覆って、基板の上に形成される熱電変換層と、
下部電極と離間する位置から基板上を下部電極に向かい、次いで、基板上から立ち上がって熱電変換層の表面に沿って形成される、下部電極と共に熱電変換層を挟むように設けられる上部電極とを有し、
さらに、基板上における下部電極と上部電極との通電方向の熱電変換層の断面形状は、上部電極と対面し、かつ、基板に向かって降下する領域が、通電方向の下部電極の端部から、漸次、離間するように傾斜する形状を有することを特徴とする熱電変換素子を提供する。
In order to achieve such an object, the thermoelectric conversion element of the present invention comprises a substrate,
A lower electrode formed on the substrate;
A thermoelectric conversion layer formed on the substrate, covering a part of the lower electrode;
An upper electrode that is formed along the surface of the thermoelectric conversion layer rising from the substrate from a position separated from the lower electrode and then rising along the surface of the thermoelectric conversion layer. Have
Furthermore, the cross-sectional shape of the thermoelectric conversion layer in the energizing direction of the lower electrode and the upper electrode on the substrate faces the upper electrode, and the region descending toward the substrate is from the end of the lower electrode in the energizing direction, A thermoelectric conversion element characterized by having a shape that is gradually inclined to be separated.

このような本発明の熱電変換素子において、少なくとも熱電変換層の上面に、凹状になっている部分を有さないのが好ましい。
また、基板に対して垂直方向に見た際に、上部電極と下部電極とが重なる領域を有し、かつ、この上部電極と下部電極とが重なる領域を、熱電変換層の上面と見なすのが好ましい。
また、熱電変換層が、上面に平面な領域を有するのが好ましい。
また、熱電変換層の断面形状が、台形であるのが好ましい。
また、通電方向における熱電変換層の上部電極側の端部の下端は、下部電極の上面よりも基板側に位置するのが好ましい。
また、通電方向における熱電変換層の長さをL1、基板からの熱電変換層の高さをL2とした際に、『L2/L1>0.05』を満たすのが好ましい。
また、熱電変換層が、樹脂材料に熱電変換機能を有する材料を分散してなるものであるのが好ましい。
さらに、樹脂材料が、熱硬化樹脂もしくは紫外線硬化樹脂で形成されるのが好ましい。
In such a thermoelectric conversion element of the present invention, it is preferable that at least the upper surface of the thermoelectric conversion layer does not have a concave portion.
Further, when viewed in a direction perpendicular to the substrate, the upper electrode and the lower electrode have a region that overlaps, and the region in which the upper electrode and the lower electrode overlap is regarded as the upper surface of the thermoelectric conversion layer. preferable.
Moreover, it is preferable that a thermoelectric conversion layer has a plane area | region on an upper surface.
Moreover, it is preferable that the cross-sectional shape of the thermoelectric conversion layer is a trapezoid.
Moreover, it is preferable that the lower end of the end portion on the upper electrode side of the thermoelectric conversion layer in the energization direction is located on the substrate side with respect to the upper surface of the lower electrode.
Further, when the length of the thermoelectric conversion layer in the energizing direction is L1, and the height of the thermoelectric conversion layer from the substrate is L2, it is preferable that “L2 / L1> 0.05” is satisfied.
The thermoelectric conversion layer is preferably formed by dispersing a material having a thermoelectric conversion function in a resin material.
Furthermore, the resin material is preferably formed of a thermosetting resin or an ultraviolet curable resin.

このような本発明によれば、基板と、下部電極と、熱電変換層と、上部電極とを有する熱電変換素子において、下部電極と上部電極との間の熱電変換層のサイズ(厚さ)を大きくしても、破断部や膜薄部等が無い適正な上部電極を有し、上部電極の破断等に起因する通電性の低下等が無い、高い信頼性を有する熱電変換素子が得られる。   According to the present invention, in the thermoelectric conversion element having the substrate, the lower electrode, the thermoelectric conversion layer, and the upper electrode, the size (thickness) of the thermoelectric conversion layer between the lower electrode and the upper electrode is set. Even if the size is increased, a highly reliable thermoelectric conversion element having an appropriate upper electrode having no breakage, a thin film portion, or the like, and having no decrease in conductivity due to the breakage of the upper electrode or the like can be obtained.

本発明の熱電変換素子の一例を概念的に示す斜視図である。It is a perspective view which shows notionally an example of the thermoelectric conversion element of this invention. 図1のII−II線断面を概念的に示す図である。It is a figure which shows notionally the II-II sectional view taken on the line of FIG. 本発明の熱電変換素子の別の例の断面を概念的に示す図である。It is a figure which shows notionally the cross section of another example of the thermoelectric conversion element of this invention. 本発明の熱電変換素子の別の例の断面を概念的に示す図である。It is a figure which shows notionally the cross section of another example of the thermoelectric conversion element of this invention. 従来の熱電変換素子の一例の断面を概念的に示す図である。It is a figure which shows notionally the cross section of an example of the conventional thermoelectric conversion element. (A)および(B)は、熱電変換素子の上面の形状の一例を概念的に示す図である。(A) And (B) is a figure which shows notionally an example of the shape of the upper surface of a thermoelectric conversion element.

以下、本発明の熱電変換素子について、添付の図面に示される好適実施例を基に詳細に説明する。   Hereinafter, the thermoelectric conversion element of the present invention will be described in detail based on a preferred embodiment shown in the accompanying drawings.

図1および図2に、本発明の熱電変換素子の一例を概念的に示す。なお、図1は、斜視図であり、図2は、図1のII−II線断面図である。   1 and 2 conceptually show an example of the thermoelectric conversion element of the present invention. 1 is a perspective view, and FIG. 2 is a cross-sectional view taken along line II-II in FIG.

図1および図2に示すように、熱電変換素子10は、基本的に、基板12と、下部電極14と、熱電変換層16と、上部電極18とを有して構成される。
具体的には、下部電極14は、基板12の上に形成される。熱電変換層16は、下部電極14の一部を覆って、基板12の上に形成される。上部電極18は、基板12上の下部電極14と離間する位置から、下部電極14に向かい、さらに、基板12から立ち上がって、熱電変換層16の側面および上面に沿って延在する。
As shown in FIGS. 1 and 2, the thermoelectric conversion element 10 basically includes a substrate 12, a lower electrode 14, a thermoelectric conversion layer 16, and an upper electrode 18.
Specifically, the lower electrode 14 is formed on the substrate 12. The thermoelectric conversion layer 16 is formed on the substrate 12 so as to cover a part of the lower electrode 14. The upper electrode 18 extends from the position separated from the lower electrode 14 on the substrate 12 toward the lower electrode 14, rises from the substrate 12, and extends along the side surface and the upper surface of the thermoelectric conversion layer 16.

なお、本発明の熱電変換素子10においては、図示した構成要素以外にも、必要に応じて、基板12と下部電極14との間、基板12と熱電変換層16との間、基板12と上部電極18との間、下部電極14と熱電変換層16との間、熱電変換層16と上部電極18との間等に、易接着層や密着改善層などの層(膜)を有してもよく、また、各層の形成性や密着性を向上させるために、プライマ処理や粗面化処理などの表面改質処理を施してもよい。   In addition, in the thermoelectric conversion element 10 of the present invention, in addition to the illustrated components, the substrate 12 and the lower electrode 14, the substrate 12 and the thermoelectric conversion layer 16, and the substrate 12 and the upper portion, as necessary. A layer (film) such as an easy adhesion layer or an adhesion improving layer may be provided between the electrode 18, the lower electrode 14 and the thermoelectric conversion layer 16, or between the thermoelectric conversion layer 16 and the upper electrode 18. Moreover, in order to improve the formability and adhesion of each layer, surface modification treatment such as primer treatment or surface roughening treatment may be performed.

本発明の熱電変換素子10において、基板12は、ガラス板、セラミックス板、表面に絶縁層を有する金属板、プラスチックフィルム、表面に陽極酸化皮膜を形成してなるアルミニウムシートなど、表面(少なくとも電極および熱電変換層の形成領域)が絶縁性で、かつ、後述する電極や熱電変換層16の形成等に対する十分な耐熱性を有するものであれば、各種の材料からなる物が利用可能である。
好ましくは、基板12には、プラスチックフィルムが利用される。基板12にプラスチックフィルムを用いることにより、軽量化やコストの低下を計ると共に、可撓性を有する熱電変換素子10(すなわち、可撓性を有する熱電変換モジュール)が形成可能となり、好ましい。
In the thermoelectric conversion element 10 of the present invention, the substrate 12 is a glass plate, a ceramic plate, a metal plate having an insulating layer on the surface, a plastic film, an aluminum sheet formed with an anodized film on the surface, etc. As long as the region where the thermoelectric conversion layer is formed) is insulative and has sufficient heat resistance against the formation of the electrodes and thermoelectric conversion layer 16 described later, materials made of various materials can be used.
Preferably, a plastic film is used for the substrate 12. By using a plastic film for the substrate 12, it is possible to reduce the weight and reduce the cost and to form a flexible thermoelectric conversion element 10 (that is, a flexible thermoelectric conversion module), which is preferable.

基板12に利用可能なプラスチックフィルムとしては、具体的には、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ(1,4−シクロヘキシレンジメチレンテレフタレート)、ポリエチレン−2,6−フタレンジカルボキシレート等のポリエステル樹脂、ポリイミド、ポリカーボネート、ポリプロピレン、ポリエーテルスルホン、シクロオレフィンポリマー、ポリエーテルエーテルケトン(PEEK)、トリアセチルセルロース(TAC)等の樹脂、ガラスエポキシ、液晶性ポリエステル等からなるフィルム(シート状物)が例示される。
また、基板12の形成材料としては、これらの樹脂材料の共重合体や、これら材料の混合物も利用可能である。
Specific examples of plastic films that can be used for the substrate 12 include polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), polyethylene-2,6- Polyester resin such as phthalenedicarboxylate, polyimide, polycarbonate, polypropylene, polyethersulfone, cycloolefin polymer, polyetheretherketone (PEEK), triacetylcellulose (TAC) resin, glass epoxy, liquid crystalline polyester, etc. A film (sheet-like material) is exemplified.
Further, as a material for forming the substrate 12, a copolymer of these resin materials or a mixture of these materials can be used.

中でも、入手の容易性や経済性に加え、溶剤による溶解が無く、塗布や印刷による電極や熱電変換層16の形成が可能である等の点で、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミド、ポリエーテルエーテルケトン、ポリカーボネート、ガラスエポキシ、液晶性ポリエステルが好ましく例示される。その中でも、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミド、ポリカーボネート等からなるフィルムは、特に好適に例示される。   Among them, polyethylene terephthalate, polyethylene naphthalate, polyimide, polyether, etc., in addition to easy availability and economy, no dissolution by solvent, and formation of electrodes and thermoelectric conversion layer 16 by coating or printing is possible. Preferred examples include ether ketone, polycarbonate, glass epoxy, and liquid crystalline polyester. Among these, a film made of polyethylene terephthalate, polyethylene naphthalate, polyimide, polycarbonate or the like is particularly preferably exemplified.

基板12の厚さは、熱電変換素子10に求められる強度や可撓性、重さやサイズ等に応じて、適宜、設定すればよい。
具体的には、基板12の厚さは、5〜1000μmが好ましい。中でも、可撓性や軽量化の観点から、基板12の厚さは、10〜500μmがより好ましく、10〜250μmが特に好ましい。
What is necessary is just to set the thickness of the board | substrate 12 suitably according to the intensity | strength, flexibility, weight, size, etc. which are calculated | required by the thermoelectric conversion element 10. FIG.
Specifically, the thickness of the substrate 12 is preferably 5 to 1000 μm. Among these, from the viewpoint of flexibility and weight reduction, the thickness of the substrate 12 is more preferably 10 to 500 μm, and particularly preferably 10 to 250 μm.

このような基板12の上(表面/主面)には、下部電極14が形成される。
熱電変換素子10においては、下部電極14および上部電極18に配線を接続することにより、加熱等によって発生した電力(電気エネルギー)が取り出される。また、熱電変換素子10を、適宜、配列して、隣接する熱電変換素子10同士の下部電極14と上部電極18とを電気的に接続することにより、本発明の熱電変換素子10を、複数、直列で接続してなる熱電変換モジュールを形成できる。
A lower electrode 14 is formed on the substrate 12 (surface / main surface).
In the thermoelectric conversion element 10, electric power (electric energy) generated by heating or the like is taken out by connecting wiring to the lower electrode 14 and the upper electrode 18. Further, by arranging the thermoelectric conversion elements 10 as appropriate and electrically connecting the lower electrode 14 and the upper electrode 18 of the adjacent thermoelectric conversion elements 10, a plurality of the thermoelectric conversion elements 10 of the present invention, A thermoelectric conversion module connected in series can be formed.

下部電極14の厚さやサイズは、形成する熱電変換素子10の大きさ等に応じて、発生した電力をロスなく確実に取り出せるサイズを、適宜、設定すればよい。なお、十分な通電性が得られる等の点で、下部電極14の厚さは、50〜2000nmが好ましい。
また、図示例では、下部電極14は矩形であるが、矩形以外にも、円形等の各種の形状が利用可能である。
The thickness and size of the lower electrode 14 may be set as appropriate according to the size of the thermoelectric conversion element 10 to be formed and the like so that the generated power can be reliably extracted without loss. It should be noted that the thickness of the lower electrode 14 is preferably 50 to 2000 nm in terms of obtaining sufficient electrical conductivity.
In the illustrated example, the lower electrode 14 has a rectangular shape, but various shapes such as a circular shape can be used in addition to the rectangular shape.

下部電極14は、必要な導電性を有するものであれば、各種の材料で形成可能である。
具体的には、銅、銀、金、白金、ニッケル、クロム、銅合金などの金属材料、酸化インジウムスズ(ITO)や酸化亜鉛(ZnO)等の各種のデバイスで透明電極として利用されている材料等が例示される。中でも、銅、金、白金、ニッケル、銅合金等は好ましく例示され、金、白金、ニッケルは、より好ましく例示される。
また、下部電極14は、熱電変換層16から実質的に電力を取り出して外部に出力する電極の密着性を向上するために、クロム層と金層との積層構造など、複数の材料からなる層(膜)を積層してなる構成であってもよい。
The lower electrode 14 can be formed of various materials as long as it has necessary conductivity.
Specifically, materials used as transparent electrodes in various devices such as metal materials such as copper, silver, gold, platinum, nickel, chromium, and copper alloys, and indium tin oxide (ITO) and zinc oxide (ZnO). Etc. are exemplified. Especially, copper, gold | metal | money, platinum, nickel, a copper alloy etc. are illustrated preferably, Gold, platinum, nickel is illustrated more preferably.
The lower electrode 14 is a layer made of a plurality of materials, such as a laminated structure of a chromium layer and a gold layer, in order to improve the adhesion of the electrode that substantially extracts electric power from the thermoelectric conversion layer 16 and outputs it to the outside. The structure formed by laminating (films) may be used.

基板12の上には、下部電極14の一部を覆って、熱電変換層16が形成される。
熱電変換素子10は、例えば、熱源との接触などによる加熱によって1方向に温度差が生じることにより、この温度差に応じて、熱電変換層16の内部において、この方向のキャリア密度に差が生じ、電力が発生する。図示例においては、例えば、熱電変換層16の上面側に熱源を設け、此処の上部電極18と下部電極14との間に温度差を生じさせることにより、発電する。
A thermoelectric conversion layer 16 is formed on the substrate 12 so as to cover a part of the lower electrode 14.
The thermoelectric conversion element 10 has a difference in carrier density in this direction inside the thermoelectric conversion layer 16 due to a temperature difference in one direction due to heating by contact with a heat source, for example. , Power is generated. In the illustrated example, for example, a heat source is provided on the upper surface side of the thermoelectric conversion layer 16, and power is generated by generating a temperature difference between the upper electrode 18 and the lower electrode 14.

本発明の熱電変換素子10は、熱電変換層16は、公知の熱電変換材料を用いる各種の構成が、全て、利用可能である。
熱電変換材料としては、具体的には、導電性高分子、導電性ナノ炭素材料等の有機材料、ナノ金属材料(金属含有導電性ナノ材料)、無機酸化物半導体等の無機材料等の熱電変換材料を用いることができる。
In the thermoelectric conversion element 10 of the present invention, the thermoelectric conversion layer 16 can use all the various configurations using known thermoelectric conversion materials.
Specifically, thermoelectric conversion materials such as conductive polymers, organic materials such as conductive nanocarbon materials, nanometal materials (metal-containing conductive nanomaterials), inorganic materials such as inorganic oxide semiconductors, etc. Materials can be used.

導電性高分子としては、共役系の分子構造を有する高分子化合物(共役系高分子)が例示される。ここで、共役系の分子構造を有する高分子とは、高分子の主鎖上の炭素−炭素結合において、一重結合と二重結合とが交互に連なる構造を有している高分子である。
また、本発明で用いる導電性高分子は、必ずしも高分子量化合物である必要はなく、オリゴマー化合物であってもよい。
Examples of the conductive polymer include a polymer compound having a conjugated molecular structure (conjugated polymer). Here, the polymer having a conjugated molecular structure is a polymer having a structure in which single bonds and double bonds are alternately connected in a carbon-carbon bond on the main chain of the polymer.
Further, the conductive polymer used in the present invention is not necessarily a high molecular weight compound, and may be an oligomer compound.

共役系高分子としては、具体的には、チオフェン系化合物、ピロール系化合物、アニリン系化合物、アセチレン系化合物、p−フェニレン系化合物、p−フェニレンビニレン系化合物、p−フェニレンエチニレン系化合物、p−フルオレニレンビニレン系化合物、ポリアセン系化合物、ポリフェナントレン系化合物、金属フタロシアニン系化合物、p−キシリレン系化合物、ビニレンスルフィド系化合物、m−フェニレン系化合物、ナフタレンビニレン系化合物、p−フェニレンオキシド系化合物、フェニレンスルフィド系化合物、フラン系化合物、セレノフェン系化合物、アゾ系化合物、金属錯体系化合物等が例示される。また、これらの化合物に置換基を導入した誘導体などをモノマーとし、このモノマーから誘導される繰り返し単位を有する共役系高分子も利用可能である。
これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the conjugated polymer include thiophene compounds, pyrrole compounds, aniline compounds, acetylene compounds, p-phenylene compounds, p-phenylene vinylene compounds, p-phenylene ethynylene compounds, p -Fluorenylene vinylene compound, polyacene compound, polyphenanthrene compound, metal phthalocyanine compound, p-xylylene compound, vinylene sulfide compound, m-phenylene compound, naphthalene vinylene compound, p-phenylene oxide compound And phenylene sulfide compounds, furan compounds, selenophene compounds, azo compounds, metal complex compounds, and the like. Further, a conjugated polymer having a repeating unit derived from this monomer using a derivative having a substituent introduced into these compounds as a monomer can also be used.
These may be used alone or in combination of two or more.

導電性ナノ炭素材料としては、具体的には、カーボンナノチューブ(以下、CNTとも言う)、カーボンナノファイバー、グラファイト、グラフェン、カーボンナノ粒子等が例示される。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
中でも、熱電特性がより良好となる理由から、CNTが好ましく利用される。
なお、導電性ナノ材料のサイズは、ナノサイズ(1μm未満)であればよい。また、後述するカーボンナノチューブ、カーボンナノファイバーなどについては、平均短径がナノサイズ(例えば、平均短径が500nm以下)であればよい。
Specific examples of the conductive nanocarbon material include carbon nanotubes (hereinafter also referred to as CNT), carbon nanofibers, graphite, graphene, and carbon nanoparticles. These may be used alone or in combination of two or more.
Among these, CNT is preferably used for the reason that the thermoelectric characteristics are better.
The size of the conductive nano material may be nano size (less than 1 μm). Moreover, about the carbon nanotube, carbon nanofiber, etc. which are mentioned later, an average minor axis should just be nanosize (for example, an average minor axis is 500 nm or less).

ナノ金属材料および無機酸化物半導体も、公知の物が、各種、利用可能である。
具体的には、Bi−Te系材料、Bi−Se系材料、Sb−Te系材料、Pb−Te系材料、Ge−Te系材料、Bi−Sb系材料、Zn−Sb系材料、Co−Sb系材料、Ag−Sb−Ge−Te系材料、Si−Ge系材料、Fe−Si系材料、Mg−Si系材料、Mn−Si系材料、Fe−O系材料、Zn−O系材料、Cu−O系材料、Na−Co−O系材料、Ti−Sr−O系材料、Bi−Sr−Co−O系材料等が例示される。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Various known nano metal materials and inorganic oxide semiconductors can be used.
Specifically, Bi-Te materials, Bi-Se materials, Sb-Te materials, Pb-Te materials, Ge-Te materials, Bi-Sb materials, Zn-Sb materials, Co-Sb Material, Ag-Sb-Ge-Te material, Si-Ge material, Fe-Si material, Mg-Si material, Mn-Si material, Fe-O material, Zn-O material, Cu Examples include -O-based materials, Na-Co-O-based materials, Ti-Sr-O-based materials, Bi-Sr-Co-O-based materials, and the like. These may be used alone or in combination of two or more.

本発明の熱電変換素子10においては、バインダ(樹脂材料)に、前述のような熱電変換材料を分散してなる熱電変換層16が好適に利用される。
中でも、バインダに導電性ナノ炭素材料を分散してなる熱電変換層16は、より好適に例示される。その中でも、高い導電性が得られる等の点で、バインダにCNTを分散してなる熱電変換層16は、特に好適に例示される。
In the thermoelectric conversion element 10 of the present invention, a thermoelectric conversion layer 16 in which a thermoelectric conversion material as described above is dispersed in a binder (resin material) is preferably used.
Among these, the thermoelectric conversion layer 16 obtained by dispersing a conductive nanocarbon material in a binder is more preferably exemplified. Among them, the thermoelectric conversion layer 16 in which CNT is dispersed in a binder is particularly preferably exemplified in that high conductivity is obtained.

なお、CNTは、単層CNTでも多層CNTでもよい。
また、CNTを修飾あるいは処理したCNTも利用可能である。修飾あるいは処理方法としては、フェロセン誘導体や窒素置換フラーレン(アザフラーレン)を内包する方法、イオンドーピング法によりアルカリ金属(カリウムなど)や金属元素(インジウムなど)をCNTにドープする方法、真空中でCNTを加熱する方法等が例示される。
また、CNTを利用する場合には、単層CNTや多層CNTの他に、カーボンナノホーン、カーボンナノコイル、カーボンナノビーズ、グラファイト、グラフェン、アモルファスカーボン等のナノカーボンが含まれてもよい。
The CNT may be a single-wall CNT or a multi-wall CNT.
Also, CNTs modified or treated with CNTs can be used. Modification or treatment methods include a method of including a ferrocene derivative or nitrogen-substituted fullerene (azafullerene), a method of doping an alkali metal (such as potassium) or a metal element (such as indium) into the CNT by an ion doping method, or CNT in a vacuum. The method etc. which heat this are illustrated.
When CNT is used, in addition to single-walled CNT and multi-walled CNT, nanocarbon such as carbon nanohorn, carbon nanocoil, carbon nanobead, graphite, graphene, and amorphous carbon may be included.

熱電変換層16にCNTを利用する場合には、ドーパントを含むのが好ましい。
ドーパントも公知の各種のものが利用可能である。具体的には、アルカリ金属、ヒドラジン誘導体、金属水素化物(水素化ホウ素ナトリウム、水素化ホウ素テトラブチルアンモニウム、水素化リチウムアルミニウム等)、ポリエチレンイミン、ハロゲン(ヨウ素、臭素等)、ルイス酸(PF5、AsF5等)、プロトン酸(塩酸、硫酸等)、遷移金属ハロゲン化物(FeCl3、SnCl4等)、有機の電子受容性物質(テトラシアノキノジメタン(TCNQ)誘導体、2,3−ジクロロ−5,6−ジシアノ−p−ベンゾキノン(DDQ)誘導体等)等が好適に例示される。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
中でも、材料の安定性、CNTとの相溶性等の点で、ポリエチレンイミン、TCNQ誘導体やDDQ誘導体などの有機の電子受容性物質は好適に例示される。
When using CNT for the thermoelectric conversion layer 16, it is preferable to contain a dopant.
Various known dopants can be used. Specifically, alkali metal, hydrazine derivative, metal hydride (sodium borohydride, tetrabutylammonium borohydride, lithium aluminum hydride, etc.), polyethyleneimine, halogen (iodine, bromine, etc.), Lewis acid (PF 5 , AsF 5 and the like), protonic acid (hydrochloric and sulfuric), transition metal halide (FeCl 3, SnCl 4, etc.), an organic electron accepting material (tetracyanoquinodimethane (TCNQ) derivative, 2,3-dichloro Preferred examples include -5,6-dicyano-p-benzoquinone (DDQ) derivatives and the like. These may be used alone or in combination of two or more.
Among them, organic electron accepting substances such as polyethyleneimine, TCNQ derivatives, and DDQ derivatives are preferably exemplified in terms of material stability, compatibility with CNTs, and the like.

バインダも、公知の各種の非導電性の樹脂材料が利用可能である。
具体的には、ビニル化合物、(メタ)アクリレート化合物、カーボネート化合物、エステル化合物、エポキシ化合物、シロキサン化合物、ゼラチン等の公知の各種の樹脂材料が利用可能である。
より具体的には、ビニル化合物としては、ポリスチレン、ポリビニルナフタレン、ポリ酢酸ビニル、ポリビニルフェノール、ポリビニルブチラール等が例示される。(メタ)アクリレート化合物としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリフェノキシ(ポリ)エチレングリコール(メタ)アクリレート、ポリベンジル(メタ)アクリレート等が例示される。カーボネート化合物としては、ビスフェノールZ型ポリカーボネート、ビスフェノールC型ポリカーボネート等が例示される。エステル化合物としては、非晶性ポリエステルが例示される。
好ましくは、ポリビニルブチラール、(メタ)アクリレート化合物、カーボネート化合物、エステル化合物が例示され、より好ましくは、ポリビニルブチラール、ポリフェノキシ(ポリ)エチレングリコール(メタ)アクリレート、ポリベンジル(メタ)アクリレート、非晶性ポリエステルが例示される。
As the binder, various known non-conductive resin materials can be used.
Specifically, various known resin materials such as vinyl compounds, (meth) acrylate compounds, carbonate compounds, ester compounds, epoxy compounds, siloxane compounds, and gelatin can be used.
More specifically, examples of the vinyl compound include polystyrene, polyvinyl naphthalene, polyvinyl acetate, polyvinyl phenol, and polyvinyl butyral. Examples of the (meth) acrylate compound include polymethyl (meth) acrylate, polyethyl (meth) acrylate, polyphenoxy (poly) ethylene glycol (meth) acrylate, polybenzyl (meth) acrylate and the like. Examples of the carbonate compound include bisphenol Z-type polycarbonate and bisphenol C-type polycarbonate. As the ester compound, amorphous polyester is exemplified.
Preferred examples include polyvinyl butyral, (meth) acrylate compounds, carbonate compounds, and ester compounds, and more preferred are polyvinyl butyral, polyphenoxy (poly) ethylene glycol (meth) acrylate, polybenzyl (meth) acrylate, and amorphous polyester. Is exemplified.

中でも、熱硬化樹脂および紫外線硬化樹脂は、好適に利用される。
熱硬化樹脂は、公知の各種の物が利用可能である。具体的には、エポキシ樹脂、ビスフェノールA型エポキシ樹脂、水素化ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、ポリアルキレンエーテル型エポキシ樹脂、環状脂肪族型エポキシ樹脂、フェノール樹脂、メラミン樹脂、熱硬化性ウレタン樹脂、熱硬化性イミド樹脂、熱硬化性ポリアミドイミド、熱硬化性シリコーン樹脂、尿素樹脂、不飽和ポリエステル樹脂、ユリア樹脂、ベンゾグアナミン樹脂、アルキド樹脂、シアネート樹脂等が例示される。
Among these, thermosetting resins and ultraviolet curable resins are preferably used.
Various known materials can be used as the thermosetting resin. Specifically, epoxy resin, bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, novolac type epoxy resin, polyalkylene ether type epoxy resin, cycloaliphatic type epoxy resin, phenol resin, melamine resin, thermosetting Examples include urethane resin, thermosetting imide resin, thermosetting polyamideimide, thermosetting silicone resin, urea resin, unsaturated polyester resin, urea resin, benzoguanamine resin, alkyd resin, cyanate resin and the like.

また、紫外線硬化樹脂も、公知の各種の物が利用可能である。具体的には、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、メラミン(メタ)アクリレート等の(メタ)アクリロイル基を有する重合性オリゴマーまたはモノマーを重合してなる樹脂や、アクリル酸、アクリルアミド、アクリロニトリル、スチレン等の重合性ビニル基を有する重合性オリゴマーまたはモノマー等を重合してなる樹脂が例示される。また、これらのプレポリマーを用いてもよい。
本発明においては、これらの重合性のオリゴマー、モノマーやプレポリマーに、光重合開始剤硬化剤を加え、さらに、必要に応じて増感剤などの添加剤を加えて用いることができる。
Various known UV curable resins can also be used. Specifically, a polymerizable oligomer or monomer having a (meth) acryloyl group such as urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, polyether (meth) acrylate, melamine (meth) acrylate, etc. Examples thereof include a resin obtained by polymerization and a resin obtained by polymerizing a polymerizable oligomer or monomer having a polymerizable vinyl group such as acrylic acid, acrylamide, acrylonitrile, and styrene. Further, these prepolymers may be used.
In the present invention, a photopolymerization initiator curing agent can be added to these polymerizable oligomers, monomers, and prepolymers, and additives such as sensitizers can be added as necessary.

このような重合性モノマーとしては、具体的には、トリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等が例示される。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
また、重合性プレポリマーとしては、具体的には、ポリエステルアクリレート系、エポキシアクリレート系、ウレタンアクリレート系、ポリオールアクリレート系等の光重合性プレポリマーが例示される。これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of such polymerizable monomers include trimethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri ( Examples include (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and the like. These may be used alone or in combination of two or more.
Specific examples of the polymerizable prepolymer include polyester acrylate, epoxy acrylate, urethane acrylate, and polyol acrylate photopolymerizable prepolymers. These may be used alone or in combination of two or more.

熱硬化樹脂および紫外線硬化樹脂のいずれにおいても、ラジカル重合系の樹脂を好適に用いることができる。
本発明に利用可能なラジカル重合性化合物としては、特に制限はないが、分子内に重合性基を2以上有するラジカル重合性化合物を用いるのが、架橋構造を形成でき、硬化の観点で好ましい。
具体的には、ジビニルベンゼン、アクリルアミド系モノマーやポリエチレングリコールジメタクリレート(NKエステル1G、2G、3G、4G、9G、14G、23G)、ポリエチレングリコールジアクリレート(NKエステルA−200、A−400、A−600、A−1000)、ネオペンチルグリコールジメタクリレート(NKエステル3PG、9PG、APG−400、APG−700)、ネオペンチルグリコールジアクリレート(NKエステルAPG−100、APG−200、APG−400、APG−700)、1,6−ヘキサンジオールジメタクリレート(NKエステルHD−N)、1,6−ヘキサンジオールジアクリレート(NKエステルA−HD−N)、1,9−ノナンジオールジメタクリレート(NKエステルNOD−N、),1,9−ノナンジオールジアクリレート(NKエステルA−NOD−N)、1,10−デカンジオールジメタクリレート(NKエステルDOD)、1,10−デカンジオールジアクリレート(NKエステルA−DOD)、エチレンオキサイド変性ビスフェノールAジメタクリレート(NKエステルBPE−80N、BPE−100N、BPE−200、BPE−500、BPE−900、BPE−1300N)、エチレンオキサイド変性ビスフェノールAジアクリレート(NKエステルABE−300、A−BPE−4、A−BPE−6、A−BPE−10、A−BPE−20、A−BPE−30)、トリシクロデカンジメタノールジメタクリレート(NKエステルDCP)、トリシクロデカンジメタノールジアクリレート(NKエステルA−DCP)、エチレンオキサイド変性イソシアヌル酸トリアクリレート(NKエステルA−9300)、トリメチロールプロパントリメタクリレート(NKエステルTMPT)、トリメチロールプロパントリアクリレート(NKエステルA−TMPT)、エチレンオキサイド変性トリメチロールプロパントリアクリレート(NKエステルA−TMPT−3EO)、ペンタエリスリトールテトラアクリレート(NKエステルA−TMMT)、ジトリメチロールプロパンテトラアクリレート(NKエステルAD−TMP)、ジペンタエリスリトールヘキサアクリレート(NKエステルA−DPH、以上、新中村工業社商名)、1,4−ブタンジオールジアクリレート(V#195)、トリスアクリロイルオキシエチルフォスフェート(V#3PA、以上、大阪有機工業社商品名)、両末端ビニル変性ポリジメチルシロキサン(DMS−V00、DMS−V03、DMS−V05、DMS−V21、DMS−V22、DMS−V25、DMS−V31、DMS−V33、DMS−V35、DMS−V41、DMS−V42、DMS−V46、DMS−V51、DMS−V52)、側鎖ビニル変性ポリシロキサン(VDT−123、VDT−127、VDT−131、VDT−163、VDT−431、以上、Gelest、Inc.商品名)、両末端メタクリル変性ポリジメチルシロキサン(X−22−164、X−22−164AS、X−22−164A、X−22−164B、X−22−164C、X−22−164E(以上、信越化学工業社商品名)等が例示されるが、これらに限定されるものではない。
In both the thermosetting resin and the ultraviolet curable resin, a radical polymerization resin can be preferably used.
Although there is no restriction | limiting in particular as a radically polymerizable compound which can be utilized for this invention, Using a radically polymerizable compound which has 2 or more polymerizable groups in a molecule | numerator can form a crosslinked structure and is preferable from a viewpoint of hardening.
Specifically, divinylbenzene, acrylamide monomer, polyethylene glycol dimethacrylate (NK ester 1G, 2G, 3G, 4G, 9G, 14G, 23G), polyethylene glycol diacrylate (NK ester A-200, A-400, A -600, A-1000), neopentyl glycol dimethacrylate (NK ester 3PG, 9PG, APG-400, APG-700), neopentyl glycol diacrylate (NK ester APG-100, APG-200, APG-400, APG) -700) 1,6-hexanediol dimethacrylate (NK ester HD-N), 1,6-hexanediol diacrylate (NK ester A-HD-N), 1,9-nonanediol dimethacrylate (NK ester NOD) N,), 1,9-nonanediol diacrylate (NK ester A-NOD-N), 1,10-decanediol dimethacrylate (NK ester DOD), 1,10-decanediol diacrylate (NK ester A-DOD) ), Ethylene oxide modified bisphenol A dimethacrylate (NK ester BPE-80N, BPE-100N, BPE-200, BPE-500, BPE-900, BPE-1300N), ethylene oxide modified bisphenol A diacrylate (NK ester ABE-300) A-BPE-4, A-BPE-6, A-BPE-10, A-BPE-20, A-BPE-30), tricyclodecane dimethanol dimethacrylate (NK ester DCP), tricyclodecane dimethanol Diacrylate (NK Steal A-DCP), ethylene oxide modified isocyanuric acid triacrylate (NK ester A-9300), trimethylolpropane trimethacrylate (NK ester TMPT), trimethylolpropane triacrylate (NK ester A-TMPT), ethylene oxide modified trimethylol Propane triacrylate (NK ester A-TMPT-3EO), pentaerythritol tetraacrylate (NK ester A-TMMT), ditrimethylolpropane tetraacrylate (NK ester AD-TMP), dipentaerythritol hexaacrylate (NK ester A-DPH, Above, trade name of Shin-Nakamura Kogyo Co., Ltd.), 1,4-butanediol diacrylate (V # 195), trisacryloyloxyethyl phosphate (V #) 3PA, above, trade name of Osaka Organic Industry Co., Ltd.), vinyl modified polydimethylsiloxane at both ends (DMS-V00, DMS-V03, DMS-V05, DMS-V21, DMS-V22, DMS-V25, DMS-V31, DMS-) V33, DMS-V35, DMS-V41, DMS-V42, DMS-V46, DMS-V51, DMS-V52), side chain vinyl-modified polysiloxane (VDT-123, VDT-127, VDT-131, VDT-163, VDT-431, above, Gelest, Inc. trade name), methacryl-modified polydimethylsiloxane (X-22-164, X-22-164AS, X-22-164A, X-22-164B, X-22-) 164C, X-22-164E (Shin-Etsu Chemical Co., Ltd., trade name) and the like are exemplified, but are not limited thereto. It is not a thing.

後に詳述するが、熱電変換層16を、熱硬化樹脂あるいは紫外線硬化樹脂をバインダとして、熱電変換材料を分散してなる構成とすることにより、図示例の台形の断面形状(四角錐台状)を有する熱電変換層16のような、所望の形状を有する熱電変換層16を、安定して形成できる。   As will be described in detail later, the thermoelectric conversion layer 16 has a configuration in which a thermoelectric conversion material is dispersed using a thermosetting resin or an ultraviolet curable resin as a binder, so that the trapezoidal cross-sectional shape of the illustrated example (square pyramid shape). The thermoelectric conversion layer 16 having a desired shape, such as the thermoelectric conversion layer 16 having, can be formed stably.

また、本発明においては、成形性の制御を目的として、熱電変換層16のバインダとして熱可塑性樹脂を用いてもよい。
熱可塑性樹脂としては、ポリスチレン、アクリロニトリル−ブタジエン−スチレン(ABS)樹脂、アクリロニトリル−スチレン(AS)樹脂、メタクリル酸メチル−アクリロニトリル−スチレン樹脂、メタクリル酸メチル−アクリロニトリル−ブタジエン−スチレン樹脂、スチレン−ブタジエン−スチレンブロック共重合体およびスチレン−エチレン−ブチレン−スチレンブロック共重合体等の芳香族ビニル系樹脂、ポリメタクリル酸メチル、ポリアクリル酸メチル、ポリメタクリル酸、これらの共重合体、およびアクリルゴム等のアクリル系樹脂、ポリアクリロニトリル、アクリロニトリル−アクリル酸メチル樹脂、およびアクリロニトリル−ブタジエン樹脂等のシアン化ビニル系樹脂、イミド基含有ビニル系樹脂、ポリエチレン、ポリプロピレン、ポリネオプレン、ポリイソプレン、ポリブテン、ポリイソブテン、水添ポリイソブテン、ポリブタジエン、水添ポリブタジエン、エチレン−プロピレン−ジシクロペンタジエン共重合体、エチレン−プロピレン−エチリデンノルボルネン共重合体、エチレン−プロピレン共重合体等のポリオレフィン系樹脂、酸または酸無水物変性ポリオレフィン系樹脂、エポキシ変性ポリオレフィン樹脂、酸または酸無水物変性アクリル系エラストマー、エポキシ変性アクリルエラストマー、シリコーンゴム、フッ素ゴム、天然ゴム、ポリカーボネート、環状ポリオレフィン、ポリアミド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ1,4−シクロヘキサンジメチルテレフタレート、ポリアリレート、液晶ポリエステル、ポリフェニレンエーテル、ポリアリーレンスルフィド、ポリスルフォン、ポリエーテルスルフォン、ポリオキシメチレン、ポリテトラフルオロエチレン、フッ素化エチレンプロピレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデンおよびポリフッ化ビニルに代表されるフッ素系樹脂、ポリ乳酸、ポリ塩化ビニル、熱可塑性ポリイミド、熱可塑性ポリアミドイミド、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、ポリエーテルアミド等が挙げられる。
In the present invention, a thermoplastic resin may be used as the binder of the thermoelectric conversion layer 16 for the purpose of controlling moldability.
Examples of the thermoplastic resin include polystyrene, acrylonitrile-butadiene-styrene (ABS) resin, acrylonitrile-styrene (AS) resin, methyl methacrylate-acrylonitrile-styrene resin, methyl methacrylate-acrylonitrile-butadiene-styrene resin, styrene-butadiene- Aromatic vinyl resins such as styrene block copolymers and styrene-ethylene-butylene-styrene block copolymers, polymethyl methacrylate, polymethyl acrylate, polymethacrylic acid, copolymers thereof, and acrylic rubber Acrylic resins, polyacrylonitrile, acrylonitrile-methyl acrylate resins, acrylonitrile-butadiene resins and other vinyl cyanide resins, imide group-containing vinyl resins, polyethylene, poly Lopylene, polyneoprene, polyisoprene, polybutene, polyisobutene, hydrogenated polyisobutene, polybutadiene, hydrogenated polybutadiene, ethylene-propylene-dicyclopentadiene copolymer, ethylene-propylene-ethylidene norbornene copolymer, ethylene-propylene copolymer, etc. Polyolefin resin, acid or acid anhydride modified polyolefin resin, epoxy modified polyolefin resin, acid or acid anhydride modified acrylic elastomer, epoxy modified acrylic elastomer, silicone rubber, fluororubber, natural rubber, polycarbonate, cyclic polyolefin, polyamide , Polyethylene terephthalate, polybutylene terephthalate, poly 1,4-cyclohexanedimethyl terephthalate, polyarylate, liquid crystalline polyester Fluorine resins such as polyphenylene ether, polyarylene sulfide, polysulfone, polyethersulfone, polyoxymethylene, polytetrafluoroethylene, fluorinated ethylene propylene, polychlorotrifluoroethylene, polyvinylidene fluoride and polyvinyl fluoride, poly Examples thereof include lactic acid, polyvinyl chloride, thermoplastic polyimide, thermoplastic polyamideimide, polyetherimide, polyetheretherketone, polyetherketoneketone, and polyetheramide.

本発明の熱電変換素子10において、熱電変換層20におけるバインダと熱電変換材料との量比は、用いる材料や要求される熱電変換効率、印刷に影響する溶液の粘度や固形分濃度等に応じて、適宜、設定すればよい。
具体的には、『熱電変換材料/バインダ』の質量比で5/95〜90/10が好ましく、10/90〜80/20がより好ましい。
バインダと熱電変換材料との量比を、上記範囲とすることにより、発電効率、熱電変換層16の成形性、印刷性、生産性等の点で好ましい結果を得る。
なお、本発明においては、上記に例示した熱電変換層16のバインダ(熱硬化樹脂、紫外線硬化樹脂および熱可塑性樹脂など)は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In the thermoelectric conversion element 10 of the present invention, the amount ratio between the binder and the thermoelectric conversion material in the thermoelectric conversion layer 20 depends on the material used, the required thermoelectric conversion efficiency, the viscosity of the solution affecting the printing, the solid content concentration, and the like. It can be set as appropriate.
Specifically, the mass ratio of “thermoelectric conversion material / binder” is preferably 5/95 to 90/10, and more preferably 10/90 to 80/20.
By setting the amount ratio of the binder to the thermoelectric conversion material within the above range, preferable results are obtained in terms of power generation efficiency, moldability of the thermoelectric conversion layer 16, printability, productivity, and the like.
In the present invention, the binder (thermosetting resin, ultraviolet curable resin, thermoplastic resin, etc.) of the thermoelectric conversion layer 16 exemplified above may be used alone or in combination of two or more. .

ここで、本発明の熱電変換素子において、熱電変換層16は、基板12上における下部電極14と上部電極18との通電方向(図中矢印x方向)の断面形状において、上部電極18と対面し、かつ、基板12に向けて降下する領域は、通電方向の下部電極14の端部から、漸次、離間するように傾斜する形状を有する。
図示例においては、熱電変換層16は、四角錐台状であり、図2に示すように、通電方向の断面形状が台形状である。
このような熱電変換層16の形状等に関しては、後に詳述する。
Here, in the thermoelectric conversion element of the present invention, the thermoelectric conversion layer 16 faces the upper electrode 18 in the cross-sectional shape of the lower electrode 14 and the upper electrode 18 on the substrate 12 in the energization direction (arrow x direction in the figure). And the area | region descend | falling toward the board | substrate 12 has a shape which inclines so that it may space apart gradually from the edge part of the lower electrode 14 of an electricity supply direction.
In the illustrated example, the thermoelectric conversion layer 16 has a quadrangular pyramid shape, and as shown in FIG. 2, the cross-sectional shape in the energization direction is a trapezoid.
The shape of the thermoelectric conversion layer 16 will be described in detail later.

本発明の熱電変換素子10において、上部電極18は、下部電極14と電極対を成すもので、下部電極14と共に熱電変換層16を挟むように設けられる。
図1および図2に示すように、上部電極18は、基板12上の下部電極14と離間する位置から、下部電極14(熱電変換層16)に向かって形成され、さらに、基板12から立ち上がって、熱電変換層16の側面から上面に至るように延在して形成される。
また、図示例において、熱電変換素子10は、上部電極18および下部電極14は、基板12に対して垂直方向に見た際に、互いに重なる領域を有するように形成される。
In the thermoelectric conversion element 10 of the present invention, the upper electrode 18 forms an electrode pair with the lower electrode 14 and is provided so as to sandwich the thermoelectric conversion layer 16 together with the lower electrode 14.
As shown in FIGS. 1 and 2, the upper electrode 18 is formed toward the lower electrode 14 (thermoelectric conversion layer 16) from a position separated from the lower electrode 14 on the substrate 12, and further rises from the substrate 12. The thermoelectric conversion layer 16 is formed so as to extend from the side surface to the upper surface.
In the illustrated example, the thermoelectric conversion element 10 is formed such that the upper electrode 18 and the lower electrode 14 have regions that overlap each other when viewed in a direction perpendicular to the substrate 12.

上部電極18は、前述の下部電極14と同様の材料で形成すればよい。
また、生産性や印刷性等の点で、上部電極18は、銀ペーストのように、導電性の金属微粒子をバインダに分散してなる材料を利用して形成するのも好ましい。
The upper electrode 18 may be formed of the same material as the lower electrode 14 described above.
In view of productivity, printability, and the like, the upper electrode 18 is preferably formed using a material obtained by dispersing conductive metal fine particles in a binder, such as silver paste.

下部電極14と同様、上部電極18の厚さやサイズは、形成する熱電変換素子10の大きさ等に応じて、発生した電力をロスなく確実に取り出せるサイズを、適宜、設定すればよい。なお、十分な通電性が得られる等の点で、上部電極18の厚さは、50〜20000nmが好ましい。   Similar to the lower electrode 14, the thickness and size of the upper electrode 18 may be set as appropriate according to the size of the thermoelectric conversion element 10 to be formed and the like so that the generated power can be reliably extracted without loss. In addition, the thickness of the upper electrode 18 is preferably 50 to 20000 nm in view of obtaining sufficient electrical conductivity.

このような本発明の熱電変換素子10においては、熱電変換層16は、基板12上における下部電極14と上部電極18との通電方向(図中矢印x方向)の断面が、所定の形状を有する。言い換えれば、熱電変換層16は、基板12上における、下部電極14と上部電極18との離間方向(上部電極18の延在方向)の断面が、所定の形状を有する。
具体的には、熱電変換層16は、基板12上における下部電極14と上部電極18との通電方向の断面形状(以下、単に『通電方向の断面形状』とも言う)において、上部電極18と対面し、かつ、基板12に向けて降下する領域(基板12と平行では無い領域)は、通電方向の下部電極14の端部から(具体的には、上部電極18と逆側の端部)から、漸次、離間するように傾斜する形状を有する。
In such a thermoelectric conversion element 10 of the present invention, the thermoelectric conversion layer 16 has a predetermined cross-section in the energization direction (the arrow x direction in the figure) between the lower electrode 14 and the upper electrode 18 on the substrate 12. . In other words, the thermoelectric conversion layer 16 has a predetermined shape on a cross section in the direction in which the lower electrode 14 and the upper electrode 18 are separated (the direction in which the upper electrode 18 extends) on the substrate 12.
Specifically, the thermoelectric conversion layer 16 faces the upper electrode 18 in a cross-sectional shape in the energization direction between the lower electrode 14 and the upper electrode 18 on the substrate 12 (hereinafter, also simply referred to as “cross-sectional shape in the energization direction”). The region descending toward the substrate 12 (region not parallel to the substrate 12) is from the end of the lower electrode 14 in the energization direction (specifically, the end opposite to the upper electrode 18). , And gradually inclined so as to be separated.

言い換えれば、熱電変換層16の通電方向の断面形状は、上部電極18と対面し、かつ、基板12に向けて降下する領域は、基板12に対する角度が90°以上(曲線の場合は接線が90°以上)の部分を有さない。
さらに言い換えれば、熱電変換層16は、上部電極18と対面し、かつ、基板12に向けて降下する領域は、通電方向の下部電極14の端部から、漸次、離間するように傾斜する斜面(曲面を含む)となっている。
In other words, the cross-sectional shape of the thermoelectric conversion layer 16 in the energizing direction is such that the region facing the upper electrode 18 and descending toward the substrate 12 has an angle with respect to the substrate 12 of 90 ° or more (in the case of a curve, the tangent is 90 (No more)
Furthermore, in other words, the thermoelectric conversion layer 16 faces the upper electrode 18, and the region descending toward the substrate 12 is an inclined surface that gradually slopes away from the end of the lower electrode 14 in the energizing direction ( Including curved surfaces).

図示例においては、熱電変換層16は、四角錐台状の形状を有する。従って、好ましい態様として、通電方向の断面形状は台形状である。
そのため、上部電極18と対面し、かつ、基板12に向けて降下する領域、すなわち、側面の上部電極18が対面する領域の断面形状は、下方の基板12に向かって、通電方向の下部電極14の端部から、漸次、離間する。従って、熱電変換層16は、側面の上部電極18が対面する領域は、基板12に対する角度が90°未満となる。
In the illustrated example, the thermoelectric conversion layer 16 has a quadrangular frustum shape. Therefore, as a preferred embodiment, the cross-sectional shape in the energization direction is a trapezoid.
Therefore, the cross-sectional shape of the region facing the upper electrode 18 and descending toward the substrate 12, that is, the region facing the upper electrode 18 on the side surface is the lower electrode 14 in the energization direction toward the lower substrate 12. Gradually away from the end of the. Therefore, in the thermoelectric conversion layer 16, the angle with respect to the substrate 12 is less than 90 ° in the region where the upper electrode 18 on the side surface faces.

本発明の熱電変換素子10は、熱電変換層16が、このような断面形状を有することにより、上部電極18の破断や薄膜化を防止して、上部電極18の破断等に起因する通電性の低下等の無い、信頼性に優れる熱電変換素子10を実現している。   In the thermoelectric conversion element 10 of the present invention, since the thermoelectric conversion layer 16 has such a cross-sectional shape, the upper electrode 18 is prevented from being broken or thinned, and the electric conductivity due to the upper electrode 18 being broken or the like is reduced. The thermoelectric conversion element 10 having no deterioration and excellent reliability is realized.

従来の熱電変換素子10は、図5に概念的に示すように、熱電変換層70は四角柱状で、その通電方向の断面形状は長方形もしくは正方形である。
そのため、上部電極18の形成時に、熱電変換層70の角部に適正に電極を形成できず、この角部において上部電極18が破断してしまい、通電性が低下し、甚だしい場合には、上部電極18が断線してしまう可能性も有る。
In the conventional thermoelectric conversion element 10, as conceptually shown in FIG. 5, the thermoelectric conversion layer 70 has a quadrangular prism shape, and the cross-sectional shape in the energizing direction is rectangular or square.
Therefore, when the upper electrode 18 is formed, an electrode cannot be appropriately formed at the corner portion of the thermoelectric conversion layer 70, and the upper electrode 18 is broken at the corner portion. There is also a possibility that the electrode 18 is disconnected.

一方で、特許文献2に示されるように、四角柱状の熱電変換層の上部において、稜および/または頂点を面取り加工することにより、このような熱電変換層70の角部における上部電極18は抑制できる。   On the other hand, as shown in Patent Document 2, the upper electrode 18 at the corners of the thermoelectric conversion layer 70 is suppressed by chamfering the ridges and / or vertices at the top of the quadrangular columnar thermoelectric conversion layer. it can.

しかしながら、図5や特許文献2に示されるような四角柱状の熱電変換層70では、上部電極18を形成する必要がある側面は、基板12に対して垂直に立設する。
ここで、後述するが、上部電極18は、銀ペースト等を用いる印刷法で形成するのが好ましい。この際において、熱電変換層における上部電極18の形成面が基板12に垂直な領域を有すると、この垂直領域に銀ペースト等の上部電極18となる材料を適正に付与するのが困難である。そのため、この側面において、上部電極18の破断や膜薄部等が生じ、やはり、上部電極18の通電性が低下する。
特に、高い発電効率を得るためには、前述のように、下部電極14と上部電極18との間の熱電変換層16のサイズ(以下、『熱電変換層16の厚さ』とも言う)を、ある程度、厚くする必要が有る。この場合には、熱電変換層における上部電極18の形成面が基板12に垂直な側面を有すると、この側面の全域に銀ペースト等の上部電極18となる材料を適正に付与するのが、より困難になる。
However, in the quadrangular prism-shaped thermoelectric conversion layer 70 as shown in FIG. 5 and Patent Document 2, the side surface on which the upper electrode 18 needs to be formed is erected vertically to the substrate 12.
Here, as will be described later, the upper electrode 18 is preferably formed by a printing method using a silver paste or the like. At this time, if the formation surface of the upper electrode 18 in the thermoelectric conversion layer has a region perpendicular to the substrate 12, it is difficult to appropriately apply a material for the upper electrode 18 such as silver paste to the vertical region. Therefore, in this side surface, the upper electrode 18 is broken or a thin film portion or the like is generated, and the conductivity of the upper electrode 18 is lowered.
In particular, in order to obtain high power generation efficiency, as described above, the size of the thermoelectric conversion layer 16 between the lower electrode 14 and the upper electrode 18 (hereinafter, also referred to as “the thickness of the thermoelectric conversion layer 16”), It needs to be thick to some extent. In this case, if the formation surface of the upper electrode 18 in the thermoelectric conversion layer has a side surface perpendicular to the substrate 12, it is more appropriate to appropriately apply a material to be the upper electrode 18 such as a silver paste over the entire side surface. It becomes difficult.

これに対して、本発明の熱電変換素子10は、熱電変換層16の通電方向の断面形状において、上部電極18と対面し、かつ、基板12に向けて降下する領域(以下、便宜的に、この領域を『上部電極18の形成側面』とも言う)が、通電方向の下部電極14の端部から、漸次、離間するように傾斜する形状(以下、便宜的に、この形状を『所定形状』とも言う)を有する。
そのため、熱電変換層16において、上面と、上部電極18の形成側面とが成す角度を鈍角に出来るので、上部電極18の形成時に、この角部で、上部電極18の破断等を生じることを防止できる。また、上部電極18の形成側面が、所定形状を有するので、基板12と垂直方向の上方から見た際に、上部電極18の形成側面が上に向けて面状になる。そのため、発電効率を向上するために熱電変換層16を厚くしても、銀ペースト等を用いる印刷法等によって、上部電極18の形成側面に、破断や膜薄部等を生じることなく、適正に上部電極18を形成できる。
従って、本発明によれば、上部電極18の通電性低下を防止した、信頼性の高い熱電変換素子10を、安定して得ることができる。
On the other hand, the thermoelectric conversion element 10 of the present invention faces the upper electrode 18 in the cross-sectional shape in the energizing direction of the thermoelectric conversion layer 16 and descends toward the substrate 12 (hereinafter, for convenience, This region is also referred to as “formation side surface of the upper electrode 18” and is inclined so as to gradually move away from the end of the lower electrode 14 in the energizing direction (hereinafter, this shape is referred to as “predetermined shape” for convenience). Also called).
Therefore, in the thermoelectric conversion layer 16, the angle formed by the upper surface and the side surface on which the upper electrode 18 is formed can be made obtuse, so that when the upper electrode 18 is formed, the upper electrode 18 is prevented from being broken at the corner. it can. Further, since the side surface on which the upper electrode 18 is formed has a predetermined shape, the side surface on which the upper electrode 18 is formed has a planar shape when viewed from above in the direction perpendicular to the substrate 12. Therefore, even if the thermoelectric conversion layer 16 is thickened in order to improve the power generation efficiency, the side surface of the upper electrode 18 is properly formed without causing breakage or a thin film portion by a printing method using a silver paste or the like. The upper electrode 18 can be formed.
Therefore, according to the present invention, it is possible to stably obtain the highly reliable thermoelectric conversion element 10 that prevents a decrease in the conductivity of the upper electrode 18.

なお、本発明の熱電変換素子10において、熱電変換層16は、少なくとも、通電方向と直交する方向(図中矢印y方向)の中心における通電方向の断面形状において、上部電極18の形成側面が所定形状であればよい。なお、熱電変換層16の矢印y方向の長さが均一では無い場合には、矢印y方向の最大長の位置の中心の通電方向の断面とする。
しかしながら、本発明においては、熱電変換層16は、前記中心を含む矢印y方向の80%以上の長さの領域において、その通電方向の断面形状における上部電極18の形成側面が所定形状であるのが好ましい。特に、熱電変換層16は、矢印y方向の全域において、その通電方向の断面形状における上部電極18の形成側面が、所定形状であるのが好ましい。
In the thermoelectric conversion element 10 of the present invention, the thermoelectric conversion layer 16 has a predetermined side surface on which the upper electrode 18 is formed in a cross-sectional shape in the energization direction at the center in the direction orthogonal to the energization direction (arrow y direction in the figure). Any shape is acceptable. In addition, when the length of the thermoelectric conversion layer 16 in the arrow y direction is not uniform, a cross section in the energization direction at the center of the position of the maximum length in the arrow y direction is used.
However, in the present invention, the thermoelectric conversion layer 16 has a predetermined shape on the side surface on which the upper electrode 18 is formed in a cross-sectional shape in the energizing direction in a region having a length of 80% or more in the arrow y direction including the center. Is preferred. In particular, the thermoelectric conversion layer 16 preferably has a predetermined shape on the side surface on which the upper electrode 18 is formed in the cross-sectional shape in the energization direction in the entire region in the direction of arrow y.

本発明の熱電変換素子10において、上部電極18の形成側面は、下方に向けて、下部電極14の端部から、漸次、離間するように傾斜すればよい。従って、通電方向の断面形状において、上面と上部電極18の形成側面とが成す角度は、90°超であればよいが、95〜120°であるのが好ましく、100〜120°であるのが特に好ましい。これにより、上面から上部電極18の形成側面に至る角部での上配線18の破断をより好適に防止できる、上部電極18を形成側面でより安定して形成できる、熱電変換層16が不要に大きくなるのを防止できる等の点で好ましい。
なお、後述する図3に示す熱電変換素子のように、上面および上部電極18の形成側面の一方が曲線等(上面もしくは側面が曲面)である場合には、断面形状の上面と上部電極18の形成側面との境における接線が、上記角度であるのが好ましい。
In the thermoelectric conversion element 10 of the present invention, the side surface on which the upper electrode 18 is formed may be inclined downward from the end of the lower electrode 14 toward the lower side. Therefore, in the cross-sectional shape in the energization direction, the angle formed by the upper surface and the side surface on which the upper electrode 18 is formed may be more than 90 °, but is preferably 95 to 120 °, and preferably 100 to 120 °. Particularly preferred. As a result, breakage of the upper wiring 18 at the corner from the upper surface to the side surface where the upper electrode 18 is formed can be more suitably prevented, and the upper electrode 18 can be formed more stably on the side surface where the thermoelectric conversion layer 16 is unnecessary. This is preferable in that it can be prevented from becoming large.
In addition, as in the thermoelectric conversion element shown in FIG. 3 to be described later, when one of the upper surface and the side surface on which the upper electrode 18 is formed is a curve or the like (the upper surface or the side surface is a curved surface), It is preferable that the tangent at the boundary with the formation side face is the above angle.

ここで、熱電変換層16は、通電方向の長さをL1、基板12からの高さをL2とした際に、『L2/L1>0.05』を満たすのが好ましい。
前述のように、良好な熱電変換効率を得るためには、熱電変換層16が、ある程度の厚さを有するのが好ましい。それに対して、熱電変換層16が、上記式を満たすことにより、熱電変換素子10において、熱電変換層16を好適に厚くして、良好な熱電変換効率を有する熱電変換素子10を得ることができる。また、本発明によれば、通電方向の断面形状における上部電極18の形成側面が、所定形状を有するので、熱電変換層16を厚くしても、安定して、適正に上部電極18を形成できる。
この点を考慮すると、『L2/L1』は0.08以上であるのがより好ましい。
Here, the thermoelectric conversion layer 16 preferably satisfies “L2 / L1> 0.05” when the length in the energization direction is L1 and the height from the substrate 12 is L2.
As described above, in order to obtain good thermoelectric conversion efficiency, the thermoelectric conversion layer 16 preferably has a certain thickness. On the other hand, when the thermoelectric conversion layer 16 satisfies the above formula, in the thermoelectric conversion element 10, the thermoelectric conversion layer 16 can be suitably thickened, and the thermoelectric conversion element 10 having good thermoelectric conversion efficiency can be obtained. . Further, according to the present invention, since the side surface of the upper electrode 18 in the cross-sectional shape in the energizing direction has a predetermined shape, the upper electrode 18 can be stably and appropriately formed even if the thermoelectric conversion layer 16 is thick. .
Considering this point, “L2 / L1” is more preferably 0.08 or more.

また、良好な熱電変換効率を安定して得られる等の点で、熱電変換層16の厚さL2は、具体的には、1〜2000μmが好ましく、10〜1000μmがより好ましい。   Moreover, specifically, the thickness L2 of the thermoelectric conversion layer 16 is preferably 1 to 2000 μm, and more preferably 10 to 1000 μm, in terms of stably obtaining good thermoelectric conversion efficiency.

さらに、熱電変換層16の通電方向の断面は、その断面積Sが、『(π×L1×L2)/2<S<L1×L2』を満たすのが好ましい。
これにより、より安定して、熱電変換層16の通電方向の断面形状における上部電極18の形成側面を、所定形状にできる。
Furthermore, the cross section S of the thermoelectric conversion layer 16 in the energizing direction preferably satisfies “(π × L1 × L2) / 2 <S <L1 × L2”.
Thereby, the formation side surface of the upper electrode 18 in the cross-sectional shape of the thermoelectric conversion layer 16 in the energizing direction can be more stably formed.

本発明の熱電変換素子10において、熱電変換層16の断面形状は、図1および図2に示すような台形以外にも、各種の形状が利用可能である。
例えば、図3に通電方向の断面形状を概念的に示す熱電変換層16aのように、台形の上面が曲線であってもよい(上面が曲面の四角錐台形の熱電変換層16a)。あるいは、逆に、通電方向の断面形状が、上面が直線で、側面が曲線であってもよい。さらに、図4に通電方向の断面形状を概念的に示す熱電変換層16bのように、楕円形状の断面形状であってもよい(楕円球形の熱電変換層)。
In the thermoelectric conversion element 10 of the present invention, various shapes other than the trapezoid as shown in FIGS. 1 and 2 can be used as the cross-sectional shape of the thermoelectric conversion layer 16.
For example, like the thermoelectric conversion layer 16a conceptually showing the cross-sectional shape in the energization direction in FIG. 3, the upper surface of the trapezoid may be a curved surface (the square-pyramidal trapezoidal thermoelectric conversion layer 16a having a curved upper surface). Or conversely, the cross-sectional shape in the energization direction may be a straight upper surface and a curved side surface. Furthermore, an elliptical cross-sectional shape (elliptical spherical thermoelectric conversion layer) may be used, such as a thermoelectric conversion layer 16b conceptually showing a cross-sectional shape in the energization direction in FIG.

ここで、本発明の熱電変換素子10(これを利用する熱電変換モジュール)は、多くの場合、熱電変換層16上の上面電極18(基板12と逆側)を熱源に向けて配置される。
従って、熱源と熱電変換素子10(上面電極18)との接触面積を大きくする等の点で、熱電変換層16は、その上面に、平面領域を有するのが好ましい。中でも、熱電変換層16は、その上面に、基板12と平行な平面領域を有するのが好ましい。
Here, in many cases, the thermoelectric conversion element 10 (thermoelectric conversion module using the thermoelectric conversion element) of the present invention is arranged with the upper surface electrode 18 (on the side opposite to the substrate 12) on the thermoelectric conversion layer 16 facing the heat source.
Therefore, it is preferable that the thermoelectric conversion layer 16 has a planar region on the upper surface in terms of increasing the contact area between the heat source and the thermoelectric conversion element 10 (upper surface electrode 18). Especially, it is preferable that the thermoelectric conversion layer 16 has a plane area | region parallel to the board | substrate 12 on the upper surface.

以上の点、成型のし易さ、熱伝導効率、熱拡散効率等を考慮すると、熱電変換層16の断面形状は、前述のように図2に示すような台形状が好ましい。
また、同様の理由で、熱電変換層16の形状は、図1に示すような四角錐台状が好適に例示される。
Considering the above points, ease of molding, heat conduction efficiency, heat diffusion efficiency, and the like, the cross-sectional shape of the thermoelectric conversion layer 16 is preferably a trapezoid as shown in FIG.
For the same reason, the shape of the thermoelectric conversion layer 16 is preferably exemplified by a quadrangular pyramid shape as shown in FIG.

また、以上の点を考慮すると、熱電変換層16の上面の平面領域は、より、広い方が有利である。
具体的には、熱電変換層16の上面の平面領域は、下部電極14に接触する熱電変換層16の面積より小さく、かつ、下部電極14に接触する熱電変換層16の面積80%以上であるのが好ましい。
In consideration of the above points, it is advantageous that the planar area of the upper surface of the thermoelectric conversion layer 16 is wider.
Specifically, the planar area of the upper surface of the thermoelectric conversion layer 16 is smaller than the area of the thermoelectric conversion layer 16 in contact with the lower electrode 14 and is 80% or more of the area of the thermoelectric conversion layer 16 in contact with the lower electrode 14. Is preferred.

ここで、本発明の熱電変換素子10においては、熱電変換層10の上面は、凹状になってる部分(領域)を有さないのが好ましい。具体的には、熱電変換層10の上面は、図6(A)に概念的に示すような部分的な凹部を有さないのが好ましく、また、図6(B)に概念的に示すように、全域が凹状ではないのが好ましい。
すなわち、熱電変換層10の上面は、図2に示すような平面状、図3や図4に示すような凸状、平面に1つのみ凸部を有する形状等であるのが好ましい。
Here, in the thermoelectric conversion element 10 of this invention, it is preferable that the upper surface of the thermoelectric conversion layer 10 does not have a recessed part (area | region). Specifically, it is preferable that the upper surface of the thermoelectric conversion layer 10 does not have a partial concave portion as conceptually shown in FIG. 6A, and as conceptually shown in FIG. Moreover, it is preferable that the entire region is not concave.
That is, it is preferable that the upper surface of the thermoelectric conversion layer 10 has a planar shape as shown in FIG. 2, a convex shape as shown in FIGS. 3 and 4, a shape having only one convex portion on the plane, or the like.

熱電変換層16の上面に凹状となっている部分を有さないことにより、熱電変換層10の上面に適正に上部電極18を形成できる、熱源と熱電変換素子10との接触面積を大きくできる、上部電極18の形成材料の削減、抵抗発生の抑制等の点で好ましい。   By not having a concave portion on the upper surface of the thermoelectric conversion layer 16, the upper electrode 18 can be appropriately formed on the upper surface of the thermoelectric conversion layer 10, and the contact area between the heat source and the thermoelectric conversion element 10 can be increased. This is preferable in terms of reducing the material for forming the upper electrode 18 and suppressing the generation of resistance.

ここで、熱電変換層の形によっては、上面が明確では無い場合すなわち上面と側面との変曲点が明確では無い場合も有る。
例えば、図2に示すような通電方向の断面形状が台形(四角錐台形状)の熱電変換層16や、図3に示すような通電方向の断面形状が上面が曲線(上面曲面の四角錐台形状)の熱電変換層16aであれば、上面は明確である。これに対し、図4に示す通電方向の断面形状が楕円形の熱電変換層16bでは、上面と側面との変曲点が明確ではなく、何処が上面であるか判断が出来ない。
このような場合には、基板12に対して垂直方向から見た際に、下部電極14と上部電極18とが重なる領域を上面と見なし(上面と定義し)、この領域に凹状になっている部分が無いのが好ましい。
Here, depending on the shape of the thermoelectric conversion layer, the upper surface may not be clear, that is, the inflection point between the upper surface and the side surface may not be clear.
For example, the thermoelectric conversion layer 16 whose cross-sectional shape in the energization direction is trapezoidal (square pyramid shape) as shown in FIG. Shape) of the thermoelectric conversion layer 16a is clear. On the other hand, in the thermoelectric conversion layer 16b having an elliptical cross-sectional shape in the energization direction shown in FIG. 4, the inflection point between the upper surface and the side surface is not clear, and it cannot be determined where the upper surface is.
In such a case, when viewed from the direction perpendicular to the substrate 12, the region where the lower electrode 14 and the upper electrode 18 overlap is regarded as the upper surface (defined as the upper surface), and the region is concave. Preferably there is no part.

一方、熱電変換層16は、上部電極18側の下端部(下端面)が、図1〜図3に示すように、下部電極14の上面よりも、基板12側に位置するのが好ましい。
一例として、基板12の表面に何も無い場合には、熱電変換層16の上部電極18側の下端部は、例えば基板12の表面に接触するのが好ましい。また、基板12の表面に易接着層が形成され、下部電極14および熱電変換層16がその上に形成される場合には、熱電変換層16の上部電極18側の下端部は、例えば易接着層に接触するのが好ましい。
これにより、下部電極14と上部電極18との短絡を確実に防止して、より信頼性に優れる熱電変換素子10を得ることができる。
On the other hand, as for the thermoelectric conversion layer 16, the lower end part (lower end surface) by the side of the upper electrode 18 is preferably located in the board | substrate 12 side rather than the upper surface of the lower electrode 14, as shown in FIGS.
As an example, when there is nothing on the surface of the substrate 12, the lower end portion on the upper electrode 18 side of the thermoelectric conversion layer 16 is preferably in contact with the surface of the substrate 12, for example. Further, when an easy adhesion layer is formed on the surface of the substrate 12 and the lower electrode 14 and the thermoelectric conversion layer 16 are formed thereon, the lower end portion on the upper electrode 18 side of the thermoelectric conversion layer 16 is, for example, an easy adhesion layer. It is preferred to contact the layer.
Thereby, the short circuit with the lower electrode 14 and the upper electrode 18 is prevented reliably, and the thermoelectric conversion element 10 which is more excellent in reliability can be obtained.

この際において、下部電極14の上面よりも基板12側に位置する、熱電変換層16の上部電極18側の下端部の通電方向の長さは、熱電変換素子10のサイズや下部電極14の厚さ等に応じて、適宜、設定すればよいが、0.5〜5mm程度が好ましい。
これにより、上部電極18と下部電極14との短絡をより確実に防止できる等の点で好ましい。
At this time, the length in the energization direction of the lower end portion on the upper electrode 18 side of the thermoelectric conversion layer 16 located on the substrate 12 side from the upper surface of the lower electrode 14 is the size of the thermoelectric conversion element 10 and the thickness of the lower electrode 14. Although it may be set appropriately according to the thickness, it is preferably about 0.5 to 5 mm.
This is preferable in that a short circuit between the upper electrode 18 and the lower electrode 14 can be prevented more reliably.

なお、本発明において、熱電変換層16の形状を適正に維持できるものであれば、通電方向の断面形状における上部電極18の形成側面以外の側面の形状は、任意である。
従って、熱電変換素子10の熱電変換層16において、通電方向の断面形状における上部電極18の形成側面以外の側面は、基板12に対して垂直であってもよく、熱電変換層の中心に向かって、下方に向けて、漸次、近接してもよく、凹面状であってもよい。
In addition, in this invention, if the shape of the thermoelectric conversion layer 16 can be maintained appropriately, the shape of side surfaces other than the formation side surface of the upper electrode 18 in the cross-sectional shape of an electricity supply direction is arbitrary.
Therefore, in the thermoelectric conversion layer 16 of the thermoelectric conversion element 10, the side surface other than the side surface on which the upper electrode 18 is formed in the cross-sectional shape in the energization direction may be perpendicular to the substrate 12 and toward the center of the thermoelectric conversion layer. In the downward direction, they may gradually approach each other or may be concave.

以下、本発明の熱電変換素子10の製造方法の一例を示す。
まず、前述のような基板12を用意して、その表面に下部電極14を形成する。
下部電極14の形成方法は、公知の金属膜等の形成方法が、各種、利用可能である。具体的には、イオンプレーティング法、スパッタリング法、真空蒸着法、プラズマCVDなどのCVD法等の気相成膜法(気相堆積法)や、上記金属の粉末とバインダと溶剤とを含有する金属ペースト等を用いる印刷法等が例示される。
Hereinafter, an example of the manufacturing method of the thermoelectric conversion element 10 of this invention is shown.
First, the substrate 12 as described above is prepared, and the lower electrode 14 is formed on the surface thereof.
As a method for forming the lower electrode 14, various known methods for forming a metal film or the like can be used. Specifically, it contains a vapor phase film formation method (vapor phase deposition method) such as an ion plating method, a sputtering method, a vacuum vapor deposition method, a CVD method such as plasma CVD, or the above metal powder, a binder, and a solvent. The printing method using a metal paste etc. is illustrated.

次いで、下部電極14の一部を覆って、基板12上に熱電変換層16を形成する。
熱電変換層16の形成方法も、用いる熱電変換材料に応じた公知の方法が利用可能である。ここで、本発明の熱電変換素子10においては、熱電変換材料をバインダとなる樹脂に分散してなる塗料を用いる、印刷法が好適に利用される。
Next, a thermoelectric conversion layer 16 is formed on the substrate 12 so as to cover a part of the lower electrode 14.
As a method of forming the thermoelectric conversion layer 16, a known method corresponding to the thermoelectric conversion material to be used can be used. Here, in the thermoelectric conversion element 10 of this invention, the printing method using the coating material formed by disperse | distributing the thermoelectric conversion material to resin used as a binder is utilized suitably.

すなわち、まず、熱電変換材料およびバインダとなる樹脂材料等の必要な成分を添加して、超音波ホモジナイザー、メカニカルホモジナイザー、ボールミルなど公知の方法を用いて、混合、分散して、ペースト(インキ)を調製する。
前述のように、バインダとしては、熱硬化樹脂あるいは紫外線硬化樹脂を用いるのが好ましい。さらに、通常は、これらを溶剤に添加して混合、分散してペーストを調製するが、本発明においては、溶剤を用いず、あるいは、溶剤の量を極少量にして、ペーストを調整するのが好ましい。
That is, first, necessary components such as a thermoelectric conversion material and a resin material that becomes a binder are added, and the paste (ink) is mixed and dispersed using a known method such as an ultrasonic homogenizer, a mechanical homogenizer, or a ball mill. Prepare.
As described above, it is preferable to use a thermosetting resin or an ultraviolet curable resin as the binder. Furthermore, normally, these are added to a solvent and mixed and dispersed to prepare a paste. However, in the present invention, the paste may be adjusted without using a solvent or with a very small amount of solvent. preferable.

バインダとして熱硬化樹脂あるいは紫外線硬化樹脂を用いることにより、加熱や紫外線照射によって、迅速に樹脂材料を硬化して熱電変換層16を形成できるので、不要な型崩れ等を防止して、安定して、目的とする形状の熱電変換層16を形成できる。
特に、熱硬化樹脂あるいは紫外線硬化樹脂を用い、さらに、無溶剤もしくは溶剤の量を極少量にして、熱電変換層16となるペーストを調製することにより、溶剤の蒸発による収縮も無くし、もしくは、抑制して、より安定して、所望の形状を有する熱電変換層16を形成できる。
By using a thermosetting resin or ultraviolet curable resin as the binder, the thermoelectric conversion layer 16 can be formed by rapidly curing the resin material by heating or irradiating ultraviolet rays. The thermoelectric conversion layer 16 having a desired shape can be formed.
In particular, by using a thermosetting resin or an ultraviolet curable resin, and further reducing the amount of solvent-free or solvent, and preparing a paste that becomes the thermoelectric conversion layer 16, shrinkage due to evaporation of the solvent is eliminated or suppressed. Thus, the thermoelectric conversion layer 16 having a desired shape can be formed more stably.

このペーストの調製において、溶剤を使用する際には、溶剤の量は、ペーストの調製に用いる原材料の全質量に対して50質量%以下とするのが好ましい。
なお、溶剤は、用いる熱硬化樹脂や紫外線硬化樹脂に応じて、これを溶解可能な公知の溶剤(有機溶剤)を用いればよい。
In the preparation of the paste, when a solvent is used, the amount of the solvent is preferably 50% by mass or less based on the total mass of raw materials used for preparing the paste.
In addition, what is necessary is just to use the well-known solvent (organic solvent) which can melt | dissolve this according to the thermosetting resin and ultraviolet curing resin to be used.

熱電変換層16を形成するペーストには、必要に応じて、熱電変換材料および樹脂材料に加え、分散剤および/または架橋剤(硬化剤)を添加してもよい。
分散剤としては、陰イオン性界面活性剤:コール酸ナトリウム、ドデシル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウムや、アルキルアミン、ピレン誘導体、ポルフィリン誘導体、π共役高分子、ポリスチレンスルホン酸ナトリウムなど、公知の材料を用いることができる。また、バインダとしては、スチレンポリマー、アクリルポリマー、ポリカーボネート、ポリエステル、エポキシ樹脂、シロキサンポリマー、ポリビニルアルコール、ゼラチンなどの公知の材料を用いることができる。
In addition to the thermoelectric conversion material and the resin material, a dispersant and / or a crosslinking agent (curing agent) may be added to the paste forming the thermoelectric conversion layer 16 as necessary.
Dispersants include anionic surfactants: known materials such as sodium cholate, sodium dodecyl sulfate, sodium dodecylbenzene sulfonate, alkylamines, pyrene derivatives, porphyrin derivatives, π-conjugated polymers, sodium polystyrene sulfonate, etc. Can be used. As the binder, known materials such as styrene polymer, acrylic polymer, polycarbonate, polyester, epoxy resin, siloxane polymer, polyvinyl alcohol, and gelatin can be used.

架橋剤としては、具体的には、フェネチルトリアルコキシシラン、アミノプロピルトリアルコキシシラン、グリシジルプロピルトリアルコキシラン、テトラアルコキシシランなどのシラン化合物; トリメチロールメラミン、ジ(トリ)アミン誘導体、ジ(トリ)グリシジル誘導体、ジ(トリ)カルボン酸誘導体、ジ(トリ)アクリレート誘導体などの低分子架橋剤; ポリアリルアミン、ポリカルボジイミド、ポリカチオンなどの高分子架橋剤; 等の公知の材料が例示される。
さらに、ペーストには、これ以外にも、必要に応じて、界面活性剤、滑り剤、アルミナやシリカなどの増粘剤等を含有してもよい。
Specific examples of the crosslinking agent include silane compounds such as phenethyl trialkoxysilane, aminopropyltrialkoxysilane, glycidylpropyltrialkoxysilane, and tetraalkoxysilane; trimethylolmelamine, di (tri) amine derivatives, di (tri) Examples include known materials such as low-molecular crosslinking agents such as glycidyl derivatives, di (tri) carboxylic acid derivatives, and di (tri) acrylate derivatives; polymer crosslinking agents such as polyallylamine, polycarbodiimide, and polycation.
Furthermore, the paste may contain a surfactant, a slip agent, a thickener such as alumina or silica, and the like as necessary.

このようにしてペーストを調製したら、ステンシル印刷、スクリーン印刷、インクジェット印刷、グラビア印刷、フレキソ印刷などの公知の印刷方法によって、形成する熱電変換層16に応じてペーストを印刷し、バインダを硬化することによって、熱電変換層16を形成する。   Once the paste is prepared in this way, the paste is printed according to the thermoelectric conversion layer 16 to be formed by a known printing method such as stencil printing, screen printing, inkjet printing, gravure printing, flexographic printing, and the binder is cured. Thus, the thermoelectric conversion layer 16 is formed.

ここで、バインダの硬化は、緩やかにバインダを硬化するプレ硬化工程と、迅速にバインダを硬化する本硬化工程の2段階で行うのが好ましい。
すなわち、緩やかにバインダを硬化するプレ硬化工程を設けることにより、印刷したペーストの粘度や硬度を変化させて、ペーストを適度にダレさせることにより、上部電極18の形成側面の形状を目的とする形状とする。次いで、本硬化工程において、迅速にバインダを硬化することにより、熱電変換層の形状を定着させて、目的とする形状の熱電変換層16を得ることができる。
Here, the curing of the binder is preferably performed in two stages: a pre-curing process for slowly curing the binder and a main curing process for quickly curing the binder.
That is, by providing a pre-curing step for gently curing the binder, the viscosity and hardness of the printed paste is changed, and the paste is appropriately sagged to form the shape of the side surface on which the upper electrode 18 is formed. And Then, in the main curing step, the thermoelectric conversion layer 16 having a target shape can be obtained by fixing the shape of the thermoelectric conversion layer by quickly curing the binder.

なお、緩やかにバインダを硬化するプレ硬化工程は、熱硬化樹脂であれば本硬化工程に比して加熱温度を低下し、紫外線硬化樹脂であれば本硬化工程に比して照射する紫外線量を低減すればよい。
また、プレ硬化工程は、バインダの硬化を抑制するために、重合反応を阻害する大気下(大気雰囲気下)で行い、本硬化工程は、バインダの硬化(重合反応)を効率的に進行させるために不活性雰囲気下で行うのが好ましい。
さらに、プレ硬化工程の後に、必要に応じて加熱(加熱工程)を行って、ペーストの粘度や硬度を変化させて、熱電変換層16の形状を制御してもよい。この加熱工程は、特に、バインダとして紫外線硬化樹脂を用いる際に、有効である。
In the pre-curing process for gently curing the binder, the heating temperature is lowered as compared with the main curing process if it is a thermosetting resin, and the amount of ultraviolet rays to be irradiated is compared with that in the main curing process if it is an ultraviolet curable resin. It may be reduced.
In addition, the pre-curing step is performed in the atmosphere (in the air atmosphere) that inhibits the polymerization reaction in order to suppress the curing of the binder, and the main curing step is performed in order to efficiently progress the binder curing (polymerization reaction). It is preferable to carry out in an inert atmosphere.
Furthermore, after the pre-curing step, heating (heating step) may be performed as necessary to change the viscosity and hardness of the paste to control the shape of the thermoelectric conversion layer 16. This heating step is particularly effective when an ultraviolet curable resin is used as the binder.

熱電変換層16を形成したら、基板12上の下部電極14(熱電変換層16)と離間する位置から、熱電変換層16の側面〜上面に至るように、上部電極18を形成する。
上部電極18も、形成材料等に応じた公知の方法で作製すればよい。好ましい一例として、銀ペースト等の導電性粒子を含有するペーストを用いる印刷法で、上部電極18を形成する。なお、印刷法は、熱電変換層16と同様、公知の方法が各種利用可能である。
When the thermoelectric conversion layer 16 is formed, the upper electrode 18 is formed so as to reach from the side surface to the upper surface of the thermoelectric conversion layer 16 from a position separated from the lower electrode 14 (thermoelectric conversion layer 16) on the substrate 12.
The upper electrode 18 may be produced by a known method corresponding to the forming material or the like. As a preferred example, the upper electrode 18 is formed by a printing method using a paste containing conductive particles such as a silver paste. As the printing method, various known methods can be used as in the thermoelectric conversion layer 16.

以上の例は、印刷法によって熱電変換層16となるペーストを塗布し、このペーストをプレ硬化および本硬化の2段階で硬化することにより、通電方向の断面形状において、上部電極18の形成側面が所定形状を有する熱電変換層16を形成している。
しかしながら、本発明の熱電変換素子において、このような通電方向の断面形状において、形成側面が所定形状を有する熱電変換層16は、これ以外にも、各種の方法で形成可能である。例えば、印刷法等の公知の方法を用いて、円柱状や図5に示すような四角柱状の仮の熱電変換層を形成し、サンドブラスト、機械加工技術、レーザエッチング等の公知の微細加工技術を用いて、通電方向の断面形状において、上部電極18の形成側面が所定形状を有する熱電変換層16を形成してもよい。
In the above example, the paste that becomes the thermoelectric conversion layer 16 is applied by a printing method, and this paste is cured in two stages of pre-curing and main curing, so that the side surface on which the upper electrode 18 is formed has a cross-sectional shape in the energizing direction. A thermoelectric conversion layer 16 having a predetermined shape is formed.
However, in the thermoelectric conversion element of the present invention, the thermoelectric conversion layer 16 having a predetermined side surface in the cross-sectional shape in the energizing direction can be formed by various methods other than this. For example, by using a known method such as a printing method, a temporary thermoelectric conversion layer having a columnar shape or a rectangular column shape as shown in FIG. 5 is formed, and a known fine processing technique such as sandblasting, machining technique, laser etching or the like is used. The thermoelectric conversion layer 16 in which the side surface on which the upper electrode 18 is formed has a predetermined shape in the cross-sectional shape in the energizing direction may be used.

このような本発明の熱電変換素子は、各種の用途に利用可能である。
一例として、温泉熱発電機、太陽熱発電機、廃熱発電機などの発電機や、腕時計用電源、半導体駆動電源、小型センサ用電源などの各種装置(デバイス)の電源等、様々な発電用途が例示される。また、本発明の熱電変換素子の用途としては、発電用途以外にも、感熱センサや熱電対などのセンサー素子用途も例示される。
Such a thermoelectric conversion element of the present invention can be used for various applications.
Examples include various power generation applications such as hot spring thermal generators, solar thermal generators, waste heat generators, and other devices (devices) such as wristwatch power supplies, semiconductor drive power supplies, and small sensor power supplies. The Moreover, as a use of the thermoelectric conversion element of this invention, sensor element uses, such as a thermal sensor and a thermocouple, are illustrated besides a power generation use.

以上、本発明の熱電変換素子について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。   As described above, the thermoelectric conversion element of the present invention has been described in detail, but the present invention is not limited to the above-described examples, and various modifications and changes may be made without departing from the scope of the present invention. Of course.

以下、本発明の具体的実施例を挙げて、本発明の熱電変換素子について、より詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。   Hereinafter, the thermoelectric conversion element of the present invention will be described in more detail with reference to specific examples of the present invention. However, the present invention is not limited to the following examples.

[実施例1]
<熱電変換材料組成物の調製>
ポリ(3−オクチルチオフェン)(レジオランダム、Aldrich社製、重量平均分子量67400)30mgに、クロロホルム10mL(リットル)を加えて、超音波洗浄機(US−2、井内盛栄堂(株)製、出力120W、間接照射)を用いて、分散剤溶液を調製した。
この分散剤溶液に、単層カーボンナノチューブ(ASP−100F、Hanwha社製)70mgを加え、超音波ホモジナイザー(VC−750、SONICS&MATERIALS.Inc社製、テーパーマイクロチップ(プローブ径6.5mm)使用、出力40W、直接照射、Duty比50%)を用いて、30℃で30分間超音波分散し、さらに、超音波洗浄機(US−2、井内盛栄堂(株)製、出力120W、間接照射)を用いて、30℃で60分間超音波分散することによって、カーボンナノチューブ分散液を調製した。
さらに、このカーボンナノチューブ分散液を蒸発乾固して、導電性組成物を調製した。
[Example 1]
<Preparation of thermoelectric conversion material composition>
Chloroform 10 mL (liter) is added to 30 mg of poly (3-octylthiophene) (Regio Random, manufactured by Aldrich, weight average molecular weight 67400), and an ultrasonic cleaner (US-2, manufactured by Inoue Seieido Co., Ltd.), output 120W, indirect irradiation) was used to prepare a dispersant solution.
To this dispersant solution, 70 mg of single-walled carbon nanotubes (ASP-100F, manufactured by Hanwha) is added, and an ultrasonic homogenizer (VC-750, manufactured by SONICS & MATERIALS. Inc., using a tapered microchip (probe diameter 6.5 mm), output. 40W, direct irradiation, duty ratio 50%), ultrasonically dispersed at 30 ° C. for 30 minutes, and further ultrasonic cleaning machine (US-2, manufactured by Inoue Seieido Co., Ltd., output 120W, indirect irradiation) A carbon nanotube dispersion was prepared by ultrasonic dispersion at 30 ° C. for 60 minutes.
Further, this carbon nanotube dispersion was evaporated to dryness to prepare a conductive composition.

他方、MEK(メチルエチルケトン)5.3g、
液状ビスフェノールA型エポキシ樹脂(エピコート825、ジャパンエポキシレジン社製、エポキシ当量176)5g、
トリアジン構造含有フェノールノボラック樹脂のMEKワニス(フェノライトLA−7052、大日本インキ化学工業社製、不揮発分62%、不揮発分のフェノール性水酸基当量120)2g、
フェノキシ樹脂MEKワニス(YP−50EK35、東都化成(株)製、不揮発分35%)10.7g、および、
2−エチル−4−メチルイミダゾール0.053gを、混合撹拌して完全に溶解させて、熱硬化樹脂組成物を調製した。
On the other hand, MEK (methyl ethyl ketone) 5.3 g,
5 g of liquid bisphenol A type epoxy resin (Epicoat 825, manufactured by Japan Epoxy Resin Co., Ltd., epoxy equivalent 176),
2 g of MEK varnish of phenol novolac resin containing triazine structure (Phenolite LA-7052, manufactured by Dainippon Ink & Chemicals, Inc., nonvolatile content 62%, nonvolatile phenolic hydroxyl group equivalent 120),
10.7 g of phenoxy resin MEK varnish (YP-50EK35, manufactured by Toto Kasei Co., Ltd., nonvolatile content 35%), and
0.053 g of 2-ethyl-4-methylimidazole was mixed and stirred to completely dissolve it to prepare a thermosetting resin composition.

この熱硬化樹脂組成物200mgを、先に調製した導電性組成物に加え、超音波洗浄機(US−2、井内盛栄堂社製、出力120W、間接照射)を用いて、30℃で10分間超音波照射して、熱電変換材料組成物(ペースト)を調製した。   200 mg of this thermosetting resin composition is added to the previously prepared conductive composition, and using an ultrasonic cleaner (US-2, manufactured by Inoue Seieido Co., Ltd., output 120 W, indirect irradiation) at 30 ° C. for 10 minutes. Ultrasonic irradiation was performed to prepare a thermoelectric conversion material composition (paste).

<熱電変換層16の作製>
以下のようにして、基板12の上に、下部電極14および熱電変換層16を作製した。
基板12として、大きさ40×50mm、厚さ1.1mmのガラス基板を用意した。
この基板12をイソプロピルアルコール中で超音波洗浄した。次いで、基板12の上に、エッチングにより形成した開口部20×20mmを有するメタルマスクを載置した。このメタルマスクを用いて、基板12の上に、イオンプレーティング法によりクロムを100nm、次いで、金を200nm積層成膜することにより、クロム層および金層からなる下部電極14を作製した。
<Preparation of thermoelectric conversion layer 16>
The lower electrode 14 and the thermoelectric conversion layer 16 were produced on the substrate 12 as follows.
A glass substrate having a size of 40 × 50 mm and a thickness of 1.1 mm was prepared as the substrate 12.
The substrate 12 was ultrasonically cleaned in isopropyl alcohol. Next, a metal mask having an opening 20 × 20 mm formed by etching was placed on the substrate 12. Using this metal mask, a lower electrode 14 made of a chromium layer and a gold layer was formed on the substrate 12 by laminating 100 nm of chromium and then 200 nm of gold by ion plating.

次いで、基板12の上に、レーザー加工で形成した開口部13×13mmを有する、厚さ2mmのメタルマスクを載置した。
なお、メタルマスクは、20×20mmの下部電極14に対して、四辺を平行にして、開口部の一方の対向する辺は下部電極14の中央に、他方の対向する辺は1辺を、1mm、下部電極14より外方に位置して、開口部の一部が下部電極14を覆うように、基板12に載置した。
このメタルマスクの開口部に、先に調製した熱電変換材料組成物を充填し、スキージで成形した後、メタルマスクを外し、基板12の上に、熱電変換層16となる熱電変換材料熱成物を印刷した。
Next, a 2 mm thick metal mask having an opening 13 × 13 mm formed by laser processing was placed on the substrate 12.
Note that the metal mask has four sides parallel to the 20 × 20 mm lower electrode 14, one opposing side of the opening is in the center of the lower electrode 14, and the other opposing side is one side of 1 mm. The substrate was placed on the substrate 12 such that a part of the opening covered the lower electrode 14 and was located outside the lower electrode 14.
The opening of the metal mask is filled with the previously prepared thermoelectric conversion material composition, molded with a squeegee, the metal mask is removed, and the thermoelectric conversion material thermal composition that becomes the thermoelectric conversion layer 16 on the substrate 12 Printed.

熱電変換材料熱成物を印刷した基板12を、大気下で、80℃のホットプレート上で5分間加熱して、熱電変換材料熱成物のプレ硬化工程を行った。
次いで、プレ硬化を行った熱電変換材料熱成物を有する基板12を、不活性ガス雰囲気下で、170℃のホットプレート上で30分加熱して、熱電変換材料熱成物の本硬化工程を行い、下部電極14の一部を覆う熱電変換層16を基板12に形成した。
なお、拡大鏡による目視によって確認したところ、熱電変換層16は、図1に示されるように、四角錐台状の形状を有していた。
The substrate 12 on which the thermoelectric conversion material thermal composition was printed was heated on a hot plate at 80 ° C. for 5 minutes in the atmosphere to perform a pre-curing process of the thermoelectric conversion material thermal composition.
Next, the substrate 12 having the thermoset of the thermoelectric conversion material that has been pre-cured is heated on a hot plate at 170 ° C. for 30 minutes in an inert gas atmosphere to perform the main curing step of the thermoelectric conversion material thermoset, A thermoelectric conversion layer 16 covering a part of the lower electrode 14 was formed on the substrate 12.
As confirmed by visual observation with a magnifying glass, the thermoelectric conversion layer 16 had a quadrangular frustum shape as shown in FIG.

作製した熱電変換層16について、通電方向の断面形状、L2/L1、および、上面に凹状の部分が有るか否かを確認した。   About the produced thermoelectric conversion layer 16, it was confirmed whether there existed a cross-sectional shape of an electricity supply direction, L2 / L1, and a concave part in the upper surface.

・ 断面形状
通電方向と直交する方向(y方向)の中心において、プラスチックカッタを用いて熱電変換層16を通電方向に切断して、その断面形状をデジタルマイクロスコープで観察し、観察画像を画像解析ソフトウェアにて解析した。
その結果、熱電変換層16の断面形状は台形であった。すなわち、この熱電変換層16は、通電方向の断面形状において、上部電極18の形成側面が所定形状(通電方向の下部電極14の端部から、漸次、離間するように傾斜する形状)を有する、本発明の熱電変換素子10の条件を満たすものであることが確認された。
なお、この断面形状の確認は、y方向の中心のみである。しかしながら、印刷法を利用する熱電変換層16の形成によれば、y方向の中心の断面が上記形状であれば、通電方向の断面形状は、y方向の全域において、ほぼ同様の形状であると考えられる。また、先の熱電変換層16の外観の確認からも、このことは示されている。
-Cross-sectional shape At the center of the direction perpendicular to the energizing direction (y direction), the thermoelectric conversion layer 16 is cut in the energizing direction using a plastic cutter, the cross-sectional shape is observed with a digital microscope, and the observed image is image-analyzed. Analyzed by software.
As a result, the cross-sectional shape of the thermoelectric conversion layer 16 was a trapezoid. That is, the thermoelectric conversion layer 16 has a predetermined shape (a shape in which the side surface of the upper electrode 18 is gradually inclined away from the end of the lower electrode 14 in the energization direction) in the cross-sectional shape in the energization direction. It was confirmed that the conditions of the thermoelectric conversion element 10 of the present invention were satisfied.
The cross-sectional shape is confirmed only at the center in the y direction. However, according to the formation of the thermoelectric conversion layer 16 using the printing method, if the cross section at the center in the y direction is the above shape, the cross sectional shape in the energization direction is substantially the same in the entire y direction. Conceivable. This is also shown from the confirmation of the appearance of the thermoelectric conversion layer 16.

・ L2/L1
熱電変換層16の基板12からの高さL2を、触針型膜厚計(XP−200、Ambios Technology社製)を用いて測定した。さらに、熱電変換層16の通電方向のサイズL1を定規で測定した。
その結果、L1は12mmで、L2は1.8mmであった。すなわち、L2/L1は、0.15である。
・ L2 / L1
The height L2 of the thermoelectric conversion layer 16 from the substrate 12 was measured using a stylus type film thickness meter (XP-200, manufactured by Ambios Technology). Furthermore, the size L1 in the energizing direction of the thermoelectric conversion layer 16 was measured with a ruler.
As a result, L1 was 12 mm and L2 was 1.8 mm. That is, L2 / L1 is 0.15.

・ 上面の凹状部
熱電変換層16の上面をデジタルマイクロスコープで観察し、画像ソフトウエアを用いて表面性状を解析することで、熱電変換層16の上面に凹状の部分が存在しないことを確認した。
-Concave portion on the upper surface The upper surface of the thermoelectric conversion layer 16 was observed with a digital microscope, and the surface properties were analyzed using image software, and it was confirmed that there were no concave portions on the upper surface of the thermoelectric conversion layer 16. .

前述のようにして下部電極14および熱電変換層16を形成した基板12に、銀ペースト(導電性ペーストドータイト「D−550」、藤倉化成社製)を用い、スクリーン印刷法によって、厚さ10μmの、基板12から熱電変換層16の側面および上面に至る、図1に示すような上部電極18を形成して、図1に示すような熱電変換素子10を作製した。   A silver paste (conductive paste dotite “D-550”, manufactured by Fujikura Kasei Co., Ltd.) is used for the substrate 12 on which the lower electrode 14 and the thermoelectric conversion layer 16 are formed as described above, and is 10 μm thick by screen printing. The upper electrode 18 as shown in FIG. 1 extending from the substrate 12 to the side surface and the upper surface of the thermoelectric conversion layer 16 was formed to produce the thermoelectric conversion element 10 as shown in FIG.

[実施例2]
以下の配合で、光硬化樹脂組成物を調製した。
・N−ビニルカプロラクタム(V−CAP、ISP社製) 23質量部
・フェノキシエチルアクリレート(SR399S、Sartomer社製)) 33.0質量部
・ジシクロペンタニルオキシエチルアクリレート(FA−512、日立化成工業(株) 製) 5質量部
・トリメチロールプロパントリアクリレート(SR351S、Sartomer社製) 5質量部
・1,6−ヘキサンジオールジアクリレート(SR238F、Sartomer社製) 3質量部
・2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン− 1−オン(IRGACURE 369、BASF・ジャパン社製) 2質量部
・ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド(IRGAC URE 819、BASF・ジャパン社製) 3質量部
・イソプロピルチオキサントン(SPEEDCURE ITX、Lambson社製) 3質量部
[Example 2]
A photocurable resin composition was prepared with the following composition.
-N-vinylcaprolactam (V-CAP, manufactured by ISP) 23 parts by mass-Phenoxyethyl acrylate (SR399S, manufactured by Sartomer) 33.0 parts by mass-Dicyclopentanyloxyethyl acrylate (FA-512, Hitachi Chemical) (Made by Co., Ltd.) 5 parts by mass-Trimethylolpropane triacrylate (SR351S, manufactured by Sartomer) 5 parts by mass-1,6-hexanediol diacrylate (SR238F, manufactured by Sartomer) 3 parts by mass-2-Benzyl-2- Dimethylamino-1- (4-morpholinophenyl) -butan-1-one (IRGACURE 369, manufactured by BASF Japan Ltd.) 2 parts by mass Bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (IRGAC URE 819 , BASF Japan Ltd.) 3 parts by mass ・ Isopropylthioxanthone (SPEEDCURE ITX, manufactured by Lambson) 3 masses

実施例1と同様に作製した導電性組成物に、この光硬化樹脂組成物200mgを加え、実施例1と同様にして、熱電変換材料組成物(ペースト)を調製した。   200 mg of this photocurable resin composition was added to the conductive composition produced in the same manner as in Example 1, and a thermoelectric conversion material composition (paste) was prepared in the same manner as in Example 1.

一方、実施例1と同様の基板を用意して、実施例1と同様にして、基板12の上に下部電極14を形成した。次いで、調製した熱電変換材料組成物を、実施例1と同様に基板12および下部電極14の上に印刷した。   On the other hand, a substrate similar to that in Example 1 was prepared, and the lower electrode 14 was formed on the substrate 12 in the same manner as in Example 1. Next, the prepared thermoelectric conversion material composition was printed on the substrate 12 and the lower electrode 14 in the same manner as in Example 1.

基板12上に印刷した熱電変換材料熱成物に、大気下で0.5J/cm2の紫外線を照射してプレ硬化工程を行った。
次いで、プレ硬化工程を行った熱電変換材料組成物を80℃で10分間保持して、加熱工程を行った。
さらに、加熱工程を行った熱電変換材料組成物に、不活性ガス雰囲気下で1J/cm2の紫外線を照射して本硬化工程を行い、下部電極14の一部を覆う熱電変換層16を基板12上に形成した。
作製した熱電変換層16の形状を実施例1と同様に確認したところ、同様の四角錐台状であった。
The thermoelectric conversion material thermal composition printed on the substrate 12 was irradiated with ultraviolet rays of 0.5 J / cm 2 in the atmosphere to perform a pre-curing process.
Subsequently, the thermoelectric conversion material composition which performed the pre-curing process was hold | maintained for 10 minutes at 80 degreeC, and the heating process was performed.
Further, the thermoelectric conversion material composition that has been subjected to the heating process is irradiated with 1 J / cm 2 of ultraviolet light in an inert gas atmosphere to perform the main curing process, and the thermoelectric conversion layer 16 that covers a part of the lower electrode 14 is formed on the substrate. 12 was formed.
When the shape of the produced thermoelectric conversion layer 16 was confirmed in the same manner as in Example 1, it was the same quadrangular pyramid shape.

さらに、形成した熱電変換層16について、実施例1と同様に、通電方向の断面形状、L2/L1、および、上面の凹状の部分を確認した。
その結果、通電方向の断面形状は、実施例1と同様の台形であり、すなわち、この熱電変換層16は、通電方向の断面形状において、上部電極18の形成側面が所定形状を有する、本発明の熱電変換素子10の条件を満たすものであることが確認された。
また、L1は11mm、L2は1.5mmで、L2/L1は0.14であった。
加えて、熱電変換層16の上面には、凹状の部分は認められなかった。
Furthermore, about the formed thermoelectric conversion layer 16, the cross-sectional shape of the electricity supply direction, L2 / L1, and the concave part of the upper surface were confirmed similarly to Example 1. FIG.
As a result, the cross-sectional shape in the energization direction is the same trapezoid as in Example 1, that is, the thermoelectric conversion layer 16 has a predetermined shape on the side surface on which the upper electrode 18 is formed in the cross-sectional shape in the energization direction. It was confirmed that the conditions of the thermoelectric conversion element 10 were satisfied.
L1 was 11 mm, L2 was 1.5 mm, and L2 / L1 was 0.14.
In addition, no concave portion was observed on the upper surface of the thermoelectric conversion layer 16.

さらに、下部電極14および熱電変換層16を形成した基板12に、実施例1と同様にして上部電極18を形成して、熱電変換素子10を作製した。   Furthermore, the upper electrode 18 was formed in the same manner as in Example 1 on the substrate 12 on which the lower electrode 14 and the thermoelectric conversion layer 16 were formed, and the thermoelectric conversion element 10 was manufactured.

[実施例3]
分散剤溶液の調製において、クロロホルム10mLに代えてo−ジクロロベンゼン10mLを用いた以外は、実施例1と同様にカーボンナノチューブ分散液を調製した。
このカーボンナノチューブ分散液に、バインダとしてPC−Z型ポリカーボネート(パンライトTS−2020、帝人化成株式会社製)を200mg加え、自公転式攪拌装置(ARE−250、シンキー社製)を用いて、回転数2000rpmで5分間攪拌することで、熱電変換材料組成物(ペースト)を調製した。
[Example 3]
A carbon nanotube dispersion was prepared in the same manner as in Example 1 except that 10 mL of o-dichlorobenzene was used instead of 10 mL of chloroform in the preparation of the dispersant solution.
To this carbon nanotube dispersion, 200 mg of PC-Z type polycarbonate (Panlite TS-2020, manufactured by Teijin Kasei Co., Ltd.) is added as a binder and rotated using a self-revolving stirrer (ARE-250, manufactured by Shinky Corporation). A thermoelectric conversion material composition (paste) was prepared by stirring at several 2,000 rpm for 5 minutes.

一方、実施例1と同様の基板を用意して、実施例1と同様にして、基板12の上に下部電極14を形成した。次いで、調製した熱電変換材料組成物を、実施例1と同様に基板12および下部電極14の上に印刷した。
さらに、実施例1と同様にプレ硬化工程および本硬化工程を行うことにより、下部電極14の一部を覆う熱電変換層16を基板12上に形成した。
作製した熱電変換層16を実施例1と同様に確認したところ、形状は、上面に凹部を有する四角錐台状であった。
On the other hand, a substrate similar to that in Example 1 was prepared, and the lower electrode 14 was formed on the substrate 12 in the same manner as in Example 1. Next, the prepared thermoelectric conversion material composition was printed on the substrate 12 and the lower electrode 14 in the same manner as in Example 1.
Furthermore, the thermoelectric conversion layer 16 which covers a part of the lower electrode 14 was formed on the substrate 12 by performing the pre-curing step and the main curing step in the same manner as in Example 1.
When the produced thermoelectric conversion layer 16 was confirmed in the same manner as in Example 1, the shape thereof was a quadrangular frustum shape having a concave portion on the upper surface.

さらに、形成した熱電変換層について、実施例1と同様に、通電方向の断面形状、L2/L1、および、上面の凹状の部分を確認した。
その結果、通電方向の断面形状は、上底に凹部を有する台形状であり、すなわち、この熱電変換層16は、通電方向の断面形状において、上部電極18の形成側面が所定形状を有する、本発明の熱電変換素子10の条件を満たすものであることが確認された。
また、L1は9mm、L2は0.2mmで、L2/L1は0.02であった。
加えて、熱電変換層の上面には、凹状の部分が認められた。
Furthermore, about the formed thermoelectric conversion layer, the cross-sectional shape of the electricity supply direction, L2 / L1, and the concave part of the upper surface were confirmed similarly to Example 1.
As a result, the cross-sectional shape in the energizing direction is a trapezoidal shape having a recess in the upper base, that is, the thermoelectric conversion layer 16 has a predetermined shape on the side surface on which the upper electrode 18 is formed in the cross-sectional shape in the energizing direction. It was confirmed that the conditions of the thermoelectric conversion element 10 of the invention were satisfied.
L1 was 9 mm, L2 was 0.2 mm, and L2 / L1 was 0.02.
In addition, a concave portion was observed on the upper surface of the thermoelectric conversion layer.

さらに、下部電極14および熱電変換層を形成した基板12に、実施例1と同様にして上部電極を形成して、熱電変換素子を作製した。   Further, the upper electrode was formed on the substrate 12 on which the lower electrode 14 and the thermoelectric conversion layer were formed in the same manner as in Example 1 to produce a thermoelectric conversion element.

[比較例1]
プレ硬化工程を行わず、初めから本硬化工程を行って熱電変換層を形成した以外は、実施例1と同様にして基板12の上に、下部電極14および熱電変換層を形成した。なお、本硬化工程は30分とした。
作製した熱電変換層を実施例1と同様に確認したところ、形状は直方体であった。
[Comparative Example 1]
The lower electrode 14 and the thermoelectric conversion layer were formed on the substrate 12 in the same manner as in Example 1 except that the thermosetting conversion layer was formed by performing the main curing process from the beginning without performing the pre-curing process. The main curing process was 30 minutes.
When the produced thermoelectric conversion layer was confirmed similarly to Example 1, the shape was a rectangular parallelepiped.

さらに、形成した熱電変換層について、実施例1と同様に、通電方向の断面形状、L2/L1、および、上面の凹状の部分を確認した。
その結果、通電方向の断面形状は、長方形で、熱電変換層の上面と側面が成す角度、および、熱電変換層の側面と基板12とが成す角度が90°であった。すなわち、この熱電変換層は、通電方向の断面形状において、上部電極18の形成側面が所定形状ではない、本発明の熱電変換素子10の条件を、満たさないものであることが確認された。
また、L1は12mm、L2は1.8mmで、L2/L1は0.15であった。
加えて、熱電変換層の上面には、凹状の部分は認められなかった。
Furthermore, about the formed thermoelectric conversion layer, the cross-sectional shape of the electricity supply direction, L2 / L1, and the concave part of the upper surface were confirmed similarly to Example 1.
As a result, the cross-sectional shape in the energization direction was a rectangle, and the angle formed between the upper surface and the side surface of the thermoelectric conversion layer and the angle formed between the side surface of the thermoelectric conversion layer and the substrate 12 were 90 °. That is, it was confirmed that this thermoelectric conversion layer does not satisfy the conditions of the thermoelectric conversion element 10 of the present invention in which the side surface on which the upper electrode 18 is formed is not a predetermined shape in the cross-sectional shape in the energization direction.
L1 was 12 mm, L2 was 1.8 mm, and L2 / L1 was 0.15.
In addition, no concave portion was observed on the upper surface of the thermoelectric conversion layer.

さらに、下部電極14および熱電変換層を形成した基板12に、実施例1と同様にして上部電極を形成して、熱電変換素子を作製した。   Further, the upper electrode was formed on the substrate 12 on which the lower electrode 14 and the thermoelectric conversion layer were formed in the same manner as in Example 1 to produce a thermoelectric conversion element.

[比較例2]
プレ硬化工程および加熱工程を行わず、初めから本硬化工程を行って熱電変換層を形成した以外は、実施例2と同様にして基板12の上に、下部電極14および熱電変換層を形成した。なお、本硬化工程における紫外線の照射量は、1.5J/cm2とした。
作製した熱電変換層を実施例1と同様に確認したところ、形状は直方体であった。
[Comparative Example 2]
The lower electrode 14 and the thermoelectric conversion layer were formed on the substrate 12 in the same manner as in Example 2 except that the thermosetting conversion layer was formed by performing the main curing process from the beginning without performing the pre-curing step and the heating step. . In addition, the irradiation amount of the ultraviolet rays in the main curing step was 1.5 J / cm 2 .
When the produced thermoelectric conversion layer was confirmed similarly to Example 1, the shape was a rectangular parallelepiped.

さらに、形成した熱電変換層について、実施例1と同様に、通電方向の断面形状、L2/L1、および、上面の凹状の部分を確認した。
その結果、通電方向の断面形状は、長方形で、熱電変換層の上面と側面が成す角度、および、熱電変換層の側面と基板12とが成す角度が90°であった。すなわち、この熱電変換層は、通電方向の断面形状において、上部電極18の形成側面が所定形状ではない、本発明の熱電変換素子10の条件を、満たさないものであることが確認された。
また、L1は12mm、L2は1.7mmで、L2/L1は0.14であった。
加えて、熱電変換層の上面には、凹状の部分は認められなかった。
Furthermore, about the formed thermoelectric conversion layer, the cross-sectional shape of the electricity supply direction, L2 / L1, and the concave part of the upper surface were confirmed similarly to Example 1.
As a result, the cross-sectional shape in the energization direction was a rectangle, and the angle formed between the upper surface and the side surface of the thermoelectric conversion layer and the angle formed between the side surface of the thermoelectric conversion layer and the substrate 12 were 90 °. That is, it was confirmed that this thermoelectric conversion layer does not satisfy the conditions of the thermoelectric conversion element 10 of the present invention in which the side surface on which the upper electrode 18 is formed is not a predetermined shape in the cross-sectional shape in the energization direction.
L1 was 12 mm, L2 was 1.7 mm, and L2 / L1 was 0.14.
In addition, no concave portion was observed on the upper surface of the thermoelectric conversion layer.

さらに、下部電極14および熱電変換層を形成した基板12に、実施例1と同様にして上部電極を形成して、熱電変換素子を作製した。   Further, the upper electrode was formed on the substrate 12 on which the lower electrode 14 and the thermoelectric conversion layer were formed in the same manner as in Example 1 to produce a thermoelectric conversion element.

[性能評価]
<熱起電力>
作製した熱電変換素子10について、基板12を表面温度80℃のホットプレートで加熱した際に、下部電極14と上部電極18との間で生じる電圧差を、デジタルマルチメーター(R6581、アドバンテスト社製)で測定した。
[Performance evaluation]
<Thermo-electromotive force>
When the substrate 12 is heated with a hot plate having a surface temperature of 80 ° C. for the produced thermoelectric conversion element 10, a voltage difference generated between the lower electrode 14 and the upper electrode 18 is expressed by a digital multimeter (R6581, manufactured by Advantest). Measured with

<上部電極の性状>
作製した熱電変換素子10の上部電極18をデジタルマイクロスコープで観察し、画像ソフトウエアを用いて解析することで、上部電極18の破断部および膜薄部の有無を確認した。
上部電極18に、破断部および膜薄部のいずれか一方でも確認された場合を『有り』、上部電極18に、破断部および膜薄部のいずれも確認されなかった場合を『無し』と示す。上部電極18に、破断部や膜薄部が無ければ、通電性に優れた高性能な熱電変換素子が得られる。
<Properties of upper electrode>
The upper electrode 18 of the produced thermoelectric conversion element 10 was observed with a digital microscope and analyzed using image software, thereby confirming the presence or absence of a fracture portion and a thin film portion of the upper electrode 18.
The case where either one of the fracture portion and the thin film portion is confirmed in the upper electrode 18 is indicated as “present”, and the case where neither the fracture portion or the thin film portion is confirmed in the upper electrode 18 is indicated as “none”. . If the upper electrode 18 does not have a rupture portion or a thin film portion, a high-performance thermoelectric conversion element having excellent electrical conductivity can be obtained.

<通電性の評価>
通電方向の端部において、下部電極14と上部電極18との間の抵抗をデジタルマルチメーター(PC5000、三和電気計器社製)で測定した。抵抗値が小さい方が、上部電極18が効果的に形成され、破断の度合いが小さい、通電性に優れるものである。
結果を下記の表に示す。なお、起電力および抵抗値は、実施例1の数値を1として規格化した相対値で示す。
結果を下記表に示す。
<Evaluation of electrical conductivity>
At the end in the energizing direction, the resistance between the lower electrode 14 and the upper electrode 18 was measured with a digital multimeter (PC5000, manufactured by Sanwa Denki Keiki Co., Ltd.). A lower resistance value is more effective in forming the upper electrode 18, having a smaller degree of breakage, and excellent electrical conductivity.
The results are shown in the table below. In addition, an electromotive force and resistance value are shown by the relative value which normalized the numerical value of Example 1 as 1.
The results are shown in the table below.

上記表に示されるように、本発明の熱電変換素子10である実施例1および2は、熱電変換層16が、通電方向の断面形状において、上部電極18の形成側面が所定形状を有する。そのため、L2/L1が0.15および0.12という厚い熱電変換層16であっても、破断部や膜薄部を生じることなく上面電極18が適正に形成され、上面電極18の破断等に起因する通電性の低下が無い、高い信頼性を有する。また、実施例1および2は、熱電変換層16の厚さも十分であるため、熱起電力も良好である。
一方、実施例3の熱電変換素子は、L2/L1が0.02と熱電変換層16が薄いため、起電力は実施例1等に比して低く、また、上面に凹部を有するために抵抗がやや大きいが、通電方向の断面形状において、上部電極18の形成側面が所定形状を有するため、破断部や膜薄部を生じることなく上面電極18が適正に形成され、上面電極18の破断等に起因する通電性の低下が無い、高い信頼性を有する。
これに対し、通電方向の断面形状(長方形)において、上部電極18の形成側面が所定形状を有さない比較例1および2は、共に、上部電極18に破断部や膜薄部が認められ、これに起因して通電性が低下したと考えられる。また、通電性の低下に起因して、L2/L1が0.15および0.12という実施例1および2と同じ厚さを有する素子であるにも関わらず、熱起電力も低い。
以上の結果より、本発明の効果は明らかである。
As shown in the above table, in Examples 1 and 2 which are the thermoelectric conversion elements 10 of the present invention, the side surface on which the upper electrode 18 is formed has a predetermined shape in the cross-sectional shape of the thermoelectric conversion layer 16 in the energizing direction. For this reason, even when the thermoelectric conversion layer 16 has a thickness L2 / L1 of 0.15 and 0.12, the upper surface electrode 18 is properly formed without causing a rupture portion or a thin film portion. It has high reliability with no degradation of electrical conductivity caused by it. Moreover, since the thickness of the thermoelectric conversion layer 16 is sufficient in Examples 1 and 2, the thermoelectromotive force is also good.
On the other hand, since the thermoelectric conversion element of Example 3 has L2 / L1 of 0.02 and the thermoelectric conversion layer 16 is thin, the electromotive force is lower than that of Example 1 and the like, and the upper surface has a concave portion so that resistance is increased. However, since the side surface where the upper electrode 18 is formed has a predetermined shape in the cross-sectional shape in the energizing direction, the upper surface electrode 18 is properly formed without causing a rupture portion or a thin film portion, and the upper surface electrode 18 is broken. It has high reliability without any deterioration in the conductivity due to the above.
On the other hand, in the cross-sectional shape (rectangular shape) in the energization direction, both the comparative examples 1 and 2 in which the side surface of the upper electrode 18 does not have a predetermined shape have a broken portion or a thin film portion in the upper electrode 18, It is considered that the conductivity is reduced due to this. In addition, due to the decrease in conductivity, the thermoelectromotive force is low even though the element has the same thickness as in Examples 1 and 2 where L2 / L1 is 0.15 and 0.12.
From the above results, the effects of the present invention are clear.

10 熱電変換素子
12 基板
14 下部電極
16,16a,16b,70 熱電変換層
18 上部電極
DESCRIPTION OF SYMBOLS 10 Thermoelectric conversion element 12 Substrate 14 Lower electrode 16, 16a, 16b, 70 Thermoelectric conversion layer 18 Upper electrode

Claims (9)

基板と、
前記基板の上に形成される下部電極と、
前記下部電極の一部を覆って、前記基板の上に形成される熱電変換層と、
前記下部電極と離間する位置から前記基板上を下部電極に向かい、次いで、前記基板上から立ち上がって前記熱電変換層の表面に沿って形成される、前記下部電極と共に熱電変換層を挟むように設けられる上部電極とを有し、
さらに、前記基板上における下部電極と上部電極との通電方向の前記熱電変換層の断面形状は、前記上部電極と対面し、かつ、前記基板に向かって降下する領域が、前記通電方向の下部電極の端部から、漸次、離間するように傾斜する形状を有することを特徴とする熱電変換素子。
A substrate,
A lower electrode formed on the substrate;
A thermoelectric conversion layer that covers a portion of the lower electrode and is formed on the substrate;
Provided so as to sandwich the thermoelectric conversion layer together with the lower electrode, which is formed along the surface of the thermoelectric conversion layer that rises from the substrate toward the lower electrode from a position separated from the lower electrode. An upper electrode,
Further, the cross-sectional shape of the thermoelectric conversion layer in the energizing direction between the lower electrode and the upper electrode on the substrate is such that the region facing the upper electrode and descending toward the substrate is the lower electrode in the energizing direction. A thermoelectric conversion element having a shape that inclines so as to be gradually separated from an end of the element.
少なくとも熱電変換層の上面に、凹状になっている部分を有さない請求項1に記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein at least an upper surface of the thermoelectric conversion layer does not have a concave portion. 前記基板に対して垂直方向に見た際に、前記上部電極と下部電極とが重なる領域を有し、かつ、この上部電極と下部電極とが重なる領域を、前記熱電変換層の上面と見なす請求項2に記載の熱電変換素子。   The upper electrode and the lower electrode have a region overlapping when viewed in a direction perpendicular to the substrate, and the region where the upper electrode and the lower electrode overlap is regarded as the upper surface of the thermoelectric conversion layer. Item 3. The thermoelectric conversion element according to Item 2. 前記熱電変換層が、上面に平面な領域を有する請求項1〜3のいずれか1項に記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein the thermoelectric conversion layer has a planar region on an upper surface. 前記熱電変換層の断面形状が、台形である請求項1〜4のいずれか1項に記載の熱電変換素子。   The thermoelectric conversion element according to claim 1, wherein a cross-sectional shape of the thermoelectric conversion layer is a trapezoid. 前記通電方向における熱電変換層の上部電極側の端部の下端は、前記下部電極の上面よりも基板側に位置する請求項1〜5のいずれか1項に記載の熱電変換素子。   The thermoelectric conversion element according to any one of claims 1 to 5, wherein a lower end of an end portion on the upper electrode side of the thermoelectric conversion layer in the energization direction is located closer to the substrate side than an upper surface of the lower electrode. 前記通電方向における熱電変換層の長さをL1、前記基板からの熱電変換層の高さをL2とした際に、『L2/L1>0.05』を満たす請求項1〜6のいずれか1項に記載の熱電変換素子。   The length of the thermoelectric conversion layer in the energization direction is L1, and when the height of the thermoelectric conversion layer from the substrate is L2, any one of claims 1 to 6 satisfying "L2 / L1> 0.05". The thermoelectric conversion element according to item. 前記熱電変換層が、樹脂材料に熱電変換機能を有する材料を分散してなるものである請求項1〜7のいずれか1項に記載の熱電変換素子。   The thermoelectric conversion element according to any one of claims 1 to 7, wherein the thermoelectric conversion layer is formed by dispersing a material having a thermoelectric conversion function in a resin material. 前記樹脂材料が、熱硬化樹脂もしくは紫外線硬化樹脂で形成される請求項8に記載の熱電変換素子。   The thermoelectric conversion element according to claim 8, wherein the resin material is formed of a thermosetting resin or an ultraviolet curable resin.
JP2013183191A 2013-09-04 2013-09-04 Thermoelectric conversion element Pending JP2015050426A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013183191A JP2015050426A (en) 2013-09-04 2013-09-04 Thermoelectric conversion element
PCT/JP2014/072726 WO2015033868A1 (en) 2013-09-04 2014-08-29 Thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013183191A JP2015050426A (en) 2013-09-04 2013-09-04 Thermoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2015050426A true JP2015050426A (en) 2015-03-16

Family

ID=52628342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013183191A Pending JP2015050426A (en) 2013-09-04 2013-09-04 Thermoelectric conversion element

Country Status (2)

Country Link
JP (1) JP2015050426A (en)
WO (1) WO2015033868A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207692A (en) * 2015-04-15 2016-12-08 トヨタ自動車株式会社 Nanocomposite thermoelectric conversion material and production method therefor
JP2017076720A (en) * 2015-10-15 2017-04-20 国立研究開発法人産業技術総合研究所 Manufacturing method for thermoelectric conversion module
JP2017143148A (en) * 2016-02-09 2017-08-17 国立大学法人 奈良先端科学技術大学院大学 Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module
WO2018110403A1 (en) * 2016-12-13 2018-06-21 リンテック株式会社 Thermoelectric conversion material and method for producing same
WO2020045378A1 (en) * 2018-08-28 2020-03-05 リンテック株式会社 Semiconductor element
JP2020077779A (en) * 2018-11-08 2020-05-21 富士通株式会社 Photo detection element, photosensor and method of manufacturing photo detection element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110649149B (en) * 2019-09-26 2021-03-02 东北大学 Offset semiconductor thermoelectric module adopting thermoelectric arms with hexahedral structure
JP7500968B2 (en) 2019-12-25 2024-06-18 artience株式会社 Thermoelectric conversion materials and thermoelectric conversion elements

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1168176A (en) * 1997-08-08 1999-03-09 Agency Of Ind Science & Technol Thermoelectric conversion device
EP2682994B1 (en) * 2011-03-04 2016-04-27 National Institute of Advanced Industrial Science And Technology Thermoelectric conversion material, and flexible thermoelectric conversion device using same
JP2013065801A (en) * 2011-08-31 2013-04-11 Jmc Kk Thermoelectric conversion element, thermoelectric conversion module, and manufacturing method therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207692A (en) * 2015-04-15 2016-12-08 トヨタ自動車株式会社 Nanocomposite thermoelectric conversion material and production method therefor
JP2017076720A (en) * 2015-10-15 2017-04-20 国立研究開発法人産業技術総合研究所 Manufacturing method for thermoelectric conversion module
JP2017143148A (en) * 2016-02-09 2017-08-17 国立大学法人 奈良先端科学技術大学院大学 Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module
WO2018110403A1 (en) * 2016-12-13 2018-06-21 リンテック株式会社 Thermoelectric conversion material and method for producing same
JPWO2018110403A1 (en) * 2016-12-13 2019-10-24 リンテック株式会社 Thermoelectric conversion material and manufacturing method thereof
JP7173869B2 (en) 2016-12-13 2022-11-16 リンテック株式会社 Thermoelectric conversion material and manufacturing method thereof
US11522114B2 (en) 2016-12-13 2022-12-06 Lintec Corporation Thermoelectric conversion material and method for producing same
WO2020045378A1 (en) * 2018-08-28 2020-03-05 リンテック株式会社 Semiconductor element
JPWO2020045378A1 (en) * 2018-08-28 2021-09-24 リンテック株式会社 Semiconductor element
JP7348192B2 (en) 2018-08-28 2023-09-20 リンテック株式会社 semiconductor element
JP2020077779A (en) * 2018-11-08 2020-05-21 富士通株式会社 Photo detection element, photosensor and method of manufacturing photo detection element
JP7260736B2 (en) 2018-11-08 2023-04-19 富士通株式会社 Photodetector, optical sensor, and method for manufacturing photodetector

Also Published As

Publication number Publication date
WO2015033868A1 (en) 2015-03-12

Similar Documents

Publication Publication Date Title
WO2015033868A1 (en) Thermoelectric conversion element
McCoul et al. Recent advances in stretchable and transparent electronic materials
Kwon et al. Extremely stable graphene electrodes doped with macromolecular acid
JP5984748B2 (en) Thermoelectric conversion element and thermoelectric conversion module
Fan et al. Bendable ITO-free organic solar cells with highly conductive and flexible PEDOT: PSS electrodes on plastic substrates
Lee et al. Versatile metal nanowiring platform for large-scale nano-and opto-electronic devices
Zhang et al. Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes
JP6181206B2 (en) Thermoelectric conversion element and method for manufacturing thermoelectric conversion element
Schlingman et al. 25 Years of Light‐Emitting Electrochemical Cells: A Flexible and Stretchable Perspective
Kim et al. Ultrathin organic solar cells with graphene doped by ferroelectric polarization
Wang et al. Simple layer-by-layer assembly method for simultaneously enhanced electrical conductivity and thermopower of PEDOT: PSS/ce-MoS2 heterostructure films
Hwang et al. Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes
Ricciardulli et al. Solution-processable high-quality graphene for organic solar cells
Li et al. Roles of polyethylenimine ethoxylated in efficiently tuning the thermoelectric performance of poly (3, 4-ethylenedioxythiophene)-rich nanocrystal films
EP2682994B1 (en) Thermoelectric conversion material, and flexible thermoelectric conversion device using same
Li et al. Synthesizing a healable stretchable transparent conductor
Han et al. Flexible transparent electrodes for organic light-emitting diodes
Jin et al. Ultra-smooth, fully solution-processed large-area transparent conducting electrodes for organic devices
JP5931790B2 (en) Thermoelectric module
Schrage et al. Flexible and transparent SWCNT electrodes for alternating current electroluminescence devices
Kim et al. Foldable transparent substrates with embedded electrodes for flexible electronics
Yun et al. Composite films of oxidized multiwall carbon nanotube and poly (3, 4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) as a contact electrode for transistor and inverter devices
Liu et al. Two-in-one method for graphene transfer: simplified fabrication process for organic light-emitting diodes
JP2015035599A (en) Thermoelectric conversion material, thermoelectric conversion element, and thermoelectricity-generating article and sensor-use power source using the same
Kim et al. Highly deformable transparent Au film electrodes and their uses in deformable displays