JP2017076720A - Manufacturing method for thermoelectric conversion module - Google Patents

Manufacturing method for thermoelectric conversion module Download PDF

Info

Publication number
JP2017076720A
JP2017076720A JP2015203912A JP2015203912A JP2017076720A JP 2017076720 A JP2017076720 A JP 2017076720A JP 2015203912 A JP2015203912 A JP 2015203912A JP 2015203912 A JP2015203912 A JP 2015203912A JP 2017076720 A JP2017076720 A JP 2017076720A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion element
electrode pattern
insulating substrate
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015203912A
Other languages
Japanese (ja)
Other versions
JP6739072B2 (en
Inventor
正行 村田
Masayuki Murata
正行 村田
山本 淳
Atsushi Yamamoto
淳 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015203912A priority Critical patent/JP6739072B2/en
Publication of JP2017076720A publication Critical patent/JP2017076720A/en
Application granted granted Critical
Publication of JP6739072B2 publication Critical patent/JP6739072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that the manufacturing process of a thermoelectric conversion module, where N and P types are arranged alternately, is complicated although the generation efficiency is high, and that integration of a thermoelectric conversion module, consisting of the same type of thermoelectric conversion elements, is problematic although manufacturing is easy.SOLUTION: An electrode pattern is attached to an insulating substrate, thermoelectric conversion elements of the same type, having a side face covered with an insulator, are arranged on the electrode pattern, subjected to metal deposition from a first oblique direction, followed by metal deposition from a second opposite oblique direction, thus obtaining a thermoelectric conversion module consisting of thermoelectric conversion elements of the same type, connected in series.SELECTED DRAWING: Figure 1

Description

本発明は熱電変換素子を直列に接続した熱電変換モジュールの作製方法に関する。   The present invention relates to a method for manufacturing a thermoelectric conversion module in which thermoelectric conversion elements are connected in series.

熱電変換とは、熱電材料中の温度差と電圧の関係を利用して、熱エネルギーと電気エネルギーを相互に直接変換する技術を言い、素子の両端に温度差をつけることで熱起電力が発生するゼーベック効果と電流の印加によって素子に温度差が生じるペルチェ効果の原理を利用している。   Thermoelectric conversion is a technology that directly converts heat energy and electrical energy using the relationship between temperature difference and voltage in thermoelectric materials, and generates thermoelectromotive force by creating a temperature difference at both ends of the element. It uses the principle of the Seebeck effect and the Peltier effect in which a temperature difference occurs in the element due to the application of current.

熱電変換を発電素子や冷却素子として利用する場合、極力無駄な熱流が高温部から低温部に流れないような構造を取る必要がある為、電圧が反転しているN型とP型を対にしてΠ型素子とする事で、N型とP型のどちらに流れる熱量も発電や冷却に寄与する事ができる。
さらに、このΠ型素子を複数個、直列配列することで高い起電力や大きな温度差を得ることができるようになる。
このように、熱電変換モジュールはこのN、P型を交互に並べる構造である為、モジュールの作製工程が複雑になる(特許文献1)。
When thermoelectric conversion is used as a power generation element or cooling element, it is necessary to take a structure that prevents the useless heat flow from flowing from the high temperature part to the low temperature part. By using a vertical element, the amount of heat flowing in either the N-type or the P-type can contribute to power generation or cooling.
Furthermore, a high electromotive force and a large temperature difference can be obtained by arranging a plurality of saddle-shaped elements in series.
Thus, since the thermoelectric conversion module has a structure in which the N and P types are alternately arranged, the module manufacturing process is complicated (Patent Document 1).

同一型の薄膜熱電変換素子を電気的に直列接続するために金属蒸着により金属電極および接続部を積層して隣り合う熱電変換素子を導通させる方法が開示されているが、熱電素子の側面が電極と導通しているため、素子に十分な温度差と電位差が得られない(特許文献2)。   In order to electrically connect thin-film thermoelectric conversion elements of the same type in series, a method of laminating metal electrodes and connecting portions by metal vapor deposition and conducting adjacent thermoelectric conversion elements is disclosed. Therefore, a sufficient temperature difference and potential difference cannot be obtained in the element (Patent Document 2).

また、第1電極と接続部を一体化させた部材を第2電極に備えた穴部に受け入れて隣り合う同一型の熱電変換素子を電気的に直列接続する熱電変換モジュールが提案されているが、第1電極板が直接低温側まで接続されていることから、無駄な熱流によりモジュールの性能が低下する(特許文献3)。
また、素子の側面がガラスに覆われた状態で熱電変換素子を作り、高密度配列と電極接続の信頼性を高くし、さらに材料表面が大気中に露出されないため素子表面の酸化による劣化を防ぐ熱電変換モジュールが提案されている(特許文献4)。
Moreover, although the thermoelectric conversion module which receives the member which integrated the 1st electrode and the connection part in the hole provided in the 2nd electrode, and electrically connects the adjacent same type thermoelectric conversion element in series is proposed. Since the first electrode plate is directly connected to the low temperature side, the performance of the module deteriorates due to useless heat flow (Patent Document 3).
In addition, a thermoelectric conversion element is made with the side surface of the element covered with glass to increase the reliability of the high-density array and electrode connection, and further, the surface of the material is not exposed to the atmosphere, so that deterioration of the element surface due to oxidation is prevented. A thermoelectric conversion module has been proposed (Patent Document 4).

一般的なモジュールは、N,P型を電気的に導通させる電極として金属板を利用し、絶縁基板でそれらの素子を挟み込む構造をしている。
その結果、板状の金属をバルクの熱電材料に対して良好な熱,電気的接触を得るためには、数ミリメートル程度の大きさが必要であることから素子を高密度化することは難しく、モジュールの面積が小さい場合には高い起電力を得ることができない。
さらに、放熱側に取り付けられている絶縁基板のために放熱性が低く、実際にモジュールを使用する際には、さらに放熱性を高めるためのヒートシンクや熱交換器が取り付けられるために、システムは複雑になる。
A general module has a structure in which a metal plate is used as an electrode for electrically conducting N and P types, and these elements are sandwiched between insulating substrates.
As a result, in order to obtain good heat and electrical contact between the plate-like metal and the bulk thermoelectric material, it is difficult to increase the density of the element because the size of several millimeters is necessary. When the area of the module is small, a high electromotive force cannot be obtained.
Furthermore, the heat dissipation is low due to the insulating substrate attached to the heat dissipation side, and the system is complicated because heat sinks and heat exchangers are installed to improve heat dissipation when actually using the module. become.

特開2013−207037号公報JP2013-207037A 特開昭63−102382号公報JP 63-102382 A 特開2014−179539号公報JP 2014-179539 A 特表2013−542578号公報Special table 2013-542578 gazette

同一型の熱電変換素子を用いることにより作製が容易でかつ作製工程がシンプルな作製方法が課題となる。   A manufacturing method that is easy to manufacture by using the same type of thermoelectric conversion element and that has a simple manufacturing process becomes a problem.

上記課題を解決するために本発明は次の手段を提供できる。
(1)
その側面が絶縁体に覆われ上面と底面が上部電極と下部電極を構成する柱状の同一導電型の半導体からなる熱電変換素子を絶縁基板にその底面が接するように格子状に配列された熱電変換素子モジュールの直列接続作製方法であって、
主部と足からなる電極パターンを前記絶縁基板の所定の位置に配置し、
前記電極パターンの主部に前記熱電変換素子の下部電極をその底面で接合し、
前記絶縁基板の斜め上方から対向して2回金属を蒸着し、
一の熱電変換素子の下部電極の当該電極パターンの足と次の熱電変換素子の上部電極を、当該足と前記次の熱電変換素子の側面とその間の絶縁基板を覆う前記蒸着した金属で接続し、
前記全ての熱電変換素子を直列に接続したことを特徴とする熱電変換素子モジュールの直列接続作製方法。
In order to solve the above problems, the present invention can provide the following means.
(1)
Thermoelectric conversion in which the side surfaces are covered with an insulator and the top and bottom surfaces are composed of columnar, same-conductivity-type semiconductors constituting the upper and lower electrodes, arranged in a grid so that the bottom surface is in contact with the insulating substrate A method for producing a series connection of element modules,
An electrode pattern consisting of a main part and legs is arranged at a predetermined position of the insulating substrate,
Bonding the lower electrode of the thermoelectric conversion element to the main part of the electrode pattern at the bottom surface,
The metal is vapor-deposited twice facing diagonally from above the insulating substrate,
The foot of the electrode pattern of the lower electrode of one thermoelectric conversion element and the upper electrode of the next thermoelectric conversion element are connected with the deposited metal covering the foot, the side surface of the next thermoelectric conversion element, and the insulating substrate therebetween. ,
A method for producing a serial connection of thermoelectric conversion element modules, wherein all the thermoelectric conversion elements are connected in series.

(2)
前記絶縁基板に配置された前記電極パターンの所定の位置は、前記斜め上方から見た場合に、手前の前記熱電変換素子の側面と奥の前記熱電変換素子の側面が所定の厚さで重なり合っていることを特徴とする(1)に記載の熱電変換素子モジュールの直列接続作製方法。
(2)
The predetermined position of the electrode pattern disposed on the insulating substrate is such that when viewed obliquely from above, the side surface of the thermoelectric conversion element in front and the side surface of the thermoelectric conversion element in the back overlap each other with a predetermined thickness. The method for producing a serial connection of thermoelectric conversion element modules according to (1), wherein:

(3)
前記金属の蒸着をPVD法で行ったことを特徴とする(2)に記載の熱電変換素子モジュールの直列接続作製方法。
(3)
The method for serially connecting thermoelectric conversion element modules according to (2), wherein the metal is deposited by a PVD method.

(4)
前記PVD法は真空蒸着法であることを特徴とする(3)に記載の熱電変換素子モジュールの直列接続作製方法。
(4)
The PVD method is a vacuum deposition method, wherein the thermoelectric conversion element modules are connected in series according to (3).

(5)
前記同一導電型はP型またはN型であることを特徴とする(1)乃至(3)のいずれかに記載の熱電変換素子モジュールの作製方法。
(5)
The method of manufacturing a thermoelectric conversion element module according to any one of (1) to (3), wherein the same conductivity type is P type or N type.

(6)
その側面が絶縁体に覆われ上面と底面が上部電極と下部電極を構成する柱状の同一導電型の半導体からなる熱電変換素子を絶縁基板にその底面が接するように格子状に配列された熱電変換素子モジュールであって、
主部と足からなる電極パターンが前記絶縁基板の所定の位置に配置され、
前記電極パターンの主部に前記熱電変換素子の下部電極をその底面で接合され、
一の熱電変換素子の下部電極の当該電極パターンの足と次の熱電変換素子の上部電極が、当該足と前記次の熱電変換素子の側面とその間の絶縁基板を覆う蒸着した金属で接続され、
前記全ての熱電変換素子が直列に接続されていることを特徴とする熱電変換素子モジュール。
(6)
Thermoelectric conversion in which the side surfaces are covered with an insulator and the top and bottom surfaces are composed of columnar, same-conductivity-type semiconductors constituting the upper and lower electrodes, arranged in a grid so that the bottom surface is in contact with the insulating substrate An element module,
An electrode pattern consisting of a main part and legs is arranged at a predetermined position of the insulating substrate,
The lower electrode of the thermoelectric conversion element is bonded to the main part of the electrode pattern at the bottom surface,
The foot of the electrode pattern of the lower electrode of one thermoelectric conversion element and the upper electrode of the next thermoelectric conversion element are connected with the deposited metal covering the foot, the side surface of the next thermoelectric conversion element, and the insulating substrate therebetween,
All the thermoelectric conversion elements are connected in series, The thermoelectric conversion element module characterized by the above-mentioned.

(7)
前記同一導電型はP型またはN型であることを特徴とする(6)に記載の熱電変換素子モジュール。
(7)
The thermoelectric conversion element module according to (6), wherein the same conductivity type is P type or N type.

本願発明には次の効果が期待できる。
(1) N型素子とP型素子を交互に並べる構造に比べ、1キャリア素子のみで直列接続するユニレグ構造(1キャリア素子と金属を利用して直列接続を得る構造)である為、材料開発や製造プロセスを簡易化できる。
The following effects can be expected from the present invention.
(1) Compared to the structure in which N-type elements and P-type elements are arranged alternately, it is a unileg structure (structure that obtains series connection using one carrier element and metal) with only one carrier element, so material development And the manufacturing process can be simplified.

(2) 従来は電極として金属板を利用しているが、蒸着によりすべての素子を導通させる事ができるため、素子の小型化に伴ったモジュールの高密度化が可能。
(3) その結果,単位面積当たりの起電力を向上させる事が可能。
(2) Conventionally, a metal plate is used as an electrode, but since all elements can be made conductive by vapor deposition, it is possible to increase the density of the module as the elements become smaller.
(3) As a result, the electromotive force per unit area can be improved.

(4) 従来のユニレグ構造に比べると、薄膜で導通させることから、無駄な熱流を最小限に抑える事が可能。   (4) Compared to the conventional unileg structure, it is possible to minimize wasteful heat flow because it is conducted with a thin film.

(5) 熱電変換素子が絶縁体に覆われているため、素子表面の酸化を防ぐことが可能。
(6) 素子自身が放熱フィンの構造をとるため、熱電発電に求められる放熱性が、ヒートシンク等の放熱構造を取らなくても良好。
(5) Since the thermoelectric conversion element is covered with an insulator, it is possible to prevent oxidation of the element surface.
(6) Since the element itself takes the structure of a heat radiating fin, the heat dissipation required for thermoelectric power generation is good even if a heat radiating structure such as a heat sink is not used.

図1は、右図が熱電変換モジュールの平面図、左図がA−A’およびB−B’で切断した断面図である。図1(a)は絶縁基板と、取り付けられた電極パターンを表し、図1(b)は絶縁体に覆われた熱電素子を絶縁基板上に配列した様子を表し、図1(c)は第1の斜め方向から金属蒸着した様子を表し、図1(d)は第2の斜め方向から金属蒸着した様子を表す。FIG. 1 is a plan view of the thermoelectric conversion module on the right side, and a cross-sectional view taken along lines A-A ′ and B-B ′ on the left side. 1A shows an insulating substrate and attached electrode patterns, FIG. 1B shows a state in which thermoelectric elements covered with an insulator are arranged on the insulating substrate, and FIG. FIG. 1 (d) shows a state in which metal deposition is performed from the first oblique direction, and FIG. 1 (d) illustrates a state in which metal deposition is performed from the second oblique direction. 図2は、第1素子列の右側2個の熱電変換素子と、第2素子列の右側2個の熱電変換素子の電極パターンを抜き出した図である。FIG. 2 is a diagram in which the electrode patterns of the two thermoelectric conversion elements on the right side of the first element row and the two thermoelectric conversion elements on the right side of the second element row are extracted. 図3は、斜め方向1から金属蒸着後の第2素子列6をY方向と−Y方向から見た熱電変換素子の側面の蒸着領域を示す図である。FIG. 3 is a diagram showing a vapor deposition region on the side surface of the thermoelectric conversion element when the second element array 6 after metal deposition is viewed from the oblique direction 1 in the Y direction and the −Y direction. 図4は、斜め方向2から金属蒸着後の第2素子列6をY方向と−Y方向から見た熱電変換素子の側面の蒸着領域を示す図である。FIG. 4 is a diagram showing a vapor deposition region on the side surface of the thermoelectric conversion element when the second element row 6 after metal vapor deposition is viewed from the oblique direction 2 from the Y direction and the −Y direction.

図1の工程図に基づいて本発明の実施形態を説明する。
図1に、X軸方向に3または4素子、Y軸方向に4素子を配列した熱電変換モジュール12を示した。
また、各熱電変換素子11の上面は上部電極14、底面は下部電極13として構成されている。
An embodiment of the present invention will be described based on the process diagram of FIG.
FIG. 1 shows a thermoelectric conversion module 12 in which three or four elements are arranged in the X-axis direction and four elements are arranged in the Y-axis direction.
The upper surface of each thermoelectric conversion element 11 is configured as an upper electrode 14, and the bottom surface is configured as a lower electrode 13.

(1) 図1(a)に示したように、まず絶縁基板10の上にあらかじめ実現したい直列接続に対応し熱電変換素子を接続する配線の一部となる特定の電極パターンを作製する。
図では、矢印の方向に直列接続される電極パターン9が描かれている。
図2に示した各電極パターン21,22、23,24は配線であって熱電変換素子の底面と接する主部と所定の長さと方向を有する足(または髭)を有している。
(1) As shown in FIG. 1A, first, a specific electrode pattern that is a part of wiring for connecting a thermoelectric conversion element corresponding to a series connection to be realized in advance is formed on an insulating substrate 10.
In the figure, electrode patterns 9 connected in series in the direction of the arrow are drawn.
Each electrode pattern 21, 22, 23, 24 shown in FIG. 2 is a wiring, and has a main part in contact with the bottom surface of the thermoelectric conversion element and a foot (or heel) having a predetermined length and direction.

(2) 図1(b)に示したように、電極パターンの主部に側面を絶縁体に覆われた円柱形状の熱電変換素子11の下部電極13を、導電性接着剤やろう付けで固定する。   (2) As shown in FIG. 1 (b), the lower electrode 13 of the cylindrical thermoelectric conversion element 11 whose side is covered with an insulator is fixed to the main part of the electrode pattern by a conductive adhesive or brazing. To do.

(3) 図1(c)に示したように、斜め方向1から絶縁基板10の上に金属を蒸着すると各熱電変換素子11を斜め方向1から見て表になる側面と基板の部分3に金属が蒸着される。   (3) As shown in FIG. 1 (c), when metal is deposited on the insulating substrate 10 from the oblique direction 1, each thermoelectric conversion element 11 is formed on the side surface and the portion 3 of the substrate as viewed from the oblique direction 1. Metal is deposited.

この結果、第2素子列の左から1番目の熱電変換素子11を例に取ると、その下部電極13と予め基板に作製した当該電極パターン24の足と基板の部分3に蒸着された金属と次に配置された左から2番目の熱電変換素子11の側面に蒸着された金属と当該熱電変換素子11の上部電極とが結合して導通し隣り合う2個の熱電変換素子の直列接続が実現される。   As a result, taking the first thermoelectric conversion element 11 from the left in the second element row as an example, the lower electrode 13, the legs of the electrode pattern 24 previously formed on the substrate, and the metal deposited on the portion 3 of the substrate, Next, the metal deposited on the side surface of the second thermoelectric conversion element 11 arranged from the left and the upper electrode of the thermoelectric conversion element 11 are coupled and connected to each other, and two adjacent thermoelectric conversion elements are connected in series. Is done.

このようにして、第2素子列6と第4素子列8がそれぞれ直列接続される。
この時、第1素子列5の各素子と第3素子列7の各素子は接続されておらず、また第1列と第2列、第2列と第3列、および、第3列と第4列の各間も接続されていない。
In this way, the second element row 6 and the fourth element row 8 are respectively connected in series.
At this time, each element of the first element column 5 and each element of the third element column 7 are not connected, and the first column and the second column, the second column and the third column, and the third column, There is no connection between the fourth row.

(4) 図1(d)に示したように、斜め方向2から絶縁基板10の上に金属を蒸着することで素子11の斜め方向2からみて表になる側面と基板の部分4に金属が蒸着される。   (4) As shown in FIG. 1 (d), metal is deposited on the insulating substrate 10 from the oblique direction 2, so that the metal is deposited on the side surface and the portion 4 of the substrate as viewed from the oblique direction 2 of the element 11. Vapor deposited.

この結果、第3素子列の右から1番目の熱電変換素子11を例に取ると、その下部電極13と予め基板に作製した電極パターン22の足と基板の部分4に蒸着された金属と次に配置された右から2番目の熱電変換素子11の側面に蒸着された金属と当該熱電変換素子11の上部電極とが結合して導通し隣り合う2個の熱電変換素子の直列接続が実現される。
このようにして、第1素子列と第3素子列がそれぞれ直列接続される。
As a result, taking the first thermoelectric conversion element 11 from the right in the third element row as an example, the lower electrode 13, the legs of the electrode pattern 22 previously formed on the substrate, the metal deposited on the portion 4 of the substrate, and the next The metal vapor-deposited on the side surface of the second thermoelectric conversion element 11 arranged on the right and the upper electrode of the thermoelectric conversion element 11 are connected and connected to each other, and two adjacent thermoelectric conversion elements are connected in series. The
In this way, the first element row and the third element row are connected in series.

また、この斜め方向2からの金属蒸着により、第1列5と第2列6の右端、第2列6と第3列7の左端、第3列7と第4列8の右端に配置された熱電変換素子同士も同様にして導通し接続され、結果として全ての素子は直列接続される。   Further, the metal deposition from the oblique direction 2 is arranged at the right end of the first row 5 and the second row 6, the left end of the second row 6 and the third row 7, and the right end of the third row 7 and the fourth row 8. The thermoelectric conversion elements are also conducted and connected in the same manner, and as a result, all the elements are connected in series.

熱電変換素子モジュール12の作製は、CG(コンピュータグラフィックス)を用いて行い、3次元空間に熱電変換素子モジュールをシミュレーションして作製した。
また、金属蒸着は実際の素子への蒸着ではなく、上述の3次元空間に配置された熱電変換素子に所定の角度で平行光源を当ててライティング処理を施して、その照射領域を金属蒸着領域とみなして解析を行った。
The thermoelectric conversion element module 12 was manufactured using CG (computer graphics), and the thermoelectric conversion element module was simulated in a three-dimensional space.
Metal vapor deposition is not vapor deposition on an actual element, but a lighting process is performed by applying a parallel light source at a predetermined angle to the thermoelectric conversion elements arranged in the above-described three-dimensional space, and the irradiation area is defined as a metal vapor deposition area. The analysis was performed on the assumption.

CGシミュレーションで行った熱電変換素子モジュールの具体的なサイズは30×30×6(mm)、絶縁体基板のサイズは30×30×1(mm)、熱電変換素子11の形状は円柱形上で縦横高さは直径3(mm)で高さが3(mm)である。   The specific size of the thermoelectric conversion element module performed in the CG simulation is 30 × 30 × 6 (mm), the size of the insulator substrate is 30 × 30 × 1 (mm), and the shape of the thermoelectric conversion element 11 is a cylindrical shape. The height and width are 3 mm in diameter and 3 mm in height.

また、各素子は基板上の六角状格子点に配置され各列の格子点間距離は5(mm)隣り合う列の格子点間距離は4(mm)とし、無限遠光源から変換素子モジュールを覆う平行光を素子へ当てた場合の照射領域を蒸着領域と同一視した(以降、擬制蒸着領域と言う)。
また、素子の導通に関しては、隣り合う下部電極と上部電極が電極パターンの足と、基板10の部分3および4と熱電変換素子の側面とが連続する擬制蒸着領域で覆われて接続されている状態を導通とした。
Each element is arranged at a hexagonal lattice point on the substrate, the distance between lattice points of each row is 5 (mm), and the distance between lattice points of adjacent rows is 4 (mm). The irradiation area in the case where the covering parallel light was applied to the element was identified as the vapor deposition area (hereinafter referred to as pseudo vapor deposition area).
Regarding the conduction of the element, the adjacent lower electrode and upper electrode are connected by being covered with a pseudo vapor deposition region in which the foot of the electrode pattern, the portions 3 and 4 of the substrate 10 and the side surface of the thermoelectric conversion element are continuous. The state was made conductive.

同一視できる理由は、本発明で利用し得る金属蒸着方法のひとつは高真空蒸着法であり、斜め方向1または斜め方向2から熱電変換素子に金属蒸着した場合、当該熱電変換素子側面の後側への回折・回り込みがない、または、あっても僅かであり、各方向から見て表側の熱電変換素子とその後側の熱電変換素子の重なりを調整する事により各方向から熱電変換素子の側面に蒸着した金属と,あらかじめ絶縁基板上に作製された電極パターンが短絡する事がないようにできるからである。
従って、回折・回り込みがない、または、あっても僅かな蒸着法であれば、いずれの方法であってもよい。
以下に、各工程の実施例の詳細を説明する。
The reason why they can be identified is that one of the metal vapor deposition methods that can be used in the present invention is the high vacuum vapor deposition method, and when metal vapor deposition is performed on the thermoelectric conversion element from the diagonal direction 1 or the diagonal direction 2, the rear side of the thermoelectric conversion element side surface. There is little or even no diffraction and wraparound to the side of the thermoelectric conversion element from each direction by adjusting the overlap of the thermoelectric conversion element on the front side and the thermoelectric conversion element on the rear side as seen from each direction. This is because the deposited metal and the electrode pattern previously formed on the insulating substrate can be prevented from being short-circuited.
Therefore, any method may be used as long as there is no diffraction / wraparound or a slight evaporation method.
Below, the detail of the Example of each process is demonstrated.

(1)
まず、絶縁基板10を用意し、その上に電極パターン9を配置する。
(1)
First, the insulating substrate 10 is prepared, and the electrode pattern 9 is disposed thereon.

図2において、電極パターン21のサイズは、円形の部分が直径2.4(mm)、髭の長さが1(mm),幅が0.35(mm),向きはx軸から反時計回りに210度となっている.電極パターン22からの24のサイズは電極パターン21と同じである.髭の角度は,電極パターン22が同じく210度,電極パターン23がX軸から反時計回りに90度,電極パターン24がX軸から反時計回りに30度となっている。
電極パターンは予め絶縁基板に配線として印刷しておいてよい。
In FIG. 2, the size of the electrode pattern 21 is that the diameter of the circular portion is 2.4 (mm), the length of the ridge is 1 (mm), the width is 0.35 (mm), and the direction is counterclockwise from the x-axis. It is 210 degrees. The size of 24 from the electrode pattern 22 is the same as the electrode pattern 21. The angle of the heel is 210 degrees for the electrode pattern 22, 90 degrees for the electrode pattern 23 counterclockwise from the X axis, and 30 degrees for the electrode pattern 24 counterclockwise from the X axis.
The electrode pattern may be printed as wiring on the insulating substrate in advance.

(2)
次に、準備した各電極パターンの上に熱電変換素子の下部電極を底面にして導電性接着剤やろう付けで固定する。
(2)
Next, the lower electrode of the thermoelectric conversion element is fixed on each prepared electrode pattern by a conductive adhesive or brazing.

(3)
次に、上で準備した熱電変換素子モジュールの斜め方向1から熱電変換素子に金属蒸着する。
本実施例では、斜め方向1は、図1(c)の絶縁基板のX軸に対して時計回りに30度、絶縁基板平面に対し鉛直方向45度下方であった。
(3)
Next, metal deposition is performed on the thermoelectric conversion element from the oblique direction 1 of the thermoelectric conversion element module prepared above.
In this example, the oblique direction 1 was 30 degrees clockwise with respect to the X axis of the insulating substrate in FIG. 1C and 45 degrees below the insulating substrate plane.

この時の斜め方向1から見て表側の熱電変換素子と後側の熱電変換素子の側面の重なりはおよそ0.5(mm)であった。
この方向と重なり具合は、熱電変換素子の直径と高さ、熱電変換素子の格子点間距離をパラメータとして適宜、決定すればよい。
図1(c)は、斜め方向1から金属蒸着後の熱電変換素子モジュールを上から見た図である。
At this time, when viewed from the oblique direction 1, the overlap of the side surfaces of the thermoelectric conversion element on the front side and the thermoelectric conversion element on the rear side was about 0.5 (mm).
The direction and the degree of overlap may be appropriately determined using the diameter and height of the thermoelectric conversion element and the distance between lattice points of the thermoelectric conversion element as parameters.
FIG. 1C is a view of the thermoelectric conversion element module after metal deposition from the oblique direction 1 as seen from above.

図3にこの金属蒸着で蒸着された第2素子列6をY方向と−Y方向から見た熱電変換素子の側面の領域を示す。   FIG. 3 shows a side region of the thermoelectric conversion element when the second element array 6 deposited by this metal deposition is viewed from the Y direction and the −Y direction.

(4)
さらに、上で準備した熱電変換素子モジュールの斜め方向1と下方に向けて対向する斜め方向2から熱電変換素子に金属蒸着する。
本実施例では、斜め方向2は、図1(c)に示す絶縁基板のX軸に対して反時計回りに150度、絶縁基板平面に対し鉛直方向45度下方であった。
(4)
Further, metal deposition is performed on the thermoelectric conversion element from the oblique direction 2 facing downward in the oblique direction 1 of the thermoelectric conversion element module prepared above.
In this example, the oblique direction 2 was 150 degrees counterclockwise with respect to the X axis of the insulating substrate shown in FIG. 1C and 45 degrees below the insulating substrate plane.

この時の斜め方向2から見て表側の熱電変換素子と後側の熱電変換素子の側面の重なりはおよそ0.5(mm)であった。   At this time, the overlap of the side surfaces of the front thermoelectric conversion element and the rear thermoelectric conversion element as viewed from the oblique direction 2 was about 0.5 (mm).

図1(d)は、さらに斜め方向2から金属蒸着後の熱電変換素子モジュールを上から見た図である。
図4にこの金属蒸着で蒸着された電極パターン24からなる第2素子列6をY方向と−Y方向から見た熱電変換素子の側面の領域を示す。
FIG. 1 (d) is a view of the thermoelectric conversion element module after metal deposition from an oblique direction 2 as seen from above.
FIG. 4 shows a side region of the thermoelectric conversion element when the second element array 6 composed of the electrode pattern 24 deposited by this metal deposition is viewed from the Y direction and the −Y direction.

この図4(b)をみると、斜め方向1と斜め方向2の2度の熱電変換素子の側面への金属蒸着において,熱電変換素子の上部電極に連続する当該熱電変換素子の側面へ蒸着した金属と当該下部電極が結合するあらかじめ絶縁基板上に作製された当該電極パターン24の足とは、電極パターン24がX軸から反時計回りに30度オフセットしていることから、短絡が発生していないことがわかる。   As shown in FIG. 4B, in the metal deposition on the side surface of the thermoelectric conversion element in the diagonal direction 1 and the diagonal direction 2, the deposition was performed on the side surface of the thermoelectric conversion element continuous with the upper electrode of the thermoelectric conversion element. Since the electrode pattern 24 is offset by 30 degrees counterclockwise from the X axis, a short circuit has occurred between the legs of the electrode pattern 24 previously formed on the insulating substrate where the metal and the lower electrode are bonded. I understand that there is no.

本発明は、
(1) 高密度・高起電力熱電変換モジュールの作製に利用でき、
(2) バルク材料から,マイクロスケールの熱電モジュールに適用が可能であって、
(3) 熱電変換素子のみに限らず,蒸着でその他素子の直列接続を実現可能である。
The present invention
(1) Can be used to fabricate high-density, high-electromotive force thermoelectric modules,
(2) It can be applied from bulk materials to microscale thermoelectric modules,
(3) Not only the thermoelectric conversion element but also other elements can be connected in series by vapor deposition.

1 第1の斜め方向
2 第2の斜め方向
3 第1の斜め方向から金属が蒸着される部分
4 第2の斜め方向から金属が蒸着される部分
5 第1素子列(3素子)
6 第2素子列(4素子)
7 第3素子列(3素子)
8 第4素子列(4素子)
9 電極パターン
10 絶縁基板
11 熱電変換素子
12 熱電変換素子モジュール
13 下部電極
14 上部電極
21 電極パターン1
22 電極パターン2
23 電極パターン3
24 電極パターン4
DESCRIPTION OF SYMBOLS 1 1st diagonal direction 2 2nd diagonal direction 3 Part where metal is vapor-deposited from 1st diagonal direction 4 Part where metal is vapor-deposited from 2nd diagonal direction 5 1st element row | line | column (3 elements)
6 Second element row (4 elements)
7 Third element row (3 elements)
8 4th element row (4 elements)
DESCRIPTION OF SYMBOLS 9 Electrode pattern 10 Insulating substrate 11 Thermoelectric conversion element 12 Thermoelectric conversion element module 13 Lower electrode 14 Upper electrode 21 Electrode pattern 1
22 Electrode pattern 2
23 Electrode pattern 3
24 Electrode pattern 4

Claims (7)

その側面が絶縁体に覆われ上面と底面が上部電極と下部電極を構成する柱状の同一導電型の半導体からなる熱電変換素子を絶縁基板にその底面が接するように格子状に配列された熱電変換素子モジュールの直列接続作製方法であって、
主部と足からなる電極パターンを前記絶縁基板の所定の位置に配置し、
前記電極パターンの主部に前記熱電変換素子の下部電極をその底面で接合し、
前記絶縁基板の斜め上方から対向して2回金属を蒸着し、
一の熱電変換素子の下部電極の当該電極パターンの足と次の熱電変換素子の上部電極を、当該足と前記次の熱電変換素子の側面とその間の絶縁基板を覆う前記蒸着した金属で接続し、
前記全ての熱電変換素子を直列に接続したことを特徴とする熱電変換素子モジュールの直列接続作製方法。
Thermoelectric conversion in which the side surfaces are covered with an insulator and the top and bottom surfaces are composed of columnar, same-conductivity-type semiconductors constituting the upper and lower electrodes, arranged in a grid so that the bottom surface is in contact with the insulating substrate A method for producing a series connection of element modules,
An electrode pattern consisting of a main part and legs is arranged at a predetermined position of the insulating substrate,
Bonding the lower electrode of the thermoelectric conversion element to the main part of the electrode pattern at the bottom surface,
The metal is vapor-deposited twice facing diagonally from above the insulating substrate,
The foot of the electrode pattern of the lower electrode of one thermoelectric conversion element and the upper electrode of the next thermoelectric conversion element are connected with the deposited metal covering the foot, the side surface of the next thermoelectric conversion element, and the insulating substrate therebetween. ,
A method for producing a serial connection of thermoelectric conversion element modules, wherein all the thermoelectric conversion elements are connected in series.
前記絶縁基板に配置された前記電極パターン電極パターンの所定の位置は、前記斜め上方から見た場合に、手前の前記熱電変換素子の側面と奥の前記熱電変換素子の側面が所定の厚さで重なり合っていることを特徴とする請求項1に記載の熱電変換素子モジュールの直列接続作製方法。   The predetermined position of the electrode pattern electrode pattern disposed on the insulating substrate is such that the side surface of the thermoelectric conversion element in front and the side surface of the thermoelectric conversion element in the back are at a predetermined thickness when viewed from obliquely above. The method for producing a serial connection of thermoelectric conversion element modules according to claim 1, wherein the thermoelectric conversion element modules are overlapped. 前記金属の蒸着をPVD法で行ったことを特徴とする請求項2に記載の熱電変換素子モジュールの直列接続作製方法。   The method for serially connecting thermoelectric conversion element modules according to claim 2, wherein the metal is deposited by a PVD method. 前記PVD法は真空蒸着法であることを特徴とする請求項3に記載の熱電変換素子モジュールの直列接続作製方法。   The said PVD method is a vacuum evaporation method, The serial connection production method of the thermoelectric conversion element module of Claim 3 characterized by the above-mentioned. 前記同一導電型はP型またはN型であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の熱電変換素子モジュールの作製方法。   The method of manufacturing a thermoelectric conversion element module according to any one of claims 1 to 3, wherein the same conductivity type is a P-type or an N-type. その側面が絶縁体に覆われ上面と底面が上部電極と下部電極を構成する柱状の同一導電型の半導体からなる熱電変換素子を絶縁基板にその底面が接するように格子状に配列された熱電変換素子モジュールであって、
主部と足からなる電極パターンが前記絶縁基板の所定の位置に配置され、
前記電極パターンの主部に前記熱電変換素子の下部電極をその底面で接合され、
一の熱電変換素子の下部電極の当該電極パターンの足と次の熱電変換素子の上部電極が、当該足と前記次の熱電変換素子の側面とその間の絶縁基板を覆う蒸着した金属で接続され、
前記全ての熱電変換素子が直列に接続されていることを特徴とする熱電変換素子モジュール。
Thermoelectric conversion in which the side surfaces are covered with an insulator and the top and bottom surfaces are composed of columnar, same-conductivity-type semiconductors constituting the upper and lower electrodes, arranged in a grid so that the bottom surface is in contact with the insulating substrate An element module,
An electrode pattern consisting of a main part and legs is arranged at a predetermined position of the insulating substrate,
The lower electrode of the thermoelectric conversion element is bonded to the main part of the electrode pattern at the bottom surface,
The foot of the electrode pattern of the lower electrode of one thermoelectric conversion element and the upper electrode of the next thermoelectric conversion element are connected with the deposited metal covering the foot, the side surface of the next thermoelectric conversion element, and the insulating substrate therebetween,
All the thermoelectric conversion elements are connected in series, The thermoelectric conversion element module characterized by the above-mentioned.
前記同一導電型はP型またはN型であることを特徴とする請求項6に記載の熱電変換素子モジュール。   The thermoelectric conversion element module according to claim 6, wherein the same conductivity type is a P type or an N type.
JP2015203912A 2015-10-15 2015-10-15 Method for producing thermoelectric conversion module Active JP6739072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015203912A JP6739072B2 (en) 2015-10-15 2015-10-15 Method for producing thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015203912A JP6739072B2 (en) 2015-10-15 2015-10-15 Method for producing thermoelectric conversion module

Publications (2)

Publication Number Publication Date
JP2017076720A true JP2017076720A (en) 2017-04-20
JP6739072B2 JP6739072B2 (en) 2020-08-12

Family

ID=58549461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015203912A Active JP6739072B2 (en) 2015-10-15 2015-10-15 Method for producing thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP6739072B2 (en)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633889A (en) * 1979-08-28 1981-04-04 Rca Corp Amorphous silicon solar battery
JPS6135573A (en) * 1984-07-27 1986-02-20 Matsushita Electric Ind Co Ltd Manufacture of photovoltaic element
JPS6342180A (en) * 1986-08-08 1988-02-23 Toa Nenryo Kogyo Kk Manufacture of integrated type photovoltaic device
JPS63102382A (en) * 1986-10-20 1988-05-07 Mitsubishi Heavy Ind Ltd Manufacture and construction of thin film thermoelectric transducer module
JPS6474777A (en) * 1987-09-17 1989-03-20 Sanyo Electric Co Manufacture of micro-bridge type josephson device
JPH0366182A (en) * 1989-08-04 1991-03-20 Hitachi Ltd Thermoelectric conversion device
JPH09191133A (en) * 1996-01-11 1997-07-22 Citizen Watch Co Ltd Manufacture of thermoelectric generating element
WO1999007024A1 (en) * 1997-08-01 1999-02-11 Citizen Watch Co., Ltd. Thermoelectric element and method for manufacturing the same
JP2003174204A (en) * 2001-12-07 2003-06-20 Sony Corp Thermoelectric conversion device
WO2005124881A1 (en) * 2004-06-22 2005-12-29 Aruze Corp. Thermoelectric conversion element
JP2007165902A (en) * 2005-12-14 2007-06-28 Korea Advanced Inst Of Sci Technol Transmissive integrated thin-film solar cell and method of manufacturing same, and method for electrically connecting unit cell of transmissive integrated thin-film solar cell in series
JP2010171071A (en) * 2009-01-20 2010-08-05 Universal Entertainment Corp Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
JP2013115359A (en) * 2011-11-30 2013-06-10 Nippon Thermostat Co Ltd Thermoelectric conversion module
JP2014112587A (en) * 2012-12-05 2014-06-19 Kelk Ltd Thermoelectric module
JP2014179539A (en) * 2013-03-15 2014-09-25 Nippon Thermostat Co Ltd Thermoelectric conversion module
JP2014197647A (en) * 2013-03-29 2014-10-16 富士フイルム株式会社 Thermoelectric power generation module
JP2015050426A (en) * 2013-09-04 2015-03-16 富士フイルム株式会社 Thermoelectric conversion element
JP2015073085A (en) * 2013-09-04 2015-04-16 富士フイルム株式会社 Thermoelectric conversion device

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5633889A (en) * 1979-08-28 1981-04-04 Rca Corp Amorphous silicon solar battery
JPS6135573A (en) * 1984-07-27 1986-02-20 Matsushita Electric Ind Co Ltd Manufacture of photovoltaic element
JPS6342180A (en) * 1986-08-08 1988-02-23 Toa Nenryo Kogyo Kk Manufacture of integrated type photovoltaic device
JPS63102382A (en) * 1986-10-20 1988-05-07 Mitsubishi Heavy Ind Ltd Manufacture and construction of thin film thermoelectric transducer module
JPS6474777A (en) * 1987-09-17 1989-03-20 Sanyo Electric Co Manufacture of micro-bridge type josephson device
JPH0366182A (en) * 1989-08-04 1991-03-20 Hitachi Ltd Thermoelectric conversion device
JPH09191133A (en) * 1996-01-11 1997-07-22 Citizen Watch Co Ltd Manufacture of thermoelectric generating element
WO1999007024A1 (en) * 1997-08-01 1999-02-11 Citizen Watch Co., Ltd. Thermoelectric element and method for manufacturing the same
JP2003174204A (en) * 2001-12-07 2003-06-20 Sony Corp Thermoelectric conversion device
WO2005124881A1 (en) * 2004-06-22 2005-12-29 Aruze Corp. Thermoelectric conversion element
JP2007165902A (en) * 2005-12-14 2007-06-28 Korea Advanced Inst Of Sci Technol Transmissive integrated thin-film solar cell and method of manufacturing same, and method for electrically connecting unit cell of transmissive integrated thin-film solar cell in series
JP2010171071A (en) * 2009-01-20 2010-08-05 Universal Entertainment Corp Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion element
JP2013115359A (en) * 2011-11-30 2013-06-10 Nippon Thermostat Co Ltd Thermoelectric conversion module
JP2014112587A (en) * 2012-12-05 2014-06-19 Kelk Ltd Thermoelectric module
JP2014179539A (en) * 2013-03-15 2014-09-25 Nippon Thermostat Co Ltd Thermoelectric conversion module
JP2014197647A (en) * 2013-03-29 2014-10-16 富士フイルム株式会社 Thermoelectric power generation module
JP2015050426A (en) * 2013-09-04 2015-03-16 富士フイルム株式会社 Thermoelectric conversion element
JP2015073085A (en) * 2013-09-04 2015-04-16 富士フイルム株式会社 Thermoelectric conversion device

Also Published As

Publication number Publication date
JP6739072B2 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
JP5149376B2 (en) Solar cell element and solar cell module
JPH10303471A (en) Thermoelectric element and thermoelectric element module using the same
TWI353673B (en) Integrated package having solar cell and thermoele
KR20130033865A (en) Thermoelectric module and manufacturing method for theremoelectric module
JP2005079210A (en) Thermoelectric conversion device
CN105099275B (en) Plane thermo-electric generation structure with micro-boss array hot junction
JP2017208478A (en) Thermoelectric conversion module and thermoelectric conversion device
JP2002335021A (en) Integrated thin film thermocouple thermoelectric conversion device
RU2538066C2 (en) Module with several thermoelectric elements
JP6739072B2 (en) Method for producing thermoelectric conversion module
JP2012174911A (en) Thermoelectric conversion module
EP3428981B1 (en) Thermoelectric conversion module
JPS62145783A (en) Thin film thermoelectric module
JP2006080326A (en) Thermoelectric apparatus
JP2017092407A (en) Thermoelectric element
JP2006114622A (en) Thermoelectric conversion module
KR20060023442A (en) A manufacturing method of thermoelectric module using thin-layer forming process
JP2018125498A (en) Thermoelectric conversion device
JP2013161823A (en) Thermoelectric conversion module
KR101816183B1 (en) Solar cell module
JP2011181601A (en) Thermoelectric conversion device and method of manufacturing the same
KR102391797B1 (en) Thermoelectric element
EP3442039B9 (en) Thermoelectric conversion module
JP2015099896A (en) Thermoelectric device
US20120132243A1 (en) Thermoelectric Module with Improved Efficiency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200707

R150 Certificate of patent or registration of utility model

Ref document number: 6739072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250