JP2002335021A - Integrated thin film thermocouple thermoelectric conversion device - Google Patents

Integrated thin film thermocouple thermoelectric conversion device

Info

Publication number
JP2002335021A
JP2002335021A JP2001138442A JP2001138442A JP2002335021A JP 2002335021 A JP2002335021 A JP 2002335021A JP 2001138442 A JP2001138442 A JP 2001138442A JP 2001138442 A JP2001138442 A JP 2001138442A JP 2002335021 A JP2002335021 A JP 2002335021A
Authority
JP
Japan
Prior art keywords
thin
film
thin film
substrate
thermoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001138442A
Other languages
Japanese (ja)
Other versions
JP3554861B2 (en
Inventor
Mitsuko Suzuki
晃子 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2001138442A priority Critical patent/JP3554861B2/en
Publication of JP2002335021A publication Critical patent/JP2002335021A/en
Application granted granted Critical
Publication of JP3554861B2 publication Critical patent/JP3554861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain high-thermoelectric conversion efficiency and provide a low-cost integrated thin film thermocouple thermoelectric conversion device in a form that whatever the kinds of a thin film material are, films can be formed, heat is absorbed in both surfaces of a flat plate structure and heat is dissipated from both surfaces of the flat plate structure. SOLUTION: An integrated thin film thermocouple thermoelectric conversion device is constituted on a structure that thin film thermocouples 22 formed by stacking P-type and N-type thermoelectric semiconductor thin films 27 and 28 via each electrical bonding layer 29 between the films 27 and 28 on one end part of a substrate 23 and via each insulating layer 31 between the films 27 and 28 on the rest of the substrate 23 are arranged and formed on the substrate 23. Each thin film thermocouple 22 are electrically series-connected with each other through conductors 32. Projected parts 35 and 36 provided on a top plate 24 and a base plate 25, both consisting of a heat conductor, are brought into contact with the parts, on which the layers 29 are located, in the thermocouples 22 and the conductors 32 on the opposite side to the parts respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は熱と電気とを相互
に変換することができる熱電変換材料を用いて構成され
る薄膜熱電対集積型の熱電変換デバイスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin-film thermocouple-integrated thermoelectric conversion device constituted by using a thermoelectric conversion material capable of mutually converting heat and electricity.

【0002】[0002]

【従来の技術】熱電変換デバイスは電子冷却・加熱器や
熱発電器として用いられている。図6Aは熱発電の原理
を示したものであり、P型半導体11とN型半導体12
とからなる半導体の対(熱電対)の一端を高温体13に
接触させ、他端を低温体14に接触させて、図に示した
ような回路を組むことにより、ゼーベック効果によって
電流が流れ、熱起電力が発生するものとなっている。図
中、15は接合用金属を示す。なお、高温体13及び低
温体14は接合用金属15と絶縁されている。
2. Description of the Related Art Thermoelectric conversion devices are used as electronic coolers / heaters and thermoelectric generators. FIG. 6A shows the principle of thermoelectric generation, in which a P-type semiconductor 11 and an N-type
By bringing one end of a semiconductor pair (thermocouple) into contact with the high-temperature body 13 and contacting the other end with the low-temperature body 14 to form a circuit as shown in the figure, a current flows by the Seebeck effect, Thermal electromotive force is generated. In the figure, reference numeral 15 denotes a joining metal. The high-temperature body 13 and the low-temperature body 14 are insulated from the joining metal 15.

【0003】図6Bは従来実用化されている熱電変換デ
バイスの構成を示したものであり、図6Aに示した熱電
対が多数配列された構成となっている。これら熱電対は
温度差の方向に平行並列に並んだ構造となっており、電
極16により電気的には直列に接続されている。図中、
17は絶縁体を示す。この図6Bに示した熱電変換デバ
イスでは、熱電対をなすP型半導体11及びN型半導体
12は主に焼結等により生成された多結晶バルク材料を
切り出すことによって形成され、同一寸法でそれら半導
体11,12を多数切り出した後、組み立て、電極形
成、固定などの多くの工程を経て熱電変換デバイスが完
成するものとなっている。従って、半導体にバルク材料
を使用する従来の熱電変換デバイスは多くの異なる工程
を必要とするため、その点でコストがかかり、高価とな
って熱電変換デバイスの普及を妨げる一因となってい
た。
FIG. 6B shows a configuration of a thermoelectric conversion device which is conventionally put into practical use, and has a configuration in which a large number of thermocouples shown in FIG. 6A are arranged. These thermocouples are arranged in parallel and parallel in the direction of the temperature difference, and are electrically connected in series by the electrodes 16. In the figure,
Reference numeral 17 denotes an insulator. In the thermoelectric conversion device shown in FIG. 6B, the P-type semiconductor 11 and the N-type semiconductor 12 forming the thermocouple are formed by cutting out a polycrystalline bulk material generated mainly by sintering or the like, and have the same dimensions. After cutting out a large number of 11 and 12, the thermoelectric conversion device is completed through many steps such as assembly, electrode formation and fixing. Therefore, a conventional thermoelectric conversion device using a bulk material for a semiconductor requires many different steps, which is costly and expensive in that respect, which has been a factor preventing the spread of thermoelectric conversion devices.

【0004】一方、半導体にバルク材料を使用するので
はなく、薄膜材料を使用して熱電変換デバイスを構成す
ることができる。この場合、膜厚方向に温度勾配を形成
して膜の表面及び裏面に吸熱部及び放熱部の各領域を配
置する形態と、薄膜面内の方向に温度勾配を形成して薄
膜面内に吸熱部及び放熱部の各領域を配置する形態とが
考えられる。前者の形態の場合は図6Bに示した従来の
バルク材料を用いる熱電変換デバイスと同様に、平板型
構造の両面でそれぞれ吸・放熱する形態の熱電変換デバ
イスを実現できるが、高温部と低温部の距離が数ミクロ
ン程度以下の距離しかないため、熱損失が生じやすく、
熱電変換効率が悪いという問題点がある。
On the other hand, a thermoelectric conversion device can be formed by using a thin film material instead of using a bulk material for a semiconductor. In this case, a temperature gradient is formed in the film thickness direction to arrange each region of the heat absorbing portion and the heat radiating portion on the front and back surfaces of the film, and a temperature gradient is formed in a direction in the thin film surface to absorb heat in the thin film surface. It is conceivable that the respective regions of the section and the heat radiating section are arranged. In the former case, similar to the thermoelectric conversion device using the conventional bulk material shown in FIG. 6B, a thermoelectric conversion device of a form that absorbs and radiates heat on both sides of the flat plate structure can be realized. Is only a few microns or less, heat loss easily occurs,
There is a problem that thermoelectric conversion efficiency is poor.

【0005】これを一部解決するため、特開平6−13
664号公報記載の発明では各熱電半導体薄膜の隙間を
真空にして熱伝導を下げる工夫がなされている。しかし
ながら、この方法では熱電半導体薄膜自体を通じての熱
損失は防ぎようがないため、高効率の薄膜熱電変換デバ
イスを得るのは困難となっている。これに対し、後者の
薄膜面内に温度勾配をつける形態の場合は、膜自体への
温度差が与えやすく、熱損失が小さく、熱電変換効率の
よい熱電変換デバイスが原理上、実現可能であるが、成
膜された基板を通じて熱損失が生じる点と、同一面内に
高温部と低温部があるため従来のバルク材料による熱電
変換デバイスと同様の平板型構造の両面でそれぞれ吸・
放熱する形態は実現できず、吸・放熱部に十分な面積を
もたせることができないといった問題がある。
In order to partially solve this problem, Japanese Patent Laid-Open Publication No.
In the invention described in Japanese Patent No. 664, a device is devised to reduce the heat conduction by evacuating the gap between the thermoelectric semiconductor thin films. However, this method cannot prevent heat loss through the thermoelectric semiconductor thin film itself, so that it is difficult to obtain a highly efficient thin film thermoelectric conversion device. On the other hand, in the latter case of providing a temperature gradient in the thin film surface, a thermoelectric conversion device having a high thermoelectric conversion efficiency with a small temperature loss to the film itself, a small heat loss, and a high thermoelectric conversion efficiency can be realized in principle. However, because heat loss occurs through the substrate on which the film is formed, and because there are high-temperature parts and low-temperature parts in the same plane, absorption and absorption are performed on both sides of a flat-type structure similar to a conventional thermoelectric conversion device using bulk material.
There is a problem that a form for dissipating heat cannot be realized, and a sufficient area cannot be provided for the absorbing / dissipating portion.

【0006】そこで、薄膜面内に温度勾配を形成しなが
ら、かつ吸・放熱部に十分な面積を持たせることを試み
た発明が特開平10−303469号公報に提案されて
いる。しかしながら、この特開平10−303469号
公報記載の発明では、プラスチックなどで形成された凸
部の表面に熱電半導体薄膜を蒸着する手法が採られてお
り、例えば平坦度や格子定数あるいは表面処理や成膜温
度など特殊な基板や成膜条件を用いなければ成膜ができ
ない熱電半導体薄膜材料(例えばエピタキシャル成長さ
せる必要のある半導体超格子)には適用できないという
問題がある。
Japanese Patent Laid-Open Publication No. Hei 10-303469 has proposed an invention in which a temperature gradient is formed in the surface of a thin film and a sufficient area is provided for a heat absorbing / dissipating portion. However, in the invention described in Japanese Patent Application Laid-Open No. Hei 10-303469, a technique is employed in which a thermoelectric semiconductor thin film is deposited on the surface of a projection formed of plastic or the like. There is a problem that the method cannot be applied to a thermoelectric semiconductor thin film material (for example, a semiconductor superlattice that needs to be epitaxially grown) that cannot be formed without using a special substrate such as a film temperature or film formation conditions.

【0007】さらに具体的には、 ・プラスチックの凸部への成膜では高温の成膜は困難 ・プラスチックに密着しない(接合しない)膜には応用
できない ・上記2点を回避するために、仮りに半導体基板などで
凸部を形成して成膜した場合でも、凸部の斜面と頂部・
底部で同じ品質の膜が生成できない場合があるといった
欠点がある。
More specifically, it is difficult to form a film at a high temperature by forming a film on a convex portion of a plastic. It cannot be applied to a film that does not adhere to (join) a plastic. Even if a film is formed by forming a convex portion on a semiconductor substrate or the like, the slope of the convex portion and the top
There is a disadvantage that a film of the same quality may not be produced at the bottom.

【0008】[0008]

【発明が解決しようとする課題】上述したように、半導
体にバルク材料を使用する熱電変換デバイスはコストが
高いといった問題があり、これに対し、半導体に薄膜材
料を使用する熱電変換デバイスは低コスト化が可能であ
るものの、膜厚方向に温度勾配を形成する形態では熱電
変換効率の点で問題があるものとなっていた。一方、例
えば特開平10−303469号公報記載の発明のよう
に薄膜面内の方向に温度勾配を形成すれば、熱電変換効
率の点では有利となるものの、この公報記載の発明では
吸・放熱部に十分な面積を持たせられるように凸部上に
成膜するものとなっており、膜の品質上、問題が生じる
虞れがあり、また材料によっては成膜ができないという
問題がある。
As described above, a thermoelectric conversion device using a bulk material for a semiconductor has a problem of high cost, while a thermoelectric conversion device using a thin film material for a semiconductor has a low cost. Although it is possible to achieve the conversion, it is problematic in terms of the thermoelectric conversion efficiency when the temperature gradient is formed in the film thickness direction. On the other hand, if a temperature gradient is formed in the in-plane direction of the thin film as in the invention described in JP-A-10-303469, it is advantageous in terms of thermoelectric conversion efficiency. In this case, the film is formed on the convex portion so as to have a sufficient area, and there is a possibility that a problem may occur in the quality of the film, and there is a problem that the film cannot be formed depending on the material.

【0009】特に、近年、熱電変換材料として高い性能
指数を示す可能性が指摘されている、 (1)半導体超格子(Sun,X.etal.,Mat.Res.Soc.Symp.P
roc.Vol.545,P369,1999 やVenkatasubramanian,R.eta
l.,Appl.Phys.Lett.Vol.75,No.8,P1104,1999などに記
載) (2)ナノワイヤ(10μm 厚の薄膜マイカの中にビス
マスのナノワイヤを作製する技術がDemske,D.L.etal.,M
at.Res.Soc.Symp.Proc.Vol.545,P209,1999に記載) (3)ナノ微粒子膜(本出願人が特願2000−267
328号にて提案)などの次世代材料の成膜(生成)に
は適用できないという問題がある。
In particular, it has recently been pointed out that thermoelectric conversion materials may exhibit a high figure of merit. (1) Semiconductor superlattices (Sun, X. etal., Mat. Res. Soc. Symp. P.
roc.Vol.545, P369,1999 and Venkatasubramanian, R.eta
75, No. 8, P1104, 1999, etc.) (2) Nanowires (Demske, DLetal., Technology for producing bismuth nanowires in 10 μm thick thin film mica) M
Vol.545, P209, 1999) (3) Nano-particle film (the applicant of the present invention has filed Japanese Patent Application No. 2000-267).
However, there is a problem that the method cannot be applied to film formation (generation) of a next-generation material such as that proposed in Japanese Patent No. 328).

【0010】この発明の目的はこれら問題に鑑み、高熱
電変換効率・低コストの熱電変換デバイスを提供するこ
とにあり、特に上記のような次世代材料でも成膜するこ
とができ、かつ平板型構造の両面で吸・放熱する形態の
薄膜熱電対集積型熱電変換デバイスを提供することにあ
る。
In view of these problems, an object of the present invention is to provide a thermoelectric conversion device with high thermoelectric conversion efficiency and low cost. An object of the present invention is to provide a thin-film thermocouple integrated thermoelectric conversion device that absorbs and radiates heat on both sides of the structure.

【0011】[0011]

【課題を解決するための手段】請求項1の発明によれ
ば、基板と、その基板上に配列形成され、P型熱電半導
体薄膜とN型熱電半導体薄膜とが一端部において電気的
接合層を介し、残部において絶縁層を介して積層されて
なる複数の薄膜熱電対と、それら薄膜熱電対の上記一端
部と反対の他端部に配置されて複数の薄膜熱電対を電気
的に直列に接続する導体と、薄膜熱電対の配列上に位置
され、その薄膜熱電対との対向面に突出形成された凸部
が上記一端部上において各薄膜熱電対と接触する構造と
された熱伝導体よりなる上板とを具備するものとされ
る。
According to the first aspect of the present invention, a substrate and a P-type thermoelectric semiconductor thin film and an N-type thermoelectric semiconductor thin film arranged and formed on the substrate form an electrical bonding layer at one end. A plurality of thin-film thermocouples laminated on the remaining portion with an insulating layer interposed therebetween, and a plurality of thin-film thermocouples arranged at the other end opposite to the one end of the thin-film thermocouples are electrically connected in series. And a heat conductor positioned on an array of thin-film thermocouples and having a projection formed on a surface facing the thin-film thermocouple and having a structure in contact with each thin-film thermocouple on the one end. And an upper plate.

【0012】請求項2の発明では請求項1の発明におい
て、隣接する薄膜熱電対を接続する導体は一端が一方の
薄膜熱電対の上に位置され、他端が他方の薄膜熱電対の
下に位置されており、その薄膜熱電対の下に位置する導
体は基板に埋め込まれて、その上面が基板表面とほぼ面
一とされる。請求項3の発明では請求項2の発明におい
て、各薄膜熱電対の下に位置する導体はその下面の少な
くとも一部が基板の裏面側に露出されており、上記裏面
と対向して熱伝導体よりなる底板が配置され、その底板
の上記裏面との対向面に突出形成された凸部が上記裏面
側に露出された導体と接触される。
According to a second aspect of the present invention, in the first aspect, the conductor connecting the adjacent thin film thermocouples has one end located above one thin film thermocouple and the other end located below the other thin film thermocouple. A conductor located beneath the thin-film thermocouple is embedded in the substrate such that its upper surface is substantially flush with the substrate surface. According to a third aspect of the present invention, in the second aspect of the present invention, at least a part of the lower surface of the conductor located under each thin film thermocouple is exposed to the back surface of the substrate, and the heat conductor is opposed to the back surface. A bottom plate formed of a bottom plate is provided, and a projection formed on a surface of the bottom plate facing the back surface is in contact with the conductor exposed on the back surface side.

【0013】請求項4の発明によれば、基板と、第1の
電気的接合部を挟んでP型熱電半導体薄膜とN型熱電半
導体薄膜とが平面配置されてなり、基板上に電気的に直
列構成をなすように配列形成された複数の薄膜熱電対
と、それら各薄膜熱電対間に配置されて複数の薄膜熱電
対を電気的に直列に接続する第2の電気的接合部と、薄
膜熱電対の配列上に位置され、その薄膜熱電対との対向
面に突出形成された凸部が上記第1もしくは第2の電気
的接合部のいずれか一方と接触する構造とされた熱伝導
体よりなる上板とを具備するものとされる。
According to the fourth aspect of the present invention, the substrate, the P-type thermoelectric semiconductor thin film and the N-type thermoelectric semiconductor thin film are arranged in a plane with the first electrical junction therebetween, and the substrate is electrically connected to the substrate. A plurality of thin film thermocouples arranged and formed in a series configuration, a second electrical junction disposed between the thin film thermocouples and electrically connecting the plurality of thin film thermocouples in series, A heat conductor which is located on an array of thermocouples and has a structure in which a protrusion formed on a surface facing the thin film thermocouple is in contact with one of the first and second electrical junctions. And an upper plate made of such a material.

【0014】請求項5の発明では請求項4の発明におい
て、上板の凸部が接触されない方の電気的接合部の各位
置と対応して基板に金属が埋め込まれ、その金属は上面
が基板の表面とほぼ面一とされ、下面の少なくとも一部
が基板の裏面側に露出されており、上記裏面と対向して
熱伝導体よりなる底板が配置され、その底板の上記裏面
との対向面に突出形成された凸部が上記裏面側に露出さ
れた金属と接触される。請求項6の発明では請求項3も
しくは5のいずれかの発明において、上板の周縁部と底
板の周縁部とが枠体を介して互いに連結固定される。
According to a fifth aspect of the present invention, in the fourth aspect of the present invention, a metal is buried in the substrate corresponding to each position of the electrical joint portion where the projection of the upper plate is not in contact, and the metal has an upper surface which is the same as that of the substrate. A bottom plate made of a heat conductor is disposed opposite to the back surface, and a bottom plate of the bottom plate is opposed to the back surface. The protruding portion formed on the rear surface is brought into contact with the metal exposed on the back side. According to a sixth aspect of the present invention, in any one of the third and fifth aspects, the peripheral portion of the upper plate and the peripheral portion of the bottom plate are connected and fixed to each other via a frame.

【0015】請求項7の発明では請求項6の発明におい
て、上板と底板と枠体とによって囲まれた内部空間が真
空とされる。請求項8の発明では請求項1乃至7のいず
れかの発明において、P型熱電半導体薄膜とN型熱電半
導体薄膜とが方形形状とされ、かつ同一形状とされ、複
数の薄膜熱電対は基板上に縦横に配列される。
According to a seventh aspect of the present invention, in the sixth aspect, the internal space surrounded by the upper plate, the bottom plate, and the frame is evacuated. According to an eighth aspect of the present invention, in any one of the first to seventh aspects, the P-type thermoelectric semiconductor thin film and the N-type thermoelectric semiconductor thin film have a rectangular shape and the same shape, and the plurality of thin film thermocouples are formed on the substrate. Are arranged vertically and horizontally.

【0016】[0016]

【発明の実施の形態】この発明の実施の形態を図面を参
照して実施例により説明する。図1はこの発明の一実施
例を示したものであり、この例では熱電変換デバイス2
1は複数の薄膜熱電対22が形成された基板23が上板
24と底板25と枠体26とによって囲まれた内部空間
に収容されているものとされる。図2は薄膜熱電対22
が形成された基板23を示したものであり、先ず図2を
参照して薄膜熱電対22及び基板23の構造について説
明する。
Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows an embodiment of the present invention.
Reference numeral 1 denotes a substrate 23 on which a plurality of thin film thermocouples 22 are formed, which is accommodated in an internal space surrounded by an upper plate 24, a bottom plate 25, and a frame 26. FIG. 2 shows a thin film thermocouple 22.
Is shown, and the structure of the thin film thermocouple 22 and the substrate 23 will be described first with reference to FIG.

【0017】薄膜熱電対22はP型熱電半導体薄膜27
とN型熱電半導体薄膜28とが一端部において電気的接
合層29を介し、残部において絶縁層31を介して積層
されてなるものとされ、この例ではこれらP型熱電半導
体薄膜27及びN型熱電半導体薄膜28は方形形状とさ
れ、かつ同一形状とされている。薄膜熱電対22は基板
23上に縦横に配列されて形成され、この例では縦・横
各4個、計16個の薄膜熱電対22が形成されている。
各列の薄膜熱電対22の電気的接合層29は図2Aに示
したように一列上に位置するように揃えられており、図
において左から数えて奇数列の薄膜熱電対22の電気的
接合層29は方形の左辺に、偶数列の薄膜熱電対22の
電気的接合層29は方形の右辺に位置されている。
The thin film thermocouple 22 is a P-type thermoelectric semiconductor thin film 27
And an N-type thermoelectric semiconductor thin film 28 are laminated at one end via an electrical bonding layer 29 and the rest via an insulating layer 31. In this example, the P-type thermoelectric semiconductor thin film 27 and the N-type thermoelectric The semiconductor thin film 28 has a rectangular shape and the same shape. The thin film thermocouples 22 are vertically and horizontally arranged on a substrate 23. In this example, four thin film thermocouples 22 are formed, four in each of the vertical and horizontal directions.
The electrical junction layers 29 of the thin-film thermocouples 22 in each row are aligned so as to be located on one row as shown in FIG. 2A, and the electrical junctions of the odd-numbered thin-film thermocouples 22 counted from the left in the drawing are shown. The layer 29 is located on the left side of the square, and the electrical junction layer 29 of the even-numbered thin film thermocouples 22 is located on the right side of the square.

【0018】薄膜熱電対22の電気的接合層29が形成
されている一端部と反対の他端部には導体32が配置さ
れ、16個の薄膜熱電対22は導体32によって電気的
に直列に接続されている。導体32は図2Aに示したよ
うに奇数列の薄膜熱電対22に対しては方形の右辺に、
偶数列の薄膜熱電対22に対しては方形の左辺に位置さ
れるものとなる。隣接する薄膜熱電対22を接続する導
体32は図2Bに示したように、一端が一方の薄膜熱電
対22の上に位置され、つまりN型熱電半導体薄膜28
上に配設され、他端が他方の薄膜熱電対22の下に位置
され、つまりP型熱電半導体薄膜27の下に配設されて
いる。
A conductor 32 is disposed on the other end of the thin film thermocouple 22 opposite to the one on which the electrical bonding layer 29 is formed, and the 16 thin film thermocouples 22 are electrically connected in series by the conductor 32. It is connected. As shown in FIG. 2A, the conductor 32 is on the right side of the square with respect to the odd-numbered thin film thermocouples 22.
The thin-film thermocouples 22 in the even rows are positioned on the left side of the square. As shown in FIG. 2B, the conductor 32 connecting the adjacent thin-film thermocouples 22 has one end located on one of the thin-film thermocouples 22, ie, the N-type thermoelectric semiconductor thin film 28.
The other end is located below the other thin film thermocouple 22, that is, below the P-type thermoelectric semiconductor thin film 27.

【0019】各薄膜熱電対22の下に位置する導体32
はこの例では基板23に埋め込まれたものとなってお
り、その上面は基板23の表面とほぼ面一とされてい
る。なお、導体32によって直列接続された16個の薄
膜熱電対22の両端からは導体32が基板23の端縁に
導出されて一対の端子部32aが形成されており、これ
ら端子部32aにリード線33が例えば半田付けされて
接続されるものとなる。基板23には2つの細長い溝3
4が裏面側から形成されており、各薄膜熱電対22の下
に位置する導体32はこれら溝34を介して、その下面
の少なくとも一部が基板23の裏面側に露出されてい
る。
Conductors 32 located below each thin film thermocouple 22
Are embedded in the substrate 23 in this example, and the upper surface thereof is substantially flush with the surface of the substrate 23. The conductor 32 extends from both ends of the sixteen thin film thermocouples 22 connected in series by the conductor 32 to the edge of the substrate 23 to form a pair of terminal portions 32a, and a lead wire is connected to these terminal portions 32a. 33 is connected, for example, by soldering. The substrate 23 has two elongated grooves 3
4 is formed from the back surface side, and at least a part of the lower surface of the conductor 32 located below each thin film thermocouple 22 is exposed to the back surface side of the substrate 23 via these grooves 34.

【0020】上記のような構成を有する薄膜熱電対22
はマスクを用いた成膜プロセスによって作製され、予め
導体32を埋め込んだ基板23上にP型熱電半導体薄膜
27,電気的接合層29,絶縁層31,N型熱電半導体
薄膜28及び埋め込まれている導体32からN型熱電半
導体薄膜28上に至る導体32を順次成膜することによ
って作製される。なお、図示はないが、埋め込まれてい
る導体32からN型熱電半導体薄膜28上に至る導体3
2を成膜する際にP型熱電半導体薄膜27の側面に直接
成膜が及ばないように、あらかじめこの側面をも絶縁層
31により保護しておく。必要があれば、さらにこの上
に保護層を成膜してもよい。なお、基板23に導体32
を埋め込むには、例えばイオンミリングで基板表面の対
象部分を削った後、導体32を例えば蒸着してこれを得
ることが出来る。溝34は基板23に導体32を埋め込
んだ後、例えばウエットエッチング等で基板23をくり
ぬくことによって形成され、この溝34を形成した後、
上記成膜プロセスが実行される。
The thin film thermocouple 22 having the above configuration
Are formed by a film forming process using a mask, and are embedded in a P-type thermoelectric semiconductor thin film 27, an electrical bonding layer 29, an insulating layer 31, an N-type thermoelectric semiconductor thin film 28 on a substrate 23 in which a conductor 32 is embedded in advance. It is manufactured by sequentially forming the conductors 32 extending from the conductors 32 onto the N-type thermoelectric semiconductor thin film 28. Although not shown, the conductor 3 extending from the embedded conductor 32 to the N-type thermoelectric semiconductor thin film 28
In order to prevent the film from directly reaching the side surface of the P-type thermoelectric semiconductor thin film 27 when the film 2 is formed, the side surface is also protected by the insulating layer 31 in advance. If necessary, a protective layer may be further formed thereon. Note that the conductor 32 is
Can be obtained by shaving a target portion of the substrate surface by, for example, ion milling, and then evaporating the conductor 32, for example. The groove 34 is formed by embedding the conductor 32 in the substrate 23 and then hollowing out the substrate 23 by, for example, wet etching or the like.
The above film forming process is performed.

【0021】基板23は絶縁基板とされ、例えばガラス
基板などが用いられる。薄膜熱電対22は上述したよう
に基板23の平面上に形成され、つまり熱電半導体薄膜
27,28を形成する上で最も適した平面基板上に薄膜
熱電対22を形成することができるため、熱電半導体薄
膜27,28にはいかなる薄膜材料をも用いることがで
きる。例えば薄膜の形態で高い性能指数が期待されるス
クッテルダイト系材料や半導体超格子、ナノワイヤ膜、
ナノ微粒子膜等の次世代材料を用いることができる。な
お、従来のビスマステルル等の熱電変換材料も用いるこ
とができる。
The substrate 23 is an insulating substrate, such as a glass substrate. The thin-film thermocouple 22 is formed on the plane of the substrate 23 as described above, that is, since the thin-film thermocouple 22 can be formed on a flat substrate that is most suitable for forming the thermoelectric semiconductor thin films 27 and 28, Any thin film material can be used for the semiconductor thin films 27 and 28. For example, skutterudite-based materials, semiconductor superlattices, nanowire films,
Next-generation materials such as nanoparticle films can be used. Note that a conventional thermoelectric conversion material such as bismuth tellurium can also be used.

【0022】絶縁層31は例えば酸化シリコン或いは窒
化シリコンによって構成され、電気的接合層29及び導
体32は例えば金や銅で形成される。なお、電気的接合
層29はP型熱電半導体薄膜27の上面に電気的接合層
29に見合う分の段部を形成してP型熱電半導体薄膜2
7自体で構成することもできる。次に、この薄膜熱電対
22が配列形成された基板23に対して組み合わされる
上板24及び底板25の配設構造について図1を参照し
て説明する。上板24及び底板25はいずれも熱伝導体
よりなるものとされ、これら上板24と底板25とによ
って基板23は挟み込まれる構造とされる。
The insulating layer 31 is made of, for example, silicon oxide or silicon nitride, and the electrical bonding layer 29 and the conductor 32 are made of, for example, gold or copper. The electric junction layer 29 is formed on the upper surface of the P-type thermoelectric semiconductor thin film 27 by forming a step portion corresponding to the electric junction layer 29 to form the P-type thermoelectric semiconductor thin film 2.
7 itself. Next, the arrangement structure of the upper plate 24 and the bottom plate 25 combined with the substrate 23 on which the thin-film thermocouples 22 are formed will be described with reference to FIG. Both the upper plate 24 and the bottom plate 25 are made of a heat conductor, and the substrate 23 is sandwiched between the upper plate 24 and the bottom plate 25.

【0023】薄膜熱電対22の配列上に位置する上板2
4は、その薄膜熱電対22との対向面にこの例では3つ
の細長い凸部35が突出形成されているものとされ、こ
れら凸部35が薄膜熱電対22の電気的接合層29が形
成されている一端部上において各薄膜熱電対22と、つ
まりN型熱電半導体薄膜28と接触する構造とされる。
図1B中、二点鎖線は凸部35の平面形状を示す。一
方、基板23の裏面側に配置される底板25には基板2
3との対向面に2つの細長い凸部36が突出形成されて
おり、これら凸部36が基板23に形成されている溝3
4にそれぞれ嵌め込まれて溝34底面に露出されている
導体32と接触される。なお、基板23と底板25とは
図に示したように板面が互いに当接される。
Upper plate 2 located on the array of thin film thermocouples 22
In this example, three elongated projections 35 are formed on the surface of the thin film thermocouple 22 facing the thin film thermocouple 22, and these projections 35 form the electrical bonding layer 29 of the thin film thermocouple 22. On one end, the thin-film thermocouple 22 is in contact with the N-type thermoelectric semiconductor thin film 28.
In FIG. 1B, the two-dot chain line indicates the planar shape of the projection 35. On the other hand, the bottom plate 25 disposed on the back side of the substrate 23 has the substrate 2
2 are formed on the surface opposed to the groove 3, and these convex portions 36 are formed in the groove 3 formed in the substrate 23.
4 and are brought into contact with the conductors 32 exposed on the bottom surfaces of the grooves 34. The board surfaces of the substrate 23 and the bottom plate 25 are in contact with each other as shown in the drawing.

【0024】上板24と底板25とは共に熱伝導率の良
い電気絶縁性の材料によって形成され、材料としては例
えばアルミナが使用される。また、薄膜熱電対22や導
体32に接触する面に例えばアルミナを表面コーティン
グして電気絶縁を確保した銅などの金属も好適である。
上板24と底板25とはそれらの周縁部が枠体26を介
して互いに連結固定され、薄膜熱電対22が配列形成さ
れた基板23がこれら上板24と底板25とに挟持され
て薄膜熱電対集積型の熱電変換デバイス21が完成す
る。
The upper plate 24 and the bottom plate 25 are both formed of an electrically insulating material having good thermal conductivity, and for example, alumina is used as the material. Further, a metal such as copper whose surface is in contact with the thin-film thermocouple 22 or the conductor 32 is coated with, for example, alumina to secure electrical insulation.
The upper plate 24 and the bottom plate 25 are connected and fixed to each other through a frame 26, and a substrate 23 on which thin-film thermocouples 22 are formed is sandwiched between the upper plate 24 and the bottom plate 25 to form a thin-film thermoelectric device. The thermoelectric conversion device 21 of the integrated type is completed.

【0025】なお、上板24及び底板25はそれぞれ熱
伝導率が低く、電気絶縁性で弾性のある例えばプラスチ
ック等の材料からなる枠体26に接着して固定する。こ
のように弾性のある材料で固定することにより熱変形な
どに対して機械的強度の高い熱電変換デバイス21を構
成することができる。また、上板24と底板25と枠体
26とを接着固定する際、例えば真空中で接着して内部
空間を真空とすることにより熱損失をより小さくするこ
とができる。上記のような構成とされた熱電変換デバイ
ス21によれば、平板型構造の両面で、つまり上板24
と底板25で吸・放熱する形態となり、図6Bに示した
従来のバルク材料を使用した熱電変換デバイスと同様の
構造が実現できる。
The top plate 24 and the bottom plate 25 are fixed to a frame 26 made of a material such as plastic, which has a low thermal conductivity and is electrically insulating and elastic. By fixing with such an elastic material, the thermoelectric conversion device 21 having high mechanical strength against thermal deformation or the like can be configured. Further, when the upper plate 24, the bottom plate 25, and the frame 26 are bonded and fixed, for example, heat loss can be further reduced by bonding in a vacuum to make the internal space vacuum. According to the thermoelectric conversion device 21 configured as described above, both sides of the flat plate structure, that is, the upper plate 24
And the bottom plate 25 absorbs and dissipates heat, and the same structure as the thermoelectric conversion device using the conventional bulk material shown in FIG. 6B can be realized.

【0026】熱発電器として用いる場合は例えば上板2
4を通じて薄膜熱電対22の電気的接合部29が位置す
る一端部に熱を供給することにより熱発電が可能とな
る。この際、温度差を高く保つためには、底板25を低
温に保つようにすればよく、これにより底板25及び基
板23に埋め込まれた導体32を通じて薄膜熱電対22
の一端部と反対の他端部が低温に保たれる。この熱電変
換デバイス21は熱発電器や電子冷却・加熱器として用
いることができ、上板24及び底板25の外面形状は平
面に限らず、例えば相手方高温体・低温体あるいは相手
方被冷却体・被加熱体の形状に合わせた形状とすること
ができる。
When used as a heat generator, for example, the upper plate 2
By supplying heat to one end of the thin-film thermocouple 22 where the electrical junction 29 is located through 4, the thermoelectric power generation becomes possible. At this time, in order to keep the temperature difference high, the bottom plate 25 may be kept at a low temperature, whereby the bottom plate 25 and the conductor 32 embedded in the substrate 23 allow the thin film thermocouple 22 to be maintained.
The other end opposite to the one end is kept at a low temperature. The thermoelectric conversion device 21 can be used as a thermoelectric generator or an electronic cooling / heating device. The outer shapes of the upper plate 24 and the bottom plate 25 are not limited to flat surfaces. The shape can be adapted to the shape of the body.

【0027】なお、P型熱電半導体薄膜27とN型熱電
半導体薄膜28の積層順はこの例と逆であってもよい。
図3は図1に示した構成に対し、基板23を薄くした熱
電変換デバイス37の断面構造を示したものである。こ
の例ではあらかじめ数100μm厚の基板表面に導体3
2を埋め込んだ後、基板表面を例えば研磨により削るこ
とで薄い基板23を得ており、導体32はその全体が基
板23の裏面側に露出されている。この構成によれば、
底板25に設けた凸部36が導体32と基板23の表面
のごく一部分にのみ接触するため、図1の例と比較して
底板25から供給される熱の基板23を通じた損失が抑
えられ、熱電変換効率のさらなる向上をはかることがで
きる。
The order of lamination of the P-type thermoelectric semiconductor thin film 27 and the N-type thermoelectric semiconductor thin film 28 may be reversed from this example.
FIG. 3 shows a cross-sectional structure of a thermoelectric conversion device 37 in which the substrate 23 is thinner than the configuration shown in FIG. In this example, conductors 3
After embedding 2, a thin substrate 23 is obtained by grinding the substrate surface by, for example, polishing, and the entire conductor 32 is exposed on the back side of the substrate 23. According to this configuration,
Since the convex portion 36 provided on the bottom plate 25 contacts only a part of the surface of the conductor 32 and the substrate 23, loss of heat supplied from the bottom plate 25 through the substrate 23 is suppressed as compared with the example of FIG. The thermoelectric conversion efficiency can be further improved.

【0028】図4は上板24の周縁部を枠体26を介し
て基板23に固定し、つまり底板25のない構成とした
熱電変換デバイス38を示したものである。このような
構成も使用条件あるいは用途に応じて採用することがで
きる。また、薄膜熱電対22の下に配設する導体32を
この例では基板23に埋め込むものとしているが、例え
ば基板23上に成膜形成する構成とすることもできる。
但し、熱電半導体薄膜27,28の成膜の点では埋め込
んで成膜面のより平坦化を図る方が好ましい。図5は薄
膜熱電対22を構成するP型熱電半導体薄膜27とN型
熱電半導体薄膜28とを積層構造とするのではなく、基
板23上にそれらを平面配置して薄膜熱電対22を構成
した例を示したものである。
FIG. 4 shows a thermoelectric conversion device 38 in which the peripheral portion of the upper plate 24 is fixed to the substrate 23 via the frame 26, that is, the bottom plate 25 is not provided. Such a configuration can also be adopted according to use conditions or applications. In this example, the conductor 32 disposed below the thin film thermocouple 22 is embedded in the substrate 23. However, for example, a configuration in which a film is formed on the substrate 23 may be adopted.
However, in terms of the formation of the thermoelectric semiconductor thin films 27 and 28, it is preferable to bury the thermoelectric semiconductor thin films 27 and 28 to make the film formation surface flatter. FIG. 5 shows that the P-type thermoelectric semiconductor thin film 27 and the N-type thermoelectric semiconductor thin film 28 constituting the thin-film thermocouple 22 are not formed in a laminated structure, but are arranged in a plane on a substrate 23 to constitute the thin-film thermocouple 22. This is an example.

【0029】この熱電変換デバイス41では方形の同一
形状をなすP型熱電半導体薄膜27とN型熱電半導体薄
膜28とが第1の電気的接合部42を挟んで配置されて
薄膜熱電対22が形成され、それら薄膜熱電対22が電
気的に直列構成をなすように基板23上に配列形成され
たものとなっている。薄膜熱電対22はこの例では8個
配列されており、各薄膜熱電対22間は第2の電気的接
合部43で接続されて8個の薄膜熱電対22が電気的に
直列接続されている。
In this thermoelectric conversion device 41, a P-type thermoelectric semiconductor thin film 27 and an N-type thermoelectric semiconductor thin film 28 having the same rectangular shape are arranged with a first electrical junction 42 interposed therebetween to form a thin-film thermocouple 22. The thin film thermocouples 22 are arranged and formed on a substrate 23 so as to form an electrically serial configuration. In this example, eight thin-film thermocouples 22 are arranged, and the thin-film thermocouples 22 are connected to each other at a second electrical junction 43 so that the eight thin-film thermocouples 22 are electrically connected in series. .

【0030】熱伝導体よりなる上板24に設けられてい
る凸部35はこの例では第2の電気的接合部43に接触
する構造とされている。一方、上板24の凸部35が接
触されない方の第1の電気的接合部42の各位置と対応
して基板23に例えば金や銅などの金属44が埋め込ま
れており、これら金属44と熱伝導体よりなる底板25
の凸部36とが接触される。なお、この例では基板23
は図3に示した熱電変換デバイス37と同様、その厚さ
が薄いものとされている。
The projection 35 provided on the upper plate 24 made of a heat conductor has a structure in contact with the second electrical joint 43 in this example. On the other hand, a metal 44 such as gold or copper is buried in the substrate 23 corresponding to each position of the first electrical joint portion 42 where the convex portion 35 of the upper plate 24 is not in contact. Bottom plate 25 made of heat conductor
Is brought into contact with the convex portion 36. In this example, the substrate 23
Is thinner, like the thermoelectric conversion device 37 shown in FIG.

【0031】第1の電気的接合部42と第2の電気的接
合部43とは共に例えば金や銅などの金属薄膜を成膜す
ることによって形成される。図中、32aは端子部を示
す。この図5に示した構造においても、平板型構造の両
面で吸・放熱する形態となり、また熱電半導体薄膜2
7,28を基板23の平面上に成膜することができるも
のとなっている。但し、薄膜熱電対22の集積度の点で
は前述した熱電変換デバイス21や37に比し、劣るも
のとなる。
The first electrical joint 42 and the second electrical joint 43 are both formed by depositing a thin metal film such as gold or copper. In the figure, 32a indicates a terminal portion. The structure shown in FIG. 5 also has a form in which heat is absorbed and released on both sides of the flat plate type structure.
7, 28 can be formed on the plane of the substrate 23. However, the degree of integration of the thin film thermocouple 22 is inferior to the thermoelectric conversion devices 21 and 37 described above.

【0032】[0032]

【発明の効果】以上説明したように、この発明によれば
図6Bに示した従来のバルク材料を用いた熱電変換デバ
イスと同様に、平板型構造の両面で吸・放熱する形態を
有し、かつ薄膜材料によって熱電半導体が形成された熱
電変換デバイスを得ることができる。そして、成膜プロ
セスによって多数の薄膜熱電対を一括して形成すること
ができるため、その点でバルク材料を用いた熱電変換デ
バイスに比べて、低コスト化を図ることができるものと
なっている。
As described above, according to the present invention, like the conventional thermoelectric conversion device using the bulk material shown in FIG. Further, a thermoelectric conversion device in which a thermoelectric semiconductor is formed by a thin film material can be obtained. In addition, since a large number of thin film thermocouples can be formed collectively by the film forming process, cost reduction can be achieved in that respect as compared with a thermoelectric conversion device using a bulk material. .

【0033】なお、熱電半導体薄膜を平面基板上に成膜
でき、かつ基板材料も適宜選定できるため、基板の種類
や平坦度、成膜時の温度、雰囲気ガス、真空度など特定
の生成条件でなければ高い性能指数を有する熱電半導体
薄膜が得られないような材料であっても用いることがで
き、つまりスクッテルダイト系材料や半導体超格子、ナ
ノワイヤ膜、ナノ微粒子膜なども薄膜熱電対の材料とし
て用いることができる。従って、そのような材料によっ
て薄膜熱電対を形成することにより、極めて高い熱電変
換効率を有する熱電変換デバイスが得られるものとな
る。
Since a thermoelectric semiconductor thin film can be formed on a flat substrate and the substrate material can be appropriately selected, the thermoelectric semiconductor thin film can be formed under specific conditions such as the type and flatness of the substrate, the temperature at the time of film formation, the atmosphere gas, and the degree of vacuum. It is possible to use materials that do not provide a thermoelectric semiconductor thin film with a high figure of merit unless otherwise, that is, skutterudite-based materials, semiconductor superlattices, nanowire films, nanoparticle films, etc. Can be used as Therefore, by forming a thin film thermocouple with such a material, a thermoelectric conversion device having extremely high thermoelectric conversion efficiency can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Aは請求項3の発明の一実施例を示す断面図、
Bはその薄膜熱電対が配列形成された基板の平面図。
FIG. 1A is a sectional view showing one embodiment of the invention of claim 3;
B is a plan view of a substrate on which the thin-film thermocouples are arranged and formed.

【図2】図1における薄膜熱電対が配列形成された基板
の詳細を説明するための図、Aは平面図、BはそのDD
断面図、CはそのEE断面図。
FIG. 2 is a diagram for explaining details of a substrate on which thin-film thermocouples are arranged and formed in FIG. 1, A is a plan view, and B is a DD thereof.
Sectional view, C is its EE section.

【図3】請求項3の発明の他の実施例を示す断面図。FIG. 3 is a sectional view showing another embodiment of the invention of claim 3;

【図4】請求項1の発明の一実施例を示す断面図。FIG. 4 is a sectional view showing one embodiment of the invention of claim 1;

【図5】Aは請求項5の発明の一実施例を示す断面図、
Bはその薄膜熱電対が配列形成された基板の平面図。
FIG. 5A is a sectional view showing one embodiment of the invention of claim 5;
B is a plan view of a substrate on which the thin-film thermocouples are arranged and formed.

【図6】Aは熱発電の原理を示す模式図、Bは従来のバ
ルク材料を用いた熱電変換デバイスの模式図。
6A is a schematic diagram showing the principle of thermoelectric power generation, and FIG. 6B is a schematic diagram of a conventional thermoelectric conversion device using a bulk material.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基板と、 その基板上に配列形成され、P型熱電半導体薄膜とN型
熱電半導体薄膜とが一端部において電気的接合層を介
し、残部において絶縁層を介して積層されてなる複数の
薄膜熱電対と、 それら薄膜熱電対の上記一端部と反対の他端部に配置さ
れて上記複数の薄膜熱電対を電気的に直列に接続する導
体と、 上記の薄膜熱電対の配列上に位置され、その薄膜熱電対
との対向面に突出形成された凸部が上記一端部上におい
て各薄膜熱電対と接触する構造とされた熱伝導体よりな
る上板とを具備することを特徴とする薄膜熱電対集積型
熱電変換デバイス。
1. A substrate, and a P-type thermoelectric semiconductor thin film and an N-type thermoelectric semiconductor thin film, which are arranged and formed on the substrate, are laminated at one end via an electrical bonding layer and at the other end via an insulating layer. A plurality of thin-film thermocouples, a conductor disposed at the other end of the thin-film thermocouple opposite to the one end and electrically connecting the plurality of thin-film thermocouples in series, and an arrangement of the thin-film thermocouples And an upper plate made of a heat conductor having a structure in which a protrusion formed on the surface facing the thin film thermocouple and in contact with each thin film thermocouple on the one end is provided. Thin film thermocouple integrated thermoelectric conversion device.
【請求項2】 請求項1記載の薄膜熱電対集積型熱電変
換デバイスにおいて、 隣接する上記薄膜熱電対を接続する上記導体は一端が一
方の薄膜熱電対の上に位置され、他端が他方の薄膜熱電
対の下に位置されており、 その薄膜熱電対の下に位置する導体は上記基板に埋め込
まれて、その上面が基板表面とほぼ面一とされているこ
とを特徴とする薄膜熱電対集積型熱電変換デバイス。
2. The thin-film thermocouple integrated thermoelectric conversion device according to claim 1, wherein one end of the conductor connecting the adjacent thin-film thermocouples is located above one thin-film thermocouple, and the other end is connected to the other thin-film thermocouple. A thin-film thermocouple, which is located below the thin-film thermocouple, wherein a conductor located below the thin-film thermocouple is embedded in the substrate, and the upper surface thereof is substantially flush with the surface of the substrate. Integrated thermoelectric conversion device.
【請求項3】 請求項2記載の薄膜熱電対集積型熱電変
換デバイスにおいて、 各薄膜熱電対の下に位置する上記導体はその下面の少な
くとも一部が上記基板の裏面側に露出されており、 上記裏面と対向して熱伝導体よりなる底板が配置され、 その底板の上記裏面との対向面に突出形成された凸部が
上記裏面側に露出された導体と接触されていることを特
徴とする薄膜熱電対集積型熱電変換デバイス。
3. The thin-film thermocouple integrated thermoelectric conversion device according to claim 2, wherein at least a part of the lower surface of the conductor located under each thin-film thermocouple is exposed to the back surface of the substrate, A bottom plate made of a heat conductor is arranged facing the back surface, and a protrusion formed on a surface of the bottom plate facing the back surface is in contact with the conductor exposed on the back surface side. Thin film thermocouple integrated thermoelectric conversion device.
【請求項4】 基板と、 第1の電気的接合部を挟んでP型熱電半導体薄膜とN型
熱電半導体薄膜とが平面配置されてなり、上記基板上に
電気的に直列構成をなすように配列形成された複数の薄
膜熱電対と、 それら各薄膜熱電対間に配置されて上記複数の薄膜熱電
対を電気的に直列に接続する第2の電気的接合部と、 上記薄膜熱電対の配列上に位置され、その薄膜熱電対と
の対向面に突出形成された凸部が上記第1もしくは第2
の電気的接合部のいずれか一方と接触する構造とされた
熱伝導体よりなる上板とを具備することを特徴とする薄
膜熱電対集積型熱電変換デバイス。
4. A substrate, wherein a P-type thermoelectric semiconductor thin film and an N-type thermoelectric semiconductor thin film are arranged in a plane with a first electrical junction therebetween, so as to form an electrical series configuration on the substrate. A plurality of thin film thermocouples formed in an array, a second electrical junction disposed between the thin film thermocouples and electrically connecting the plurality of thin film thermocouples in series, and an array of the thin film thermocouples The first or second projection is formed on the surface facing the thin film thermocouple.
And an upper plate made of a heat conductor and configured to contact one of the electrical junctions.
【請求項5】 請求項4記載の薄膜熱電対集積型熱電変
換デバイスにおいて、 上記上板の凸部が接触されない方の電気的接合部の各位
置と対応して上記基板に金属が埋め込まれ、 その金属は上面が上記基板の表面とほぼ面一とされ、下
面の少なくとも一部が上記基板の裏面側に露出されてお
り、 上記裏面と対向して熱伝導体よりなる底板が配置され、 その底板の上記裏面との対向面に突出形成された凸部が
上記裏面側に露出された金属と接触されていることを特
徴とする薄膜熱電対集積型熱電変換デバイス。
5. The thin-film thermocouple-integrated thermoelectric conversion device according to claim 4, wherein a metal is embedded in the substrate corresponding to each position of the electrical junction where the projection of the upper plate is not contacted, The metal has an upper surface substantially flush with the surface of the substrate, at least a part of the lower surface is exposed on the back surface of the substrate, and a bottom plate made of a heat conductor is arranged facing the back surface. A thin-film thermocouple-integrated thermoelectric conversion device, wherein a projection formed on a surface of the bottom plate facing the rear surface is in contact with the metal exposed on the rear surface side.
【請求項6】 請求項3もしくは5記載のいずれかの薄
膜熱電対集積型熱電変換デバイスにおいて、 上記上板の周縁部と底板の周縁部とが枠体を介して互い
に連結固定されていることを特徴とする薄膜熱電対集積
型熱電変換デバイス。
6. The thin-film thermocouple integrated thermoelectric conversion device according to claim 3, wherein a peripheral edge of the upper plate and a peripheral edge of the bottom plate are connected and fixed to each other via a frame. A thin-film thermocouple integrated thermoelectric conversion device.
【請求項7】 請求項6記載の薄膜熱電対集積型熱電変
換デバイスにおいて、 上記上板と底板と枠体とによって囲まれた内部空間が真
空とされていることを特徴とする薄膜熱電対集積型熱電
変換デバイス。
7. The thin-film thermocouple integrated thermoelectric conversion device according to claim 6, wherein an internal space surrounded by the top plate, the bottom plate, and the frame is evacuated. Type thermoelectric conversion device.
【請求項8】 請求項1乃至7記載のいずれかの薄膜熱
電対集積型熱電変換デバイスにおいて、 上記P型熱電半導体薄膜とN型熱電半導体薄膜とは方形
形状とされ、かつ同一形状とされており、 上記複数の薄膜熱電対は上記基板上に縦横に配列されて
いることを特徴とする薄膜熱電対集積型熱電変換デバイ
ス。
8. The thin-film thermocouple integrated thermoelectric conversion device according to claim 1, wherein the P-type thermoelectric semiconductor thin film and the N-type thermoelectric semiconductor thin film have a rectangular shape and the same shape. The thin-film thermocouple integrated thermoelectric conversion device, wherein the plurality of thin-film thermocouples are arranged vertically and horizontally on the substrate.
JP2001138442A 2001-05-09 2001-05-09 Thin film thermocouple integrated thermoelectric conversion device Expired - Fee Related JP3554861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001138442A JP3554861B2 (en) 2001-05-09 2001-05-09 Thin film thermocouple integrated thermoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001138442A JP3554861B2 (en) 2001-05-09 2001-05-09 Thin film thermocouple integrated thermoelectric conversion device

Publications (2)

Publication Number Publication Date
JP2002335021A true JP2002335021A (en) 2002-11-22
JP3554861B2 JP3554861B2 (en) 2004-08-18

Family

ID=18985378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001138442A Expired - Fee Related JP3554861B2 (en) 2001-05-09 2001-05-09 Thin film thermocouple integrated thermoelectric conversion device

Country Status (1)

Country Link
JP (1) JP3554861B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005093864A1 (en) * 2004-03-25 2005-10-06 National Institute Of Advanced Industrial Science And Technology Thermoelectric conversion element and thermoelectric conversion module
US7294899B2 (en) 2002-12-20 2007-11-13 Hewlett-Packard Development Company, L.P. Nanowire Filament
US7317159B2 (en) 2004-01-19 2008-01-08 Matsushita Electric Industrial Co., Ltd. Thermoelectric conversion element and method of manufacturing the same, and thermoelectric conversion device using the element
WO2011065185A1 (en) * 2009-11-27 2011-06-03 富士通株式会社 Thermoelectric conversion module and method for manufacturing same
JP2012004333A (en) * 2010-06-17 2012-01-05 Fujitsu Ltd Thermoelement and method of manufacturing thermoelement
US20120111387A1 (en) * 2010-11-09 2012-05-10 Samsung Electronics Co., Ltd. Thermoelectric device and method of manufacturing the same
US8269097B2 (en) 2005-09-26 2012-09-18 Tdk Corporation Thin film thermoelectric element including stress releasing elements
JP2012186297A (en) * 2011-03-04 2012-09-27 Fujitsu Ltd Thermoelectric conversion module and manufacturing method therefor
KR101237235B1 (en) 2010-08-20 2013-02-26 주식회사 엘지화학 Manufacturing Method of Thermoelectric Film
US20130081665A1 (en) * 2010-06-04 2013-04-04 O-Flexx Technologies Gmbh Thermoelectric element
KR101621750B1 (en) 2013-05-30 2016-05-17 주식회사 엘지화학 Manufacturing Method of Thermoelectric Film
WO2016136363A1 (en) * 2015-02-24 2016-09-01 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
JP2017063141A (en) * 2015-09-25 2017-03-30 Tdk株式会社 Thin film thermoelectric element

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7294899B2 (en) 2002-12-20 2007-11-13 Hewlett-Packard Development Company, L.P. Nanowire Filament
US7317159B2 (en) 2004-01-19 2008-01-08 Matsushita Electric Industrial Co., Ltd. Thermoelectric conversion element and method of manufacturing the same, and thermoelectric conversion device using the element
WO2005093864A1 (en) * 2004-03-25 2005-10-06 National Institute Of Advanced Industrial Science And Technology Thermoelectric conversion element and thermoelectric conversion module
JPWO2005093864A1 (en) * 2004-03-25 2008-02-14 独立行政法人産業技術総合研究所 Thermoelectric conversion element and thermoelectric conversion module
US7649139B2 (en) 2004-03-25 2010-01-19 National Institute Of Advanced Industrial Science And Technology Thermoelectric conversion element and thermoelectric conversion module
JP4670017B2 (en) * 2004-03-25 2011-04-13 独立行政法人産業技術総合研究所 Thermoelectric conversion element and thermoelectric conversion module
US8269097B2 (en) 2005-09-26 2012-09-18 Tdk Corporation Thin film thermoelectric element including stress releasing elements
US8692104B2 (en) 2005-09-26 2014-04-08 Tdk Corporation Thermoelectric element
WO2011065185A1 (en) * 2009-11-27 2011-06-03 富士通株式会社 Thermoelectric conversion module and method for manufacturing same
JPWO2011065185A1 (en) * 2009-11-27 2013-04-11 富士通株式会社 Thermoelectric conversion module and manufacturing method thereof
US20130081665A1 (en) * 2010-06-04 2013-04-04 O-Flexx Technologies Gmbh Thermoelectric element
JP2012004333A (en) * 2010-06-17 2012-01-05 Fujitsu Ltd Thermoelement and method of manufacturing thermoelement
KR101237235B1 (en) 2010-08-20 2013-02-26 주식회사 엘지화학 Manufacturing Method of Thermoelectric Film
US9601678B2 (en) * 2010-11-09 2017-03-21 Samsung Electronics Co., Ltd. Thermoelectric device and method of manufacturing the same
US20120111387A1 (en) * 2010-11-09 2012-05-10 Samsung Electronics Co., Ltd. Thermoelectric device and method of manufacturing the same
KR20120049730A (en) * 2010-11-09 2012-05-17 삼성전자주식회사 Thermoelectric device and method for forming the same
KR101892621B1 (en) * 2010-11-09 2018-08-28 삼성전자 주식회사 Thermoelectric device and method for forming the same
JP2012186297A (en) * 2011-03-04 2012-09-27 Fujitsu Ltd Thermoelectric conversion module and manufacturing method therefor
KR101621750B1 (en) 2013-05-30 2016-05-17 주식회사 엘지화학 Manufacturing Method of Thermoelectric Film
WO2016136363A1 (en) * 2015-02-24 2016-09-01 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
JPWO2016136363A1 (en) * 2015-02-24 2017-12-07 富士フイルム株式会社 Thermoelectric conversion element and thermoelectric conversion module
US10115882B2 (en) 2015-02-24 2018-10-30 Fujifilm Corporation Thermoelectric conversion element and thermoelectric conversion module
JP2017063141A (en) * 2015-09-25 2017-03-30 Tdk株式会社 Thin film thermoelectric element

Also Published As

Publication number Publication date
JP3554861B2 (en) 2004-08-18

Similar Documents

Publication Publication Date Title
US8692104B2 (en) Thermoelectric element
JP4472359B2 (en) Thermoelectric device using double-sided Peltier junction and manufacturing method thereof
JP3896323B2 (en) Thermoelectric cooler and manufacturing method thereof
US20080053509A1 (en) Combined thermal diodic and thermoenergy devices and methods for manufacturing same
JP3554861B2 (en) Thin film thermocouple integrated thermoelectric conversion device
US20130014516A1 (en) Thermoelectric module
US20140190542A1 (en) Wafer scale thermoelectric energy harvester
US8962970B2 (en) Microstructure for a Seebeck effect thermoelectric generator, and method for making such a microstructure
US8809667B2 (en) Thermoelectric semiconductor component
US20100263701A1 (en) Thermoelectric device, manufacturing method for manufacturing thermoelectric device, control system for controlling thermoelectric device, and electronic appliance
US20120145209A1 (en) Thermoelectric element and thermoelectric module including the same
JP2006294935A (en) High efficiency and low loss thermoelectric module
TWI353673B (en) Integrated package having solar cell and thermoele
KR101237235B1 (en) Manufacturing Method of Thermoelectric Film
KR20120019536A (en) Thermoelectric module comprising thermoelectric element doped with nanoparticles and manufacturing method of the same
TWI443882B (en) Thermoelectric apparatus and method of fabricating the same
WO2012070395A1 (en) Thermoelectric conversion module
US10763418B2 (en) Thermoelectric device
JP2012532468A (en) Module having a plurality of thermoelectric elements
JPH0870142A (en) Thermoelectric element
US20180226559A1 (en) Thermoelectric conversion device
US20200052178A1 (en) Thermoelectric conversion device
JP5010208B2 (en) Semiconductor element module and manufacturing method thereof
US20200028055A1 (en) Thermoelectric conversion device
US20230165147A1 (en) Thermoelectric element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees