JPH1168176A - Thermoelectric conversion device - Google Patents

Thermoelectric conversion device

Info

Publication number
JPH1168176A
JPH1168176A JP9227388A JP22738897A JPH1168176A JP H1168176 A JPH1168176 A JP H1168176A JP 9227388 A JP9227388 A JP 9227388A JP 22738897 A JP22738897 A JP 22738897A JP H1168176 A JPH1168176 A JP H1168176A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
thermoelectric
conversion element
substratum
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9227388A
Other languages
Japanese (ja)
Inventor
Kazuo Ueno
和夫 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP9227388A priority Critical patent/JPH1168176A/en
Publication of JPH1168176A publication Critical patent/JPH1168176A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form a thermoelectric transducer, reduce manufacturing cost, and realize large scale power generation capability, by molding thermoelectric conversion material on a tube type substratum and covering it by using spray technique. SOLUTION: By a spraying method, thermoelectric conversion material 5 and conductive material 3 are deposited on a tube type substratum 11, and formed as a thermoelectric transducer 13. High temperature fluid is made to flow inside the tube type substratum 11, and cooling fluid is made to flow outside the substratum, thereby generating temperature difference between the bonding surface to the substratum 11 and the outermost surface in the transducer 13. On the contrary, the cooling fluid may be made to flow inside the substratum, and the high temperature fluid may be made to flow outside the substratum. By Seebeck effect of the thermoelectric conversion material 5 which is caused by temperature difference, electricity is generated and can be led out to the outside as electric power, through collecting electrodes 4, 7.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エネルギー変換材
料技術のうち、熱電気直接変換技術に関する。
[0001] The present invention relates to a thermoelectric direct conversion technology among energy conversion material technologies.

【0002】[0002]

【従来の技術】ゼーベック効果を利用した、半導体材料
による熱エネルギーから電気への直接変換は1950年
代にJoffeにより提案され、その後、例えば、Bi
−Te系、Pb−Te系、Ge−Si系、Fe−Si系
などの各種半導体材料やSiC、B4Cなどのセラミッ
ク材料が熱電変換材料として研究されてきた。これらの
うち、変換効率が比較的高いBi−Te/Pb−Te系
半導体を用いた熱電変換装置が米国や旧ソ連を中心に開
発され、宇宙衛星用電源などとして同位体核分裂に伴う
熱エネルギーと組み合わせることにより用いられてき
た。また、電気エネルギーによる吸熱効果(ペルチェ効
果)を利用した冷蔵庫が近年同じくBi−Te系半導体
を用いて実用化されている。これらの熱電変換装置にお
いて、主にゾーンメルト法による単結晶材料や、粉末焼
結法による焼結材料が熱電変換材料として用いられてき
た。前記方法により製作される熱電変換材料は、高純度
の半導体材料であるため、当該材料を用いた熱電変換素
子は高価格にならざるを得ず、熱電気直接発電の普及に
障害となっていた。
2. Description of the Related Art Direct conversion of heat energy to electricity by a semiconductor material using the Seebeck effect was proposed by Joffe in the 1950's, and subsequently, for example, by Bi.
-Te system, Pb-Te system, Ge-Si-based, various semiconductor materials and SiC, such as Fe-Si-based, ceramic materials, such as B 4 C have been investigated as a thermoelectric conversion material. Among them, thermoelectric converters using Bi-Te / Pb-Te semiconductors with relatively high conversion efficiency have been developed mainly in the United States and the former Soviet Union. It has been used by combining. In recent years, refrigerators utilizing a heat absorption effect (Peltier effect) by electric energy have recently been put to practical use using Bi-Te-based semiconductors. In these thermoelectric conversion devices, a single crystal material obtained by a zone melt method or a sintered material obtained by a powder sintering method has been mainly used as a thermoelectric conversion material. Since the thermoelectric conversion material manufactured by the method is a high-purity semiconductor material, a thermoelectric conversion element using the material has to be expensive, which has been an obstacle to the spread of thermoelectric direct power generation. .

【0003】[0003]

【発明が解決しようとする課題】熱電発電技術は、可動
部分がなく、長寿命でかつメンテナンス負担が他の発電
方式に比較してきわめて低いこと、また熱源の温度、熱
量変動に対して適用範囲が広いことから、未利用エネル
ギーの回収技術として期待されている。しかし、特にゴ
ミ焼却炉からの高温燃焼ガスや製鉄所からのコークス冷
却熱など比較的大規模な熱源に対応するためには、上記
のような従来法による熱電変換素子製造技術に基づく発
電装置は、能力及び経済性の点で限界があった。熱電発
電技術を熱回収分野で利用するためにはこの問題点を解
決することが急務とされている。
The thermoelectric power generation technology has no moving parts, has a long service life, has a very low maintenance burden as compared with other power generation methods, and is applicable to temperature and heat quantity fluctuations of a heat source. Because of its wide area, it is expected as a technology to recover unused energy. However, in order to cope with a relatively large-scale heat source such as high-temperature combustion gas from a garbage incinerator or coke cooling heat from an ironworks, a power generator based on the thermoelectric conversion element manufacturing technology according to the conventional method as described above is required. , Capacity and economy. There is an urgent need to solve this problem in order to use thermoelectric power generation technology in the heat recovery field.

【0004】本発明はかかる現状での要請に応えるべく
なされたものであり、単結晶あるいは焼結材料の多数を
集積させた従来の方式と異なり、製造費用が軽減され、
かつ従来に比較して大規模な発電能力を有する熱電発電
装置を提供することを主な目的とする。
[0004] The present invention has been made to meet the demands of the current situation, and unlike the conventional method in which a large number of single crystals or sintered materials are integrated, the manufacturing cost is reduced.
It is another object of the present invention to provide a thermoelectric generator having a large-scale power generation capability as compared with the related art.

【0005】[0005]

【課題を解決するための手段】本発明の発明者は、種々
研究を重ねた結果、従来適用されていなかった溶射技術
を用い、熱電変換材料を管状基材上に被覆・成形するこ
とにより熱電変換素子を形成し、さらに好適には、該熱
電変換素子を絶縁性材料層や導電性材料層と組み合わせ
多層積層膜構造とすることにより上記目的を達成できる
ことを見い出し、本発明を完成するに至った。
As a result of various studies, the inventors of the present invention have found that a thermoelectric conversion material is coated and formed on a tubular base material by using a spraying technique which has not been applied conventionally. It has been found that the above object can be achieved by forming a conversion element, and more preferably, by combining the thermoelectric conversion element with an insulating material layer or a conductive material layer to form a multilayer laminated film structure. Was.

【0006】すなわち、本発明に係る熱電気変換装置
は、熱源流体及び冷却流体の各々が内部又は外部のいず
れか一方に流通する管状基材と、該管状基材の外周面に
熱電変換材料を溶射法により析出成形して形成され、前
記管状基材との接合面と最外周面との温度差により電力
を発生させる熱電変換素子とを備えることを特徴とす
る。
That is, the thermoelectric conversion device according to the present invention comprises a tubular substrate through which each of a heat source fluid and a cooling fluid flows either inside or outside, and a thermoelectric conversion material coated on the outer peripheral surface of the tubular substrate. It is characterized by comprising a thermoelectric conversion element which is formed by precipitation molding by a thermal spraying method, and which generates electric power by a temperature difference between a bonding surface with the tubular substrate and an outermost peripheral surface.

【0007】前記管状基材を電気絶縁性材料から構成す
る場合、好適には、前記熱電変換素子は、前記管状基材
の外周面に導電性材料、熱電変換材料及び導電性材料を
順次積層被覆成形して形成される。
In the case where the tubular base is made of an electrically insulating material, preferably, the thermoelectric conversion element is formed by sequentially laminating a conductive material, a thermoelectric conversion material and a conductive material on an outer peripheral surface of the tubular base. It is formed by molding.

【0008】また、前記管状基材を導電性材料から構成
する場合、好適には、前記熱電変換素子は、前記管状基
材の外周面に電気絶縁性材料、導電性材料、熱電変換材
料及び導電性材料を順次積層被覆成形して形成される。
In the case where the tubular base is made of a conductive material, preferably, the thermoelectric conversion element includes an electrically insulating material, a conductive material, a thermoelectric conversion material and a conductive material on an outer peripheral surface of the tubular base. It is formed by sequentially laminating and forming a conductive material.

【0009】例えば、前記熱電変換材料はN型半導体及
びP型半導体であり、前記熱電変換素子は前記半導体の
接合対とされている。また、前記熱電変換材料は、N型
半導体あるいはP型半導体のいずれか一方とすることも
可能である。
For example, the thermoelectric conversion material is an N-type semiconductor and a P-type semiconductor, and the thermoelectric conversion element is a junction pair of the semiconductor. Further, the thermoelectric conversion material can be either an N-type semiconductor or a P-type semiconductor.

【0010】さらに、前記熱電変換素子を前記管状基材
の軸線方向に複数個直列に接続して形成される熱電変換
素子列を備える熱電気変換装置とすることも可能であ
る。好適には、前記熱電変換素子列は、前記管状基材の
周方向に複数個直列に接続されて配置されている。
Further, it is possible to provide a thermoelectric conversion device including a thermoelectric conversion element row formed by connecting a plurality of the thermoelectric conversion elements in series in the axial direction of the tubular base material. Preferably, a plurality of the thermoelectric conversion element rows are arranged in series in a circumferential direction of the tubular base material.

【0011】前記熱電変換材料は、その溶射製造プロセ
スにおいて連続的に基材もしくは溶射装置を回転させる
ことにより、基材表面上の円周方向に連続的に析出され
る。したがって、大規模発電に対応可能な大面積型熱電
変換素子を備え、且つ製造費用の軽減された熱電気変換
装置が提供され得る。
The thermoelectric conversion material is continuously deposited in the circumferential direction on the surface of the base material by continuously rotating the base material or the spraying device in the thermal spray manufacturing process. Therefore, it is possible to provide a thermoelectric conversion device that includes a large-area thermoelectric conversion element that can handle large-scale power generation and that has reduced manufacturing costs.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施形態につき図
面を参照して説明する。図1は、本発明に係る熱電気変
換装置の一実施形態を概略的に表す斜視図であり、図2
は、図1のA部の拡大縦断面図である。また、図3、図
5及び図7は、それぞれ本発明に係る熱電気変換装置の
他の実施形態を概略的に表す斜視図であり、図4は図3
のB部の拡大縦断面図、図6は図5のC部の拡大縦断面
図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view schematically showing an embodiment of a thermoelectric converter according to the present invention, and FIG.
FIG. 2 is an enlarged vertical sectional view of a portion A in FIG. FIGS. 3, 5 and 7 are perspective views schematically showing other embodiments of the thermoelectric converter according to the present invention, and FIG.
6 is an enlarged vertical sectional view of a portion B of FIG. 5, and FIG. 6 is an enlarged vertical sectional view of a portion C of FIG.

【0013】本発明に係る熱電気変換装置1は、図1、
図5及び図7に示すように、管状の基材11の上に溶射
法により熱電変換材料5及び導電性材料3を析出し、又
は図3に示すように、管状の基材12表面に予め電気絶
縁性材料層2を溶射法により被覆した上で熱電変換材料
5及び導電性材料3を溶射法により析出し、熱電変換素
子13として形成されている。前記管状基材11、12
は、図示の円筒状基材の他、任意の断面形状を有するも
のとすることができる。図1、図5及び図7に示す基材
11は、セラミックス等の電気絶縁性材料から、図3に
示す基材12は、金属材料等の導電性材料から各々構成
されている。また、図1及び図3の熱電気変換装置1
は、基材上に1つの熱電変換素子13が析出成形されて
いるが、図5及び図7の熱電気変換装置1は、基材11
上に多数の素子13が成形され、該多数の素子13が導
電性膜3及び連絡電極9により直列的に連続結合されて
いる。図4に示す電気絶縁性膜2は、熱電変換材料5内
の電流が基材12自身に通電することを防止するために
設けられ、図6に示す電気絶縁性層8は、直列接続され
た熱電変換素子13間が短絡しないように設けられてい
る。また、導電性膜3、6は、熱電変換素子13間を電
気的に連結する目的で設けられている。図1から図7に
おいて矢符で示すように、管状基材11、12の内部に
高温流体を流し外部に冷却流体を流すことにより、熱電
変換素子13には管状基材11、12との接合面と最外
面との間に温度差が生じる。或いは、逆に、内部に冷却
流体を流し外部に高温流体を流すこととしても良い。前
記温度差に基づく熱電変換材料5のゼーベック効果によ
り電気が発生し、集電極4、7を通じて電力として外部
に取り出すことができる。
A thermoelectric converter 1 according to the present invention is shown in FIG.
As shown in FIGS. 5 and 7, the thermoelectric conversion material 5 and the conductive material 3 are deposited on the tubular base material 11 by a thermal spraying method, or as shown in FIG. The thermoelectric conversion material 5 and the conductive material 3 are deposited by the thermal spraying method after coating the electrically insulating material layer 2 by the thermal spraying method, and are formed as thermoelectric conversion elements 13. The tubular substrates 11, 12
May have any cross-sectional shape other than the illustrated cylindrical substrate. The base material 11 shown in FIGS. 1, 5 and 7 is made of an electrically insulating material such as ceramics, and the base material 12 shown in FIG. 3 is made of a conductive material such as a metal material. In addition, the thermoelectric conversion device 1 shown in FIGS.
In FIG. 5, one thermoelectric conversion element 13 is deposited and formed on a base material, but the thermoelectric conversion device 1 shown in FIGS.
A large number of elements 13 are formed thereon, and the large number of elements 13 are continuously connected in series by the conductive film 3 and the connection electrode 9. The electric insulating film 2 shown in FIG. 4 is provided to prevent the current in the thermoelectric conversion material 5 from flowing through the base material 12 itself, and the electric insulating layer 8 shown in FIG. 6 is connected in series. The thermoelectric conversion elements 13 are provided so as not to be short-circuited. The conductive films 3 and 6 are provided for the purpose of electrically connecting the thermoelectric conversion elements 13. As shown by arrows in FIGS. 1 to 7, a high-temperature fluid flows inside the tubular substrates 11 and 12, and a cooling fluid flows outside, so that the thermoelectric conversion element 13 is bonded to the tubular substrates 11 and 12. A temperature difference occurs between the surface and the outermost surface. Alternatively, conversely, a cooling fluid may flow inside and a high-temperature fluid may flow outside. Electricity is generated by the Seebeck effect of the thermoelectric conversion material 5 based on the temperature difference, and can be taken out as electric power through the collecting electrodes 4 and 7.

【0014】溶射法は、電気プラズマや火炎燃焼などに
より高温及び高速のガス流を作り、このプラズマあるい
は燃焼炎の内部に原料である溶射材料の粉末あるいは線
状物を連続的に投入し、溶射材料の高温による溶融と、
高速ガス流による投射(吹き付け)を同時に行うことに
より基材の表面に当該溶射材料を被覆する技術である。
近年では、溶射プロセス中における基材の温度管理を適
切に行うことにより数ミリメートルから数センチメート
ルの厚さに皮膜を形成することが可能となっている。溶
射法の特長は、高速に材料を析出被覆することができ、
材料を一旦溶融してから成形するために、溶融液滴が冷
却凝固されて作られる材料粒子間の結合が強く、焼結法
に近い強度を持つ材料を成形できる点にある。特に、減
圧雰囲気条件下のプラズマ溶射法によると、析出成形さ
れた材料中の残留気孔の量をきわめて小さくすることが
でき、また成形中の材料の酸化等の変質が生じない。本
発明に係る熱電気変換装置の熱電変換材料として用いら
れる半導体材料を析出成形する場合においても、減圧雰
囲気条件下でのプラズマ溶射法により、組成の変動を抑
え、より優れた特性を備えた素子を形成することができ
る。
In the thermal spraying method, a high-temperature and high-speed gas flow is generated by electric plasma or flame combustion, and a powder or a linear material of a thermal spray material as a raw material is continuously charged into the plasma or the combustion flame to perform thermal spraying. Melting of the material by high temperature,
This is a technique of coating the thermal spray material on the surface of a substrate by simultaneously performing projection (spraying) by a high-speed gas flow.
In recent years, it has become possible to form a coating with a thickness of several millimeters to several centimeters by appropriately controlling the temperature of the substrate during the thermal spraying process. The feature of the thermal spraying method is that the material can be deposited and coated at high speed,
Since the material is once melted and then formed, the bonding between the material particles formed by cooling and solidifying the molten droplet is strong, and a material having a strength close to that of the sintering method can be formed. In particular, according to the plasma spraying method under reduced pressure atmosphere conditions, the amount of residual pores in the material formed by precipitation can be made extremely small, and the material does not undergo deterioration such as oxidation during the formation. In the case where the semiconductor material used as the thermoelectric conversion material of the thermoelectric conversion device according to the present invention is deposited and formed, the composition is suppressed by plasma spraying under reduced-pressure atmosphere conditions, and the element having more excellent characteristics is suppressed. Can be formed.

【0015】また、溶射法の特長として経済性を挙げる
ことができる。従来の単結晶法や粉末焼結法では長時間
の高温加熱プロセスが不可避であり、またきわめて遅い
結晶成長速度や焼結速度に支配されるためその製造効率
は低く、また製造される素子の価格もきわめて高価とな
る。一方、溶射法では溶融と析出が瞬時に連続的に行わ
れるため、短時間に多量の原料を成形体として製造でき
る。通常のプラズマ溶射では、粉末原料のプラズマ中へ
の投入量は毎分30g程度である。条件にもよるが、通
常は投入量の80%程度が成形できるため、1時間の溶
射により1.5kg近くもの粉末を成形できることにな
る。これは、数日から10数日程度の時間を要する単結
晶引き上げやゾーンメルト法、あるいは粉末焼結法に比
較するときわめて高速の製造プロセスである。特に、単
結晶法や粉末焼結法では、最終利用目的の形状で成形体
が得られる場合は極めて稀であり、成形後の切断、表面
研削、面取りなど後加工に多大な労力を要する。一方、
溶射法は、基材形状に沿った成形を順次析出させながら
製造するため、最終目的形状に1回の製造プロセスで仕
上げることができる。また、本発明に係る熱電変換装置
の場合、電磁気的機能を有する熱電変換素子を成形する
ことを目的とするため、耐摩耗目的等と異なり、成形後
の溶射被覆の表面加工は最低限のレベルで済ますことが
可能である。また、溶射不要な部分をマスキングするこ
とにより任意の形状に析出できる。したがって、図5に
示すように、直径10cm、長さ2mの円筒セラミック
パイプ11上に、幅5cm、厚み5mmの多数の熱電変
換材料5を、パイプ11長手方向に2cmの非溶射域を
隔てて径方向に連続した環状素子として成形することが
可能である。
Another advantage of the thermal spraying method is that it is economical. In the conventional single crystal method or powder sintering method, a prolonged high-temperature heating process is inevitable, and the production efficiency is low due to the extremely slow crystal growth rate and sintering rate. Are also very expensive. On the other hand, in the thermal spraying method, melting and precipitation are performed instantaneously and continuously, so that a large amount of raw material can be manufactured as a compact in a short time. In ordinary plasma spraying, the amount of the powder raw material charged into the plasma is about 30 g per minute. Although it depends on the conditions, usually about 80% of the charged amount can be molded, so that approximately 1.5 kg of powder can be molded by one hour of thermal spraying. This is a very high-speed manufacturing process as compared with single crystal pulling, zone melt method, or powder sintering method, which requires several days to ten to several days. In particular, in the single crystal method and the powder sintering method, it is extremely rare that a compact is obtained in a shape intended for final use, and a great deal of labor is required for post-processing such as cutting, surface grinding, and chamfering after molding. on the other hand,
In the thermal spraying method, since the molding is performed while sequentially forming the shape along the shape of the base material, the final target shape can be finished in one manufacturing process. Further, in the case of the thermoelectric conversion device according to the present invention, since the purpose is to mold a thermoelectric conversion element having an electromagnetic function, unlike the purpose of abrasion resistance, etc., the surface processing of the thermal spray coating after molding is at a minimum level. It is possible to do. In addition, by masking a portion that does not require thermal spraying, it can be deposited in any shape. Therefore, as shown in FIG. 5, a large number of thermoelectric conversion materials 5 having a width of 5 cm and a thickness of 5 mm are provided on a cylindrical ceramic pipe 11 having a diameter of 10 cm and a length of 2 m with a non-sprayed area of 2 cm in the longitudinal direction of the pipe 11. It can be molded as a radially continuous annular element.

【0016】本発明に係る熱電気変換装置1の基材12
に通常の鉄鋼材料を用いる場合、該材料の大気中での酸
化を考慮すれば、600℃程度までの高温流体を基材1
2内部又は外部に流すことができる。したがって、この
場合、熱電変換材料5は、前記温度以下で作動する半導
体熱電変換材料であるBi−Te系、Bi−Sb系、P
b−Te系、Ge−Te系、Ga−Se系、Fe−Si
系又はCo−Si系等とすることができる。さらに高温
の流体を利用する場合は、基材11にAl23等のセラ
ミックスを用いることにより、1,000℃程度の高温
流体を基材11内部又は外部に流すことができる。この
場合、熱電変換材料5は、Ge−Si系、Si−C系又
はB−C系等の材料とすることができる。なお、熱電変
換材料5は、溶射が可能な融点を有する固体材料であれ
ば上記の他種々のものを使用でき、使用する熱源に応じ
て最適に選択し得る。熱電変換素子13は、N型とP型
半導体を組み合わせた接合対、あるいは、N型又はP型
のみの単極とすることができる。また、基材上に析出成
形される熱電変換材料5の厚み及び面積は、材料5の熱
電特性及び熱伝導特性、並びに、熱源の温度、流量及び
冷却流体の温度、流量等を考慮して最適に設計される。
図1及び図3に示すように、単極且つ大面積の熱電変換
素子13とした場合には、低電圧の大電流を取り出すこ
とができ、図5に示すように、単極又はN−P対の熱電
変換素子13を基材11の軸方向に複数個直列に接続し
た熱電変換素子列とした場合には、高電圧・小電流とす
ることができる。さらに、図7に示すように、熱電変換
素子列を基材11の周方向に複数配置し、一つの列の負
極を隣の列の正極に接続した形態とすることも可能であ
り、この場合、列の数に応じた高電圧とすることが可能
となる。以上のように、熱電変換素子13の面積、配列
等は、熱源及び取り出された電気エネルギーの需要目的
に適合するように設計され得る。
The substrate 12 of the thermoelectric converter 1 according to the present invention
When a normal steel material is used, a high-temperature fluid up to about 600 ° C. is used for the substrate 1 in consideration of oxidation of the material in the atmosphere.
2. Can flow inside or outside. Therefore, in this case, the thermoelectric conversion material 5 is a semiconductor thermoelectric conversion material that operates at the temperature or lower, such as Bi—Te, Bi—Sb, P
b-Te system, Ge-Te system, Ga-Se system, Fe-Si
Based or Co-Si based. In the case where a fluid having a higher temperature is used, a ceramic fluid such as Al 2 O 3 is used for the substrate 11, so that a high-temperature fluid of about 1,000 ° C. can flow inside or outside the substrate 11. In this case, the thermoelectric conversion material 5 can be a Ge-Si-based material, a Si-C-based material, a BC-based material, or the like. The thermoelectric conversion material 5 may be any other solid material having a melting point that allows thermal spraying, and may be optimally selected according to the heat source used. The thermoelectric conversion element 13 can be a junction pair combining N-type and P-type semiconductors, or a single pole of only N-type or P-type. The thickness and area of the thermoelectric conversion material 5 deposited and formed on the base material are optimized in consideration of the thermoelectric properties and heat conduction properties of the material 5, the temperature and flow rate of the heat source, the temperature and flow rate of the cooling fluid, and the like. Designed to.
As shown in FIGS. 1 and 3, when the thermoelectric conversion element 13 has a single pole and a large area, a large current of a low voltage can be taken out, and as shown in FIG. When a pair of thermoelectric conversion elements 13 are formed as a series of thermoelectric conversion elements connected in series in the axial direction of the base material 11, a high voltage and a small current can be obtained. Furthermore, as shown in FIG. 7, it is also possible to arrange a plurality of thermoelectric conversion element rows in the circumferential direction of the base material 11 and connect the negative electrode of one row to the positive electrode of the next row. , And a high voltage corresponding to the number of columns. As described above, the area, arrangement, and the like of the thermoelectric conversion elements 13 can be designed to meet the purpose of demand for the heat source and the extracted electric energy.

【0017】電気絶縁材料2、8は、200℃以下の低
温域においては耐熱性の樹脂類、200℃以上の温度域
では、通常絶縁目的に用いられるセラミックス材料とす
ることができる。前記セラミックス材料は、溶射可能で
あるアルミナ、ジルコニア、ムライト等の酸化物セラミ
ックス又は碍子類に用いられる各種の陶磁器材料等とす
ることができる。また、あまり高温でない場合(100
0℃以下)には、前記電気絶縁材料2、8をガラスある
いは結晶化ガラス材料とすることができる。これら材料
の1種類が、或いは、基材の熱膨張に適合させるために
2種類以上の材料を組み合わせたものが、絶縁に必要な
数100μmから数mmの厚みに溶射され得る。ただ
し、過度に厚く被覆すると熱伝導性が低下するため、熱
電変換素子13に所期の温度差を与えることができず、
熱電気変換装置1の性能低下をもたらすこととなる。
The electric insulating materials 2 and 8 can be heat-resistant resins in a low temperature range of 200 ° C. or lower, and ceramic materials usually used for insulating purposes in a temperature range of 200 ° C. or higher. The ceramic material can be a sprayable oxide ceramic such as alumina, zirconia, or mullite, or various ceramic materials used for insulators. If the temperature is not very high (100
(0 ° C. or lower), the electric insulating materials 2 and 8 can be glass or crystallized glass material. One of these materials, or a combination of two or more materials to match the thermal expansion of the substrate, can be sprayed to a thickness of several hundred microns to several millimeters required for insulation. However, if the coating is excessively thick, the thermal conductivity is reduced, so that the desired temperature difference cannot be given to the thermoelectric conversion element 13,
The performance of the thermoelectric converter 1 will be reduced.

【0018】導電性皮膜3、6は、通常の銅、銀、アル
ミニウム、あるいはこれらの合金類等とすることができ
る。導電性皮膜3、6は、発生する電圧に応じて過度の
電気抵抗損出が生じないように所定の厚みとされる。
The conductive films 3, 6 can be made of ordinary copper, silver, aluminum, or alloys thereof. The conductive films 3 and 6 have a predetermined thickness so as not to cause excessive loss of electric resistance according to the generated voltage.

【0019】本発明に係る熱電気変換装置1は、以上に
述べた所定の機能を有するように前記各材料を管状基材
11、12上に析出成形させて製造されるが、熱電変換
材料5に温度差を生じさせる2種類の形態を選択し得
る。1つは、管状基材11、12の内部に高温流体を流
し、外部に冷却流体を流すもので、この場合基材11、
12内部から外部方向へ熱が伝搬する。この場合、外部
冷却に空気を用いれば問題はないが、工業用水あるいは
河川水などを用いた場合は、冷却媒体である水が導電性
を有するため、多段素子型装置では電気的な短絡が生じ
る恐れがある。このような電気的短絡を防ぐには、最外
層に電気的な絶縁膜をさらに被覆すればよい。他の形態
として、逆に基材11、12の外部を高温にし、内部に
冷却流体を流すことが可能である。この形態において、
炭素又はその他のスス類、あるいは固体塵などを多く含
む高温のガスを熱源流体とする場合、長期に亘り連続運
転すれば、装置表面に電気導電性の皮膜が形成され、電
気的な短絡が生じたり、導電層や熱電変換材料自体の変
質による性能の低下をもたらす可能性がある。この場合
も、上記のように装置の最外層に保護層を設ければよ
い。
The thermoelectric conversion device 1 according to the present invention is manufactured by depositing and forming each of the above materials on the tubular substrates 11 and 12 so as to have the above-mentioned predetermined functions. Can be selected from two types that cause a temperature difference. One is to flow a high-temperature fluid inside the tubular substrates 11 and 12 and to flow a cooling fluid to the outside.
The heat propagates from the inside to the outside. In this case, there is no problem if air is used for external cooling.However, when industrial water or river water is used, since the water as the cooling medium has conductivity, an electrical short circuit occurs in the multi-stage device. There is fear. To prevent such an electrical short circuit, the outermost layer may be further covered with an electrical insulating film. As another form, it is possible to raise the temperature of the outside of the base materials 11 and 12 and to flow the cooling fluid inside. In this form,
When a high-temperature gas containing a large amount of carbon or other soot or solid dust is used as a heat source fluid, an electric conductive film is formed on the surface of the device if continuous operation is performed for a long period of time. Or deterioration of the performance due to deterioration of the conductive layer or the thermoelectric conversion material itself. In this case, the protective layer may be provided on the outermost layer of the device as described above.

【0020】以下、本発明に係る熱電気変換装置を用い
て熱電気変換を行った結果の一例について述べる。図5
に示すように、直径10cm、長さ1mのアルミナパイ
プ11(厚み5mm)の上に、Coを3原子%含有した
鉄シリサイド(FeSi2)をプラズマ溶射により幅5
cmで12列に亘り厚さ5mmで全周に溶射した。各素
子13の間は2cmの間隔を設けた。図6に示すよう
に、鉄シリサイド層のアルミナ接合面と最外面に銅を溶
射することにより集電極とするとともに、各素子13間
に絶縁性のアルミナ8を溶射し、さらに該アルミナの外
側に銅9を溶射することにより各素子間の電気的接続を
図った。このようにして製造された熱電気変換装置を電
気炉中に設置して熱電材料層表面を600℃に加熱し、
パイプ内に冷却用の空気を流すことにより、熱電変換材
料に500℃の温度差が生じた。この時、集電極を通し
各素子列の総和として0.372V、9400Aの電気
の発生を得た。
Hereinafter, an example of the result of performing thermoelectric conversion using the thermoelectric converter according to the present invention will be described. FIG.
As shown in FIG. 3, an iron silicide (FeSi 2 ) containing 3 atomic% of Co was sprayed on an alumina pipe 11 (5 mm thick) having a diameter of 10 cm and a length of 1 m by plasma spraying.
Sprayed over the entire circumference with a thickness of 5 mm over 12 rows in cm. An interval of 2 cm was provided between the elements 13. As shown in FIG. 6, copper is sprayed on the alumina bonding surface and the outermost surface of the iron silicide layer to form a collector electrode, and insulating alumina 8 is sprayed between the elements 13, and further, the outer side of the alumina is sprayed. Electrical connection between the elements was achieved by spraying copper 9. The thermoelectric conversion device manufactured in this manner is installed in an electric furnace, and the surface of the thermoelectric material layer is heated to 600 ° C.
By flowing cooling air through the pipe, a temperature difference of 500 ° C. occurred in the thermoelectric conversion material. At this time, generation of electricity of 0.372 V and 9400 A was obtained as a total of each element array through the collector electrode.

【0021】[0021]

【発明の効果】以上に述べたように、本発明に係る熱電
気変換装置は、電気絶縁性もしくは導電性の管状基材の
上に、熱電変換材料を溶射法により析出成形して形成さ
れる熱電変換素子を備えることを特徴とする。前記熱電
変換材料は、その溶射製造プロセスにおいて連続的に基
材もしくは溶射装置を回転させることにより、基材表面
上の円周方向に連続的に析出される。したがって、単結
晶あるいは焼結材料の多数を集積させた従来の装置と異
なり、大規模発電に対応可能な大面積型熱電変換素子を
備えることが可能であり、且つ製造費用の軽減された熱
電気変換装置が提供され得る。
As described above, the thermoelectric conversion device according to the present invention is formed by depositing a thermoelectric conversion material on an electrically insulating or conductive tubular base material by spraying. A thermoelectric conversion element is provided. The thermoelectric conversion material is continuously deposited in the circumferential direction on the surface of the substrate by continuously rotating the substrate or the thermal spraying device in the thermal spray manufacturing process. Therefore, unlike a conventional apparatus in which a large number of single crystals or sintered materials are integrated, it is possible to provide a large-area thermoelectric conversion element capable of coping with large-scale power generation, and to reduce thermoelectricity at a reduced manufacturing cost. A conversion device may be provided.

【0022】本発明の熱電気変換装置によれば、従来未
利用のまま廃棄されていた熱エネルギーを利用しやすい
電気エネルギーとして回収することが可能となる。特
に、我が国内に多数存在するゴミ焼却炉からの廃熱は、
必ずしも連続的に安定した熱出力を持たないがために、
蒸気タービンによる電気発電には適さず、従来そのまま
廃棄されていた。また、製鉄所など金属製造・精錬・加
工の分野においても間欠的な熱エネルギーが廃熱として
無駄に捨てられていたが、本発明に係る熱電気変換装置
を利用することにより電気エネルギーとして回収され得
る。このことは、単にこれらの施設、工場における電気
費用負担の軽減に留まらず、エネルギーのより効率的な
利用に通じるため、省エネルギー・省資源効果を有する
こととなる。さらに、エネルギー有効利用の促進は化石
燃料消費の低減をもたらし、この点から地球環境保全に
有効なCO2排出量の削減に寄与する。
According to the thermoelectric converter of the present invention, it is possible to recover heat energy which has been conventionally discarded without being used as easy-to-use electric energy. In particular, waste heat from a large number of garbage incinerators in Japan
Because it does not always have a stable and stable heat output,
It was not suitable for electric power generation by a steam turbine and was conventionally discarded as it was. In the fields of metal production, refining, and processing such as steel mills, intermittent heat energy was wasted as waste heat, but is recovered as electric energy by using the thermoelectric converter according to the present invention. obtain. This not only reduces the burden of electricity costs at these facilities and factories, but also leads to more efficient use of energy, thereby having an energy saving and resource saving effect. Furthermore, the promotion of effective energy utilization leads to a reduction in fossil fuel consumption, and in this respect contributes to a reduction in CO 2 emissions that are effective for global environmental protection.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明に係る熱電気変換装置の一実施
形態を概略的に表す斜視図である。
FIG. 1 is a perspective view schematically showing an embodiment of a thermoelectric converter according to the present invention.

【図2】図2は、図1のA部の拡大縦断面図である。FIG. 2 is an enlarged longitudinal sectional view of a portion A in FIG. 1;

【図3】図3は、本発明に係る熱電気変換装置の他の実
施形態を概略的に表す斜視図である。
FIG. 3 is a perspective view schematically showing another embodiment of the thermoelectric converter according to the present invention.

【図4】図4は、図3のB部の拡大縦断面図である。FIG. 4 is an enlarged vertical sectional view of a portion B in FIG. 3;

【図5】図5は、本発明に係る熱電気変換装置の他の実
施形態を概略的に表す斜視図である。
FIG. 5 is a perspective view schematically showing another embodiment of the thermoelectric converter according to the present invention.

【図6】図6は、図3のC部の拡大縦断面図である。FIG. 6 is an enlarged vertical sectional view of a portion C in FIG. 3;

【図7】図7は、本発明に係る熱電気変換装置の他の実
施形態を概略的に表す斜視図である。
FIG. 7 is a perspective view schematically showing another embodiment of the thermoelectric converter according to the present invention.

【符号の説明】[Explanation of symbols]

1 熱電気変換装置 2 電気絶縁性膜 3 導電性膜 5 熱電変換材料 6 導電性膜 11 電気絶縁性管状基材 12 導電性管状基材 13 熱電変換素子 DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion apparatus 2 Electric insulating film 3 Conductive film 5 Thermoelectric conversion material 6 Conductive film 11 Electric insulating tubular base material 12 Conductive tubular base material 13 Thermoelectric conversion element

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 熱源流体及び冷却流体の各々が内部又は
外部のいずれか一方に流通する管状基材と、該管状基材
の外周面に熱電変換材料を溶射法により析出成形して形
成され、前記管状基材との接合面と最外周面との温度差
により電力を発生させる熱電変換素子とを備える熱電気
変換装置。
1. A tubular base material in which each of a heat source fluid and a cooling fluid flows either inside or outside, and a thermoelectric conversion material is formed on the outer peripheral surface of the tubular base material by precipitation molding by a thermal spraying method. A thermoelectric conversion device comprising: a thermoelectric conversion element that generates electric power based on a temperature difference between a bonding surface with the tubular base material and an outermost peripheral surface.
【請求項2】 前記管状基材は電気絶縁性材料から構成
され、前記熱電変換素子は、前記管状基材の外周面に導
電性材料、熱電変換材料及び導電性材料を順次積層被覆
成形して形成されていることを特徴とする請求項1に記
載の熱電気変換装置。
2. The tubular substrate is made of an electrically insulating material, and the thermoelectric conversion element is formed by sequentially laminating and coating a conductive material, a thermoelectric conversion material and a conductive material on an outer peripheral surface of the tubular substrate. The thermoelectric conversion device according to claim 1, wherein the thermoelectric conversion device is formed.
【請求項3】 前記管状基材は導電性材料から構成さ
れ、前記熱電変換素子は、前記管状基材の外周面に電気
絶縁性材料、導電性材料、熱電変換材料及び導電性材料
を順次積層被覆成形して形成されていることを特徴とす
る請求項1に記載の熱電気変換装置。
3. The tubular substrate is made of a conductive material, and the thermoelectric conversion element is formed by sequentially laminating an electrically insulating material, a conductive material, a thermoelectric conversion material, and a conductive material on an outer peripheral surface of the tubular substrate. The thermoelectric converter according to claim 1, wherein the thermoelectric converter is formed by coating.
【請求項4】 前記熱電変換材料は、N型半導体及びP
型半導体であり、前記熱電変換素子は、前記半導体の接
合対とされていることを特徴とする請求項1から3のい
ずれかに記載の熱電気変換装置。
4. The thermoelectric conversion material comprises an N-type semiconductor and a P-type semiconductor.
The thermoelectric conversion device according to any one of claims 1 to 3, wherein the thermoelectric conversion device is a mold semiconductor, and the thermoelectric conversion element is a bonding pair of the semiconductor.
【請求項5】 前記熱電変換材料は、N型半導体あるい
はP型半導体のいずれか一方であることを特徴とする請
求項1から3のいずれかに記載の熱電気変換装置。
5. The thermoelectric conversion device according to claim 1, wherein the thermoelectric conversion material is one of an N-type semiconductor and a P-type semiconductor.
【請求項6】 前記熱電変換素子を前記管状基材の軸線
方向に複数個直列に接続して形成される熱電変換素子列
を備えることを特徴とする請求項1から5のいずれかに
記載の熱電気変換装置。
6. The thermoelectric conversion element array according to claim 1, further comprising a thermoelectric conversion element array formed by connecting a plurality of the thermoelectric conversion elements in series in the axial direction of the tubular base material. Thermoelectric converter.
【請求項7】 前記熱電変換素子列が前記管状基材の周
方向に複数個直列に接続されて配置されていることを特
徴とする請求項6に記載の熱電気変換装置。
7. The thermoelectric conversion device according to claim 6, wherein a plurality of the thermoelectric conversion element rows are connected in series in a circumferential direction of the tubular base material.
JP9227388A 1997-08-08 1997-08-08 Thermoelectric conversion device Pending JPH1168176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9227388A JPH1168176A (en) 1997-08-08 1997-08-08 Thermoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9227388A JPH1168176A (en) 1997-08-08 1997-08-08 Thermoelectric conversion device

Publications (1)

Publication Number Publication Date
JPH1168176A true JPH1168176A (en) 1999-03-09

Family

ID=16860044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9227388A Pending JPH1168176A (en) 1997-08-08 1997-08-08 Thermoelectric conversion device

Country Status (1)

Country Link
JP (1) JPH1168176A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028653A1 (en) * 1998-11-11 2000-05-18 Techno Bank Co., Ltd. Thermoelectric conversion device
WO2008142995A1 (en) * 2007-05-11 2008-11-27 M Hikari & Energy Laboratory Co., Ltd. On-site integrated production plant
WO2012014366A1 (en) * 2010-07-30 2012-02-02 パナソニック株式会社 Pipe-shaped thermal power generation device, method for manufacturing same, thermal power generator, method for generating electricity using thermal power generation device, and method for generating electricity using thermal power generator
WO2012136243A1 (en) * 2011-04-04 2012-10-11 Greenteg Gmbh C/O Eth Zürich, Micro- & Nanosystems Combined hydroelectric-thermoelectric power plant
US8646310B2 (en) 2010-10-13 2014-02-11 Panasonic Corporation Method for detecting a gas contained in a fluid with use of a gas sensor
JP2014107443A (en) * 2012-11-28 2014-06-09 Fuji Corp Thermoelectric conversion device and manufacturing method therefor
WO2015033868A1 (en) * 2013-09-04 2015-03-12 富士フイルム株式会社 Thermoelectric conversion element
CN109378999A (en) * 2018-12-12 2019-02-22 深圳大学 A kind of heat volt power generator based on remaining waste-heat power generation

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028653A1 (en) * 1998-11-11 2000-05-18 Techno Bank Co., Ltd. Thermoelectric conversion device
WO2008142995A1 (en) * 2007-05-11 2008-11-27 M Hikari & Energy Laboratory Co., Ltd. On-site integrated production plant
JP5174811B2 (en) * 2007-05-11 2013-04-03 株式会社エム光・エネルギー開発研究所 On-site integrated production plant
US8197664B2 (en) 2007-05-11 2012-06-12 M Hikari & Energy Laboratory Co., Ltd. Onsite integrated production factory
US8277632B2 (en) 2007-05-11 2012-10-02 M Hikari & Energy Laboratory Co., Ltd. Onsite integrated production factory
JP5095881B2 (en) * 2010-07-30 2012-12-12 パナソニック株式会社 Pipe-shaped thermoelectric power generation device and manufacturing method thereof, thermoelectric generator, method of generating electricity using thermoelectric generator, and method of generating electricity using thermoelectric generator
CN103003968A (en) * 2010-07-30 2013-03-27 松下电器产业株式会社 Pipe-shaped thermal power generation device, method for manufacturing same, thermal power generator, method for generating electricity using thermal power generation device, and method for generating electricity using thermal power generator
WO2012014366A1 (en) * 2010-07-30 2012-02-02 パナソニック株式会社 Pipe-shaped thermal power generation device, method for manufacturing same, thermal power generator, method for generating electricity using thermal power generation device, and method for generating electricity using thermal power generator
US8552284B2 (en) 2010-07-30 2013-10-08 Panasonic Corporation Pipe-shaped thermoelectric power generating device
US8646310B2 (en) 2010-10-13 2014-02-11 Panasonic Corporation Method for detecting a gas contained in a fluid with use of a gas sensor
WO2012136243A1 (en) * 2011-04-04 2012-10-11 Greenteg Gmbh C/O Eth Zürich, Micro- & Nanosystems Combined hydroelectric-thermoelectric power plant
JP2014107443A (en) * 2012-11-28 2014-06-09 Fuji Corp Thermoelectric conversion device and manufacturing method therefor
WO2015033868A1 (en) * 2013-09-04 2015-03-12 富士フイルム株式会社 Thermoelectric conversion element
CN109378999A (en) * 2018-12-12 2019-02-22 深圳大学 A kind of heat volt power generator based on remaining waste-heat power generation
CN109378999B (en) * 2018-12-12 2023-11-28 深圳大学 Thermal power generation device based on waste heat power generation

Similar Documents

Publication Publication Date Title
US8729380B2 (en) Use of porous metallic materials as contact connection in thermoelectric modules
JP2006156993A (en) Thermoelectric conversion module, apparatus and method for thermoelectric generation using it, exhaust heat recovery system, solar heat using system, peltier cooling/heating system, nuclear thermoelectric generation system, and biomass system
JP2012523110A (en) Thermoelectric material coated with protective layer
WO2005069391A1 (en) Thermoelectric conversion element and its producing method, and thermoelectric conversion apparatus using the element
JP5526104B2 (en) Thermoelectric conversion composite material, thermoelectric conversion material paste using the same, and thermoelectric conversion module using the same
JPWO2008111218A1 (en) Thermoelectric converter
JP2006294738A (en) Tube-like thermoelectric module and thermoelectric convertor using the same, and method of manufacturing thereof
US20120305044A1 (en) Thermal transfer and power generation systems, devices and methods of making the same
JPH1168176A (en) Thermoelectric conversion device
JP4901049B2 (en) Thermoelectric conversion unit
CN105576112B (en) Annular thermo-electric device
CN103238227B (en) For the electrothermal module of gas extraction system
JP2009170438A (en) Manufacturing method of thermoelectric conversion unit
JP2006253341A (en) Thermoelectric power generation element susceptible to temperature difference
JPH09243201A (en) Thermoelectric converter and its manufacture
JP2000323759A (en) Thermoelectric power-generating system
JP2000091649A (en) Thermoelectric element, thermoelectric conversion module core, and thermoelectric conversion module and its manufacture
JP3390829B2 (en) Thermoelectric converter and method of manufacturing the same
JP4168398B2 (en) Tubular thermoelectric module
JP2009088457A (en) Thermoelectric conversion device and method of manufacturing the same
JP3174851B2 (en) Thermoelectric converter and method of manufacturing the same
JPH07106641A (en) Integral ring type thermoelectric conversion element and device employing same
JP2000188426A (en) Thermo-electric conversion module and its manufacture
JP2000261051A (en) Thermoelectric conversion device
JP2006086402A (en) Tubular thermoelectric module and thermoelectric converting device