JP3174851B2 - Thermoelectric converter and method of manufacturing the same - Google Patents

Thermoelectric converter and method of manufacturing the same

Info

Publication number
JP3174851B2
JP3174851B2 JP05712299A JP5712299A JP3174851B2 JP 3174851 B2 JP3174851 B2 JP 3174851B2 JP 05712299 A JP05712299 A JP 05712299A JP 5712299 A JP5712299 A JP 5712299A JP 3174851 B2 JP3174851 B2 JP 3174851B2
Authority
JP
Japan
Prior art keywords
type semiconductor
thermoelectric conversion
conversion element
tubular
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05712299A
Other languages
Japanese (ja)
Other versions
JP2000077732A (en
Inventor
和夫 上野
Original Assignee
経済産業省産業技術総合研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 経済産業省産業技術総合研究所長 filed Critical 経済産業省産業技術総合研究所長
Priority to JP05712299A priority Critical patent/JP3174851B2/en
Publication of JP2000077732A publication Critical patent/JP2000077732A/en
Application granted granted Critical
Publication of JP3174851B2 publication Critical patent/JP3174851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エネルギー変換材
料技術のうち、熱電気直接変換技術に関する。
[0001] The present invention relates to a thermoelectric direct conversion technology among energy conversion material technologies.

【0002】[0002]

【従来の技術】ゼーベック効果を利用した、半導体材料
による熱エネルギーから電気への直接変換は1950年
代にJoffeにより提案され、その後、例えば、Bi
−Te系、Pb−Te系、Ge−Si系、Fe−Si系
などの各種半導体材料やSiC、B4Cなどのセラミッ
ク材料が熱電変換材料として研究されてきた。これらの
うち、変換効率が比較的高いBi−Te/Pb−Te系
半導体を用いた熱電変換装置が米国や旧ソ連を中心に開
発され、宇宙衛星用電源などとして同位体核分裂に伴う
熱エネルギーと組み合わせることにより用いられてき
た。また、電気エネルギーによる吸熱効果(ペルチェ効
果)を利用した冷蔵庫が近年同じくBi−Te系半導体
を用いて実用化されている。これらの熱電変換装置にお
いて、主にゾーンメルト法による単結晶材料や、粉末焼
結法による焼結材料が熱電変換材料として用いられてき
た。前記方法により製作される熱電変換材料は、高純度
の半導体材料であるため、当該材料を用いた熱電変換素
子は高価格にならざるを得ず、熱電気直接発電の普及に
障害となっていた。
2. Description of the Related Art Direct conversion of heat energy to electricity by a semiconductor material using the Seebeck effect was proposed by Joffe in the 1950's, and subsequently, for example, by Bi.
-Te system, Pb-Te system, Ge-Si-based, various semiconductor materials and SiC, such as Fe-Si-based, ceramic materials, such as B 4 C have been investigated as a thermoelectric conversion material. Among them, thermoelectric converters using Bi-Te / Pb-Te semiconductors with relatively high conversion efficiency have been developed mainly in the United States and the former Soviet Union. It has been used by combining. In recent years, refrigerators utilizing a heat absorption effect (Peltier effect) by electric energy have recently been put to practical use using Bi-Te-based semiconductors. In these thermoelectric conversion devices, a single crystal material obtained by a zone melt method or a sintered material obtained by a powder sintering method has been mainly used as a thermoelectric conversion material. Since the thermoelectric conversion material manufactured by the method is a high-purity semiconductor material, a thermoelectric conversion element using the material has to be expensive, which has been an obstacle to the spread of thermoelectric direct power generation. .

【0003】[0003]

【発明が解決しようとする課題】熱電発電技術は、可動
部分がなく、長寿命でかつメンテナンス負担が他の発電
方式に比較してきわめて低いこと、また熱源の温度、熱
量変動に対して適用範囲が広いことから、未利用エネル
ギーの回収技術として期待されている。しかし、特にゴ
ミ焼却炉からの高温燃焼ガスや製鉄所からのコークス冷
却熱など比較的大規模な熱源に対応するためには、上記
のような従来法による熱電変換素子製造技術に基づく発
電装置は、能力及び経済性の点で限界があった。熱電発
電技術を熱回収分野で利用するためにはこの問題点を解
決することが急務とされている。
The thermoelectric power generation technology has no moving parts, has a long service life, has a very low maintenance burden as compared with other power generation methods, and is applicable to temperature and heat quantity fluctuations of a heat source. Because of its wide area, it is expected as a technology to recover unused energy. However, in order to cope with a relatively large-scale heat source such as high-temperature combustion gas from a garbage incinerator or coke cooling heat from an ironworks, a power generator based on the thermoelectric conversion element manufacturing technology according to the conventional method as described above is required. , Capacity and economy. There is an urgent need to solve this problem in order to use thermoelectric power generation technology in the heat recovery field.

【0004】本発明は、かかる現状での要請に応えるべ
くなされたものであり、単結晶あるいは焼結材料の多数
を集積させた従来の方式と異なり、製造費用が軽減さ
れ、かつ従来に比較して大規模な発電能力を有する熱電
発電装置及びその製造方法を提供することを目的とす
る。
[0004] The present invention has been made to meet the demands of the present situation, and, unlike the conventional method in which a large number of single crystals or sintered materials are integrated, the manufacturing cost is reduced and compared with the conventional method. To provide a thermoelectric generator having a large-scale power generation capability and a method of manufacturing the same.

【0005】[0005]

【課題を解決するための手段】本発明の発明者は、種々
研究を重ねた結果、溶射技術を用い、n型半導体及びp
型半導体を管状基材上に析出成形し、該半導体が管状基
材寄りの位置で直接接合した接合対構造を有する熱電変
換素子を形成することにより、上記目的を達成できるこ
とを見出し、本発明を完成するに至った。すなわち、本
発明は、熱源流体及び冷却流体の各々が内部又は外部の
いずれか一方に流通する管状基材と、該管状基材の外周
面に熱電変換材料を析出成形して形成され、前記管状基
材との接合面と最外周面との温度差により電力を発生さ
せる熱電変換素子とを備え、前記熱電変換材料は、n型
半導体及びp型半導体であり、前記熱電変換素子は、前
記n型半導体とp型半導体とが前記管状基材寄りの位置
で直接接合した接合対構造を有することを特徴とする熱
電気変換装置を提供するものである。前記管状基材は、
導電性材料から構成され、該管状基材の外周面に析出成
形された電気絶縁性膜と、該電気絶縁性膜の外周面に前
記管状基材の軸方向に沿って各々間隙を隔てて析出成形
された複数個の電気絶縁性リムと、前記電気絶縁性膜の
外周面上の前記間隙に析出成形された複数個の前記熱電
変換素子と、該熱電変換素子及び前記電気絶縁性リムの
外周面に析出成形された導電性膜とを備え、前記熱電変
換素子は、前記管状基材の軸方向に並んで当接するn型
半導体及びp型半導体の接合対からなり、前記n型半導
体と前記p型半導体の界面部に、前記管状基材寄りの一
端部を残して前記n型半導体と前記p型半導体とを電気
的に分離する凹所が設けられている構造であってもよ
い。或いは、前記管状基材は、電気絶縁性材料から構成
され、該管状基材の外周面に該管状基材の軸方向に沿っ
て各々間隙を隔てて析出成形された複数個の電気絶縁性
リムと、前記管状基材の外周面上の前記間隙に析出成形
された複数個の前記熱電変換素子と、該熱電変換素子及
び前記電気絶縁性リムの外周面に析出成形された導電性
膜とを備え、前記熱電変換素子は、前記管状基材の軸方
向に並んで当接するn型半導体及びp型半導体の接合対
からなり、前記n型半導体と前記p型半導体の界面部
に、前記管状基材寄りの一端部を残して前記n型半導体
と前記p 型半導体とを電気的に分離する凹所が設けられ
ている構造であってもよい。或いは、前記管状基材は、
電気絶縁性材料から構成され、該管状基材の外周面に軸
方向に沿って各々間隔をおいて設けられた複数個の溝
と、該溝に析出成形された複数個の前記熱電変換素子
と、該熱電変換素子及び前記溝壁の外周面に析出成形さ
れた導電性膜とを備え、前記熱電変換素子は、前記管状
基材の軸方向に並んで当接するn型半導体及びp型半導
体の接合対からなり、前記n型半導体と前記p型半導体
の界面部に、前記管状基材寄りの一端部を残して前記n
型半導体と前記p型半導体とを電気的に分離する凹所が
設けられている構造であってもよい。前記熱電変換素子
は、前記管状基材の周方向に沿った環状の前記n型半導
体及びp型半導体による前記接合対構造を有していても
よい。また、本発明は、熱電気変換装置の製造方法を提
供するものである。すなわち、本発明は、溶射法により
管状基材の外周面にn型半導体及びp型半導体を析出成
形して該半導体の接合対からなる熱電変換素子を形成す
る工程において、前記n型半導体と前記p型半導体とが
前記管状基材寄りの位置で直接接続した接合対構造を有
するように前記熱電変換素子を形成する工程を包含する
ことを特徴とする熱電気変換装置の製造方法を提供する
ものである。本発明に係る熱電気変換装置の製造方法
は、導電性材料から構成される管状基材の外周面に電気
絶縁性膜を析出成形する工程と、前記電気絶縁性膜の外
周面に、溶射法により、前記管状基材の軸方向に沿って
各々間隙を隔てて複数個の電気絶縁性リムを析出成形す
る工程と、前記間隙に、溶射法により、n型半導体及び
p型半導体を前記管状基材軸方向に並んで当接するよう
に順次析出成形して熱電変換素子を形成する工程と、該
熱電変換素子及び前記電気絶縁性リムの外周面に、溶射
法により、導電性膜を析出成形する工程と、前記n型半
導体と前記p型半導体の界面部に、前記管状基材寄りの
一端部を残して前記n型半導体と前記p型半導体とを電
気的に分離する凹所を設ける工程とを包含していてもよ
い。或いは、電気絶縁性材料から構成される管状基材の
外周面に、溶射法により、該管状基材の軸方向に沿って
各々間隙を隔てて複数個の電気絶縁性リムを析出成形す
る工程と、前記間隙に、溶射法により、n型半導体及び
p型半導体を前記管 状基材軸方向に並んで当接するよう
に順次析出成形して熱電変換素子を形成する工程と、該
熱電変換素子及び前記電気絶縁性リムの外周面に、溶射
法により、導電性膜を析出成形する工程と、前記n型半
導体と前記p型半導体の界面部に、前記管状基材寄りの
一端部を残して前記n型半導体と前記p型半導体とを電
気的に分離する凹所を設ける工程とを包含していてもよ
い。或いは、電気絶縁性材料から構成される管状基材の
外周面に、軸方向に沿って各々間隔をおいて複数個の溝
を設ける工程と、該溝に、溶射法により、n型半導体及
びp型半導体を前記管状基材軸方向に並んで当接するよ
うに順次析出成形して熱電変換素子を形成する工程と、
該熱電変換素子及び前記溝壁の外周面に、溶射法によ
り、導電性膜を析出成形する工程と、前記n型半導体と
前記p型半導体の界面部に、前記管状基材寄りの一端部
を残して前記n型半導体と前記p型半導体とを電気的に
分離する凹所を設ける工程とを包含していてもよい。前
記熱電変換素子を形成する工程は、前記管状基材の周方
向に沿った環状の前記n型半導体及びp型半導体により
前記接合対構造を形成する工程を包含していてもよい。
The inventor of the present invention has conducted various studies, and as a result, has found that an n-type semiconductor and a p-type
A semiconductor is deposited and formed on a tubular substrate, and the semiconductor is
The present inventors have found that the above object can be achieved by forming a thermoelectric conversion element having a bonding pair structure in which bonding is directly performed at a position close to the material, and have completed the present invention. That is, the book
The invention provides that the heat source fluid and the cooling fluid are each internal or external.
A tubular base material flowing through any one of the base materials and an outer periphery of the tubular base material
The thermoelectric conversion material is formed by precipitation molding on the surface,
Electric power is generated due to the temperature difference between the joint surface with the material and the outermost peripheral surface.
A thermoelectric conversion element, wherein the thermoelectric conversion material is an n-type
A semiconductor and a p-type semiconductor, wherein the thermoelectric conversion element is
Positions of the n-type semiconductor and the p-type semiconductor near the tubular substrate
Characterized by having a joint-pair structure directly joined by heat
An electric conversion device is provided. The tubular substrate,
It is composed of a conductive material and deposited on the outer peripheral surface of the tubular substrate.
The formed electrically insulating film and the outer peripheral surface of the electrically insulating film are
Precipitation molding with gaps along the axial direction of the tubular substrate
A plurality of electrically insulating rims,
A plurality of the thermoelectric elements formed by precipitation in the gap on the outer peripheral surface;
Conversion element, the thermoelectric conversion element and the electrically insulating rim.
An electroconductive film formed on the outer peripheral surface by precipitation molding.
The replacement element is an n-type abutting side by side in the axial direction of the tubular substrate.
A junction pair of a semiconductor and a p-type semiconductor;
At the interface between the body and the p-type semiconductor, one
The n-type semiconductor and the p-type semiconductor are electrically
It may be a structure that has a recess that separates
No. Alternatively, the tubular substrate is composed of an electrically insulating material
Is formed on the outer peripheral surface of the tubular substrate along the axial direction of the tubular substrate.
Electrical insulation formed by precipitation molding with a gap
Rim and precipitation molding in the gap on the outer peripheral surface of the tubular substrate
A plurality of said thermoelectric conversion elements, said thermoelectric conversion elements and
And conductivity formed by precipitation molding on the outer peripheral surface of the electrically insulating rim.
And a thermoelectric conversion element, wherein the thermoelectric conversion element has an axial direction of the tubular base material.
Pair of n-type semiconductor and p-type semiconductor contacting side by side
An interface between the n-type semiconductor and the p-type semiconductor
The n-type semiconductor except for one end near the tubular substrate.
And a recess for electrically isolating the semiconductor from the p- type semiconductor.
Structure may be used. Alternatively, the tubular substrate is
It is composed of an electrically insulating material, and has a shaft on the outer peripheral surface of the tubular substrate.
A plurality of grooves each spaced along the direction
And a plurality of the thermoelectric conversion elements deposited and formed in the grooves.
Formed on the outer peripheral surface of the thermoelectric conversion element and the groove wall.
Conductive film, the thermoelectric conversion element, the tubular
N-type semiconductor and p-type semiconductor contacting side by side in the axial direction of the substrate
The n-type semiconductor and the p-type semiconductor
At the interface of the above, leaving one end near the tubular substrate.
A recess for electrically separating the p-type semiconductor from the p-type semiconductor
The structure provided may be sufficient. The thermoelectric conversion element
Is an annular n-type semiconductor along the circumferential direction of the tubular substrate.
Having the junction-pair structure of the body and the p-type semiconductor.
Good. The present invention also provides a method for manufacturing a thermoelectric converter.
To offer. That is, the present invention uses the thermal spraying method.
Deposition of n-type semiconductor and p-type semiconductor on outer peripheral surface of tubular substrate
To form a thermoelectric conversion element comprising a junction pair of the semiconductor.
The n-type semiconductor and the p-type semiconductor
It has a bonded pair structure directly connected at the position near the tubular substrate.
Forming the thermoelectric conversion element so that
To provide a method for manufacturing a thermoelectric converter.
Things. Manufacturing method of thermoelectric conversion device according to the present invention
Is electrically connected to the outer peripheral surface of the tubular base made of conductive material.
Depositing and forming an insulating film;
On the peripheral surface, by thermal spraying, along the axial direction of the tubular substrate
Precipitate and form a plurality of electrically insulating rims, each with a gap
And an n-type semiconductor and
P-type semiconductors are arranged so as to abut against each other in the axial direction of the tubular substrate.
Forming a thermoelectric conversion element by sequential precipitation molding
Thermal spraying on the outer peripheral surface of the thermoelectric conversion element and the electrically insulating rim
Depositing and forming a conductive film by the method,
At the interface between the conductor and the p-type semiconductor,
The n-type semiconductor and the p-type semiconductor are electrically connected except for one end.
Providing a recess for gaseous separation.
No. Alternatively, a tubular base made of an electrically insulating material
On the outer peripheral surface, by thermal spraying, along the axial direction of the tubular substrate
Precipitate and form a plurality of electrically insulating rims, each with a gap
And an n-type semiconductor and
to abut alongside the p-type semiconductor in the tube Jomoto member axis
Forming a thermoelectric conversion element by sequential precipitation molding
Thermal spraying on the outer peripheral surface of the thermoelectric conversion element and the electrically insulating rim
Depositing and forming a conductive film by the method,
At the interface between the conductor and the p-type semiconductor,
The n-type semiconductor and the p-type semiconductor are electrically connected except for one end.
Providing a recess for gaseous separation.
No. Alternatively, a tubular base made of an electrically insulating material
A plurality of grooves, each spaced along the axial direction, on the outer peripheral surface
Forming an n-type semiconductor and a groove in the groove by thermal spraying.
And the p-type semiconductor are abutted side by side in the axial direction of the tubular substrate.
Forming a thermoelectric conversion element by sequential precipitation molding as described above,
An outer peripheral surface of the thermoelectric conversion element and the groove wall is formed by a thermal spraying method.
Depositing and forming a conductive film;
One end near the tubular substrate at the interface of the p-type semiconductor
To electrically connect the n-type semiconductor and the p-type semiconductor
Providing a separating recess. Previous
The step of forming the thermoelectric conversion element is performed in a manner to surround the tubular substrate.
The n-type semiconductor and the p-type semiconductor in a ring along the direction
The method may include a step of forming the bonding pair structure.

【0006】[0006]

【0007】[0007]

【0008】[0008]

【0009】[0009]

【0010】[0010]

【0011】[0011]

【0012】[0012]

【0013】[0013]

【0014】[0014]

【0015】前記n型半導体及び前記p型半導体は、そ
の溶射製造プロセスにおいて連続的に基材若しくは溶射
装置を回転させることにより、基材表面上の円周方向に
連続的に析出される。したがって、大規模発電に対応可
能な大面積型熱電変換素子を備え、且つ製造費用の軽減
された熱電気変換装置が提供され得る。
The n-type semiconductor and the p-type semiconductor are continuously deposited in the circumferential direction on the surface of the base material by continuously rotating the base material or the spraying apparatus in the thermal spray manufacturing process. Therefore, it is possible to provide a thermoelectric conversion device that includes a large-area thermoelectric conversion element that can handle large-scale power generation and that has reduced manufacturing costs.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態につき図
面を参照して説明する。図1は、本発明に係る導電性管
状基材を用いた熱電気変換装置の一実施形態を概略的に
表す斜視図であり、図2は、図1のA部の拡大縦断面図
である。また、図3は、図2に示す熱電気変換装置の製
造工程の一実施形態を示す。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view schematically showing an embodiment of a thermoelectric converter using a conductive tubular substrate according to the present invention, and FIG. 2 is an enlarged vertical sectional view of a portion A in FIG. . FIG. 3 shows an embodiment of a manufacturing process of the thermoelectric converter shown in FIG.

【0017】本発明に係る導電性管状基材を用いた熱電
気変換装置1は、図1に示すように、n型半導体5とp
型半導体6が一対となった熱電変換素子13を導電性管
状基材11の軸方向に多段連続配置した構成である。熱
電変換素子13は、n型半導体5とp型半導体6の組を
一対とし、管状基材11上に各々適宜幅を持たせて周方
向に環状に析出することにより形成される。図2に示す
ように、隣接する熱電変換素子13間は、予め形成され
た電気絶縁性膜2と、電気絶縁性リム3により電気的に
分離されているが、絶縁リム3を跨って素子13上に析
出された導電性膜4により電気的に接続されている。1
つの熱電変換素子13を構成するn型半導体5とp型半
導体6の界面部には、管状基材11寄りの一端部を残し
て凹所7が設けられており、該一端部で互いに電気的に
結合している。したがって、各熱電変換素子13は、管
状基材11外表面において電気回路を形成している。
As shown in FIG. 1, a thermoelectric converter 1 using a conductive tubular substrate according to the present invention comprises an n-type semiconductor 5 and a p-type semiconductor 5.
This is a configuration in which thermoelectric conversion elements 13 in which the mold semiconductors 6 form a pair are continuously arranged in multiple stages in the axial direction of the conductive tubular substrate 11. The thermoelectric conversion element 13 is formed by forming a pair of the n-type semiconductor 5 and the p-type semiconductor 6 into a pair, and having a suitable width on the tubular base material 11 and depositing the ring in the circumferential direction. As shown in FIG. 2, the adjacent thermoelectric conversion elements 13 are electrically separated from each other by the previously formed electrically insulating film 2 and the electrically insulating rim 3. They are electrically connected by the conductive film 4 deposited thereon. 1
At the interface between the n-type semiconductor 5 and the p-type semiconductor 6 constituting one thermoelectric conversion element 13, a recess 7 is provided except for one end near the tubular base material 11, and the one end electrically connects to each other. Is bound to. Therefore, each thermoelectric conversion element 13 forms an electric circuit on the outer surface of the tubular substrate 11.

【0018】本装置1を用いて発電する際には、管状基
材11の内部に高温流体を流し外部に冷却流体を流すこ
とにより、或いは、逆に、内部に冷却流体を流し外部に
高温流体を流すことにより、熱電変換素子13には電気
絶縁性膜2との接合面と最外面との間に温度差が生じ
る。前記温度差に基づくゼーベック効果により、熱電変
換素子13の内外面に電位差が生じ、外部に適当な負荷
抵抗を連結して回路を形成すると電流が流れ、発電が可
能である。
When power is generated using the present apparatus 1, a high-temperature fluid is supplied to the inside of the tubular substrate 11 and a cooling fluid is supplied to the outside, or conversely, a cooling fluid is supplied to the inside and the high-temperature fluid is supplied to the outside. Causes a temperature difference in the thermoelectric conversion element 13 between the bonding surface with the electrically insulating film 2 and the outermost surface. Due to the Seebeck effect based on the temperature difference, a potential difference is generated between the inner and outer surfaces of the thermoelectric conversion element 13, and when a circuit is formed by connecting an appropriate load resistance to the outside, a current flows and power generation is possible.

【0019】以下、導電性管状基材11を用いた熱電気
変換装置1の製造方法について説明する。
Hereinafter, a method of manufacturing the thermoelectric converter 1 using the conductive tubular substrate 11 will be described.

【0020】(1)図3(a)に示すように、導電性金
属からなる円筒若しくは任意の断面形状を有する導電性
管状基材11の外周面を予め粗面化する。この粗面化
は、吸引式又は加圧式ブラスト装置により、ブラスト材
として鋳造グリッド、アルミナ粉末、炭化珪素粉末、け
い砂等を用い、平均粗さが2.5〜13μmとなるよう
にブラストを行うことによりなされる。
(1) As shown in FIG. 3 (a), the outer peripheral surface of a cylinder made of a conductive metal or a conductive tubular substrate 11 having an arbitrary cross-sectional shape is roughened in advance. This roughening is performed by a suction type or pressure type blasting device, using a casting grid, alumina powder, silicon carbide powder, silica sand, or the like as a blast material, and blasting so that the average roughness is 2.5 to 13 μm. This is done by:

【0021】(2)次に、図3(b)に示すように、溶
射法により電気絶縁性の皮膜2を析出させる。溶射法に
よる電気絶縁性皮膜2の析出は、例えば、プラズマ溶射
装置を使用し、プラズマガスとしてアルゴン、水素等を
用い、アーク放電プラズマ炎に対象とする溶射材料粉末
を投入し溶射成形を行うことによりなされる。燃料装
置、ガス流量、電気等の条件は、溶射装置及び溶射材料
に応じて適宜選択される。例えば、アルミナを溶射材料
としてプラズマ溶射する場合は、アルゴンガスをプラズ
マガスとし、大気中で、プラズマ電力25kW、溶射距
離100mmで溶射を行う。絶縁性皮膜2は、熱電変換
素子13間の電気的短絡を防止することを目的とするた
め、電気的絶縁を保証し得る最小限の厚さとすればよ
い。例えば、アルミナを絶縁性材料として用いる場合、
通常は、200〜500μmの厚さに析出させれば十分
である。なお、絶縁性皮膜2を管状基材11の全長に析
出させる場合の他、熱電変換装置の機械的固定のための
把持部又は溶接部とするため、管状基材11の端部には
絶縁性皮膜2を析出させないこととしてもよい。
(2) Next, as shown in FIG. 3B, an electrically insulating film 2 is deposited by thermal spraying. The deposition of the electrically insulating film 2 by thermal spraying is performed, for example, by using a plasma thermal spraying apparatus, using argon, hydrogen, or the like as a plasma gas, and applying a thermal spray material powder to be applied to an arc discharge plasma flame to perform thermal spray molding. Made by Conditions such as the fuel device, gas flow rate, and electricity are appropriately selected according to the thermal spraying device and thermal spray material. For example, when plasma spraying is carried out using alumina as a spray material, argon gas is used as plasma gas, and spraying is performed in the air at a plasma power of 25 kW and a spray distance of 100 mm. The insulating film 2 is intended to prevent an electrical short circuit between the thermoelectric conversion elements 13, and thus may have a minimum thickness that can guarantee electrical insulation. For example, when using alumina as an insulating material,
Normally, it is sufficient to deposit to a thickness of 200 to 500 μm. In addition, in addition to the case where the insulating film 2 is deposited over the entire length of the tubular base material 11, the end of the tubular base material 11 has an insulating property to serve as a grip portion or a welded portion for mechanically fixing the thermoelectric conversion device. The coating 2 may not be deposited.

【0022】(3)次に、図3(c)に示すように、各
熱電変換素子13間の電気的な絶縁のため、絶縁性皮膜
2上に所定の間隔を隔てて電気絶縁性リム3を形成す
る。絶縁リム3の材料としては、絶縁性のセラミックス
材料が好適であり、熱電変換材料5、6の熱膨張係数を
考慮して適切に選択する必要がある。例えば、鉄シリサ
イドを熱電変換材料5、6として用いる場合には、酸化
ジルコニウムあるいはMg2SiO4等のシリケートが好
適である。管状基材11の径方向に沿った絶縁リム3の
厚さは、最終的に形成される熱電変換素子13の厚さに
合わせておく必要がある。また、管状基材11の軸方向
に沿った絶縁リム3の幅は、絶縁するのに十分な幅であ
ればよいが、溶射による成形精度の点からは数mm程
度、好適には2mm〜5mmとされる。また、各絶縁リ
ム3の間隔は、熱電変換素子13の設計に依存するが、
溶射成形の精度を考慮すると5mm〜50mm程度、好
適には10mm〜20mmとするのがよい。
(3) Next, as shown in FIG. 3 (c), in order to electrically insulate the thermoelectric conversion elements 13, the electrically insulating rims 3 are formed on the insulating film 2 at predetermined intervals. To form As the material of the insulating rim 3, an insulating ceramic material is preferable, and it is necessary to appropriately select the material in consideration of the thermal expansion coefficients of the thermoelectric conversion materials 5 and 6. For example, when iron silicide is used as the thermoelectric conversion materials 5 and 6, a silicate such as zirconium oxide or Mg 2 SiO 4 is preferable. The thickness of the insulating rim 3 along the radial direction of the tubular substrate 11 needs to be adjusted to the thickness of the finally formed thermoelectric conversion element 13. Further, the width of the insulating rim 3 along the axial direction of the tubular base material 11 may be a width sufficient to insulate, but from the viewpoint of molding accuracy by thermal spraying, it is about several mm, preferably 2 mm to 5 mm. It is said. The spacing between the insulating rims 3 depends on the design of the thermoelectric conversion element 13,
In consideration of the accuracy of thermal spray molding, the thickness is preferably about 5 mm to 50 mm, and more preferably 10 mm to 20 mm.

【0023】(4)次に、図3(d)、(e)に示すよ
うに、各絶縁リム3の間に、n型半導体5及びp型半導
体6を順次成形する。溶射法によるn型半導体5及びp
型半導体6の成形は、例えば、高速フレーム溶射装置を
使用し、燃料としてケロシン又はプロパンガスを、酸化
剤として酸素を用いて高速燃焼炎を形成し、これに溶射
材料である半導体粉末を投入し溶射成形を行うことによ
りなされる。半導体5、6の厚さは、熱源及び冷却源温
度や電気的な最適化を考慮して適切に決定される。ただ
し、溶射法、溶射材料及び基材の溶射時の温度、溶射中
の基材及び溶射面の冷却などにより、成形可能な最大の
厚さが存在する。例えば、プラズマ溶射により鉄シリサ
イドを溶射する場合、溶射中に溶射面を不活性ガスで冷
却していたとしても、成形体の厚さが5mmを越えると
成形体が基材より剥離する傾向がある。これは、溶射時
に高温になった溶射材料が冷却時に内部に引っ張り応力
を蓄積し、所定の厚さ以上でその合算応力が密着力を越
えることが原因である。
(4) Next, as shown in FIGS. 3D and 3E, an n-type semiconductor 5 and a p-type semiconductor 6 are sequentially formed between the insulating rims 3. N-type semiconductor 5 and p by thermal spraying
The molding of the mold semiconductor 6 is performed, for example, by using a high-speed flame spraying apparatus, forming a high-speed combustion flame using kerosene or propane gas as a fuel and oxygen as an oxidizing agent, and adding a semiconductor powder as a spray material to the flame. This is performed by performing thermal spray molding. The thickness of the semiconductors 5 and 6 is appropriately determined in consideration of heat source and cooling source temperatures and electrical optimization. However, the maximum thickness that can be formed exists depending on the thermal spraying method, the temperature at the time of thermal spraying of the thermal spray material and the substrate, and the cooling of the thermal spray substrate and the thermal sprayed surface. For example, when spraying iron silicide by plasma spraying, even if the sprayed surface is cooled with an inert gas during the spraying, when the thickness of the formed body exceeds 5 mm, the formed body tends to peel off from the base material. . This is because the thermal sprayed material, which has become high temperature during thermal spraying, accumulates tensile stress inside during cooling, and when the thickness exceeds a predetermined thickness, the combined stress exceeds the adhesive strength.

【0024】(5)次に、図3(f)に示すように、熱
電気変換材料5、6をすべて溶射成形した後、その上か
ら導電性皮膜4を形成する。導電性皮膜4としては、
銅、鉄、ステンレス、ニッケル、ニッケル系合金等が好
適である。溶射法による導電性皮膜4の形成は、例え
ば、減圧プラズマ溶射装置を使用し、プラズマガスとし
てアルゴンを用い、プラズマ炎中に対象とする導電性粉
末を投入し溶射成形を行うことによりなされる。銅を溶
射する場合は、圧力20kPaのアルゴン雰囲気中で、
アルゴンガスをプラズマガスとし、プラズマ電力25k
W、溶射距離300mmで溶射を行う。導電性皮膜4の
厚さは、想定される熱源と冷却源の温度差や、熱電素子
5、6の面積に依存した電圧、電流量に対して最適な電
気抵抗となるように考慮して決定されるが、通常は10
0μm〜500μm、好適には100μm〜300μm
とされる。
(5) Next, as shown in FIG. 3F, after the thermoelectric conversion materials 5 and 6 are all formed by thermal spray molding, a conductive film 4 is formed thereon. As the conductive film 4,
Copper, iron, stainless steel, nickel, nickel-based alloys and the like are preferred. The formation of the conductive film 4 by the thermal spraying method is performed, for example, by using a reduced pressure plasma thermal spraying apparatus, using argon as a plasma gas, charging a conductive powder of interest into a plasma flame, and performing thermal spray molding. When spraying copper, in an argon atmosphere at a pressure of 20 kPa,
Argon gas as plasma gas, plasma power 25k
W, thermal spraying is performed at a thermal spray distance of 300 mm. The thickness of the conductive film 4 is determined in consideration of an assumed temperature difference between the heat source and the cooling source, and an optimum electric resistance with respect to the voltage and current depending on the area of the thermoelectric elements 5 and 6. But usually 10
0 μm to 500 μm, preferably 100 μm to 300 μm
It is said.

【0025】(6)最後に、機械加工や放電加工、レー
ザ加工等により、導電性皮膜4及びn−p素子5、6の
界面部分を除去して凹所7を形成し、熱電対の構造にす
る。機械加工により凹所7を形成する場合は、通常の旋
盤加工、あるいは回転砥石を用いた切り込み加工等が利
用できる。また、切り込み厚さはn−p極5、6間での
電気的な絶縁を確保するに十分な厚さでよく、通常は5
00μm〜3mm、好ましくは1mm〜2mmとされ
る。また、n−p素子5、6の接触部分の長さが1〜2
mm程度となるような深さまで切り込まれる。すなわ
ち、熱電材料層の厚さを5mm程度とする場合、凹所7
の深さは、3〜4mm程度とされる。
(6) Finally, the concave portion 7 is formed by removing the interface between the conductive film 4 and the np elements 5 and 6 by machining, electric discharge machining, laser machining, or the like, thereby forming a thermocouple structure. To When the recess 7 is formed by mechanical processing, ordinary lathe processing, cutting using a rotating grindstone, or the like can be used. The cut thickness may be sufficient to ensure electrical insulation between the n-p poles 5 and 6;
The thickness is from 00 μm to 3 mm, preferably from 1 mm to 2 mm. The length of the contact portion between the np elements 5 and 6 is 1 to 2
It is cut to a depth of about mm. That is, when the thickness of the thermoelectric material layer is about 5 mm, the recess 7
Has a depth of about 3 to 4 mm.

【0026】以上に述べた熱電気変換装置1及びその製
造方法によれば、導電性皮膜4をn型半導体5及びp型
半導体6の内外いずれか一方にのみ形成すればよい点で
有利である。すなわち、n型半導体又はp型半導体のい
ずれか一方のみを用いて熱電変換素子を形成し、管状基
材の軸方向に多段連続配置する構成であれば、各熱電変
換素子は同一の方向に電位差を生じる。この場合に、各
熱電変換素子を電気的に結合するには、熱電変換素子の
内外両側に導電性皮膜を形成し、隣り合う熱電変換素子
の一方の内側の導電性皮膜と他方の外側の導電性皮膜と
を電気的に接続する必要がある。本発明に係る熱電変換
装置1は、導電性皮膜4が熱電変換素子13の内外いず
れか一方にのみ形成されるので、必然的に隣り合う熱電
変換素子13間の間隙を狭めることができ、管状基材1
1上に高密度に熱電変換素子13を形成することができ
る。したがって、より多くの電流を取り出すことができ
ると共に、前記間隙を通じた高温流体と低温流体との熱
交換を抑制することができ、変換効率の極めて優れた熱
電気変換装置が提供される。また、導電性皮膜4を熱電
変換素子13の外側にのみ形成すればよいので、製造工
程が短縮され、製造コストも軽減される。
According to the above-described thermoelectric converter 1 and the method of manufacturing the same, it is advantageous that the conductive film 4 only needs to be formed on one of the inside and the outside of the n-type semiconductor 5 and the p-type semiconductor 6. . That is, if the thermoelectric conversion elements are formed using only one of the n-type semiconductor and the p-type semiconductor and are arranged in multiple stages continuously in the axial direction of the tubular substrate, each thermoelectric conversion element has a potential difference in the same direction. Is generated. In this case, in order to electrically couple each thermoelectric conversion element, a conductive film is formed on both inner and outer sides of the thermoelectric conversion element, and a conductive film on one inner side of the adjacent thermoelectric conversion element and a conductive film on the other outer side are formed. It is necessary to connect electrically to the conductive film. In the thermoelectric conversion device 1 according to the present invention, since the conductive film 4 is formed only on one of the inside and the outside of the thermoelectric conversion element 13, the gap between the adjacent thermoelectric conversion elements 13 can be inevitably narrowed, Substrate 1
1, the thermoelectric conversion elements 13 can be formed at high density. Therefore, a larger amount of current can be taken out, heat exchange between the high-temperature fluid and the low-temperature fluid through the gap can be suppressed, and a thermoelectric conversion device with extremely excellent conversion efficiency can be provided. Further, since the conductive film 4 needs to be formed only on the outside of the thermoelectric conversion element 13, the manufacturing process is shortened, and the manufacturing cost is also reduced.

【0027】図4は、本発明に係る電気絶縁性管状基材
を用いた熱電気変換装置の一部を表す拡大縦断面図であ
る。図5は、図4に示す熱電気変換装置の製造工程の一
実施形態を示す。
FIG. 4 is an enlarged vertical sectional view showing a part of a thermoelectric converter using the electrically insulating tubular substrate according to the present invention. FIG. 5 shows an embodiment of a manufacturing process of the thermoelectric converter shown in FIG.

【0028】本発明に係る電気絶縁性管状基材を用いた
熱電気変換装置1は、図1に示す導電性管状基材を用い
た熱電気変換装置と同様に、n型半導体5とp型半導体
6が一対となった熱電変換素子13を電気絶縁性管状基
材12の軸方向に多段連続配置した構成である。図4に
示すように、隣接する熱電変換素子13間は、管状基材
12及び電気絶縁性リム3により電気的に分離されてい
るが、絶縁リム3を跨って素子13上に析出された導電
性膜4により電気的に接続されている。1つの熱電変換
素子13を構成するn型半導体5とp型半導体6の界面
部には、管状基材11寄りの一端部を残して凹所7が設
けられており、該一端部で互いに電気的に結合してい
る。したがって、各熱電変換素子13は、管状基材12
外表面において電気回路を形成している。
The thermoelectric conversion device 1 using the electrically insulating tubular base material according to the present invention is similar to the thermoelectric conversion device using the conductive tubular base material shown in FIG. In this configuration, the thermoelectric conversion elements 13 in which the semiconductors 6 form a pair are continuously arranged in multiple stages in the axial direction of the electrically insulating tubular base material 12. As shown in FIG. 4, the adjacent thermoelectric conversion elements 13 are electrically separated by the tubular base material 12 and the electrically insulating rim 3. Electrically connected by the conductive film 4. At the interface between the n-type semiconductor 5 and the p-type semiconductor 6 constituting one thermoelectric conversion element 13, a recess 7 is provided except for one end near the tubular base material 11, and the one end is electrically connected to each other. Tied together. Therefore, each thermoelectric conversion element 13 is
An electric circuit is formed on the outer surface.

【0029】以下、電気絶縁性管状基材12を用いた熱
電気変換装置1の製造方法について説明する。
Hereinafter, a method for manufacturing the thermoelectric conversion device 1 using the electrically insulating tubular substrate 12 will be described.

【0030】セラミックス等、絶縁性の材料を管状基材
12の材料として用いる場合は、前述の導電性管状基材
11の場合における図3(b)の絶縁性皮膜2の溶射は
不要であり、電気絶縁性リム3の形成工程から始めるこ
とができる(図5(b))。以降の工程は、導電性管状
基材11を用いる場合と同様であり、n型半導体5及び
p型半導体6を析出成形する工程(図5(c)、
(d))、導電性膜4を形成する工程(図5(e))、
n型半導体5及びp型半導体6の界面部分を除去して凹
所7を形成する工程(図5(f))を経て、熱電気変換
装置1が製造される。
When an insulating material such as ceramics is used as the material of the tubular base material 12, the thermal spraying of the insulating coating 2 shown in FIG. The process can be started from the step of forming the electrically insulating rim 3 (FIG. 5B). Subsequent steps are the same as in the case of using the conductive tubular substrate 11, and are steps of depositing and forming the n-type semiconductor 5 and the p-type semiconductor 6 (FIG. 5 (c),
(D)), a step of forming the conductive film 4 (FIG. 5 (e)),
The thermoelectric conversion device 1 is manufactured through the step of forming the recess 7 by removing the interface between the n-type semiconductor 5 and the p-type semiconductor 6 (FIG. 5F).

【0031】図6は、本発明に係る電気絶縁性管状基材
を用いた他の実施形態に係る熱電気変換装置の一部を表
す拡大縦断面図である。図7は、図5に示す熱電気変換
装置の製造工程の一実施形態を示す。
FIG. 6 is an enlarged vertical sectional view showing a part of a thermoelectric converter according to another embodiment using the electrically insulating tubular substrate according to the present invention. FIG. 7 shows an embodiment of a manufacturing process of the thermoelectric converter shown in FIG.

【0032】本実施形態に係る熱電気変換装置1は、図
1に示す導電性管状基材を用いた熱電気変換装置と同様
に、n型半導体5とp型半導体6が一対となった熱電変
換素子13を電気絶縁性管状基材12の軸方向に多段連
続配置した構成である。図6に示すように、隣接する熱
電変換素子13間は、管状基材12及び絶縁リム3によ
り電気的に分離されているが、絶縁リム3を跨って素子
13上に析出された導電性膜4により電気的に接続され
ている。1つの熱電変換素子13を構成するn型半導体
5とp型半導体6の界面部には、管状基材11寄りの一
端部を残して凹所7が設けられており、該一端部で互い
に電気的に結合している。したがって、各熱電変換素子
13は、管状基材12外表面において電気回路を形成し
ている。
The thermoelectric conversion device 1 according to the present embodiment has a thermoelectric conversion device in which an n-type semiconductor 5 and a p-type semiconductor 6 are paired as in the thermoelectric conversion device using the conductive tubular substrate shown in FIG. In this configuration, the conversion elements 13 are continuously arranged in multiple stages in the axial direction of the electrically insulating tubular base material 12. As shown in FIG. 6, the adjacent thermoelectric conversion elements 13 are electrically separated by the tubular base 12 and the insulating rim 3, but the conductive film deposited on the element 13 across the insulating rim 3 4 are electrically connected. At the interface between the n-type semiconductor 5 and the p-type semiconductor 6 constituting one thermoelectric conversion element 13, a recess 7 is provided except for one end near the tubular base material 11, and the one end is electrically connected to each other. Tied together. Therefore, each thermoelectric conversion element 13 forms an electric circuit on the outer surface of the tubular substrate 12.

【0033】本実施形態に係る熱電気変換装置1の製造
方法は、図7(a)、(b)に示すように、基材12に
熱電素子5、6の厚さだけ溝加工し絶縁リム3を成形す
ることから始める。溝加工は、切削加工の他、マスキン
グと併用したブラスト加工等によっても行うことができ
る。また、予め図7(b)のように成形した電気絶縁性
管状基材を用いることとしてもよい。以降の工程は、図
5に示す製造工程と同様であり、n型半導体5及びp型
半導体6を析出成形する工程(図7(c)、(d))、
導電性膜4を形成する工程(図7(e))、n型半導体
5及びp型半導体6の界面部分を除去して凹所7を形成
する工程(図7(f))を経て、熱電気変換装置1が製
造される。
As shown in FIGS. 7A and 7B, the manufacturing method of the thermoelectric conversion device 1 according to the present embodiment is as follows. Start by molding 3. The grooving can be performed not only by cutting but also by blasting or the like in combination with masking. Alternatively, an electrically insulating tubular base material previously formed as shown in FIG. 7B may be used. Subsequent steps are the same as the manufacturing steps shown in FIG. 5, and include steps of depositing and forming the n-type semiconductor 5 and the p-type semiconductor 6 (FIGS. 7 (c) and (d)).
Through the step of forming the conductive film 4 (FIG. 7E) and the step of removing the interface between the n-type semiconductor 5 and the p-type semiconductor 6 to form the recess 7 (FIG. 7F), The electric conversion device 1 is manufactured.

【0034】以上に述べた電気絶縁性管状基材12を用
いた熱電気変換装置1及びその製造方法によれば、前述
の導電性管状基材11を用いた熱電気変換装置と同様
に、導電性皮膜4をn型半導体5及びp型半導体6の内
外いずれか一方にのみ形成すればよい点で有利である。
すなわち、管状基材12上に高密度に熱電変換素子13
を形成することができ、より多くの電流を取り出すこと
ができる。さらに、隣り合う熱電変換素子13間の間隙
を通じた高温流体と低温流体との熱交換を抑制すること
ができ、変換効率の極めて優れた熱電気変換装置が提供
される。また、導電性皮膜4を熱電変換素子13の外側
にのみ形成すればよいので、製造工程が短縮され、製造
コストも軽減される。
According to the thermoelectric conversion device 1 using the electrically insulating tubular base material 12 and the method of manufacturing the same, as in the thermoelectric conversion device using the conductive tubular base material 11 described above, the conductive material This is advantageous in that the conductive film 4 only needs to be formed on one of the inside and the outside of the n-type semiconductor 5 and the p-type semiconductor 6.
That is, the thermoelectric conversion elements 13 are densely placed on the tubular base 12.
Can be formed, and more current can be extracted. Further, heat exchange between the high-temperature fluid and the low-temperature fluid through the gap between the adjacent thermoelectric conversion elements 13 can be suppressed, and a thermoelectric conversion device with extremely excellent conversion efficiency is provided. Further, since the conductive film 4 needs to be formed only on the outside of the thermoelectric conversion element 13, the manufacturing process is shortened, and the manufacturing cost is also reduced.

【0035】以上に述べたように、導電性管状基材11
又は電気絶縁性管状基材12を用い、該管状基材の軸方
向に連続多段に熱電変換素子13を配置した熱電気変換
装置1が製造できる。本装置1を用いて発電する際に
は、管11、12内部に高温水、高温ガス、スチームな
ど熱源となる高温流体を流通させて、熱電変換素子13
底面を加熱し、同時に装置1の外部を空気、水等で冷却
して熱電変換素子13外表面を低温にする。これにより
熱電変換素子13には温度差が生じ、熱電作用によって
電位差が生じる。外部に適当な負荷抵抗を連結して回路
を形成すると電流が流れ、発電が可能である。
As described above, the conductive tubular substrate 11
Alternatively, the thermoelectric conversion device 1 in which the thermoelectric conversion elements 13 are arranged continuously in multiple stages in the axial direction of the tubular base material using the electrically insulating tubular base material 12 can be manufactured. When power is generated using the present apparatus 1, high-temperature fluid serving as a heat source such as high-temperature water, high-temperature gas, or steam flows through the tubes 11 and 12 so that the thermoelectric conversion element 13
The bottom surface is heated, and at the same time, the outside of the device 1 is cooled with air, water, or the like, so that the outer surface of the thermoelectric conversion element 13 is cooled. As a result, a temperature difference occurs in the thermoelectric conversion element 13, and a potential difference occurs due to the thermoelectric action. When a circuit is formed by connecting an appropriate load resistor to the outside, a current flows and power generation is possible.

【0036】外表面を空気もしくはガスにより冷却する
場合には問題は生じないが、工業用水、地下水、河川水
等の導電性流体によって冷却する場合は、各熱電変換素
子13間の電圧が短絡されてしまう。この場合には、前
述の凹所7形成の後、さらに絶縁性の皮膜を外表面に形
成すればよい。絶縁性の被覆としては、セラミックス若
しくはプラスチックの薄層が好適である。
There is no problem when the outer surface is cooled by air or gas. However, when the outer surface is cooled by a conductive fluid such as industrial water, groundwater or river water, the voltage between the thermoelectric conversion elements 13 is short-circuited. Would. In this case, an insulating film may be further formed on the outer surface after the formation of the recess 7 described above. As the insulating coating, a thin layer of ceramics or plastic is suitable.

【0037】なお、熱電気変換装置1の外表面を加熱
し、管状基材11、12内部に冷却流体を流通させるこ
ととしてもよい。基材内部又は装置外表面のいずれを加
熱するかは、使用し得る加熱源および冷却源に応じて選
択することができる。
Incidentally, the outer surface of the thermoelectric converter 1 may be heated so that a cooling fluid flows through the inside of the tubular substrates 11 and 12. Whether to heat the inside of the base material or the outer surface of the apparatus can be selected depending on a heating source and a cooling source that can be used.

【0038】溶射法は、電気プラズマや火炎燃焼などに
より高温及び高速のガス流を作り、このプラズマあるい
は燃焼炎の内部に原料である溶射材料の粉末あるいは線
状物を連続的に投入し、溶射材料の高温による溶融と、
高速ガス流による投射(吹き付け)を同時に行うことに
より基材の表面に当該溶射材料を被覆する技術である。
近年では、溶射プロセス中における基材の温度管理を適
切に行うことにより数mmから数cmの厚さに皮膜を形
成することが可能となっている。溶射法の特長は、高速
に材料を析出被覆することができ、材料を一旦溶融して
から成形するために、溶融液滴が冷却凝固されて作られ
る材料粒子間の結合が強く、焼結法に近い強度を持つ材
料を成形できる点にある。特に、減圧雰囲気条件下のプ
ラズマ溶射法によると、析出成形された材料中の残留気
孔の量をきわめて小さくすることができ、また成形中の
材料の酸化等の変質が生じない。本発明に係る熱電気変
換装置の熱電変換材料として用いられる半導体材料を析
出成形する場合においても、減圧雰囲気条件下でのプラ
ズマ溶射法により、組成の変動を抑え、より優れた特性
を備えた素子を形成することができる。
In the thermal spraying method, a high-temperature and high-speed gas flow is generated by electric plasma or flame combustion, and powder or a linear material of a thermal spraying material as a raw material is continuously charged into the plasma or the combustion flame to perform thermal spraying. Melting of the material by high temperature,
This is a technique of coating the thermal spray material on the surface of a substrate by simultaneously performing projection (spraying) by a high-speed gas flow.
In recent years, it has become possible to form a coating with a thickness of several mm to several cm by appropriately controlling the temperature of the substrate during the thermal spraying process. The feature of the thermal spraying method is that the material can be deposited and coated at a high speed, and since the material is once melted and formed, the bonding between the material particles formed by cooling and solidifying the molten droplets is strong, and the sintering method is used. The point is that a material having a strength close to the above can be molded. In particular, according to the plasma spraying method under reduced pressure atmosphere conditions, the amount of residual pores in the material formed by precipitation can be made extremely small, and the material does not undergo deterioration such as oxidation during the formation. In the case where the semiconductor material used as the thermoelectric conversion material of the thermoelectric conversion device according to the present invention is deposited and formed, the composition is suppressed by plasma spraying under reduced-pressure atmosphere conditions, and the element having more excellent characteristics is suppressed. Can be formed.

【0039】また、溶射法の特長として経済性を挙げる
ことができる。従来の単結晶法や粉末焼結法では長時間
の高温加熱プロセスが不可避であり、またきわめて遅い
結晶成長速度や焼結速度に支配されるためその製造効率
は低く、また製造される素子の価格もきわめて高価とな
る。一方、溶射法では溶融と析出が瞬時に連続的に行わ
れるため、短時間に多量の原料を成形体として製造でき
る。通常のプラズマ溶射では、粉末原料のプラズマ中へ
の投入量は毎分30g程度である。条件にもよるが、通
常は投入量の80%程度が成形できるため、1時間の溶
射により1.5kg近くもの粉末を成形できることにな
る。これは、数日から10数日程度の時間を要する単結
晶引き上げやゾーンメルト法、あるいは粉末焼結法に比
較するときわめて高速の製造プロセスである。特に、単
結晶法や粉末焼結法では、最終利用目的の形状で成形体
が得られる場合は極めて稀であり、成形後の切断、表面
研削、面取りなど後加工に多大な労力を要する。一方、
溶射法は、基材形状に沿った成形を順次析出させながら
製造するため、最終目的形状に1回の製造プロセスで仕
上げることができる。また、本発明に係る熱電変換装置
の場合、電磁気的機能を有する熱電変換素子を成形する
ことを目的とするため、耐摩耗目的等と異なり、成形後
の溶射被覆の表面加工は最低限のレベル、すなわち、表
面粗研磨として#200〜#400の粒度の研磨材(炭
化珪素、ダイヤモンド等)による表面仕上げで済ますこ
とが可能である。
Another advantage of the thermal spraying method is that it is economical. In the conventional single crystal method or powder sintering method, a prolonged high-temperature heating process is inevitable, and the production efficiency is low due to the extremely slow crystal growth rate and sintering rate. Are also very expensive. On the other hand, in the thermal spraying method, melting and precipitation are performed instantaneously and continuously, so that a large amount of raw material can be manufactured as a compact in a short time. In ordinary plasma spraying, the amount of the powder raw material charged into the plasma is about 30 g per minute. Although it depends on the conditions, usually about 80% of the charged amount can be molded, so that approximately 1.5 kg of powder can be molded by one hour of thermal spraying. This is a very high-speed manufacturing process as compared with single crystal pulling, zone melt method, or powder sintering method, which requires several days to ten to several days. In particular, in the single crystal method and the powder sintering method, it is extremely rare that a compact is obtained in a shape intended for final use, and a great deal of labor is required for post-processing such as cutting, surface grinding, and chamfering after molding. on the other hand,
In the thermal spraying method, since the molding is performed while sequentially forming the shape along the shape of the base material, the final target shape can be finished in one manufacturing process. Further, in the case of the thermoelectric conversion device according to the present invention, since the purpose is to mold a thermoelectric conversion element having an electromagnetic function, unlike the purpose of abrasion resistance, etc., the surface processing of the thermal spray coating after molding is at a minimum level. That is, it is possible to finish the surface with a polishing material (silicon carbide, diamond, or the like) having a particle size of # 200 to # 400 as the rough surface polishing.

【0040】本発明に係る熱電気変換装置1の基材11
に通常の鉄鋼材料を用いる場合、該材料の大気中での酸
化を考慮すれば、600℃程度までの高温流体を基材1
1内部又は外部に流すことができる。したがって、この
場合、熱電変換材料は、前記温度以下で作動する半導体
熱電変換材料であるBi−Te系、Bi−Sb系、Pb
−Te系、Ge−Te系、Ga−Se系、Fe−Si系
又はCo−Si系等とすることができる。さらに高温の
流体を利用する場合は、基材12にAl23等のセラミ
ックスを用いることにより、1,000℃程度の高温流
体を基材12内部又は外部に流すことができる。この場
合、熱電変換材料は、Ge−Si系、Si−C系又はB
−C系等の材料とすることができる。なお、熱電変換材
料は、溶射が可能な融点を有する固体材料であれば上記
の他種々のものを使用でき、使用する熱源に応じて最適
に選択し得る。また、基材上に析出成形される熱電変換
材料の厚さ及び面積は、当該材料の熱電特性及び熱伝導
特性、並びに、熱源の温度、流量及び冷却流体の温度、
流量等を考慮して最適に設計される。熱電変換素子13
の面積や段数は、熱源及び取り出された電気エネルギー
の需要目的に適合するように設計され得る。
The substrate 11 of the thermoelectric converter 1 according to the present invention
When a normal steel material is used, a high-temperature fluid up to about 600 ° C. is used for the substrate 1 in consideration of oxidation of the material in the atmosphere.
1 can flow inside or outside. Therefore, in this case, the thermoelectric conversion material is a semiconductor thermoelectric conversion material that operates below the temperature, Bi-Te-based, Bi-Sb-based, Pb-based.
-Te-based, Ge-Te-based, Ga-Se-based, Fe-Si-based or Co-Si-based can be used. In the case where a fluid having a higher temperature is used, a ceramic fluid such as Al 2 O 3 is used for the substrate 12, so that a high-temperature fluid of about 1,000 ° C. can be flowed into or out of the substrate 12. In this case, the thermoelectric conversion material is Ge-Si based, Si-C based or B-based.
A material such as a -C type material can be used. As the thermoelectric conversion material, any of the above-mentioned various materials can be used as long as it is a solid material having a melting point that allows thermal spraying, and can be optimally selected according to the heat source used. Further, the thickness and area of the thermoelectric conversion material deposited and formed on the base material, the thermoelectric properties and heat conduction properties of the material, and the temperature of the heat source, the flow rate and the temperature of the cooling fluid,
It is optimally designed in consideration of the flow rate and the like. Thermoelectric conversion element 13
Can be designed to meet the heat source and the intended purpose of the extracted electrical energy.

【0041】導電性基材11の上に被覆し、熱電変換材
料5、6間の電気的絶縁を図るための電気絶縁材料2
は、200℃以下の低温域においては耐熱性の樹脂類、
200℃以上の温度域では、通常絶縁目的に用いられる
セラミックス材料とすることができる。前記セラミック
ス材料は、溶射可能であるアルミナ、ジルコニア、ムラ
イト等の酸化物セラミックス又は碍子類に用いられる各
種の陶磁器材料等とすることができる。また、あまり高
温でない場合(1000℃以下)には、前記電気絶縁材
料2をガラスあるいは結晶化ガラス材料とすることがで
きる。これら材料の1種類が、或いは、基材の熱膨張に
適合させるために2種類以上の材料を組み合わせたもの
が、絶縁に必要な数100μmから数mmの厚さに溶射
され得る。ただし、過度に厚く被覆すると熱伝導性が低
下するため、熱電変換素子13に所期の温度差を与える
ことができず、熱電気変換装置1の性能低下をもたらす
こととなる。
An electric insulating material 2 coated on the conductive base material 11 to achieve electric insulation between the thermoelectric conversion materials 5 and 6
Is a heat-resistant resin in a low temperature range of 200 ° C. or less,
In a temperature range of 200 ° C. or higher, a ceramic material usually used for insulating purposes can be used. The ceramic material can be a sprayable oxide ceramic such as alumina, zirconia, or mullite, or various ceramic materials used for insulators. When the temperature is not very high (1000 ° C. or lower), the electric insulating material 2 can be glass or crystallized glass material. One of these materials, or a combination of two or more materials to match the thermal expansion of the substrate, can be sprayed to a thickness of a few hundred μm to a few mm required for insulation. However, if the coating is excessively thick, the thermal conductivity is reduced, so that the desired temperature difference cannot be given to the thermoelectric conversion element 13 and the performance of the thermoelectric conversion device 1 is reduced.

【0042】多段熱電変換素子13間の電気的な接続の
ための導電性皮膜4は、通常の銅、銀、アルミニウム、
あるいはこれらの合金類等とすることができる。導電性
皮膜4は、発生する電圧に応じて過度の電気抵抗損出が
生じないように予め計算した所定の厚さとされる。
The conductive film 4 for electrical connection between the multi-stage thermoelectric conversion elements 13 is made of ordinary copper, silver, aluminum,
Alternatively, these alloys can be used. The conductive film 4 has a predetermined thickness calculated in advance so as not to cause excessive electrical resistance loss according to the generated voltage.

【0043】[0043]

【実施例】以下、本発明に係る熱電気変換装置の製造方
法を用いて熱電気変換装置を製作し、当該熱電気変換装
置により熱電気変換を行った結果の一例について述べ
る。直径2.5cm、長さ50cmのSUS430系ス
テンレスパイプ(厚さ0.7mm)の中央外周部に、プ
ラズマ溶射法によって、アルミナを厚さ200μm、パ
イプ長手方向30cmの長さに亘り溶射した。次に、M
2SiO4を絶縁リム材として厚さ3mm、間隔20m
mで13個成形した。次に、n型半導体としてCoを3
原子%含有した鉄シリサイド(FeSi2)をプラズマ
溶射により幅1cm、厚さ2.8mmで溶射成形した。
次に、前記n型半導体に隣接する領域に、p型半導体と
してAlを4原子%含有した鉄シリサイドを幅1cm、
厚さ2.8mmで溶射成形した。これらの上から、フレ
ーム溶射により銅を厚さ約200μmで、パイプ全周に
亘って溶射した。最後に、n−p界面部を厚さ1mmの
ダイヤモンド刃により切り込み、n極とp極を底面の連
結部を残して分離した。このようにして製造された熱電
気変換装置を電気炉中に設置し、熱電材料層表面を60
0℃に加熱すると共に、管内に冷却用の空気を流すこと
により、熱電変換材料の内外面に500℃の温度差を設
けた。この時、1Ωの外部抵抗を連結することにより、
回路中に2.4V、2.4Aの電気の発生を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an example of a result of manufacturing a thermoelectric converter using the method of manufacturing a thermoelectric converter according to the present invention and performing thermoelectric conversion by the thermoelectric converter will be described. Alumina was sprayed over the center of a SUS430 stainless steel pipe (0.7 mm thick) having a diameter of 2.5 cm and a length of 50 cm over a length of 30 cm in a pipe length of 200 μm by a plasma spraying method. Next, M
g 2 SiO 4 as insulating rim material, thickness 3mm, interval 20m
m were molded into 13 pieces. Next, Co is used as an n-type semiconductor.
Atomic% -containing iron silicide (FeSi 2 ) was formed by plasma spraying to have a width of 1 cm and a thickness of 2.8 mm.
Next, in a region adjacent to the n-type semiconductor, an iron silicide containing 4 atomic% of Al as a p-type semiconductor has a width of 1 cm,
Thermal spray molding was performed with a thickness of 2.8 mm. From above, copper was sprayed over the entire circumference of the pipe with a thickness of about 200 μm by flame spraying. Finally, the n-p interface was cut with a diamond blade having a thickness of 1 mm, and the n-pole and the p-pole were separated except for the connection portion on the bottom surface. The thermoelectric conversion device manufactured in this manner is installed in an electric furnace, and the surface of the thermoelectric material layer is cleaned up to 60%.
By heating to 0 ° C. and flowing cooling air through the tube, a temperature difference of 500 ° C. was provided on the inner and outer surfaces of the thermoelectric conversion material. At this time, by connecting an external resistance of 1Ω,
2.4V, 2.4A of electricity was generated in the circuit.

【0044】[0044]

【発明の効果】以上に述べたように、本発明に係る熱電
変換装置は、n型半導体及びp型半導体の接合対により
熱電変換素子が形成された構成であるため、熱電変換素
子を基材の軸方向に多段連続配置する際には、隣り合う
熱電変換素子の間隙を狭めることができ、管状基材上に
高密度に熱電変換素子を形成することができる。したが
って、より多くの電流を取り出すことができる共に、前
記間隙を通じた高温流体と低温流体との熱交換を抑制す
ることができ、変換効率の極めて優れた熱電気変換装置
が提供される。
As described above, the thermoelectric conversion device according to the present invention has a configuration in which a thermoelectric conversion element is formed by a junction pair of an n-type semiconductor and a p-type semiconductor. When a plurality of thermoelectric conversion elements are continuously arranged in the axial direction, the gap between adjacent thermoelectric conversion elements can be narrowed, and the thermoelectric conversion elements can be formed on the tubular base material at high density. Therefore, a larger amount of current can be taken out, and heat exchange between the high-temperature fluid and the low-temperature fluid through the gap can be suppressed, thereby providing a thermoelectric converter with extremely excellent conversion efficiency.

【0045】本発明に係る熱電気変換装置の製造方法に
よれば、溶射法を用いて熱電変換素子を析出成形するた
め、溶射製造プロセスにおいて連続的に基材若しくは溶
射装置を回転させることにより、基材表面上の円周方向
に連続的に析出し得る。したがって、単結晶あるいは焼
結材料の多数を集積させる従来の製造方法と異なり、製
造費用が軽減される。さらに、n型半導体とp型半導体
の接合対により熱電変換素子を形成するため、熱電変換
素子を基材の軸方向に多段連続配置する際に必要とな
る、隣り合う熱電変換素子間を電気的に接続する導電性
膜は、最外面にのみ形成すればよく、製造工程が短縮さ
れ、製造費用もより削減することができる。
According to the method for manufacturing a thermoelectric conversion device according to the present invention, the substrate or the spraying device is continuously rotated in the thermal spraying production process in order to deposit and form the thermoelectric conversion element using the thermal spraying method. It can be deposited continuously in the circumferential direction on the substrate surface. Therefore, unlike the conventional manufacturing method in which a large number of single crystals or sintered materials are integrated, manufacturing costs are reduced. Furthermore, since a thermoelectric conversion element is formed by a junction pair of an n-type semiconductor and a p-type semiconductor, an electric connection between adjacent thermoelectric conversion elements, which is necessary when the thermoelectric conversion elements are arranged in multiple stages continuously in the axial direction of the base material. Need only be formed on the outermost surface, the manufacturing process can be shortened, and the manufacturing cost can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明に係る導電性管状基材を用いた
熱電気変換装置の一実施形態を概略的に表す斜視図であ
る。
FIG. 1 is a perspective view schematically showing an embodiment of a thermoelectric converter using a conductive tubular substrate according to the present invention.

【図2】図2は、図1のA部の拡大縦断面図である。FIG. 2 is an enlarged vertical sectional view of a portion A in FIG. 1;

【図3】図3は、図2に示す熱電気変換装置の製造工程
の一実施形態を示す。
FIG. 3 shows an embodiment of a manufacturing process of the thermoelectric converter shown in FIG.

【図4】図4は、本発明に係る電気絶縁性管状基材を用
いた熱電気変換装置の一部を表す拡大縦断面図である。
FIG. 4 is an enlarged vertical sectional view showing a part of a thermoelectric converter using the electrically insulating tubular base material according to the present invention.

【図5】図5は、図4に示す熱電気変換装置の製造工程
の一実施形態を示す。
FIG. 5 shows an embodiment of a manufacturing process of the thermoelectric converter shown in FIG.

【図6】本発明に係る電気絶縁性管状基材を用いた他の
実施形態に係る熱電気変換装置の一部を表す拡大縦断面
図である。
FIG. 6 is an enlarged vertical sectional view showing a part of a thermoelectric converter according to another embodiment using the electrically insulating tubular base material according to the present invention.

【図7】図5に示す熱電気変換装置の製造工程の一実施
形態を示す。
7 shows an embodiment of a manufacturing process of the thermoelectric converter shown in FIG.

【符号の説明】[Explanation of symbols]

1 熱電気変換装置 2 電気絶縁性膜 3 電気絶縁性リム 4 導電性膜 5 n型半導体 6 p型半導体 7 凹所 11 導電性管状基材 12 電気絶縁性管状基材 13 熱電変換素子 REFERENCE SIGNS LIST 1 thermoelectric conversion device 2 electric insulating film 3 electric insulating rim 4 conductive film 5 n-type semiconductor 6 p-type semiconductor 7 recess 11 conductive tubular base material 12 electrically insulating tubular base material 13 thermoelectric conversion element

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱源流体及び冷却流体の各々が内部又は
外部のいずれか一方に流通する管状基材と、 該管状基材の外周面に熱電変換材料を析出成形して形成
され、前記管状基材との接合面と最外周面との温度差に
より電力を発生させる熱電変換素子とを備え、 前記熱電変換材料は、n型半導体及びp型半導体であ
り、 前記熱電変換素子は、前記n型半導体とp型半導体とが
前記管状基材寄りの位置で直接接合した接合対構造を有
することを特徴とする熱電気変換装置。
1. A tubular base material in which a heat source fluid and a cooling fluid flow either inside or outside, and a thermoelectric conversion material formed on an outer peripheral surface of the tubular base material by precipitation molding. A thermoelectric conversion element that generates electric power by a temperature difference between a bonding surface with the material and an outermost peripheral surface, wherein the thermoelectric conversion material is an n-type semiconductor and a p-type semiconductor; and the thermoelectric conversion element is the n-type semiconductor. Semiconductor and p-type semiconductor
It has a bonded pair structure directly bonded at the position near the tubular substrate.
A thermoelectric converter.
【請求項2】 前記管状基材は、導電性材料から構成さ
れ、 該管状基材の外周面に析出成形された電気絶縁性膜と、 該電気絶縁性膜の外周面に前記管状基材の軸方向に沿っ
て各々間隙を隔てて析出成形された複数個の電気絶縁性
リムと、 前記電気絶縁性膜の外周面上の前記間隙に析出成形され
た複数個の前記熱電変換素子と、 該熱電変換素子及び前記電気絶縁性リムの外周面に析出
成形された導電性膜とを備え、 前記熱電変換素子は、前記管状基材の軸方向に並んで当
接するn型半導体及びp型半導体の接合対からなり、 前記n型半導体と前記p型半導体の界面部に、前記管状
基材寄りの一端部を残して前記n型半導体と前記p型半
導体とを電気的に分離する凹所が設けられていることを
特徴とする請求項1に記載の熱電気変換装置。
2. The tubular base material is made of a conductive material, and an electrically insulating film deposited and formed on an outer peripheral surface of the tubular base material. A plurality of electrically insulating rims formed by precipitation at intervals along the axial direction; a plurality of thermoelectric conversion elements formed by precipitation in the gap on the outer peripheral surface of the electrically insulating film; A thermoelectric conversion element and a conductive film deposited and formed on the outer peripheral surface of the electrically insulating rim, wherein the thermoelectric conversion element is formed of an n-type semiconductor and a p-type semiconductor that are in contact with the tubular substrate in an axial direction. A concave portion is provided at an interface between the n-type semiconductor and the p-type semiconductor, where the n-type semiconductor and the p-type semiconductor are electrically separated except for one end near the tubular substrate. The thermoelectric conversion device according to claim 1, wherein the thermoelectric conversion device is provided.
【請求項3】 前記管状基材は、電気絶縁性材料から構
成され、 該管状基材の外周面に該管状基材の軸方向に沿って各々
間隙を隔てて析出成形された複数個の電気絶縁性リム
と、 前記管状基材の外周面上の前記間隙に析出成形された複
数個の前記熱電変換素子と、 該熱電変換素子及び前記電気絶縁性リムの外周面に析出
成形された導電性膜とを備え、 前記熱電変換素子は、前記管状基材の軸方向に並んで当
接するn型半導体及びp型半導体の接合対からなり、 前記n型半導体と前記p型半導体の界面部に、前記管状
基材寄りの一端部を残して前記n型半導体と前記p型半
導体とを電気的に分離する凹所が設けられていることを
特徴とする請求項1に記載の熱電気変換装置。
3. A plurality of electric substrates formed of an electrically insulating material, and formed on a peripheral surface of the tubular substrate by precipitation molding along an axial direction of the tubular substrate with a gap therebetween. An insulating rim, a plurality of the thermoelectric conversion elements formed in the gap on the outer peripheral surface of the tubular base material, and a conductive material formed on the outer peripheral surface of the thermoelectric conversion element and the electrically insulating rim. A thermoelectric conversion element, wherein the thermoelectric conversion element comprises a bonding pair of an n-type semiconductor and a p-type semiconductor that are in contact with each other in the axial direction of the tubular base material, and at an interface between the n-type semiconductor and the p-type semiconductor, 2. The thermoelectric conversion device according to claim 1, wherein a recess is provided for electrically separating the n-type semiconductor and the p-type semiconductor except for one end near the tubular substrate.
【請求項4】 前記管状基材は、電気絶縁性材料から構
成され、 該管状基材の外周面に軸方向に沿って各々間隔をおいて
設けられた複数個の溝と、 該溝に析出成形された複数個の前記熱電変換素子と、 該熱電変換素子及び前記溝壁の外周面に析出成形された
導電性膜とを備え、 前記熱電変換素子は、前記管状基材の軸方向に並んで当
接するn型半導体及びp型半導体の接合対からなり、 前記n型半導体と前記p型半導体の界面部に、前記管状
基材寄りの一端部を残して前記n型半導体と前記p型半
導体とを電気的に分離する凹所が設けられていることを
特徴とする請求項1に記載の熱電気変換装置。
4. The tubular substrate is made of an electrically insulating material, a plurality of grooves provided at intervals along an axial direction on an outer peripheral surface of the tubular substrate, and a plurality of grooves are formed in the grooves. A plurality of the formed thermoelectric conversion elements, and a conductive film deposited and formed on the outer peripheral surfaces of the thermoelectric conversion elements and the groove walls, wherein the thermoelectric conversion elements are arranged in the axial direction of the tubular base material. A junction pair of an n-type semiconductor and a p-type semiconductor that abut on each other, and at the interface between the n-type semiconductor and the p-type semiconductor, the n-type semiconductor and the p-type semiconductor except one end near the tubular substrate. The thermoelectric conversion device according to claim 1, wherein a recess is provided to electrically separate the thermoelectric converter from the thermoelectric converter.
【請求項5】 溶射法により管状基材の外周面にn型半
導体及びp型半導体を析出成形して該半導体の接合対か
らなる熱電変換素子を形成する工程において、前記n型
半導体と前記p型半導体とが前記管状基材寄りの位置で
直接接続した接合対構造を有するように前記熱電変換素
子を形成する工程を包含することを特徴とする熱電気変
換装置の製造方法。
5. The outer peripheral surface of the tubular substrate by thermal spraying precipitated forming a n-type semiconductor and p-type semiconductor in the step of forming the thermoelectric conversion element made of the semiconductor junction pair, the n-type
The semiconductor and the p-type semiconductor are located at a position near the tubular substrate.
The thermoelectric conversion element so as to have a directly connected junction pair structure.
A method for manufacturing a thermoelectric converter, comprising a step of forming a child .
【請求項6】 前記管状基材は、導電性材料から構成さ
れ、 該管状基材の外周面に電気絶縁性膜を析出成形する工程
と、 前記電気絶縁性膜の外周面に、溶射法により、前記管状
基材の軸方向に沿って各々間隙を隔てて複数個の電気絶
縁性リムを析出成形する工程と、 前記間隙に、溶射法により、n型半導体及びp型半導体
を前記管状基材軸方向に並んで当接するように順次析出
成形して熱電変換素子を形成する工程と、 該熱電変換素子及び前記電気絶縁性リムの外周面に、溶
射法により、導電性膜を析出成形する工程と、 前記n型半導体と前記p型半導体の界面部に、前記管状
基材寄りの一端部を残して前記n型半導体と前記p型半
導体とを電気的に分離する凹所を設ける工程とを包含す
ことを特徴とする請求項5に記載の熱電気変換装置の
製造方法。
6. The step of depositing and forming an electrically insulating film on the outer peripheral surface of the tubular substrate, wherein the tubular substrate is made of a conductive material, and the outer peripheral surface of the electrically insulating film is formed by a thermal spraying method. Depositing a plurality of electrically insulative rims at intervals along the axial direction of the tubular base material, and forming the n-type semiconductor and the p-type semiconductor in the gap by thermal spraying. A step of forming a thermoelectric conversion element by sequentially forming the thermoelectric conversion element so that the thermoelectric conversion element is arranged so as to be in contact with the axial direction; and a step of forming a conductive film on the outer peripheral surfaces of the thermoelectric conversion element and the electrically insulating rim by spraying. When the interface portion of the said n-type semiconductor p-type semiconductor, and a step of providing a recess to electrically isolate the leaving end of said tubular base member closer to the n-type semiconductor and the p-type semiconductor Embrace
Method for producing a thermoelectric conversion device according to claim 5, characterized in that that.
【請求項7】 前記管状基材は、電気絶縁性材料から構
成され、 該管状基材の外周面に、溶射法により、該管状基材の軸
方向に沿って各々間隙を隔てて複数個の電気絶縁性リム
を析出成形する工程と、 前記間隙に、溶射法により、n型半導体及びp型半導体
を前記管状基材軸方向に並んで当接するように順次析出
成形して熱電変換素子を形成する工程と、 該熱電変換素子及び前記電気絶縁性リムの外周面に、溶
射法により、導電性膜を析出成形する工程と、 前記n型半導体と前記p型半導体の界面部に、前記管状
基材寄りの一端部を残して前記n型半導体と前記p型半
導体とを電気的に分離する凹所を設ける工程とを包含す
ことを特徴とする請求項5に記載の熱電気変換装置の
製造方法。
7. The tubular base material is formed of an electrically insulating material, and a plurality of the base materials are formed on the outer peripheral surface of the tubular base material by a thermal spraying method with a gap therebetween along the axial direction of the tubular base material. A step of depositing and forming an electrically insulating rim; and forming a thermoelectric conversion element by successively depositing and forming an n-type semiconductor and a p-type semiconductor in the gap in such a manner that the n-type semiconductor and the p-type semiconductor are arranged side by side in the axial direction of the tubular substrate. Performing a step of depositing and forming a conductive film on the outer peripheral surface of the thermoelectric conversion element and the electrically insulating rim by a thermal spraying method; and forming the tubular substrate at an interface between the n-type semiconductor and the p-type semiconductor. Providing a recess for electrically separating the n-type semiconductor and the p-type semiconductor while leaving one end closer to the material .
Method for producing a thermoelectric conversion device according to claim 5, characterized in that that.
【請求項8】 前記管状基材は、電気絶縁性材料から構
成され、 該管状基材の外周面に、軸方向に沿って各々間隔をおい
て複数個の溝を設ける工程と、 該溝に、溶射法により、n型半導体及びp型半導体を前
記管状基材軸方向に並んで当接するように順次析出成形
して熱電変換素子を形成する工程と、 該熱電変換素子及び前記溝壁の外周面に、溶射法によ
り、導電性膜を析出成形する工程と、 前記n型半導体と前記p型半導体の界面部に、前記管状
基材寄りの一端部を残して前記n型半導体と前記p型半
導体とを電気的に分離する凹所を設ける工程とを包含す
ることを特徴とする請求項5に記載の熱電気変換装置の
製造方法。
8. The step of providing a plurality of grooves at an interval along an axial direction on an outer peripheral surface of the tubular substrate, wherein the plurality of grooves are formed of an electrically insulating material; Forming a thermoelectric conversion element by sequentially forming an n-type semiconductor and a p-type semiconductor in a line in the axial direction of the tubular substrate by thermal spraying to form a thermoelectric conversion element; and an outer periphery of the thermoelectric conversion element and the groove wall. A step of depositing and forming a conductive film on the surface by a thermal spraying method; and at the interface between the n-type semiconductor and the p-type semiconductor, the n-type semiconductor and the p-type while leaving one end near the tubular substrate. 6. A method for manufacturing a thermoelectric converter according to claim 5, further comprising the step of providing a recess for electrically separating the semiconductor from the semiconductor.
【請求項9】 前記熱電変換素子は、前記管状基材の周9. The thermoelectric conversion element is provided around a periphery of the tubular substrate.
方向に沿った環状の前記n型半導体及びp型半導体によThe n-type semiconductor and the p-type semiconductor, which are annular along the direction.
る前記接合対構造を有することを特徴とする請求項1に2. The semiconductor device according to claim 1, wherein
記載の熱電気変換装置。The thermoelectric conversion device according to claim 1.
【請求項10】 前記熱電変換素子を形成する工程は、10. The step of forming the thermoelectric conversion element,
前記管状基材の周方向に沿った環状の前記n型半導体及An annular n-type semiconductor along the circumferential direction of the tubular substrate;
びp型半導体により前記接合対構造を形成する工程を包And forming the junction-pair structure with a p-type semiconductor.
含することを特徴とする請求項5に記載の熱電気変換装6. The thermoelectric conversion device according to claim 5, wherein
置の製造方法。Manufacturing method of the device.
JP05712299A 1998-06-15 1999-03-04 Thermoelectric converter and method of manufacturing the same Expired - Lifetime JP3174851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05712299A JP3174851B2 (en) 1998-06-15 1999-03-04 Thermoelectric converter and method of manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-185566 1998-06-15
JP18556698 1998-06-15
JP05712299A JP3174851B2 (en) 1998-06-15 1999-03-04 Thermoelectric converter and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000077732A JP2000077732A (en) 2000-03-14
JP3174851B2 true JP3174851B2 (en) 2001-06-11

Family

ID=26398142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05712299A Expired - Lifetime JP3174851B2 (en) 1998-06-15 1999-03-04 Thermoelectric converter and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3174851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107525A1 (en) * 2002-06-14 2003-12-24 明総合研究所有限会社 Power producing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006089459A1 (en) * 2005-02-28 2006-08-31 Dongru Wang Single heating-source generator
WO2010058464A1 (en) * 2008-11-20 2010-05-27 株式会社村田製作所 Thermoelectric conversion module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003107525A1 (en) * 2002-06-14 2003-12-24 明総合研究所有限会社 Power producing device

Also Published As

Publication number Publication date
JP2000077732A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
US6005182A (en) Thermoelectric conversion module and method of manufacturing the same
AU2012340268B2 (en) Thermoelectric devices with interface materials and methods of manufacturing the same
CN103460420B (en) A kind of thermounit
US8729380B2 (en) Use of porous metallic materials as contact connection in thermoelectric modules
JP4241859B2 (en) Power module manufacturing method, power module, vehicle inverter, and vehicle
KR20150080916A (en) Bulk-size nanostructured materials and methods for making the same by sintering nanowires
KR20110135855A (en) Method for fabricating thermoelectric device
JPH09243201A (en) Thermoelectric converter and its manufacture
JP3174851B2 (en) Thermoelectric converter and method of manufacturing the same
JP2007059647A (en) Thermoelectric transducer and its manufacturing method
CN109065697A (en) A kind of annular Thermoelectric Generator
JP2009170438A (en) Manufacturing method of thermoelectric conversion unit
US20130139866A1 (en) Ceramic Plate
JPH1168176A (en) Thermoelectric conversion device
JPH0555640A (en) Manufacture of thermoelectric converter and thermoelectric converter manufactured by the same
JP2000091649A (en) Thermoelectric element, thermoelectric conversion module core, and thermoelectric conversion module and its manufacture
CN106098924A (en) A kind of lamination film type thermo-electric device and spraying preparation method thereof
JP2000188426A (en) Thermo-electric conversion module and its manufacture
JP2000261051A (en) Thermoelectric conversion device
JP3390829B2 (en) Thermoelectric converter and method of manufacturing the same
CN103746070B (en) A kind of preparation method of annular-structure thermo-electric device
JP4168398B2 (en) Tubular thermoelectric module
JPH07106641A (en) Integral ring type thermoelectric conversion element and device employing same
JPH1084140A (en) Thermo-electric converter and manufacture thereof
CN105633260B (en) Annular thermo-electric device and preparation method thereof

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term