JP4901049B2 - Thermoelectric conversion unit - Google Patents

Thermoelectric conversion unit Download PDF

Info

Publication number
JP4901049B2
JP4901049B2 JP2002338320A JP2002338320A JP4901049B2 JP 4901049 B2 JP4901049 B2 JP 4901049B2 JP 2002338320 A JP2002338320 A JP 2002338320A JP 2002338320 A JP2002338320 A JP 2002338320A JP 4901049 B2 JP4901049 B2 JP 4901049B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion unit
power generation
bonding material
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002338320A
Other languages
Japanese (ja)
Other versions
JP2004172481A (en
Inventor
尊彦 新藤
秀泰 安藤
章子 須山
義康 伊藤
武久 日野
祐二郎 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002338320A priority Critical patent/JP4901049B2/en
Publication of JP2004172481A publication Critical patent/JP2004172481A/en
Application granted granted Critical
Publication of JP4901049B2 publication Critical patent/JP4901049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、熱から起電力を得る発電装置に係り、特にゼーベック効果を利用して熱から起電力を得る熱電変換素子を備えた熱電変換ユニットに関する。
【0002】
【従来の技術】
熱電変換素子の利用形態は大別すると二つある。一つの利用形態は、熱電変換素子に流した直流電流により冷却または放熱を起こすペルチェ効果を利用した局部的な冷却システム用または加熱システム用への利用である。他方の利用形態は、熱電変換素子に温度差を与え、与えた温度差により起電力を発生するゼーベック効果による熱電変換を応用した発電装置としての利用である。
【0003】
図12に熱電変換素子を用いて構成される熱電変換ユニットを示す。
【0004】
図12に示される熱電変換ユニット1は、p型の半導体2およびn型の半導体3と、p型の半導体2の上下面の一方に接合されp型の半導体2から電気を取り出す電極部4aと、n型の半導体3の上下面の一方に接合され、n型の半導体3から電気を取り出す電極部4bと、p型の半導体2とn型の半導体3とにおいて電極部4aおよび4bと対向する上下面の他方で接続される接続電極5と、電極部4aおよび4bと接続電極5とを覆い保護する保護絶縁体6とを具備し、保護絶縁体6同士の隙間を樹脂7で塞いで形成される。
【0005】
熱電変換ユニット1は、例えば、電気取り出し電極4aおよび4b側の面に低温熱源を、電極取り出し電極4aおよび4bが接合される面と対向する面に高温熱源を接触させて熱エネルギを供給することで、低温熱源と高温熱源との温度差に応じた起電力、すなわち、電気エネルギが得られる。熱電変換により得られた起電力は電極部4aおよび4bから取り出すことができる。
【0006】
熱電変換ユニット1は、温度差を有する2つの熱源からの熱エネルギを電気エネルギに直接変換することが可能であり、環境への負荷が少ない低環境負荷型電源装置となり得る。このような熱電変換ユニット1は、例えば特開2001−102644号公報に記載されている(特許文献1参照)。
【0007】
また、熱電変換ユニット1以外に次世代の低環境負荷型電源装置として注目されているのは、太陽電池を用いた太陽光発電システムや水素を利用した燃料電池システムがある。
【0008】
【特許文献1】
特開2001−102644号公報
【0009】
【発明が解決しようとする課題】
しかしながら、熱電変換ユニット1は、繰り返し使用および長期連続で使用した場合は、初回の発電時に比べて使用回数および使用日数を重ねる程、発電効率が低下するという問題があった。
【0010】
また、その他の低環境負荷型電源装置である太陽光発電システムは、日照条件に左右されるので、太陽光発電システムの稼働率は一般に低く、発電量が変動する問題がある。太陽光発電システムは、安定した電力供給のために電源部を外部に設置する必要が生じる。一方、燃料電池については、発電の際に必要な燃料となる水素の価格が高いため発電コストが高くつくという問題があった。
【0011】
本発明は、上述した事情を考慮してなされたもので、繰り返し使用および長期間使用した場合においても、初回の発電時の発電効率を維持可能な熱電変換ユニットを提供することを目的とする。
【0012】
また、本発明の他の目的は、安定した発電により外部電源が無くても安定した電力供給が可能で、かつ、安価な発電コストでの電力供給を可能とする低環境負荷型電源装置としての熱電変換ユニットを提供するにある。
【0013】
さらに、本発明の別の目的は、電力使用量を削減または外部からの電力供給無しでも周囲の温度差を用いて発電を行ないながら動作し得る熱電変換ユニットを提供するにある。
【0014】
【課題を解決するための手段】
本発明に係る熱電変換ユニットは、上述した課題を解決するために、請求項1に記載したように、p型の熱電変換素子およびn型の熱電変換素子とを少なくともそれぞれ1個は有する熱電変換機構と、前記熱電変換機構が有する熱電変換素子で発生した起電力を1つの電源装置として取り出すべく前記複数の熱電変換素子を電気的に接続する接続導体と、前記接続導体で接合された熱電変換機構の両端に位置する熱電変換素子から前記熱電変換機構で生じた起電力を取り出す電源端子を有する電極とを備え、前記接続導体および電極と前記熱電変換素子とを接合材料により接合して形成した熱電変換部と、湿度を極少に保持するよう前記熱電変換部を格納して密閉する密閉容器を具備し、前記熱電変換機構が有するp型の熱電変換素子およびn型の熱電変換素子は、ビスマス(Bi)とテルル(Te)を主成分とし、前記p型の熱電変換素子および前記n型の熱電変換素子中の気孔率は、10%以上60%以下で、かつ、10vol%以上50vol%以下の無機材料を構造中に含有しており、前記無機材料は、石英、アルミナ、ムライト、チタニア、ジルコニアであることを特徴とする。尚、密閉容器内の湿度が極少とは、発電繰り返し回数80回以上等の多数回の場合においても、初回発電量に対して90%以上の発電量を維持可能な極僅かな湿度をいう。
【0017】
さらに、本発明に係る熱電変換ユニットは、請求項に記載したように、前記密閉容器中の雰囲気が、減圧雰囲気、窒素(N)雰囲気および不活性ガス雰囲気の少なくとも1つから選択されることを特徴とする。
【0018】
さらにまた、本発明に係る熱電変換ユニットは、請求項に記載したように、前記密閉容器中の圧力が、9kPa〜110kPaであることを特徴とする。
【0021】
さらに、本発明に係る熱電変換ユニットは、請求項に記載したように、前記接合材料が、スズ(Sn)の融点より低い温度で溶融する低融点接合材料であることを特徴とする。
【0022】
さらにまた、本発明に係る熱電変換ユニットは、請求項に記載したように、前記接合材料として用いる接合材料が、スズ(Sn)の融点より低い温度で溶融する低融点接合材料であり、前記低融点接合材料は、スズ(Sn)・アンチモン(Sb)系材料、アルミニウム(Al)系材料、銅(Cu)・鉛(Pb)合金系材料、カドミウム(Cd)系材料、銅(Cu)・カドミウム(Cd)系材料、アルカリ硬化鉛系材料、亜鉛(Zn)系材料、焼結含油系材料から選択される1種類以上で構成されていることを特徴とする。
【0023】
他方、本発明に係る熱電変換ユニットは、請求項に記載したように、前記接合材料として用いる接合材料は、スズ(Sn)の融点より低い温度で溶融する低融点接合材料であり、前記低融点接合材料の厚さは2mm以下であることを特徴とする。
【0027】
このような熱電変換ユニットは、繰り返し使用および長期間使用した場合においても、初回の発電時の発電効率を維持でき、安定した発電により外部電源が無くても安定した電力供給が可能、かつ、安価な発電コストでの電力供給を可能とする。
【0029】
このような熱電変換ユニットは、電力を消費する電気機器の周辺の温度差により発電した電力を電気機器に供給し得るよう構成されているので、外部からの電力供給を削減または外部からの電力供給無しで電気機器を動作させることが可能となる。
【0030】
【発明の実施の形態】
以下、本発明に係る熱電変換ユニットの実施形態を図面を参照して説明する。
【0031】
[第1の実施形態]
図1に熱電変換ユニットの第1の実施形態の一実施例を示した熱電変換ユニット10の構成概略図を示す。
【0032】
図1に示される熱電変換ユニット10は、例えば、図12に示される熱電変換ユニット1と同様にp型の熱電変換素子11およびn型の熱電変換素子12を少なくともそれぞれ1個ずつ有する熱電変換機構13で熱電変換を行い、生じた起電力を取り出し得るよう構成される熱電変換手段14と、この熱電変換手段14を格納して密閉する密閉容器15とを具備する。
【0033】
図2に熱電変換手段14の詳細を示す構造概要図を示す。
【0034】
図2に示される熱電変換手段14は、例えば、p型の熱電変換素子11を2個とn型の熱電変換素子12を2個とを有する熱電変換手段13と、個々の熱電変換素子を電気的に接続する接続導体17と、電気的に接続されたp型の熱電変換素子11とn型の熱電変換素子12から起電力を取り出す取出口としての電源端子18を有する電極19と、接続導体17および電極19に直接触れないように周囲を覆い保護する表面保護絶縁体20とを備える。
【0035】
熱電変換手段14が備えるp型の熱電変換素子11およびn型の熱電変換素子12はBi(ビスマス)−Te(テルル)を主成分とする組成から構成される熱電変換素子である。そして、熱電変換手段14が備える複数の熱電変換素子は、接続導体17と接合材料22によって接合されることで、電気的に直列に接続されて1つの電源供給装置として機能するよう構成される。
【0036】
熱電変換手段14が備える熱電変換素子の末端、例えば、図2に示される熱電変換手段14で言えば、左端のp型の熱電変換素子11aと、右端のn型の熱電変換素子12bとには、それぞれ、起電力を取り出す電源端子18aおよび18bを有する電極19aおよび19bが接合される。そして、熱電変換手段14は、電極19aおよび19bに設けられた電源端子18aおよび18bから個々の熱電変換素子で生じた起電力を直列に取り出すことができる。また、熱電変換手段14が備える接続導体17および電極19は、電源端子18aおよび18bを除いた表面を直接手で触れることが無い様に絶縁し、かつ、外部衝撃から接続導体17、電極19および熱電変換機構13を保護するために表面保護絶縁体20で覆い、接合材料22で接合される。
【0037】
図1に示される熱電変換ユニット10は、図2に示される熱電変換手段14を密閉容器15に格納し、電源端子18aおよび18bを密閉容器15外に出した状態で密閉する。そして、熱電変換手段14を格納した密閉容器15内部の湿度を極少に保持する。尚、密閉容器15内の湿度を極少に保持するとは、発電を繰り返した回数(以下、繰り返し回数とする)が80回程度の多数回の場合においても、初回発電量に対して、少なくとも90%以上の発電量を維持可能な密閉容器15内の湿度を保持することを言う。
【0038】
また、密閉容器15は、非導電性材料であり、例えば、エポキシ、アクリル、ポリテトラフルオロエチレン等の有機材料およびアルミナ等の無機材料で形成される。
【0039】
図3に熱電変換ユニット10による発電量と湿度が0,1,2,5,10%の発電量の比較を示す。
【0040】
図3に示される発電量は、熱電変換ユニット10が具備する密閉容器15内の湿度を0%に保持し、熱電変換ユニット10に50℃の温度差を設けて生じた1回目の発電量を100として、密閉容器15内の湿度および繰り返し回数を変化させた場合の発電量を100に対する相対値で示している。
【0041】
図3によれば、熱電変換ユニット10が具備する密閉容器15内の湿度を0%,1%に保持した場合に対して、湿度が1%より多い熱電変換ユニット10は、繰り返した回数が多くなるほど発電量の低下が見られる。また、発電量の低下の傾向は、湿度が多い熱電変換ユニット10ほど顕著な低下を示す。
【0042】
繰り返し回数80回で比較すれば、初回発電量の90%以上の発電量が得られる湿度の範囲は0%〜2%であり、それ以上の湿度である5%および10%の場合では、発電量が初回発電量の90%未満となる。さらに、繰り返し回数120回で比較すれば、初回発電量の90%以上の発電量が得られる湿度は0%,1%であり、それ以上の湿度である2%,5%,10%の場合では、発電量が初回発電量の90%未満となる。そして、密閉容器15内の湿度が0%の場合の発電量は、初回発電量のほぼ100%であり、密閉容器15内の湿度が1%の場合の発電量は、初回発電量の約96%と発電量の低下はあまり見られない。
【0043】
従って、密閉容器15内の湿度は、繰り返し回数80回でも初回発電量の90%以上の発電量が得られる0%〜2%の範囲内にするのが望ましい。また、密閉容器15内の湿度のより望ましい範囲は、繰り返し回数120回でも初回発電量の90%以上の発電量が得られる0%〜1%強であり、さらに望ましい範囲は繰り返し回数120回でも初回発電量の95%以上の発電量が得られる0%〜1%以内である。
【0044】
図4に図1に示される熱電変換機構13が備える複数個の熱電変換素子、すなわち、図1に示されるp型の熱電変換素子11およびn型の熱電変換素子12の個々の中に存在する気孔の割合(以下、気孔率とする)と熱電変換ユニット10の発電量の関係を示す。
【0045】
図4に示される発電量は、熱電変換機構13が備えるp型の熱電変換素子11およびn型の熱電変換素子12の気孔率が0%の場合に生じた発電量を100として、p型の熱電変換素子11およびn型の熱電変換素子12の気孔率のみを変化させた場合の発電量を100に対する相対値で示している。
【0046】
図4によれば、熱電変換素子中の気孔率が大きくなるほど発電量は大きくなる傾向を示す。しかし、熱電変換素子中の気孔率が多くなるほど、加工性はより悪くなり熱電変換素子製造時にチッピング等が起こりやすくなる。つまり、熱電変換素子中の気孔率が多くなるほど、歩留まりが低下する。従って、熱電変換素子中の気孔率は、加工性の悪化が歩留まりの著しい低下を招かない範囲、かつ、気孔率0%時の発電量に対して発電量増加が5%以上認められる範囲である10%以上60%以下の範囲が望ましい。また、熱電変換素子中の気孔率のより望ましい範囲は、10%以上50%未満であり、さらに望ましくは、10%以上45%以下である。
【0047】
図5に図1に示される熱電変換機構13が備えるp型の熱電変換素子11とn型の熱電変換素子12の構造中に無機材料であるアルミナ、ムライト、チタニア、ジルコニアを含有させた熱電変換素子を用いた熱電変換ユニット10と、例えば、図12に示される熱電変換ユニット1等の従来の熱電変換ユニット(以下、従来品とする)との比較を示す。
【0048】
図5に示される発電量は、従来品における発電量を100として、図1に示されるp型の熱電変換素子11およびn型の熱電変換素子12の構造中に無機材料であるアルミナ、ムライト、チタニア、ジルコニアを、例えば、20%vol等のある一定割合で含有させた場合における発電量を100に対する相対値で示している。
【0049】
図5によれば、p型の熱電変換素子11とn型の熱電変換素子12の構造中に無機材料である、アルミナ、ムライト、チタニア、ジルコニアを含有させた場合は、アルミナで約107%、ムライトで約122%、チタニアで約112%、ジルコニアで約116%と、何れも従来品の発電量と比較して約7%〜22%発電量が高くなる。
【0050】
尚、図5には示されていないが、無機材料に石英を使用しても図5に示される無機材料と同様に発電量の増加が認められる。
【0051】
図6に図1に示される熱電変換機構13が備えるp型の熱電変換素子11およびn型の熱電変換素子12の熱電変換素子の構造中に、例えば、アルミナ等の無機材料を含有させて無機材料の含有量(vol%)を変化させた場合における無機材料の含有量と発電量の関係を示す。
【0052】
図6に示される発電量は、熱電変換機構13が備えるp型の熱電変換素子11およびn型の熱電変換素子12の構造中にアルミナの含有量が0vol%、すなわち、p型の熱電変換素子11およびn型の熱電変換素子12の構造中にアルミナを含有しない場合に生じた発電量を100として、p型の熱電変換素子11およびn型の熱電変換素子12の構造中に含有されるアルミナ含有量のみを変化させた場合の発電量を100に対する相対値で示している。
【0053】
図6によれば、アルミナの含有量が大きくなるほど発電量は大きくなる傾向を示す。しかし、アルミナの含有量が多くなると加工性が悪くなり、チッピング等が発生しやすくなるため歩留まりが低下する。従って、熱電変換素子中のアルミナの含有量は、加工性の悪化が歩留まりの著しい低下を招かない範囲、かつ、アルミナ含有量0vol%時の発電量に対して発電量増加が5%以上認められる10vol%以上50vol%以下が望ましい。また、アルミナ含有量のより望ましい範囲は10vol%以上45vol%以下であり、さらに望ましい範囲は10vol%以上40%以下である。
【0054】
図6に示される傾向は、石英、ムライト、チタニア、ジルコニア等、アルミナ以外の無機材料を含有させた熱電変換素子を用いて構成される熱電変換ユニット10でも同様の傾向を示す。
【0055】
図7に熱電変換ユニット10が具備する密閉容器15中の雰囲気が、大気雰囲気、減圧雰囲気、窒素(以下、Nとする)雰囲気、不活性ガス雰囲気の場合の発電量の比較を示す。
【0056】
図7に示される発電量は、図1に示される密閉容器15内の雰囲気を大気雰囲気、すなわち、大気中と同じ気圧、湿度にして、繰り返し回数100回の場合に生じた発電量を100として、密閉容器15内の雰囲気のみを、減圧雰囲気と、N雰囲気と、不活性ガス雰囲気とに変化させた場合の発電量を100に対する相対値で示している。
【0057】
図7によれば、大気雰囲気に対して、減圧雰囲気、N雰囲気、不活性ガス雰囲気の場合は、発電回数を100回繰り返しても発電量の低下がほとんど見られないため、いずれも発電量比が100%以上であり、約110%〜120%となっている。従って、密閉容器15内は、減圧雰囲気、N雰囲気、不活性ガス雰囲気の何れかから選択される雰囲気が望ましい。
【0058】
また、減圧雰囲気における密閉容器中の圧力は、9kPa〜100kPaが望ましい。そして、減圧雰囲気における密閉容器中の圧力のより望ましい範囲は、9kPa〜80kPaであり、さらに望ましくは、9kPa〜60kPaである。一方、N雰囲気、不活性ガス雰囲気における密閉容器中の圧力は、9kPa〜110kPaが望ましい。そして、N雰囲気、不活性ガス雰囲気における密閉容器中の圧力のより望ましい範囲は、30kPa〜110kPaであり、さらに望ましくは、50kPa〜110kPaである。
【0059】
図8に熱電ユニット10が具備する熱電変換手段14において、p型の熱電変換素子11およびn型の熱電変換素子12と接続導体17および電極19を接合する接合材料22に従来と同様の接着剤を使用して接合した場合(以下、従来接合方法とする)と、接合材料22に例えば、スズ・アンチモン系材料である低融点接合材料をハンダによって接合した場合の発電量を示す。尚、低融点接合材料とは、スズ単体が固体の状態で溶融する材料、すなわち、スズの融点(232℃)よりも融点が低い材料を言う。
【0060】
図8に示される発電量は、接合材料22に低融点接合材料を使用した場合の発電量を従来接合方法での発電量を100とした相対値で示している。図8によれば、接合材料22に低融点材料を使用した場合の発電量比は約170%であり、従来接合方法により接合した熱電変換ユニット(図8においては従来品と記す)の約1.7倍になることがわかる。従って、図1に示される熱電変換ユニット10に用いられる接合材料22は、従来使用される接着剤よりも、低融点接合材料を使用する方が発電量増加の観点から見て望ましい。
【0061】
また、接合材料22として用いられる低融点接合材料は、スズ(Sn)・アンチモン(Sb)系材料の他にアルミニウム(Al)系材料、銅(Cu)・鉛(Pb)合金系材料、カドミウム(Cd)系材料、銅(Cu)・カドミウム(Cd)系材料、アルカリ硬化鉛系材料、亜鉛(Zn)系材料、焼結含油系材料から選択される少なくとも1種類を有して構成されていれば同様の効果が得られる。
【0062】
一方、図8に示される特性を導出する際に、熱電変換ユニット10の接合材料22としての低融点接合材料をハンダで接合した熱電変換ユニット10を使用したが、接合材料22の接合手法は、ハンダ以外にも、肉盛り、溶接、ロウ付けで接合しても同様の効果が得られる。さらに、低融点接合材料の厚さは、図8に示される発電量増大の傾向に大きな影響を及ぼさないが、経済性の観点からすれば、2mm以下であることが望ましい。
【0063】
本実施形態の熱電ユニットによれば、熱電変換ユニット10が具備する密閉容器15内の湿度を0%〜1%に保持することで、繰り返し回数100回以上でも初回発電量の95%以上の発電量を維持することが可能である。
【0064】
また、熱電変換ユニット10が具備する熱電変換手段14に用いられるp型の熱電変換素子11およびn型の熱電変換素子12に含有される気孔の割合や無機材料の種類および割合や密閉容器15内の雰囲気を適切に選択することで発電量を増大させることができる。さらに、熱電変換手段14が備える接合導体17および電極19と熱電変換機構13および保護絶縁体20とを接合する接合材料22を低融点接合材料とすることで発電量を増大させることができる。
【0065】
尚、本実施形態では、密閉容器15内に保護絶縁体20で覆われた熱電変換手段14を格納しているが、熱電変換手段14が保護絶縁体20を備えていない状態で熱電変換手段14を密閉容器15内に格納していても良い。また、密閉容器15に用いられる非導電性材料は、金属表面に絶縁コーティング等の非導電性処理を施した金属材料でも構わない。
【0066】
[第2の実施形態]
図9〜図11に第2の実施形態を示す熱電変換ユニットの一例を示す。
【0067】
図9〜図11に示される熱電変換ユニット10A〜10Cは、熱供給源25と、図1に示される熱電変換ユニット10と同様の機構を備えた電力供給部26とを備えた熱電変換ユニットであり、熱電変換ユニットの第1実施形態として図1に示される熱電変換ユニット10とは熱電変換を行う熱供給源25を備える点が異なっている。熱電変換ユニット10Aは、熱供給源25を備える点以外は本質的には異ならないので、第1の実施形態を示す熱電変換ユニット10と本質的に異ならない個所には同じ符号を付して説明を省略する。
【0068】
図9に熱供給源25に水道配管を用いた熱電変換ユニット10Aの一例を示す。
【0069】
図9に示される熱電変換ユニット10Aには、熱供給源25として例えば、電源供給の必要な水道メータ等の電力を消費して動作する装置(以下、電気機器とする)29を有する水道配管を用い、電力供給部26と、電力供給部26から電気機器29へ電力を供給する電力供給媒体30とを具備する。
【0070】
熱電変換ユニット10Aは、電気機器29として水道メータを有する水道配管周囲の温度差を熱供給源25として熱エネルギを取り出す。そして、熱供給源25からの熱エネルギを利用して、電力供給部26で熱電変換を行うことで発電を行う熱供給源25と電力供給部26とが一体となった熱電変換ユニットである。図9に示される熱電変換ユニット10Aは、水道配管を通して得られる水温、地温、大気温からの温度差を熱供給源25として利用して、取り出した熱エネルギを図1に示される熱電変換ユニット10と同様の機構を備える電力供給部26で熱電変換を行う。熱電変換ユニット10Aに備えられる電力供給部26が熱電変換することで生じた起電力は、電気機器29としての水道メータの電源として利用可能に構成される。
【0071】
また、第2の実施形態におけるその他の実施例としての熱電変換ユニット10Bの一例を図10に示す。
【0072】
図10に示される熱電変換ユニット10Bは、電気機器29としてガス流量計を有するガス配管と、電力供給部26と、電力供給媒体30とを具備する。熱電変換ユニット10Bは、ガス配管を通して得られるガス温、大気温からの温度差を熱供給源25として電力供給部26で熱電変換を行うことで発電を行う。図10に示される熱電変換ユニット10Bが具備する電力供給部26で発電された電力は、電力供給媒体30により電気機器29としてのガス流量計に供給され、ガス流量計が駆動する。
【0073】
さらに、第2の実施形態におけるその他の実施例としての熱電変換ユニット10Cの一例を図11に示す。
【0074】
図11に示される熱電変換ユニット10Cは、図9に示される熱電変換ユニット10Aと、電力供給を制御可能な電力供給制御手段を備えたバッテリ35とを具備している。
【0075】
熱電変換ユニット10Cは、熱電変換して得た起電力を一度バッテリ35に蓄電して、バッテリ35を介して電気機器29を稼動させる。バッテリ35を具備する熱電変換ユニット10Cは、熱供給源25付近の温度が変化して発電量が変動して不安定であっても、電気機器29としての水道メータには一定の電力量を供給することができる。また、バッテリ35が電力供給制御手段を備えることで、発電された電気を必要な時に電気機器29としての水道メータに供給することができる。
【0076】
本実施形態の熱電ユニットによれば、熱供給源25と熱電変換を行う電力供給部26とを具備する熱電ユニットであるため、例えば、水道メータを有する水道配管等の電気機器29を有する装置を熱供給源25とした熱電変換ユニット10Aの場合は、水道配管の周囲の温度差を熱エネルギとして取り出して、電力供給部26で熱電変換を行い発電した電力で電気機器29を動作させることができので、電気機器29を動作させるための外部電源が不要となる。
【0077】
また、他の実施例として、電力供給制御手段を備えるバッテリ35を具備する熱電変換ユニット10Cは、熱供給源25付近の温度が変化して発電量が不安定であっても、一定の電力量を供給することができる。さらに、電力供給制御手段が電力供給を制御することで、熱電変換ユニット10Cで発電した電力を通常使用する電気機器29としての水道メータ以外の電気機器29に供給することも可能となる。
【0078】
尚、熱電変換ユニット10Cが具備するバッテリ35は、電力供給制御手段を備えているとしたが、電力供給制御手段を備えていなくても電気機器29に一定の電力量を供給することは可能である。
【0079】
【発明の効果】
本発明に係る熱電変換ユニットによれば、繰り返し使用および長期間使用した場合においても、ほとんど発電量が低下することなく、初回の発電時の発電量を維持することができる。
【0080】
また、熱電変換ユニットは、熱エネルギを電気エネルギに直接変換する低環境負荷型電源装置であり、熱電変換ユニットの周囲の温度差を利用して安定した発電が可能である。そして、利用する熱エネルギは自然環境中に生じる温度差を利用できるので発電コストを抑えた電力供給が可能となる。
【0081】
さらに、熱電変換ユニットは、熱電変換ユニットに具備される熱電変換手段が周囲の温度差を利用して発電を行なうため、温度差を有し、電力を消費して動作する何らかの電気機器と、熱電変換ユニットとを備えた電気機器一体型熱電変換ユニットを形成すれば、熱電変換ユニット外部からの電力供給がほとんどなし、または電力供給が全く無しでも電気機器一体型熱電変換ユニットが備える電気機器を動作可能に構成できる。
【図面の簡単な説明】
【図1】本発明に係る熱電変換ユニットの構成概要図。
【図2】本発明に係る熱電変換ユニットが具備する熱電変換手段の構成概要図。
【図3】本発明に係る熱電変換ユニットが備える密閉容器内の湿度を0%〜10%の範囲で変化させて熱電変換を行った場合における熱電変換ユニットでの発電回数と発電量比との関係を示す相関図。
【図4】本発明に係る熱電変換ユニットが備える熱電素子中の気孔の割合を変化させて熱電変換を行った場合における熱電素子中の気孔の割合と発電量比との関係を示す相関図。
【図5】本発明に係る熱電変換ユニットが備える熱電変換素子に含有される無機材料の種類を変化させて熱電変換した場合における無機材料の種類と発電量比との関係を説明する説明図。
【図6】本発明に係る熱電変換ユニットが備える熱電素子に含有されるアルミナ(無機材料)の含有量(vol%)を変化させて熱電変換した場合における無機材料の含有量と発電量比との関係を示す相関図。
【図7】本発明に係る熱電変換ユニットで熱電変換を100回行った場合における熱電変換ユニットが備える密閉容器内の雰囲気と発電量比との関係を説明した説明図。
【図8】本発明に係る熱電変換ユニットで熱電変換を行った場合において熱電変換ユニットが備える熱源部と電極、電極と絶縁体との接合面に低融点合金材料を使用した場合と接着剤を使用した場合とにおける発電量比の関係を説明した説明図。
【図9】本発明に係る熱電変換ユニットを水道配管に取り付け、水道メータへの電源供給源として適用した熱電変換ユニットの一実施例を示す装置構成図。
【図10】本発明に係る熱電変換ユニットをガス配管に取り付け、ガスメータへの電源供給源として適用した熱電変換ユニットの一実施例を示す装置構成図。
【図11】本発明に係る熱電変換ユニットを水道配管に取り付け、発生した電気をバッテリに蓄電し、このバッテリを水道メータへの電源供給源として適用した熱電変換ユニットの一実施例を示す装置構成図。
【図12】従来の熱電変換ユニットの概略図。
【符号の説明】
10…熱電変換ユニット、11…p型の熱電変換素子、12…n型の熱電変換素子、13…熱電変換機構、14…熱電変換手段、15…密閉容器、17…接続導体、18a,18b…電源端子、19a,19b…電極、20…表面保護絶縁体、25…熱供給源、26…電力供給部、29…電気機器、30,30a,30b…電力供給媒体、35…バッテリ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power generation apparatus that obtains electromotive force from heat, and more particularly, to a thermoelectric conversion unit that includes a thermoelectric conversion element that obtains electromotive force from heat using the Seebeck effect.
[0002]
[Prior art]
There are two types of usage of thermoelectric conversion elements. One use form is a use for a local cooling system or a heating system using a Peltier effect in which cooling or heat dissipation is caused by direct current flowing in a thermoelectric conversion element. The other utilization form is utilization as a power generation device applying thermoelectric conversion by the Seebeck effect that gives a thermoelectric conversion element a temperature difference and generates an electromotive force by the given temperature difference.
[0003]
FIG. 12 shows a thermoelectric conversion unit configured using thermoelectric conversion elements.
[0004]
A thermoelectric conversion unit 1 shown in FIG. 12 includes a p-type semiconductor 2 and an n-type semiconductor 3, and an electrode portion 4 a that is joined to one of the upper and lower surfaces of the p-type semiconductor 2 and extracts electricity from the p-type semiconductor 2. The electrode portion 4b is joined to one of the upper and lower surfaces of the n-type semiconductor 3 and takes out electricity from the n-type semiconductor 3, and the electrode portions 4a and 4b are opposed to each other in the p-type semiconductor 2 and the n-type semiconductor 3. It includes a connection electrode 5 connected on the other of the upper and lower surfaces, a protective insulator 6 that covers and protects the electrode portions 4a and 4b and the connection electrode 5, and is formed by closing the gap between the protective insulators 6 with a resin 7. Is done.
[0005]
For example, the thermoelectric conversion unit 1 supplies thermal energy by bringing a low-temperature heat source into contact with the surface on the electric extraction electrodes 4a and 4b side and a high-temperature heat source in contact with the surface facing the surface where the electrode extraction electrodes 4a and 4b are joined. Thus, an electromotive force according to the temperature difference between the low-temperature heat source and the high-temperature heat source, that is, electric energy can be obtained. The electromotive force obtained by thermoelectric conversion can be taken out from the electrode parts 4a and 4b.
[0006]
The thermoelectric conversion unit 1 can directly convert heat energy from two heat sources having a temperature difference into electric energy, and can be a low environmental load type power supply device with a low environmental load. Such a thermoelectric conversion unit 1 is described in, for example, Japanese Patent Application Laid-Open No. 2001-102644 (see Patent Document 1).
[0007]
In addition to the thermoelectric conversion unit 1, as a next-generation low environmental load type power supply device, there are a solar power generation system using a solar cell and a fuel cell system using hydrogen.
[0008]
[Patent Document 1]
JP 2001-102644 A
[0009]
[Problems to be solved by the invention]
However, when the thermoelectric conversion unit 1 is used repeatedly and continuously for a long period of time, there is a problem that the power generation efficiency decreases as the number of times of use and the number of days of use are increased as compared with the first power generation.
[0010]
Moreover, since the photovoltaic power generation system which is another low environmental load type power supply device is influenced by sunshine conditions, the operation rate of the photovoltaic power generation system is generally low, and there is a problem that the amount of power generation fluctuates. In the photovoltaic power generation system, it is necessary to install a power supply unit outside for stable power supply. On the other hand, the fuel cell has a problem that the cost of power generation is high due to the high price of hydrogen, which is a fuel necessary for power generation.
[0011]
The present invention has been made in consideration of the above-described circumstances, and an object of the present invention is to provide a thermoelectric conversion unit capable of maintaining the power generation efficiency at the time of the first power generation even when repeatedly used and used for a long time.
[0012]
Another object of the present invention is as a low environmental load type power supply device that can stably supply power even if there is no external power supply by stable power generation, and can supply power at a low power generation cost. To provide a thermoelectric conversion unit.
[0013]
Furthermore, another object of the present invention is to provide a thermoelectric conversion unit that can operate while performing power generation using a temperature difference in the surroundings without reducing power consumption or without external power supply.
[0014]
[Means for Solving the Problems]
In order to solve the above-described problem, the thermoelectric conversion unit according to the present invention has at least one p-type thermoelectric conversion element and n-type thermoelectric conversion element as described in claim 1. Mechanism, a connection conductor for electrically connecting the plurality of thermoelectric conversion elements so as to take out an electromotive force generated in the thermoelectric conversion element of the thermoelectric conversion mechanism as one power supply device, and thermoelectric conversion joined by the connection conductor An electrode having a power supply terminal for extracting an electromotive force generated in the thermoelectric conversion mechanism from thermoelectric conversion elements located at both ends of the mechanism, and formed by bonding the connection conductor and the electrode and the thermoelectric conversion element with a bonding material A thermoelectric conversion unit, and a p-type thermoelectric conversion element included in the thermoelectric conversion mechanism, including a thermoelectric conversion unit and a sealed container that stores and seals the thermoelectric conversion unit so as to keep humidity at a minimum. Type thermoelectric conversion element Is mainly composed of bismuth (Bi) and tellurium (Te), p-type thermoelectric conversion element and Above The porosity of the n-type thermoelectric conversion element is 10% or more and 60% or less, and contains 10 vol% or more and 50 vol% or less of an inorganic material in the structure, and the inorganic material includes quartz, alumina, mullite. , Titania and zirconia. The extremely low humidity in the sealed container means a very low humidity that can maintain a power generation amount of 90% or more with respect to the initial power generation amount even in the case of a large number of power generation repetitions such as 80 times or more.
[0017]
Further, the thermoelectric conversion unit according to the present invention is as follows. 2 As described above, the atmosphere in the sealed container is a reduced-pressure atmosphere, nitrogen (N 2 ) It is selected from at least one of an atmosphere and an inert gas atmosphere.
[0018]
Furthermore, the thermoelectric conversion unit according to the present invention is a claim. 3 As described above, the pressure in the closed container is 9 kPa to 110 kPa.
[0021]
Further, the thermoelectric conversion unit according to the present invention is as follows. 4 As described above, the bonding material is a low melting point bonding material that melts at a temperature lower than the melting point of tin (Sn).
[0022]
Furthermore, the thermoelectric conversion unit according to the present invention is a claim. 5 As described above, the bonding material used as the bonding material is a low melting point bonding material that melts at a temperature lower than the melting point of tin (Sn), and the low melting point bonding material is tin (Sn) / antimony (Sb). Materials, aluminum (Al) materials, copper (Cu) / lead (Pb) alloy materials, cadmium (Cd) materials, copper (Cu) / cadmium (Cd) materials, alkali-cured lead materials, zinc ( It is characterized by being composed of one or more selected from Zn) -based materials and sintered oil-impregnated materials.
[0023]
On the other hand, the thermoelectric conversion unit according to the present invention is a claim. 6 As described above, the bonding material used as the bonding material is a low melting point bonding material that melts at a temperature lower than the melting point of tin (Sn), and the thickness of the low melting point bonding material is 2 mm or less. And
[0027]
Such a thermoelectric conversion unit can maintain the power generation efficiency at the first power generation even when it is used repeatedly and for a long period of time. Stable power generation enables stable power supply without an external power source and is inexpensive. This makes it possible to supply power at a reasonable power generation cost.
[0029]
Such a thermoelectric conversion unit is configured to be able to supply electric power generated by a temperature difference around the electric device that consumes electric power to the electric device, thereby reducing external power supply or supplying power from the outside It is possible to operate an electric device without using it.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a thermoelectric conversion unit according to the present invention will be described with reference to the drawings.
[0031]
[First embodiment]
FIG. 1 is a schematic configuration diagram of a thermoelectric conversion unit 10 showing an example of the first embodiment of the thermoelectric conversion unit.
[0032]
The thermoelectric conversion unit 10 shown in FIG. 1 is, for example, a thermoelectric conversion mechanism having at least one p-type thermoelectric conversion element 11 and one n-type thermoelectric conversion element 12 as in the thermoelectric conversion unit 1 shown in FIG. 13 includes a thermoelectric conversion means 14 configured to perform thermoelectric conversion and take out the generated electromotive force, and a sealed container 15 for storing and sealing the thermoelectric conversion means 14.
[0033]
FIG. 2 is a structural schematic diagram showing details of the thermoelectric conversion means 14.
[0034]
The thermoelectric conversion means 14 shown in FIG. 2 includes, for example, thermoelectric conversion means 13 having two p-type thermoelectric conversion elements 11 and two n-type thermoelectric conversion elements 12, and each thermoelectric conversion element. Connecting conductor 17 connected electrically, p-type thermoelectric conversion element 11 and electrode 19 having power supply terminal 18 as an outlet for taking out electromotive force from n-type thermoelectric conversion element 12, and connection conductor 17 and a surface protection insulator 20 that covers and protects the surroundings so as not to directly touch the electrode 17 and the electrode 19.
[0035]
The p-type thermoelectric conversion element 11 and the n-type thermoelectric conversion element 12 included in the thermoelectric conversion means 14 are thermoelectric conversion elements having a composition mainly composed of Bi (bismuth) -Te (tellurium). And the several thermoelectric conversion element with which the thermoelectric conversion means 14 is equipped is joined by the connection conductor 17 and the joining material 22, and is electrically connected in series and is comprised so that it may function as one power supply device.
[0036]
For example, in the case of the thermoelectric conversion device 14 shown in FIG. 2, the leftmost p-type thermoelectric conversion device 11 a and the rightmost n-type thermoelectric conversion device 12 b include: Electrodes 19a and 19b having power supply terminals 18a and 18b for taking out electromotive force are joined. And the thermoelectric conversion means 14 can take out the electromotive force which arose in each thermoelectric conversion element in series from the power supply terminals 18a and 18b provided in the electrodes 19a and 19b. Further, the connection conductor 17 and the electrode 19 included in the thermoelectric conversion means 14 are insulated so that the surfaces except for the power supply terminals 18a and 18b are not directly touched by the hand, and the connection conductor 17, the electrode 19 and the In order to protect the thermoelectric conversion mechanism 13, it is covered with a surface protection insulator 20 and bonded with a bonding material 22.
[0037]
The thermoelectric conversion unit 10 shown in FIG. 1 stores the thermoelectric conversion means 14 shown in FIG. 2 in a sealed container 15 and seals the power supply terminals 18a and 18b in a state where the power terminals 18a and 18b are out of the sealed container 15. And the humidity inside the airtight container 15 storing the thermoelectric conversion means 14 is kept to a minimum. Note that keeping the humidity in the sealed container 15 to a minimum means that at least 90% of the initial power generation amount even when the number of times of power generation is repeated (hereinafter referred to as the number of repetitions) is about 80 times. It means that the humidity in the sealed container 15 capable of maintaining the above power generation amount is maintained.
[0038]
Moreover, the airtight container 15 is a nonelectroconductive material, for example, is formed with inorganic materials, such as organic materials, such as an epoxy, an acryl, a polytetrafluoroethylene, and alumina.
[0039]
FIG. 3 shows a comparison between the amount of power generated by the thermoelectric conversion unit 10 and the amount of power generated when the humidity is 0, 1, 2, 5, and 10%.
[0040]
The power generation amount shown in FIG. 3 is the first power generation amount generated by keeping the humidity in the sealed container 15 included in the thermoelectric conversion unit 10 at 0% and providing the thermoelectric conversion unit 10 with a temperature difference of 50 ° C. As 100, the power generation amount when the humidity in the sealed container 15 and the number of repetitions are changed is shown as a relative value with respect to 100.
[0041]
According to FIG. 3, the thermoelectric conversion unit 10 having a humidity higher than 1% has a large number of repetitions compared to the case where the humidity in the sealed container 15 included in the thermoelectric conversion unit 10 is maintained at 0% and 1%. I see a decrease in power generation. Moreover, the tendency of the power generation amount to decrease is more marked as the thermoelectric conversion unit 10 has a higher humidity.
[0042]
If the number of repetitions is compared at 80 times, the range of humidity at which 90% or more of the initial power generation is obtained is 0% to 2%, and in the case of 5% and 10% above that, power generation The amount is less than 90% of the initial power generation. Furthermore, if the number of repetitions is 120, the humidity at which 90% or more of the initial power generation is obtained is 0% or 1%, and the humidity is 2%, 5% or 10%, which is higher than that. Then, the power generation amount is less than 90% of the initial power generation amount. The power generation amount when the humidity inside the sealed container 15 is 0% is almost 100% of the initial power generation amount, and the power generation amount when the humidity inside the sealed container 15 is 1% is about 96 of the initial power generation amount. % And the decrease in power generation is not seen so much.
[0043]
Therefore, it is desirable that the humidity in the sealed container 15 be within a range of 0% to 2% where a power generation amount of 90% or more of the initial power generation amount can be obtained even with 80 repetitions. Further, the more desirable range of the humidity in the sealed container 15 is 0% to 1%, which can obtain a power generation amount of 90% or more of the initial power generation amount even at 120 repetitions, and the more desirable range is even at 120 repetitions. It is within 0% to 1% at which a power generation amount of 95% or more of the initial power generation amount is obtained.
[0044]
4 exists in each of a plurality of thermoelectric conversion elements provided in the thermoelectric conversion mechanism 13 shown in FIG. 1, that is, the p-type thermoelectric conversion element 11 and the n-type thermoelectric conversion element 12 shown in FIG. The relationship between the ratio of pores (hereinafter referred to as porosity) and the amount of power generated by the thermoelectric conversion unit 10 is shown.
[0045]
The power generation amount shown in FIG. 4 is a p-type power generation amount that is 100 when the porosity of the p-type thermoelectric conversion element 11 and the n-type thermoelectric conversion element 12 included in the thermoelectric conversion mechanism 13 is 0%. The power generation amount when only the porosity of the thermoelectric conversion element 11 and the n-type thermoelectric conversion element 12 is changed is shown as a relative value with respect to 100.
[0046]
According to FIG. 4, the power generation amount tends to increase as the porosity in the thermoelectric conversion element increases. However, as the porosity in the thermoelectric conversion element increases, the workability becomes worse and chipping or the like is likely to occur during the manufacture of the thermoelectric conversion element. That is, the yield decreases as the porosity in the thermoelectric conversion element increases. Therefore, the porosity in the thermoelectric conversion element is within a range where deterioration in workability does not cause a significant decrease in yield, and within a range where an increase in power generation amount is recognized by 5% or more with respect to the power generation amount when the porosity is 0%. A range of 10% to 60% is desirable. Moreover, the more desirable range of the porosity in the thermoelectric conversion element is 10% or more and less than 50%, and more desirably 10% or more and 45% or less.
[0047]
Thermoelectric conversion in which alumina, mullite, titania and zirconia, which are inorganic materials, are contained in the structure of the p-type thermoelectric conversion element 11 and the n-type thermoelectric conversion element 12 provided in the thermoelectric conversion mechanism 13 shown in FIG. A comparison is made between a thermoelectric conversion unit 10 using elements and a conventional thermoelectric conversion unit (hereinafter referred to as a conventional product) such as the thermoelectric conversion unit 1 shown in FIG.
[0048]
The power generation amount shown in FIG. 5 is that the power generation amount in the conventional product is 100, and the structures of the p-type thermoelectric conversion element 11 and the n-type thermoelectric conversion element 12 shown in FIG. The power generation amount when titania and zirconia are contained at a certain ratio such as 20% vol is shown as a relative value with respect to 100.
[0049]
According to FIG. 5, when alumina, mullite, titania, and zirconia, which are inorganic materials, are included in the structures of the p-type thermoelectric conversion element 11 and the n-type thermoelectric conversion element 12, about 107% with alumina, About 122% for mullite, about 112% for titania, and about 116% for zirconia, the power generation amount is about 7% to 22% higher than that of the conventional product.
[0050]
Although not shown in FIG. 5, even if quartz is used as the inorganic material, an increase in the amount of power generation is recognized as in the inorganic material shown in FIG.
[0051]
In the structure of the thermoelectric conversion elements of the p-type thermoelectric conversion element 11 and the n-type thermoelectric conversion element 12 provided in the thermoelectric conversion mechanism 13 shown in FIG. The relationship between the content of inorganic material and the amount of power generation when the content (vol%) of the material is changed is shown.
[0052]
The power generation amount shown in FIG. 6 is that the content of alumina is 0 vol% in the structure of the p-type thermoelectric conversion element 11 and the n-type thermoelectric conversion element 12 provided in the thermoelectric conversion mechanism 13, that is, the p-type thermoelectric conversion element. Alumina contained in the structure of the p-type thermoelectric conversion element 11 and the n-type thermoelectric conversion element 12 with the amount of power generated when no alumina is contained in the structure of the 11-type and n-type thermoelectric conversion elements 12 being 100 The power generation amount when only the content is changed is shown as a relative value with respect to 100.
[0053]
According to FIG. 6, the power generation amount tends to increase as the alumina content increases. However, when the content of alumina is increased, the workability is deteriorated and chipping or the like is likely to occur, resulting in a decrease in yield. Therefore, the content of alumina in the thermoelectric conversion element is within a range where deterioration in workability does not cause a significant decrease in yield, and an increase in power generation amount of 5% or more with respect to the power generation amount when the alumina content is 0 vol% is recognized. 10 vol% or more and 50 vol% or less are desirable. A more desirable range of the alumina content is 10 vol% or more and 45 vol% or less, and a further desirable range is 10 vol% or more and 40% or less.
[0054]
The tendency shown by FIG. 6 shows the same tendency also in the thermoelectric conversion unit 10 comprised using the thermoelectric conversion element containing inorganic materials other than alumina, such as quartz, mullite, titania, and zirconia.
[0055]
In FIG. 7, the atmosphere in the sealed container 15 included in the thermoelectric conversion unit 10 is an air atmosphere, a reduced pressure atmosphere, nitrogen (hereinafter, N 2 The comparison of the power generation amount in the case of atmosphere and inert gas atmosphere is shown.
[0056]
The power generation amount shown in FIG. 7 is defined as 100, where the amount of power generated when the atmosphere in the sealed container 15 shown in FIG. Only the atmosphere in the sealed container 15 is changed to a reduced pressure atmosphere and N 2 The amount of power generation when the atmosphere and the inert gas atmosphere are changed is shown as a relative value with respect to 100.
[0057]
According to FIG. 7, the reduced pressure atmosphere, N 2 In the case of an atmosphere or inert gas atmosphere, even if the number of power generations is repeated 100 times, almost no decrease in the amount of power generation is seen, so the power generation ratio is 100% or more, which is about 110% to 120%. Yes. Therefore, the inside of the sealed container 15 has a reduced pressure atmosphere, N 2 An atmosphere selected from either an atmosphere or an inert gas atmosphere is desirable.
[0058]
Moreover, as for the pressure in the airtight container in a pressure-reduced atmosphere, 9 kPa-100 kPa are desirable. And the more desirable range of the pressure in the airtight container in a pressure-reduced atmosphere is 9 kPa-80 kPa, More preferably, it is 9 kPa-60 kPa. On the other hand, N 2 The pressure in the sealed container in the atmosphere or inert gas atmosphere is preferably 9 kPa to 110 kPa. And N 2 The more desirable range of the pressure in the sealed container in the atmosphere or inert gas atmosphere is 30 kPa to 110 kPa, and more desirably 50 kPa to 110 kPa.
[0059]
In the thermoelectric conversion means 14 of the thermoelectric unit 10 shown in FIG. A power generation amount in the case of bonding using a solder (hereinafter referred to as a conventional bonding method) and a low melting point bonding material that is, for example, a tin / antimony material is bonded to the bonding material 22 by solder. Note that the low melting point bonding material refers to a material that melts in a solid state of tin, that is, a material having a melting point lower than the melting point of tin (232 ° C.).
[0060]
The power generation amount shown in FIG. 8 is shown as a relative value when the power generation amount in the conventional joining method is set to 100 when the low melting point bonding material is used for the bonding material 22. According to FIG. 8, the power generation ratio when the low melting point material is used for the bonding material 22 is about 170%, which is about 1 of the thermoelectric conversion unit (referred to as a conventional product in FIG. 8) bonded by the conventional bonding method. It turns out that it becomes .7 times. Therefore, the bonding material 22 used in the thermoelectric conversion unit 10 shown in FIG. 1 is desirably used from the viewpoint of increasing the amount of power generation, rather than using a conventionally used adhesive.
[0061]
In addition to the tin (Sn) / antimony (Sb) based material, the low melting point joining material used as the joining material 22 includes an aluminum (Al) based material, a copper (Cu) / lead (Pb) alloy based material, cadmium ( Cd) -based material, copper (Cu) / cadmium (Cd) -based material, alkali-cured lead-based material, zinc (Zn) -based material, and sintered oil-impregnated material. The same effect can be obtained.
[0062]
On the other hand, when deriving the characteristics shown in FIG. 8, the thermoelectric conversion unit 10 in which the low melting point bonding material as the bonding material 22 of the thermoelectric conversion unit 10 is bonded with solder is used. In addition to soldering, the same effect can be obtained by joining by overlaying, welding, or brazing. Furthermore, the thickness of the low melting point bonding material does not greatly affect the tendency of the power generation amount shown in FIG. 8, but is preferably 2 mm or less from the viewpoint of economy.
[0063]
According to the thermoelectric unit of the present embodiment, by maintaining the humidity in the sealed container 15 included in the thermoelectric conversion unit 10 at 0% to 1%, power generation of 95% or more of the initial power generation amount even if the number of repetitions is 100 times or more. It is possible to maintain the quantity.
[0064]
Further, the ratio of the pores contained in the p-type thermoelectric conversion element 11 and the n-type thermoelectric conversion element 12 used in the thermoelectric conversion means 14 included in the thermoelectric conversion unit 10, the kind and ratio of the inorganic material, and the inside of the sealed container 15 The amount of power generation can be increased by appropriately selecting the atmosphere. Furthermore, the amount of power generation can be increased by using a bonding material 22 for bonding the bonding conductor 17 and the electrode 19 provided in the thermoelectric conversion means 14 to the thermoelectric conversion mechanism 13 and the protective insulator 20 as a low melting point bonding material.
[0065]
In the present embodiment, the thermoelectric conversion means 14 covered with the protective insulator 20 is stored in the sealed container 15, but the thermoelectric conversion means 14 is not provided with the protective insulator 20. May be stored in the sealed container 15. Further, the non-conductive material used for the sealed container 15 may be a metal material obtained by performing non-conductive treatment such as insulating coating on the metal surface.
[0066]
[Second Embodiment]
An example of the thermoelectric conversion unit which shows 2nd Embodiment in FIGS. 9-11 is shown.
[0067]
The thermoelectric conversion units 10A to 10C shown in FIGS. 9 to 11 are thermoelectric conversion units including a heat supply source 25 and a power supply unit 26 having the same mechanism as the thermoelectric conversion unit 10 shown in FIG. There is a difference from the thermoelectric conversion unit 10 shown in FIG. 1 as a first embodiment of the thermoelectric conversion unit in that it includes a heat supply source 25 that performs thermoelectric conversion. The thermoelectric conversion unit 10A is essentially different from the heat supply source 25 except that the thermoelectric conversion unit 10A is essentially the same as the thermoelectric conversion unit 10 according to the first embodiment. Is omitted.
[0068]
FIG. 9 shows an example of a thermoelectric conversion unit 10 </ b> A using a water supply pipe for the heat supply source 25.
[0069]
The thermoelectric conversion unit 10A shown in FIG. 9 includes a water pipe having a device 29 (hereinafter referred to as an electrical device) that operates by consuming electric power such as a water meter that requires power supply as the heat supply source 25. And a power supply unit 26 and a power supply medium 30 that supplies power from the power supply unit 26 to the electrical device 29.
[0070]
The thermoelectric conversion unit 10 </ b> A takes out thermal energy using a temperature difference around a water pipe having a water meter as the electric device 29 as a heat supply source 25. The heat supply unit 25 is a thermoelectric conversion unit in which the power supply unit 26 and the power supply unit 26 are integrated with each other by using the heat energy from the heat supply source 25 to perform thermoelectric conversion in the power supply unit 26. The thermoelectric conversion unit 10A shown in FIG. 9 uses the temperature difference from the water temperature, the ground temperature, and the atmospheric temperature obtained through the water pipe as the heat supply source 25, and uses the extracted thermal energy as the thermoelectric conversion unit 10 shown in FIG. Thermoelectric conversion is performed by the power supply unit 26 having the same mechanism as in FIG. The electromotive force generated as a result of thermoelectric conversion by the power supply unit 26 provided in the thermoelectric conversion unit 10 </ b> A is configured to be usable as a power source for a water meter as the electric device 29.
[0071]
FIG. 10 shows an example of a thermoelectric conversion unit 10B as another example in the second embodiment.
[0072]
The thermoelectric conversion unit 10 </ b> B shown in FIG. 10 includes a gas pipe having a gas flow meter as the electric device 29, a power supply unit 26, and a power supply medium 30. The thermoelectric conversion unit 10 </ b> B generates power by performing thermoelectric conversion in the power supply unit 26 using the temperature difference from the gas temperature and the atmospheric temperature obtained through the gas pipe as the heat supply source 25. The power generated by the power supply unit 26 included in the thermoelectric conversion unit 10B shown in FIG. 10 is supplied to the gas flow meter as the electric device 29 by the power supply medium 30, and the gas flow meter is driven.
[0073]
Furthermore, FIG. 11 shows an example of a thermoelectric conversion unit 10C as another example in the second embodiment.
[0074]
A thermoelectric conversion unit 10C illustrated in FIG. 11 includes the thermoelectric conversion unit 10A illustrated in FIG. 9 and a battery 35 including a power supply control unit capable of controlling power supply.
[0075]
The thermoelectric conversion unit 10 </ b> C once stores the electromotive force obtained by the thermoelectric conversion in the battery 35 and operates the electric device 29 via the battery 35. The thermoelectric conversion unit 10 </ b> C including the battery 35 supplies a constant amount of power to the water meter as the electric device 29 even when the temperature near the heat supply source 25 changes and the power generation amount fluctuates and is unstable. can do. Further, since the battery 35 includes the power supply control means, the generated electricity can be supplied to a water meter as the electric device 29 when necessary.
[0076]
According to the thermoelectric unit of the present embodiment, since the thermoelectric unit includes the heat supply source 25 and the power supply unit 26 that performs thermoelectric conversion, for example, an apparatus having an electrical device 29 such as a water pipe having a water meter is provided. In the case of the thermoelectric conversion unit 10 </ b> A serving as the heat supply source 25, the temperature difference around the water pipe can be extracted as heat energy, and the electric device 29 can be operated with the electric power generated by the thermoelectric conversion performed by the power supply unit 26. Therefore, an external power source for operating the electric device 29 becomes unnecessary.
[0077]
Further, as another embodiment, the thermoelectric conversion unit 10C including the battery 35 including the power supply control unit has a constant power amount even when the temperature near the heat supply source 25 changes and the power generation amount is unstable. Can be supplied. Furthermore, by controlling the power supply by the power supply control means, it is possible to supply the electric power generated by the thermoelectric conversion unit 10C to the electric equipment 29 other than the water meter as the electric equipment 29 that is normally used.
[0078]
Although the battery 35 included in the thermoelectric conversion unit 10C is provided with the power supply control means, it is possible to supply a certain amount of power to the electric device 29 without the power supply control means. is there.
[0079]
【Effect of the invention】
According to the thermoelectric conversion unit according to the present invention, even when it is used repeatedly and used for a long time, the power generation amount at the first power generation can be maintained with almost no decrease in the power generation amount.
[0080]
Further, the thermoelectric conversion unit is a low environmental load type power supply device that directly converts heat energy into electric energy, and can stably generate power by utilizing a temperature difference around the thermoelectric conversion unit. And since the thermal energy to utilize can utilize the temperature difference which arises in a natural environment, the electric power supply which suppressed the power generation cost is attained.
[0081]
Furthermore, since the thermoelectric conversion means included in the thermoelectric conversion unit generates power by using the temperature difference between the surroundings, the thermoelectric conversion unit has a temperature difference and some electric equipment that operates by consuming electric power and the thermoelectric conversion unit. By forming an electrical equipment integrated thermoelectric conversion unit with a conversion unit, the electrical equipment provided in the electrical equipment integrated thermoelectric conversion unit operates with little or no power supplied from outside the thermoelectric conversion unit. It can be configured as possible.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a thermoelectric conversion unit according to the present invention.
FIG. 2 is a schematic configuration diagram of thermoelectric conversion means provided in the thermoelectric conversion unit according to the present invention.
FIG. 3 shows the relationship between the number of times of power generation and the ratio of power generation in the thermoelectric conversion unit when thermoelectric conversion is performed by changing the humidity in the sealed container provided in the thermoelectric conversion unit according to the present invention in a range of 0% to 10%. The correlation diagram which shows a relationship.
FIG. 4 is a correlation diagram showing a relationship between a ratio of pores in a thermoelectric element and a power generation ratio when thermoelectric conversion is performed by changing the ratio of pores in the thermoelectric element included in the thermoelectric conversion unit according to the present invention.
FIG. 5 is an explanatory diagram for explaining the relationship between the type of inorganic material and the power generation ratio when the thermoelectric conversion is performed by changing the type of inorganic material contained in the thermoelectric conversion element included in the thermoelectric conversion unit according to the present invention.
FIG. 6 shows the inorganic material content and the power generation ratio when the thermoelectric conversion is performed by changing the content (vol%) of alumina (inorganic material) contained in the thermoelectric element included in the thermoelectric conversion unit according to the present invention. FIG.
FIG. 7 is an explanatory diagram illustrating a relationship between an atmosphere in a sealed container provided in the thermoelectric conversion unit and a power generation ratio when the thermoelectric conversion is performed 100 times by the thermoelectric conversion unit according to the present invention.
FIG. 8 shows a case where a low-melting-point alloy material is used for the bonding surface between a heat source part and an electrode of the thermoelectric conversion unit and an electrode and an insulator when thermoelectric conversion is performed by the thermoelectric conversion unit according to the present invention, and an adhesive. Explanatory drawing explaining the relationship of the electric power generation amount ratio in the case of using.
FIG. 9 is an apparatus configuration diagram showing an embodiment of a thermoelectric conversion unit in which a thermoelectric conversion unit according to the present invention is attached to a water pipe and applied as a power supply source to a water meter.
FIG. 10 is an apparatus configuration diagram showing an embodiment of a thermoelectric conversion unit in which a thermoelectric conversion unit according to the present invention is attached to a gas pipe and applied as a power supply source to a gas meter.
FIG. 11 is an apparatus configuration showing an embodiment of a thermoelectric conversion unit in which a thermoelectric conversion unit according to the present invention is attached to a water pipe, the generated electricity is stored in a battery, and the battery is applied as a power supply source to a water meter. Figure.
FIG. 12 is a schematic view of a conventional thermoelectric conversion unit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Thermoelectric conversion unit, 11 ... p-type thermoelectric conversion element, 12 ... n-type thermoelectric conversion element, 13 ... Thermoelectric conversion mechanism, 14 ... Thermoelectric conversion means, 15 ... Sealed container, 17 ... Connection conductor, 18a, 18b ... Power terminals, 19a, 19b ... electrodes, 20 ... surface protection insulator, 25 ... heat supply source, 26 ... power supply unit, 29 ... electric equipment, 30, 30a, 30b ... power supply medium, 35 ... battery.

Claims (6)

p型の熱電変換素子およびn型の熱電変換素子とを少なくともそれぞれ1個は有する熱電変換機構と、前記熱電変換機構が有する熱電変換素子で発生した起電力を1つの電源装置として取り出すべく前記複数の熱電変換素子を電気的に接続する接続導体と、前記接続導体で接合された熱電変換機構の両端に位置する熱電変換素子から前記熱電変換機構で生じた起電力を取り出す電源端子を有する電極とを備え、前記接続導体および電極と前記熱電変換素子とを接合材料により接合して形成した熱電変換部と、
湿度を極少に保持するよう前記熱電変換部を格納して密閉する密閉容器を具備し、
前記熱電変換機構が有するp型の熱電変換素子およびn型の熱電変換素子は、ビスマス(Bi)とテルル(Te)を主成分とし、前記p型の熱電変換素子および前記n型の熱電変換素子中の気孔率は、10%以上60%以下で、かつ、10vol%以上50vol%以下の無機材料を構造中に含有しており、前記無機材料は、石英、アルミナ、ムライト、チタニア、ジルコニアであることを特徴とする熱電変換ユニット。
A thermoelectric conversion mechanism having at least one p-type thermoelectric conversion element and n-type thermoelectric conversion element, and the plurality of electromotive forces generated by the thermoelectric conversion elements included in the thermoelectric conversion mechanism are extracted as one power supply device. A connection conductor for electrically connecting the thermoelectric conversion elements, and an electrode having a power supply terminal for extracting an electromotive force generated in the thermoelectric conversion mechanism from thermoelectric conversion elements located at both ends of the thermoelectric conversion mechanism joined by the connection conductor; A thermoelectric conversion part formed by bonding the connection conductor and the electrode and the thermoelectric conversion element with a bonding material;
A sealed container for storing and sealing the thermoelectric conversion unit so as to keep the humidity to a minimum is provided.
Thermoelectric conversion elements of a thermoelectric conversion elements and the n-type p-type having said thermoelectric conversion mechanism, bismuth (Bi) and tellurium (Te) as a main component, the p-type thermoelectric conversion elements and the n-type thermoelectric conversion element The inside porosity contains an inorganic material of 10% or more and 60% or less and 10% or more and 50% or less by volume, and the inorganic material is quartz, alumina, mullite, titania or zirconia. A thermoelectric conversion unit characterized by that.
前記密閉容器中の雰囲気は、減圧雰囲気、窒素(N)雰囲気および不活性ガス雰囲気の少なくとも1つから選択されることを特徴とする請求項1記載の熱電変換ユニット。 2. The thermoelectric conversion unit according to claim 1, wherein the atmosphere in the sealed container is selected from at least one of a reduced pressure atmosphere, a nitrogen (N 2 ) atmosphere, and an inert gas atmosphere. 前記密閉容器中の圧力は、9kPa〜110kPaであることを特徴とする請求項1記載の熱電変換ユニット。  The thermoelectric conversion unit according to claim 1, wherein the pressure in the sealed container is 9 kPa to 110 kPa. 前記接合材料は、スズ(Sn)の融点より低い温度で溶融する低融点接合材料であることを特徴とする請求項1記載の熱電変換ユニット。  The thermoelectric conversion unit according to claim 1, wherein the bonding material is a low melting point bonding material that melts at a temperature lower than the melting point of tin (Sn). 前記接合材料として用いる接合材料は、スズ(Sn)の融点より低い温度で溶融する低融点接合材料であり、前記低融点接合材料は、スズ(Sn)・アンチモン(Sb)系材料、アルミニウム(Al)系材料、銅(Cu)・鉛(Pb)合金系材料、カドミウム(Cd)系材料、銅(Cu)・カドミウム(Cd)系材料、アルカリ硬化鉛系材料、亜鉛(Zn)系材料、焼結含油系材料から選択される1種類以上で構成されていることを特徴とする請求項1記載の熱電変換ユニット。  The bonding material used as the bonding material is a low melting point bonding material that melts at a temperature lower than the melting point of tin (Sn), and the low melting point bonding material is tin (Sn) / antimony (Sb) based material, aluminum (Al ) Based material, copper (Cu) / lead (Pb) alloy based material, cadmium (Cd) based material, copper (Cu) / cadmium (Cd) based material, alkali hardened lead based material, zinc (Zn) based material, baked The thermoelectric conversion unit according to claim 1, wherein the thermoelectric conversion unit is composed of at least one selected from oil-containing materials. 前記接合材料として用いる接合材料は、スズ(Sn)の融点より低い温度で溶融する低融点接合材料であり、前記低融点接合材料の厚さは2mm以下であることを特徴とする請求項1記載の熱電変換ユニット。  The bonding material used as the bonding material is a low melting point bonding material that melts at a temperature lower than the melting point of tin (Sn), and the thickness of the low melting point bonding material is 2 mm or less. Thermoelectric conversion unit.
JP2002338320A 2002-11-21 2002-11-21 Thermoelectric conversion unit Expired - Fee Related JP4901049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002338320A JP4901049B2 (en) 2002-11-21 2002-11-21 Thermoelectric conversion unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002338320A JP4901049B2 (en) 2002-11-21 2002-11-21 Thermoelectric conversion unit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010167225A Division JP2010278460A (en) 2010-07-26 2010-07-26 Thermoelectric conversion unit

Publications (2)

Publication Number Publication Date
JP2004172481A JP2004172481A (en) 2004-06-17
JP4901049B2 true JP4901049B2 (en) 2012-03-21

Family

ID=32701579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002338320A Expired - Fee Related JP4901049B2 (en) 2002-11-21 2002-11-21 Thermoelectric conversion unit

Country Status (1)

Country Link
JP (1) JP4901049B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103701365A (en) * 2013-12-26 2014-04-02 武汉理工大学 Method for improving heat transfer of heat exchanger in box type thermoelectric system of automobile
US10950706B2 (en) 2019-02-25 2021-03-16 Birmingham Technologies, Inc. Nano-scale energy conversion device
WO2021061995A1 (en) * 2019-09-25 2021-04-01 Birmingham Technologies, Inc. Arcuate energy harvesting thermionic device
US11046578B2 (en) 2019-05-20 2021-06-29 Birmingham Technologies, Inc. Single-nozzle apparatus for engineered nano-scale electrospray depositions
US11101421B2 (en) 2019-02-25 2021-08-24 Birmingham Technologies, Inc. Nano-scale energy conversion device
US11124864B2 (en) 2019-05-20 2021-09-21 Birmingham Technologies, Inc. Method of fabricating nano-structures with engineered nano-scale electrospray depositions
US11244816B2 (en) 2019-02-25 2022-02-08 Birmingham Technologies, Inc. Method of manufacturing and operating nano-scale energy conversion device
US11251477B2 (en) 2014-02-13 2022-02-15 Birmingham Technologies, Inc. Nanofluid contact potential difference battery
US11417506B1 (en) 2020-10-15 2022-08-16 Birmingham Technologies, Inc. Apparatus including thermal energy harvesting thermionic device integrated with electronics, and related systems and methods
US11616186B1 (en) 2021-06-28 2023-03-28 Birmingham Technologies, Inc. Thermal-transfer apparatus including thermionic devices, and related methods
US11649525B2 (en) 2020-05-01 2023-05-16 Birmingham Technologies, Inc. Single electron transistor (SET), circuit containing set and energy harvesting device, and fabrication method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060005873A1 (en) * 2004-07-06 2006-01-12 Mitsuru Kambe Thermoelectric conversion module
JP4528571B2 (en) * 2004-07-16 2010-08-18 株式会社東芝 Direct heat-electric converter
JP4686171B2 (en) * 2004-10-29 2011-05-18 株式会社東芝 Thermal-electrical direct conversion device
US7544883B2 (en) * 2004-11-12 2009-06-09 International Business Machines Corporation Integrated thermoelectric cooling devices and methods for fabricating same
JP2006237547A (en) * 2005-01-27 2006-09-07 Kyocera Corp Thermoelectric conversion module, power generator and cooler using the same
JP4969793B2 (en) * 2005-04-22 2012-07-04 株式会社東芝 Thermal-electrical direct conversion device
JP4966707B2 (en) * 2007-03-28 2012-07-04 京セラ株式会社 Thermoelectric module
JP5724723B2 (en) * 2011-07-27 2015-05-27 トヨタ自動車株式会社 Thermoelectric generator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2936174B2 (en) * 1990-04-20 1999-08-23 松下電器産業株式会社 Electronic components
JPH06302866A (en) * 1993-04-15 1994-10-28 Idemitsu Material Kk Thermoelectric conversion material and manufacture thereof
JP3252902B2 (en) * 1998-12-21 2002-02-04 日本電気株式会社 Temperature control unit
JP2002232027A (en) * 2001-01-30 2002-08-16 Mitsubishi Electric Corp Thermoelectric generating module
JP2002232022A (en) * 2001-01-31 2002-08-16 Aisin Seiki Co Ltd Thermoelectric module and its manufacturing method
JP4405099B2 (en) * 2001-03-09 2010-01-27 株式会社東芝 Meter

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103701365A (en) * 2013-12-26 2014-04-02 武汉理工大学 Method for improving heat transfer of heat exchanger in box type thermoelectric system of automobile
US11251477B2 (en) 2014-02-13 2022-02-15 Birmingham Technologies, Inc. Nanofluid contact potential difference battery
US11715852B2 (en) 2014-02-13 2023-08-01 Birmingham Technologies, Inc. Nanofluid contact potential difference battery
US10950706B2 (en) 2019-02-25 2021-03-16 Birmingham Technologies, Inc. Nano-scale energy conversion device
US11101421B2 (en) 2019-02-25 2021-08-24 Birmingham Technologies, Inc. Nano-scale energy conversion device
US11244816B2 (en) 2019-02-25 2022-02-08 Birmingham Technologies, Inc. Method of manufacturing and operating nano-scale energy conversion device
US11046578B2 (en) 2019-05-20 2021-06-29 Birmingham Technologies, Inc. Single-nozzle apparatus for engineered nano-scale electrospray depositions
US11124864B2 (en) 2019-05-20 2021-09-21 Birmingham Technologies, Inc. Method of fabricating nano-structures with engineered nano-scale electrospray depositions
WO2021061995A1 (en) * 2019-09-25 2021-04-01 Birmingham Technologies, Inc. Arcuate energy harvesting thermionic device
US11649525B2 (en) 2020-05-01 2023-05-16 Birmingham Technologies, Inc. Single electron transistor (SET), circuit containing set and energy harvesting device, and fabrication method
US11417506B1 (en) 2020-10-15 2022-08-16 Birmingham Technologies, Inc. Apparatus including thermal energy harvesting thermionic device integrated with electronics, and related systems and methods
US11616186B1 (en) 2021-06-28 2023-03-28 Birmingham Technologies, Inc. Thermal-transfer apparatus including thermionic devices, and related methods

Also Published As

Publication number Publication date
JP2004172481A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP4901049B2 (en) Thermoelectric conversion unit
CN100414731C (en) Thermoelectric direct conversion device
WO2017038988A1 (en) Thermoelectric power generation element, thermoelectric power generation module including same, and thermoelectric power generation method using same
JP3862179B2 (en) Manufacture and production of thermoelectric modules
US4489742A (en) Thermoelectric device and method of making and using same
US20080163916A1 (en) Thermoelectric conversion module and thermoelectric conversion apparatus
JP4896336B2 (en) Thermal diode for energy conversion
Van Toan et al. Thermoelectric generators for heat harvesting: From material synthesis to device fabrication
JPWO2005124881A1 (en) Thermoelectric conversion element
US20130118541A1 (en) Thermoelectric module and method of manufacturing the same
WO2004061982A1 (en) Cooling device for electronic component using thermo-electric conversion material
JP6122736B2 (en) Thermoelectric generator module
KR102022429B1 (en) Cooling thermoelectric moudule and method of manufacturing method of the same
JP6404983B2 (en) Thermoelectric module
JP2006049736A (en) Thermoelectric module
EP3968394A1 (en) Heat-utilizing power generation module
US11349058B2 (en) Thermoelectric half-cell and method of production
CN101548350B (en) Thermally enhanced solid-state generator
JP3147096U (en) Solid temperature difference power generation plate and solid temperature difference power generation device
Satoh et al. A hierarchical design for thermoelectric hybrid materials: Bi2Te3 particles covered by partial Au skins enhance thermoelectric performance in sticky thermoelectric materials
JP2010278460A (en) Thermoelectric conversion unit
JP2000173640A (en) Thermoelectric conversion method and device thereof
JP2018093152A (en) Thermoelectric power generation device
EP3886188A1 (en) Semiconductor thermoelectric generator
EP3968392A1 (en) Heat-utilizing power generation module and thermal power generation device equipped with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees