WO2023013590A1 - Thermoelectric conversion material layer and thermoelectric conversion module - Google Patents

Thermoelectric conversion material layer and thermoelectric conversion module Download PDF

Info

Publication number
WO2023013590A1
WO2023013590A1 PCT/JP2022/029511 JP2022029511W WO2023013590A1 WO 2023013590 A1 WO2023013590 A1 WO 2023013590A1 JP 2022029511 W JP2022029511 W JP 2022029511W WO 2023013590 A1 WO2023013590 A1 WO 2023013590A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
thermoelectric
conversion material
material layer
thermoelectric semiconductor
Prior art date
Application number
PCT/JP2022/029511
Other languages
French (fr)
Japanese (ja)
Inventor
俊弥 山▲崎▼
邦久 加藤
佑太 関
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Publication of WO2023013590A1 publication Critical patent/WO2023013590A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material

Definitions

  • the present invention relates to a thermoelectric conversion material layer.
  • thermoelectric power generation technology which has a simple system and can be downsized, has been attracting attention as a recovery power generation technology for unused waste heat energy generated from fossil fuel resources used in buildings, factories, etc.
  • thermoelectric power generation generally has poor power generation efficiency, and various companies and research institutes are actively conducting research and development to improve power generation efficiency. In order to improve the efficiency of power generation, it is essential to improve the efficiency of thermoelectric conversion materials. It is rare.
  • S is the Seebeck coefficient
  • is electrical conductivity
  • thermal conductivity
  • a thermoelectric conversion material with a large Seebeck coefficient S and a large electrical conductivity ⁇ and a small thermal conductivity ⁇ is found. This is very important. As mentioned above, it is necessary to study how to improve power generation efficiency. It was essential to reduce manufacturing costs for further spread to applications with large areas. In addition, thermoelectric conversion elements that are currently manufactured are inferior in flexibility, so thermoelectric conversion elements that have excellent flexibility are desired. Under such circumstances, Patent Literature 1 discusses a thermoelectric conversion material having a thin film made of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin, and an ionic liquid.
  • thermoelectric performance is improved in order to realize smaller size, lighter weight, and higher integration.
  • thermoelectric conversion material layer with high thermoelectric performance in which the electrical conductivity of the thermoelectric conversion material in the thermoelectric conversion material layer is further improved.
  • thermoelectric conversion material layer is composed of thermoelectric semiconductor particles having a specific average particle size that contribute to a decrease in thermal conductivity and an increase in electrical conductivity.
  • the inventors have found that the thermoelectric performance of the conversion material layer is more improved than that of the conventional thermoelectric conversion materials, and completed the present invention. That is, the present invention provides the following [1] to [9].
  • thermoelectric conversion material layer containing a thermoelectric conversion material made of a thermoelectric semiconductor composition containing thermoelectric semiconductor particles, a binder resin and an ionic liquid, wherein the thermoelectric semiconductor particles have an average particle size of 8.0 ⁇ m or more and less than 50.0 ⁇ m A thermoelectric conversion material layer.
  • thermoelectric conversion material layer has the thermoelectric conversion material and voids, and the ratio of the area occupied by the thermoelectric conversion material in the area of the longitudinal section including the central portion of the thermoelectric conversion material layer is defined as the filling rate.
  • the binder resin contains at least one selected from polycarbonates, cellulose derivatives and polyvinyl polymers.
  • thermoelectric semiconductor particles are composed of a bismuth-tellurium-based thermoelectric semiconductor material, a telluride-based thermoelectric semiconductor material, an antimony-tellurium-based thermoelectric semiconductor material, or a bismuth-selenide-based thermoelectric semiconductor material. conversion material layer.
  • thermoelectric conversion material layer according to [1] or [7] above, wherein the thermoelectric semiconductor particles have an average particle size of 8.0 ⁇ m or more and less than 40.0 ⁇ m.
  • a thermoelectric conversion module including the thermoelectric conversion material layer according to any one of [1] to [8] above.
  • thermoelectric conversion material layer with high thermoelectric performance in which the electrical conductivity of the thermoelectric conversion material in the thermoelectric conversion material layer is further improved.
  • thermoelectric conversion material layer of this invention It is a figure for demonstrating the definition of the vertical cross section of the thermoelectric conversion material layer of this invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram for demonstrating the vertical cross section of the thermoelectric conversion material layer of this invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing explaining an example of the manufacturing method of the thermoelectric conversion material layer of this invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing explaining an example of the method of manufacturing the thermoelectric conversion module containing the thermoelectric conversion material layer of this invention.
  • thermoelectric conversion material layer of the present invention is a thermoelectric conversion material layer containing a thermoelectric conversion material composed of a thermoelectric semiconductor composition containing thermoelectric semiconductor particles, a binder resin and an ionic liquid, wherein the thermoelectric semiconductor particles have an average particle diameter of 8.5. It is characterized by being 0 ⁇ m or more and less than 50.0 ⁇ m.
  • thermoelectric conversion material layer is composed of a binder resin that suppresses the remaining voids in the thermoelectric conversion material layer, and ions that suppress a decrease in electrical conductivity in the voids between the thermoelectric semiconductor particles.
  • thermoelectric conversion material means a product obtained by baking a thermoelectric semiconductor composition (for example, a baked body of a coating film of a thermoelectric semiconductor composition). Even if the thermoelectric semiconductor composition contains a binder resin, which will be described later, if the binder resin is completely decomposed by firing, the thermoelectric conversion material does not contain the binder resin. Furthermore, the thermoelectric conversion material layer after baking (annealing) may be referred to as a “thermoelectric conversion material layer chip" or a "thermoelectric conversion material chip”.
  • the thermoelectric conversion material layer of the present invention contains a thermoelectric conversion material comprising a thermoelectric semiconductor composition containing thermoelectric semiconductor particles, a binder resin and an ionic liquid.
  • the thermoelectric conversion material layer of the present invention is preferably made of a sintered body of a coating film of a thermoelectric semiconductor composition.
  • a sintered body is obtained by sintering a coating film of a thermoelectric semiconductor composition at a sintering temperature.
  • the firing temperature is usually determined according to the type of thermoelectric semiconductor particles contained in the thermoelectric semiconductor composition, and is usually 260 to 500°C, preferably 400 to 460°C, more preferably 410 to 450°C, particularly preferably It is 420-450°C.
  • the firing temperature is 430°C.
  • thermoelectric semiconductor particles The thermoelectric semiconductor composition includes thermoelectric semiconductor particles.
  • the thermoelectric semiconductor particles used in the present invention are obtained by pulverizing a thermoelectric semiconductor material, which will be described later, to a predetermined size using a pulverizer or the like.
  • the method of pulverizing the thermoelectric semiconductor material to obtain thermoelectric semiconductor particles is not particularly limited, and may be pulverized to a predetermined size by a known pulverizing device such as a jet mill, ball mill, bead mill, colloid mill, roller mill, or the like.
  • the average particle size of the thermoelectric semiconductor particles is obtained by measurement using, for example, a laser diffraction particle size analyzer (Mastersizer 3000 manufactured by Malvern), and is the median value of the particle size distribution.
  • thermoelectric semiconductor particles are preferably heat-treated in advance. By performing the heat treatment, the crystallinity of the thermoelectric semiconductor particles is improved, and the surface oxide film of the thermoelectric semiconductor particles is removed. It can be improved further.
  • the heat treatment is not particularly limited, but before preparing the thermoelectric semiconductor composition, in an inert gas atmosphere such as nitrogen, argon, etc., in which the gas flow rate is controlled so as not to adversely affect the thermoelectric semiconductor particles. It is preferably carried out under a reducing gas atmosphere such as hydrogen or under vacuum conditions, more preferably under a mixed gas atmosphere of an inert gas and a reducing gas.
  • a reducing gas atmosphere such as hydrogen or under vacuum conditions
  • the specific temperature conditions depend on the thermoelectric semiconductor particles used, it is generally preferred that the temperature be below the melting point of the particles and be 100 to 1500° C. for several minutes to several tens of hours.
  • thermoelectric semiconductor material is not particularly limited as long as it can generate a thermoelectromotive force by applying a temperature difference.
  • thermoelectric semiconductor materials such as type bismuth telluride are more preferred.
  • P-type bismuth telluride has holes as carriers and a positive Seebeck coefficient, and is preferably represented by, for example, Bi X Te 3 Sb 2-X .
  • X preferably satisfies 0 ⁇ X ⁇ 0.8, more preferably 0.4 ⁇ X ⁇ 0.6.
  • N-type bismuth telluride has electrons as carriers and a negative Seebeck coefficient, and is represented by Bi 2 Te 3-Y Se Y , for example.
  • Y is 0 or more and 3 or less, the Seebeck coefficient and electrical conductivity are increased, and the properties of the N-type thermoelectric element are maintained, which is preferable.
  • the average particle size of the thermoelectric semiconductor particles is 8.0 ⁇ m or more and less than 50.0 ⁇ m.
  • the average particle size is less than 8.0 ⁇ m, the interfacial resistance between the thermoelectric semiconductor particles tends to increase, which tends to lead to a decrease in electrical conductivity.
  • the average particle size is 50.0 ⁇ m or more, the interfacial resistance between the thermoelectric semiconductor particles tends to decrease, which tends to lead to an increase in electrical conductivity, but the increase in thermal conductivity tends to become more pronounced.
  • the increase in thermoelectric performance at is suppressed.
  • the average particle diameter of the thermoelectric semiconductor particles is preferably 8.0 ⁇ m or more and less than 45.0 ⁇ m, more preferably 8.0 ⁇ m or more and less than 42.0 ⁇ m, still more preferably 10.0 ⁇ m or more and less than 40.0 ⁇ m, Particularly preferably, it is 15.0 ⁇ m or more and less than 35.0 ⁇ m. If the average particle size of the thermoelectric semiconductor particles is within the above range, the interfacial resistance between the thermoelectric semiconductor particles is reduced, making it possible to increase the rate of increase in electrical conductivity more than the rate of increase in thermal conductivity. The total thermoelectric performance can be improved.
  • the content of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is preferably 30-99% by mass, more preferably 50-96% by mass, and particularly preferably 70-95% by mass. If the content of the thermoelectric semiconductor particles is within the above range, the Seebeck coefficient (absolute value of the Peltier coefficient) is large, and the decrease in electrical conductivity is suppressed, and only the thermal conductivity tends to decrease. It is preferable because a film having sufficient film strength and flexibility can be obtained while exhibiting performance.
  • the thermoelectric semiconductor composition contains a binder resin.
  • the binder resin facilitates the separation of the thermoelectric conversion material layer after the firing (annealing) treatment from the substrate described later used in the production of the chip, and also acts as a binder between the thermoelectric semiconductor particles to improve the flexibility of the thermoelectric conversion module described later. can be increased, and the formation of a thin film by coating or the like can be facilitated.
  • the binder resin is preferably a resin that decomposes at a firing (annealing) temperature of 90% by mass or more, more preferably a resin that decomposes at 95% by mass or more, and a resin that decomposes at 99% by mass or more. It is particularly preferred to have In addition, a resin that maintains various physical properties such as mechanical strength and thermal conductivity without impairing when crystal growth of thermoelectric semiconductor particles is performed by baking (annealing) a coating film (thin film) made of a thermoelectric semiconductor composition. more preferred.
  • the binder resin As the binder resin, if a resin that decomposes at a firing (annealing) temperature of 90% by mass or more, that is, a resin that decomposes at a lower temperature than conventionally used heat-resistant resins, the binder resin will decompose upon firing.
  • the content of the binder resin, which is an insulating component contained in the fired body, is reduced, and the crystal growth of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is promoted. rate can be improved.
  • Whether or not the resin decomposes at a predetermined value (e.g., 90% by mass) or more at the firing (annealing) temperature is determined by thermogravimetry (TG) at the mass reduction rate (mass before decomposition) at the firing (annealing) temperature. The value obtained by dividing the mass after decomposition by ).
  • TG thermogravimetry
  • thermoplastic resin or a curable resin can be used as such a binder resin.
  • thermoplastic resins include polyolefin resins such as polyethylene, polypropylene, polyisobutylene, and polymethylpentene; polycarbonates; thermoplastic polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polystyrene, acrylonitrile-styrene copolymers, and polyacetic acid.
  • thermosetting resins include epoxy resins and phenol resins.
  • photocurable resins include photocurable acrylic resins, photocurable urethane resins, and photocurable epoxy resins. These may be used individually by 1 type, and may use 2 or more types together. Among these, from the viewpoint of the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer, thermoplastic resins are preferred, cellulose derivatives such as polycarbonate and ethyl cellulose are more preferred, and polycarbonate is particularly preferred.
  • the binder resin is appropriately selected according to the temperature of the baking (annealing) treatment for the thermoelectric semiconductor material in the baking (annealing) treatment step (B), which will be described later. From the viewpoint of the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer, it is preferable to perform the baking (annealing) treatment at a temperature higher than the final decomposition temperature of the binder resin.
  • the term “final decomposition temperature” refers to the temperature at which the mass reduction rate at the firing (annealing) temperature by thermogravimetry (TG) is 100% (the mass after decomposition is 0% of the mass before decomposition). say.
  • the final decomposition temperature of the binder resin is generally 150-600°C, preferably 200-560°C, more preferably 220-460°C, and particularly preferably 240-360°C. If a binder resin having a final decomposition temperature within this range is used, it functions as a binder for the thermoelectric semiconductor material and facilitates the formation of a thin film during printing.
  • the binder resin is preferably decomposed and vaporized during heat pressing and/or firing, which will be described later.
  • the content of the binder resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 0.5 to 10% by mass, and particularly preferably 0.5 to 5% by mass. % by mass.
  • the electric resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer can be reduced.
  • Thermoelectric semiconductor compositions include ionic liquids.
  • An ionic liquid is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist as a liquid in any temperature range from -50°C to less than 400°C.
  • an ionic liquid is an ionic compound having a melting point in the range of -50°C or higher and lower than 400°C.
  • the melting point of the ionic liquid is preferably ⁇ 25° C. or higher and 200° C. or lower, more preferably 0° C. or higher and 150° C. or lower.
  • Ionic liquids have characteristics such as extremely low vapor pressure and non-volatility, excellent thermal and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, it can effectively suppress the decrease in electrical conductivity between thermoelectric semiconductor materials as a conductive auxiliary agent.
  • the ionic liquid exhibits high polarity based on an aprotic ionic structure and is excellent in compatibility with the binder resin, so that the electrical conductivity of the thermoelectric conversion material can be made uniform.
  • ionic liquids can be used.
  • nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and their derivatives; tetraalkylammonium-based amine-based cations and their derivatives; Phosphine-based cations and derivatives thereof; cation components such as lithium cations and derivatives thereof, Cl ⁇ , Br ⁇ , I ⁇ , AlCl 4 ⁇ , Al 2 Cl 7 ⁇ , BF 4 ⁇ , PF 6 ⁇ , ClO 4 ⁇ , NO 3 ⁇ , CH 3 COO ⁇ , CF 3 COO ⁇ , CH 3 SO 3 ⁇ , CF 3 SO 3 ⁇ , (FSO 2 ) 2 N ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (CF 3 SO 2 ) 3 C ⁇ , AsFSO 2 ) 2 N
  • the cation component of the ionic liquid is pyridinium cation and its It preferably contains at least one selected from derivatives, imidazolium cations and derivatives thereof.
  • the anion component of the ionic liquid preferably contains a halide anion, more preferably at least one selected from Cl ⁇ , Br ⁇ and I ⁇ .
  • ionic liquids in which the cationic component contains pyridinium cations and derivatives thereof include 4-methyl-butylpyridinium chloride, 3-methyl-butylpyridinium chloride, 4-methyl-hexylpyridinium chloride, and 3-methyl-hexylpyridinium chloride.
  • 1-butylpyridinium bromide 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, and 1-butyl-4-methylpyridinium iodide are preferred.
  • ionic liquids containing imidazolium cations and derivatives thereof as cationic components include [1-butyl-3-(2-hydroxyethyl)imidazolium bromide], [1-butyl-3-(2 -hydroxyethyl)imidazolium tetrafluoroborate], 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3 -methylimidazolium chloride, 1-octyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium bromide, 1-dodecyl-3-methylimidazolium chloride, 1-tetradecyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium tetrafluor
  • the electrical conductivity of the ionic liquid is preferably 10 ⁇ 7 S/cm or higher, more preferably 10 ⁇ 6 S/cm or higher. If the electrical conductivity is within the above range, it can effectively suppress the decrease in the electrical conductivity between the thermoelectric semiconductor particles as a conductive auxiliary agent.
  • the above ionic liquid preferably has a decomposition temperature of 300° C. or higher. If the decomposition temperature is within the above range, the effect as a conductive auxiliary agent can be maintained even when a coating film (thin film) made of the thermoelectric semiconductor composition is subjected to baking (annealing) treatment, as described later.
  • the term "decomposition temperature” refers to the temperature at which the mass reduction rate at the firing (annealing) temperature by thermogravimetry (TG) is 10%.
  • the mass reduction rate at 300°C by thermogravimetry (TG) is preferably 10% or less, more preferably 5% or less, and particularly preferably 1% or less. If the mass reduction rate is within the above range, as described later, even when a coating film (thin film) made of the thermoelectric semiconductor composition is subjected to baking (annealing) treatment, the effect as a conductive auxiliary agent can be maintained.
  • the content of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01-50% by mass, more preferably 0.5-30% by mass, and particularly preferably 1.0-20% by mass. If the content of the ionic liquid is within the above range, the decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
  • the thermoelectric semiconductor composition may further contain an inorganic ionic compound.
  • An inorganic ionic compound is a compound composed of at least a cation and an anion. Inorganic ionic compounds are solid at room temperature, have a melting point in a temperature range of 400 to 900° C., and have high ionic conductivity. Reduction in electrical conductivity between thermoelectric semiconductor particles can be suppressed.
  • the content of the inorganic ionic compound in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, particularly preferably when the thermoelectric semiconductor composition contains the inorganic ionic compound. is 1.0 to 10% by mass. If the content of the inorganic ionic compound is within the above range, the decrease in electrical conductivity can be effectively suppressed, and as a result, a film with improved thermoelectric performance can be obtained.
  • the total content of the inorganic ionic compound and the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably is 0.5 to 30% by weight, particularly preferably 1.0 to 10% by weight.
  • thermoelectric semiconductor composition may further contain a dispersant, a film forming aid, a light stabilizer, an antioxidant, a tackifier, a plasticizer, a colorant, a resin stabilizer, a filler, Other additives such as pigments, conductive fillers, conductive polymers, and curing agents may be included. These may be used individually by 1 type, and may use 2 or more types together.
  • the thickness of the thermoelectric conversion material layer (the thickness of the coating film (thin film) made of the thermoelectric semiconductor composition) is determined because the average particle size of the thermoelectric semiconductor fine particles used in the present invention is 8.0 ⁇ m or more and less than 50.0 ⁇ m. , preferably 6 times or more, more preferably 20 times or more, at least the average particle diameter.
  • the thickness of the thermoelectric conversion material layer is preferably 1000 ⁇ m or less, more preferably 600 ⁇ m or less, and even more preferably 400 ⁇ m or less from the viewpoints of thermoelectric performance, flexibility and film strength while satisfying the above requirements.
  • thermoelectric conversion material layer of the present invention has a thermoelectric conversion material and voids.
  • the ratio is preferably 0.900 or more and less than 1.000.
  • FIG. 1 is a view for explaining the definition of the longitudinal section of the thermoelectric conversion material layer of the present invention
  • FIG. 1(a) is a plan view of the thermoelectric conversion material layer 20, the thermoelectric conversion material layer 20 It has a length X in the width direction and a length Y in the depth direction
  • FIG. 1(b) is a longitudinal section of the thermoelectric conversion material layer 20 formed on the substrate 1a. ), and has a length X and a thickness D obtained by cutting across AA' in the width direction (the figure is a rectangle).
  • the thermoelectric conversion material layer 20 includes voids 30 .
  • FIG. 2 is a schematic cross-sectional view for explaining the longitudinal section of the thermoelectric conversion material layer of the present invention
  • FIG. 2(a) is an example of the longitudinal section of the thermoelectric conversion material layer 20s formed on the substrate 1a.
  • the thermoelectric conversion material layer 20s has a longitudinal section formed by a curve having a length X in the width direction and Dmin and Dmax in the thickness direction.
  • a void 30b exists in the plane.
  • FIG. 2(b) is an example of a longitudinal section of the thermoelectric conversion material layer 20t formed on the substrate 1a.
  • the height is D [when the values of Dmin and Dmax in (a) of FIG.
  • a suppressed void 40b exists.
  • Dmin means the minimum thickness in the thickness direction of the longitudinal section
  • Dmax means the maximum thickness in the thickness direction of the longitudinal section.
  • the filling rate of the thermoelectric conversion material in the thermoelectric conversion material layer which is defined as the ratio of the area of the thermoelectric conversion material to the area of the longitudinal section including the central portion of the thermoelectric conversion material layer, is It is more than 0.900 and less than 1.000, and there are few voids in the thermoelectric conversion material layer. If the filling rate of the thermoelectric conversion material in the thermoelectric conversion material layer is 0.900 or less, the number of voids in the thermoelectric conversion material layer increases, and the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer is difficult to decrease (excellent It becomes difficult to obtain a high electrical conductivity), and high thermoelectric performance cannot be obtained.
  • the filling rate is preferably more than 0.900 and 0.999 or less, more preferably 0.920 or more and 0.999 or less, still more preferably 0.950 or more and 0.999 or less, particularly preferably 0.970 or more and 0.999 or less. is. When the filling rate is within this range, the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer is reduced (excellent electrical conductivity is obtained), and high thermoelectric performance is obtained.
  • thermoelectric conversion material in the thermoelectric conversion material layer A method for measuring the filling rate of the thermoelectric conversion material in the thermoelectric conversion material layer will be described using test pieces (chips) made of the thermoelectric conversion material layers produced in Examples and Comparative Examples to be described later as examples.
  • chip a polishing apparatus
  • Refinetech model name: Refine Polisher HV
  • thermoelectric A filling rate defined as a ratio of the area of the thermoelectric conversion material to the area of the longitudinal section of the conversion material layer was calculated.
  • SEM scanning electron microscope
  • image processing software National Institutes of Health, ImageJ ver.1.44P
  • the measurement range is a range surrounded by 1280 pixels in the width direction and 220 pixels in the thickness direction with respect to an arbitrary position of the thermoelectric conversion material layer.
  • cropped as an image.
  • the clipped image is subjected to binarization processing with the contrast set to the maximum value from "Brightness/Contrast". was calculated.
  • the filling rate was calculated for three SEM images and taken as their average value.
  • thermoelectric conversion material layer of the present invention is preferably applied to a thermoelectric conversion module having a structure such as a ⁇ -type thermoelectric conversion element (FIG. 4(f) described later) or an in-plane type thermoelectric conversion element.
  • thermoelectric conversion module including a thermoelectric conversion material layer of the present invention includes the following steps (i) to (vii). (i): a step of forming a coating film of a thermoelectric semiconductor composition on a substrate; (ii): a step of baking (annealing) the coating film of the thermoelectric semiconductor composition obtained in step (i) to obtain a thermoelectric conversion material layer (chip) made of the thermoelectric conversion material; (iii): preparing a first layer having a first resin film and a first electrode in this order; (iv): preparing a layer 2A having a second resin film and a second electrode in this order, or a layer 2B having a second resin film and no electrode; (v): One surface of the thermoelectric conversion material layer (chip) obtained in the step (ii) above and the electrodes of the first layer prepared in the step (iii) above are bonded together to form a first bonding material layer.
  • thermoelectric conversion material layer (chip) a step of peeling the other surface of the thermoelectric conversion material layer (chip) from the substrate after the step of (v); and (vii): the thermoelectric conversion material obtained by peeling in the step of (vi).
  • thermoelectric conversion material layer (chip) ⁇ Method for producing thermoelectric conversion material layer (chip)>
  • the method for manufacturing the thermoelectric conversion material layer (chip) is, for example, (A) forming a coating film of a thermoelectric semiconductor composition on a substrate; (B) a step of drying the coating film of the thermoelectric semiconductor composition obtained in step (A); (C) a step of peeling off the coating film of the thermoelectric semiconductor composition after drying obtained in (B) above from the substrate; (D) A step of subjecting the coating film of the thermoelectric semiconductor composition obtained in (C) above to heat press treatment (heat and pressure treatment); (E) A step of firing (annealing) the thermoelectric semiconductor composition coating film after pressing obtained in step (D) above.
  • FIG. 3 is an explanatory diagram illustrating an example of the method for producing the thermoelectric conversion material layer (chip) of the present invention.
  • a coating film 12 of a thermoelectric semiconductor composition is formed on the substrate 1, and then dried, peeled off from the substrate 1, heat-pressed (heated and pressurized), and fired (annealed) to obtain thermoelectricity.
  • a thermoelectric conversion material layer (chip) made of a conversion material can be obtained as a self-supporting film.
  • the case where the thermoelectric conversion material layer (chip) is obtained as a self-supporting film is described.
  • the layer (chip) is formed on the substrate instead of being a self-supporting film, and the thermoelectric conversion material layer (chip) is separated from the substrate in step (vi) to form a self-supporting film.
  • the step of forming a coating film of a thermoelectric semiconductor composition is a step of forming a coating film of a thermoelectric semiconductor composition on a substrate.
  • a coating film 12a made of a thermoelectric semiconductor composition containing a P-type thermoelectric semiconductor material and a coating film 12b made of a thermoelectric semiconductor composition containing an N-type thermoelectric semiconductor material is not particularly limited, but from the viewpoint of thermoelectric performance, they should be configured to be used in a ⁇ -type or in-plane type thermoelectric conversion module, and should be connected by electrodes. preferably formed.
  • thermoelectric conversion module when configuring a ⁇ -type thermoelectric conversion module, for example, a pair of electrodes (electrodes 5 in FIG. 4 described later) that are spaced apart from each other are provided on a substrate (resin film 4 in FIG. 4 described later).
  • a fired body (P-type chip) of the coating film 12a made of a thermoelectric semiconductor composition containing a P-type thermoelectric semiconductor material is placed on the other electrode, and a thermoelectric semiconductor containing an N-type thermoelectric semiconductor material is placed on the other electrode.
  • Firing bodies (N-type chips) of the coating film 12b made of the composition are similarly provided separately from each other, and the upper surfaces of both chips are electrically connected in series to electrodes on the facing substrate.
  • thermoelectric conversion module For example, one electrode is provided on a substrate, a P-type chip is placed on the surface of the electrode, and an N-type chip is placed on the surface of the electrode.
  • the two chips are provided so that the side surfaces of both chips (for example, the surfaces perpendicular to the substrate) are in contact with each other or separated from each other, and are electrically connected in series via electrodes in the in-plane direction of the substrate. From the viewpoint of efficiently obtaining high thermoelectric performance, it is preferable that the same number of P-type chips and N-type chips are alternately connected in series in the in-plane direction of the substrate with electrodes interposed. .
  • -substrate- Materials used for the substrate are not particularly limited, and include glass, silicon, ceramics, metals, plastics, and the like. These may be used individually by 1 type, and may use 2 or more types together. Among these, glass, silicon, ceramic, and metal are preferable from the viewpoint of firing (annealing) treatment, and glass, silicon, and ceramic are preferable from the viewpoint of adhesion with thermoelectric conversion materials, material cost, and dimensional stability after heat treatment. is more preferred. A substrate thickness of 100 to 10000 ⁇ m can be used from the viewpoint of process and dimensional stability.
  • thermoelectric semiconductor composition The method for preparing the thermoelectric semiconductor composition is not particularly limited, and thermoelectric semiconductor particles, a binder resin, an ionic liquid, and optionally An inorganic ionic compound, other additives, and a solvent may be added and mixed and dispersed to prepare the thermoelectric semiconductor composition.
  • the thermoelectric semiconductor particles, binder resin, ionic liquid, inorganic ionic compound, and other additives are as described above.
  • solvents include toluene, ethyl acetate, methyl ethyl ketone, alcohol, tetrahydrofuran, N-methylpyrrolidone, ethyl cellosolve, and the like. These may be used individually by 1 type, and may use 2 or more types together.
  • the solid content concentration of the thermoelectric semiconductor composition is not particularly limited as long as the composition has a viscosity suitable for coating.
  • a coating film (thin film) made of a thermoelectric semiconductor composition can be formed by coating a thermoelectric semiconductor composition on a substrate and drying it.
  • the method of applying the thermoelectric semiconductor composition onto the substrate is not particularly limited, and may be screen printing, flexographic printing, gravure printing, spin coating, dip coating, die coating, spray coating, bar coating. , a known method such as a doctor blade method.
  • a doctor blade method When the coating film is formed in a pattern, screen printing, stencil printing, slot die coating, or the like, which enables easy pattern formation using a screen plate having a desired pattern, is preferably used.
  • the drying treatment step is a step of forming a coating film (thin film) of a thermoelectric semiconductor composition on a substrate and then drying the coating film of the thermoelectric semiconductor composition at a predetermined temperature while holding the substrate.
  • a coating film (thin film) is formed by drying the obtained coating film, and as a drying method, a conventionally known drying method such as a hot air drying method, a hot roll drying method, an infrared irradiation method, or the like can be employed.
  • the heating temperature is usually 80 to 150° C.
  • the heating time is usually several seconds to several tens of minutes, depending on the heating method.
  • the heating temperature is not particularly limited as long as it is within a temperature range where the solvent used can be dried.
  • the thickness of the coating film (thin film) made of the thermoelectric semiconductor composition is as described above.
  • the coating film stripping step is a step of stripping the coating film (thin film) made of the thermoelectric semiconductor composition from the substrate after the drying treatment.
  • the method for peeling off the coating film is not particularly limited as long as it is a method that allows the coating film (thin film) to be peeled off from the substrate after the drying process. It may be peeled off in the form of a piece, or may be peeled off collectively in the form of a plurality of coating films (thin films).
  • the hot pressing (heating and pressurizing) treatment step is a step of performing a hot pressing (heating and pressurizing) treatment after peeling off the coating film (thin film) of the thermoelectric semiconductor composition from the substrate.
  • This heat pressing (heating and pressurizing) treatment is performed by applying a predetermined pressure to the entire upper surface of the coating film (thin film) for a predetermined time at a predetermined temperature in an atmospheric atmosphere using a device such as a hydraulic press. This is a process of applying pressure.
  • the temperature of the heat press (heat pressurization) treatment is not particularly limited, but is usually 100 to 300°C, preferably 200 to 300°C.
  • the pressure of the heat press (heat pressurization) treatment is not particularly limited, but is usually 20 to 200 MPa, preferably 50 to 150 MPa.
  • the duration of the heat pressing (heating and pressurizing) treatment is not particularly limited, but is usually several seconds to several tens of minutes, preferably several tens of seconds to ten and several minutes.
  • the baking (annealing) treatment step is a step of heat-pressing (heating and pressurizing) a coating film (thin film) of a thermoelectric semiconductor composition, and then heat-treating the coating film of the thermoelectric semiconductor composition at a predetermined temperature.
  • the thermoelectric performance can be stabilized, and the thermoelectric semiconductor particles in the thermoelectric semiconductor composition in the coating film (thin film) can be crystal-grown, and the thermoelectric performance of the thermoelectric conversion material layer can be further improved. can be improved.
  • the firing (annealing) treatment is not particularly limited, but is usually performed under an atmosphere of an inert gas such as nitrogen or argon with a controlled gas flow rate, under a reducing gas atmosphere, or under vacuum conditions.
  • the temperature of the baking (annealing) treatment depends on the thermoelectric semiconductor particles, the binder resin, the ionic liquid, the inorganic ionic compound, etc. used in the thermoelectric semiconductor composition, and is adjusted appropriately. °C.
  • the firing (annealing) time is not particularly limited, but is usually several minutes to several tens of hours, preferably several minutes to several hours.
  • thermoelectric conversion material layer (chip) can be manufactured by a simple method.
  • coating film (thin film) of the thermoelectric semiconductor composition and the electrode are not subjected to firing (annealing) treatment in the form of bonding, the electrical resistance value between the thermoelectric conversion material layer (chip) and the electrode increases. There is no problem such as deterioration of thermoelectric performance.
  • thermoelectric conversion module is manufactured using the thermoelectric conversion material layers (chips) obtained through the steps (i) and (ii) above.
  • step (i) corresponds to (A) the step of forming a coating film of the thermoelectric semiconductor composition in the method for producing the thermoelectric conversion material layer (chip)
  • step (ii) is the thermoelectric conversion material This corresponds to the (E) firing (annealing) step in the layer (chip) manufacturing method.
  • the substrate to be used, the coating film (thin film) of the thermoelectric semiconductor composition, and the preferable material, thickness, formation method, and the like constituting them are all the same as those described above.
  • the step (iv) is a step of preparing the second A layer having the second resin film and the second electrode in this order.
  • the step (vii) the other surface of the chip of the thermoelectric conversion material obtained by peeling in the step (vi) above and the second electrode of the 2A layer prepared in the step (iv) above. It is preferable that it is a step of bonding with the second bonding material layer interposed therebetween.
  • the thermoelectric conversion module obtained by the above steps corresponds to the ⁇ -type thermoelectric conversion module described above.
  • the step (iv) prepares the second B layer having the second resin film and having no electrodes.
  • the thermoelectric conversion module obtained by the above steps corresponds to the in-plane type thermoelectric conversion module described above.
  • FIG. 4 is an explanatory diagram illustrating an example of a method of manufacturing a thermoelectric conversion module including a thermoelectric conversion material layer of the present invention (method of manufacturing a ⁇ -type thermoelectric conversion module),
  • FIG. 4B is a cross-sectional view after forming a solder-receiving layer, which will be described later, on one surface (upper surface) of the (chip)
  • FIG. 4B is a cross-sectional view after forming an electrode and a solder material layer on the resin film.
  • FIG. 4(c) shows the electrode on the resin film obtained in FIG.
  • FIG. 4(c′) is a cross-sectional view after bonding the solder material layer by heating and cooling
  • FIG. 4(d) is a cross-sectional view after bonding the solder material layer (upper surface) to the substrate.
  • ) is a cross-sectional view after the other surface (lower surface) is peeled off
  • FIG. 4(e) is the other surface (chip) of the thermoelectric conversion material layer (chip) on the resin film obtained in FIG. 4(f) is a cross-sectional view after forming a solder-receiving layer on the bottom surface
  • the step of forming an electrode in the step of preparing the first layer having the first resin film and the first electrode in this order of (iii) in the method for manufacturing the thermoelectric conversion module, This is the step of forming the first electrode.
  • the step (iv) of preparing the layer 2A having the second resin film and the second electrode in this order the step of forming the second electrode on the second resin film.
  • a metal layer is formed on the resin film 4 and processed into a predetermined pattern to form the electrode 5 .
  • the first resin film and the second resin film may be resin films of the same material or resin films of different materials. It has excellent flexibility, and even when a coating film (thin film) made of a thermoelectric semiconductor composition is baked (annealed), the performance of the thermoelectric element can be maintained without thermal deformation of the resin film.
  • a polyimide film, a polyamide film, a polyetherimide film, a polyaramid film, and a polyamideimide film are preferable from the viewpoint of high stability, and a polyimide film is particularly preferable from the viewpoint of high versatility.
  • the thicknesses of the first resin film and the second resin film are each independently preferably 1 to 1000 ⁇ m, more preferably 5 to 500 ⁇ m, particularly preferably 10 ⁇ m, from the viewpoint of flexibility, heat resistance and dimensional stability. ⁇ 100 ⁇ m.
  • the 5% mass loss temperature measured by thermogravimetric analysis (TG) of the first resin film and the second resin film is preferably 300° C. or higher, more preferably 400° C. or higher.
  • the heat dimensional change rate measured at 200° C. in accordance with JIS K7133 (1999) is preferably 0.5% or less, more preferably 0.3% or less.
  • the coefficient of linear expansion in the plane direction measured according to JIS K7197 (2012) is preferably 0.1 to 50 ppm ⁇ °C -1 , more preferably 0.1 to 30 ppm ⁇ °C -1 .
  • Electrode As metal materials for the first electrode and the second electrode of the thermoelectric conversion module, copper, gold, nickel, aluminum, rhodium, platinum, chromium, palladium, stainless steel, molybdenum, or any of these metals are independently used. and alloys containing. These may be used individually by 1 type, and may use 2 or more types together.
  • the thickness of the electrode (metal material) layer is preferably 10 nm to 200 ⁇ m, more preferably 30 nm to 150 ⁇ m, particularly preferably 50 nm to 120 ⁇ m. If the thickness of the electrode (metal material) layer is within the above range, the electrical conductivity is high, the resistance is low, and sufficient strength as an electrode is obtained.
  • the electrodes are formed using the metal material described above.
  • a method for forming the electrodes after providing an electrode having no pattern formed on a resin film, a known physical treatment or chemical treatment mainly based on a photolithography method, or a combination thereof, etc., is performed to obtain a predetermined pattern. or a method of directly forming an electrode pattern by a screen printing method, an inkjet method, or the like.
  • Methods for forming electrodes without a pattern include PVD (physical vapor deposition) such as vacuum deposition, sputtering, and ion plating, or CVD (chemical vapor deposition) such as thermal CVD and atomic layer deposition (ALD).
  • the electrodes are required to have high electrical conductivity and high thermal conductivity. Therefore, it is preferable to use electrodes formed by a plating method or a vacuum film forming method.
  • a vacuum deposition method such as a vacuum deposition method and a sputtering method; an electroplating method; an electroless plating method; Depending on the size of the formed pattern and the required dimensional accuracy, the pattern can be easily formed by interposing a hard mask such as a metal mask.
  • the first electrode bonding step is the above step (v) of the method for manufacturing a thermoelectric conversion module, and one surface of the thermoelectric conversion material layer (chip) obtained in the above step (ii) and the above (iii) ) is a step of bonding the first electrode of the first layer prepared in the step of ) with the first bonding material layer interposed therebetween.
  • thermoelectric conversion material layer (N-type chip) 2b made of an N-type thermoelectric conversion material.
  • the P-type chip 2a and the N-type chip 2b are bonded to the electrode 5 by heating the solder material layer 6 to a predetermined temperature, holding it for a predetermined time, and then returning it to room temperature.
  • the heating temperature, holding time, etc. are as described later.
  • FIG. 4(c') shows the state after the solder material layer 6 is returned to room temperature (the solder material layer 6' is solidified by heating and cooling and the thickness is reduced).
  • the first electrode bonding step includes a first bonding material layer forming step.
  • the first bonding material layer forming step is a step of forming the first bonding material layer on the first electrode obtained in the step (iii) in the step (v) of the method for manufacturing a thermoelectric conversion module. be.
  • the first bonding material layer forming step is, for example, a step of forming a solder material layer 6 on the electrode 5 in FIG. 4B.
  • the bonding material constituting the first bonding material layer includes a solder material, a conductive adhesive, a sintered bonding agent, etc., and the solder material layer, the conductive adhesive layer, the sintered bonding agent layer, respectively is preferably formed on the electrode.
  • the term “conductivity” refers to an electrical resistivity of less than 1 ⁇ 10 6 ⁇ m.
  • the solder material constituting the solder material layer may be appropriately selected in consideration of electrical conductivity and thermal conductivity.
  • Examples include Sn, Sn/Pb alloy, Sn/Ag alloy, Sn/Cu alloy, Sn/Sb. alloy, Sn/In alloy, Sn/Zn alloy, Sn/In/Bi alloy, Sn/In/Bi/Zn alloy, Sn/Bi/Pb/Cd alloy, Sn/Bi/Pb alloy, Sn/Bi/Cd alloy , Bi/Pb alloy, Sn/Bi/Zn alloy, Sn/Bi alloy, Sn/Bi/Pb alloy, Sn/Pb/Cd alloy, Sn/Cd alloy.
  • 43Sn/57Bi alloy, 42Sn/58Bi alloy, 40Sn/56Bi/4Zn alloy, 48Sn/52In alloy, 39.8Sn/Alloys such as 52In/7Bi/1.2Zn alloys are preferred.
  • Commercially available solder materials include the following.
  • 42Sn/58Bi alloy manufactured by Tamura Corporation, product name: SAM10-401-27
  • 41Sn/58Bi/Ag alloy manufactured by Nihon Handa Co., Ltd., product name: PF141-LT7HO
  • 96.5Sn3Ag0.5Cu alloy Nihon Handa Co., Ltd. product name: PF305-207BTO
  • the thickness of the solder material layer (after heating and cooling) is preferably 10-200 ⁇ m, more preferably 20-150 ⁇ m, still more preferably 30-130 ⁇ m, and particularly preferably 40-120 ⁇ m. When the thickness of the solder material layer is within this range, it becomes easier to obtain adhesion between the thermoelectric conversion material chip and the electrode.
  • solder material onto the substrate can be used as methods for applying the solder material onto the substrate.
  • the heating conditions vary depending on the solder material, resin film, etc. used, but are usually carried out at 150 to 280° C. for 3 to 20 minutes.
  • thermoelectric conversion material when using a solder material layer, it is preferable to interpose a solder-receiving layer, which will be described later, in order to improve the adhesion of the thermoelectric conversion material to the chip.
  • the conductive adhesive constituting the conductive adhesive layer is not particularly limited, and examples thereof include conductive pastes and binders. These may be used individually by 1 type, and may use 2 or more types together.
  • Examples of the conductive paste include copper paste, silver paste, nickel paste, and the like. These may be used individually by 1 type, and may use 2 or more types together.
  • Examples of binders include epoxy resins, acrylic resins, and urethane resins. These may be used individually by 1 type, and may use 2 or more types together.
  • Examples of the method of applying the conductive adhesive onto the resin film include known methods such as screen printing and dispensing. These may be used individually by 1 type, and may use 2 or more types together.
  • the thickness of the conductive adhesive layer is preferably 10-200 ⁇ m, more preferably 20-150 ⁇ m, still more preferably 30-130 ⁇ m, and particularly preferably 40-120 ⁇ m.
  • the sintering bonding agent forming the sintering bonding agent layer is not particularly limited, and examples thereof include sintering paste.
  • Sintering paste consists of, for example, micron-sized metal powder and nano-sized metal particles. Unlike conductive adhesives, sintering paste directly joins metals by sintering. Epoxy resin, acrylic resin, urethane resin, etc. of resin may be included. Examples of the sintering paste include silver sintering paste and copper sintering paste. These may be used individually by 1 type, and may use 2 or more types together.
  • Methods for applying the sintered bonding agent layer onto the resin film include known methods such as screen printing, stencil printing, and dispensing. These may be used individually by 1 type, and may use 2 or more types together.
  • the sintering conditions are usually 100 to 300° C. for 30 to 120 minutes, although they differ depending on the metal material used.
  • Examples of commercially available sintering bonding agents include silver sintering pastes such as sintering paste (manufactured by Kyocera Corporation, product name: CT2700R7S), sintering type metal bonding materials (manufactured by Nihon Handa Co., Ltd., product name: MAX102), and the like. Available.
  • the thickness of the sintered adhesive layer is preferably 10-200 ⁇ m, more preferably 20-150 ⁇ m, still more preferably 30-130 ⁇ m, and particularly preferably 40-120 ⁇ m.
  • thermoelectric conversion module for example, when manufacturing a ⁇ -type thermoelectric conversion module or an in-plane type thermoelectric conversion module, the thermoelectric conversion after the firing (annealing) treatment obtained in the above step (ii)
  • the step of forming a solder receptive layer on one side of the chip of material is included.
  • the solder-receiving layer forming step is a step of forming a solder-receiving layer on a thermoelectric conversion material layer (chip) made of a thermoelectric conversion material.
  • a solder receiving layer 3 is formed on one surface of a thermoelectric conversion material layer (P-type chip) 2a and a thermoelectric conversion material layer (N-type chip) 2b made of an N-type thermoelectric conversion material.
  • the solder-receiving layer comprises a metallic material.
  • the metal material is preferably at least one selected from gold, silver, aluminum, rhodium, platinum, chromium, palladium, tin, and alloys containing any of these metal materials.
  • a two-layer structure of gold, silver, aluminum, or tin and gold is preferable, and from the viewpoint of material cost, high thermal conductivity, and bonding stability, silver and aluminum are more preferable.
  • the solder receiving layer may be formed using a paste material containing a solvent or a resin component in addition to the metal material. When a paste material is used, it is preferable to remove the solvent and resin components by firing or the like as described later. Silver paste and aluminum paste are preferable as the paste material.
  • the thickness of the solder-receiving layer is preferably 10 nm to 50 ⁇ m, more preferably 50 nm to 16 ⁇ m, even more preferably 200 nm to 4 ⁇ m, particularly preferably 500 nm to 3 ⁇ m.
  • the thickness of the solder receiving layer is within this range, the adhesion to the surface of the thermoelectric conversion material layer (chip) made of the thermoelectric conversion material and the adhesion to the surface of the solder material layer on the electrode side are excellent, resulting in high reliability. high bonding is obtained.
  • high thermal conductivity can be maintained as well as electrical conductivity, the thermoelectric performance of the thermoelectric conversion module is maintained without deteriorating.
  • the solder-receiving layer may be formed by forming a metal material as it is and used as a single layer, or may be used as a multilayer by laminating two or more metal materials.
  • the film may be formed as a composition containing a metal material in a solvent, resin, or the like.
  • Formation of the solder-receiving layer is preferably carried out using the aforementioned metal material.
  • a method for forming the solder-receiving layer after providing a solder-receiving layer having no pattern formed on the thermoelectric conversion material layer (chip), a known physical treatment or chemical treatment mainly based on a photolithographic method, Alternatively, a method of forming a predetermined pattern shape by using them in combination, or a method of directly forming a pattern of the solder receiving layer by a screen printing method, a stencil printing method, an inkjet method, or the like can be mentioned.
  • Methods for forming a solder-receiving layer having no pattern include PVD (physical vapor deposition) such as vacuum deposition, sputtering, and ion plating; CVD such as thermal CVD and atomic layer deposition (ALD); chemical vapor deposition method); various coating methods such as dip coating method, spin coating method, spray coating method, gravure coating method, die coating method, doctor blade method; wet process such as electrodeposition method; salt method; electrolytic plating method; electroless plating method; metal foil lamination; From the viewpoint of maintaining thermoelectric performance, the solder-receiving layer is required to have high electrical conductivity and high thermal conductivity. It is preferred to use a deposited solder-receiving layer.
  • the chip batch peeling step is the step (vi) of the method for manufacturing a thermoelectric conversion module, and is a step of peeling the other surface of the thermoelectric conversion material layer (chip) after the step (v) from the substrate.
  • the chip batch peeling process is performed by separating a thermoelectric conversion material layer (P-type chip) 2a made of a P-type thermoelectric conversion material from the substrate 1 and a thermoelectric conversion material layer (P-type chip) 2a made of an N-type thermoelectric conversion material ( In this step, the other surface of the N-type chip 2b is collectively peeled off.
  • the method for peeling off the thermoelectric conversion material layer is not particularly limited as long as it is a method capable of removing all the thermoelectric conversion material layers (chips) from the substrate at once.
  • the second electrode bonding step is included in the above step (vii) of the method for manufacturing a thermoelectric conversion module, and the other side of the thermoelectric conversion material layer (chip) obtained by peeling in the above step (vi)
  • the second electrode bonding step for example, in (f) of FIG.
  • the other surface of the chip 2b is joined to the electrodes 5 on the resin film 4 with the solder receiving layer 3 and the solder material layer 6 interposed.
  • the materials for both the second electrode and the second resin film of the 2A layer can be the same as those described in the first electrode bonding step, and the bonding method is also the same. It is preferable that the bonding with the electrode is performed through the solder material layer, the conductive adhesive layer, or the sintered bonding agent layer.
  • the second electrode bonding step includes a second bonding material layer forming step.
  • the second bonding material layer forming step includes forming a second bonding material layer on the second electrode of the 2A layer prepared in the step (iv) in the step (vii) of the method for manufacturing a thermoelectric conversion module. It is a process of forming.
  • the second bonding material layer can use the same material as the first bonding material layer described above, and the formation method, thickness, etc. are all the same.
  • thermoelectric conversion material layer when manufacturing a ⁇ -type thermoelectric conversion module, a Preferably, the step of forming a solder receptive layer is included.
  • the other surface of the thermoelectric conversion material layer (P-type chip) 2a made of the P-type thermoelectric conversion material and the thermoelectric conversion material layer (N-type chip) 2b made of the N-type thermoelectric conversion material This is the step of forming the solder receiving layer 3 on the substrate.
  • thermoelectric conversion module except for the case where there is no electrode on either of the pair of resin films
  • thermoelectric conversion From the viewpoint of preventing mechanical deformation of the module and suppressing deterioration in thermoelectric performance, a combination of solder material layers, conductive adhesive layers, or sintered adhesive layers is preferable.
  • the resin film bonding step is included in the above step (vii) of the method for manufacturing a thermoelectric conversion module, and the other surface of the thermoelectric conversion material layer (chip) obtained by peeling in the above step (vi). 2) is a step of bonding the 2B layer having the second resin film and having no electrodes prepared in the step (iv) with the third bonding material layer interposed therebetween.
  • the second resin film is as described above.
  • a third bonding material layer is used for bonding with the 2B layer having the second resin film and no electrode.
  • the bonding material forming the third bonding material layer is preferably a resin material, and is formed on the resin film as the resin material layer.
  • the resin material preferably contains a polyolefin resin, an epoxy resin, or an acrylic resin. Furthermore, it is preferable that the resin material has adhesiveness and low water vapor permeability.
  • having tackiness means that the resin material has tackiness, adhesiveness, and pressure-sensitive tackiness that enables adhesion by pressure-sensitivity at the initial stage of application. Formation of the resin material layer can be performed by a known method.
  • the thickness of the resin material layer is preferably 1-100 ⁇ m, more preferably 3-50 ⁇ m, and particularly preferably 5-30 ⁇ m.
  • thermoelectric conversion module Another example of the method for manufacturing the thermoelectric conversion module is the following method. Specifically, a plurality of chips are obtained by peeling off the plurality of chips one by one from the substrate described above, and the plurality of chips are arranged one by one on predetermined electrodes on a resin film. This is a method of forming a thermoelectric conversion module through processes. As a method of arranging a plurality of chips on the electrode, a known method can be used, such as handling each chip one by one by a robot or the like, aligning the chips with a microscope or the like, and arranging them.
  • the chips can be formed by a simple method, and in the thermoelectric conversion module in which a plurality of chips are combined, the thermoelectric semiconductor composition in the conventional firing (annealing) treatment process It is possible to prevent deterioration of thermoelectric performance due to the formation of an alloy layer due to diffusion between and electrodes.
  • thermoelectric performance evaluation For the thermoelectric performance evaluation of the test piece (chip) obtained by dicing the thermoelectric conversion material layer prepared in Examples and Comparative Examples, the electrical conductivity, Seebeck coefficient and thermal conductivity are calculated by the following method. It was done by ⁇ Thermoelectric performance evaluation> (a) Electrical conductivity For each test piece (chip) obtained by dicing the thermoelectric conversion material layers obtained in Examples and Comparative Examples, using a low resistance meter (manufactured by Hioki Electric Co., Ltd., RM3545), 4 The electrical resistance value ( ⁇ ) is measured by terminal measurement, and the thickness (cm) of the test piece and the area of the test piece (the plane perpendicular to the thickness direction of the test piece; cm 2 ) are used to determine the electrical conductivity.
  • the thermoelectromotive force of the test piece (chip) obtained by the above was measured, and the Seebeck coefficient S was calculated.
  • the thermoelectromotive force is obtained by heating one end of the thermoelectric conversion material prepared, measuring the temperature difference generated between both ends of the thermoelectric conversion material using a chromel-alumel thermocouple, and measuring the potential between the electrodes adjacent to the thermocouple installation position. It was measured.
  • thermocouple and the electrode were installed at symmetrical positions with respect to the center line of the thin film, and the distance between the thermocouple and the electrode was 1 mm.
  • Thermal conductivity Thermal conductivity ⁇ (W/(m ⁇ K)) was calculated using the 3 ⁇ method for measuring thermal conductivity.
  • the thermoelectric figure of merit Z was calculated using the electric conductivity ⁇ (S/m) and the Seebeck coefficient S (V/K).
  • thermoelectric semiconductor particles P-type bismuth telluride Bi 0.4 Te 3.0 Sb 1.6 (manufactured by Kojundo Chemical Laboratory, particle size: 16 .0 ⁇ m) was used. Further, the thermoelectric semiconductor particles were subjected to particle size distribution measurement using a laser diffraction particle size analyzer (Mastersizer 3000 manufactured by Malvern).
  • thermoelectric semiconductor composition As shown in Example 1 of Table 1, P-type bismuth telluride Bi 0.4 Te 3.0 Sb 1.6 particles (average particle size 16.0 ⁇ m) 78.5 mass %, polyethylene carbonate solution containing polyethylene carbonate (final decomposition temperature: 250 ° C.) as a binder resin (manufactured by Empower Materials, QPAC25, solvent: N-methylpyrrolidone, solid content concentration: 25% by mass) 20.7% by mass ( Solid content 6.7% by mass) and 1-butylpyridinium bromide (manufactured by Koei Chemical Industry Co., Ltd., IL-P18B) 0.8% by mass as an ionic liquid are mixed and dispersed to prepare a coating liquid consisting of a thermoelectric semiconductor composition.
  • a binder resin manufactured by Empower Materials, QPAC25, solvent: N-methylpyrrolidone, solid content concentration: 25% by mass
  • 1-butylpyridinium bromide manufactured by Koei Chemical Industry Co., Ltd.
  • thermoelectric conversion material layer formation of thermoelectric conversion material layer
  • the coating liquid prepared in (2) is applied to a polyimide film (manufactured by Ube Industries, Ltd., trade name “Kapton 500H”, thickness 125 ⁇ m) using an applicator, and dried by heating at a temperature of 110 ° C. for 20 minutes. A thin film with a thickness of 600 ⁇ m was formed. Then, the obtained thin film was subjected to heat and pressure press at 250° C. and 50 MPa for 30 minutes to produce a wafer having a thermoelectric semiconductor material layer with a thickness of 250 ⁇ m on the polyimide film.
  • thermoelectric conversion material layer was produced in the same manner as in Example 1, except that the average particle size of the thermoelectric semiconductor particles was changed from 16.0 ⁇ m to 8.0 ⁇ m.
  • the thermoelectric semiconductor particles having an average particle size of 8.0 ⁇ m are P-type bismuth telluride Bi 0.4 Te 3.0 Sb 1.6 (manufactured by Kojundo Chemical Laboratory, particle size: 16.0 ⁇ m). It was prepared by grinding in a nitrogen gas atmosphere using a ball mill (Premium line P-7 manufactured by Fritsch Japan). Particle size distribution of the pulverized thermoelectric semiconductor particles was measured using a laser diffraction particle size analyzer (Mastersizer 3000 manufactured by Malvern).
  • thermoelectric conversion material layer was produced in the same manner as in Example 1, except that the average particle diameter of the thermoelectric semiconductor particles was 35.0 ⁇ m (manufactured by Kojundo Chemical Laboratory Co., Ltd.).
  • thermoelectric conversion material layer was produced in the same manner as in Example 1, except that the average particle size of the thermoelectric semiconductor particles was changed from 16.0 ⁇ m to 2.0 ⁇ m.
  • the thermoelectric semiconductor particles having an average particle size of 2.0 ⁇ m are P-type bismuth telluride Bi 0.4 Te 3.0 Sb 1.6 (manufactured by Kojundo Chemical Laboratory, particle size: 16.0 ⁇ m). It was prepared by grinding in a nitrogen gas atmosphere using a ball mill (Premium line P-7 manufactured by Fritsch Japan). Particle size distribution of the pulverized thermoelectric semiconductor particles was measured using a laser diffraction particle size analyzer (Mastersizer 3000 manufactured by Malvern).
  • thermoelectric conversion material layer was produced in the same manner as in Example 1, except that the average particle diameter of the thermoelectric semiconductor particles was 50.0 ⁇ m (manufactured by Kojundo Chemical Laboratory Co., Ltd.).
  • thermoelectric conversion material layer was produced in the same manner as in Example 1, except that the average particle size of the thermoelectric semiconductor particles was changed from 16.0 ⁇ m to 5.0 ⁇ m.
  • the thermoelectric semiconductor particles having an average particle size of 5.0 ⁇ m are P-type bismuth telluride Bi 0.4 Te 3.0 Sb 1.6 (manufactured by Kojundo Chemical Laboratory, particle size: 16.0 ⁇ m). It was prepared by grinding in a nitrogen gas atmosphere using a ball mill (Premium line P-7 manufactured by Fritsch Japan). Particle size distribution of the pulverized thermoelectric semiconductor particles was measured using a laser diffraction particle size analyzer (Mastersizer 3000 manufactured by Malvern).
  • Table 2 shows the evaluation results of the thermoelectric performance of the test pieces (chips) of the thermoelectric conversion material layers obtained in Examples 1-3 and Comparative Examples 1-3.
  • thermoelectric performance (dimensionless thermoelectric figure of merit ZT) of the thermoelectric conversion material layers of Examples 1 to 3, in which the range of the average particle diameter of the thermoelectric semiconductor particles satisfies the provisions of the present invention, was determined by the range of the average particle diameter of the thermoelectric semiconductor particles. It can be seen that the thermoelectric performance is better than the thermoelectric performance of the thermoelectric conversion material layers of Comparative Examples 1 to 3, which do not satisfy the provisions of the invention.
  • thermoelectric conversion material layer of the present invention as a thermoelectric conversion element layer of a thermoelectric conversion module, for example, exhaust heat from various combustion furnaces such as factories, waste combustion furnaces, cement combustion furnaces, combustion gas exhaust from automobile It is conceivable to apply it to power generation applications that convert heat and waste heat from electronic equipment into electricity.
  • various combustion furnaces such as factories, waste combustion furnaces, cement combustion furnaces, combustion gas exhaust from automobile
  • CPUs Central Processing Units
  • image sensors such as CMOS (Complementary Metal Oxide Semiconductor), CCD (Charge Coupled Device), etc.
  • MEMS Micro Electro Mechanical Systems
  • temperature control of various sensors such as light receiving elements.
  • Substrate 2a Thermoelectric conversion material layer (P-type chip) made of P-type thermoelectric conversion material 2b: Thermoelectric conversion material layer (N-type chip) made of N-type thermoelectric conversion material 3: Solder receiving layer 4: Resin film 5: Electrode 6: Solder material layer (when formed) 6': Solder material layer (after bonding) 12: Coating film 12a of thermoelectric semiconductor composition: Coating film 12b: Coating films 20, 20s, 20t: Thermoelectric conversion material layer 30: Gap part 30b: Gap part 40b: Gap part X: Length (width direction) Y: Length (depth direction) D: Thickness (thickness direction) Dmax: Maximum value of thickness in the thickness direction (longitudinal section) Dmin: Minimum value of thickness in thickness direction (longitudinal section) C: Central part of the thermoelectric conversion material layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a thermoelectric conversion material layer which exhibits high thermoelectric performance, wherein the electrical conductivity of a thermoelectric conversion material in the thermoelectric conversion material layer is further improved. This thermoelectric conversion material layer contains a thermoelectric conversion material that is composed of a thermoelectric semiconductor composition which contains thermoelectric semiconductor particles, a binder resin and an ionic liquid; and the average particle diameter of the thermoelectric semiconductor particles is not less than 8.0 µm but less than 50.0 µm.

Description

[規則37.2に基づきISAが決定した発明の名称] 熱電変換材料層及び熱電変換モジュール[Title of invention determined by ISA based on Rule 37.2] Thermoelectric conversion material layer and thermoelectric conversion module
 本発明は、熱電変換材料層に関する。 The present invention relates to a thermoelectric conversion material layer.
 近年、システムが単純でしかも小型化が可能な熱電発電技術が、ビル、工場等で使用される化石燃料資源等から発生する未利用の廃熱エネルギーに対する回収発電技術として注目されている。しかしながら、熱電発電は一般に発電効率が悪いこともあり、さまざまな企業、研究機関で発電効率の向上のための研究開発が活発になされている。発電効率の向上には、熱電変換材料の高効率化が必須となるが、これらを実現するために、金属並みの高い電気伝導率とガラス並みの低い熱伝導率を備えた材料の開発が望まれている。 In recent years, thermoelectric power generation technology, which has a simple system and can be downsized, has been attracting attention as a recovery power generation technology for unused waste heat energy generated from fossil fuel resources used in buildings, factories, etc. However, thermoelectric power generation generally has poor power generation efficiency, and various companies and research institutes are actively conducting research and development to improve power generation efficiency. In order to improve the efficiency of power generation, it is essential to improve the efficiency of thermoelectric conversion materials. It is rare.
 熱電変換材料の熱電変換特性は、熱電性能指数Z(Z=σS/λ)によって評価することができる。ここで、Sはゼーベック係数、σは電気伝導率、λは熱伝導率である。
 上記の熱電性能指数Zの値を大きくすれば、発電効率が向上するため、発電の高効率化にあたっては、ゼーベック係数S及び電気伝導率σが大きく、熱伝導率λが小さい熱電変換材料を見出すことが重要である。
 上記のように、発電効率を向上させる検討が必要とされる一方、現在製造されている熱電変換素子は量産性に乏しく、発電ユニットが高価であるため、建築物の壁面へ設置する場合など大面積な用途へのさらなる普及には製造コストの削減が必要不可欠であった。また、現在製造されている熱電変換素子は屈曲性に劣ることから、優れた屈曲性を有する熱電変換素子が望まれている。
 このような中、特許文献1には、熱電半導体微粒子、耐熱性樹脂及びイオン液体を含む熱電半導体組成物からなる薄膜を有する熱電変換材料が検討されている。
The thermoelectric conversion characteristics of a thermoelectric conversion material can be evaluated by a thermoelectric figure of merit Z (Z=σS 2 /λ). Here, S is the Seebeck coefficient, σ is electrical conductivity, and λ is thermal conductivity.
If the value of the thermoelectric figure of merit Z is increased, the power generation efficiency is improved. Therefore, in order to improve the efficiency of power generation, a thermoelectric conversion material with a large Seebeck coefficient S and a large electrical conductivity σ and a small thermal conductivity λ is found. This is very important.
As mentioned above, it is necessary to study how to improve power generation efficiency. It was essential to reduce manufacturing costs for further spread to applications with large areas. In addition, thermoelectric conversion elements that are currently manufactured are inferior in flexibility, so thermoelectric conversion elements that have excellent flexibility are desired.
Under such circumstances, Patent Literature 1 discusses a thermoelectric conversion material having a thin film made of a thermoelectric semiconductor composition containing thermoelectric semiconductor fine particles, a heat-resistant resin, and an ionic liquid.
国際公開第2015/019871号WO2015/019871
 特許文献1では、屈曲性を有し、かつ熱電半導体粒子間の電気伝導率の低下を効果的に抑制するために、導電補助剤としてイオン液体を用い、トータルでの熱電性能を向上させているが、より小型、軽量化、及び高集積化等の実現のために、さらなる熱電性能の向上が要求されている。 In Patent Document 1, an ionic liquid is used as a conductive auxiliary agent in order to have flexibility and effectively suppress a decrease in electrical conductivity between thermoelectric semiconductor particles, thereby improving the total thermoelectric performance. However, further improvement in thermoelectric performance is required in order to realize smaller size, lighter weight, and higher integration.
 本発明は、上記を鑑み、熱電変換材料層における熱電変換材料の電気伝導率がさらに向上された、熱電性能の高い熱電変換材料層を提供することを課題とする。 In view of the above, it is an object of the present invention to provide a thermoelectric conversion material layer with high thermoelectric performance in which the electrical conductivity of the thermoelectric conversion material in the thermoelectric conversion material layer is further improved.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、熱電変換材料層を、熱伝導率の低下及び電気伝導率の増大に寄与する特定の平均粒径を有する熱電半導体粒子、熱電変換材料層内において空隙の残存が抑制されるバインダー樹脂、並びに粒子間の空隙部での電気伝導率の低下を抑制するイオン液体を含む、熱電半導体組成物からなる薄膜とすることにより、熱電変換材料層の熱電性能が従来の上述した熱電変換材料に比べより向上されることを見出し、本発明を完成した。
 すなわち、本発明は、以下の[1]~[9]を提供するものである。
[1]熱電半導体粒子、バインダー樹脂及びイオン液体を含む熱電半導体組成物からなる熱電変換材料を含む熱電変換材料層であって、前記熱電半導体粒子の平均粒径が8.0μm以上50.0μm未満である、熱電変換材料層。
[2]前記熱電変換材料層は、前記熱電変換材料及び空隙を有し、前記熱電変換材料層の中央部を含む縦断面の面積における前記熱電変換材料の面積の占める割合を充填率としたときに、前記充填率が、0.900以上1.000未満である、上記[1]に記載の熱電変換材料層。
[3]前記熱電変換材料層は、熱電半導体組成物の塗布膜の焼成体からなる、上記[1]又は[2]に記載の熱電変換材料層。
[4]前記バインダー樹脂は、前記焼成体の焼成温度で90質量%以上分解する、上記[1]に記載の熱電変換材料層。
[5]前記バインダー樹脂は、ポリカーボネート、セルロース誘導体及びポリビニル重合体から選択される少なくとも1種を含む、上記[1]又は[4]に記載の熱電変換材料層。
[6]前記バインダー樹脂は、400℃で90質量%以上分解する、上記[1]、[4]及び[5]のいずれかに記載の熱電変換材料層。
[7]前記熱電半導体粒子が、ビスマス-テルル系熱電半導体材料、テルライド系熱電半導体材料、アンチモン-テルル系熱電半導体材料、又はビスマスセレナイド系熱電半導体材料からなる、上記[1]に記載の熱電変換材料層。
[8]前記熱電半導体粒子の平均粒径が8.0μm以上40.0μm未満である、上記[1]又は[7]に記載の熱電変換材料層。
[9]上記[1]~[8]のいずれかに記載の熱電変換材料層を含む、熱電変換モジュール。
The present inventors have made intensive studies to solve the above problems, and as a result, the thermoelectric conversion material layer is composed of thermoelectric semiconductor particles having a specific average particle size that contribute to a decrease in thermal conductivity and an increase in electrical conductivity. A thin film made of a thermoelectric semiconductor composition containing a binder resin that suppresses the remaining voids in the thermoelectric conversion material layer and an ionic liquid that suppresses a decrease in electrical conductivity in the voids between particles. The inventors have found that the thermoelectric performance of the conversion material layer is more improved than that of the conventional thermoelectric conversion materials, and completed the present invention.
That is, the present invention provides the following [1] to [9].
[1] A thermoelectric conversion material layer containing a thermoelectric conversion material made of a thermoelectric semiconductor composition containing thermoelectric semiconductor particles, a binder resin and an ionic liquid, wherein the thermoelectric semiconductor particles have an average particle size of 8.0 μm or more and less than 50.0 μm A thermoelectric conversion material layer.
[2] When the thermoelectric conversion material layer has the thermoelectric conversion material and voids, and the ratio of the area occupied by the thermoelectric conversion material in the area of the longitudinal section including the central portion of the thermoelectric conversion material layer is defined as the filling rate. The thermoelectric conversion material layer according to [1] above, wherein the filling rate is 0.900 or more and less than 1.000.
[3] The thermoelectric conversion material layer according to the above [1] or [2], wherein the thermoelectric conversion material layer is made of a fired body of a coating film of a thermoelectric semiconductor composition.
[4] The thermoelectric conversion material layer according to [1] above, wherein the binder resin decomposes by 90% by mass or more at the firing temperature of the fired body.
[5] The thermoelectric conversion material layer according to [1] or [4] above, wherein the binder resin contains at least one selected from polycarbonates, cellulose derivatives and polyvinyl polymers.
[6] The thermoelectric conversion material layer according to any one of [1], [4] and [5] above, wherein the binder resin decomposes at 400° C. by 90% by mass or more.
[7] The thermoelectric according to [1] above, wherein the thermoelectric semiconductor particles are composed of a bismuth-tellurium-based thermoelectric semiconductor material, a telluride-based thermoelectric semiconductor material, an antimony-tellurium-based thermoelectric semiconductor material, or a bismuth-selenide-based thermoelectric semiconductor material. conversion material layer.
[8] The thermoelectric conversion material layer according to [1] or [7] above, wherein the thermoelectric semiconductor particles have an average particle size of 8.0 μm or more and less than 40.0 μm.
[9] A thermoelectric conversion module including the thermoelectric conversion material layer according to any one of [1] to [8] above.
 本発明によれば、熱電変換材料層における熱電変換材料の電気伝導率がさらに向上された、熱電性能の高い熱電変換材料層を提供することができる。 According to the present invention, it is possible to provide a thermoelectric conversion material layer with high thermoelectric performance in which the electrical conductivity of the thermoelectric conversion material in the thermoelectric conversion material layer is further improved.
本発明の熱電変換材料層の縦断面の定義を説明するための図である。It is a figure for demonstrating the definition of the vertical cross section of the thermoelectric conversion material layer of this invention. 本発明の熱電変換材料層の縦断面を説明するための断面摸式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram for demonstrating the vertical cross section of the thermoelectric conversion material layer of this invention. 本発明の熱電変換材料層の製造方法の一例を説明する説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing explaining an example of the manufacturing method of the thermoelectric conversion material layer of this invention. 本発明の熱電変換材料層を含む熱電変換モジュールを製造する方法の一例を説明する説明図である。BRIEF DESCRIPTION OF THE DRAWINGS It is explanatory drawing explaining an example of the method of manufacturing the thermoelectric conversion module containing the thermoelectric conversion material layer of this invention.
〔熱電変換材料層〕
 本発明の熱電変換材料層は、熱電半導体粒子、バインダー樹脂及びイオン液体を含む熱電半導体組成物からなる熱電変換材料を含む熱電変換材料層であって、前記熱電半導体粒子の平均粒径が8.0μm以上50.0μm未満であることを特徴としている。
 本発明の熱電変換材料層を構成する熱電半導体粒子として、特定の平均粒径を有する粒子化した熱電半導体材料を用いることにより、熱電半導体粒子間の界面抵抗が低下し、熱伝導率の増加率に比べ電気伝導率の増加率をより大きくすることが可能になり、熱電変換材料層のトータルでの熱電性能を向上させることができる。さらに、熱電変換材料層を、熱電半導体粒子に加えて、熱電変換材料層内における空隙の残存が抑制されるバインダー樹脂、及び熱電半導体粒子間の空隙部での電気伝導率の低下を抑制するイオン液体を含む熱電半導体組成物からなる薄膜とすることにより、従来の熱電変換材料層が有する熱電性能に比べ、より高い熱電性能を有する熱電変換材料層が得られる。
 なお、本明細書において「熱電変換材料層」とは、熱電変換材料と、当該熱電変換材料の周囲に空隙が存在する場合はそれら空隙とを含む層である。
 また、本明細書において、「熱電変換材料」とは、熱電半導体組成物を焼成したもの(例えば、熱電半導体組成物の塗布膜の焼成体)を意味する。仮に、熱電半導体組成物に後述するバインダー樹脂が含まれていたとしても、バインダー樹脂が焼成により完全に分解した場合は、熱電変換材料には、バインダー樹脂が含まれないものとする。
 さらに、焼成(アニール)処理後の熱電変換材料層を「熱電変換材料層のチップ」又は「熱電変換材料のチップ」ということがある。
[Thermoelectric conversion material layer]
The thermoelectric conversion material layer of the present invention is a thermoelectric conversion material layer containing a thermoelectric conversion material composed of a thermoelectric semiconductor composition containing thermoelectric semiconductor particles, a binder resin and an ionic liquid, wherein the thermoelectric semiconductor particles have an average particle diameter of 8.5. It is characterized by being 0 μm or more and less than 50.0 μm.
By using a particulate thermoelectric semiconductor material having a specific average particle size as the thermoelectric semiconductor particles constituting the thermoelectric conversion material layer of the present invention, the interfacial resistance between the thermoelectric semiconductor particles is reduced, and the rate of increase in thermal conductivity is reduced. It is possible to further increase the rate of increase in electrical conductivity compared to , and the total thermoelectric performance of the thermoelectric conversion material layer can be improved. Furthermore, in addition to the thermoelectric semiconductor particles, the thermoelectric conversion material layer is composed of a binder resin that suppresses the remaining voids in the thermoelectric conversion material layer, and ions that suppress a decrease in electrical conductivity in the voids between the thermoelectric semiconductor particles. By forming a thin film made of a thermoelectric semiconductor composition containing a liquid, a thermoelectric conversion material layer having higher thermoelectric performance than conventional thermoelectric conversion material layers can be obtained.
In this specification, the “thermoelectric conversion material layer” is a layer containing a thermoelectric conversion material and, if there are gaps around the thermoelectric conversion material, those gaps.
In the present specification, the term "thermoelectric conversion material" means a product obtained by baking a thermoelectric semiconductor composition (for example, a baked body of a coating film of a thermoelectric semiconductor composition). Even if the thermoelectric semiconductor composition contains a binder resin, which will be described later, if the binder resin is completely decomposed by firing, the thermoelectric conversion material does not contain the binder resin.
Furthermore, the thermoelectric conversion material layer after baking (annealing) may be referred to as a "thermoelectric conversion material layer chip" or a "thermoelectric conversion material chip".
 本発明の熱電変換材料層は、熱電半導体粒子、バインダー樹脂及びイオン液体を含む熱電半導体組成物からなる熱電変換材料を含む。
 本発明の熱電変換材料層は、熱電半導体組成物の塗布膜の焼成体からなることが好ましい。焼成体は、熱電半導体組成物の塗布膜を焼成温度で焼成することによって得られる。焼成温度は、通常、熱電半導体組成物に含まれる熱電半導体粒子の種類によって決定されるものであり、通常260~500℃、好ましくは400~460℃、より好ましくは410~450℃、特に好ましくは420~450℃である。なお、実施例では、焼成温度は、430℃である。
The thermoelectric conversion material layer of the present invention contains a thermoelectric conversion material comprising a thermoelectric semiconductor composition containing thermoelectric semiconductor particles, a binder resin and an ionic liquid.
The thermoelectric conversion material layer of the present invention is preferably made of a sintered body of a coating film of a thermoelectric semiconductor composition. A sintered body is obtained by sintering a coating film of a thermoelectric semiconductor composition at a sintering temperature. The firing temperature is usually determined according to the type of thermoelectric semiconductor particles contained in the thermoelectric semiconductor composition, and is usually 260 to 500°C, preferably 400 to 460°C, more preferably 410 to 450°C, particularly preferably It is 420-450°C. Incidentally, in the examples, the firing temperature is 430°C.
<熱電半導体粒子>
 熱電半導体組成物には、熱電半導体粒子が含まれる。
 本発明に用いる熱電半導体粒子は、後述する熱電半導体材料を、微粉砕装置等により、所定のサイズまで粉砕したものである。
 熱電半導体材料を粉砕して熱電半導体粒子を得る方法は、特に制限はなく、ジェットミル、ボールミル、ビーズミル、コロイドミル、ローラーミル等の公知の微粉砕装置等により、所定のサイズまで粉砕すればよい。
 なお、熱電半導体粒子の平均粒径は、例えば、レーザー回折式粒度分析装置(Malvern社製、マスターサイザー3000)等にて測定することにより得られるものであり、粒径分布の中央値とした。
<Thermoelectric semiconductor particles>
The thermoelectric semiconductor composition includes thermoelectric semiconductor particles.
The thermoelectric semiconductor particles used in the present invention are obtained by pulverizing a thermoelectric semiconductor material, which will be described later, to a predetermined size using a pulverizer or the like.
The method of pulverizing the thermoelectric semiconductor material to obtain thermoelectric semiconductor particles is not particularly limited, and may be pulverized to a predetermined size by a known pulverizing device such as a jet mill, ball mill, bead mill, colloid mill, roller mill, or the like. .
The average particle size of the thermoelectric semiconductor particles is obtained by measurement using, for example, a laser diffraction particle size analyzer (Mastersizer 3000 manufactured by Malvern), and is the median value of the particle size distribution.
 熱電半導体粒子は、事前に熱処理されたものであることが好ましい。熱処理を行うことにより、熱電半導体粒子は、結晶性が向上し、さらに、熱電半導体粒子の表面酸化膜が除去されるため、熱電変換材料層のゼーベック係数又はペルチェ係数が増大し、熱電性能指数をさらに向上させることができる。熱処理は、特に限定されないが、熱電半導体組成物を調製する前に、熱電半導体粒子に悪影響を及ぼすことがないように、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、同じく水素等の還元ガス雰囲気下、または真空条件下で行うことが好ましく、不活性ガス及び還元ガスの混合ガス雰囲気下で行うことがより好ましい。具体的な温度条件は、用いる熱電半導体粒子に依存するが、通常、粒子の融点以下の温度で、かつ100~1500℃で、数分間~数十時間行うことが好ましい。 The thermoelectric semiconductor particles are preferably heat-treated in advance. By performing the heat treatment, the crystallinity of the thermoelectric semiconductor particles is improved, and the surface oxide film of the thermoelectric semiconductor particles is removed. It can be improved further. The heat treatment is not particularly limited, but before preparing the thermoelectric semiconductor composition, in an inert gas atmosphere such as nitrogen, argon, etc., in which the gas flow rate is controlled so as not to adversely affect the thermoelectric semiconductor particles. It is preferably carried out under a reducing gas atmosphere such as hydrogen or under vacuum conditions, more preferably under a mixed gas atmosphere of an inert gas and a reducing gas. Although the specific temperature conditions depend on the thermoelectric semiconductor particles used, it is generally preferred that the temperature be below the melting point of the particles and be 100 to 1500° C. for several minutes to several tens of hours.
 熱電半導体材料としては、温度差を付与することにより、熱起電力を発生させることができる材料であれば、特に制限はなく、例えば、P型ビスマステルライド、N型ビスマステルライド等のビスマス-テルル系熱電半導体材料;GeTe、PbTe等のテルライド系熱電半導体材料;アンチモン-テルル系熱電半導体材料;ZnSb、ZnSb2、ZnSb等の亜鉛-アンチモン系熱電半導体材料;SiGe等のシリコン-ゲルマニウム系熱電半導体材料;BiSe等のビスマスセレナイド系熱電半導体材料;β―FeSi、CrSi、MnSi1.73、MgSi等のシリサイド系熱電半導体材料;酸化物系熱電半導体材料;FeVAl、FeVAlSi、FeVTiAl等のホイスラー材料;TiS等の硫化物系熱電半導体材料;などが用いられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。 The thermoelectric semiconductor material is not particularly limited as long as it can generate a thermoelectromotive force by applying a temperature difference. Thermoelectric semiconductor materials; telluride-based thermoelectric semiconductor materials such as GeTe and PbTe; antimony-tellurium-based thermoelectric semiconductor materials; zinc-antimony-based thermoelectric semiconductor materials such as ZnSb, Zn 3 Sb 2 and Zn 4 Sb 3 ; silicon-germanium such as SiGe Bismuth selenide-based thermoelectric semiconductor materials such as Bi 2 Se 3 ; Silicide-based thermoelectric semiconductor materials such as β-FeSi 2 , CrSi 2 , MnSi 1.73 and Mg 2 Si; Oxide-based thermoelectric semiconductor materials; Heusler materials such as FeVAl, FeVAlSi and FeVTiAl; sulfide thermoelectric semiconductor materials such as TiS2 ; and the like are used. These may be used individually by 1 type, and may use 2 or more types together.
 これらの中でも、ビスマス-テルル系熱電半導体材料、テルライド系熱電半導体材料、アンチモン-テルル系熱電半導体材料、ビスマスセレナイド系熱電半導体材料が好ましく、高い熱電性能を得る観点から、P型ビスマステルライド、N型ビスマステルライド等のビスマス-テルル系熱電半導体材料がより好ましい。 Among these, bismuth-tellurium-based thermoelectric semiconductor materials, telluride-based thermoelectric semiconductor materials, antimony-tellurium-based thermoelectric semiconductor materials, and bismuth-selenide-based thermoelectric semiconductor materials are preferable. Bismuth-tellurium based thermoelectric semiconductor materials such as type bismuth telluride are more preferred.
 P型ビスマステルライドは、キャリアが正孔で、ゼーベック係数が正値であり、例えば、BiTeSb2-Xで表わされるものが好ましく用いられる。この場合、Xは、好ましくは0<X≦0.8であり、より好ましくは0.4≦X≦0.6である。Xが0より大きく0.8以下であるとゼーベック係数と電気伝導率が大きくなり、P型熱電素子としての特性が維持されるので好ましい。
 また、N型ビスマステルライドは、キャリアが電子で、ゼーベック係数が負値であり、例えば、BiTe3-YSeで表わされるものが好ましく用いられる。この場合、Yは、好ましくは0≦Y≦3(Y=0の時:BiTe)であり、より好ましくは0<Y≦2.7である。Yが0以上3以下であるとゼーベック係数と電気伝導率が大きくなり、N型熱電素子としての特性が維持されるので好ましい。
P-type bismuth telluride has holes as carriers and a positive Seebeck coefficient, and is preferably represented by, for example, Bi X Te 3 Sb 2-X . In this case, X preferably satisfies 0<X≦0.8, more preferably 0.4≦X≦0.6. When X is greater than 0 and 0.8 or less, the Seebeck coefficient and electrical conductivity are increased, and the properties of the P-type thermoelectric element are maintained, which is preferable.
N-type bismuth telluride has electrons as carriers and a negative Seebeck coefficient, and is represented by Bi 2 Te 3-Y Se Y , for example. In this case, Y preferably satisfies 0≦Y≦3 (when Y=0: Bi 2 Te 3 ), more preferably 0<Y≦2.7. When Y is 0 or more and 3 or less, the Seebeck coefficient and electrical conductivity are increased, and the properties of the N-type thermoelectric element are maintained, which is preferable.
 熱電半導体粒子の平均粒径は8.0μm以上50.0μm未満である。平均粒径が8.0μm未満であると、熱電半導体粒子間の界面抵抗が増加し易くなり、電気伝導率の低下に繋がり易くなる。平均粒径が50.0μm以上であると、熱電半導体粒子間の界面抵抗が低下し易くなり、電気伝導率の増加に繋がり易くなるが、熱伝導率の増加がより顕著になり易くなり、トータルでの熱電性能の増加が抑制されてしまう。熱電半導体粒子の平均粒径は、好ましくは8.0μm以上45.0μm未満であり、より好ましくは8.0μm以上42.0μm未満であり、さらに好ましくは10.0μm以上40.0μm未満であり、特に好ましくは15.0μm以上35.0μm未満である。熱電半導体粒子の平均粒径が上記範囲内であれば、熱電半導体粒子間の界面抵抗が低下し、熱伝導率の増加率よりも電気伝導率の増加率をより大きくすることが可能になり、トータルでの熱電性能を向上させることができる。 The average particle size of the thermoelectric semiconductor particles is 8.0 μm or more and less than 50.0 μm. When the average particle size is less than 8.0 μm, the interfacial resistance between the thermoelectric semiconductor particles tends to increase, which tends to lead to a decrease in electrical conductivity. When the average particle size is 50.0 μm or more, the interfacial resistance between the thermoelectric semiconductor particles tends to decrease, which tends to lead to an increase in electrical conductivity, but the increase in thermal conductivity tends to become more pronounced. The increase in thermoelectric performance at is suppressed. The average particle diameter of the thermoelectric semiconductor particles is preferably 8.0 μm or more and less than 45.0 μm, more preferably 8.0 μm or more and less than 42.0 μm, still more preferably 10.0 μm or more and less than 40.0 μm, Particularly preferably, it is 15.0 μm or more and less than 35.0 μm. If the average particle size of the thermoelectric semiconductor particles is within the above range, the interfacial resistance between the thermoelectric semiconductor particles is reduced, making it possible to increase the rate of increase in electrical conductivity more than the rate of increase in thermal conductivity. The total thermoelectric performance can be improved.
 熱電半導体粒子の熱電半導体組成物中の含有量は、好ましくは30~99質量%、より好ましくは50~96質量%、特に好ましくは70~95質量%である。熱電半導体粒子の含有量が、上記範囲内であれば、ゼーベック係数(ペルチェ係数の絶対値)が大きく、また電気伝導率の低下が抑制され、熱伝導率のみが低下し易くなるため、高い熱電性能を示すとともに、十分な皮膜強度、屈曲性を有する膜が得られ好ましい。 The content of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is preferably 30-99% by mass, more preferably 50-96% by mass, and particularly preferably 70-95% by mass. If the content of the thermoelectric semiconductor particles is within the above range, the Seebeck coefficient (absolute value of the Peltier coefficient) is large, and the decrease in electrical conductivity is suppressed, and only the thermal conductivity tends to decrease. It is preferable because a film having sufficient film strength and flexibility can be obtained while exhibiting performance.
<バインダー樹脂>
 熱電半導体組成物には、バインダー樹脂が含まれる。
 バインダー樹脂は、焼成(アニール)処理後の熱電変換材料層のチップの作製時に用いた後述する基板からの剥離を容易にし、且つ熱電半導体粒子間のバインダーとして働き、後述する熱電変換モジュールの屈曲性を高めることができるとともに、塗布等による薄膜の形成を容易にする。
<Binder resin>
The thermoelectric semiconductor composition contains a binder resin.
The binder resin facilitates the separation of the thermoelectric conversion material layer after the firing (annealing) treatment from the substrate described later used in the production of the chip, and also acts as a binder between the thermoelectric semiconductor particles to improve the flexibility of the thermoelectric conversion module described later. can be increased, and the formation of a thin film by coating or the like can be facilitated.
 バインダー樹脂としては、焼成(アニール)温度で、90質量%以上が分解する樹脂であることが好ましく、95質量%以上が分解する樹脂であることがより好ましく、99質量%以上が分解する樹脂であることが特に好ましい。
 また、熱電半導体組成物からなる塗布膜(薄膜)を焼成(アニール)処理等により熱電半導体粒子を結晶成長させる際に、機械的強度及び熱伝導率等の諸物性が損なわれず維持される樹脂がより好ましい。
 バインダー樹脂として、焼成(アニール)温度で90質量%以上が分解する樹脂、即ち、従来使用していた耐熱性樹脂よりも低温で分解する樹脂、を用いると、焼成によりバインダー樹脂が分解するため、焼成体中に含まれる絶縁性の成分となるバインダー樹脂の含有量が減少し、熱電半導体組成物における熱電半導体粒子の結晶成長が促進されるので、熱電変換材料層における空隙を少なくして、充填率を向上させることができる。
 バインダー樹脂は、一態様として、焼成(アニール)温度400℃で90質量%以上が分解することが好ましい。
 なお、焼成(アニール)温度で所定値(例えば、90質量%)以上が分解する樹脂であるか否かは、熱重量測定(TG)による焼成(アニール)温度における質量減少率(分解前の質量で分解後の質量を除した値)を測定することにより判断する。
The binder resin is preferably a resin that decomposes at a firing (annealing) temperature of 90% by mass or more, more preferably a resin that decomposes at 95% by mass or more, and a resin that decomposes at 99% by mass or more. It is particularly preferred to have
In addition, a resin that maintains various physical properties such as mechanical strength and thermal conductivity without impairing when crystal growth of thermoelectric semiconductor particles is performed by baking (annealing) a coating film (thin film) made of a thermoelectric semiconductor composition. more preferred.
As the binder resin, if a resin that decomposes at a firing (annealing) temperature of 90% by mass or more, that is, a resin that decomposes at a lower temperature than conventionally used heat-resistant resins, the binder resin will decompose upon firing. The content of the binder resin, which is an insulating component contained in the fired body, is reduced, and the crystal growth of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is promoted. rate can be improved.
As one aspect, it is preferable that 90% by mass or more of the binder resin decompose at a firing (annealing) temperature of 400°C.
Whether or not the resin decomposes at a predetermined value (e.g., 90% by mass) or more at the firing (annealing) temperature is determined by thermogravimetry (TG) at the mass reduction rate (mass before decomposition) at the firing (annealing) temperature. The value obtained by dividing the mass after decomposition by ).
 このようなバインダー樹脂として、熱可塑性樹脂や硬化性樹脂を用いることができる。熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリメチルペンテン等のポリオレフィン系樹脂;ポリカーボネート;ポリエチレンテレフタレート、ポリエチレンナフタレート等の熱可塑性ポリエステル樹脂;ポリスチレン、アクリロニトリル-スチレン共重合体、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、塩化ビニル、ポリビニルピリジン、ポリビニルアルコール、ポリビニルピロリドン等のポリビニル重合体;ポリウレタン;エチルセルロース等のセルロース誘導体;などが挙げられる。硬化性樹脂としては、熱硬化性樹脂や光硬化性樹脂が挙げられる。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂等が挙げられる。光硬化性樹脂としては、例えば、光硬化性アクリル樹脂、光硬化性ウレタン樹脂、光硬化性エポキシ樹脂等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、熱電変換材料層における熱電変換材料の電気抵抗率の観点から、熱可塑性樹脂が好ましく、ポリカーボネート、エチルセルロース等のセルロース誘導体がより好ましく、ポリカーボネートが特に好ましい。
A thermoplastic resin or a curable resin can be used as such a binder resin. Examples of thermoplastic resins include polyolefin resins such as polyethylene, polypropylene, polyisobutylene, and polymethylpentene; polycarbonates; thermoplastic polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polystyrene, acrylonitrile-styrene copolymers, and polyacetic acid. Polyvinyl polymers such as vinyl, ethylene-vinyl acetate copolymer, vinyl chloride, polyvinylpyridine, polyvinyl alcohol and polyvinylpyrrolidone; polyurethanes; cellulose derivatives such as ethyl cellulose; Examples of curable resins include thermosetting resins and photocurable resins. Examples of thermosetting resins include epoxy resins and phenol resins. Examples of photocurable resins include photocurable acrylic resins, photocurable urethane resins, and photocurable epoxy resins. These may be used individually by 1 type, and may use 2 or more types together.
Among these, from the viewpoint of the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer, thermoplastic resins are preferred, cellulose derivatives such as polycarbonate and ethyl cellulose are more preferred, and polycarbonate is particularly preferred.
 バインダー樹脂は、後述する(B)焼成(アニール)処理工程における熱電半導体材料に対する焼成(アニール)処理の温度に応じて適宜選択される。バインダー樹脂が有する最終分解温度以上で焼成(アニール)処理することが、熱電変換材料層における熱電変換材料の電気抵抗率の観点から好ましい。
 本明細書において、「最終分解温度」とは、熱重量測定(TG)による焼成(アニール)温度における質量減少率が100%(分解後の質量が分解前の質量の0%)となる温度をいう。
The binder resin is appropriately selected according to the temperature of the baking (annealing) treatment for the thermoelectric semiconductor material in the baking (annealing) treatment step (B), which will be described later. From the viewpoint of the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer, it is preferable to perform the baking (annealing) treatment at a temperature higher than the final decomposition temperature of the binder resin.
As used herein, the term “final decomposition temperature” refers to the temperature at which the mass reduction rate at the firing (annealing) temperature by thermogravimetry (TG) is 100% (the mass after decomposition is 0% of the mass before decomposition). say.
 バインダー樹脂の最終分解温度は、通常150~600℃、好ましくは200~560℃、より好ましくは220~460℃、特に好ましくは240~360℃である。最終分解温度がこの範囲にあるバインダー樹脂を用いれば、熱電半導体材料のバインダーとして機能し、印刷時に薄膜の形成がしやすくなる。
 バインダー樹脂は、後述する加熱プレス時及び/又は焼成時に、分解及び気化することが好ましい。
The final decomposition temperature of the binder resin is generally 150-600°C, preferably 200-560°C, more preferably 220-460°C, and particularly preferably 240-360°C. If a binder resin having a final decomposition temperature within this range is used, it functions as a binder for the thermoelectric semiconductor material and facilitates the formation of a thin film during printing.
The binder resin is preferably decomposed and vaporized during heat pressing and/or firing, which will be described later.
 バインダー樹脂の熱電半導体組成物中の含有量は、0.1~40質量%、好ましくは0.5~20質量%、より好ましくは0.5~10質量%、特に好ましくは0.5~5質量%である。バインダー樹脂の含有量が、上記範囲内であると、熱電変換材料層における熱電変換材料の電気抵抗率を減少させることができる。 The content of the binder resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 0.5 to 10% by mass, and particularly preferably 0.5 to 5% by mass. % by mass. When the content of the binder resin is within the above range, the electric resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer can be reduced.
<イオン液体>
 熱電半導体組成物には、イオン液体が含まれる。
 イオン液体は、カチオンとアニオンとを組み合わせてなる溶融塩であり、-50℃以上400℃未満のいずれかの温度領域において液体で存在し得る塩をいう。換言すれば、イオン液体は、融点が-50℃以上400℃未満の範囲にあるイオン性化合物である。イオン液体の融点は、好ましくは-25℃以上200℃以下、より好ましくは0℃以上150℃以下である。イオン液体は、蒸気圧が極めて低く不揮発性であること、優れた熱安定性及び電気化学安定性を有していること、粘度が低いこと、かつイオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体材料間の電気伝導率の低減を効果的に抑制することができる。また、イオン液体は、非プロトン性のイオン構造に基づく高い極性を示し、バインダー樹脂との相溶性に優れるため、熱電変換材料の電気伝導率を均一にすることができる。
<Ionic liquid>
Thermoelectric semiconductor compositions include ionic liquids.
An ionic liquid is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist as a liquid in any temperature range from -50°C to less than 400°C. In other words, an ionic liquid is an ionic compound having a melting point in the range of -50°C or higher and lower than 400°C. The melting point of the ionic liquid is preferably −25° C. or higher and 200° C. or lower, more preferably 0° C. or higher and 150° C. or lower. Ionic liquids have characteristics such as extremely low vapor pressure and non-volatility, excellent thermal and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, it can effectively suppress the decrease in electrical conductivity between thermoelectric semiconductor materials as a conductive auxiliary agent. In addition, the ionic liquid exhibits high polarity based on an aprotic ionic structure and is excellent in compatibility with the binder resin, so that the electrical conductivity of the thermoelectric conversion material can be made uniform.
 イオン液体は、公知または市販のものが使用できる。例えば、ピリジニウム、ピリミジニウム、ピラゾリウム、ピロリジニウム、ピペリジニウム、イミダゾリウム等の窒素含有環状カチオン化合物及びそれらの誘導体;テトラアルキルアンモニウム系のアミン系カチオン及びそれらの誘導体;ホスホニウム、トリアルキルスルホニウム、テトラアルキルホスホニウム等のホスフィン系カチオン及びそれらの誘導体;リチウムカチオン及びその誘導体等のカチオン成分と、Cl、Br、I、AlCl 、AlCl 、BF 、PF 、ClO 、NO 、CHCOO、CFCOO、CHSO 、CFSO 、(FSO、(CFSO、(CFSO、AsF 、SbF 、NbF 、TaF 、F(HF) 、(CN)、CSO 、(CSO、CCOO、(CFSO)(CFCO)N等のアニオン成分とから構成されるものが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。 Known or commercially available ionic liquids can be used. For example, nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and their derivatives; tetraalkylammonium-based amine-based cations and their derivatives; Phosphine-based cations and derivatives thereof; cation components such as lithium cations and derivatives thereof, Cl , Br , I , AlCl 4 , Al 2 Cl 7 , BF 4 , PF 6 , ClO 4 , NO 3 , CH 3 COO , CF 3 COO , CH 3 SO 3 , CF 3 SO 3 , (FSO 2 ) 2 N , (CF 3 SO 2 ) 2 N , (CF 3 SO 2 ) 3 C , AsF 6 , SbF 6 , NbF 6 , TaF 6 , F(HF) n , (CN) 2 N , C 4 F 9 SO 3 , (C 2 F 5 SO 2 ) 2 N , C 3 F 7 COO , (CF 3 SO 2 )(CF 3 CO)N and other anion components. These may be used individually by 1 type, and may use 2 or more types together.
 上記のイオン液体の中で、高温安定性、熱電半導体粒子及びバインダー樹脂との相溶性、熱電半導体粒子間隙の電気伝導率の低下抑制等の観点から、イオン液体のカチオン成分が、ピリジニウムカチオン及びその誘導体、イミダゾリウムカチオン及びその誘導体から選ばれる少なくとも1種を含むことが好ましい。イオン液体のアニオン成分が、ハロゲン化物アニオンを含むことが好ましく、Cl、Br及びIから選ばれる少なくとも1種を含むことがさらに好ましい。 Among the above ionic liquids, the cation component of the ionic liquid is pyridinium cation and its It preferably contains at least one selected from derivatives, imidazolium cations and derivatives thereof. The anion component of the ionic liquid preferably contains a halide anion, more preferably at least one selected from Cl , Br and I .
 カチオン成分が、ピリジニウムカチオン及びその誘導体を含むイオン液体の具体的な例として、4-メチル-ブチルピリジニウムクロライド、3-メチル-ブチルピリジニウムクロライド、4-メチル-ヘキシルピリジニウムクロライド、3-メチル-ヘキシルピリジニウムクロライド、4-メチル-オクチルピリジニウムクロライド、3-メチル-オクチルピリジニウムクロライド、3,4-ジメチル-ブチルピリジニウムクロライド、3,5-ジメチル-ブチルピリジニウムクロライド、4-メチル-ブチルピリジニウムテトラフルオロボレート、4-メチル-ブチルピリジニウムヘキサフルオロホスフェート、1-ブチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファート、1-ブチル-4-メチルピリジニウムヨージド等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、1-ブチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファート、1-ブチル-4-メチルピリジニウムヨージドが好ましい。
Specific examples of ionic liquids in which the cationic component contains pyridinium cations and derivatives thereof include 4-methyl-butylpyridinium chloride, 3-methyl-butylpyridinium chloride, 4-methyl-hexylpyridinium chloride, and 3-methyl-hexylpyridinium chloride. chloride, 4-methyl-octylpyridinium chloride, 3-methyl-octylpyridinium chloride, 3,4-dimethyl-butylpyridinium chloride, 3,5-dimethyl-butylpyridinium chloride, 4-methyl-butylpyridinium tetrafluoroborate, 4- methyl-butylpyridinium hexafluorophosphate, 1-butylpyridinium bromide, 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, 1-butyl-4-methylpyridinium iodide and the like. be done. These may be used individually by 1 type, and may use 2 or more types together.
Among these, 1-butylpyridinium bromide, 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, and 1-butyl-4-methylpyridinium iodide are preferred.
 また、カチオン成分が、イミダゾリウムカチオン及びその誘導体を含むイオン液体の具体的な例として、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]、1-エチル-3-メチルイミダゾリウムクロライド、1-エチル-3-メチルイミダゾリウムブロミド、1-ブチル-3-メチルイミダゾリウムクロライド、1-ヘキシル-3-メチルイミダゾリウムクロライド、1-オクチル-3-メチルイミダゾリウムクロライド、1-デシル-3-メチルイミダゾリウムクロライド、1-デシル-3-メチルイミダゾリウムブロミド、1-ドデシル-3-メチルイミダゾリウムクロライド、1-テトラデシル-3-メチルイミダゾリウムクロライド、1-エチル-3-メチルイミダゾリウムテトラフロオロボレート、1-ブチル-3-メチルイミダゾリウムテトラフロオロボレート、1-ヘキシル-3-メチルイミダゾリウムテトラフロオロボレート、1-エチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-メチル-3-ブチルイミダゾリウムメチルスルフェート、1、3-ジブチルイミダゾリウムメチルスルフェート等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]が好ましい。
Specific examples of ionic liquids containing imidazolium cations and derivatives thereof as cationic components include [1-butyl-3-(2-hydroxyethyl)imidazolium bromide], [1-butyl-3-(2 -hydroxyethyl)imidazolium tetrafluoroborate], 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3 -methylimidazolium chloride, 1-octyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium bromide, 1-dodecyl-3-methylimidazolium chloride, 1-tetradecyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium tetrafluorooroborate, 1-butyl-3-methylimidazolium tetrafluorooroborate, 1-hexyl-3-methylimidazolium tetrafluoro Oroborate, 1-ethyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-methyl-3-butylimidazolium methylsulfate, 1,3-dibutylimidazolium methyl Sulfate and the like can be mentioned. These may be used individually by 1 type, and may use 2 or more types together.
Among these, [1-butyl-3-(2-hydroxyethyl)imidazolium bromide] and [1-butyl-3-(2-hydroxyethyl)imidazolium tetrafluoroborate] are preferred.
 上記のイオン液体の電気伝導率は、好ましくは10-7S/cm以上、より好ましくは10-6S/cm以上である。電気伝導率が上記の範囲であれば、導電補助剤として、熱電半導体粒子間の電気伝導率の低減を効果的に抑制することができる。 The electrical conductivity of the ionic liquid is preferably 10 −7 S/cm or higher, more preferably 10 −6 S/cm or higher. If the electrical conductivity is within the above range, it can effectively suppress the decrease in the electrical conductivity between the thermoelectric semiconductor particles as a conductive auxiliary agent.
 また、上記のイオン液体は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる塗布膜(薄膜)を焼成(アニール)処理した場合でも、導電補助剤としての効果を維持することができる。
 本明細書において、「分解温度」とは、熱重量測定(TG)による焼成(アニール)温度における質量減少率が10%となる温度をいう。
Further, the above ionic liquid preferably has a decomposition temperature of 300° C. or higher. If the decomposition temperature is within the above range, the effect as a conductive auxiliary agent can be maintained even when a coating film (thin film) made of the thermoelectric semiconductor composition is subjected to baking (annealing) treatment, as described later.
As used herein, the term "decomposition temperature" refers to the temperature at which the mass reduction rate at the firing (annealing) temperature by thermogravimetry (TG) is 10%.
 また、上記のイオン液体において、熱重量測定(TG)による300℃における質量減少率は、好ましくは10%以下、より好ましくは5%以下、特に好ましくは1%以下である。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる塗布膜(薄膜)を焼成(アニール)処理した場合でも、導電補助剤としての効果を維持することができる。 In addition, in the above ionic liquid, the mass reduction rate at 300°C by thermogravimetry (TG) is preferably 10% or less, more preferably 5% or less, and particularly preferably 1% or less. If the mass reduction rate is within the above range, as described later, even when a coating film (thin film) made of the thermoelectric semiconductor composition is subjected to baking (annealing) treatment, the effect as a conductive auxiliary agent can be maintained.
 イオン液体の熱電半導体組成物中の含有量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、特に好ましくは1.0~20質量%である。イオン液体の含有量が、上記の範囲内であれば、電気伝導率の低下が効果的に抑制され、高い熱電性能を有する膜が得られる。 The content of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01-50% by mass, more preferably 0.5-30% by mass, and particularly preferably 1.0-20% by mass. If the content of the ionic liquid is within the above range, the decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
<無機イオン性化合物>
 熱電半導体組成物には、さらに無機イオン性化合物を含んでいてもよい。
 無機イオン性化合物は、少なくともカチオンとアニオンから構成される化合物である。無機イオン性化合物は室温において固体であり、400~900℃の温度領域のいずれかの温度に融点を有し、イオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体粒子間の電気伝導率の低減を抑制することができる。
<Inorganic ionic compound>
The thermoelectric semiconductor composition may further contain an inorganic ionic compound.
An inorganic ionic compound is a compound composed of at least a cation and an anion. Inorganic ionic compounds are solid at room temperature, have a melting point in a temperature range of 400 to 900° C., and have high ionic conductivity. Reduction in electrical conductivity between thermoelectric semiconductor particles can be suppressed.
 無機イオン性化合物の熱電半導体組成物中の含有量は、熱電半導体組成物が無機イオン化合物を含む場合、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、特に好ましくは1.0~10質量%である。無機イオン性化合物の含有量が、上記範囲内であれば、電気伝導率の低下を効果的に抑制でき、結果として熱電性能が向上した膜が得られる。
 なお、無機イオン性化合物とイオン液体とを併用する場合においては、熱電半導体組成物中における、無機イオン性化合物及びイオン液体の含有量の総量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、特に好ましくは1.0~10質量%である。
The content of the inorganic ionic compound in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, particularly preferably when the thermoelectric semiconductor composition contains the inorganic ionic compound. is 1.0 to 10% by mass. If the content of the inorganic ionic compound is within the above range, the decrease in electrical conductivity can be effectively suppressed, and as a result, a film with improved thermoelectric performance can be obtained.
When the inorganic ionic compound and the ionic liquid are used together, the total content of the inorganic ionic compound and the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably is 0.5 to 30% by weight, particularly preferably 1.0 to 10% by weight.
<その他の添加剤>
 熱電半導体組成物には、上記以外に、必要に応じて、さらに分散剤、造膜助剤、光安定剤、酸化防止剤、粘着付与剤、可塑剤、着色剤、樹脂安定剤、充てん剤、顔料、導電性フィラー、導電性高分子、硬化剤等の他の添加剤を含んでいてもよい。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
<Other additives>
In addition to the above, if necessary, the thermoelectric semiconductor composition may further contain a dispersant, a film forming aid, a light stabilizer, an antioxidant, a tackifier, a plasticizer, a colorant, a resin stabilizer, a filler, Other additives such as pigments, conductive fillers, conductive polymers, and curing agents may be included. These may be used individually by 1 type, and may use 2 or more types together.
 熱電変換材料層の厚さ(熱電半導体組成物からなる塗布膜(薄膜)の厚さ)は、本発明に用いる熱電半導体微粒子の平均粒径が、8.0μm以上50.0μm未満であることから、少なくとも平均粒径に対し、好ましくは6倍以上、より好ましくは20倍以上である。熱電半導体粒子の平均粒径に対し熱電変換材料層の厚さが上記の範囲であると、熱電変換材料層の表面粗さ由来の電気伝導率の低下が抑制されるため、熱電性能を高く維持できる。
 熱電変換材料層の厚さは、上記を満たしかつ熱電性能、屈曲性、皮膜強度の観点から、好ましくは1000μm以下、より好ましくは600μm以下、さらに好ましくは400μm以下である。
The thickness of the thermoelectric conversion material layer (the thickness of the coating film (thin film) made of the thermoelectric semiconductor composition) is determined because the average particle size of the thermoelectric semiconductor fine particles used in the present invention is 8.0 μm or more and less than 50.0 μm. , preferably 6 times or more, more preferably 20 times or more, at least the average particle diameter. When the thickness of the thermoelectric conversion material layer is within the above range with respect to the average particle size of the thermoelectric semiconductor particles, the decrease in electrical conductivity due to the surface roughness of the thermoelectric conversion material layer is suppressed, so the thermoelectric performance is maintained at a high level. can.
The thickness of the thermoelectric conversion material layer is preferably 1000 μm or less, more preferably 600 μm or less, and even more preferably 400 μm or less from the viewpoints of thermoelectric performance, flexibility and film strength while satisfying the above requirements.
〈熱電変換材料層の縦断面〉
 本発明の熱電変換材料層は、熱電変換材料及び空隙を有し、熱電変換材料層の中央部を含む縦断面の面積における熱電変換材料の面積の占める割合を充填率としたときに、前記充填率が、0.900以上1.000未満であることが好ましい。
<Longitudinal section of thermoelectric conversion material layer>
The thermoelectric conversion material layer of the present invention has a thermoelectric conversion material and voids. The ratio is preferably 0.900 or more and less than 1.000.
 本明細書における、「熱電変換材料層の中央部を含む縦断面」の定義を、図を用いて説明する。
 図1は、本発明の熱電変換材料層の縦断面の定義を説明するための図であり、図1(a)は、熱電変換材料層20の平面図であり、熱電変換材料層20は、幅方向に長さX、奥行き方向に長さYを有し、図1(b)は、基板1a上に形成された熱電変換材料層20の縦断面であり、縦断面は、図1(a)における中央部Cを含み、幅方向にA-A’間で切断した時に得られる長さX、厚さDからなる(図では長方形としている)。なお、熱電変換材料層20中には空隙部30が含まれる。
The definition of "longitudinal section including the central portion of the thermoelectric conversion material layer" in this specification will be explained with reference to the drawings.
FIG. 1 is a view for explaining the definition of the longitudinal section of the thermoelectric conversion material layer of the present invention, FIG. 1(a) is a plan view of the thermoelectric conversion material layer 20, the thermoelectric conversion material layer 20 It has a length X in the width direction and a length Y in the depth direction. FIG. 1(b) is a longitudinal section of the thermoelectric conversion material layer 20 formed on the substrate 1a. ), and has a length X and a thickness D obtained by cutting across AA' in the width direction (the figure is a rectangle). Note that the thermoelectric conversion material layer 20 includes voids 30 .
 本発明の熱電変換材料層の縦断面について、図を用いて説明する。
 図2は、本発明の熱電変換材料層の縦断面を説明するための断面模式図であり、図2(a)は、基板1a上に形成した熱電変換材料層20sの縦断面の一例であり、熱電変換材料層20sは、幅方向に長さX、厚さ方向は、Dmin及び、Dmaxの値を取る曲線からなる縦断面を有し、縦断面の上部は凹部と凸部を備え、縦断面内には、空隙部30bが存在する。また、図2(b)は、基板1a上に形成した熱電変換材料層20tの縦断面の一例であり、熱電変換材料層20tの縦断面は、幅方向に長さX、厚さ方向に厚さがD[図2の(a)におけるDminとDmaxの値が僅差の場合]からなり、縦断面の上部は、略直線状になっており、縦断面内には、空隙数、及び体積が抑制された空隙部40bが存在する。なお、Dminは縦断面の厚さ方向の厚さの最小値、Dmaxは縦断面の厚さ方向の厚さの最大値を意味する。
A longitudinal section of the thermoelectric conversion material layer of the present invention will be described with reference to the drawings.
FIG. 2 is a schematic cross-sectional view for explaining the longitudinal section of the thermoelectric conversion material layer of the present invention, and FIG. 2(a) is an example of the longitudinal section of the thermoelectric conversion material layer 20s formed on the substrate 1a. , the thermoelectric conversion material layer 20s has a longitudinal section formed by a curve having a length X in the width direction and Dmin and Dmax in the thickness direction. A void 30b exists in the plane. FIG. 2(b) is an example of a longitudinal section of the thermoelectric conversion material layer 20t formed on the substrate 1a. The height is D [when the values of Dmin and Dmax in (a) of FIG. A suppressed void 40b exists. Dmin means the minimum thickness in the thickness direction of the longitudinal section, and Dmax means the maximum thickness in the thickness direction of the longitudinal section.
 本発明の熱電変換材料層では、熱電変換材料層の中央部を含む縦断面の面積における熱電変換材料の面積の占める割合で定義される、熱電変換材料層中の熱電変換材料の充填率が、0.900超1.000未満であり、熱電変換材料層中の空隙が少ない。
 熱電変換材料層中の熱電変換材料の充填率が0.900以下であると、熱電変換材料層中の空隙が多くなり、熱電変換材料層における熱電変換材料の電気抵抗率を減少させにくく(優れた電気伝導率が得られにくくなり)、高い熱電性能が得られない。充填率は、好ましくは0.900超0.999以下、より好ましくは0.920以上0.999以下、さらに好ましくは0.950以上0.999以下、特に好ましくは0.970以上0.999以下である。充填率がこの範囲にあると、熱電変換材料層における熱電変換材料の電気抵抗率を減少させ(優れた電気伝導率が得られ)、高い熱電性能が得られる。
In the thermoelectric conversion material layer of the present invention, the filling rate of the thermoelectric conversion material in the thermoelectric conversion material layer, which is defined as the ratio of the area of the thermoelectric conversion material to the area of the longitudinal section including the central portion of the thermoelectric conversion material layer, is It is more than 0.900 and less than 1.000, and there are few voids in the thermoelectric conversion material layer.
If the filling rate of the thermoelectric conversion material in the thermoelectric conversion material layer is 0.900 or less, the number of voids in the thermoelectric conversion material layer increases, and the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer is difficult to decrease (excellent It becomes difficult to obtain a high electrical conductivity), and high thermoelectric performance cannot be obtained. The filling rate is preferably more than 0.900 and 0.999 or less, more preferably 0.920 or more and 0.999 or less, still more preferably 0.950 or more and 0.999 or less, particularly preferably 0.970 or more and 0.999 or less. is. When the filling rate is within this range, the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer is reduced (excellent electrical conductivity is obtained), and high thermoelectric performance is obtained.
 熱電変換材料層における熱電変換材料の充填率の測定方法を、後述する実施例及び比較例で作製した熱電変換材料層からなる試験片(チップ)を例として説明する。
 各実施例及び比較例で得られた熱電変換材料層からなる試験片(チップ)それぞれについて、研磨装置(リファインテック社製、型名:リファイン・ポリッシャーHV)によって熱電変換材料層の中央部を含む縦断面出しを行い、走査電子顕微鏡(SEM)(キーエンス社製)を用い、縦断面の観察を行い、次いで、画像処理ソフト(National Institutes of Health製、ImageJ ver.1.44P)を用い、熱電変換材料層の縦断面の面積における熱電変換材料の面積の占める割合で定義される充填率を算出した。
 充填率の測定においては、倍率500倍のSEM画像(縦断面)を用いて、測定範囲を熱電変換材料層の任意の位置に対し、幅方向に1280pixel、厚さ方向に220pixelで囲まれる範囲とし、画像として切り出した。切り出した画像を「Brightness/Contrast」からコントラストを最大値にして二値化処理を行い、二値化処理における暗部を空隙部、明部を熱電変換材料と見なし「Threshold」にて、熱電変換材料の充填率を算出した。充填率はSEM画像3枚について算出し、それらの平均値とした。
A method for measuring the filling rate of the thermoelectric conversion material in the thermoelectric conversion material layer will be described using test pieces (chips) made of the thermoelectric conversion material layers produced in Examples and Comparative Examples to be described later as examples.
For each test piece (chip) composed of the thermoelectric conversion material layer obtained in each example and comparative example, the center part of the thermoelectric conversion material layer is included with a polishing apparatus (manufactured by Refinetech, model name: Refine Polisher HV). A longitudinal section is taken out, a scanning electron microscope (SEM) (manufactured by Keyence Corporation) is used to observe the longitudinal section, and then image processing software (National Institutes of Health, ImageJ ver.1.44P) is used to perform thermoelectric A filling rate defined as a ratio of the area of the thermoelectric conversion material to the area of the longitudinal section of the conversion material layer was calculated.
In the measurement of the filling rate, an SEM image (longitudinal section) with a magnification of 500 times is used, and the measurement range is a range surrounded by 1280 pixels in the width direction and 220 pixels in the thickness direction with respect to an arbitrary position of the thermoelectric conversion material layer. , cropped as an image. The clipped image is subjected to binarization processing with the contrast set to the maximum value from "Brightness/Contrast". was calculated. The filling rate was calculated for three SEM images and taken as their average value.
〔熱電変換モジュール〕
 本発明の熱電変換材料層は、π型熱電変換素子(後述する図4(f))やインプレーン型熱電変換素子等の構成を有する熱電変換モジュールに適用することが好ましい。
[Thermoelectric conversion module]
The thermoelectric conversion material layer of the present invention is preferably applied to a thermoelectric conversion module having a structure such as a π-type thermoelectric conversion element (FIG. 4(f) described later) or an in-plane type thermoelectric conversion element.
<熱電変換モジュールの製造方法>
 本発明の熱電変換材料層を含む熱電変換モジュールを製造する方法は、以下(i)~(vii)の工程を含む。
(i):基板上に熱電半導体組成物の塗布膜を形成する工程;
(ii):上記(i)の工程で得られた熱電半導体組成物の塗布膜を焼成(アニール)処理して熱電変換材料からなる熱電変換材料層(チップ)を得る工程;
(iii):第1の樹脂フィルムと第1の電極とをこの順に有する第1の層を準備する工程;
(iv):第2の樹脂フィルムと第2の電極とをこの順に有する第2Aの層、又は、第2の樹脂フィルムを有しかつ電極を有しない第2Bの層を準備する工程;
(v):上記(ii)の工程で得られた熱電変換材料層(チップ)の一方の面と、上記(iii)の工程で準備した第1の層の電極とを第1接合材料層を介在して接合する工程;
(vi):上記(v)の工程後の熱電変換材料層(チップ)の他方の面を基板から剥離する工程;及び
(vii):上記(vi)の工程で剥離し得られた熱電変換材料層(チップ)の他方の面と、上記(iv)の工程で準備した第2Aの層の電極とを第2接合材料層を介在して接合する工程、又は、上記(iv)の工程で準備した第2Bの層とを第3接合材料層を介在して接合する工程。
<Method for manufacturing thermoelectric conversion module>
A method of manufacturing a thermoelectric conversion module including a thermoelectric conversion material layer of the present invention includes the following steps (i) to (vii).
(i): a step of forming a coating film of a thermoelectric semiconductor composition on a substrate;
(ii): a step of baking (annealing) the coating film of the thermoelectric semiconductor composition obtained in step (i) to obtain a thermoelectric conversion material layer (chip) made of the thermoelectric conversion material;
(iii): preparing a first layer having a first resin film and a first electrode in this order;
(iv): preparing a layer 2A having a second resin film and a second electrode in this order, or a layer 2B having a second resin film and no electrode;
(v): One surface of the thermoelectric conversion material layer (chip) obtained in the step (ii) above and the electrodes of the first layer prepared in the step (iii) above are bonded together to form a first bonding material layer. intervening bonding;
(vi): a step of peeling the other surface of the thermoelectric conversion material layer (chip) from the substrate after the step of (v); and (vii): the thermoelectric conversion material obtained by peeling in the step of (vi). A step of bonding the other surface of the layer (chip) and the electrode of the 2A layer prepared in the step (iv) above with a second bonding material layer interposed therebetween, or prepared in the step (iv) a step of bonding the second B layer through the third bonding material layer;
〈熱電変換材料層(チップ)の製造方法〉
 熱電変換材料層(チップ)の製造方法は、例えば、
(A)基板上に熱電半導体組成物の塗布膜を形成する工程;
(B)上記(A)の工程で得られた熱電半導体組成物の塗布膜を乾燥処理する工程;
(C)上記(B)で得られた乾燥後の熱電半導体組成物の塗布膜を基板上から剥離する工程;
(D)上記(C)で得られた熱電半導体組成物の塗布膜を加熱プレス処理(加熱加圧処理)する工程;
(E)上記(D)の工程で得られたプレス後の熱電半導体組成物の塗布膜を焼成(アニール)処理する工程、を含む。
<Method for producing thermoelectric conversion material layer (chip)>
The method for manufacturing the thermoelectric conversion material layer (chip) is, for example,
(A) forming a coating film of a thermoelectric semiconductor composition on a substrate;
(B) a step of drying the coating film of the thermoelectric semiconductor composition obtained in step (A);
(C) a step of peeling off the coating film of the thermoelectric semiconductor composition after drying obtained in (B) above from the substrate;
(D) A step of subjecting the coating film of the thermoelectric semiconductor composition obtained in (C) above to heat press treatment (heat and pressure treatment);
(E) A step of firing (annealing) the thermoelectric semiconductor composition coating film after pressing obtained in step (D) above.
 図3は、本発明の熱電変換材料層(チップ)の製造方法の一例を説明する説明図である。基板1上に熱電半導体組成物の塗布膜12を形成し、その後、それらを乾燥処理し、基板1から剥離し、加熱プレス(加熱加圧)処理し、焼成(アニール)処理することにより、熱電変換材料からなる熱電変換材料層(チップ)を自立膜として得ることができる。
 なお、上記熱電変換材料層(チップ)の製造方法では、熱電変換材料層(チップ)を自立膜として得る場合について説明しているが、上記(i)~(v)の工程では、熱電変換材料層(チップ)を自立膜とはせずに、基板上に形成された状態とし、(vi)の工程で基板から熱電変換材料層(チップ)を剥離して自立膜としている。
FIG. 3 is an explanatory diagram illustrating an example of the method for producing the thermoelectric conversion material layer (chip) of the present invention. A coating film 12 of a thermoelectric semiconductor composition is formed on the substrate 1, and then dried, peeled off from the substrate 1, heat-pressed (heated and pressurized), and fired (annealed) to obtain thermoelectricity. A thermoelectric conversion material layer (chip) made of a conversion material can be obtained as a self-supporting film.
In the method for producing the thermoelectric conversion material layer (chip), the case where the thermoelectric conversion material layer (chip) is obtained as a self-supporting film is described. The layer (chip) is formed on the substrate instead of being a self-supporting film, and the thermoelectric conversion material layer (chip) is separated from the substrate in step (vi) to form a self-supporting film.
((A)熱電半導体組成物の塗布膜の形成工程)
 熱電半導体組成物の塗布膜の形成工程は、基板上に熱電半導体組成物の塗布膜を形成する工程であり、例えば、図3においては、基板1上に熱電半導体組成物からなる塗布膜12、すなわち、P型の熱電半導体材料を含む熱電半導体組成物からなる塗布膜12a、N型の熱電半導体材料を含む熱電半導体組成物からなる塗布膜12bを塗布する工程である。塗布膜12a、塗布膜12bの配置については、特に制限されないが、熱電性能の観点から、π型又はインプレーン型の熱電変換モジュールに用いられる構成となるようにし、電極にて接続されるように形成されることが好ましい。
 ここで、π型の熱電変換モジュールを構成する場合、例えば、互いに離間するー対の電極(後述する図4の電極5)を基板(後述する図4の樹脂フィルム4)上に設け、―方の電極の上に、P型の熱電半導体材料を含む熱電半導体組成物からなる塗布膜12aの焼成体(P型チップ)を、他方の電極の上に、N型の熱電半導体材料を含む熱電半導体組成物からなる塗布膜12bの焼成体(N型チップ)を、同じく互いに離間して設け、両方のチップの上面を対向する基板上の電極に電気的に直列接続することで構成される。高い熱電性能を効率良く得る観点から、対向する基板の電極を介在したP型チップ及びN型チップの対を複数組、電気的に直列接続して用いる(後述する図4の(f)参照)ことが好ましい。
 同様に、インプレーン型の熱電変換モジュールを構成する場合、例えば、一の電極を基板上に設け、該電極の面上にP型チップと、同じく該電極の面上にN型チップとを、両チップの側面同士(例えば、基板に対し垂直方向の面同士)が互いに接触又は離間するように設け、基板の面内方向に電極を介在して電気的に直列接続することで構成される。高い熱電性能を効率良く得る観点から、該構成において、同数の複数のP型チップとN型チップとが交互に電極を介在し基板の面内方向に電気的に直列接続して用いることが好ましい。
((A) Step of forming coating film of thermoelectric semiconductor composition)
The step of forming a coating film of a thermoelectric semiconductor composition is a step of forming a coating film of a thermoelectric semiconductor composition on a substrate. For example, in FIG. That is, it is a step of applying a coating film 12a made of a thermoelectric semiconductor composition containing a P-type thermoelectric semiconductor material and a coating film 12b made of a thermoelectric semiconductor composition containing an N-type thermoelectric semiconductor material. The arrangement of the coating film 12a and the coating film 12b is not particularly limited, but from the viewpoint of thermoelectric performance, they should be configured to be used in a π-type or in-plane type thermoelectric conversion module, and should be connected by electrodes. preferably formed.
Here, when configuring a π-type thermoelectric conversion module, for example, a pair of electrodes (electrodes 5 in FIG. 4 described later) that are spaced apart from each other are provided on a substrate (resin film 4 in FIG. 4 described later). A fired body (P-type chip) of the coating film 12a made of a thermoelectric semiconductor composition containing a P-type thermoelectric semiconductor material is placed on the other electrode, and a thermoelectric semiconductor containing an N-type thermoelectric semiconductor material is placed on the other electrode. Firing bodies (N-type chips) of the coating film 12b made of the composition are similarly provided separately from each other, and the upper surfaces of both chips are electrically connected in series to electrodes on the facing substrate. From the viewpoint of efficiently obtaining high thermoelectric performance, a plurality of pairs of P-type chips and N-type chips with electrodes on opposing substrates interposed therebetween are electrically connected in series and used (see FIG. 4(f), which will be described later). is preferred.
Similarly, when configuring an in-plane type thermoelectric conversion module, for example, one electrode is provided on a substrate, a P-type chip is placed on the surface of the electrode, and an N-type chip is placed on the surface of the electrode. The two chips are provided so that the side surfaces of both chips (for example, the surfaces perpendicular to the substrate) are in contact with each other or separated from each other, and are electrically connected in series via electrodes in the in-plane direction of the substrate. From the viewpoint of efficiently obtaining high thermoelectric performance, it is preferable that the same number of P-type chips and N-type chips are alternately connected in series in the in-plane direction of the substrate with electrodes interposed. .
-基板-
 基板に使用される素材としては、特に制限はなく、ガラス、シリコン、セラミック、金属、プラスチック等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、焼成(アニール)処理を行う観点から、ガラス、シリコン、セラミック、金属が好ましく、熱電変換材料との密着性、材料コスト、熱処理後の寸法安定性の観点から、ガラス、シリコン、セラミックを用いることがより好ましい。
 基板の厚さは、プロセス及び寸法安定性の観点から、100~10000μmのものが使用できる。
-substrate-
Materials used for the substrate are not particularly limited, and include glass, silicon, ceramics, metals, plastics, and the like. These may be used individually by 1 type, and may use 2 or more types together.
Among these, glass, silicon, ceramic, and metal are preferable from the viewpoint of firing (annealing) treatment, and glass, silicon, and ceramic are preferable from the viewpoint of adhesion with thermoelectric conversion materials, material cost, and dimensional stability after heat treatment. is more preferred.
A substrate thickness of 100 to 10000 μm can be used from the viewpoint of process and dimensional stability.
-熱電半導体組成物の調製方法-
 熱電半導体組成物の調製方法は、特に制限はなく、超音波ホモジナイザー、スパイラルミキサー、プラネタリーミキサー、ディスパーサー、ハイブリッドミキサー等の公知の方法により、熱電半導体粒子、バインダー樹脂、及びイオン液体、必要に応じて無機イオン性化合物、その他の添加剤、さらに溶媒を加えて、混合分散させ、当該熱電半導体組成物を調製すればよい。
 なお、熱電半導体粒子、バインダー樹脂、イオン液体、無機イオン性化合物、及びその他の添加剤については、上述した通りである。
 溶媒としては、例えば、トルエン、酢酸エチル、メチルエチルケトン、アルコール、テトラヒドロフラン、N-メチルピロリドン、エチルセロソルブ、などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。熱電半導体組成物の固形分濃度としては、該組成物が塗工に適した粘度であればよく、特に制限はない。
-Method for preparing thermoelectric semiconductor composition-
The method for preparing the thermoelectric semiconductor composition is not particularly limited, and thermoelectric semiconductor particles, a binder resin, an ionic liquid, and optionally An inorganic ionic compound, other additives, and a solvent may be added and mixed and dispersed to prepare the thermoelectric semiconductor composition.
The thermoelectric semiconductor particles, binder resin, ionic liquid, inorganic ionic compound, and other additives are as described above.
Examples of solvents include toluene, ethyl acetate, methyl ethyl ketone, alcohol, tetrahydrofuran, N-methylpyrrolidone, ethyl cellosolve, and the like. These may be used individually by 1 type, and may use 2 or more types together. The solid content concentration of the thermoelectric semiconductor composition is not particularly limited as long as the composition has a viscosity suitable for coating.
 熱電半導体組成物からなる塗布膜(薄膜)は、基板上に、熱電半導体組成物を塗布し、乾燥することで形成することができる。 A coating film (thin film) made of a thermoelectric semiconductor composition can be formed by coating a thermoelectric semiconductor composition on a substrate and drying it.
 熱電半導体組成物を、基板上に塗布する方法としては、特に制限はなく、スクリーン印刷法、フレキソ印刷法、グラビア印刷法、スピンコート法、ディップコート法、ダイコート法、スプレーコート法、バーコート法、ドクターブレード法等の公知の方法が挙げられる。塗布膜をパターン状に形成する場合は、所望のパターンを有するスクリーン版を用いて簡便にパターン形成が可能なスクリーン印刷、ステンシル印刷、スロットダイコート等が好ましく用いられる。 The method of applying the thermoelectric semiconductor composition onto the substrate is not particularly limited, and may be screen printing, flexographic printing, gravure printing, spin coating, dip coating, die coating, spray coating, bar coating. , a known method such as a doctor blade method. When the coating film is formed in a pattern, screen printing, stencil printing, slot die coating, or the like, which enables easy pattern formation using a screen plate having a desired pattern, is preferably used.
((B)乾燥処理工程)
 乾燥処理工程は、基板上に熱電半導体組成物の塗布膜(薄膜)を形成後、該熱電半導体組成物の塗布膜を、所定の温度で基板を有した状態で乾燥する工程である。
 得られた塗布膜を乾燥することにより、塗布膜(薄膜)が形成されるが、乾燥方法としては、熱風乾燥法、熱ロール乾燥法、赤外線照射法等、従来公知の乾燥方法が採用できる。加熱温度は、通常、80~150℃であり、加熱時間は、加熱方法により異なるが、通常、数秒間~数十分間である。
 また、熱電半導体組成物の調製において溶媒を使用した場合、加熱温度は、使用した溶媒を乾燥できる温度範囲であれば、特に制限はない。
 熱電半導体組成物からなる塗布膜(薄膜)の厚さは、上述したとおりである。
((B) Drying process)
The drying treatment step is a step of forming a coating film (thin film) of a thermoelectric semiconductor composition on a substrate and then drying the coating film of the thermoelectric semiconductor composition at a predetermined temperature while holding the substrate.
A coating film (thin film) is formed by drying the obtained coating film, and as a drying method, a conventionally known drying method such as a hot air drying method, a hot roll drying method, an infrared irradiation method, or the like can be employed. The heating temperature is usually 80 to 150° C., and the heating time is usually several seconds to several tens of minutes, depending on the heating method.
Moreover, when a solvent is used in the preparation of the thermoelectric semiconductor composition, the heating temperature is not particularly limited as long as it is within a temperature range where the solvent used can be dried.
The thickness of the coating film (thin film) made of the thermoelectric semiconductor composition is as described above.
((C)塗布膜剥離工程)
 塗布膜剥離工程は、乾燥処理した後、基板から熱電半導体組成物からなる塗布膜(薄膜)を剥離する工程である。
 塗布膜の剥離方法としては、乾燥処理した後、基板から塗布膜(薄膜)を剥離可能な方法であれば、特に制限はなく、基板から複数の塗布膜(薄膜)を1枚1枚の個片の形態で剥離してもよいし、複数の塗布膜(薄膜)の形態で一括して剥離してもよい。
((C) Coating film stripping step)
The coating film stripping step is a step of stripping the coating film (thin film) made of the thermoelectric semiconductor composition from the substrate after the drying treatment.
The method for peeling off the coating film is not particularly limited as long as it is a method that allows the coating film (thin film) to be peeled off from the substrate after the drying process. It may be peeled off in the form of a piece, or may be peeled off collectively in the form of a plurality of coating films (thin films).
((D)加熱プレス(加熱加圧)処理工程)
 加熱プレス(加熱加圧)処理工程は、基板から熱電半導体組成物の塗布膜(薄膜)を剥離した後、加熱プレス(加熱加圧)処理する工程である。
 この加熱プレス(加熱加圧)処理は、例えば、油圧式プレス機等の装置を用いて、所定温度、大気雰囲気下において、塗布膜(薄膜)の上面全体に対して所定圧力で所定時間、加圧する処理である。
 加熱プレス(加熱加圧)処理の温度としては、特に制限はないが、通常100~300℃、好ましくは200~300℃である。
 加熱プレス(加熱加圧)処理の圧力としては、特に制限はないが、通常、20~200MPa、好ましくは50~150MPaである。
 加熱プレス(加熱加圧)処理の時間としては、特に制限はないが、通常、数秒間~数十分間、好ましくは数十秒間~十数分間である。
((D) Heat press (heat pressurization) treatment step)
The hot pressing (heating and pressurizing) treatment step is a step of performing a hot pressing (heating and pressurizing) treatment after peeling off the coating film (thin film) of the thermoelectric semiconductor composition from the substrate.
This heat pressing (heating and pressurizing) treatment is performed by applying a predetermined pressure to the entire upper surface of the coating film (thin film) for a predetermined time at a predetermined temperature in an atmospheric atmosphere using a device such as a hydraulic press. This is a process of applying pressure.
The temperature of the heat press (heat pressurization) treatment is not particularly limited, but is usually 100 to 300°C, preferably 200 to 300°C.
The pressure of the heat press (heat pressurization) treatment is not particularly limited, but is usually 20 to 200 MPa, preferably 50 to 150 MPa.
The duration of the heat pressing (heating and pressurizing) treatment is not particularly limited, but is usually several seconds to several tens of minutes, preferably several tens of seconds to ten and several minutes.
((E)焼成(アニール)処理工程)
 焼成(アニール)処理工程は、熱電半導体組成物の塗布膜(薄膜)を加熱プレス(加熱加圧)処理した後、該熱電半導体組成物の塗布膜を、所定の温度で熱処理する工程である。
 焼成(アニール)処理を行うことで、熱電性能を安定化させるとともに、塗布膜(薄膜)における熱電半導体組成物中の熱電半導体粒子を結晶成長させることができ、熱電変換材料層の熱電性能をさらに向上させることができる。
((E) Firing (annealing) treatment step)
The baking (annealing) treatment step is a step of heat-pressing (heating and pressurizing) a coating film (thin film) of a thermoelectric semiconductor composition, and then heat-treating the coating film of the thermoelectric semiconductor composition at a predetermined temperature.
By performing the baking (annealing) treatment, the thermoelectric performance can be stabilized, and the thermoelectric semiconductor particles in the thermoelectric semiconductor composition in the coating film (thin film) can be crystal-grown, and the thermoelectric performance of the thermoelectric conversion material layer can be further improved. can be improved.
 焼成(アニール)処理は、特に制限はないが、通常、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、還元ガス雰囲気下、または真空条件下で行われる。
 焼成(アニール)処理の温度は、熱電半導体組成物に用いる熱電半導体粒子、バインダー樹脂、イオン液体、無機イオン性化合物等に依存し、適宜調整するが、通常260~600℃、好ましくは280~550℃で行う。
 焼成(アニール)処理の時間は、特に制限はないが、通常、数分間~数十時間、好ましくは数分間~数時間である。
The firing (annealing) treatment is not particularly limited, but is usually performed under an atmosphere of an inert gas such as nitrogen or argon with a controlled gas flow rate, under a reducing gas atmosphere, or under vacuum conditions.
The temperature of the baking (annealing) treatment depends on the thermoelectric semiconductor particles, the binder resin, the ionic liquid, the inorganic ionic compound, etc. used in the thermoelectric semiconductor composition, and is adjusted appropriately. °C.
The firing (annealing) time is not particularly limited, but is usually several minutes to several tens of hours, preferably several minutes to several hours.
 上記熱電変換モジュールの製造方法によれば、簡便な方法で熱電変換材料層(チップ)を製造することができる。また、熱電半導体組成物の塗布膜(薄膜)と電極とが接合した形態で、焼成(アニール)処理されることがないため、熱電変換材料層(チップ)と電極間の電気抵抗値が増大してしまい、熱電性能が低下する等の問題が発生することがない。 According to the method for manufacturing the thermoelectric conversion module, the thermoelectric conversion material layer (chip) can be manufactured by a simple method. In addition, since the coating film (thin film) of the thermoelectric semiconductor composition and the electrode are not subjected to firing (annealing) treatment in the form of bonding, the electrical resistance value between the thermoelectric conversion material layer (chip) and the electrode increases. There is no problem such as deterioration of thermoelectric performance.
 上記熱電変換モジュールの製造方法では、上記(i)及び上記(ii)の各工程を経ることにより得られた熱電変換材料層(チップ)を用いて、熱電変換モジュールを製造する。ここで、上記(i)の工程は、熱電変換材料層(チップ)の製造方法における(A)熱電半導体組成物の塗布膜の形成工程に対応し、上記(ii)の工程は、熱電変換材料層(チップ)の製造方法における(E)焼成(アニール)処理工程の工程に対応する。また、用いる基板、熱電半導体組成物の塗布膜(薄膜)、さらにそれらを構成する好ましい材料、厚さ、そして形成方法等は、すべて前述した記載内容と同じである。 In the method for manufacturing the thermoelectric conversion module, the thermoelectric conversion module is manufactured using the thermoelectric conversion material layers (chips) obtained through the steps (i) and (ii) above. Here, the above step (i) corresponds to (A) the step of forming a coating film of the thermoelectric semiconductor composition in the method for producing the thermoelectric conversion material layer (chip), and the above step (ii) is the thermoelectric conversion material This corresponds to the (E) firing (annealing) step in the layer (chip) manufacturing method. In addition, the substrate to be used, the coating film (thin film) of the thermoelectric semiconductor composition, and the preferable material, thickness, formation method, and the like constituting them are all the same as those described above.
 上記熱電変換モジュールの製造方法では、熱電性能の観点から、上記(iv)の工程が、第2の樹脂フィルムと第2の電極とをこの順に有する第2Aの層を準備する工程であり、上記(vii)の工程が、上記(vi)の工程で剥離し得られた熱電変換材料のチップの他方の面と、上記(iv)の工程で準備した第2Aの層の第2の電極とを第2接合材料層を介在して接合する工程であることが好ましい。
 上記工程で得られる熱電変換モジュールは、前述したπ型の熱電変換モジュールに相当する。
In the method for manufacturing the thermoelectric conversion module, from the viewpoint of thermoelectric performance, the step (iv) is a step of preparing the second A layer having the second resin film and the second electrode in this order. In the step (vii), the other surface of the chip of the thermoelectric conversion material obtained by peeling in the step (vi) above and the second electrode of the 2A layer prepared in the step (iv) above. It is preferable that it is a step of bonding with the second bonding material layer interposed therebetween.
The thermoelectric conversion module obtained by the above steps corresponds to the π-type thermoelectric conversion module described above.
 また、上記熱電変換モジュールの製造方法の他の例としては、熱電性能の観点から、上記(iv)の工程が、第2の樹脂フィルムを有しかつ電極を有しない第2Bの層を準備する工程であり、上記(vii)の工程が、上記(vi)の工程で剥離し得られた熱電変換材料のチップの他方の面と、上記(iv)の工程で準備した第2Bの層とを第3接合材料層を介在して接合する工程であることが好ましい。
 上記工程で得られる熱電変換モジュールは、前述したインプレーン型の熱電変換モジュールに相当する。
Further, as another example of the method for manufacturing the thermoelectric conversion module, from the viewpoint of thermoelectric performance, the step (iv) prepares the second B layer having the second resin film and having no electrodes. step, wherein the step (vii) separates the other surface of the thermoelectric conversion material chip obtained by peeling in the step (vi) from the second B layer prepared in the step (iv). It is preferable that it is a step of bonding with the third bonding material layer interposed therebetween.
The thermoelectric conversion module obtained by the above steps corresponds to the in-plane type thermoelectric conversion module described above.
 以下、上記熱電変換モジュールの製造方法について、図を用いて説明する。
 図4は、本発明の熱電変換材料層を含む熱電変換モジュールを製造する方法の一例(π型熱電変換モジュールの製造方法)を説明する説明図であり、図4(a)は熱電変換材料層(チップ)の一方の面(上面)に後述するハンダ受理層を形成した後の断面図であり、図4(b)は樹脂フィルム上に電極及びハンダ材料層を形成した後の断面図であり、図4(c)は図4(b)で得られた樹脂フィルム上の電極をハンダ材料層及び図4(a)のハンダ受理層を介在し熱電変換材料層(チップ)の一方の面(上面)と貼り合わせした後の断面図であり、図4(c’)はハンダ材料層を加熱冷却により接合した後の断面図であり、図4(d)は基板から熱電変換材料層(チップ)の他方の面(下面)を剥離した後の断面図であり、図4(e)は図4(d)で得られた、樹脂フィルム上の熱電変換材料層(チップ)の他方の面(下面)にハンダ受理層を形成した後の断面図であり、図4(f)は図4(b)で得られた樹脂フィルム上の電極をハンダ材料層及び図4(e)のハンダ受理層を介在し熱電変換材料層(チップ)の他方の面(下面)と貼り合せ、接合した後の断面図である。
A method for manufacturing the thermoelectric conversion module will be described below with reference to the drawings.
FIG. 4 is an explanatory diagram illustrating an example of a method of manufacturing a thermoelectric conversion module including a thermoelectric conversion material layer of the present invention (method of manufacturing a π-type thermoelectric conversion module), FIG. FIG. 4B is a cross-sectional view after forming a solder-receiving layer, which will be described later, on one surface (upper surface) of the (chip), and FIG. 4B is a cross-sectional view after forming an electrode and a solder material layer on the resin film. , FIG. 4(c) shows the electrode on the resin film obtained in FIG. 4(c′) is a cross-sectional view after bonding the solder material layer by heating and cooling, and FIG. 4(d) is a cross-sectional view after bonding the solder material layer (upper surface) to the substrate. ) is a cross-sectional view after the other surface (lower surface) is peeled off, and FIG. 4(e) is the other surface (chip) of the thermoelectric conversion material layer (chip) on the resin film obtained in FIG. 4(f) is a cross-sectional view after forming a solder-receiving layer on the bottom surface), and FIG. 4(f) is a solder material layer and the solder-receiving layer of FIG. 2 is a cross-sectional view after lamination and bonding with the other surface (lower surface) of the thermoelectric conversion material layer (chip) with the .
<<電極形成工程>>
 電極形成工程は、上記熱電変換モジュールの製造方法の上記(iii)の第1の樹脂フィルムと第1の電極とをこの順に有する第1の層を準備する工程において、第1の樹脂フィルム上に第1の電極を形成する工程である。又は、上記(iv)の第2の樹脂フィルムと第2の電極とをこの順に有する第2Aの層を準備する工程において、第2の樹脂フィルム上に第2の電極を形成する工程である。図4(b)においては、例えば、樹脂フィルム4上に金属層を成膜して、それらを所定のパターンに加工し、電極5を形成する工程である。
<<Electrode formation process>>
In the step of forming an electrode, in the step of preparing the first layer having the first resin film and the first electrode in this order of (iii) in the method for manufacturing the thermoelectric conversion module, This is the step of forming the first electrode. Alternatively, in the step (iv) of preparing the layer 2A having the second resin film and the second electrode in this order, the step of forming the second electrode on the second resin film. In FIG. 4B, for example, a metal layer is formed on the resin film 4 and processed into a predetermined pattern to form the electrode 5 .
(樹脂フィルム)
 第1の樹脂フィルム及び第2の樹脂フィルムは、同じ素材の樹脂フィルムであっても異なった素材の樹脂フィルムであってもよい。屈曲性に優れ、熱電半導体組成物からなる塗布膜(薄膜)を焼成(アニール)処理した場合でも、樹脂フィルムが熱変形することなく、熱電素子の性能を維持することができ、耐熱性及び寸法安定性が高いという点から、ポリイミドフィルム、ポリアミドフィルム、ポリエーテルイミドフィルム、ポリアラミドフィルム、ポリアミドイミドフィルムが好ましく、さらに、汎用性が高いという点から、ポリイミドフィルムが特に好ましい。
(resin film)
The first resin film and the second resin film may be resin films of the same material or resin films of different materials. It has excellent flexibility, and even when a coating film (thin film) made of a thermoelectric semiconductor composition is baked (annealed), the performance of the thermoelectric element can be maintained without thermal deformation of the resin film. A polyimide film, a polyamide film, a polyetherimide film, a polyaramid film, and a polyamideimide film are preferable from the viewpoint of high stability, and a polyimide film is particularly preferable from the viewpoint of high versatility.
 第1の樹脂フィルム及び第2の樹脂フィルムの厚さは、屈曲性、耐熱性及び寸法安定性の観点から、それぞれ独立に、好ましくは1~1000μm、より好ましくは5~500μm、特に好ましくは10~100μmである。
 また、上記第1の樹脂フィルム及び第2の樹脂フィルムにおける、熱重量分析(TG)で測定される5%質量減少温度は、好ましくは300℃以上、より好ましくは400℃以上である。JIS K7133(1999)に準拠して200℃で測定した加熱寸法変化率は、好ましくは0.5%以下、より好ましくは0.3%以下である。JIS K7197(2012)に準拠して測定した平面方向の線膨脹係数は、好ましくは0.1~50ppm・℃-1、より好ましくは0.1~30ppm・℃-1である。
The thicknesses of the first resin film and the second resin film are each independently preferably 1 to 1000 μm, more preferably 5 to 500 μm, particularly preferably 10 μm, from the viewpoint of flexibility, heat resistance and dimensional stability. ~100 μm.
The 5% mass loss temperature measured by thermogravimetric analysis (TG) of the first resin film and the second resin film is preferably 300° C. or higher, more preferably 400° C. or higher. The heat dimensional change rate measured at 200° C. in accordance with JIS K7133 (1999) is preferably 0.5% or less, more preferably 0.3% or less. The coefficient of linear expansion in the plane direction measured according to JIS K7197 (2012) is preferably 0.1 to 50 ppm·°C -1 , more preferably 0.1 to 30 ppm·°C -1 .
(電極)
 熱電変換モジュールの第1の電極及び第2の電極の金属材料としては、それぞれ独立に、銅、金、ニッケル、アルミニウム、ロジウム、白金、クロム、パラジウム、ステンレス鋼、モリブデン又はこれらのいずれかの金属を含む合金等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 電極(金属材料)の層の厚さは、好ましくは10nm~200μm、より好ましくは30nm~150μm、特に好ましくは50nm~120μmである。電極(金属材料)の層の厚さが、上記範囲内であれば、電気伝導率が高く低抵抗となり、電極として十分な強度が得られる。
(electrode)
As metal materials for the first electrode and the second electrode of the thermoelectric conversion module, copper, gold, nickel, aluminum, rhodium, platinum, chromium, palladium, stainless steel, molybdenum, or any of these metals are independently used. and alloys containing. These may be used individually by 1 type, and may use 2 or more types together.
The thickness of the electrode (metal material) layer is preferably 10 nm to 200 μm, more preferably 30 nm to 150 μm, particularly preferably 50 nm to 120 μm. If the thickness of the electrode (metal material) layer is within the above range, the electrical conductivity is high, the resistance is low, and sufficient strength as an electrode is obtained.
 電極の形成は、前述した金属材料を用いて行う。
 電極を形成する方法としては、樹脂フィルム上にパターンが形成されていない電極を設けた後、フォトリソグラフィー法を主体とした公知の物理的処理もしくは化学的処理、又はそれらを併用する等により、所定のパターン形状に加工する方法、または、スクリーン印刷法、インクジェット法等により直接電極のパターンを形成する方法等が挙げられる。
 パターンが形成されていない電極の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理気相成長法)、もしくは熱CVD、原子層蒸着(ALD)等のCVD(化学気相成長法)等のドライプロセス;ディップコーティング法、スピンコーティング法、スプレーコーティング法、グラビアコーティング法、ダイコーティング法、ドクターブレード法等の各種コーティングや電着法等のウェットプロセス;銀塩法;電解めっき法;無電解めっき法;金属箔の積層;等が挙げられ、電極の材料に応じて適宜選択される。
 電極には、熱電性能を維持する観点から、高い導電性、高い熱伝導性が求められるため、めっき法や真空成膜法で成膜した電極を用いることが好ましい。高い導電性、高い熱伝導性を容易に実現できることから、真空蒸着法、スパッタリング法等の真空成膜法;電解めっき法;無電解めっき法;等が好ましい。形成パターンの寸法、寸法精度の要求にもよるが、メタルマスク等のハードマスクを介在し、容易にパターンを形成することもできる。
The electrodes are formed using the metal material described above.
As a method for forming the electrodes, after providing an electrode having no pattern formed on a resin film, a known physical treatment or chemical treatment mainly based on a photolithography method, or a combination thereof, etc., is performed to obtain a predetermined pattern. or a method of directly forming an electrode pattern by a screen printing method, an inkjet method, or the like.
Methods for forming electrodes without a pattern include PVD (physical vapor deposition) such as vacuum deposition, sputtering, and ion plating, or CVD (chemical vapor deposition) such as thermal CVD and atomic layer deposition (ALD). dry processes such as vapor phase epitaxy); various coatings such as dip coating, spin coating, spray coating, gravure coating, die coating, doctor blade, and wet processes such as electrodeposition; silver salt method; Electroplating; electroless plating; lamination of metal foil;
From the viewpoint of maintaining the thermoelectric performance, the electrodes are required to have high electrical conductivity and high thermal conductivity. Therefore, it is preferable to use electrodes formed by a plating method or a vacuum film forming method. A vacuum deposition method such as a vacuum deposition method and a sputtering method; an electroplating method; an electroless plating method; Depending on the size of the formed pattern and the required dimensional accuracy, the pattern can be easily formed by interposing a hard mask such as a metal mask.
<<第1の電極接合工程>>
 第1の電極接合工程は、熱電変換モジュールの製造方法の上記(v)の工程であり、上記(ii)の工程で得られた熱電変換材料層(チップ)の一方の面と、上記(iii)の工程で準備した第1の層の第1の電極とを第1接合材料層を介在して接合する工程である。
 第1の電極接合工程は、例えば、図4の(c)においては、樹脂フィルム4の電極5上のハンダ材料層6と、P型熱電変換材料からなる熱電変換材料層(P型チップ)2a、N型熱電変換材料からなる熱電変換材料層(N型チップ)2bのそれぞれの一方の面に形成したハンダ受理層3とを介在し、P型チップ2a及びN型チップ2bを電極5と貼り合わせ、ハンダ材料層6を所定の温度に加熱し所定の時間保持後、室温に戻すことにより、P型チップ2a及びN型チップ2bを、電極5と接合する工程である。加熱温度、保持時間等については、後述するとおりである。なお、図4の(c’)は、ハンダ材料層6を室温に戻した後の態様である(ハンダ材料層6’は加熱冷却により固化し厚さが減少)。
<<First electrode bonding step>>
The first electrode bonding step is the above step (v) of the method for manufacturing a thermoelectric conversion module, and one surface of the thermoelectric conversion material layer (chip) obtained in the above step (ii) and the above (iii) ) is a step of bonding the first electrode of the first layer prepared in the step of ) with the first bonding material layer interposed therebetween.
In the first electrode bonding step, for example, in FIG. 4(c), a solder material layer 6 on the electrode 5 of the resin film 4 and a thermoelectric conversion material layer (P-type chip) 2a made of a P-type thermoelectric conversion material. , a solder receiving layer 3 formed on one surface of each thermoelectric conversion material layer (N-type chip) 2b made of an N-type thermoelectric conversion material. The P-type chip 2a and the N-type chip 2b are bonded to the electrode 5 by heating the solder material layer 6 to a predetermined temperature, holding it for a predetermined time, and then returning it to room temperature. The heating temperature, holding time, etc. are as described later. FIG. 4(c') shows the state after the solder material layer 6 is returned to room temperature (the solder material layer 6' is solidified by heating and cooling and the thickness is reduced).
(第1接合材料層形成工程)
 第1の電極接合工程には、第1接合材料層形成工程が含まれる。
 第1接合材料層形成工程は、熱電変換モジュールの製造方法の上記(v)の工程において、上記(iii)の工程で得られた第1の電極上に第1接合材料層を形成する工程である。
 第1接合材料層形成工程は、例えば、図4(b)においては、電極5上にハンダ材料層6を形成する工程である。
 第1接合材料層を構成する接合材料としては、ハンダ材料、導電性接着剤、焼結接合剤等が挙げられ、それぞれ、この順に、ハンダ材料層、導電性接着剤層、焼結接合剤層として、電極上に形成されることが好ましい。なお、本明細書において導電性とは、電気抵抗率が1×10Ω・m未満のことを指す。
(First bonding material layer forming step)
The first electrode bonding step includes a first bonding material layer forming step.
The first bonding material layer forming step is a step of forming the first bonding material layer on the first electrode obtained in the step (iii) in the step (v) of the method for manufacturing a thermoelectric conversion module. be.
The first bonding material layer forming step is, for example, a step of forming a solder material layer 6 on the electrode 5 in FIG. 4B.
The bonding material constituting the first bonding material layer includes a solder material, a conductive adhesive, a sintered bonding agent, etc., and the solder material layer, the conductive adhesive layer, the sintered bonding agent layer, respectively is preferably formed on the electrode. In this specification, the term “conductivity” refers to an electrical resistivity of less than 1×10 6 Ω·m.
 ハンダ材料層を構成するハンダ材料としては、導電性、熱伝導性とを考慮し、適宜選択すればよく、例えば、Sn、Sn/Pb合金、Sn/Ag合金、Sn/Cu合金、Sn/Sb合金、Sn/In合金、Sn/Zn合金、Sn/In/Bi合金、Sn/In/Bi/Zn合金、Sn/Bi/Pb/Cd合金、Sn/Bi/Pb合金、Sn/Bi/Cd合金、Bi/Pb合金、Sn/Bi/Zn合金、Sn/Bi合金、Sn/Bi/Pb合金、Sn/Pb/Cd合金、Sn/Cd合金等の既知の材料が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、鉛フリー及び/またはカドミウムフリー、融点、導電性、熱伝導性の観点から、43Sn/57Bi合金、42Sn/58Bi合金、40Sn/56Bi/4Zn合金、48Sn/52In合金、39.8Sn/52In/7Bi/1.2Zn合金のような合金が好ましい。
 ハンダ材料の市販品としては、以下のものが挙げられる。例えば、42Sn/58Bi合金(タムラ製作所社製、製品名:SAM10-401-27)、41Sn/58Bi/Ag合金(ニホンハンダ社製、製品名:PF141-LT7HO)、96.5Sn3Ag0.5Cu合金(ニホンハンダ社製、製品名:PF305-207BTO)等が使用できる。
The solder material constituting the solder material layer may be appropriately selected in consideration of electrical conductivity and thermal conductivity. Examples include Sn, Sn/Pb alloy, Sn/Ag alloy, Sn/Cu alloy, Sn/Sb. alloy, Sn/In alloy, Sn/Zn alloy, Sn/In/Bi alloy, Sn/In/Bi/Zn alloy, Sn/Bi/Pb/Cd alloy, Sn/Bi/Pb alloy, Sn/Bi/Cd alloy , Bi/Pb alloy, Sn/Bi/Zn alloy, Sn/Bi alloy, Sn/Bi/Pb alloy, Sn/Pb/Cd alloy, Sn/Cd alloy. These may be used individually by 1 type, and may use 2 or more types together.
Among these, 43Sn/57Bi alloy, 42Sn/58Bi alloy, 40Sn/56Bi/4Zn alloy, 48Sn/52In alloy, 39.8Sn/ Alloys such as 52In/7Bi/1.2Zn alloys are preferred.
Commercially available solder materials include the following. For example, 42Sn/58Bi alloy (manufactured by Tamura Corporation, product name: SAM10-401-27), 41Sn/58Bi/Ag alloy (manufactured by Nihon Handa Co., Ltd., product name: PF141-LT7HO), 96.5Sn3Ag0.5Cu alloy (Nihon Handa Co., Ltd. product name: PF305-207BTO), etc. can be used.
 ハンダ材料層の厚さ(加熱冷却後)は、好ましくは10~200μmであり、より好ましくは20~150μm、さらに好ましくは30~130μm、特に好ましくは40~120μmである。ハンダ材料層の厚さがこの範囲にあると、熱電変換材料のチップ及び電極との密着性が得やすくなる。 The thickness of the solder material layer (after heating and cooling) is preferably 10-200 μm, more preferably 20-150 μm, still more preferably 30-130 μm, and particularly preferably 40-120 μm. When the thickness of the solder material layer is within this range, it becomes easier to obtain adhesion between the thermoelectric conversion material chip and the electrode.
 ハンダ材料を基板上に塗布する方法としては、ステンシル印刷、スクリーン印刷、ディスペンシング法等の公知の方法が挙げられる。加熱条件は用いるハンダ材料、樹脂フィルム等により異なるが、通常、150~280℃で3~20分間行う。 Known methods such as stencil printing, screen printing, and dispensing can be used as methods for applying the solder material onto the substrate. The heating conditions vary depending on the solder material, resin film, etc. used, but are usually carried out at 150 to 280° C. for 3 to 20 minutes.
 また、ハンダ材料層を用いる場合は、熱電変換材料のチップとの密着性向上の観点から後述するハンダ受理層を介在して接合することが好ましい。 In addition, when using a solder material layer, it is preferable to interpose a solder-receiving layer, which will be described later, in order to improve the adhesion of the thermoelectric conversion material to the chip.
 導電性接着剤層を構成する導電性接着剤としては、特に制限はなく、例えば、導電ペースト、バインダー等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 導電ペーストとしては、例えば、銅ペースト、銀ペースト、ニッケルペースト等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 バインダーとしては、例えば、エポキシ樹脂、アクリル樹脂、ウレタン樹脂等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 導電性接着剤を樹脂フィルム上に塗布する方法としては、例えば、スクリーン印刷、ディスペンシング法等の公知の方法が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
The conductive adhesive constituting the conductive adhesive layer is not particularly limited, and examples thereof include conductive pastes and binders. These may be used individually by 1 type, and may use 2 or more types together.
Examples of the conductive paste include copper paste, silver paste, nickel paste, and the like. These may be used individually by 1 type, and may use 2 or more types together.
Examples of binders include epoxy resins, acrylic resins, and urethane resins. These may be used individually by 1 type, and may use 2 or more types together.
Examples of the method of applying the conductive adhesive onto the resin film include known methods such as screen printing and dispensing. These may be used individually by 1 type, and may use 2 or more types together.
 導電性接着剤層の厚さは、好ましくは10~200μm、より好ましくは20~150μm、さらに好ましくは30~130μm、特に好ましくは40~120μmである。 The thickness of the conductive adhesive layer is preferably 10-200 μm, more preferably 20-150 μm, still more preferably 30-130 μm, and particularly preferably 40-120 μm.
 焼結接合剤層を構成する焼結接合剤としては、特に制限はなく、例えば、シンタリングペースト等が挙げられる。
 シンタリングペーストは、例えば、ミクロンサイズの金属粉とナノサイズの金属粒子等からなり、導電性接着剤と異なり、直接金属をシンタリングで接合するものであり、エポキシ樹脂、アクリル樹脂、ウレタン樹脂等の樹脂を含んでいてもよい。
 シンタリングペーストとしては、銀シンタリングペースト、銅シンタリングペースト等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 焼結接合剤層を樹脂フィルム上に塗布する方法としては、スクリーン印刷、ステンシル印刷、ディスペンシング法等の公知の方法が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 焼結条件は、用いる金属材料等により異なるが、通常、100~300℃で、30~120分間である。
 焼結接合剤の市販品としては、例えば、銀シンタリングペーストとして、シンタリングペースト(京セラ社製、製品名:CT2700R7S)、焼結型金属接合材(ニホンハンダ社製、製品名:MAX102)等が使用できる。
The sintering bonding agent forming the sintering bonding agent layer is not particularly limited, and examples thereof include sintering paste.
Sintering paste consists of, for example, micron-sized metal powder and nano-sized metal particles. Unlike conductive adhesives, sintering paste directly joins metals by sintering. Epoxy resin, acrylic resin, urethane resin, etc. of resin may be included.
Examples of the sintering paste include silver sintering paste and copper sintering paste. These may be used individually by 1 type, and may use 2 or more types together.
Methods for applying the sintered bonding agent layer onto the resin film include known methods such as screen printing, stencil printing, and dispensing. These may be used individually by 1 type, and may use 2 or more types together.
The sintering conditions are usually 100 to 300° C. for 30 to 120 minutes, although they differ depending on the metal material used.
Examples of commercially available sintering bonding agents include silver sintering pastes such as sintering paste (manufactured by Kyocera Corporation, product name: CT2700R7S), sintering type metal bonding materials (manufactured by Nihon Handa Co., Ltd., product name: MAX102), and the like. Available.
 焼結接合剤層の厚さは、好ましくは10~200μm、より好ましくは20~150μm、さらに好ましくは30~130μm、特に好ましくは40~120μmである。 The thickness of the sintered adhesive layer is preferably 10-200 μm, more preferably 20-150 μm, still more preferably 30-130 μm, and particularly preferably 40-120 μm.
<<ハンダ受理層形成工程>>
 熱電変換モジュールの製造方法において、例えば、π型の熱電変換モジュール又はインプレーン型の熱電変換モジュールを製造する場合、さらに、上記(ii)の工程で得られた焼成(アニール)処理後の熱電変換材料のチップの一方の面にハンダ受理層を形成する工程を含むことが好ましい。
<<Solder Receiving Layer Forming Process>>
In the method for manufacturing a thermoelectric conversion module, for example, when manufacturing a π-type thermoelectric conversion module or an in-plane type thermoelectric conversion module, the thermoelectric conversion after the firing (annealing) treatment obtained in the above step (ii) Preferably, the step of forming a solder receptive layer on one side of the chip of material is included.
 ハンダ受理層形成工程は、熱電変換材料からなる熱電変換材料層(チップ)上に、ハンダ受理層を形成する工程であり、例えば、図4の(a)においては、P型熱電変換材料からなる熱電変換材料層(P型チップ)2a及びN型熱電変換材料からなる熱電変換材料層(N型チップ)2bの一方の面にハンダ受理層3を形成する工程である。 The solder-receiving layer forming step is a step of forming a solder-receiving layer on a thermoelectric conversion material layer (chip) made of a thermoelectric conversion material. In this step, a solder receiving layer 3 is formed on one surface of a thermoelectric conversion material layer (P-type chip) 2a and a thermoelectric conversion material layer (N-type chip) 2b made of an N-type thermoelectric conversion material.
 ハンダ受理層は、金属材料を含むことが好ましい。金属材料は、金、銀、アルミニウム、ロジウム、白金、クロム、パラジウム、錫、及びこれらのいずれかの金属材料を含む合金から選ばれる少なくとも1種であることが好ましい。これらの中でも、金、銀、アルミニウム、又は、錫及び金の2層構成が好ましく、材料コスト、高熱伝導性、接合安定性の観点から、銀、アルミニウムがより好ましい。
 さらにハンダ受理層には、金属材料に加えて、溶媒や樹脂成分を含むペースト材を用いて形成してもよい。ペースト材を用いる場合は、後述するように焼成等により溶媒や樹脂成分を除去することが好ましい。ペースト材としては、銀ペースト、アルミペーストが好ましい。
Preferably, the solder-receiving layer comprises a metallic material. The metal material is preferably at least one selected from gold, silver, aluminum, rhodium, platinum, chromium, palladium, tin, and alloys containing any of these metal materials. Among these, a two-layer structure of gold, silver, aluminum, or tin and gold is preferable, and from the viewpoint of material cost, high thermal conductivity, and bonding stability, silver and aluminum are more preferable.
Furthermore, the solder receiving layer may be formed using a paste material containing a solvent or a resin component in addition to the metal material. When a paste material is used, it is preferable to remove the solvent and resin components by firing or the like as described later. Silver paste and aluminum paste are preferable as the paste material.
 ハンダ受理層の厚さは、好ましくは10nm~50μm、より好ましくは50nm~16μm、さらに好ましくは200nm~4μm、特に好ましくは500nm~3μmである。ハンダ受理層の厚さがこの範囲にあると、熱電変換材料からなる熱電変換材料層(チップ)の面との密着性、及び電極側のハンダ材料層の面との密着性が優れ、信頼性の高い接合が得られる。また、導電性はもとより、熱伝導性が高く維持できるため、結果的に熱電変換モジュールとしての熱電性能が低下することはなく、維持される。
 ハンダ受理層は、金属材料をそのまま成膜し単層で用いてもよいし、2以上の金属材料を積層し多層で用いてもよい。また、金属材料を溶媒、樹脂等に含有させた組成物として成膜してもよい。但し、この場合、高い導電性、高い熱伝導性を維持する(熱電性能を維持する)観点から、ハンダ受理層の最終形態として、溶媒等を含め樹脂成分は焼成等により除去しておくことが好ましい。
The thickness of the solder-receiving layer is preferably 10 nm to 50 μm, more preferably 50 nm to 16 μm, even more preferably 200 nm to 4 μm, particularly preferably 500 nm to 3 μm. When the thickness of the solder receiving layer is within this range, the adhesion to the surface of the thermoelectric conversion material layer (chip) made of the thermoelectric conversion material and the adhesion to the surface of the solder material layer on the electrode side are excellent, resulting in high reliability. high bonding is obtained. In addition, since high thermal conductivity can be maintained as well as electrical conductivity, the thermoelectric performance of the thermoelectric conversion module is maintained without deteriorating.
The solder-receiving layer may be formed by forming a metal material as it is and used as a single layer, or may be used as a multilayer by laminating two or more metal materials. Alternatively, the film may be formed as a composition containing a metal material in a solvent, resin, or the like. However, in this case, from the viewpoint of maintaining high electrical conductivity and high thermal conductivity (maintaining thermoelectric performance), it is recommended to remove the resin components, including the solvent, etc., by baking, etc., as the final form of the solder-receiving layer. preferable.
 ハンダ受理層の形成は、前述した金属材料を用いて行うことが好ましい。
 ハンダ受理層を形成する方法としては、熱電変換材料層(チップ)上にパターンが形成されていないハンダ受理層を設けた後、フォトリソグラフィー法を主体とした公知の物理的処理もしくは化学的処理、又はそれらを併用する等により、所定のパターン形状に加工する方法、または、スクリーン印刷法、ステンシル印刷法、インクジェット法等により直接ハンダ受理層のパターンを形成する方法等が挙げられる。
 パターンが形成されていないハンダ受理層の形成方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD(物理気相成長法);熱CVD、原子層蒸着(ALD)等のCVD(化学気相成長法)等の真空成膜法;ディップコーティング法、スピンコーティング法、スプレーコーティング法、グラビアコーティング法、ダイコーティング法、ドクターブレード法等の各種コーティング;電着法等のウェットプロセス;銀塩法;電解めっき法;無電解めっき法;金属箔の積層;等が挙げられ、ハンダ受理層の材料に応じて適宜選択される。
 ハンダ受理層には、熱電性能を維持する観点から、高い導電性、高い熱伝導性が求められるため、スクリーン印刷法、ステンシル印刷法、電解めっき法、無電解めっき法、又は真空成膜法で成膜したハンダ受理層を用いることが好ましい。
Formation of the solder-receiving layer is preferably carried out using the aforementioned metal material.
As a method for forming the solder-receiving layer, after providing a solder-receiving layer having no pattern formed on the thermoelectric conversion material layer (chip), a known physical treatment or chemical treatment mainly based on a photolithographic method, Alternatively, a method of forming a predetermined pattern shape by using them in combination, or a method of directly forming a pattern of the solder receiving layer by a screen printing method, a stencil printing method, an inkjet method, or the like can be mentioned.
Methods for forming a solder-receiving layer having no pattern include PVD (physical vapor deposition) such as vacuum deposition, sputtering, and ion plating; CVD such as thermal CVD and atomic layer deposition (ALD); chemical vapor deposition method); various coating methods such as dip coating method, spin coating method, spray coating method, gravure coating method, die coating method, doctor blade method; wet process such as electrodeposition method; salt method; electrolytic plating method; electroless plating method; metal foil lamination;
From the viewpoint of maintaining thermoelectric performance, the solder-receiving layer is required to have high electrical conductivity and high thermal conductivity. It is preferred to use a deposited solder-receiving layer.
<<チップ一括剥離工程>>
 チップ一括剥離工程は、熱電変換モジュールの製造方法の上記(vi)の工程であり、上記(v)の工程後の熱電変換材料層(チップ)の他方の面を基板から剥離する工程である。
 チップ一括剥離工程は、例えば、図4の(d)においては、基板1からP型熱電変換材料からなる熱電変換材料層(P型チップ)2a及びN型熱電変換材料からなる熱電変換材料層(N型チップ)2bの他方の面を一括して剥離する工程である。
 熱電変換材料層の剥離方法としては、基板から熱電変換材料層(チップ)をすべて一括して剥離可能な方法であれば、特に制限はない。
<<Chip Batch Peeling Process>>
The chip batch peeling step is the step (vi) of the method for manufacturing a thermoelectric conversion module, and is a step of peeling the other surface of the thermoelectric conversion material layer (chip) after the step (v) from the substrate.
For example, in (d) of FIG. 4, the chip batch peeling process is performed by separating a thermoelectric conversion material layer (P-type chip) 2a made of a P-type thermoelectric conversion material from the substrate 1 and a thermoelectric conversion material layer (P-type chip) 2a made of an N-type thermoelectric conversion material ( In this step, the other surface of the N-type chip 2b is collectively peeled off.
The method for peeling off the thermoelectric conversion material layer is not particularly limited as long as it is a method capable of removing all the thermoelectric conversion material layers (chips) from the substrate at once.
<<第2の電極接合工程>>
 第2の電極接合工程は、熱電変換モジュールの製造方法の上記(vii)の工程に含まれるものであり、上記(vi)の工程で剥離し得られた熱電変換材料層(チップ)の他方の面と、(iv)の工程で準備した第2Aの層の第2の電極とを第2接合材料層を介在して接合する工程である。
 第2の電極接合工程は、例えば、図4の(f)において、P型熱電変換材料からなる熱電変換材料層(P型チップ)2a及びN型熱電変換材料からなる熱電変換材料層(N型チップ)2bの他方の面と、ハンダ受理層3及びハンダ材料層6を介在し、樹脂フィルム4上の電極5とを接合する工程である。
 第2Aの層の、第2の電極及び第2の樹脂フィルムのいずれの材料も、第1の電極接合工程に記載したものと同一のものが使用でき、接合方法も同一である。
 電極との接合は、前述したハンダ材料層、導電性接着剤層、又は焼結接合剤層を介在して接合することが好ましい。
<<Second electrode bonding step>>
The second electrode bonding step is included in the above step (vii) of the method for manufacturing a thermoelectric conversion module, and the other side of the thermoelectric conversion material layer (chip) obtained by peeling in the above step (vi) This is a step of bonding the surface and the second electrode of the 2A layer prepared in the step (iv) with the second bonding material layer interposed therebetween.
In the second electrode bonding step, for example, in (f) of FIG. In this step, the other surface of the chip 2b is joined to the electrodes 5 on the resin film 4 with the solder receiving layer 3 and the solder material layer 6 interposed.
The materials for both the second electrode and the second resin film of the 2A layer can be the same as those described in the first electrode bonding step, and the bonding method is also the same.
It is preferable that the bonding with the electrode is performed through the solder material layer, the conductive adhesive layer, or the sintered bonding agent layer.
(第2接合材料層形成工程)
 第2の電極接合工程には、第2接合材料層形成工程が含まれる。
 第2接合材料層形成工程は、熱電変換モジュールの製造方法の上記(vii)の工程において、上記(iv)の工程で準備した第2Aの層の第2の電極上に第2接合材料層を形成する工程である。
 第2接合材料層は、前述した第1接合材料層と同様の材料を用いることができ、形成方法、厚さ等すべて同様である。
(Second bonding material layer forming step)
The second electrode bonding step includes a second bonding material layer forming step.
The second bonding material layer forming step includes forming a second bonding material layer on the second electrode of the 2A layer prepared in the step (iv) in the step (vii) of the method for manufacturing a thermoelectric conversion module. It is a process of forming.
The second bonding material layer can use the same material as the first bonding material layer described above, and the formation method, thickness, etc. are all the same.
 また、例えば、π型の熱電変換モジュールを製造する際に、ハンダ材料層を用いる場合は、さらに、上記(vi)の工程で剥離し得られた熱電変換材料層(チップ)の他方の面にハンダ受理層を形成する工程を含むことが好ましい。
 例えば、図4の(e)においては、P型熱電変換材料からなる熱電変換材料層(P型チップ)2a及びN型熱電変換材料からなる熱電変換材料層(N型チップ)2bの他方の面にハンダ受理層3を形成する工程である。
Further, for example, when a solder material layer is used when manufacturing a π-type thermoelectric conversion module, a Preferably, the step of forming a solder receptive layer is included.
For example, in (e) of FIG. 4, the other surface of the thermoelectric conversion material layer (P-type chip) 2a made of the P-type thermoelectric conversion material and the thermoelectric conversion material layer (N-type chip) 2b made of the N-type thermoelectric conversion material This is the step of forming the solder receiving layer 3 on the substrate.
 なお、熱電変換モジュールにおける一対の樹脂フィルム上の電極に用いるそれぞれの接合材料層の組み合わせ(一対のいずれかの樹脂フィルム上に電極を有さない場合を除く)は、特に制限されないが、熱電変換モジュールの機械的な変形を防止し、熱電性能の低下を抑制する観点から、ハンダ材料層同士、導電性接着剤層同士、又は焼結接合剤層同士の組み合わせとすることが好ましい。 The combination of the bonding material layers used for the electrodes on the pair of resin films in the thermoelectric conversion module (except for the case where there is no electrode on either of the pair of resin films) is not particularly limited, but the thermoelectric conversion From the viewpoint of preventing mechanical deformation of the module and suppressing deterioration in thermoelectric performance, a combination of solder material layers, conductive adhesive layers, or sintered adhesive layers is preferable.
<<樹脂フィルム接合工程>>
 樹脂フィルム接合工程は、熱電変換モジュールの製造方法の上記(vii)の工程に含まれるものであり、上記(vi)の工程で剥離し得られた熱電変換材料層(チップ)の他方の面と、上記(iv)の工程で準備した第2の樹脂フィルムを有しかつ電極を有しない第2Bの層とを第3接合材料層を介在して接合する工程である。第2の樹脂フィルムは、前述したとおりである。第2の樹脂フィルムを有しかつ電極を有しない第2Bの層との接合は、第3接合材料層を用いる。
<<Resin film bonding process>>
The resin film bonding step is included in the above step (vii) of the method for manufacturing a thermoelectric conversion module, and the other surface of the thermoelectric conversion material layer (chip) obtained by peeling in the above step (vi). 2) is a step of bonding the 2B layer having the second resin film and having no electrodes prepared in the step (iv) with the third bonding material layer interposed therebetween. The second resin film is as described above. A third bonding material layer is used for bonding with the 2B layer having the second resin film and no electrode.
 第3接合材料層を構成する接合材料としては、好ましくは樹脂材料であり、樹脂材料層として、樹脂フィルム上に形成される。
 樹脂材料としては、ポリオレフィン系樹脂、エポキシ系樹脂、又はアクリル系樹脂を含むものであることが好ましい。さらに、樹脂材料は粘接着性や低水蒸気透過率性を有していることが好ましい。本明細書において、粘接着性を有するとは、樹脂材料が、粘着性、接着性、及び、貼り付ける初期において感圧により接着可能な感圧性の粘着性を有することを意味する。
 樹脂材料層の形成は、公知の方法で行うことができる。
The bonding material forming the third bonding material layer is preferably a resin material, and is formed on the resin film as the resin material layer.
The resin material preferably contains a polyolefin resin, an epoxy resin, or an acrylic resin. Furthermore, it is preferable that the resin material has adhesiveness and low water vapor permeability. In the present specification, having tackiness means that the resin material has tackiness, adhesiveness, and pressure-sensitive tackiness that enables adhesion by pressure-sensitivity at the initial stage of application.
Formation of the resin material layer can be performed by a known method.
 樹脂材料層の厚さは、好ましくは1~100μm、より好ましくは3~50μm、特に好ましくは5~30μmである。 The thickness of the resin material layer is preferably 1-100 μm, more preferably 3-50 μm, and particularly preferably 5-30 μm.
(熱電変換モジュールの他の製造方法)
 上記熱電変換モジュールの製造方法の他の例として以下の方法が挙げられる。
 具体的には、前述した基板から、複数のチップを、1チップごとに剥離することにより、複数のチップを得、該複数のチップを樹脂フィルム上の所定の電極上に1つ1つ配置する工程を経ることにより、熱電変換モジュールを形成する方法である。
 複数のチップを電極上に配置する方法は、チップ1つ1つを、ロボット等でハンドリングし、顕微鏡等で位置合わせを行い、配置する等、公知の方法を用いることができる。
(Another method for manufacturing a thermoelectric conversion module)
Another example of the method for manufacturing the thermoelectric conversion module is the following method.
Specifically, a plurality of chips are obtained by peeling off the plurality of chips one by one from the substrate described above, and the plurality of chips are arranged one by one on predetermined electrodes on a resin film. This is a method of forming a thermoelectric conversion module through processes.
As a method of arranging a plurality of chips on the electrode, a known method can be used, such as handling each chip one by one by a robot or the like, aligning the chips with a microscope or the like, and arranging them.
 上記熱電変換モジュールの製造方法によれば、簡便な方法でチップを形成することができ、チップを複数組み合わせた熱電変換モジュールにあっては、従来の焼成(アニール)処理工程での熱電半導体組成物と電極間での拡散による合金層の形成由来の熱電性能の低下を防止できる。 According to the manufacturing method of the thermoelectric conversion module, the chips can be formed by a simple method, and in the thermoelectric conversion module in which a plurality of chips are combined, the thermoelectric semiconductor composition in the conventional firing (annealing) treatment process It is possible to prevent deterioration of thermoelectric performance due to the formation of an alloy layer due to diffusion between and electrodes.
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail by way of examples, but the present invention is not limited by these examples.
 実施例、比較例で作製した熱電変換材料層をダイシングして得られた試験片(チップ)にかかる熱電性能評価は、以下の方法で、電気伝導率、ゼーベック係数及び熱伝導率を算出することにより行った。
<熱電性能評価>
(a)電気伝導率
 実施例及び比較例で得られた熱電変換材料層をダイシングして得られた試験片(チップ)それぞれについて、低抵抗計(日置電機社製、RM3545)を用いて、4端子測定によって電気抵抗値(Ω)を測定し、試験片の厚さ(cm)、試験片の面積(試験片の厚さ方向とは垂直方向に交差する面;cm)を用い、電気伝導率σ(S/cm)を以下の式から算出した。
 電気伝導率σ=(電気抵抗値×試験片の厚さ)/試験片の面積
(b)ゼーベック係数
 JIS C 2527:1994に準拠して実施例及び比較例で作製した熱電変換材料層をダイシングして得られた試験片(チップ)の熱起電力を測定し、ゼーベック係数Sを算出した。熱起電力は、作製した熱電変換材料の一端を加熱して、熱電変換材料の両端に生じる温度差をクロメル-アルメル熱電対を使用し測定し、熱電対設置位置に隣接した電極間の電位から測定した。具体的には、温度差と起電力を測定する試料の両端間距離を25mmとし、一端を20℃に保ち、他端を25℃から50℃まで1℃刻みで加熱し、その際の熱起電力を測定して、傾きからゼーベック係数S(μV/K)を算出した。なお、熱電対及び電極の設置位置は、薄膜の中心線に対し、互いに対称の位置にあり、熱電対と電極の距離は1mmである。
(c)熱伝導率
 熱伝導率の測定には3ω法を用いて熱伝導率λ(W/(m・K))を算出した。
 得られた電気伝導率σ、ゼーベック係数S及び熱伝導率λから、熱電性能指数Z(Z=σS/λ)を求め、無次元熱電性能指数ZT(T=300K)を算出した。
 但し、熱電性能指数Zの算出は、電気伝導率σ(S/m)、ゼーベック係数S(V/K)として行った。
For the thermoelectric performance evaluation of the test piece (chip) obtained by dicing the thermoelectric conversion material layer prepared in Examples and Comparative Examples, the electrical conductivity, Seebeck coefficient and thermal conductivity are calculated by the following method. It was done by
<Thermoelectric performance evaluation>
(a) Electrical conductivity For each test piece (chip) obtained by dicing the thermoelectric conversion material layers obtained in Examples and Comparative Examples, using a low resistance meter (manufactured by Hioki Electric Co., Ltd., RM3545), 4 The electrical resistance value (Ω) is measured by terminal measurement, and the thickness (cm) of the test piece and the area of the test piece (the plane perpendicular to the thickness direction of the test piece; cm 2 ) are used to determine the electrical conductivity. The ratio σ (S/cm) was calculated from the following formula.
Electrical conductivity σ = (electric resistance value x thickness of test piece) / area of test piece (b) Seebeck coefficient The thermoelectromotive force of the test piece (chip) obtained by the above was measured, and the Seebeck coefficient S was calculated. The thermoelectromotive force is obtained by heating one end of the thermoelectric conversion material prepared, measuring the temperature difference generated between both ends of the thermoelectric conversion material using a chromel-alumel thermocouple, and measuring the potential between the electrodes adjacent to the thermocouple installation position. It was measured. Specifically, the distance between both ends of the sample for measuring the temperature difference and electromotive force was set to 25 mm, one end was kept at 20 ° C., and the other end was heated from 25 ° C. to 50 ° C. in 1 ° C. steps. The power was measured and the Seebeck coefficient S (μV/K) was calculated from the slope. The thermocouple and the electrode were installed at symmetrical positions with respect to the center line of the thin film, and the distance between the thermocouple and the electrode was 1 mm.
(c) Thermal conductivity Thermal conductivity λ (W/(m·K)) was calculated using the 3ω method for measuring thermal conductivity.
A thermoelectric figure of merit Z (Z=σS 2 /λ) was obtained from the obtained electrical conductivity σ, Seebeck coefficient S and thermal conductivity λ, and a dimensionless thermoelectric figure of merit ZT (T=300K) was calculated.
However, the thermoelectric figure of merit Z was calculated using the electric conductivity σ (S/m) and the Seebeck coefficient S (V/K).
(実施例1)
<熱電変換材料からなる試験片(チップ)の作製>
(1)熱電半導体粒子の調製
 熱電半導体粒子として、ビスマス-テルル系熱電半導体材料であるP型ビスマステルライドBi0.4Te3.0Sb1.6(高純度化学研究所製、粒径:16.0μm)を用いた。また、該熱電半導体粒子に関して、レーザー回折式粒度分析装置(Malvern社製、マスターサイザー3000)により粒度分布測定を行った。
(2)熱電半導体組成物の調製
 表1の実施例1に示したように、P型ビスマステルライドBi0.4Te3.0Sb1.6粒子(平均粒径16.0μm)78.5質量%、バインダー樹脂としてのポリエチレンカーボネート(最終分解温度:250℃)を含むポリエチレンカーボネート溶液(EMPOWER MATERIALS社製、QPAC25、溶媒:N-メチルピロリドン、固形分濃度:25質量%)20.7質量%(固形分6.7質量%)、及びイオン液体としての1-ブチルピリジニウムブロミド(広栄化学工業社製、IL-P18B)0.8質量%を混合分散した熱電半導体組成物からなる塗工液を調製した。
(3)熱電変換材料層からなる試験片(チップ)の作製(熱電変換材料層の形成)
 (2)で調製した塗工液を、アプリケーターを用い、ポリイミドフィルム(宇部興産社製、商品名「カプトン 500H」、厚さ125μm)上に塗布し、温度110℃で20分間加熱乾燥し、厚さが600μmの薄膜を形成した。次いで、得られた薄膜に対し、250℃、50MPaで30分間、加熱加圧プレスを行い、ポリイミドフィルム上に厚さが250μmの熱電半導体材料層を有するウエハを作製した。さらに、作製したウエハに対し、水素とアルゴンの混合ガス(水素:アルゴン=3体積%:97体積%)雰囲気下で、加温速度5K/minで昇温し、焼成(アニール)処理温度430℃で30分間保持した後、当該ウエハをダイシングすることで、1.0×1.0mm角の試験片(チップ)を得た。
(Example 1)
<Preparation of test piece (chip) made of thermoelectric conversion material>
(1) Preparation of thermoelectric semiconductor particles As thermoelectric semiconductor particles, P-type bismuth telluride Bi 0.4 Te 3.0 Sb 1.6 (manufactured by Kojundo Chemical Laboratory, particle size: 16 .0 μm) was used. Further, the thermoelectric semiconductor particles were subjected to particle size distribution measurement using a laser diffraction particle size analyzer (Mastersizer 3000 manufactured by Malvern).
(2) Preparation of thermoelectric semiconductor composition As shown in Example 1 of Table 1, P-type bismuth telluride Bi 0.4 Te 3.0 Sb 1.6 particles (average particle size 16.0 μm) 78.5 mass %, polyethylene carbonate solution containing polyethylene carbonate (final decomposition temperature: 250 ° C.) as a binder resin (manufactured by Empower Materials, QPAC25, solvent: N-methylpyrrolidone, solid content concentration: 25% by mass) 20.7% by mass ( Solid content 6.7% by mass) and 1-butylpyridinium bromide (manufactured by Koei Chemical Industry Co., Ltd., IL-P18B) 0.8% by mass as an ionic liquid are mixed and dispersed to prepare a coating liquid consisting of a thermoelectric semiconductor composition. bottom.
(3) Preparation of test piece (chip) composed of thermoelectric conversion material layer (formation of thermoelectric conversion material layer)
The coating liquid prepared in (2) is applied to a polyimide film (manufactured by Ube Industries, Ltd., trade name “Kapton 500H”, thickness 125 μm) using an applicator, and dried by heating at a temperature of 110 ° C. for 20 minutes. A thin film with a thickness of 600 μm was formed. Then, the obtained thin film was subjected to heat and pressure press at 250° C. and 50 MPa for 30 minutes to produce a wafer having a thermoelectric semiconductor material layer with a thickness of 250 μm on the polyimide film. Furthermore, the temperature of the fabricated wafer was raised at a heating rate of 5 K/min in a mixed gas atmosphere of hydrogen and argon (hydrogen: argon = 3% by volume: 97% by volume), and the firing (annealing) temperature was 430°C. After holding the wafer for 30 minutes, the wafer was diced to obtain a test piece (chip) of 1.0×1.0 mm square.
(実施例2)
 熱電半導体粒子の平均粒径を16.0μmから8.0μmにした以外は、実施例1と同様にして熱電変換材料層を作製した。
 なお、平均粒径が8.0μmの熱電半導体粒子は、P型ビスマステルライドBi0.4Te3.0Sb1.6(高純度化学研究所製、粒径:16.0μm)を、遊星型ボールミル(フリッチュジャパン社製、Premium line P-7)を使用し、窒素ガス雰囲気下で粉砕することで調製した。粉砕して得られた熱電半導体粒子に関して、レーザー回折式粒度分析装置(Malvern社製、マスターサイザー3000)により粒度分布測定を行った。
(Example 2)
A thermoelectric conversion material layer was produced in the same manner as in Example 1, except that the average particle size of the thermoelectric semiconductor particles was changed from 16.0 μm to 8.0 μm.
The thermoelectric semiconductor particles having an average particle size of 8.0 μm are P-type bismuth telluride Bi 0.4 Te 3.0 Sb 1.6 (manufactured by Kojundo Chemical Laboratory, particle size: 16.0 μm). It was prepared by grinding in a nitrogen gas atmosphere using a ball mill (Premium line P-7 manufactured by Fritsch Japan). Particle size distribution of the pulverized thermoelectric semiconductor particles was measured using a laser diffraction particle size analyzer (Mastersizer 3000 manufactured by Malvern).
(実施例3)
 熱電半導体粒子の平均粒径を35.0μm(高純度化学研究所製)にした以外は、実施例1と同様にして熱電変換材料層を作製した。
(Example 3)
A thermoelectric conversion material layer was produced in the same manner as in Example 1, except that the average particle diameter of the thermoelectric semiconductor particles was 35.0 μm (manufactured by Kojundo Chemical Laboratory Co., Ltd.).
(比較例1)
 熱電半導体粒子の平均粒径を16.0μmから2.0μmにした以外は、実施例1と同様にして熱電変換材料層を作製した。
 なお、平均粒径が2.0μmの熱電半導体粒子は、P型ビスマステルライドBi0.4Te3.0Sb1.6(高純度化学研究所製、粒径:16.0μm)を、遊星型ボールミル(フリッチュジャパン社製、Premium line P-7)を使用し、窒素ガス雰囲気下で粉砕することで調製した。粉砕して得られた熱電半導体粒子に関して、レーザー回折式粒度分析装置(Malvern社製、マスターサイザー3000)により粒度分布測定を行った。
(Comparative example 1)
A thermoelectric conversion material layer was produced in the same manner as in Example 1, except that the average particle size of the thermoelectric semiconductor particles was changed from 16.0 μm to 2.0 μm.
The thermoelectric semiconductor particles having an average particle size of 2.0 μm are P-type bismuth telluride Bi 0.4 Te 3.0 Sb 1.6 (manufactured by Kojundo Chemical Laboratory, particle size: 16.0 μm). It was prepared by grinding in a nitrogen gas atmosphere using a ball mill (Premium line P-7 manufactured by Fritsch Japan). Particle size distribution of the pulverized thermoelectric semiconductor particles was measured using a laser diffraction particle size analyzer (Mastersizer 3000 manufactured by Malvern).
(比較例2)
 熱電半導体粒子の平均粒径を50.0μm(高純度化学研究所製)にした以外は、実施例1と同様にして熱電変換材料層を作製した。
(Comparative example 2)
A thermoelectric conversion material layer was produced in the same manner as in Example 1, except that the average particle diameter of the thermoelectric semiconductor particles was 50.0 μm (manufactured by Kojundo Chemical Laboratory Co., Ltd.).
(比較例3)
 熱電半導体粒子の平均粒径を16.0μmから5.0μmにした以外は、実施例1と同様にして熱電変換材料層を作製した。
 なお、平均粒径が5.0μmの熱電半導体粒子は、P型ビスマステルライドBi0.4Te3.0Sb1.6(高純度化学研究所製、粒径:16.0μm)を、遊星型ボールミル(フリッチュジャパン社製、Premium line P-7)を使用し、窒素ガス雰囲気下で粉砕することで調製した。粉砕して得られた熱電半導体粒子に関して、レーザー回折式粒度分析装置(Malvern社製、マスターサイザー3000)により粒度分布測定を行った。
(Comparative Example 3)
A thermoelectric conversion material layer was produced in the same manner as in Example 1, except that the average particle size of the thermoelectric semiconductor particles was changed from 16.0 μm to 5.0 μm.
The thermoelectric semiconductor particles having an average particle size of 5.0 μm are P-type bismuth telluride Bi 0.4 Te 3.0 Sb 1.6 (manufactured by Kojundo Chemical Laboratory, particle size: 16.0 μm). It was prepared by grinding in a nitrogen gas atmosphere using a ball mill (Premium line P-7 manufactured by Fritsch Japan). Particle size distribution of the pulverized thermoelectric semiconductor particles was measured using a laser diffraction particle size analyzer (Mastersizer 3000 manufactured by Malvern).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~3及び比較例1~3で得られた熱電変換材料層の試験片(チップ)の熱電性能の評価結果を表2に示す。 Table 2 shows the evaluation results of the thermoelectric performance of the test pieces (chips) of the thermoelectric conversion material layers obtained in Examples 1-3 and Comparative Examples 1-3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 熱電半導体粒子の平均粒径の範囲が本発明の規定を満たす実施例1~3の熱電変換材料層の熱電性能(無次元熱電性能指数ZT)は、熱電半導体粒子の平均粒径の範囲が本発明の規定を満たさない比較例1~3の熱電変換材料層の熱電性能と比べ、より優れていることがわかる。 The thermoelectric performance (dimensionless thermoelectric figure of merit ZT) of the thermoelectric conversion material layers of Examples 1 to 3, in which the range of the average particle diameter of the thermoelectric semiconductor particles satisfies the provisions of the present invention, was determined by the range of the average particle diameter of the thermoelectric semiconductor particles. It can be seen that the thermoelectric performance is better than the thermoelectric performance of the thermoelectric conversion material layers of Comparative Examples 1 to 3, which do not satisfy the provisions of the invention.
 本発明の熱電変換材料層は、熱電変換モジュールの熱電変換素子層として使用することにより、例えば、工場や廃棄物燃焼炉、セメント燃焼炉等の各種燃焼炉からの排熱、自動車の燃焼ガス排熱及び電子機器の排熱を電気に変換する発電用途に適用することが考えられる。冷却用途としては、エレクトロニクス機器の分野において、例えば、スマートフォン、各種コンピューター等に用いられるCPU(Central Processing Unit)、また、CMOS(Complementary Metal Oxide Semiconductor)、CCD(Charge Coupled Device)等のイメージセンサー、さらに、MEMS(Micro Electro Mechanical Systems)、受光素子等の各種センサーの温度制御等に適用することが考えられる。 By using the thermoelectric conversion material layer of the present invention as a thermoelectric conversion element layer of a thermoelectric conversion module, for example, exhaust heat from various combustion furnaces such as factories, waste combustion furnaces, cement combustion furnaces, combustion gas exhaust from automobile It is conceivable to apply it to power generation applications that convert heat and waste heat from electronic equipment into electricity. For cooling applications, in the field of electronics equipment, for example, smartphones, CPUs (Central Processing Units) used in various computers, etc., image sensors such as CMOS (Complementary Metal Oxide Semiconductor), CCD (Charge Coupled Device), etc. , MEMS (Micro Electro Mechanical Systems), and temperature control of various sensors such as light receiving elements.
1,1a:基板
2a:P型熱電変換材料からなる熱電変換材料層(P型チップ)
2b:N型熱電変換材料からなる熱電変換材料層(N型チップ)
3:ハンダ受理層
4:樹脂フィルム
5:電極
6:ハンダ材料層(形成時)
6’:ハンダ材料層(接合後)
12:熱電半導体組成物の塗布膜
12a:塗布膜
12b:塗布膜
20,20s,20t:熱電変換材料層
30:空隙部
30b:空隙部
40b:空隙部
X:長さ(幅方向)
Y:長さ(奥行き方向)
D:厚さ(厚さ方向)
Dmax:厚さ方向の厚さの最大値(縦断面)
Dmin:厚さ方向の厚さの最小値(縦断面)
C:熱電変換材料層の中央部
1, 1a: Substrate 2a: Thermoelectric conversion material layer (P-type chip) made of P-type thermoelectric conversion material
2b: Thermoelectric conversion material layer (N-type chip) made of N-type thermoelectric conversion material
3: Solder receiving layer 4: Resin film 5: Electrode 6: Solder material layer (when formed)
6': Solder material layer (after bonding)
12: Coating film 12a of thermoelectric semiconductor composition: Coating film 12b: Coating films 20, 20s, 20t: Thermoelectric conversion material layer 30: Gap part 30b: Gap part 40b: Gap part X: Length (width direction)
Y: Length (depth direction)
D: Thickness (thickness direction)
Dmax: Maximum value of thickness in the thickness direction (longitudinal section)
Dmin: Minimum value of thickness in thickness direction (longitudinal section)
C: Central part of the thermoelectric conversion material layer

Claims (9)

  1.  熱電半導体粒子、バインダー樹脂及びイオン液体を含む熱電半導体組成物からなる熱電変換材料を含む熱電変換材料層であって、前記熱電半導体粒子の平均粒径が8.0μm以上50.0μm未満である、熱電変換材料層。 A thermoelectric conversion material layer containing a thermoelectric conversion material made of a thermoelectric semiconductor composition containing thermoelectric semiconductor particles, a binder resin and an ionic liquid, wherein the thermoelectric semiconductor particles have an average particle size of 8.0 μm or more and less than 50.0 μm. Thermoelectric conversion material layer.
  2.  前記熱電変換材料層は、前記熱電変換材料及び空隙を有し、前記熱電変換材料層の中央部を含む縦断面の面積における前記熱電変換材料の面積の占める割合を充填率としたときに、前記充填率が、0.900以上1.000未満である、請求項1に記載の熱電変換材料層。 The thermoelectric conversion material layer has the thermoelectric conversion material and voids, and when the ratio of the area occupied by the thermoelectric conversion material in the area of the longitudinal section including the central portion of the thermoelectric conversion material layer is defined as the filling rate, the The thermoelectric conversion material layer according to claim 1, wherein the filling factor is 0.900 or more and less than 1.000.
  3.  前記熱電変換材料層は、熱電半導体組成物の塗布膜の焼成体からなる、請求項1又は2に記載の熱電変換材料層。 The thermoelectric conversion material layer according to claim 1 or 2, wherein the thermoelectric conversion material layer is made of a sintered body of a coating film of a thermoelectric semiconductor composition.
  4.  前記バインダー樹脂は、前記焼成体の焼成温度で90質量%以上分解する、請求項1に記載の熱電変換材料層。 The thermoelectric conversion material layer according to claim 1, wherein the binder resin decomposes by 90% by mass or more at the firing temperature of the fired body.
  5.  前記バインダー樹脂は、ポリカーボネート、セルロース誘導体及びポリビニル重合体から選択される少なくとも1種を含む、請求項1又は4に記載の熱電変換材料層。 The thermoelectric conversion material layer according to claim 1 or 4, wherein the binder resin contains at least one selected from polycarbonates, cellulose derivatives and polyvinyl polymers.
  6.  前記バインダー樹脂は、400℃で90質量%以上分解する、請求項1、4及び5のいずれか1項に記載の熱電変換材料層。 The thermoelectric conversion material layer according to any one of claims 1, 4 and 5, wherein the binder resin decomposes at 400°C by 90% by mass or more.
  7.  前記熱電半導体粒子が、ビスマス-テルル系熱電半導体材料、テルライド系熱電半導体材料、アンチモン-テルル系熱電半導体材料、又はビスマスセレナイド系熱電半導体材料からなる、請求項1に記載の熱電変換材料層。 The thermoelectric conversion material layer according to claim 1, wherein the thermoelectric semiconductor particles are composed of a bismuth-tellurium-based thermoelectric semiconductor material, a telluride-based thermoelectric semiconductor material, an antimony-tellurium-based thermoelectric semiconductor material, or a bismuth-selenide-based thermoelectric semiconductor material.
  8.  前記熱電半導体粒子の平均粒径が8.0μm以上40.0μm未満である、請求項1又は7に記載の熱電変換材料層。 The thermoelectric conversion material layer according to claim 1 or 7, wherein the thermoelectric semiconductor particles have an average particle size of 8.0 µm or more and less than 40.0 µm.
  9.  請求項1~8のいずれか1項に記載の熱電変換材料層を含む、熱電変換モジュール。 A thermoelectric conversion module comprising the thermoelectric conversion material layer according to any one of claims 1 to 8.
PCT/JP2022/029511 2021-08-02 2022-08-01 Thermoelectric conversion material layer and thermoelectric conversion module WO2023013590A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-126785 2021-08-02
JP2021126785A JP2023021733A (en) 2021-08-02 2021-08-02 Thermoelectric conversion material layer

Publications (1)

Publication Number Publication Date
WO2023013590A1 true WO2023013590A1 (en) 2023-02-09

Family

ID=85155540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029511 WO2023013590A1 (en) 2021-08-02 2022-08-01 Thermoelectric conversion material layer and thermoelectric conversion module

Country Status (2)

Country Link
JP (1) JP2023021733A (en)
WO (1) WO2023013590A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141065A1 (en) * 2012-03-21 2013-09-26 リンテック株式会社 Thermoelectric conversion material and method for manufacturing same
WO2020203612A1 (en) * 2019-03-29 2020-10-08 リンテック株式会社 Thermoelectric material layer and method for producing same
WO2021124860A1 (en) * 2019-12-16 2021-06-24 リンテック株式会社 Thermoelectric conversion body, thermoelectric conversion module, and method for manufacturing thermoelectric conversion body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141065A1 (en) * 2012-03-21 2013-09-26 リンテック株式会社 Thermoelectric conversion material and method for manufacturing same
WO2020203612A1 (en) * 2019-03-29 2020-10-08 リンテック株式会社 Thermoelectric material layer and method for producing same
WO2021124860A1 (en) * 2019-12-16 2021-06-24 リンテック株式会社 Thermoelectric conversion body, thermoelectric conversion module, and method for manufacturing thermoelectric conversion body

Also Published As

Publication number Publication date
JP2023021733A (en) 2023-02-14

Similar Documents

Publication Publication Date Title
WO2018168837A1 (en) Electrode material for thermoelectric conversion modules and thermoelectric conversion module using same
JP7346427B2 (en) Method for manufacturing chips of thermoelectric conversion material and method for manufacturing thermoelectric conversion modules using chips obtained by the manufacturing method
WO2023013590A1 (en) Thermoelectric conversion material layer and thermoelectric conversion module
WO2019188862A1 (en) Thermoelectric conversion module
US20230200240A1 (en) Thermoelectric conversion module and manufacturing method therefor
JP7348192B2 (en) semiconductor element
US11974504B2 (en) Thermoelectric conversion body, thermoelectric conversion module, and method for manufacturing thermoelectric conversion body
CN116368965A (en) Thermoelectric conversion module
EP2903043B1 (en) Methods for thick film thermoelectric device fabrication
WO2020071424A1 (en) Chip of thermoelectric conversion material
WO2021193357A1 (en) Thermoelectric conversion module
JP7458375B2 (en) Method for manufacturing chips of thermoelectric conversion materials
WO2020203611A1 (en) Method for forming solder receiving layer on chip of thermoelectric conversion material
WO2022210996A1 (en) Thermoelectric conversion module
WO2021193358A1 (en) Thermoelectric conversion module
WO2023190633A1 (en) Thermoelectric conversion module
JP7401361B2 (en) thermoelectric conversion module
JP2022157777A (en) Thermoelectric conversion module
JP2021192409A (en) Electrode for thermoelectric conversion module
JP2022057937A (en) Electrode for thermoelectric conversion modules
JP2022157771A (en) Electrode for thermoelectric conversion module and thermoelectric conversion module using the same
JP2023151556A (en) Manufacturing method of thermoelectric conversion module

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE