WO2016147809A1 - Waste heat recovery sheet - Google Patents

Waste heat recovery sheet Download PDF

Info

Publication number
WO2016147809A1
WO2016147809A1 PCT/JP2016/055185 JP2016055185W WO2016147809A1 WO 2016147809 A1 WO2016147809 A1 WO 2016147809A1 JP 2016055185 W JP2016055185 W JP 2016055185W WO 2016147809 A1 WO2016147809 A1 WO 2016147809A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
thermoelectric conversion
heat recovery
thickness
recovery sheet
Prior art date
Application number
PCT/JP2016/055185
Other languages
French (fr)
Japanese (ja)
Inventor
邦久 加藤
豪志 武藤
近藤 健
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2017506162A priority Critical patent/JPWO2016147809A1/en
Publication of WO2016147809A1 publication Critical patent/WO2016147809A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to an exhaust heat recovery sheet having thermoelectric conversion capability.
  • thermoelectric conversion device is a device that generates a potential difference due to a temperature difference that occurs at both ends of a conductor. If thermal energy can be recovered as electrical energy from a place where a constant temperature difference occurs using a thermoelectric conversion device, it will contribute to energy saving. Therefore, it has been studied to regenerate heat energy emitted from the heat sink as electric energy by arranging the thermoelectric conversion device on the heat sink (see Patent Document 1).
  • Patent Document 1 as shown in FIG. 2, bulk P-type semiconductor elements and N-type semiconductor elements are alternately arranged via electrode layers between two insulating heat transfer plates such as ceramics and connected to each other.
  • a thermoelectric conversion device is used. Examples of a heat source that constantly obtains a temperature difference include heat generated by daily life (referred to as exhaust heat from daily life), heat generated by operation of a factory (referred to as factory exhaust heat), and the like.
  • thermoelectric conversion device The above-mentioned life exhaust heat and factory exhaust heat are useful as heat sources in energy regeneration using a thermoelectric conversion device.
  • the temperature of daily exhaust heat and factory exhaust heat is approximately 100 ° C. or less, and the place where daily exhaust heat and factory exhaust heat can be obtained includes pipes for transferring hot water, steam, etc., and equipment that generates heat. It is the housing surface.
  • the thermoelectric conversion device is required to have high followability to the surface shape of the installation location.
  • the temperature difference which arises in a thermoelectric conversion device is as small as 100 degrees C or less, it is calculated
  • the present invention provides the following (1) to (8).
  • a sheet-like base material disposed on at least a part of a heat source, a thermoelectric conversion layer formed on a surface of the base material and formed from a thermoelectric material, and an electrode layer connected to the thermoelectric conversion layer A sheet-like thermoelectric conversion device having, the heat conductivity of the heat source, the thickness in the direction in which the temperature gradient of the heat source occurs, the heat conductivity of the substrate, the thickness of the substrate, the heat conductivity of the thermoelectric material, And the exhaust heat recovery sheet
  • thermoelectric conversion layer ⁇ (Heat conductivity of heat source) ⁇ (thickness in the direction in which the temperature gradient of the heat source is generated) ⁇ + ⁇ (heat conductivity of the base material) ⁇ (thickness of the base material) ⁇ > ⁇ (thermal conductivity of thermoelectric material) ) ⁇ (thickness of the thermoelectric conversion layer) ⁇ (2)
  • a current direction of a thermoelectric conversion layer constituting the thermoelectric conversion device is arranged so as to intersect a plane of the base material.
  • thermoelectric material of the thermoelectric conversion device has a thermal conductivity of 30 W / m ⁇ K or less.
  • thermoelectric material of the thermoelectric conversion device is an n-type thermoelectric material and a p-type thermoelectric material, an n-type thermoelectric conversion layer made of the n-type thermoelectric material, and a p-type thermoelectric conversion layer made of the p-type thermoelectric material;
  • thermoelectric conversion device it is possible to provide a waste heat recovery sheet that can increase the degree of freedom of the location of the thermoelectric conversion device and can recover energy from life waste heat and factory waste heat.
  • FIG. 1 is a schematic diagram illustrating the structure of the exhaust heat recovery sheet 1A according to the present embodiment
  • FIG. 2 is a schematic diagram illustrating the structure of the exhaust heat recovery sheet 1B.
  • 1 and 2 are plan views of the exhaust heat recovery sheet 1A and the exhaust heat recovery sheet 1B as viewed from the direction perpendicular to the main surface.
  • the exhaust heat recovery sheet 1 can take two structures shown in FIGS. 1 and 2 according to the type of thermoelectric conversion layer described later.
  • the exhaust heat recovery sheet 1 ⁇ / b> A is disposed on at least a part of a heat source, and includes a sheet-like base material 10 and a sheet-like thermoelectric conversion device 20.
  • the thermoelectric conversion device 20 includes a thermoelectric conversion layer 22 that is disposed on the surface of the substrate 10 and is formed from a thermoelectric material, and an electrode layer 23 that is connected to the thermoelectric conversion layer 22.
  • the heat conductivity of the heat source, the thickness in the direction in which the temperature gradient of the heat source is generated, the heat conductivity of the substrate 10, the thickness of the substrate 10, the heat conductivity of the thermoelectric material, and the thickness of the thermoelectric conversion layer 22 are as follows: Satisfy the formula.
  • thermoelectric material is a material that can convert thermal energy into electrical energy
  • a semiconductor that can convert thermal energy into electrical energy is called a thermoelectric semiconductor.
  • the substrate 10 is not particularly limited as long as it does not affect the decrease in the electric conductivity of the thermoelectric material.
  • the substrate include glass, silicon, and plastic film.
  • a plastic film is preferable because of its excellent flexibility.
  • Specific examples of the plastic film include polyethylene terephthalate film, polyethylene naphthalate film, polyimide film, polyamide film, polyetherimide film, polyaramid film, polyamideimide film, polyetherketone film, polysulfone film, and polyether ether. Examples thereof include ketone films, polyphenylene sulfide films, poly (4-methylpentene-1) films, and the like. Moreover, the laminated body of these films may be sufficient.
  • the performance of the thermoelectric material can be maintained, there is no thermal deformation, and the heat resistance and dimensional stability are high.
  • a polyamide film, a polyetherimide film, a polyaramid film, and a polyamideimide film are preferable, and a polyimide film is particularly preferable from the viewpoint of high versatility.
  • the thickness of the substrate 10 is preferably 0.01 to 1000 ⁇ m, more preferably 0.01 to 100 ⁇ m, and more preferably 0.01 to 25 ⁇ m from the viewpoints of flexibility, heat resistance, and dimensional stability.
  • the decomposition temperature of the substrate 10 is preferably 300 ° C. or higher.
  • thermoelectric conversion device 20 is formed of a thermoelectric conversion layer 22 and an electrode layer 23.
  • the thermoelectric conversion layer 22 is formed in a rectangular shape on the surface of the base material 10, and an electrode layer 23 is connected to one end and the other end in the longitudinal direction of the rectangle.
  • the thermoelectric conversion layer 22 formed of either a p-type thermoelectric material or an n-type thermoelectric material is used as the thermoelectric material, for example, in the longitudinal direction of the adjacent thermoelectric conversion layers 22 as shown in FIG. One upper end and the other lower end are connected by an electrode layer 23. Further, when a p-type thermoelectric material and an n-type thermoelectric material are used, as shown in FIG.
  • thermoelectric conversion layer 22a formed from a p-type thermoelectric material and a thermoelectric formed from an n-type thermoelectric material.
  • the conversion layer 22b is connected by the electrode layer 23 so as to be connected in series.
  • the current direction of the thermoelectric conversion layer 22 is arranged in parallel to the plane of the substrate 10.
  • the thermoelectric conversion device 20 thus formed has one end portion disposed on the high temperature side and the other end portion disposed on the low temperature side in order to be used as a power generation device.
  • thermoelectric conversion layer 22 (22a, 22b) is preferably disposed so that the longitudinal direction thereof is along the upright direction V where the temperature gradient occurs.
  • the thickness of the thermoelectric conversion device 20 according to this embodiment is preferably 0.2 to 2000 ⁇ m, more preferably 0.2 to 1000 ⁇ m, and more preferably 0.2 to 100 ⁇ m.
  • an electrode for extracting a thermoelectromotive force is connected to the electrode layer 23 of the thermoelectric conversion device 20, and the thermoelectromotive force is taken out from the thermoelectric conversion device 20. Can be stored in a power storage device or used as a power source for the device.
  • thermoelectric conversion layer 22 is formed from a thermoelectric material having a Seebeck effect.
  • the thermoelectric material that can form the thermoelectric conversion layer 22 includes the heat conductivity of the heat source, the thickness in the direction in which the temperature gradient of the heat source occurs, the heat conductivity of the substrate, the thickness of the substrate, and the heat conductivity of the thermoelectric material.
  • the rate and the thickness of the thermoelectric conversion layer must satisfy the relationship of the following formula.
  • thermoelectric conversion layer ⁇ (Heat conductivity of heat source) ⁇ (thickness in the direction in which the temperature gradient of the heat source is generated) ⁇ + ⁇ (heat conductivity of the base material) ⁇ (thickness of the base material) ⁇ > ⁇ (thermal conductivity of thermoelectric material) ) ⁇ (thickness of the thermoelectric conversion layer) ⁇
  • thermoelectric material either an inorganic material or an organic material can be used.
  • inorganic thermoelectric materials include bismuth-tellurium-based thermoelectric semiconductor materials such as p-type bismuth telluride, n-type bismuth telluride and Bi 2 Te 3 ; telluride-based thermoelectric semiconductor materials such as GeTe and PbTe; antimony-tellurium-based thermoelectric semiconductors Materials: zinc-antimony thermoelectric semiconductor materials such as ZnSb, Zn 3 Sb 2 and Zn 4 Sb 3 ; silicon-germanium thermoelectric semiconductor materials such as SiGe; bismuth selenide thermoelectric semiconductor materials such as Bi 2 Se 3 ; ⁇ - Silicide-based thermoelectric semiconductor materials such as FeSi 2 , CrSi 2 , MnSi 1.73 and Mg 2 Si; Oxide-based thermoelectric semiconductor materials such as ZnO; Heusler materials such as FeVAl, FeVAlSi and FeVTiAl; TiS 2 and tetrahedrite Sul
  • p-type bismuth telluride carriers are holes and the Seebeck coefficient is a positive value, and for example, those represented by Bi X Te 3 Sb 2-X are preferably used.
  • X is preferably 0 ⁇ X ⁇ 0.8, and more preferably 0.4 ⁇ X ⁇ 0.6. It is preferable that X is greater than 0 and less than or equal to 0.8 because the Seebeck coefficient and electrical conductivity are increased, and the characteristics as a p-type thermoelectric conversion material are maintained.
  • the carrier is an electron and the Seebeck coefficient is a negative value.
  • those represented by Bi 2 Te 3-Y Se Y are preferably used.
  • Y is preferably 0 ⁇ Y ⁇ 3, and more preferably 0 ⁇ Y ⁇ 2.7. It is preferable that Y is 0 or more and 3 or less because the Seebeck coefficient and electrical conductivity are increased, and the characteristics as an n-type thermoelectric conversion material are maintained.
  • the thickness of the thermoelectric conversion layer 22 formed from an inorganic thermoelectric material is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less, and more preferably 0.1 ⁇ m or more and 100 ⁇ m or less. When the thickness is less than 0.1 ⁇ m, the electric resistance is high and sufficient performance cannot be obtained. When the thickness exceeds 1000 ⁇ m, the cost for the film forming process becomes excessive, and the cost effectiveness is deteriorated.
  • the thermoelectric conversion layer 22 may be made of a thermoelectric semiconductor composition containing fine particles of a thermoelectric semiconductor, a heat resistant resin, and an ionic liquid.
  • thermoelectric semiconductor fine particles The fine particles of the thermoelectric semiconductor can be obtained by pulverizing the above-described inorganic thermoelectric semiconductor material to a predetermined size with a fine pulverizer or the like.
  • the blending amount of the thermoelectric semiconductor fine particles in the thermoelectric semiconductor composition is preferably 30 to 99% by mass. More preferably, it is 50 to 96% by mass, and still more preferably 70 to 95% by mass. If the thermoelectric semiconductor particles are within the above range, the absolute value of the Seebeck coefficient is large, the decrease in electrical conductivity is suppressed, and only the thermal conductivity is reduced, so that high thermoelectric performance is exhibited and sufficient film strength is obtained. A film having flexibility is preferably obtained.
  • the average particle diameter of the thermoelectric semiconductor fine particles is preferably 10 nm to 200 ⁇ m, more preferably 10 nm to 30 ⁇ m, still more preferably 50 nm to 10 ⁇ m, and particularly preferably 1 to 6 ⁇ m. If it is in the said range, uniform dispersion
  • thermoelectric semiconductor fine particles by pulverizing thermoelectric semiconductor material is not particularly limited. Jet mill, ball mill, bead mill, colloid mill, conical mill, disk mill, edge mill, milling mill, hammer mill, pellet mill, wheelie mill, roller What is necessary is just to grind
  • thermoelectric semiconductor fine particles The average particle size of the thermoelectric semiconductor fine particles was obtained by measuring with a laser diffraction particle size analyzer (CILAS, type 1064), and was the median value of the particle size distribution.
  • CILAS laser diffraction particle size analyzer
  • the fine particles of the thermoelectric semiconductor used in the thermoelectric semiconductor composition are preferably those that have been subjected to an annealing treatment (hereinafter also referred to as annealing treatment A).
  • annealing treatment A By performing the annealing treatment A, the thermoelectric semiconductor fine particles have improved crystallinity, and further, the surface oxide film of the thermoelectric semiconductor fine particles is removed, so that the Seebeck coefficient of the thermoelectric material is increased and the thermoelectric performance index is further increased. Can be improved.
  • Annealing treatment A is not particularly limited, but before preparing the thermoelectric semiconductor composition, an inert gas atmosphere such as nitrogen or argon in which the gas flow rate is controlled so as not to adversely affect the fine particles of the thermoelectric semiconductor.
  • thermoelectric semiconductor it is preferably carried out for several minutes to several tens of hours at a temperature below the melting point of the fine particles under a reducing gas atmosphere such as hydrogen or under vacuum conditions. Specifically, although it depends on the fine particles of the thermoelectric semiconductor used, it is usually preferably carried out at 100 to 1500 ° C. for several minutes to several tens of hours.
  • the ionic liquid contained in the thermoelectric semiconductor composition is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist as a liquid in a wide temperature range of ⁇ 50 to 500 ° C.
  • Ionic liquids have features such as extremely low vapor pressure, non-volatility, excellent thermal stability and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, it is possible to effectively suppress a reduction in electrical conductivity between the fine particles of the thermoelectric semiconductor as a conductive auxiliary agent.
  • the ionic liquid exhibits high polarity based on the aprotic ionic structure and is excellent in compatibility with the heat-resistant resin, the electric conductivity of the thermoelectric material can be made uniform.
  • ionic liquids can be used.
  • nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and their derivatives; tetraalkylammonium-based amine cations and their derivatives; phosphonium, trialkylsulfonium, tetraalkylphosphonium, etc.
  • Phosphine cations and derivatives thereof Phosphine cations and derivatives thereof; cation components such as lithium cations and derivatives thereof; chloride ions such as Cl ⁇ , AlCl 4 ⁇ , Al 2 Cl 7 ⁇ , ClO 4 ⁇ , bromide ions such as Br ⁇ , I ⁇ iodide etc., PF 6 - fluoride ions, F (HF) n, such as - such as halide anions of, NO 3 -, CH 3 COO -, CF 3 COO -, CH 3 SO 3 -, CF 3 SO 3 -, (FSO 2 ) 2 N ⁇ , (CF 3 SO 2 ) 2 N ⁇ , (CF 3 SO 2 ) 3 C ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , NbF 6 ⁇ , TaF 6 ⁇ , F (HF) n ⁇ , (CN ) 2 N ⁇ , C 4 F 9 SO
  • the cation component of the ionic liquid is pyridinium cation and It is preferable to include at least one selected from the derivatives, imidazolium cations and derivatives thereof.
  • the anion component of the ionic liquid preferably contains a halide anion, and more preferably contains at least one selected from Cl ⁇ , Br ⁇ and I ⁇ .
  • ionic liquids in which the cation component includes a pyridinium cation and derivatives thereof include 4-methyl-butylpyridinium chloride, 3-methyl-butylpyridinium chloride, 4-methyl-hexylpyridinium chloride, 3-methyl-hexylpyridinium Chloride, 4-methyl-octylpyridinium chloride, 3-methyl-octylpyridinium chloride, 3,4-dimethyl-butylpyridinium chloride, 3,5-dimethyl-butylpyridinium chloride, 4-methyl-butylpyridinium tetrafluoroborate, 4- Methyl-butylpyridinium hexafluorophosphate, 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, Chill-4-methylpyridinium iodide and the like. Of these, 1-butyl-4-methyl
  • ionic liquids in which the cation component includes an imidazolium cation and derivatives thereof include [1-butyl-3- (2-hydroxyethyl) imidazolium bromide], [1-butyl-3- (2 -Hydroxyethyl) imidazolium tetrafluoroborate], 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3 -Methylimidazolium chloride, 1-octyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium bromide, 1-dodecyl-3-methylimidazolium chloride, 1-Tetradecyl-3-methylimida 1-ethyl-3-methylimidazolium te
  • the ionic liquid preferably has an electric conductivity of 10 ⁇ 7 S / cm or more, and more preferably 10 ⁇ 6 S / cm or more. If the ionic conductivity is in the above range, it is possible to effectively suppress a reduction in electrical conductivity between the thermoelectric semiconductor particles as a conductive auxiliary agent.
  • the above ionic liquid preferably has a decomposition temperature of 300 ° C. or higher. If the decomposition temperature is within the above range, the effect as a conductive additive can be maintained even when annealing treatment B is applied to the film-like body of the thermoelectric semiconductor composition, as will be described later.
  • the ionic liquid has a mass reduction rate at 300 ° C. by thermogravimetry (TG) of preferably 10% or less, more preferably 5% or less, and further preferably 1% or less. .
  • TG thermogravimetry
  • the blending amount of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and still more preferably 1.0 to 20% by mass.
  • the blending amount of the ionic liquid is within the above range, a decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
  • the heat-resistant resin used in the thermoelectric semiconductor composition serves to increase the flexibility of the thermoelectric material by acting as a binder between the thermoelectric semiconductor fine particles.
  • the heat-resistant resin is not particularly limited. However, when the thermoelectric semiconductor composition is crystal-grown by annealing the film-like body of the thermoelectric semiconductor composition, the mechanical strength and thermal conductivity as the resin, etc. A heat-resistant resin that maintains the physical properties of these materials without being impaired is used.
  • the heat resistant resin examples include polyamide resin, polyamideimide resin, polyimide resin, polyetherimide resin, polybenzoxazole resin, polybenzimidazole resin, epoxy resin, and copolymers having a chemical structure of these resins. Can be mentioned.
  • the heat resistant resins may be used alone or in combination of two or more.
  • polyamide resin, polyamideimide resin, polyimide resin, and epoxy resin are preferable because they have higher heat resistance and do not adversely affect crystal growth of the thermoelectric semiconductor fine particles in the thin film, and are excellent in flexibility. From the viewpoint, polyamide resin, polyamideimide resin, and polyimide resin are more preferable.
  • a polyimide resin is more preferable as the heat-resistant resin in terms of adhesion to the polyimide film.
  • the polyimide resin is a general term for polyimide and its precursor.
  • the heat-resistant resin preferably has a decomposition temperature of 300 ° C. or higher. If the decomposition temperature is within the above range, as will be described later, even when annealing treatment B is performed on the film-like body of the thermoelectric semiconductor composition, the function as a binder is not lost and the flexibility of the thermoelectric material is maintained. Can do.
  • the heat-resistant resin preferably has a mass reduction rate at 300 ° C. of 10% or less, more preferably 5% or less, and further preferably 1% or less by thermogravimetry (TG). If the mass reduction rate is in the above range, as will be described later, even when the thermoelectric semiconductor composition film is subjected to the annealing treatment B, the function as a binder is not lost and the flexibility of the thermoelectric material is maintained. be able to.
  • the blending amount of the heat resistant resin in the thermoelectric semiconductor composition is preferably 0 to 40% by mass, more preferably 0.5 to 20% by mass, and further preferably 1 to 20% by mass. When the blending amount of the heat resistant resin is within the above range, a film having both high thermoelectric performance and film strength can be obtained.
  • the thermoelectric semiconductor composition may further include a dispersant, a film-forming aid, a light stabilizer, an antioxidant, a tackifier, a plasticizer, Other additives such as a colorant, a resin stabilizer, a filler, a pigment, a conductive filler, a conductive polymer, and a curing agent may be included. These additives can be used alone or in combination of two or more.
  • thermoelectric semiconductor composition The method for preparing the thermoelectric semiconductor composition is not particularly limited.
  • Thermoelectric semiconductor fine particles, ionic liquid, and heat-resistant resin are necessary by a known method such as ultrasonic homogenizer, spiral mixer, planetary mixer, disperser, hybrid mixer, etc.
  • other additives and a solvent may be added and mixed and dispersed to prepare the thermoelectric semiconductor composition.
  • the solvent examples include solvents such as toluene, ethyl acetate, methyl ethyl ketone, alcohol, tetrahydrofuran, methyl pyrrolidone, and ethyl cellosolve. These solvents may be used alone or in a combination of two or more.
  • the solid content concentration of the thermoelectric semiconductor composition is not particularly limited as long as the composition has a viscosity suitable for coating.
  • thermoelectric semiconductor composition can be formed by applying the thermoelectric semiconductor composition onto a support and drying, as described in the method for producing a thermoelectric material of Example 5 described later.
  • thermoelectric semiconductor composition onto a support and drying, as described in the method for producing a thermoelectric material of Example 5 described later.
  • a large-area thermoelectric material can be easily obtained at low cost.
  • the thickness of the film-like body of the thermoelectric semiconductor composition is not particularly limited, but is preferably 100 nm to 200 ⁇ m, more preferably 300 nm to 150 ⁇ m, and still more preferably 5 to 150 ⁇ m from the viewpoint of thermoelectric performance and film strength.
  • the thermoelectric semiconductor composition is further subjected to an annealing treatment (hereinafter sometimes referred to as “annealing treatment B”) after the thin film is formed.
  • annealing treatment B an annealing treatment
  • the thermoelectric performance can be stabilized and the thermoelectric semiconductor fine particles in the thin film can be crystal-grown, and the thermoelectric performance can be further improved.
  • the annealing treatment B is not particularly limited, it is usually performed at 100 to 500 ° C. under an inert gas atmosphere such as nitrogen or argon, a reducing gas atmosphere such as hydrogen, or a vacuum condition where the gas flow rate is controlled. For several minutes to several tens of hours.
  • the processing conditions of the annealing process B can be changed depending on the resin used, the heat resistant temperature of the ionic fluid, and the like.
  • polyanilines are high molecular weight compounds of compounds in which the 2-position, 3-position or N-position of aniline is substituted with an alkyl group having 1 to 18 carbon atoms, an alkoxy group, an aryl group, a sulfonic acid group or the like.
  • Methyl aniline poly 3-methyl aniline, poly 2-ethyl aniline, poly 3-ethyl aniline, poly 2-methoxy aniline, poly 3-methoxy aniline, poly 2-ethoxy aniline, poly 3-ethoxy aniline, poly N-methyl aniline Poly N-propyl aniline, poly N-phenyl-1-naphthyl aniline, poly 8-anilino-1-naphthalene sulfonic acid, poly 2-aminobenzene sulfonic acid, poly 7-anilino-4-hydroxy-2-naphthalene sulfonic acid Etc.
  • Polypyrroles are high molecular weight compounds of compounds in which 1-position, 3-position or 4-position of pyrrole is substituted with an alkyl group or alkoxy group having 1 to 18 carbon atoms, such as poly 1-methyl pyrrole, poly 3-pyrrole. Examples thereof include methyl pyrrole, poly 1-ethyl pyrrole, poly 3-ethyl pyrrole, poly 1-methoxy pyrrole, 3-methoxy pyrrole, poly 1-ethoxy pyrrole, poly 3-ethoxy pyrrole and the like.
  • Polythiophenes are high molecular weight compounds of compounds in which the 3-position or 4-position of thiophene is substituted with an alkyl group or alkoxy group having 1 to 18 carbon atoms, such as poly-3-methylthiophene, poly-3-ethylthiophene, poly Examples thereof include polymers such as 3-methoxythiophene, poly-3-ethoxythiophene, and poly3,4-ethylenedioxythiophene (PEDOT). Examples of the derivatives of polyanilines, polypyrroles or polythiophenes include these dopant bodies.
  • halide ions such as chloride ion, bromide ion and iodide ion; perchlorate ion; tetrafluoroborate ion; hexafluoroarsenate ion; sulfate ion; nitrate ion; thiocyanate ion; hexafluoride Silicate ion; Phosphate ion such as phosphate ion, phenyl phosphate ion, hexafluorophosphate ion; trifluoroacetate ion; alkylbenzenesulfonate ion such as tosylate ion, ethylbenzenesulfonate ion, dodecylbenzenesulfonate ion; methylsulfone Alkyl sulfonate ions such as acid ions and ethyl sulfonate ions; or poly
  • polyacrylate ions such as polystyrene sulfonate ion (PSS) and poly (2-acrylamido-2-methylpropane sulfonate) ion are preferred, and polystyrene sulfonate ion (PSS) which is a water-soluble and strongly acidic polymer is more preferred.
  • PSS polystyrene sulfonate ion
  • thermoelectric conversion layer As the derivative of the polyaniline, polypyrrole or polythiophene, a derivative of polythiophene is preferable, and among them, a mixture of poly (3,4-ethylene oxide thiophene) and polystyrenesulfonate ion as a dopant (hereinafter referred to as “PEDOT: May be described as “PSS”).
  • PES polystyrenesulfonate ion as a dopant
  • Methods for forming a thermoelectric conversion layer using the above materials include various coatings such as dip coating, spin coating, spray coating, gravure coating, die coating, and doctor blade, and wet processes such as electrochemical deposition, screen printing and Various types of printing such as ink-jet printing can be mentioned and appropriately selected.
  • the thickness of the thermoelectric conversion layer 22 formed from an organic thermoelectric material is preferably 5 nm or more and 1000 nm or less, and more preferably 30 nm or more and 300 nm or less. If it is less than 5 nm, the electrical resistance of the film becomes too high and thermoelectric conversion may not be possible. On the other hand, when the thickness exceeds 1000 nm, the film forming process cost becomes excessive, and the cost effectiveness deteriorates, which is not preferable.
  • the thermoelectric conversion layer 22 may be a single layer of the inorganic thermoelectric material or the organic polymer compound as long as it falls within the range of the rated capacity, or the kind of the inorganic thermoelectric material or the organic polymer compound. A structure in which layers formed using different layers are stacked may be used.
  • thermoelectric materials described above can be used.
  • the comparison of the rated capacities is made with the sum of the thermoelectric materials.
  • the electrode layer 23 is formed from a conductive material.
  • a conductive material a material having a relatively small work function is preferable.
  • metals such as platinum, gold, silver, aluminum, indium, chromium, copper, tin, nickel, metal oxides of these metals, or metal alloys
  • a carbon nanotube or a composite of the carbon nanotube and the metal, metal oxide, or alloy can be given.
  • the thickness of the electrode layer 23 is preferably 0.02 to 100 ⁇ m, and particularly preferably 0.03 to 10 ⁇ m.
  • thermoelectric conversion layer 22 is formed on the surface of the base material 10 using the thermoelectric material described above.
  • the thermoelectric conversion layer 22 can be formed by flash evaporation, vacuum arc vapor deposition, screen printing, coating, or the like of the inorganic thermoelectric material, for example.
  • an aqueous dispersion or solution (coating solution) of an organic polymer compound is used for dip coating, spin coating, spray coating, gravure coating, die coating, doctor blade, etc.
  • thermoelectric conversion layer 22 can be formed on the substrate 10 by various coatings, ink jet printing, or the like.
  • thermoelectric conversion layer 22 is made of a thermoelectric semiconductor composition containing fine particles of a thermoelectric semiconductor, a heat resistant resin, and an ionic liquid, an annealing process B is performed.
  • an electrode layer 23 is further formed on the base material 10 on which the pattern of the thermoelectric conversion layer 22 is formed using a conductive material.
  • thermoelectric conversion device 20 For the formation of the electrode layer 23, a dry process such as PVD (physical vapor deposition) such as vacuum deposition, sputtering, ion plating, or CVD (chemical vapor deposition) such as thermal CVD or atomic layer deposition (ALD), Alternatively, various processes such as dip coating, spin coating, spray coating, bar coating, gravure coating, die coating, and doctor blade, and wet processes such as electrochemical deposition can be applied.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • various processes such as dip coating, spin coating, spray coating, bar coating, gravure coating, die coating, and doctor blade, and wet processes such as electrochemical deposition can be applied.
  • FIG. 3 is an external perspective view of the exhaust heat recovery sheet 1C.
  • 4A is a perspective view showing one pattern film 30 constituting the exhaust heat recovery sheet 1C
  • FIG. 4B is a perspective view showing the other pattern film 40 opposed to the pattern film 30.
  • the exhaust heat recovery sheet 1C includes a pattern film 30 and a pattern film 40, and a so-called ⁇ -type thermoelectric conversion module is formed.
  • the pattern film 30 shown in FIG. 4A includes a base material 31, a p-type thermoelectric element 32, an n-type thermoelectric element 33, and a lower electrode 34.
  • the lower electrode 34 includes an electrode 34a that electrically connects the p-type thermoelectric element 32 and the n-type thermoelectric element 33, and current collecting electrodes 34b and 34c.
  • a lower electrode 34 is formed in a predetermined pattern on a base material 31. Furthermore, the p-type thermoelectric element 32 and the n-type thermoelectric element 33 are alternately formed on the lower electrode 34 so as to be connected in series in the direction of the dotted arrow in FIG.
  • a pattern film 40 shown in FIG. 4B includes a base material 41 and an upper electrode 42.
  • the pattern film 40 is overlaid on the pattern film 30 so that the upper electrode 42 connects the p-type thermoelectric element 32 and the n-type thermoelectric element 33 formed on the pattern film 30 in series, and a conductive adhesive (FIG. Are bonded to each other.
  • the p-type thermoelectric element 32, the n-type thermoelectric element 33, the lower electrode 34, and the upper electrode 42 constitute a thermoelectric conversion device.
  • the p-type thermoelectric element 32 and the n-type thermoelectric element 33 correspond to the thermoelectric conversion layers in FIGS. 1 and 2.
  • the direction in which electricity flows through the p-type thermoelectric element 32 and the n-type thermoelectric element 33, which are thermoelectric conversion layers, is arranged so as to intersect the planes of the base material 31 and the base material 41.
  • the thickness of the base material in the following formula corresponds to the thickness of the base material 31 or 41 that is in contact with the heat source or close to the heat source.
  • thermoelectric conversion layer ⁇ (Heat conductivity of heat source) ⁇ (thickness in the direction in which the temperature gradient of the heat source is generated) ⁇ + ⁇ (heat conductivity of the base material) ⁇ (thickness of the base material) ⁇ > ⁇ (thermal conductivity of thermoelectric material) ) ⁇ (thickness of the thermoelectric conversion layer) ⁇
  • a thermosetting resin or a thermoplastic resin in which a conductive filler is dispersed for example, a thermosetting resin or a thermoplastic resin in which a conductive filler is dispersed, a thermosetting resin or a thermoplastic resin in which a conductive polymer is dispersed, or the like is used.
  • Conductive fillers include carbon fiber, carbon nanofiber, carbon black, multi-walled carbon nanotube, single-walled carbon nanotube, carbon compounds such as fullerene, gold, silver, copper, aluminum and other metals, silicon oxide, titanium oxide, zirconium oxide And metal oxides such as ITO.
  • the conductive polymer include polyaniline, polypyrrole, polythiophene, or polythiophene doped with polystyrene sulfonic acid.
  • the power storage unit includes a secondary battery, a capacitor, and the like.
  • the secondary battery may be any battery that can store electricity, for example, lithium battery, lithium polymer battery, lithium ion battery, nickel metal hydride battery, nickel-cadmium battery, organic radical battery, lead storage battery, air secondary battery, nickel zinc battery, A silver zinc battery etc. are mentioned.
  • Examples of the capacitor include an electric double layer capacitor and a lithium ion capacitor.
  • the exhaust heat recovery sheet may have a control circuit that controls the storage operation of the electrical energy obtained from the thermoelectric conversion device to the storage unit.
  • thermoelectric performance of the waste heat recovery sheet produced in the examples and comparative examples described later evaluated the thermoelectric performance of the waste heat recovery sheet produced in the examples and comparative examples described later.
  • the 3 ⁇ method was used for the measurement of thermal conductivity.
  • ⁇ Temperature difference> Using a cooling device that combines a chiller (manufactured by ASONE Co., Ltd., “LTCi-150H”) and a water-cooled cooler (manufactured by Takagi Seisakusho Co., Ltd., “P-200S”), It was kept at 300K.
  • the other surface of the exhaust heat recovery sheet was held at 350 K with a hot plate (“THI-1000” manufactured by ASONE CORPORATION).
  • TTI-1000 manufactured by ASONE CORPORATION
  • the temperature above and below the power generation layer was measured with a measuring device in which a K-type thermocouple and a data logger (Eto Denki Co., Ltd., “Kadak 3”) were combined, and the temperature difference was calculated.
  • ⁇ Output voltage> It was measured with a potentiometer (manufactured by Hioki Electric Co., Ltd., Digital Hitester 3801-50).
  • An exhaust heat recovery sheet was prepared as follows. ⁇ Example 1> (Production of exhaust heat recovery sheet) PEDOT: PSS (AGFA), an organic thermoelectric material, is formed on the surface of a polyimide film (manufactured by Toray DuPont Co., Ltd., “Kapton 200H”, thickness 50 ⁇ m, thermal conductivity 0.16 W / m ⁇ K). A thermoelectric conversion layer was formed by using an inkjet printer (“NanoPrinter-300” manufactured by Microjet Co., Ltd.) with “S-305” manufactured by Material Co., Ltd., and a thermal conductivity of 0.3 W / m ⁇ K. . After formation, it was dried at 150 ° C. in the atmosphere.
  • an electrode layer was formed using copper as a conductive material by a vacuum deposition method, and an exhaust heat recovery sheet a having the structure of the exhaust heat recovery sheet 1A shown in FIG. 1 was produced.
  • the total thickness of the exhaust heat recovery sheet a was 50.2 ⁇ m.
  • an aluminum plate heat sink type 1; thermal conductivity 236 W / m ⁇ K, thickness 1 mm
  • the current direction of the thermoelectric conversion layer is arranged in parallel to the plane of the substrate.
  • the exhaust heat recovery sheet a was arranged so that the current direction of the thermoelectric conversion layer intersected the direction in which the temperature gradient of the heat source occurred.
  • the specimen was heated by the method described above, and the temperature difference generated in the exhaust heat recovery sheet a was measured. Moreover, the output voltage obtained was measured. The results are shown in Table 1.
  • Example 2 On the surface of a polyimide film (“Kapton 200H” manufactured by Toray DuPont Co., Ltd., thickness 50 ⁇ m, thermal conductivity 0.16 W / m ⁇ K) used as a base material, with an inorganic thermoelectric material via a shadow mask A p-type bismuth telluride (manufactured by High Purity Chemical Co., Ltd., thermal conductivity 1.5 W / m ⁇ K) was formed using an arc plasma deposition apparatus (manufactured by ULVAC-RIKO Co., Ltd., “APD-S”). .
  • Kapton 200H manufactured by Toray DuPont Co., Ltd., thickness 50 ⁇ m, thermal conductivity 0.16 W / m ⁇ K
  • a p-type bismuth telluride manufactured by High Purity Chemical Co., Ltd., thermal conductivity 1.5 W / m ⁇ K
  • n-type bismuth telluride manufactured by Koyo Chemical Co., Ltd., thermal conductivity 1.5 W / m ⁇ K
  • an electrode layer was formed using copper as a conductive material by using a vacuum evaporation apparatus, and an exhaust heat recovery sheet b having the structure of a pn type exhaust heat recovery sheet 1B shown in FIG. 2 was produced.
  • the total thickness of the exhaust heat recovery sheet b was 50.2 ⁇ m.
  • a copper plate heat sink type 2; thermal conductivity 386 W / m ⁇ K, thickness 1 mm
  • the current direction of the thermoelectric conversion layer is arranged in parallel to the plane of the substrate.
  • the exhaust heat recovery sheet b was arranged so that the current direction of the thermoelectric conversion layer intersected the direction in which the temperature gradient of the heat source occurred.
  • the specimen was heated by the method described above, and the temperature difference generated in the exhaust heat recovery sheet b was measured. Moreover, the output voltage obtained was measured. The results are shown in Table 1.
  • Example 3 As an inorganic thermoelectric material, p-type manganese silicide (manufactured by Koyo Chemical Co., Ltd., thermal conductivity 10 W / m ⁇ K), and n-type magnesium silicide (manufactured by Koyo Chemical Co., Ltd., thermal conductivity 8 W / m ⁇ K) Pn type exhaust heat shown in FIG. 2 in the same manner as in Example 2 except that the film was formed using an MBE film forming apparatus (“ST-LMBE” manufactured by Pascal Co., Ltd.). A recovery sheet c was produced. A copper plate (thermal conductivity 386 W / m ⁇ K, thickness 1 mm) was used as a heat source.
  • the current direction of the thermoelectric conversion layer is arranged in parallel to the plane of the substrate.
  • the exhaust heat recovery sheet c was arranged so that the current direction of the thermoelectric conversion layer intersected the direction in which the temperature gradient of the heat source occurred.
  • the specimen was heated by the method described above, and the temperature difference generated in the exhaust heat recovery sheet c was measured. Moreover, the output voltage obtained was measured. The results are shown in Table 1.
  • Example 4 As an inorganic thermoelectric material, p-type Fe 2 VAl (manufactured by High Purity Chemical Co., Ltd., thermal conductivity 15 W / m ⁇ K) and n-type Fe 2 VAl (manufactured by Koyo Chemical Co., Ltd., thermal conductivity 20 W / pn type exhaust heat shown in FIG. 2 in the same manner as in Example 2, except that the film was formed using a sputtering film forming apparatus (“i-sputter” manufactured by ULVAC, Inc.) using m ⁇ K). A recovery sheet d was produced. A copper plate (thermal conductivity 386 W / m ⁇ K, thickness 1 mm) was used as a heat source.
  • i-sputter sputtering film forming apparatus
  • the current direction of the thermoelectric conversion layer is arranged in parallel to the plane of the substrate.
  • the exhaust heat recovery sheet d was arranged so that the current direction of the thermoelectric conversion layer intersected the direction in which the temperature gradient of the heat source occurred.
  • the specimen was heated by the method described above, and the temperature difference generated in the exhaust heat recovery sheet d was measured. Moreover, the output voltage obtained was measured. The results are shown in Table 1.
  • thermoelectric semiconductor fine particles A p-type bismuth telluride Bi 0.4 Te 3 Sb 1.6 (manufactured by High-Purity Chemical Laboratory, particle size: 180 ⁇ m), which is a bismuth-tellurium-based thermoelectric semiconductor material, is converted into a planetary ball mill (French Japan, Premium line P).
  • the thermoelectric semiconductor fine particles T1 having an average particle diameter of 1.2 ⁇ m were prepared by pulverizing under a nitrogen gas atmosphere using ⁇ 7).
  • the thermoelectric semiconductor fine particles obtained by pulverization were subjected to particle size distribution measurement using a laser diffraction particle size analyzer (CILAS, model 1064).
  • n-type bismuth telluride Bi 2 Te 3 (manufactured by High Purity Chemical Laboratory, particle size: 180 ⁇ m), which is a bismuth-tellurium-based thermoelectric semiconductor material, is pulverized in the same manner as described above, and thermoelectric semiconductor fine particles having an average particle size of 1.4 ⁇ m T2 was produced.
  • thermoelectric semiconductor composition The fine particles T1 (90 parts by mass) of the obtained bismuth-tellurium-based thermoelectric semiconductor material, polyamic acid (5 parts by mass) which is a polyimide precursor as a heat-resistant resin, and ionic liquid 1 As 1-butyl-3- (2-hydroxyethyl) imidazolium bromide (electric conductivity: 3.5 ⁇ 10 ⁇ 5 S / cm) (5 parts by mass), and mixing and dispersing them to obtain p-type A coating solution P made of a thermoelectric semiconductor composition containing fine particles T1 of bismuth telluride was prepared.
  • polyamic acid “poly (pyromellitic dianhydride-co-4,4′-oxydianiline) solution” manufactured by Sigma-Aldrich, solvent: methylpyrrolidone, solid content concentration: 15% by mass, 300 ° C. The mass reduction rate at 0.9% was 0.9%.
  • a coating liquid N made of a thermoelectric semiconductor composition containing fine particles T2 of n-type bismuth telluride was prepared in the same amount as described above except that the fine particles T1 were changed to fine particles T2.
  • the coating liquid P prepared in (1) is applied by screen printing onto a polyimide film (trade name “Kapton 200H”, thickness 50 ⁇ m, manufactured by Toray DuPont Co., Ltd.), which is a base material, at a temperature of 150 ° C. for 10 minutes.
  • the film was dried under an argon atmosphere to form a thin film having a thickness of 10 ⁇ m.
  • thermoelectric semiconductor material By holding for 1 hour and performing annealing treatment B after thin film formation, the microparticles of the thermoelectric semiconductor material were grown to produce a p-type thermoelectric conversion material. In the same manner, an n-type thermoelectric material was produced using the coating liquid N prepared in (1).
  • thermoelectric conversion module As shown in FIG. 4A, a polyimide film as a base material (trade name “Kapton 200H” manufactured by Toray DuPont Co., Ltd., thickness 50 ⁇ m, thermal conductivity 0.16 W / m -K) A lower electrode was formed on the upper surface by screen printing. Furthermore, using the coating liquid P and the coating liquid N prepared in (1), the pattern of the p-type thermoelectric element and the n-type thermoelectric element shown in FIG. Then, it was dried in an argon gas atmosphere for 10 minutes, and a thin film was formed so that each thickness of the p-type thermoelectric element and the n-type thermoelectric element was 100 ⁇ m.
  • the obtained thin film is heated at a heating rate of 5 K / min in an argon gas atmosphere, and annealing treatment B is performed at 415 ° C. for 1 hour to grow microparticles of thermoelectric semiconductor material to form a p-type.
  • a pattern film provided with a thermoelectric element and an n-type thermoelectric element was produced.
  • the pattern of the upper electrode is applied by screen printing as shown in FIG. A pattern film was prepared.
  • the waste heat recovery sheet e having the structure of the exhaust heat recovery sheet 1C shown in FIG. 3 was produced by pasting and bonding via the name “ECA100”, thickness 20 ⁇ m).
  • the same aluminum plate as used in Example 1 was used as a heat source.
  • the exhaust heat recovery sheet e is disposed so that the current direction of the thermoelectric conversion layer intersects the plane of the substrate.
  • the exhaust heat recovery sheet e was arranged so that the current direction of the thermoelectric conversion layer was the same as the direction in which the temperature gradient of the heat source was generated.
  • the specimen was heated by the method described above, and the temperature difference generated in the exhaust heat recovery sheet e was measured. Moreover, the output voltage obtained was measured. The results are shown in Table 1.
  • the waste heat recovery sheet of the present invention was originally released by installing it in a pipe, a casing of a device that generates heat, etc., from which a living waste heat and industrial waste heat are obtained, by a thermoelectric conversion device formed in a sheet shape. Part of thermal energy can be regenerated into electrical energy.
  • Waste heat recovery sheet 10 base material, 20 thermoelectric conversion device, 22, 22a, 22b thermoelectric conversion layer, 23 electrode layer, 30, 40 pattern film, 31 base material, 32 p-type thermoelectric element, 33 n Type thermoelectric element, 34 lower electrode, 34a electrode, 34b, 34c current collecting electrode, 41 base material, 42 upper electrode

Abstract

The present invention provides a waste heat recovery sheet which increases the degree of freedom with respect to the location where a thermoelectric conversion device can be disposed, and with which energy regeneration is possible. The waste heat recovery sheet is disposed in at least one part of a heat source and includes a substrate and a sheet-shaped thermoelectric conversion device which is disposed on the surface of the substrate and which has a thermoelectric conversion layer formed from a thermoelectric material and an electrode layer that is connected to the thermoelectric conversion layer. The waste heat recovery sheet is configured so as to satisfy the following formula with regard to: the thermal conductivity of the heat source; the thickness in the direction in which the temperature gradient of the heat source is generated; the thermal conductivity of the substrate; the thickness of the substrate; the thermal conductivity of the thermoelectric material; and the thickness of the thermoelectric conversion layer. Formula: {(thermal conductivity of the heat source) × (the thickness in the direction in which the temperature gradient of the heat source is generated)} + {(the thermal conductivity of the substrate) × (the thickness of the substrate)} > {(thermal conductivity of the thermoelectric material) × (the thickness of the thermoelectric conversion layer)}

Description

排熱回収シートWaste heat recovery sheet
 本発明は、熱電変換能を備えた排熱回収シートに関する。 The present invention relates to an exhaust heat recovery sheet having thermoelectric conversion capability.
 熱電変換デバイスは、導体の両端に生じる温度差により電位差が発生するデバイスである。恒常的な温度差が発生する場所から、熱電変換デバイスを用いて、熱エネルギーを電気エネルギーとして回収することができれば、省エネルギー化に資する。
 そこで、熱電変換デバイスを、ヒートシンクに配置することにより、ヒートシンクから放出される熱エネルギーを電気エネルギーとして回生することが検討されている(特許文献1参照)。特許文献1では、図2に示されるように、2枚のセラミックス等の絶縁伝熱板の間に、バルク状のP型半導体素子及びN型半導体素子が電極層を介して交互に配置され、互いに接続されてなる熱電変換デバイスが使用されている。
 恒常的に温度差が得られる熱源として、日常生活によって発生する熱(生活排熱という)や、工場の稼働によって発生する熱(工場排熱という)等が挙げられる。
A thermoelectric conversion device is a device that generates a potential difference due to a temperature difference that occurs at both ends of a conductor. If thermal energy can be recovered as electrical energy from a place where a constant temperature difference occurs using a thermoelectric conversion device, it will contribute to energy saving.
Therefore, it has been studied to regenerate heat energy emitted from the heat sink as electric energy by arranging the thermoelectric conversion device on the heat sink (see Patent Document 1). In Patent Document 1, as shown in FIG. 2, bulk P-type semiconductor elements and N-type semiconductor elements are alternately arranged via electrode layers between two insulating heat transfer plates such as ceramics and connected to each other. A thermoelectric conversion device is used.
Examples of a heat source that constantly obtains a temperature difference include heat generated by daily life (referred to as exhaust heat from daily life), heat generated by operation of a factory (referred to as factory exhaust heat), and the like.
国際公開第2010/090350号International Publication No. 2010/090350
 上述した生活排熱及び工場排熱は、熱電変換デバイスを用いたエネルギー回生における熱源として有用である。しかし、生活排熱及び工場排熱の温度は、概ね100℃以下であり、また、生活排熱及び工場排熱が得られる場所は、温水、蒸気等を移送する配管や、発熱する機器等の筐体表面である。このため、このような熱源に設置する場合、熱電変換デバイスには、設置場所の表面形状への高い追従性が要求される。さらに、熱電変換デバイスに生じる温度差が100℃以下のように、小さい場合であっても、エネルギー変換が可能であることが求められる。
 そこで、本発明は、熱電変換デバイスの配置場所の自由度を高め、エネルギー回生が可能な排熱回収シートを提供することを課題とする。
The above-mentioned life exhaust heat and factory exhaust heat are useful as heat sources in energy regeneration using a thermoelectric conversion device. However, the temperature of daily exhaust heat and factory exhaust heat is approximately 100 ° C. or less, and the place where daily exhaust heat and factory exhaust heat can be obtained includes pipes for transferring hot water, steam, etc., and equipment that generates heat. It is the housing surface. For this reason, when installing in such a heat source, the thermoelectric conversion device is required to have high followability to the surface shape of the installation location. Furthermore, even if the temperature difference which arises in a thermoelectric conversion device is as small as 100 degrees C or less, it is calculated | required that energy conversion is possible.
Then, this invention makes it a subject to provide the exhaust heat recovery sheet | seat which raises the freedom degree of the arrangement place of a thermoelectric conversion device, and can regenerate energy.
 本発明は、以下の(1)~(8)を提供するものである。
(1)熱源の少なくとも一部に配置され、シート状の基材と、該基材の表面に配設されており熱電材料から形成された熱電変換層及び該熱電変換層に接続された電極層を有するシート状の熱電変換デバイスとを有し、熱源の熱伝導率、熱源の温度勾配が生じる方向の厚み、該基材の熱伝導率、該基材の厚み、熱電材料の熱伝導率、及び該熱電変換層の厚みが、下記式を満たす排熱回収シート。
 {(熱源の熱伝導率)×(熱源の温度勾配が生じる方向の厚み)}+{(該基材の熱伝導率)×(該基材の厚み)}>{(熱電材料の熱伝導率)×(該熱電変換層の厚み)}
(2)前記熱電変換デバイスを構成する熱電変換層の電流方向が、前記基材の平面に平行に配置されている前記(1)に記載の排熱回収シート。
(3)前記熱電変換デバイスを構成する熱電変換層の電流方向が、前記基材の平面に交差するように配置されている前記(1)に記載の排熱回収シート。
(4)前記熱電変換デバイスの前記熱電材料の熱伝導率が30W/m・K以下である前記(1)~(3)のいずれかに記載の排熱回収シート。
(5)前記熱電変換デバイスの前記熱電材料がn型熱電材料である前記(1)~(4)のいずれかに記載の排熱回収シート。
(6)前記熱電変換デバイスの前記熱電材料がp型熱電材料である前記(1)~(4)のいずれかに記載の排熱回収シート。
(7)前記熱電変換デバイスの前記熱電材料がn型熱電材料及びp型熱電材料であり、該n型熱電材料からなるn型熱電変換層と該p型熱電材料からなるp型熱電変換層とが前記電極層によって接続されてなる前記(1)~(6)のいずれかに記載の排熱回収シート。
(8)電気を蓄電する蓄電部を備え、前記電極層が該蓄電部に電気的に接続されてなる前記(1)~(7)のいずれかに記載の排熱回収シート。
The present invention provides the following (1) to (8).
(1) A sheet-like base material disposed on at least a part of a heat source, a thermoelectric conversion layer formed on a surface of the base material and formed from a thermoelectric material, and an electrode layer connected to the thermoelectric conversion layer A sheet-like thermoelectric conversion device having, the heat conductivity of the heat source, the thickness in the direction in which the temperature gradient of the heat source occurs, the heat conductivity of the substrate, the thickness of the substrate, the heat conductivity of the thermoelectric material, And the exhaust heat recovery sheet | seat with which the thickness of this thermoelectric conversion layer satisfy | fills a following formula.
{(Heat conductivity of heat source) × (thickness in the direction in which the temperature gradient of the heat source is generated)} + {(heat conductivity of the base material) × (thickness of the base material)}> {(thermal conductivity of thermoelectric material) ) × (thickness of the thermoelectric conversion layer)}
(2) The exhaust heat recovery sheet according to (1), wherein a current direction of a thermoelectric conversion layer constituting the thermoelectric conversion device is arranged in parallel to a plane of the base material.
(3) The exhaust heat recovery sheet according to (1), wherein a current direction of a thermoelectric conversion layer constituting the thermoelectric conversion device is arranged so as to intersect a plane of the base material.
(4) The exhaust heat recovery sheet according to any one of (1) to (3), wherein the thermoelectric material of the thermoelectric conversion device has a thermal conductivity of 30 W / m · K or less.
(5) The exhaust heat recovery sheet according to any one of (1) to (4), wherein the thermoelectric material of the thermoelectric conversion device is an n-type thermoelectric material.
(6) The exhaust heat recovery sheet according to any one of (1) to (4), wherein the thermoelectric material of the thermoelectric conversion device is a p-type thermoelectric material.
(7) The thermoelectric material of the thermoelectric conversion device is an n-type thermoelectric material and a p-type thermoelectric material, an n-type thermoelectric conversion layer made of the n-type thermoelectric material, and a p-type thermoelectric conversion layer made of the p-type thermoelectric material; The exhaust heat recovery sheet according to any one of (1) to (6), wherein the exhaust heat recovery sheets are connected by the electrode layer.
(8) The exhaust heat recovery sheet according to any one of (1) to (7), further including a power storage unit that stores electricity, wherein the electrode layer is electrically connected to the power storage unit.
 本発明によれば、熱電変換デバイスの配置場所の自由度を高め、生活排熱及び工場排熱からエネルギー回生が可能な排熱回収シートを提供することができる。 According to the present invention, it is possible to provide a waste heat recovery sheet that can increase the degree of freedom of the location of the thermoelectric conversion device and can recover energy from life waste heat and factory waste heat.
本発明の実施形態に係る排熱回収シート1Aの構造を説明する模式図である。It is a schematic diagram explaining the structure of 1 A of waste heat recovery sheets which concern on embodiment of this invention. 本発明の実施形態に係る排熱回収シート1Bの構造を説明する模式図である。It is a schematic diagram explaining the structure of the waste heat recovery sheet | seat 1B which concerns on embodiment of this invention. 本発明の実施形態に係る排熱回収シート1Cの外観斜視図である。It is an appearance perspective view of exhaust heat recovery sheet 1C concerning an embodiment of the present invention. 本発明の実施形態に係る排熱回収シート1Cの内部構成を説明するための図であり、(a)は、排熱回収シート1Cを構成する一方のパターンフィルム30を示す斜視図であり、(b)は、対向させる他方のパターンフィルム40を示す斜視図である。It is a figure for demonstrating the internal structure of the waste heat recovery sheet | seat 1C which concerns on embodiment of this invention, (a) is a perspective view which shows one pattern film 30 which comprises the waste heat recovery sheet | seat 1C, ( b) is a perspective view showing the other pattern film 40 to be opposed to each other.
 以下、本発明の実施形態に係る排熱回収シートの概要について図面を用いて説明する。図1は、本実施形態に係る排熱回収シート1Aの構造を説明する模式図であり、図2は、排熱回収シート1Bの構造を説明する模式図である。図1及び図2は、排熱回収シート1A及び排熱回収シート1Bを主面に垂直方向からみた平面図である。排熱回収シート1は、後述する熱電変換層の種類に応じて、図1及び図2に示す2通りの構造を採り得る。 Hereinafter, an outline of the exhaust heat recovery sheet according to the embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram illustrating the structure of the exhaust heat recovery sheet 1A according to the present embodiment, and FIG. 2 is a schematic diagram illustrating the structure of the exhaust heat recovery sheet 1B. 1 and 2 are plan views of the exhaust heat recovery sheet 1A and the exhaust heat recovery sheet 1B as viewed from the direction perpendicular to the main surface. The exhaust heat recovery sheet 1 can take two structures shown in FIGS. 1 and 2 according to the type of thermoelectric conversion layer described later.
[排熱回収シート]
 本発明の実施形態に係る排熱回収シート1Aは、熱源の少なくとも一部に配置され、シート状の基材10と、シート状の熱電変換デバイス20とを有する。熱電変換デバイス20は、基材10の表面に配設されており熱電材料から形成された熱電変換層22及び該熱電変換層22に接続された電極層23を有する。
 そして、熱源の熱伝導率、熱源の温度勾配が生じる方向の厚み、基材10の熱伝導率、基材10の厚み、熱電材料の熱伝導率、及び該熱電変換層22の厚みが、下記式を満たす。
 {(熱源の熱伝導率)×(熱源の温度勾配が生じる方向の厚み)}+{(該基材の熱伝導率)×(該基材の厚み)}>{(熱電材料の熱伝導率)×(該熱電変換層の厚み)}
 本実施形態では、上式の左辺{(熱源の熱伝導率)×(熱源の温度勾配が生じる方向の厚み)}+{(該基材の熱伝導率)×(該基材の厚み)}を、熱源の定格能力と定義する。また、上式の右辺{(熱電材料の熱伝導率)×(該熱電変換層の厚み)}を、熱電材料の定格能力と定義する。
 本実施形態に係る排熱回収シートでは、熱源の定格能力が熱電材料の定格能力を上回れば、熱電材料の種類、層数によらず、熱電変換デバイスに、十分な温度差を与えることができ、電気エネルギーを得ることができる。
 本実施形態において、熱電材料とは、熱エネルギーを電気エネルギーに変換することのできる材料のことであり、熱エネルギーを電気エネルギーに変換することのできる半導体を熱電半導体という。
[Exhaust heat recovery sheet]
The exhaust heat recovery sheet 1 </ b> A according to the embodiment of the present invention is disposed on at least a part of a heat source, and includes a sheet-like base material 10 and a sheet-like thermoelectric conversion device 20. The thermoelectric conversion device 20 includes a thermoelectric conversion layer 22 that is disposed on the surface of the substrate 10 and is formed from a thermoelectric material, and an electrode layer 23 that is connected to the thermoelectric conversion layer 22.
And the heat conductivity of the heat source, the thickness in the direction in which the temperature gradient of the heat source is generated, the heat conductivity of the substrate 10, the thickness of the substrate 10, the heat conductivity of the thermoelectric material, and the thickness of the thermoelectric conversion layer 22 are as follows: Satisfy the formula.
{(Heat conductivity of heat source) × (thickness in the direction in which the temperature gradient of the heat source is generated)} + {(heat conductivity of the base material) × (thickness of the base material)}> {(thermal conductivity of thermoelectric material) ) × (thickness of the thermoelectric conversion layer)}
In the present embodiment, the left side of the above formula {(heat conductivity of the heat source) × (thickness in the direction in which the temperature gradient of the heat source is generated)} + {(heat conductivity of the substrate) × (thickness of the substrate)} Is defined as the rated capacity of the heat source. Further, the right side {(thermal conductivity of thermoelectric material) × (thickness of the thermoelectric conversion layer)} in the above formula is defined as the rated capacity of the thermoelectric material.
In the exhaust heat recovery sheet according to this embodiment, if the rated capacity of the heat source exceeds the rated capacity of the thermoelectric material, a sufficient temperature difference can be given to the thermoelectric conversion device regardless of the type and number of layers of the thermoelectric material. Electric energy can be obtained.
In this embodiment, a thermoelectric material is a material that can convert thermal energy into electrical energy, and a semiconductor that can convert thermal energy into electrical energy is called a thermoelectric semiconductor.
<基材>
 基材10は、熱電材料の電気伝導率の低下に影響を及ぼさないものであれば、特に制限されない。基材としては、例えば、ガラス、シリコン、プラスチックフィルム等が挙げられる。なかでも、屈曲性に優れることから、プラスチックフィルムが好ましい。
 プラスチックフィルムとしては、具体的には、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリイミドフィルム、ポリアミドフィルム、ポリエーテルイミドフィルム、ポリアラミドフィルム、ポリアミドイミドフィルム、ポリエーテルケトンフィルム、ポリサルフォンフィルム、ポリエーテル・エーテルケトンフィルム、ポリフェニレンサルファイドフィルム、ポリ(4-メチルペンテン-1)フィルム等が挙げられる。また、これらフィルムの積層体であってもよい。
 これらの中でも、熱電材料からなる薄膜をアニール処理する場合には、熱電材料の性能を維持することができ、熱変形することがなく、耐熱性及び寸法安定性が高いという点から、ポリイミドフィルム、ポリアミドフィルム、ポリエーテルイミドフィルム、ポリアラミドフィルム、ポリアミドイミドフィルムが好ましく、さらに、汎用性が高いという点から、ポリイミドフィルムが特に好ましい。
 基材10の厚みは、屈曲性、耐熱性及び寸法安定性の観点から、0.01~1000μmが好ましく、0.01~100μmがより好ましく、0.01~25μmであることがより好ましい。無機系の熱電材料を使用する場合には、基材10の分解温度は、300℃以上であることが好ましい。
<Base material>
The substrate 10 is not particularly limited as long as it does not affect the decrease in the electric conductivity of the thermoelectric material. Examples of the substrate include glass, silicon, and plastic film. Of these, a plastic film is preferable because of its excellent flexibility.
Specific examples of the plastic film include polyethylene terephthalate film, polyethylene naphthalate film, polyimide film, polyamide film, polyetherimide film, polyaramid film, polyamideimide film, polyetherketone film, polysulfone film, and polyether ether. Examples thereof include ketone films, polyphenylene sulfide films, poly (4-methylpentene-1) films, and the like. Moreover, the laminated body of these films may be sufficient.
Among these, when annealing a thin film made of a thermoelectric material, the performance of the thermoelectric material can be maintained, there is no thermal deformation, and the heat resistance and dimensional stability are high. A polyamide film, a polyetherimide film, a polyaramid film, and a polyamideimide film are preferable, and a polyimide film is particularly preferable from the viewpoint of high versatility.
The thickness of the substrate 10 is preferably 0.01 to 1000 μm, more preferably 0.01 to 100 μm, and more preferably 0.01 to 25 μm from the viewpoints of flexibility, heat resistance, and dimensional stability. When an inorganic thermoelectric material is used, the decomposition temperature of the substrate 10 is preferably 300 ° C. or higher.
<熱電変換デバイス>
 熱電変換デバイス20は、熱電変換層22と、電極層23とから形成されている。熱電変換層22は、基材10の表面に矩形状に形成されており、矩形の長手方向の一端部と他端部とに電極層23が接続されている。
 熱電材料として、p型熱電材料又はn型熱電材料のいずれかで形成された熱電変換層22が用いられる場合には、図1に示すように、例えば、隣接する熱電変換層22の長手方向における一方の上端部と他方の下端部とが電極層23によって接続されている。
 また、p型熱電材料及びn型熱電材料が用いられる場合には、図2に示すように、例えば、p型熱電材料から形成された熱電変換層22aと、n型熱電材料から形成された熱電変換層22bとが直列接続になるように、電極層23によって接続されている。
 図1及び図2に示す熱電変換デバイス20では、熱電変換層22の電流方向が基材10の平面に平行に配置されている。
 このように形成された熱電変換デバイス20は、本実施形態では、発電用デバイスとして使用するために、一端部を高温側に配置し、他端部を低温側に配置する。すなわち、熱電変換デバイス20を熱源に配置する場合には、熱電変換層22(22a,22b)の長手方向が、温度勾配が生じる屹立方向Vに沿うように配置することが好ましい。
 本実施形態に係る熱電変換デバイス20の厚みは、0.2~2000μmであることが好ましく、0.2~1000μmであることがより好ましく、0.2~100μmであることがより好ましい。
 また、図1及び図2には、図示されていないが、熱電変換デバイス20の電極層23には、熱起電力取出用の電極が接続されており、熱電変換デバイス20から熱起電力を取り出し、蓄電装置に蓄えられるか、デバイスの電源として使用できる。続いて、熱電変換デバイス20の各構成について、詳細に説明する。
<Thermoelectric conversion device>
The thermoelectric conversion device 20 is formed of a thermoelectric conversion layer 22 and an electrode layer 23. The thermoelectric conversion layer 22 is formed in a rectangular shape on the surface of the base material 10, and an electrode layer 23 is connected to one end and the other end in the longitudinal direction of the rectangle.
When the thermoelectric conversion layer 22 formed of either a p-type thermoelectric material or an n-type thermoelectric material is used as the thermoelectric material, for example, in the longitudinal direction of the adjacent thermoelectric conversion layers 22 as shown in FIG. One upper end and the other lower end are connected by an electrode layer 23.
Further, when a p-type thermoelectric material and an n-type thermoelectric material are used, as shown in FIG. 2, for example, a thermoelectric conversion layer 22a formed from a p-type thermoelectric material and a thermoelectric formed from an n-type thermoelectric material. The conversion layer 22b is connected by the electrode layer 23 so as to be connected in series.
In the thermoelectric conversion device 20 shown in FIGS. 1 and 2, the current direction of the thermoelectric conversion layer 22 is arranged in parallel to the plane of the substrate 10.
In this embodiment, the thermoelectric conversion device 20 thus formed has one end portion disposed on the high temperature side and the other end portion disposed on the low temperature side in order to be used as a power generation device. That is, when the thermoelectric conversion device 20 is disposed in the heat source, the thermoelectric conversion layer 22 (22a, 22b) is preferably disposed so that the longitudinal direction thereof is along the upright direction V where the temperature gradient occurs.
The thickness of the thermoelectric conversion device 20 according to this embodiment is preferably 0.2 to 2000 μm, more preferably 0.2 to 1000 μm, and more preferably 0.2 to 100 μm.
Although not shown in FIGS. 1 and 2, an electrode for extracting a thermoelectromotive force is connected to the electrode layer 23 of the thermoelectric conversion device 20, and the thermoelectromotive force is taken out from the thermoelectric conversion device 20. Can be stored in a power storage device or used as a power source for the device. Next, each configuration of the thermoelectric conversion device 20 will be described in detail.
(熱電変換層)
 熱電変換層22は、ゼーベック効果を有する熱電材料から形成されている。熱電変換層22を形成することのできる熱電材料としては、熱源の熱伝導率、熱源の温度勾配が生じる方向の厚み、該基材の熱伝導率、該基材の厚み、熱電材料の熱伝導率、及び該熱電変換層の厚みが、下記式の関係を満たすことを要する。
 {(熱源の熱伝導率)×(熱源の温度勾配が生じる方向の厚み)}+{(該基材の熱伝導率)×(該基材の厚み)}>{(熱電材料の熱伝導率)×(該熱電変換層の厚み)}
(Thermoelectric conversion layer)
The thermoelectric conversion layer 22 is formed from a thermoelectric material having a Seebeck effect. The thermoelectric material that can form the thermoelectric conversion layer 22 includes the heat conductivity of the heat source, the thickness in the direction in which the temperature gradient of the heat source occurs, the heat conductivity of the substrate, the thickness of the substrate, and the heat conductivity of the thermoelectric material. The rate and the thickness of the thermoelectric conversion layer must satisfy the relationship of the following formula.
{(Heat conductivity of heat source) × (thickness in the direction in which the temperature gradient of the heat source is generated)} + {(heat conductivity of the base material) × (thickness of the base material)}> {(thermal conductivity of thermoelectric material) ) × (thickness of the thermoelectric conversion layer)}
 熱電材料としては、無機系材料又は有機系材料のいずれも使用できる。
 無機系熱電材料としては、例えば、p型ビスマステルライド、n型ビスマステルライド、BiTe等のビスマス-テルル系熱電半導体材料;GeTe、PbTe等のテルライド系熱電半導体材料;アンチモン-テルル系熱電半導体材料;ZnSb、ZnSb2、ZnSb等の亜鉛-アンチモン系熱電半導体材料;SiGe等のシリコン-ゲルマニウム系熱電半導体材料;BiSe等のビスマスセレナイド系熱電半導体材料;β-FeSi、CrSi、MnSi1.73、MgSi等のシリサイド系熱電半導体材料;ZnO等の酸化物系熱電半導体材料;FeVAl、FeVAlSi、FeVTiAl等のホイスラー材料、TiS、テトラヘドライト等の硫化物系熱電半導体材料などを用いることができる。
 これらの中でも、本実施形態に用いて好適な熱電材料は、p型ビスマステルライド又はn型ビスマステルライド、BiTe等のビスマス-テルル系熱電半導体材料である。
 p型ビスマステルライドは、キャリアが正孔で、ゼーベック係数が正値であり、例えば、BiTeSb2-Xで表わされるものが好ましく用いられる。この場合、Xは、好ましくは0<X≦0.8であり、より好ましくは0.4≦X≦0.6である。Xが0より大きく0.8以下であるとゼーベック係数と電気伝導率が大きくなり、p型熱電変換材料としての特性が維持されるので好ましい。
 n型ビスマステルライドは、キャリアが電子で、ゼーベック係数が負値であり、例えば、BiTe3-YSeで表わされるものが好ましく用いられる。この場合、Yは、好ましくは0≦Y≦3であり、より好ましくは0≦Y≦2.7である。Yが0以上3以下であるとゼーベック係数と電気伝導率が大きくなり、n型熱電変換材料としての特性が維持されるので好ましい。
 無機系熱電材料から形成される熱電変換層22の厚みは、0.1μm以上1000μm以下が好ましく、より好ましくは、0.1μm以上100μm以下である。0.1μm未満であると、電気抵抗が高く充分な性能が得られず、1000μmを超えると、成膜工程に掛かるコストが過剰になり、費用対効果が悪化する。
As the thermoelectric material, either an inorganic material or an organic material can be used.
Examples of inorganic thermoelectric materials include bismuth-tellurium-based thermoelectric semiconductor materials such as p-type bismuth telluride, n-type bismuth telluride and Bi 2 Te 3 ; telluride-based thermoelectric semiconductor materials such as GeTe and PbTe; antimony-tellurium-based thermoelectric semiconductors Materials: zinc-antimony thermoelectric semiconductor materials such as ZnSb, Zn 3 Sb 2 and Zn 4 Sb 3 ; silicon-germanium thermoelectric semiconductor materials such as SiGe; bismuth selenide thermoelectric semiconductor materials such as Bi 2 Se 3 ; β- Silicide-based thermoelectric semiconductor materials such as FeSi 2 , CrSi 2 , MnSi 1.73 and Mg 2 Si; Oxide-based thermoelectric semiconductor materials such as ZnO; Heusler materials such as FeVAl, FeVAlSi and FeVTiAl; TiS 2 and tetrahedrite Sulfide-based thermoelectric semiconductor materials can be used The
Among these, thermoelectric materials suitable for use in the present embodiment are p-type bismuth telluride, n-type bismuth telluride, Bi 2 Te 3 and other bismuth-tellurium-based thermoelectric semiconductor materials.
As p-type bismuth telluride, carriers are holes and the Seebeck coefficient is a positive value, and for example, those represented by Bi X Te 3 Sb 2-X are preferably used. In this case, X is preferably 0 <X ≦ 0.8, and more preferably 0.4 ≦ X ≦ 0.6. It is preferable that X is greater than 0 and less than or equal to 0.8 because the Seebeck coefficient and electrical conductivity are increased, and the characteristics as a p-type thermoelectric conversion material are maintained.
As the n-type bismuth telluride, the carrier is an electron and the Seebeck coefficient is a negative value. For example, those represented by Bi 2 Te 3-Y Se Y are preferably used. In this case, Y is preferably 0 ≦ Y ≦ 3, and more preferably 0 ≦ Y ≦ 2.7. It is preferable that Y is 0 or more and 3 or less because the Seebeck coefficient and electrical conductivity are increased, and the characteristics as an n-type thermoelectric conversion material are maintained.
The thickness of the thermoelectric conversion layer 22 formed from an inorganic thermoelectric material is preferably 0.1 μm or more and 1000 μm or less, and more preferably 0.1 μm or more and 100 μm or less. When the thickness is less than 0.1 μm, the electric resistance is high and sufficient performance cannot be obtained. When the thickness exceeds 1000 μm, the cost for the film forming process becomes excessive, and the cost effectiveness is deteriorated.
 熱電変換層22は、熱電半導体の微粒子、耐熱性樹脂及びイオン液体を含む熱電半導体組成物からなってもよい。 The thermoelectric conversion layer 22 may be made of a thermoelectric semiconductor composition containing fine particles of a thermoelectric semiconductor, a heat resistant resin, and an ionic liquid.
(熱電半導体の微粒子)
 前記熱電半導体の微粒子は、前述の無機系熱電半導体材料を、微粉砕装置等により、所定のサイズまで粉砕することにより得られる。
(Thermoelectric semiconductor fine particles)
The fine particles of the thermoelectric semiconductor can be obtained by pulverizing the above-described inorganic thermoelectric semiconductor material to a predetermined size with a fine pulverizer or the like.
 熱電半導体の微粒子の熱電半導体組成物中の配合量は、好ましくは、30~99質量%である。より好ましくは、50~96質量%であり、さらに好ましくは、70~95質量%である。熱電半導体の微粒子が、上記範囲内であれば、ゼーベック係数の絶対値が大きく、また電気伝導率の低下が抑制され、熱伝導率のみが低下するため高い熱電性能を示すとともに、十分な皮膜強度、屈曲性を有する膜が得られ好ましい。 The blending amount of the thermoelectric semiconductor fine particles in the thermoelectric semiconductor composition is preferably 30 to 99% by mass. More preferably, it is 50 to 96% by mass, and still more preferably 70 to 95% by mass. If the thermoelectric semiconductor particles are within the above range, the absolute value of the Seebeck coefficient is large, the decrease in electrical conductivity is suppressed, and only the thermal conductivity is reduced, so that high thermoelectric performance is exhibited and sufficient film strength is obtained. A film having flexibility is preferably obtained.
 熱電半導体の微粒子の平均粒径は、好ましくは、10nm~200μm、より好ましくは、10nm~30μm、さらに好ましくは、50nm~10μm、特に好ましくは、1~6μmである。上記範囲内であれば、均一分散が容易になり、電気伝導率を高くすることができる。 The average particle diameter of the thermoelectric semiconductor fine particles is preferably 10 nm to 200 μm, more preferably 10 nm to 30 μm, still more preferably 50 nm to 10 μm, and particularly preferably 1 to 6 μm. If it is in the said range, uniform dispersion | distribution will become easy and electrical conductivity can be made high.
 熱電半導体材料を粉砕して熱電半導体の微粒子を得る方法は特に限定されず、ジェットミル、ボールミル、ビーズミル、コロイドミル、コニカルミル、ディスクミル、エッジミル、製粉ミル、ハンマーミル、ペレットミル、ウィリーミル、ローラーミル等の公知の微粉砕装置等により、所定のサイズまで粉砕すればよい。 The method for obtaining thermoelectric semiconductor fine particles by pulverizing thermoelectric semiconductor material is not particularly limited. Jet mill, ball mill, bead mill, colloid mill, conical mill, disk mill, edge mill, milling mill, hammer mill, pellet mill, wheelie mill, roller What is necessary is just to grind | pulverize to predetermined size by well-known fine grinding | pulverization apparatuses, such as a mill.
 なお、熱電半導体の微粒子の平均粒径は、レーザー回折式粒度分析装置(CILAS社製、1064型)にて測定することにより得られ、粒径分布の中央値とした。 The average particle size of the thermoelectric semiconductor fine particles was obtained by measuring with a laser diffraction particle size analyzer (CILAS, type 1064), and was the median value of the particle size distribution.
 また、熱電半導体組成物に用いる熱電半導体の微粒子は、アニール処理(以下、アニール処理Aということがある。)されたものであることが好ましい。アニール処理Aを行うことにより、熱電半導体の微粒子は、結晶性が向上し、さらに、熱電半導体の微粒子の表面酸化膜が除去されるため、熱電材料のゼーベック係数が増大し、熱電性能指数をさらに向上させることができる。アニール処理Aは、特に限定されないが、熱電半導体組成物を調製する前に、熱電半導体の微粒子に悪影響を及ぼすことがないように、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、同じく水素等の還元ガス雰囲気下、又は真空条件下で、微粒子の融点以下の温度で、数分~数十時間行うことが好ましい。具体的には、用いる熱電半導体の微粒子に依存するが、通常、100~1500℃で、数分~数十時間行うことが好ましい。 Further, the fine particles of the thermoelectric semiconductor used in the thermoelectric semiconductor composition are preferably those that have been subjected to an annealing treatment (hereinafter also referred to as annealing treatment A). By performing the annealing treatment A, the thermoelectric semiconductor fine particles have improved crystallinity, and further, the surface oxide film of the thermoelectric semiconductor fine particles is removed, so that the Seebeck coefficient of the thermoelectric material is increased and the thermoelectric performance index is further increased. Can be improved. Annealing treatment A is not particularly limited, but before preparing the thermoelectric semiconductor composition, an inert gas atmosphere such as nitrogen or argon in which the gas flow rate is controlled so as not to adversely affect the fine particles of the thermoelectric semiconductor. It is preferably carried out for several minutes to several tens of hours at a temperature below the melting point of the fine particles under a reducing gas atmosphere such as hydrogen or under vacuum conditions. Specifically, although it depends on the fine particles of the thermoelectric semiconductor used, it is usually preferably carried out at 100 to 1500 ° C. for several minutes to several tens of hours.
(イオン液体)
 熱電半導体組成物に含まれるイオン液体は、カチオンとアニオンとを組み合わせてなる溶融塩であり、-50~500℃の幅広い温度領域において液体で存在し得る塩をいう。イオン液体は、蒸気圧が極めて低く不揮発性であること、優れた熱安定性及び電気化学安定性を有していること、粘度が低いこと、かつイオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体の微粒子間の電気伝導率の低減を効果的に抑制することができる。また、イオン液体は、非プロトン性のイオン構造に基づく高い極性を示し、耐熱性樹脂との相溶性に優れるため、熱電材料の電気伝導率を均一にすることができる。
(Ionic liquid)
The ionic liquid contained in the thermoelectric semiconductor composition is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist as a liquid in a wide temperature range of −50 to 500 ° C. Ionic liquids have features such as extremely low vapor pressure, non-volatility, excellent thermal stability and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, it is possible to effectively suppress a reduction in electrical conductivity between the fine particles of the thermoelectric semiconductor as a conductive auxiliary agent. In addition, since the ionic liquid exhibits high polarity based on the aprotic ionic structure and is excellent in compatibility with the heat-resistant resin, the electric conductivity of the thermoelectric material can be made uniform.
 イオン液体は、公知又は市販のものが使用できる。例えば、ピリジニウム、ピリミジニウム、ピラゾリウム、ピロリジニウム、ピペリジニウム、イミダゾリウム等の窒素含有環状カチオン化合物及びそれらの誘導体;テトラアルキルアンモニウム系のアミン系カチオン及びそれらの誘導体;ホスホニウム、トリアルキルスルホニウム、テトラアルキルホスホニウム等のホスフィン系カチオン及びそれらの誘導体;リチウムカチオン及びその誘導体等のカチオン成分と、Cl、AlCl 、AlCl 、ClO 等の塩化物イオン、Br等の臭化物イオン、I等のヨウ化物イオン、PF 等のフッ化物イオン、F(HF) 等のハロゲン化物アニオン、NO 、CHCOO、CFCOO、CHSO 、CFSO 、(FSO、(CFSO、(CFSO、AsF 、SbF 、NbF 、TaF 、F(HF) 、(CN)、CSO 、(CSO、CCOO、(CFSO)(CFCO)N等のアニオン成分とから構成されるものが挙げられる。 Known or commercially available ionic liquids can be used. For example, nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and their derivatives; tetraalkylammonium-based amine cations and their derivatives; phosphonium, trialkylsulfonium, tetraalkylphosphonium, etc. Phosphine cations and derivatives thereof; cation components such as lithium cations and derivatives thereof; chloride ions such as Cl , AlCl 4 , Al 2 Cl 7 , ClO 4 , bromide ions such as Br , I iodide etc., PF 6 - fluoride ions, F (HF) n, such as - such as halide anions of, NO 3 -, CH 3 COO -, CF 3 COO -, CH 3 SO 3 -, CF 3 SO 3 -, (FSO 2 ) 2 N , (CF 3 SO 2 ) 2 N , (CF 3 SO 2 ) 3 C , AsF 6 , SbF 6 , NbF 6 , TaF 6 , F (HF) n , (CN ) 2 N , C 4 F 9 SO 3 , (C 2 F 5 SO 2 ) 2 N , C 3 F 7 COO , (CF 3 SO 2 ) (CF 3 CO) N − and the like The thing comprised from is mentioned.
 上記のイオン液体の中で、高温安定性、熱電半導体の微粒子及び樹脂との相溶性、熱電半導体の微粒子間隙の電気伝導率の低下抑制等の観点から、イオン液体のカチオン成分が、ピリジニウムカチオン及びその誘導体、イミダゾリウムカチオン及びその誘導体から選ばれる少なくとも1種を含むことが好ましい。イオン液体のアニオン成分が、ハロゲン化物アニオンを含むことが好ましく、Cl、Br、Iから選ばれる少なくとも1種を含むことがさらに好ましい。 Among the above ionic liquids, from the viewpoints of high temperature stability, compatibility with thermoelectric semiconductor fine particles and resin, suppression of decrease in electrical conductivity of thermoelectric semiconductor fine particle gaps, the cation component of the ionic liquid is pyridinium cation and It is preferable to include at least one selected from the derivatives, imidazolium cations and derivatives thereof. The anion component of the ionic liquid preferably contains a halide anion, and more preferably contains at least one selected from Cl , Br and I .
 カチオン成分が、ピリジニウムカチオン及びその誘導体を含むイオン液体の具体的な例として、4-メチル-ブチルピリジニウムクロライド、3-メチル-ブチルピリジニウムクロライド、4-メチル-ヘキシルピリジニウムクロライド、3-メチル-ヘキシルピリジニウムクロライド、4-メチル-オクチルピリジニウムクロライド、3-メチル-オクチルピリジニウムクロライド、3、4-ジメチル-ブチルピリジニウムクロライド、3、5-ジメチル-ブチルピリジニウムクロライド、4-メチル-ブチルピリジニウムテトラフルオロボレート、4-メチル-ブチルピリジニウムヘキサフルオロホスフェート、1-ブチル-4-メチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファート、1-ブチル-4-メチルピリジニウムヨージド等が挙げられる。この中で、1-ブチル-4-メチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファート、1-ブチル-4-メチルピリジニウムヨージドが好ましい。 Specific examples of ionic liquids in which the cation component includes a pyridinium cation and derivatives thereof include 4-methyl-butylpyridinium chloride, 3-methyl-butylpyridinium chloride, 4-methyl-hexylpyridinium chloride, 3-methyl-hexylpyridinium Chloride, 4-methyl-octylpyridinium chloride, 3-methyl-octylpyridinium chloride, 3,4-dimethyl-butylpyridinium chloride, 3,5-dimethyl-butylpyridinium chloride, 4-methyl-butylpyridinium tetrafluoroborate, 4- Methyl-butylpyridinium hexafluorophosphate, 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, Chill-4-methylpyridinium iodide and the like. Of these, 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, and 1-butyl-4-methylpyridinium iodide are preferable.
 また、カチオン成分が、イミダゾリウムカチオン及びその誘導体を含むイオン液体の具体的な例として、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]、1-エチル-3-メチルイミダゾリウムクロライド、1-エチル-3-メチルイミダゾリウムブロミド、1-ブチル-3-メチルイミダゾリウムクロライド、1-ヘキシル-3-メチルイミダゾリウムクロライド、1-オクチル-3-メチルイミダゾリウムクロライド、1-デシル-3-メチルイミダゾリウムクロライド、1-デシル-3-メチルイミダゾリウムブロミド、1-ドデシル-3-メチルイミダゾリウムクロライド、1-テトラデシル-3-メチルイミダゾリウムクロライド、1-エチル-3-メチルイミダゾリウムテトラフロオロボレート、1-ブチル-3-メチルイミダゾリウムテトラフロオロボレート、1-ヘキシル-3-メチルイミダゾリウムテトラフロオロボレート、1-エチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-メチル-3-ブチルイミダゾリウムメチルスルフェート、1、3-ジブチルイミダゾリウムメチルスルフェート等が挙げられる。この中で、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]が好ましい。 Specific examples of ionic liquids in which the cation component includes an imidazolium cation and derivatives thereof include [1-butyl-3- (2-hydroxyethyl) imidazolium bromide], [1-butyl-3- (2 -Hydroxyethyl) imidazolium tetrafluoroborate], 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3 -Methylimidazolium chloride, 1-octyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium bromide, 1-dodecyl-3-methylimidazolium chloride, 1-Tetradecyl-3-methylimida 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-hexyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3 -Methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-methyl-3-butylimidazolium methyl sulfate, 1,3-dibutylimidazolium methyl sulfate, and the like. Of these, [1-butyl-3- (2-hydroxyethyl) imidazolium bromide] and [1-butyl-3- (2-hydroxyethyl) imidazolium tetrafluoroborate] are preferable.
 上記のイオン液体は、電気伝導度が10-7S/cm以上であることが好ましく、10-6S/cm以上であることがより好ましい。イオン伝導度が上記範囲であれば、導電補助剤として、熱電半導体の微粒子間の電気伝導率の低減を効果的に抑制することができる。 The ionic liquid preferably has an electric conductivity of 10 −7 S / cm or more, and more preferably 10 −6 S / cm or more. If the ionic conductivity is in the above range, it is possible to effectively suppress a reduction in electrical conductivity between the thermoelectric semiconductor particles as a conductive auxiliary agent.
 また、上記のイオン液体は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物の膜状体にアニール処理Bをした場合でも、導電補助剤としての効果を維持することができる。 In addition, the above ionic liquid preferably has a decomposition temperature of 300 ° C. or higher. If the decomposition temperature is within the above range, the effect as a conductive additive can be maintained even when annealing treatment B is applied to the film-like body of the thermoelectric semiconductor composition, as will be described later.
 また、上記のイオン液体は、熱重量測定(TG)による300℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物の膜状体にアニール処理Bをした場合でも、導電補助剤としての効果を維持することができる。 Further, the ionic liquid has a mass reduction rate at 300 ° C. by thermogravimetry (TG) of preferably 10% or less, more preferably 5% or less, and further preferably 1% or less. . When the mass reduction rate is in the above range, as described later, even when the film-like body of the thermoelectric semiconductor composition is subjected to the annealing treatment B, the effect as a conductive additive can be maintained.
 イオン液体の熱電半導体組成物中の配合量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、さらに好ましくは1.0~20質量%である。イオン液体の配合量が、上記範囲内であれば、電気伝導率の低下が効果的に抑制され、高い熱電性能を有する膜が得られる。 The blending amount of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and still more preferably 1.0 to 20% by mass. When the blending amount of the ionic liquid is within the above range, a decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
(耐熱性樹脂)
 熱電半導体組成物に用いる耐熱性樹脂は、熱電半導体の微粒子間のバインダーとして働き、熱電材料の屈曲性を高めるためのものである。該耐熱性樹脂は、特に制限されるものではないが、熱電半導体組成物の膜状体をアニール処理等により熱電半導体の微粒子を結晶成長させる際に、樹脂としての機械的強度及び熱伝導率等の諸物性が損なわれず維持される耐熱性樹脂を用いる。
(Heat resistant resin)
The heat-resistant resin used in the thermoelectric semiconductor composition serves to increase the flexibility of the thermoelectric material by acting as a binder between the thermoelectric semiconductor fine particles. The heat-resistant resin is not particularly limited. However, when the thermoelectric semiconductor composition is crystal-grown by annealing the film-like body of the thermoelectric semiconductor composition, the mechanical strength and thermal conductivity as the resin, etc. A heat-resistant resin that maintains the physical properties of these materials without being impaired is used.
 耐熱性樹脂としては、例えば、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリベンゾオキサゾール樹脂、ポリベンゾイミダゾール樹脂、エポキシ樹脂、及びこれらの樹脂の化学構造を有する共重合体等が挙げられる。耐熱性樹脂は、単独でも又は2種以上組み合わせて用いてもよい。これらの中でも、耐熱性がより高く、かつ薄膜中の熱電半導体の微粒子の結晶成長に悪影響を及ぼさないという点から、ポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、エポキシ樹脂が好ましく、屈曲性に優れるという点からポリアミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂がより好ましい。前述の支持体として、ポリイミドフィルムを用いた場合、該ポリイミドフィルムとの密着性などの点から、耐熱性樹脂としては、ポリイミド樹脂がより好ましい。なお、本実施形態において、ポリイミド樹脂とは、ポリイミド及びその前駆体を総称する。 Examples of the heat resistant resin include polyamide resin, polyamideimide resin, polyimide resin, polyetherimide resin, polybenzoxazole resin, polybenzimidazole resin, epoxy resin, and copolymers having a chemical structure of these resins. Can be mentioned. The heat resistant resins may be used alone or in combination of two or more. Among these, polyamide resin, polyamideimide resin, polyimide resin, and epoxy resin are preferable because they have higher heat resistance and do not adversely affect crystal growth of the thermoelectric semiconductor fine particles in the thin film, and are excellent in flexibility. From the viewpoint, polyamide resin, polyamideimide resin, and polyimide resin are more preferable. When a polyimide film is used as the above-mentioned support, a polyimide resin is more preferable as the heat-resistant resin in terms of adhesion to the polyimide film. In the present embodiment, the polyimide resin is a general term for polyimide and its precursor.
 耐熱性樹脂は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物の膜状体にアニール処理Bをした場合でも、バインダーとしての機能が失われることなく、熱電材料の屈曲性を維持することができる。 The heat-resistant resin preferably has a decomposition temperature of 300 ° C. or higher. If the decomposition temperature is within the above range, as will be described later, even when annealing treatment B is performed on the film-like body of the thermoelectric semiconductor composition, the function as a binder is not lost and the flexibility of the thermoelectric material is maintained. Can do.
 また、耐熱性樹脂は、熱重量測定(TG)による300℃における質量減少率が10%以下であることが好ましく、5%以下であることがより好ましく、1%以下であることがさらに好ましい。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物の膜状体にアニール処理Bをした場合でも、バインダーとしての機能が失われることなく、熱電材料の屈曲性を維持することができる。 In addition, the heat-resistant resin preferably has a mass reduction rate at 300 ° C. of 10% or less, more preferably 5% or less, and further preferably 1% or less by thermogravimetry (TG). If the mass reduction rate is in the above range, as will be described later, even when the thermoelectric semiconductor composition film is subjected to the annealing treatment B, the function as a binder is not lost and the flexibility of the thermoelectric material is maintained. be able to.
 耐熱性樹脂の熱電半導体組成物中の配合量は、好ましくは0~40質量%、より好ましくは0.5~20質量%、さらに好ましくは1~20質量%である。耐熱性樹脂の配合量が、上記範囲内であれば、高い熱電性能と皮膜強度が両立した膜が得られる。 The blending amount of the heat resistant resin in the thermoelectric semiconductor composition is preferably 0 to 40% by mass, more preferably 0.5 to 20% by mass, and further preferably 1 to 20% by mass. When the blending amount of the heat resistant resin is within the above range, a film having both high thermoelectric performance and film strength can be obtained.
 熱電半導体組成物には、熱電半導体の微粒子、耐熱性樹脂及びイオン液体以外に、必要に応じて、さらに分散剤、造膜助剤、光安定剤、酸化防止剤、粘着付与剤、可塑剤、着色剤、樹脂安定剤、充てん剤、顔料、導電性フィラー、導電性高分子、硬化剤等の他の添加剤を含んでいてもよい。これらの添加剤は、1種単独で、あるいは2種以上を組み合わせて用いることができる。 In addition to the thermoelectric semiconductor fine particles, the heat-resistant resin and the ionic liquid, the thermoelectric semiconductor composition may further include a dispersant, a film-forming aid, a light stabilizer, an antioxidant, a tackifier, a plasticizer, Other additives such as a colorant, a resin stabilizer, a filler, a pigment, a conductive filler, a conductive polymer, and a curing agent may be included. These additives can be used alone or in combination of two or more.
 熱電半導体組成物の調製方法は、特に制限はなく、超音波ホモジナイザー、スパイラルミキサー、プラネタリーミキサー、ディスパーサー、ハイブリッドミキサー等の公知の方法により、熱電半導体の微粒子とイオン液体及び耐熱性樹脂、必要に応じてその他の添加剤、さらに溶媒を加えて、混合分散させ、当該熱電半導体組成物を調製すればよい。 The method for preparing the thermoelectric semiconductor composition is not particularly limited. Thermoelectric semiconductor fine particles, ionic liquid, and heat-resistant resin are necessary by a known method such as ultrasonic homogenizer, spiral mixer, planetary mixer, disperser, hybrid mixer, etc. Depending on the above, other additives and a solvent may be added and mixed and dispersed to prepare the thermoelectric semiconductor composition.
 溶媒としては、例えば、トルエン、酢酸エチル、メチルエチルケトン、アルコール、テトラヒドロフラン、メチルピロリドン、エチルセロソルブ等の溶媒が挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。熱電半導体組成物の固形分濃度としては、該組成物が塗工に適した粘度であればよく、特に制限はない。 Examples of the solvent include solvents such as toluene, ethyl acetate, methyl ethyl ketone, alcohol, tetrahydrofuran, methyl pyrrolidone, and ethyl cellosolve. These solvents may be used alone or in a combination of two or more. The solid content concentration of the thermoelectric semiconductor composition is not particularly limited as long as the composition has a viscosity suitable for coating.
 熱電半導体組成物の膜状体は、後述の実施例5の熱電材料の製造方法で説明するように、支持体上に、熱電半導体組成物を塗布し、乾燥することで形成することができる。このように、形成することで、簡便に低コストで大面積の熱電材料を得ることができる。 The film-like body of the thermoelectric semiconductor composition can be formed by applying the thermoelectric semiconductor composition onto a support and drying, as described in the method for producing a thermoelectric material of Example 5 described later. Thus, by forming, a large-area thermoelectric material can be easily obtained at low cost.
 熱電半導体組成物の膜状体の厚みは、特に制限はないが、熱電性能と皮膜強度の点から、好ましくは100nm~200μm、より好ましくは300nm~150μm、さらに好ましくは5~150μmである。 The thickness of the film-like body of the thermoelectric semiconductor composition is not particularly limited, but is preferably 100 nm to 200 μm, more preferably 300 nm to 150 μm, and still more preferably 5 to 150 μm from the viewpoint of thermoelectric performance and film strength.
 熱電半導体組成物は、薄膜形成後、さらにアニール処理(以下、「アニール処理B」ということがある。)を行う。該アニール処理Bを行うことで、熱電性能を安定化させるとともに、薄膜中の熱電半導体微粒子を結晶成長させることができ、熱電性能をさらに向上させることができる。アニール処理Bは、特に限定されないが、通常、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、同じく水素等の還元ガス雰囲気下、または真空条件下で、100~500℃で、数分~数十時間行われる。アニール処理Bの処理条件は、用いる樹脂、イオン流体の耐熱温度等に依存して変更できる。 The thermoelectric semiconductor composition is further subjected to an annealing treatment (hereinafter sometimes referred to as “annealing treatment B”) after the thin film is formed. By performing the annealing treatment B, the thermoelectric performance can be stabilized and the thermoelectric semiconductor fine particles in the thin film can be crystal-grown, and the thermoelectric performance can be further improved. Although the annealing treatment B is not particularly limited, it is usually performed at 100 to 500 ° C. under an inert gas atmosphere such as nitrogen or argon, a reducing gas atmosphere such as hydrogen, or a vacuum condition where the gas flow rate is controlled. For several minutes to several tens of hours. The processing conditions of the annealing process B can be changed depending on the resin used, the heat resistant temperature of the ionic fluid, and the like.
 有機系熱電材料としては、ポリアニリン類、ポリピロール類またはポリチオフェン類、及びそれらの誘導体から選ばれる少なくとも1種が好ましく用いられる。
 ポリアニリン類は、アニリンの2位または3位あるいはN位を炭素数1~18のアルキル基、アルコキシ基、アリール基、スルホン酸基等で置換した化合物の高分子量体であり、例えば、ポリ2-メチルアニリン、ポリ3-メチルアニリン、ポリ2-エチルアニリン、ポリ3-エチルアニリン、ポリ2-メトキシアニリン、ポリ3-メトキシアニリン、ポリ2-エトキシアニリン、ポリ3-エトキシアニリン、ポリN-メチルアニリン、ポリN-プロピルアニリン、ポリN-フェニル-1-ナフチルアニリン、ポリ8-アニリノ-1-ナフタレンスルホン酸、ポリ2-アミノベンゼンスルホン酸、ポリ7-アニリノ-4-ヒドロキシ-2-ナフタレンスルホン酸等が挙げられる。
 ポリピロール類とは、ピロールの1位または3位、4位を炭素数1~18のアルキル基またはアルコキシ基等で置換した化合物の高分子量体であり、例えば、ポリ1-メチルピロール、ポリ3-メチルピロール、ポリ1-エチルピロール、ポリ3-エチルピロール、ポリ1-メトキシピロール、3-メトキシピロール、ポリ1-エトキシピロール、ポリ3-エトキシピロール等が挙げられる。
 ポリチオフェン類は、チオフェンの3位または4位を炭素数1~18のアルキル基またはアルコキシ基等で置換した化合物の高分子量体であり、例えば、ポリ3-メチルチオフェン、ポリ3-エチルチオフェン、ポリ3-メトキシチオフェン、ポリ3-エトキシチオフェン、ポリ3,4-エチレンジオキシチオフェン(PEDOT)等の高分子体が挙げられる。
 ポリアニリン類、ポリピロール類またはポリチオフェン類の誘導体としては、これらのドーパント体等が挙げられる。
 ドーパントとしては、塩化物イオン、臭化物イオン、ヨウ化物イオンなどのハロゲン化物イオン;過塩素酸イオン;テトラフルオロ硼酸イオン;六フッ化ヒ酸イオン;硫酸イオン;硝酸イオン;チオシアン酸イオン;六フッ化ケイ酸イオン;燐酸イオン、フェニル燐酸イオン、六フッ化燐酸イオンなどの燐酸系イオン;トリフルオロ酢酸イオン;トシレートイオン、エチルベンゼンスルホン酸イオン、ドデシルベンゼンスルホン酸イオンなどのアルキルベンゼンスルホン酸イオン;メチルスルホン酸イオン、エチルスルホン酸イオンなどのアルキルスルホン酸イオン;または、ポリアクリル酸イオン、ポリビニルスルホン酸イオン、ポリスチレンスルホン酸イオン(PSS)、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)イオンなどの高分子イオン等が挙げられ、これらは単独でもまたは2種以上組み合わせて用いてもよい。
 ドーパントとしては、これらの中でも、高い導電性を容易に調整でき、かつ、水溶液にした場合に、容易に分散するために有用な親水骨格を有することから、ポリアクリル酸イオン、ポリビニルスルホン酸イオン、ポリスチレンスルホン酸イオン(PSS)、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)イオンなどの高分子イオンが好ましく、水溶性かつ強酸性のポリマーであるポリスチレンスルホン酸イオン(PSS)がより好ましい。
As the organic thermoelectric material, at least one selected from polyanilines, polypyrroles or polythiophenes, and derivatives thereof is preferably used.
Polyanilines are high molecular weight compounds of compounds in which the 2-position, 3-position or N-position of aniline is substituted with an alkyl group having 1 to 18 carbon atoms, an alkoxy group, an aryl group, a sulfonic acid group or the like. Methyl aniline, poly 3-methyl aniline, poly 2-ethyl aniline, poly 3-ethyl aniline, poly 2-methoxy aniline, poly 3-methoxy aniline, poly 2-ethoxy aniline, poly 3-ethoxy aniline, poly N-methyl aniline Poly N-propyl aniline, poly N-phenyl-1-naphthyl aniline, poly 8-anilino-1-naphthalene sulfonic acid, poly 2-aminobenzene sulfonic acid, poly 7-anilino-4-hydroxy-2-naphthalene sulfonic acid Etc.
Polypyrroles are high molecular weight compounds of compounds in which 1-position, 3-position or 4-position of pyrrole is substituted with an alkyl group or alkoxy group having 1 to 18 carbon atoms, such as poly 1-methyl pyrrole, poly 3-pyrrole. Examples thereof include methyl pyrrole, poly 1-ethyl pyrrole, poly 3-ethyl pyrrole, poly 1-methoxy pyrrole, 3-methoxy pyrrole, poly 1-ethoxy pyrrole, poly 3-ethoxy pyrrole and the like.
Polythiophenes are high molecular weight compounds of compounds in which the 3-position or 4-position of thiophene is substituted with an alkyl group or alkoxy group having 1 to 18 carbon atoms, such as poly-3-methylthiophene, poly-3-ethylthiophene, poly Examples thereof include polymers such as 3-methoxythiophene, poly-3-ethoxythiophene, and poly3,4-ethylenedioxythiophene (PEDOT).
Examples of the derivatives of polyanilines, polypyrroles or polythiophenes include these dopant bodies.
As dopants, halide ions such as chloride ion, bromide ion and iodide ion; perchlorate ion; tetrafluoroborate ion; hexafluoroarsenate ion; sulfate ion; nitrate ion; thiocyanate ion; hexafluoride Silicate ion; Phosphate ion such as phosphate ion, phenyl phosphate ion, hexafluorophosphate ion; trifluoroacetate ion; alkylbenzenesulfonate ion such as tosylate ion, ethylbenzenesulfonate ion, dodecylbenzenesulfonate ion; methylsulfone Alkyl sulfonate ions such as acid ions and ethyl sulfonate ions; or polyacrylate ions, polyvinyl sulfonate ions, polystyrene sulfonate ions (PSS), poly (2-acrylamido-2-methylpropane sulfonate) ions Polymers such as ions such emissions can be mentioned, which may be used in combination singly or two or more.
Among these, as a dopant, high conductivity can be easily adjusted, and since it has a hydrophilic skeleton useful for easy dispersion when it is made into an aqueous solution, polyacrylate ions, polyvinyl sulfonate ions, Polymer ions such as polystyrene sulfonate ion (PSS) and poly (2-acrylamido-2-methylpropane sulfonate) ion are preferred, and polystyrene sulfonate ion (PSS) which is a water-soluble and strongly acidic polymer is more preferred.
 上記ポリアニリン類、ポリピロール類またはポリチオフェン類の誘導体としては、ポリチオフェン類の誘導体が好ましく、中でも、ポリ(3,4-エチレンオキサイドチオフェン)と、ドーパントとして、ポリスチレンスルホン酸イオンの混合物(以下、「PEDOT:PSS」と記載することがある)等が好ましい。
 上記材料を用いて熱電変換層を形成する方法としては、ディップコーティング、スピンコーティング、スプレーコーティング、グラビアコーティング、ダイコーティング、ドクターブレード等の各種コーティングや電気化学的ディポジションなどのウェットプロセス、スクリーン印刷およびインクジェット印刷の様な各種印刷が挙げられ、適宜選択される。
As the derivative of the polyaniline, polypyrrole or polythiophene, a derivative of polythiophene is preferable, and among them, a mixture of poly (3,4-ethylene oxide thiophene) and polystyrenesulfonate ion as a dopant (hereinafter referred to as “PEDOT: May be described as “PSS”).
Methods for forming a thermoelectric conversion layer using the above materials include various coatings such as dip coating, spin coating, spray coating, gravure coating, die coating, and doctor blade, and wet processes such as electrochemical deposition, screen printing and Various types of printing such as ink-jet printing can be mentioned and appropriately selected.
 有機系熱電材料から形成される熱電変換層22の厚みは、5nm以上1000nm以下が好ましく、より好ましくは30nm以上300nm以下である。5nm未満であると、膜の電気抵抗が高くなり過ぎて熱電変換ができなくなる可能性がある。また、1000nmを超えると、成膜工程コストが過剰になり、費用対効果が悪化するため好ましくない。
 熱電変換層22は、定格能力の式を満たす範囲内であれば上記無機系熱電材料、有機高分子化合物の単層であってもよいし、上記無機系熱電材料、有機高分子化合物のうち種類が異なるものを用いて形成したそれぞれの層を積層した構造であってもよい。
The thickness of the thermoelectric conversion layer 22 formed from an organic thermoelectric material is preferably 5 nm or more and 1000 nm or less, and more preferably 30 nm or more and 300 nm or less. If it is less than 5 nm, the electrical resistance of the film becomes too high and thermoelectric conversion may not be possible. On the other hand, when the thickness exceeds 1000 nm, the film forming process cost becomes excessive, and the cost effectiveness deteriorates, which is not preferable.
The thermoelectric conversion layer 22 may be a single layer of the inorganic thermoelectric material or the organic polymer compound as long as it falls within the range of the rated capacity, or the kind of the inorganic thermoelectric material or the organic polymer compound. A structure in which layers formed using different layers are stacked may be used.
 本実施形態に係る排熱回収シートには、上述した種々の熱電材料を使用できるが、複数の熱電材料を用いる場合には、定格能力の比較は、熱電材料の総和で比較する。 In the exhaust heat recovery sheet according to the present embodiment, the various thermoelectric materials described above can be used. When a plurality of thermoelectric materials are used, the comparison of the rated capacities is made with the sum of the thermoelectric materials.
(電極層)
 電極層23は、導電性材料から形成される。導電性材料としては、仕事関数が比較的小さいものが好ましく、例えば、白金、金、銀、アルミニウム、インジウム、クロム、銅、スズ、ニッケル等の金属、これらの金属の金属酸化物、若しくは金属合金のほか、カーボンナノチューブ、又はカーボンナノチューブと上記金属、金属酸化物若しくは合金との複合体が挙げられる。電極層23の厚みは、0.02~100μmであることが好ましく、特に、0.03~10μmであることが好ましい。
(Electrode layer)
The electrode layer 23 is formed from a conductive material. As a conductive material, a material having a relatively small work function is preferable. For example, metals such as platinum, gold, silver, aluminum, indium, chromium, copper, tin, nickel, metal oxides of these metals, or metal alloys In addition, a carbon nanotube or a composite of the carbon nanotube and the metal, metal oxide, or alloy can be given. The thickness of the electrode layer 23 is preferably 0.02 to 100 μm, and particularly preferably 0.03 to 10 μm.
<熱電変換デバイスの作製方法>
 次に、熱電変換デバイス20の作製方法について説明する。
 基材10の表面に、上述した熱電材料を用いて熱電変換層22が形成される。上述した無機系熱電材料を用いる場合には、例えば、無機系熱電材料をフラッシュ蒸着法、真空アーク蒸着法、スクリーン印刷、塗布等により、熱電変換層22を形成することができる。
 また、上述した有機系熱電材料を用いる場合には、有機高分子化合物の水分散液又は溶液(塗工液)を、ディップコーティング、スピンコーティング、スプレーコーティング、グラビアコーティング、ダイコーティング、ドクターブレード等の各種コーティング、インクジェット印刷等により、基材10上に熱電変換層22を形成することができる。熱電変換層22が熱電半導体の微粒子、耐熱性樹脂及びイオン液体を含む熱電半導体組成物からなる場合には、アニール処理Bを行う。
 続いて、熱電変換層22のパターンが形成された基材10上に、さらに導電性材料を用いて電極層23が形成される。電極層23の形成には、真空蒸着、スパッタリング、イオンプレーティング等のPVD(物理気相蒸着)、若しくは熱CVD、原子層蒸着(ALD)等のCVD(化学気相蒸着)などのドライプロセス、又はディップコーティング、スピンコーティング、スプレーコーティング、バーコーティング、グラビアコーティング、ダイコーティング、ドクターブレード等の各種コーティングや電気化学的ディポジションなどのウェットプロセスを適用することができる。
 以上の工程により、熱電変換デバイス20を作製することができる。
<Method for manufacturing thermoelectric conversion device>
Next, a method for manufacturing the thermoelectric conversion device 20 will be described.
The thermoelectric conversion layer 22 is formed on the surface of the base material 10 using the thermoelectric material described above. In the case of using the inorganic thermoelectric material described above, the thermoelectric conversion layer 22 can be formed by flash evaporation, vacuum arc vapor deposition, screen printing, coating, or the like of the inorganic thermoelectric material, for example.
In addition, when using the organic thermoelectric material described above, an aqueous dispersion or solution (coating solution) of an organic polymer compound is used for dip coating, spin coating, spray coating, gravure coating, die coating, doctor blade, etc. The thermoelectric conversion layer 22 can be formed on the substrate 10 by various coatings, ink jet printing, or the like. When the thermoelectric conversion layer 22 is made of a thermoelectric semiconductor composition containing fine particles of a thermoelectric semiconductor, a heat resistant resin, and an ionic liquid, an annealing process B is performed.
Subsequently, an electrode layer 23 is further formed on the base material 10 on which the pattern of the thermoelectric conversion layer 22 is formed using a conductive material. For the formation of the electrode layer 23, a dry process such as PVD (physical vapor deposition) such as vacuum deposition, sputtering, ion plating, or CVD (chemical vapor deposition) such as thermal CVD or atomic layer deposition (ALD), Alternatively, various processes such as dip coating, spin coating, spray coating, bar coating, gravure coating, die coating, and doctor blade, and wet processes such as electrochemical deposition can be applied.
Through the above steps, the thermoelectric conversion device 20 can be manufactured.
[排熱回収シートの他の態様]
 本発明の実施形態に係る排熱回収シートの他の態様について説明する。図3は、排熱回収シート1Cの外観の斜視図である。図4(a)は、排熱回収シート1Cを構成する一方のパターンフィルム30を示す斜視図であり、図4(b)は、該パターンフィルム30に対向させる他方のパターンフィルム40を示す斜視図である。
 排熱回収シート1Cは、パターンフィルム30と、パターンフィルム40とを有し、いわゆる、π型熱電変換モジュールが形成されている。図4(a)に示すパターンフィルム30は、基材31と、p型熱電素子32と、n型熱電素子33と、下部電極34とを備える。下部電極34は、p型熱電素子32とn型熱電素子33とを電気的に接続する電極34aと、集電用電極34b及び34cとを有する。パターンフィルム30は、基材31上に所定のパターンで下部電極34が形成されている。更に、p型熱電素子32とn型熱電素子33とが、図4(a)の点線矢印の方向に、直列接続になるように、下部電極34上に交互に形成されている。
 図4(b)に示すパターンフィルム40は、基材41と、上部電極42とを備える。パターンフィルム40は、上部電極42がパターンフィルム30上に形成されたp型熱電素子32及びn型熱電素子33を直列に接続するように、パターンフィルム30に重ね合わせられ、導電性接着剤(図示せず)によって、互いに接着される。
 排熱回収シート1Cにおいては、p型熱電素子32、n型熱電素子33、下部電極34、及び上部電極42が熱電変換デバイスを構成するものである。p型熱電素子32と、n型熱電素子33とは、図1及び図2における熱電変換層に相当する。排熱回収シート1Cでは、熱電変換層であるp型熱電素子32及びn型熱電素子33を電気が流れる方向が、基材31及び基材41の平面に交差するように配置されている。
 排熱回収シート1Cの場合には、下記式における基材の厚みとは、基材31及び基材41のうち、熱源に接する又は熱源に近い側の基材の厚みが該当する。
 {(熱源の熱伝導率)×(熱源の温度勾配が生じる方向の厚み)}+{(該基材の熱伝導率)×(該基材の厚み)}>{(熱電材料の熱伝導率)×(該熱電変換層の厚み)}
[Other aspects of exhaust heat recovery sheet]
Another aspect of the exhaust heat recovery sheet according to the embodiment of the present invention will be described. FIG. 3 is an external perspective view of the exhaust heat recovery sheet 1C. 4A is a perspective view showing one pattern film 30 constituting the exhaust heat recovery sheet 1C, and FIG. 4B is a perspective view showing the other pattern film 40 opposed to the pattern film 30. FIG. It is.
The exhaust heat recovery sheet 1C includes a pattern film 30 and a pattern film 40, and a so-called π-type thermoelectric conversion module is formed. The pattern film 30 shown in FIG. 4A includes a base material 31, a p-type thermoelectric element 32, an n-type thermoelectric element 33, and a lower electrode 34. The lower electrode 34 includes an electrode 34a that electrically connects the p-type thermoelectric element 32 and the n-type thermoelectric element 33, and current collecting electrodes 34b and 34c. In the pattern film 30, a lower electrode 34 is formed in a predetermined pattern on a base material 31. Furthermore, the p-type thermoelectric element 32 and the n-type thermoelectric element 33 are alternately formed on the lower electrode 34 so as to be connected in series in the direction of the dotted arrow in FIG.
A pattern film 40 shown in FIG. 4B includes a base material 41 and an upper electrode 42. The pattern film 40 is overlaid on the pattern film 30 so that the upper electrode 42 connects the p-type thermoelectric element 32 and the n-type thermoelectric element 33 formed on the pattern film 30 in series, and a conductive adhesive (FIG. Are bonded to each other.
In the exhaust heat recovery sheet 1C, the p-type thermoelectric element 32, the n-type thermoelectric element 33, the lower electrode 34, and the upper electrode 42 constitute a thermoelectric conversion device. The p-type thermoelectric element 32 and the n-type thermoelectric element 33 correspond to the thermoelectric conversion layers in FIGS. 1 and 2. In the exhaust heat recovery sheet 1 </ b> C, the direction in which electricity flows through the p-type thermoelectric element 32 and the n-type thermoelectric element 33, which are thermoelectric conversion layers, is arranged so as to intersect the planes of the base material 31 and the base material 41.
In the case of the exhaust heat recovery sheet 1 </ b> C, the thickness of the base material in the following formula corresponds to the thickness of the base material 31 or 41 that is in contact with the heat source or close to the heat source.
{(Heat conductivity of heat source) × (thickness in the direction in which the temperature gradient of the heat source is generated)} + {(heat conductivity of the base material) × (thickness of the base material)}> {(thermal conductivity of thermoelectric material) ) × (thickness of the thermoelectric conversion layer)}
 導電性接着剤としては、例えば、導電性フィラーを分散させた熱硬化性樹脂や熱可塑性樹脂、導電性高分子を分散させた熱硬化性樹脂や熱可塑性樹脂などが用いられる。導電性フィラーとしてはカーボンファイバー、カーボンナノファイバー、カーボンブラック、多層カーボンナノチューブ、単層カーボンナノチューブ、フラーレンなどのカーボン化合物、金、銀、銅、アルミニウムの等の金属、酸化ケイ素、酸化チタン、酸化ジルコニウム、ITO等の金属酸化物が挙げられる。導電性高分子としてはポリアニリン、ポリピロール、ポリチオフェン、またはポリチオフェンにポリスチレンスルホン酸をドープしたものなどが挙げられる。 As the conductive adhesive, for example, a thermosetting resin or a thermoplastic resin in which a conductive filler is dispersed, a thermosetting resin or a thermoplastic resin in which a conductive polymer is dispersed, or the like is used. Conductive fillers include carbon fiber, carbon nanofiber, carbon black, multi-walled carbon nanotube, single-walled carbon nanotube, carbon compounds such as fullerene, gold, silver, copper, aluminum and other metals, silicon oxide, titanium oxide, zirconium oxide And metal oxides such as ITO. Examples of the conductive polymer include polyaniline, polypyrrole, polythiophene, or polythiophene doped with polystyrene sulfonic acid.
[蓄電部の態様]
 本発明に係る排熱回収シートに接続される蓄電部の態様について説明する。蓄電部は、二次電池やキャパシタ等で構成される。二次電池としては、蓄電可能な電池あればよく、例えば、リチウム電池、リチウムポリマー電池、リチウムイオン電池、ニッケル水素電池、ニカド電池、有機ラジカル電池、鉛蓄電池、空気二次電池、ニッケル亜鉛電池、銀亜鉛電池等が挙げられる。キャパシタとしては、例えば、電気二重層キャパシタ、リチウムイオンキャパシタ等が挙げられる。排熱回収シートは、熱電変換デバイスから得た電気エネルギーを蓄電部への蓄電動作を制御する制御回路を有していてもよい。
[Aspect of power storage unit]
An aspect of the power storage unit connected to the exhaust heat recovery sheet according to the present invention will be described. The power storage unit includes a secondary battery, a capacitor, and the like. The secondary battery may be any battery that can store electricity, for example, lithium battery, lithium polymer battery, lithium ion battery, nickel metal hydride battery, nickel-cadmium battery, organic radical battery, lead storage battery, air secondary battery, nickel zinc battery, A silver zinc battery etc. are mentioned. Examples of the capacitor include an electric double layer capacitor and a lithium ion capacitor. The exhaust heat recovery sheet may have a control circuit that controls the storage operation of the electrical energy obtained from the thermoelectric conversion device to the storage unit.
 次に、本発明を、実施例を用いて詳細に説明するが、本発明は、これらの例に限定されない。
[評価方法]
 後述する実施例及び比較例において作製した排熱回収シートの熱電性能を、以下の方法で評価した。
<熱伝導率>
 熱伝導率の測定には3ω法を用いた。
<温度差>
 チラー(アズワン株式会社製、「LTCi-150H」)と、水冷式クーラー(高木製作所株式会社製、「P-200S」)とを組み合わせた冷却装置を用いて、排熱回収シートの一方の面を300Kに保持した。また、排熱回収シートの他方の面をホットプレート(アズワン株式会社製、「THI-1000」)で350Kに保持した。この状態で発電層の上下の温度をKタイプ熱電対とデータロガー(江藤電機株式会社製、「キャダック3」)とを組み合わせた測定装置で測定し、温度差を算出した。
<出力電圧>
 電位差計(日置電機株式会社製、ディジタルハイテスタ 3801-50)により測定した。
Next, although this invention is demonstrated in detail using an Example, this invention is not limited to these examples.
[Evaluation methods]
The following method evaluated the thermoelectric performance of the waste heat recovery sheet produced in the examples and comparative examples described later.
<Thermal conductivity>
The 3ω method was used for the measurement of thermal conductivity.
<Temperature difference>
Using a cooling device that combines a chiller (manufactured by ASONE Co., Ltd., “LTCi-150H”) and a water-cooled cooler (manufactured by Takagi Seisakusho Co., Ltd., “P-200S”), It was kept at 300K. Further, the other surface of the exhaust heat recovery sheet was held at 350 K with a hot plate (“THI-1000” manufactured by ASONE CORPORATION). In this state, the temperature above and below the power generation layer was measured with a measuring device in which a K-type thermocouple and a data logger (Eto Denki Co., Ltd., “Kadak 3”) were combined, and the temperature difference was calculated.
<Output voltage>
It was measured with a potentiometer (manufactured by Hioki Electric Co., Ltd., Digital Hitester 3801-50).
[実施例、比較例]
 排熱回収シートを、下記の通り作製した。
<実施例1>
(排熱回収シートの作製)
 基材として用いられるポリイミドフィルム(東レ・デュポン株式会社製、「カプトン200H」、厚み50μm、熱伝導率0.16W/m・K)の表面上に、有機系熱電材料であるPEDOT:PSS(アグファマテリアル株式会社製、「S-305」、熱伝導率0.3W/m・K)を、インクジェット印刷装置(マイクロジェット株式会社製、「NanoPrinter-300」)を用いて、熱電変換層を形成した。形成後、大気中において150℃で乾燥した。続いて、真空蒸着法により、導電性材料として銅を用いて、電極層を形成し、図1に示す排熱回収シート1Aの構造を有する排熱回収シートaを作製した。排熱回収シートaの全体の厚みは、50.2μmであった。
 熱源として、アルミニウム製の板(ヒートシンクタイプ1;熱伝導率236W/m・K、厚み1mm)を用いた。排熱回収シートaは、熱電変換層の電流方向が、基材の平面に平行に配置されたものである。この排熱回収シートaの、熱電変換層の電流方向が、熱源の温度勾配が生じる方向に交差するように配置した。
 この供試体に、上述した方法により熱を与え、排熱回収シートaに生じる温度差を測定した。また、得られる出力電圧を測定した。結果を表1に示す。
[Examples and Comparative Examples]
An exhaust heat recovery sheet was prepared as follows.
<Example 1>
(Production of exhaust heat recovery sheet)
PEDOT: PSS (AGFA), an organic thermoelectric material, is formed on the surface of a polyimide film (manufactured by Toray DuPont Co., Ltd., “Kapton 200H”, thickness 50 μm, thermal conductivity 0.16 W / m · K). A thermoelectric conversion layer was formed by using an inkjet printer (“NanoPrinter-300” manufactured by Microjet Co., Ltd.) with “S-305” manufactured by Material Co., Ltd., and a thermal conductivity of 0.3 W / m · K. . After formation, it was dried at 150 ° C. in the atmosphere. Subsequently, an electrode layer was formed using copper as a conductive material by a vacuum deposition method, and an exhaust heat recovery sheet a having the structure of the exhaust heat recovery sheet 1A shown in FIG. 1 was produced. The total thickness of the exhaust heat recovery sheet a was 50.2 μm.
As a heat source, an aluminum plate (heat sink type 1; thermal conductivity 236 W / m · K, thickness 1 mm) was used. In the exhaust heat recovery sheet a, the current direction of the thermoelectric conversion layer is arranged in parallel to the plane of the substrate. The exhaust heat recovery sheet a was arranged so that the current direction of the thermoelectric conversion layer intersected the direction in which the temperature gradient of the heat source occurred.
The specimen was heated by the method described above, and the temperature difference generated in the exhaust heat recovery sheet a was measured. Moreover, the output voltage obtained was measured. The results are shown in Table 1.
<実施例2>
 基材として用いられるポリイミドフィルム(東レ・デュポン株式会社製、「カプトン200H」、厚み50μm、熱伝導率0.16W/m・K)の表面上に、シャドーマスクを介して、無機系熱電材料である、p型ビスマステルライド(高純度化学株式会社製、熱伝導率1.5W/m・K)を、アークプラズマ蒸着装置(アルバック理工株式会社製、「APD-S」)を用いて成膜した。続いて、n型ビスマステルライド(高純度化学株式会社製、熱伝導率1.5W/m・K)を同様にして蒸着した。その後、真空蒸着装置を用いて、導電性材料として銅を用いて電極層を形成し、図2に示すp-nタイプの排熱回収シート1Bの構造を有する排熱回収シートbを作製した。排熱回収シートbの全体の厚みは、50.2μmであった。
 熱源として、銅製の板(ヒートシンクタイプ2;熱伝導率386W/m・K、厚み1mm)を用いた。排熱回収シートbは、熱電変換層の電流方向が、基材の平面に平行に配置されたものである。この排熱回収シートbの、熱電変換層の電流方向が、熱源の温度勾配が生じる方向に交差するように配置した。この供試体に、上述した方法により熱を与え、排熱回収シートbに生じる温度差を測定した。また、得られる出力電圧を測定した。結果を表1に示す。
<Example 2>
On the surface of a polyimide film (“Kapton 200H” manufactured by Toray DuPont Co., Ltd., thickness 50 μm, thermal conductivity 0.16 W / m · K) used as a base material, with an inorganic thermoelectric material via a shadow mask A p-type bismuth telluride (manufactured by High Purity Chemical Co., Ltd., thermal conductivity 1.5 W / m · K) was formed using an arc plasma deposition apparatus (manufactured by ULVAC-RIKO Co., Ltd., “APD-S”). . Subsequently, n-type bismuth telluride (manufactured by Koyo Chemical Co., Ltd., thermal conductivity 1.5 W / m · K) was deposited in the same manner. Thereafter, an electrode layer was formed using copper as a conductive material by using a vacuum evaporation apparatus, and an exhaust heat recovery sheet b having the structure of a pn type exhaust heat recovery sheet 1B shown in FIG. 2 was produced. The total thickness of the exhaust heat recovery sheet b was 50.2 μm.
As the heat source, a copper plate (heat sink type 2; thermal conductivity 386 W / m · K, thickness 1 mm) was used. In the exhaust heat recovery sheet b, the current direction of the thermoelectric conversion layer is arranged in parallel to the plane of the substrate. The exhaust heat recovery sheet b was arranged so that the current direction of the thermoelectric conversion layer intersected the direction in which the temperature gradient of the heat source occurred. The specimen was heated by the method described above, and the temperature difference generated in the exhaust heat recovery sheet b was measured. Moreover, the output voltage obtained was measured. The results are shown in Table 1.
<実施例3>
 無機系熱電材料として、p-型マンガンシリサイド(高純度化学株式会社製、熱伝導率10W/m・K)、及びn-型マグネシウムシリサイド(高純度化学株式会社製、熱伝導率8W/m・K)を用いて、MBE成膜装置(パスカル株式会社製、「ST-LMBE」)を用いて成膜した以外は、実施例2と同様にして、図2に示すp-nタイプの排熱回収シートcを作製した。熱源として、銅製の板(熱伝導率386W/m・K、厚み1mm)を用いた。
 排熱回収シートcは、熱電変換層の電流方向が、基材の平面に平行に配置されたものである。この排熱回収シートcの、熱電変換層の電流方向が、熱源の温度勾配が生じる方向に交差するように配置した。この供試体に、上述した方法により熱を与え、排熱回収シートcに生じる温度差を測定した。また、得られる出力電圧を測定した。結果を表1に示す。
<Example 3>
As an inorganic thermoelectric material, p-type manganese silicide (manufactured by Koyo Chemical Co., Ltd., thermal conductivity 10 W / m · K), and n-type magnesium silicide (manufactured by Koyo Chemical Co., Ltd., thermal conductivity 8 W / m · K) Pn type exhaust heat shown in FIG. 2 in the same manner as in Example 2 except that the film was formed using an MBE film forming apparatus (“ST-LMBE” manufactured by Pascal Co., Ltd.). A recovery sheet c was produced. A copper plate (thermal conductivity 386 W / m · K, thickness 1 mm) was used as a heat source.
In the exhaust heat recovery sheet c, the current direction of the thermoelectric conversion layer is arranged in parallel to the plane of the substrate. The exhaust heat recovery sheet c was arranged so that the current direction of the thermoelectric conversion layer intersected the direction in which the temperature gradient of the heat source occurred. The specimen was heated by the method described above, and the temperature difference generated in the exhaust heat recovery sheet c was measured. Moreover, the output voltage obtained was measured. The results are shown in Table 1.
<実施例4>
 無機系熱電材料として、p-型FeVAl(高純度化学株式会社製、熱伝導率15W/m・K)、及びn-型FeVAl(高純度化学株式会社製、熱伝導率20W/m・K)を用いて、スパッタリング成膜装置(アルバック株式会社製、「i-sputter」)で成膜した以外は、実施例2と同様にして、図2に示すp-nタイプの排熱回収シートdを作製した。熱源として、銅製の板(熱伝導率386W/m・K、厚み1mm)を用いた。
 排熱回収シートdは、熱電変換層の電流方向が、基材の平面に平行に配置されたものである。この排熱回収シートdの、熱電変換層の電流方向が、熱源の温度勾配が生じる方向に交差するように配置した。この供試体に、上述した方法により熱を与え、排熱回収シートdに生じる温度差を測定した。また、得られる出力電圧を測定した。結果を表1に示す。
<Example 4>
As an inorganic thermoelectric material, p-type Fe 2 VAl (manufactured by High Purity Chemical Co., Ltd., thermal conductivity 15 W / m · K) and n-type Fe 2 VAl (manufactured by Koyo Chemical Co., Ltd., thermal conductivity 20 W / pn type exhaust heat shown in FIG. 2 in the same manner as in Example 2, except that the film was formed using a sputtering film forming apparatus (“i-sputter” manufactured by ULVAC, Inc.) using m · K). A recovery sheet d was produced. A copper plate (thermal conductivity 386 W / m · K, thickness 1 mm) was used as a heat source.
In the exhaust heat recovery sheet d, the current direction of the thermoelectric conversion layer is arranged in parallel to the plane of the substrate. The exhaust heat recovery sheet d was arranged so that the current direction of the thermoelectric conversion layer intersected the direction in which the temperature gradient of the heat source occurred. The specimen was heated by the method described above, and the temperature difference generated in the exhaust heat recovery sheet d was measured. Moreover, the output voltage obtained was measured. The results are shown in Table 1.
<実施例5>
(熱電半導体微粒子の作製方法)
 ビスマス-テルル系熱電半導体材料であるp型ビスマステルライドBi0.4TeSb1.6(高純度化学研究所製、粒径:180μm)を、遊星型ボールミル(フリッチュジャパン社製、Premium line P-7)を使用し、窒素ガス雰囲気下で粉砕することで、平均粒径1.2μmの熱電半導体微粒子T1を作製した。粉砕して得られた熱電半導体微粒子に関して、レーザー回折式粒度分析装置(CILAS社製、1064型)により粒度分布測定を行った。
 また、ビスマス-テルル系熱電半導体材料であるn型ビスマステルライドBiTe(高純度化学研究所製、粒径:180μm)を上記と同様に粉砕し、平均粒径1.4μmの熱電半導体微粒子T2を作製した。
<Example 5>
(Method for producing thermoelectric semiconductor fine particles)
A p-type bismuth telluride Bi 0.4 Te 3 Sb 1.6 (manufactured by High-Purity Chemical Laboratory, particle size: 180 μm), which is a bismuth-tellurium-based thermoelectric semiconductor material, is converted into a planetary ball mill (French Japan, Premium line P). The thermoelectric semiconductor fine particles T1 having an average particle diameter of 1.2 μm were prepared by pulverizing under a nitrogen gas atmosphere using −7). The thermoelectric semiconductor fine particles obtained by pulverization were subjected to particle size distribution measurement using a laser diffraction particle size analyzer (CILAS, model 1064).
In addition, n-type bismuth telluride Bi 2 Te 3 (manufactured by High Purity Chemical Laboratory, particle size: 180 μm), which is a bismuth-tellurium-based thermoelectric semiconductor material, is pulverized in the same manner as described above, and thermoelectric semiconductor fine particles having an average particle size of 1.4 μm T2 was produced.
(1)熱電半導体組成物の作製
 得られたビスマス-テルル系熱電半導体材料の微粒子T1(90質量部)と、耐熱性樹脂としてポリイミド前駆体であるポリアミック酸(5質量部)と、イオン液体1として1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド(電気伝導率:3.5×10-5S/cm)(5質量部)とを加え、それらを混合分散させて、p型ビスマステルライドの微粒子T1を含む熱電半導体組成物からなる塗工液Pを調製した。
 なお、ポリアミック酸としては、シグマアルドリッチ社製、「ポリ(ピロメリト酸二無水物-co-4,4’-オキシジアニリン)溶液」、溶媒:メチルピロリドン、固形分濃度:15質量%、300℃における質量減少率:0.9%のものを用いた。
 微粒子T1を微粒子T2に変えた以外は上記と同様の配合量で、n型ビスマステルライドの微粒子T2を含む熱電半導体組成物からなる塗工液Nを調製した。
 (1)で調製した塗工液Pを、基材であるポリイミドフィルム(東レデュポン社製、商品名「カプトン200H」、厚み50μm)上に、スクリーン印刷により塗布し、温度150℃で、10分間アルゴン雰囲気下で乾燥し、厚さが10μmの薄膜を形成した。次いで、得られた薄膜に対し、水素とアルゴンの比が、水素:アルゴン=5体積%:95体積%である混合ガスの雰囲気下で、加温速度5K/minで昇温し、415℃で1時間保持し、薄膜形成後のアニール処理Bを行うことにより、熱電半導体材料の微粒子を結晶成長させ、p型熱電変換材料を作製した。同様の方法で、(1)で調製した塗工液Nを用い、n型熱電材料を作製した。
(1) Production of thermoelectric semiconductor composition The fine particles T1 (90 parts by mass) of the obtained bismuth-tellurium-based thermoelectric semiconductor material, polyamic acid (5 parts by mass) which is a polyimide precursor as a heat-resistant resin, and ionic liquid 1 As 1-butyl-3- (2-hydroxyethyl) imidazolium bromide (electric conductivity: 3.5 × 10 −5 S / cm) (5 parts by mass), and mixing and dispersing them to obtain p-type A coating solution P made of a thermoelectric semiconductor composition containing fine particles T1 of bismuth telluride was prepared.
As the polyamic acid, “poly (pyromellitic dianhydride-co-4,4′-oxydianiline) solution” manufactured by Sigma-Aldrich, solvent: methylpyrrolidone, solid content concentration: 15% by mass, 300 ° C. The mass reduction rate at 0.9% was 0.9%.
A coating liquid N made of a thermoelectric semiconductor composition containing fine particles T2 of n-type bismuth telluride was prepared in the same amount as described above except that the fine particles T1 were changed to fine particles T2.
The coating liquid P prepared in (1) is applied by screen printing onto a polyimide film (trade name “Kapton 200H”, thickness 50 μm, manufactured by Toray DuPont Co., Ltd.), which is a base material, at a temperature of 150 ° C. for 10 minutes. The film was dried under an argon atmosphere to form a thin film having a thickness of 10 μm. Next, the obtained thin film was heated at a heating rate of 5 K / min in a mixed gas atmosphere in which the ratio of hydrogen to argon was hydrogen: argon = 5% by volume: 95% by volume, and the temperature was 415 ° C. By holding for 1 hour and performing annealing treatment B after thin film formation, the microparticles of the thermoelectric semiconductor material were grown to produce a p-type thermoelectric conversion material. In the same manner, an n-type thermoelectric material was produced using the coating liquid N prepared in (1).
(2)π型熱電変換モジュールの作製
 図4(a)に示すように、基材であるポリイミドフィルム(東レデュポン社製、商品名「カプトン200H」、厚み50μm、熱伝導率0.16W/m・K)上に、スクリーン印刷により、下部電極を形成した。さらに、(1)で調製した塗工液P及び塗工液Nを用い、スクリーン印刷法により、図4(a)に示すp型熱電素子及びn型熱電素子のパターンを塗布し、温度150℃で、10分間アルゴンガス雰囲気下で乾燥し、p型熱電素子及びn型熱電素子のそれぞれの厚みが100μmになるよに薄膜を形成した。
 得られた薄膜に対し、アルゴンガス雰囲気下で、加温速度5K/minで昇温し、415℃で1時間、アニール処理Bを行うことにより、熱電半導体材料の微粒子を結晶成長させ、p型熱電素子及びn型熱電素子を備えたパターンフィルムを作製した。
 次いで、基材であるポリイミドフィルム(東レデュポン社製、商品名「カプトン」、厚み50μm)上に、スクリーン印刷法により、図4(b)のように、上部電極のパターンを塗布し、もう一方のパターンフィルムを作製した。
 上記パターンフィルム同士を、電気的にはp型熱電素子とn型熱電素子とが直列接続になるように、かつ熱的には並列接続になるように、導電性接着剤(ニホンハンダ社製、商品名「ECA100」、厚み20μm)を介して貼り合わせ、接着することで、図3に示す排熱回収シート1Cの構造を有する排熱回収シートeを作製した。熱源として、実施例1において用いたものと同じアルミニウムの板を用いた。
 排熱回収シートeは、熱電変換層の電流方向が、基材の平面に交差するように配置されたものである。この排熱回収シートeの、熱電変換層の電流方向が、熱源の温度勾配が生じる方向に同じになるように配置した。この供試体に、上述した方法により熱を与え、排熱回収シートeに生じる温度差を測定した。また、得られる出力電圧を測定した。結果を表1に示す。
(2) Production of π-type thermoelectric conversion module As shown in FIG. 4A, a polyimide film as a base material (trade name “Kapton 200H” manufactured by Toray DuPont Co., Ltd., thickness 50 μm, thermal conductivity 0.16 W / m -K) A lower electrode was formed on the upper surface by screen printing. Furthermore, using the coating liquid P and the coating liquid N prepared in (1), the pattern of the p-type thermoelectric element and the n-type thermoelectric element shown in FIG. Then, it was dried in an argon gas atmosphere for 10 minutes, and a thin film was formed so that each thickness of the p-type thermoelectric element and the n-type thermoelectric element was 100 μm.
The obtained thin film is heated at a heating rate of 5 K / min in an argon gas atmosphere, and annealing treatment B is performed at 415 ° C. for 1 hour to grow microparticles of thermoelectric semiconductor material to form a p-type. A pattern film provided with a thermoelectric element and an n-type thermoelectric element was produced.
Next, on the polyimide film (made by Toray DuPont, trade name “Kapton”, thickness 50 μm) as the base material, the pattern of the upper electrode is applied by screen printing as shown in FIG. A pattern film was prepared.
Conductive adhesives (made by Nihon Solder Co., Ltd.) are used so that the pattern films are electrically connected in series with a p-type thermoelectric element and an n-type thermoelectric element and thermally connected in parallel. The waste heat recovery sheet e having the structure of the exhaust heat recovery sheet 1C shown in FIG. 3 was produced by pasting and bonding via the name “ECA100”, thickness 20 μm). The same aluminum plate as used in Example 1 was used as a heat source.
The exhaust heat recovery sheet e is disposed so that the current direction of the thermoelectric conversion layer intersects the plane of the substrate. The exhaust heat recovery sheet e was arranged so that the current direction of the thermoelectric conversion layer was the same as the direction in which the temperature gradient of the heat source was generated. The specimen was heated by the method described above, and the temperature difference generated in the exhaust heat recovery sheet e was measured. Moreover, the output voltage obtained was measured. The results are shown in Table 1.
<比較例1>
 基材として用いられるポリイミドフィルム(東レ・デュポン株式会社製、「カプトン200H」、厚み50μm、熱伝導率0.16W/m・K)の表面上に、p型熱電材料として銅柱(熱伝導率386W/m・K)を厚み2mmとなるように切断したものを配置し、続いて、n型熱電材料としてニッケル柱(熱伝導率91W/m・K)を厚み6mmとなるように切断したものを配置した。その後、真空蒸着装置を用いて、導電性材料として銅を用いて電極層を形成し、熱電変換デバイスを作製した。
 熱源として、実施例1において用いたものと同じアルミニウムの板を用いた。この供試体に、上述した方法により熱を与え、熱電変換デバイスに生じる温度差を測定した。また、得られる出力電圧を測定した。結果を表1に示す。
<Comparative Example 1>
Copper column (thermal conductivity) as p-type thermoelectric material on the surface of polyimide film (“Kapton 200H” manufactured by Toray DuPont Co., Ltd., thickness 50 μm, thermal conductivity 0.16 W / m · K) used as a base material 386 W / m · K) cut to a thickness of 2 mm, and then a nickel column (thermal conductivity 91 W / m · K) as an n-type thermoelectric material cut to a thickness of 6 mm Arranged. Then, the electrode layer was formed using copper as an electroconductive material using the vacuum evaporation system, and the thermoelectric conversion device was produced.
The same aluminum plate as used in Example 1 was used as a heat source. The specimen was heated by the method described above, and the temperature difference generated in the thermoelectric conversion device was measured. Moreover, the output voltage obtained was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[評価結果]
 実施例1~5の供試体によれば、本発明の規定を満たすデバイス構成下において、効率的に熱の伝熱が行われ、モジュールの構造によらず、熱エネルギーを電気エネルギーに変換できることがわかった。
[Evaluation results]
According to the specimens of Examples 1 to 5, heat can be efficiently transferred under a device configuration that satisfies the provisions of the present invention, and heat energy can be converted into electrical energy regardless of the module structure. all right.
 本発明の排熱回収シートは、シート状に形成された熱電変換デバイスにより、生活排熱及び工業排熱が得られる配管、発熱する機器の筐体等に設置して、本来、放出していた熱エネルギーの一部を電気エネルギーに回生できる。 The waste heat recovery sheet of the present invention was originally released by installing it in a pipe, a casing of a device that generates heat, etc., from which a living waste heat and industrial waste heat are obtained, by a thermoelectric conversion device formed in a sheet shape. Part of thermal energy can be regenerated into electrical energy.
 1A,1B,1C 排熱回収シート、 10 基材、 20 熱電変換デバイス、 22,22a,22b 熱電変換層、 23 電極層、 30,40 パターンフィルム、 31 基材、 32 p型熱電素子、 33 n型熱電素子、 34 下部電極、 34a 電極、 34b,34c 集電用電極、 41 基材、 42 上部電極 1A, 1B, 1C Waste heat recovery sheet, 10 base material, 20 thermoelectric conversion device, 22, 22a, 22b thermoelectric conversion layer, 23 electrode layer, 30, 40 pattern film, 31 base material, 32 p-type thermoelectric element, 33 n Type thermoelectric element, 34 lower electrode, 34a electrode, 34b, 34c current collecting electrode, 41 base material, 42 upper electrode

Claims (8)

  1.  熱源の少なくとも一部に配置され、シート状の基材と、該基材の表面に配設されており熱電材料から形成された熱電変換層及び該熱電変換層に接続された電極層を有するシート状の熱電変換デバイスとを有し、
     熱源の熱伝導率、熱源の温度勾配が生じる方向の厚み、該基材の熱伝導率、該基材の厚み、熱電材料の熱伝導率、及び該熱電変換層の厚みが、下記式を満たす排熱回収シート。
     {(熱源の熱伝導率)×(熱源の温度勾配が生じる方向の厚み)}+{(該基材の熱伝導率)×(該基材の厚み)}>{(熱電材料の熱伝導率)×(該熱電変換層の厚み)}
    A sheet having a sheet-like base material disposed on at least a part of a heat source, a thermoelectric conversion layer formed on a surface of the base material and formed from a thermoelectric material, and an electrode layer connected to the thermoelectric conversion layer A thermoelectric conversion device,
    The heat conductivity of the heat source, the thickness of the heat source in the direction in which the temperature gradient occurs, the heat conductivity of the substrate, the thickness of the substrate, the heat conductivity of the thermoelectric material, and the thickness of the thermoelectric conversion layer satisfy the following formula: Waste heat recovery sheet.
    {(Heat conductivity of heat source) × (thickness in the direction in which the temperature gradient of the heat source is generated)} + {(heat conductivity of the base material) × (thickness of the base material)}> {(thermal conductivity of thermoelectric material) ) × (thickness of the thermoelectric conversion layer)}
  2.  前記熱電変換デバイスを構成する熱電変換層の電流方向が、前記基材の平面に平行に配置されている請求項1に記載の排熱回収シート。 The exhaust heat recovery sheet according to claim 1, wherein a current direction of a thermoelectric conversion layer constituting the thermoelectric conversion device is arranged in parallel to a plane of the base material.
  3.  前記熱電変換デバイスを構成する熱電変換層の電流方向が、前記基材の平面に交差するように配置されている請求項1に記載の排熱回収シート。 The exhaust heat recovery sheet according to claim 1, wherein a current direction of a thermoelectric conversion layer constituting the thermoelectric conversion device is arranged so as to intersect a plane of the base material.
  4.  前記熱電変換デバイスの前記熱電材料の熱伝導率が30W/m・K以下である請求項1~3のいずれか1項に記載の排熱回収シート。 The exhaust heat recovery sheet according to any one of claims 1 to 3, wherein the thermoelectric material of the thermoelectric conversion device has a thermal conductivity of 30 W / m · K or less.
  5.  前記熱電変換デバイスの前記熱電材料がn型熱電材料である請求項1~4のいずれか1項に記載の排熱回収シート。 The exhaust heat recovery sheet according to any one of claims 1 to 4, wherein the thermoelectric material of the thermoelectric conversion device is an n-type thermoelectric material.
  6.  前記熱電変換デバイスの前記熱電材料がp型熱電材料である請求項1~4のいずれか1項に記載の排熱回収シート。 The exhaust heat recovery sheet according to any one of claims 1 to 4, wherein the thermoelectric material of the thermoelectric conversion device is a p-type thermoelectric material.
  7.  前記熱電変換デバイスの前記熱電材料がn型熱電材料及びp型熱電材料であり、該n型熱電材料からなるn型熱電変換層と該p型熱電材料からなるp型熱電変換層とが前記電極層によって接続されてなる請求項1~6のいずれか1項に記載の排熱回収シート。 The thermoelectric material of the thermoelectric conversion device is an n-type thermoelectric material and a p-type thermoelectric material, and an n-type thermoelectric conversion layer made of the n-type thermoelectric material and a p-type thermoelectric conversion layer made of the p-type thermoelectric material are the electrodes. The exhaust heat recovery sheet according to any one of claims 1 to 6, wherein the exhaust heat recovery sheet is connected by layers.
  8.  電気を蓄電する蓄電部を備え、前記電極層が該蓄電部に電気的に接続されてなる請求項1~7のいずれか1項に記載の排熱回収シート。 The exhaust heat recovery sheet according to any one of claims 1 to 7, further comprising a power storage unit that stores electricity, wherein the electrode layer is electrically connected to the power storage unit.
PCT/JP2016/055185 2015-03-18 2016-02-23 Waste heat recovery sheet WO2016147809A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017506162A JPWO2016147809A1 (en) 2015-03-18 2016-02-23 Waste heat recovery sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-055220 2015-03-18
JP2015055220 2015-03-18

Publications (1)

Publication Number Publication Date
WO2016147809A1 true WO2016147809A1 (en) 2016-09-22

Family

ID=56918741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055185 WO2016147809A1 (en) 2015-03-18 2016-02-23 Waste heat recovery sheet

Country Status (3)

Country Link
JP (1) JPWO2016147809A1 (en)
TW (1) TW201705403A (en)
WO (1) WO2016147809A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168837A1 (en) * 2017-03-16 2018-09-20 リンテック株式会社 Electrode material for thermoelectric conversion modules and thermoelectric conversion module using same
WO2019017170A1 (en) * 2017-07-18 2019-01-24 国立研究開発法人物質・材料研究機構 Thermoelectric material, thermoelectric conversion module using thermoelectric material, method for manufacturing same, and peltier element
JPWO2018110403A1 (en) * 2016-12-13 2019-10-24 リンテック株式会社 Thermoelectric conversion material and manufacturing method thereof
EP3587507A1 (en) * 2018-06-21 2020-01-01 otego GmbH Screen print-capable titanium disulfide for use in a thermoelectric generator
WO2020045378A1 (en) * 2018-08-28 2020-03-05 リンテック株式会社 Semiconductor element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109819A (en) * 2005-10-12 2007-04-26 Ricoh Co Ltd Portable electronic apparatus
WO2009008127A1 (en) * 2007-07-09 2009-01-15 Kabushiki Kaisha Toshiba Thermoelectric conversion module and heat exchanger employing the same, thermoelectric temperature control device and thermoelectric generator
JP2009284633A (en) * 2008-05-21 2009-12-03 Nichicon Corp Non-contact power transfer device
JP2011035203A (en) * 2009-08-03 2011-02-17 Fujitsu Ltd Thermoelectric conversion module
WO2014148494A1 (en) * 2013-03-21 2014-09-25 国立大学法人長岡技術科学大学 Thermoelectric conversion element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109819A (en) * 2005-10-12 2007-04-26 Ricoh Co Ltd Portable electronic apparatus
WO2009008127A1 (en) * 2007-07-09 2009-01-15 Kabushiki Kaisha Toshiba Thermoelectric conversion module and heat exchanger employing the same, thermoelectric temperature control device and thermoelectric generator
JP2009284633A (en) * 2008-05-21 2009-12-03 Nichicon Corp Non-contact power transfer device
JP2011035203A (en) * 2009-08-03 2011-02-17 Fujitsu Ltd Thermoelectric conversion module
WO2014148494A1 (en) * 2013-03-21 2014-09-25 国立大学法人長岡技術科学大学 Thermoelectric conversion element

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7173869B2 (en) 2016-12-13 2022-11-16 リンテック株式会社 Thermoelectric conversion material and manufacturing method thereof
US11522114B2 (en) 2016-12-13 2022-12-06 Lintec Corporation Thermoelectric conversion material and method for producing same
JPWO2018110403A1 (en) * 2016-12-13 2019-10-24 リンテック株式会社 Thermoelectric conversion material and manufacturing method thereof
JPWO2018168837A1 (en) * 2017-03-16 2020-01-16 リンテック株式会社 Electrode material for thermoelectric conversion module and thermoelectric conversion module using the same
WO2018168837A1 (en) * 2017-03-16 2018-09-20 リンテック株式会社 Electrode material for thermoelectric conversion modules and thermoelectric conversion module using same
US11424397B2 (en) 2017-03-16 2022-08-23 Lintec Corporation Electrode material for thermoelectric conversion modules and thermoelectric conversion module using same
TWI817941B (en) * 2017-03-16 2023-10-11 日商琳得科股份有限公司 Thermoelectric conversion module
CN110832651A (en) * 2017-07-18 2020-02-21 国立研究开发法人物质·材料研究机构 Thermoelectric material, thermoelectric conversion module using same, method for manufacturing thermoelectric conversion module, and peltier element
JPWO2019017170A1 (en) * 2017-07-18 2020-05-28 国立研究開発法人物質・材料研究機構 Thermoelectric material, thermoelectric conversion module using the same, manufacturing method thereof, and Peltier device
US20220216389A1 (en) * 2017-07-18 2022-07-07 National Institute For Materials Science Thermoelectric material, thermoelectric conversion module using a thermoelectric material, method of producing the same, and peltier element
WO2019017170A1 (en) * 2017-07-18 2019-01-24 国立研究開発法人物質・材料研究機構 Thermoelectric material, thermoelectric conversion module using thermoelectric material, method for manufacturing same, and peltier element
CN110832651B (en) * 2017-07-18 2023-12-15 国立研究开发法人物质·材料研究机构 Thermoelectric material, thermoelectric conversion module using same, method for producing same, and Peltier element
EP3587507A1 (en) * 2018-06-21 2020-01-01 otego GmbH Screen print-capable titanium disulfide for use in a thermoelectric generator
WO2020045378A1 (en) * 2018-08-28 2020-03-05 リンテック株式会社 Semiconductor element
JPWO2020045378A1 (en) * 2018-08-28 2021-09-24 リンテック株式会社 Semiconductor element
JP7348192B2 (en) 2018-08-28 2023-09-20 リンテック株式会社 semiconductor element

Also Published As

Publication number Publication date
TW201705403A (en) 2017-02-01
JPWO2016147809A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
CN107112409B (en) Peltier cooling element and method for manufacturing the same
JP5712340B1 (en) Thermoelectric conversion material and manufacturing method thereof
WO2016147809A1 (en) Waste heat recovery sheet
JP7173869B2 (en) Thermoelectric conversion material and manufacturing method thereof
JP7406756B2 (en) Thermoelectric conversion module and its manufacturing method
JP7245652B2 (en) Flexible thermoelectric conversion element and manufacturing method thereof
Dun et al. 3D printing of solution‐processable 2D nanoplates and 1D nanorods for flexible thermoelectrics with ultrahigh power factor at low‐medium temperatures
JP6672562B2 (en) Peltier cooling element and method of manufacturing the same
JP7348192B2 (en) semiconductor element
WO2020022228A1 (en) Thermoelectric conversion unit
WO2020071424A1 (en) Chip of thermoelectric conversion material
WO2021193358A1 (en) Thermoelectric conversion module
JP2020035818A (en) Thermoelectric conversion element and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16764639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017506162

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16764639

Country of ref document: EP

Kind code of ref document: A1