WO2022071043A1 - Thermoelectric conversion material layer - Google Patents

Thermoelectric conversion material layer Download PDF

Info

Publication number
WO2022071043A1
WO2022071043A1 PCT/JP2021/034720 JP2021034720W WO2022071043A1 WO 2022071043 A1 WO2022071043 A1 WO 2022071043A1 JP 2021034720 W JP2021034720 W JP 2021034720W WO 2022071043 A1 WO2022071043 A1 WO 2022071043A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion material
thermoelectric conversion
material layer
thermoelectric
metal nanoparticles
Prior art date
Application number
PCT/JP2021/034720
Other languages
French (fr)
Japanese (ja)
Inventor
俊弥 山▲崎▼
邦久 加藤
佑太 関
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2022553857A priority Critical patent/JPWO2022071043A1/ja
Publication of WO2022071043A1 publication Critical patent/WO2022071043A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material

Definitions

  • the present invention relates to a thermoelectric conversion material layer.
  • thermoelectric conversion module having a thermoelectric effect such as the Zeebeck effect and the Pelche effect.
  • thermoelectric conversion module the use of a so-called ⁇ -type thermoelectric conversion element is known.
  • ⁇ type a pair of electrodes separated from each other are provided on the substrate, for example, a P-type thermoelectric element is provided on one of the electrodes, and an N-type thermoelectric element is provided on the other electrode, also separated from each other. , It is configured by connecting the top surfaces of both thermoelectric materials to the electrodes of the opposing substrates.
  • thermoelectric conversion element a so-called in-plane type thermoelectric conversion element.
  • inplane type P-type thermoelectric elements and N-type thermoelectric elements are alternately provided in the in-plane direction of the substrate.
  • the lower part of the joint between the two thermoelectric elements is connected in series with an electrode interposed therebetween. It is configured.
  • Patent Document 1 for example, from the viewpoint of flexibility, a resin substrate such as polyimide is used as a substrate used for a thermoelectric conversion module.
  • thermoelectric conversion material layer for example, from a thermoelectric semiconductor composition containing a bismuthellide-based material (thermoelectric semiconductor particles) atomized as a thermoelectric semiconductor material, a resin acting as a binder between the particles, and the like.
  • the thermoelectric conversion material layer is disclosed.
  • Patent Document 2 from the viewpoint of excellent processability, flexibility, and thermoelectric performance, a composition for a thermoelectric conversion element containing carbon nanotubes on which metal nanoparticles are supported as a thermoelectric semiconductor material, a resin component as a binder, and a solvent is used.
  • the thermoelectric conversion material layer is disclosed.
  • Patent Document 1 since the resin is used as the binder between the thermoelectric semiconductor particles, many voids are included between the thermoelectric semiconductor particles of the formed thermoelectric conversion material layer, and high electric conductivity is sufficiently achieved. The thermoelectric performance was not sufficient.
  • Patent Document 2 the conductivity of the CNT itself is improved by supporting the metal nanoparticles on the CNT (carbon nanotube) having a defect structure (a place where the six-membered ring network is not well formed). It had the same problem as Patent Document 1.
  • thermoelectric conversion material layer having high thermoelectric performance, in which the filling rate of the thermoelectric conversion material in the thermoelectric conversion material layer made of a fired body of a thermoelectric semiconductor composition is improved. ..
  • thermoelectric semiconductor composition contain metal nanoparticles that are sintered at a specific temperature, and fill the voids between the thermoelectric semiconductor particles (reduce the voids).
  • the present invention has been completed by finding that a thermoelectric conversion material layer having a high filling rate of a thermoelectric conversion material can be obtained, and that the thermoelectric conversion material layer has a high electric conductivity and leads to improvement of thermoelectric performance. That is, the present invention provides the following (1) to (8).
  • thermoelectric conversion material layer composed of a fired body of a thermoelectric semiconductor composition containing thermoelectric semiconductor particles, a binder resin, an ionic liquid, and metal nanoparticles, and the metal nanoparticles are particles sintered at 450 ° C. or lower.
  • the thermoelectric conversion material layer (2) The thermoelectric conversion material layer according to (1) above, wherein the metal nanoparticles in the thermoelectric semiconductor composition have an average particle size of 200 nm or less.
  • thermoelectric conversion material layer described in.
  • thermoelectric conversion material layer according to any one of (1) to (6) above, wherein the thermoelectric conversion material layer is composed of a fired body of a coating film of the thermoelectric semiconductor composition.
  • the thermoelectric conversion material layer is composed of a thermoelectric conversion material containing voids, and when the ratio of the area of the thermoelectric conversion material to the area of the vertical cross section including the central portion of the thermoelectric conversion material layer is taken as the filling factor.
  • thermoelectric conversion material layer having high thermoelectric performance, in which the filling rate of the thermoelectric conversion material in the thermoelectric conversion material layer made of a fired body of a thermoelectric semiconductor composition is improved.
  • thermoelectric conversion material layer of this invention It is a figure for demonstrating the definition of the vertical cross section of the thermoelectric conversion material layer of this invention. It is sectional drawing for demonstrating the vertical cross section before and after heating and pressurizing the thermoelectric conversion material layer of this invention. It is explanatory drawing which shows one aspect of the manufacturing method of the thermoelectric conversion material layer of this invention in the order of a process.
  • thermoelectric conversion material layer of the present invention is a thermoelectric conversion material layer composed of a fired body of a thermoelectric semiconductor composition containing thermoelectric semiconductor particles, a binder resin, an ionic liquid, and metal nanoparticles, and the metal nanoparticles are at 450 ° C. It is characterized by being particles to be sintered below.
  • the thermoelectric semiconductor composition contains metal nanoparticles sintered at 450 ° C. or lower, and the sintered body of the metal nanoparticles having a temperature of 450 ° C. or lower fills the voids between the thermoelectric semiconductor particles (reduces the voids), whereby thermoelectric conversion is performed.
  • thermoelectric conversion material layer having a high filling rate of the material can be obtained, whereby the thermoelectric conversion material exhibits high electrical conductivity, and thus thermoelectric performance can be improved.
  • the "thermoelectric conversion material layer” is composed of a thermoelectric conversion material and voids. That is, the “thermoelectric conversion material” means a portion obtained by removing voids from the thermoelectric conversion material layer.
  • “sintering at 450 ° C or lower” means that a thin film made of a thermoelectric semiconductor composition before firing is allowed to stand in an atmosphere up to 450 ° C for a predetermined time (according to the firing time described later) at room temperature.
  • the evaluation relating to "the state where there is a region where the interface cannot be confirmed” is performed by cutting a vertical cross section including the central portion of the thermoelectric conversion material layer fired at the temperature or lower, and firing included in the vertical cross section.
  • the tied metal nanoparticles and thermoelectric semiconductor particles can be carried out according to the following criteria from the images observed by a scanning electron microscope (SEM).
  • an image having an observation field size of 1 ⁇ m square at least 10 metal nanoparticles are present in the field of view
  • an image having an observation field size of 10 ⁇ m square both metal nanoparticles and thermoelectric semiconductor particles are present in the field at least
  • the thermoelectric conversion material layer of the present invention comprises a fired body of a thermoelectric semiconductor composition containing thermoelectric semiconductor particles, a binder resin, an ionic liquid, and metal nanoparticles.
  • the fired body comprises a fired body of a coating film of a thermoelectric semiconductor composition.
  • it is composed of a fired body of a thin film formed by a known dry film forming method such as a vapor deposition film or a sputter film of a thermoelectric semiconductor composition.
  • the firing temperature is usually 60 to 450 ° C, preferably 130 to 450 ° C, more preferably 140 to 450 ° C, still more preferably 160 to 450 ° C, and particularly preferably 180 to 180 to obtain a sintered body of metal nanoparticles. It is 450 ° C.
  • the firing time is not particularly limited, but is usually several minutes to several tens of hours, preferably several minutes to several hours.
  • the thickness of the thermoelectric conversion material layer is not particularly limited, but is preferably 1 nm to 1000 ⁇ m, more preferably 3 to 600 ⁇ m, and further preferably 5 to 400 ⁇ m from the viewpoint of flexibility, thermoelectric performance, and film strength.
  • thermoelectric semiconductor composition used in the present invention contains metal nanoparticles.
  • Metal nanoparticles are obtained by firing (annealing) a thin film of a thermoelectric semiconductor composition to form a fired body (thermoelectric conversion material layer), and the bonding between the metal nanoparticles progresses due to sintering of the metal nanoparticles.
  • Voids between thermoelectric semiconductor particles can be filled, and the generation of voids can be suppressed.
  • the filling factor of the thermoelectric conversion material in the thermoelectric conversion material layer can be improved.
  • similar to the ionic liquid described later it is possible to effectively suppress the reduction of the electric conductivity between the thermoelectric semiconductor particles.
  • Metal nanoparticles are particles that sinter at 450 ° C or lower.
  • the particles are preferably sintered at 130 to 450 ° C, more preferably particles sintered at 140 to 450 ° C, further preferably particles sintered at 160 to 450 ° C, and 180 to 450. It is particularly preferable that the particles are sintered at ° C. If the metal nanoparticles are sintered in the above range, it becomes easy to efficiently fill the voids between the thermoelectric semiconductor particles in the thin film of the thermoelectric semiconductor composition, and as a result, the thermoelectric conversion in the thermoelectric conversion material layer becomes easy. It improves the filling rate of the material and leads to the improvement of the electrical conductivity of the thermoelectric conversion material layer.
  • the metal nanoparticles are not particularly limited as long as they can fill the voids between the thermoelectric semiconductor particles and suppress the decrease in the electric conductivity between the thermoelectric semiconductor particles, but are not particularly limited, but are silver, copper, gold, platinum, palladium, aluminum, titanium, and nickel. , Bismus, tellurium and alloys thereof are preferably selected, and silver, copper, gold, bismuth, tellurium, aluminum and alloys thereof are more preferably selected, and low temperature sinterability and stability. From the viewpoint of sex, it is more preferable to be selected from the group consisting of silver, copper, gold, an alloy of silver and copper, an alloy of silver and gold, and an alloy of copper and gold.
  • the average particle size of the metal nanoparticles in the thermoelectric semiconductor composition is not particularly limited, but is preferably 200 nm or less, more preferably 200 nm or less, from the viewpoint of low-temperature sinterability and efficient filling of narrow voids between the thermoelectric semiconductor particles. Is 1 to 200 nm or less, more preferably 1 to 180 nm, still more preferably 10 to 150 nm, particularly preferably 15 to 120 nm, and most preferably 20 to 100 nm.
  • the average particle size of the metal nanoparticles is within the above range, the voids between the thermoelectric semiconductor particles in the thin film of the thermoelectric semiconductor composition can be efficiently filled, and the thin film of the thermoelectric semiconductor composition is fired (annealed).
  • thermoelectric conversion material layer As the sintering of the metal nanoparticles progresses in the process of forming the fired body (thermoelectric conversion material layer), the voids between the thermoelectric semiconductor particles can be further filled, and as a result, the thermoelectric in the thermoelectric conversion material layer can be filled. It improves the filling rate of the conversion material and leads to the improvement of the electrical conductivity of the thermoelectric conversion material layer.
  • the average particle size (primary particles) of the metal nanoparticles in the thermoelectric semiconductor composition is an arithmetic average value of the average particle size of any 20 metal nanoparticles observed by a transmission electron microscope (TEM). ..
  • metal particles having a diameter of several tens of nm or less generally exhibit various physical and chemical properties different from those of bulk metals as the particle size becomes smaller.
  • the melting point of metal particles becomes lower than the melting point of bulk metal as the particle size becomes smaller. Therefore, in the present invention, metal particles having a small particle diameter are used, including the point of lowering the sintering temperature.
  • the specific resistance of the metal nanoparticles is preferably 6.0 ⁇ 10 -3 ⁇ ⁇ cm or less, more preferably 8 ⁇ 10 -6 ⁇ ⁇ cm or less, and even more preferably 8 ⁇ 10 -7 ⁇ ⁇ cm. It is less than or equal to, and particularly preferably 8 ⁇ 10 -8 ⁇ ⁇ cm or less.
  • the specific resistance of the metal nanoparticles is within the above range, the electrical bondability between the thermoelectric semiconductor particles is improved, and the electrical resistance value of the thermoelectric conversion material layer is lowered.
  • the content of the metal nanoparticles in the thermoelectric semiconductor composition is preferably 0.01 to 15.00% by mass, more preferably 0.50 to 14.00% by mass, and further preferably 1.00 to 12.00% by mass. %, Particularly preferably 2.00 to 11.00% by mass, and most preferably 5.00 to 10.00% by mass.
  • the content of the metal nanoparticles in the thermoelectric semiconductor composition is within the above range, the voids between the thermoelectric semiconductor particles are efficiently filled by the sintered body of the metal nanoparticles at the time of firing the thin film made of the thermoelectric semiconductor composition.
  • the filling rate of the thermoelectric conversion material in the thermoelectric conversion material layer is improved, which leads to the improvement of the electric conductivity of the thermoelectric conversion material layer.
  • metal nanoparticles Commercially available products of metal nanoparticles include the following. For example, silver nanoparticles (manufactured by Samsung Belt Co., Ltd., trade name: MDot (registered trademark) CF158, resistivity: 8 ⁇ 10 -6 ⁇ ⁇ cm, average particle size: 60 nm), silver nanoparticles (manufactured by Daicel Co., Ltd., trade name).
  • MDot registered trademark
  • resistivity 8 ⁇ 10 -6 ⁇ ⁇ cm
  • average particle size 60 nm
  • silver nanoparticles manufactured by Daicel Co., Ltd., trade name
  • Picosil registered trademark
  • resistivity 1.0 ⁇ 10-5 ⁇ ⁇ cm, average particle size: 60 nm
  • silver nanoparticles complex
  • resistivity manufactured by InkTek, trade name: Tec-PA-010, resistivity
  • copper nanoparticles manufactured by Taiyo Nisshi Co., Ltd., trade name: copper nanopaste
  • resistivity 2.5 x 10-5 ⁇ ⁇ cm, average Particle size: 120 nm
  • thermoelectric semiconductor particles The thermoelectric semiconductor composition used in the present invention contains thermoelectric semiconductor particles.
  • the thermoelectric semiconductor particles are obtained by pulverizing a thermoelectric semiconductor material, which will be described later, to a predetermined size by a fine pulverizer or the like.
  • the thermoelectric semiconductor material is not particularly limited as long as it is a material capable of generating thermoelectromotive force by applying a temperature difference.
  • a bismuth-tellu system such as P-type bismasterlide and N-type bismasterlide.
  • Thermoelectric semiconductor materials telluride-based thermoelectric semiconductor materials such as GeTe and PbTe; antimon-tellu-based thermoelectric semiconductor materials; zinc-antimon-based thermoelectric semiconductor materials such as ZnSb, Zn 3 Sb 2, Zn 4 Sb 3 ; silicon-germanium such as SiGe.
  • Bismus selenide thermoelectric semiconductor materials such as Bi 2 Se 3 ; silicide-based thermoelectric semiconductor materials such as ⁇ -FeSi 2 , CrSi 2 , MnSi 1.73 , Mg 2 Si; oxide thermoelectric semiconductor materials; Whistler materials such as FeVAL, FeVALSi, and FeVTiAl; sulfide-based thermoelectric semiconductor materials such as TiS 2 ; and the like are used.
  • thermoelectric semiconductor material such as type bismuth sterlide are more preferable.
  • the P-type bismuth telluride one having a hole as a carrier and a positive Seebeck coefficient, for example, represented by Bi X Te 3 Sb 2-X is preferably used.
  • X is preferably 0 ⁇ X ⁇ 0.8, more preferably 0.4 ⁇ X ⁇ 0.6.
  • the Seebeck coefficient and the electric conductivity become large, and the characteristics as a P-type thermoelectric element are maintained, which is preferable.
  • the N-type bismuth telluride one having an electron carrier and a negative Seebeck coefficient, for example, represented by Bi 2 Te 3-Y Se Y is preferably used.
  • Y is 0 or more and 3 or less, the Seebeck coefficient and the electric conductivity become large, and the characteristics as an N-type thermoelectric element are maintained, which is preferable.
  • the content of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is preferably 30 to 99% by mass, more preferably 50 to 96% by mass, and particularly preferably 70 to 95% by mass.
  • the Seebeck coefficient absolute value of the Perche coefficient
  • the decrease in the electric conductivity is suppressed, and only the thermal conductivity is decreased, so that high thermoelectric performance is exhibited.
  • a film having sufficient film strength and flexibility can be obtained, which is preferable.
  • the average particle size of the thermoelectric semiconductor particles is preferably 10 nm to 200 ⁇ m, more preferably 10 nm to 30 ⁇ m, still more preferably 50 nm to 10 ⁇ m, and particularly preferably 1 to 6 ⁇ m. Within the above range, uniform dispersion can be facilitated and the electrical conductivity can be increased.
  • the method of pulverizing the thermoelectric semiconductor material to obtain thermoelectric semiconductor particles is not particularly limited, and may be pulverized to a predetermined size by a known fine pulverizer such as a jet mill, a ball mill, a bead mill, a colloid mill, a roller mill or the like. ..
  • the average particle size of the thermoelectric semiconductor particles was obtained by measuring with a laser diffraction type particle size analyzer (Mastersizer 3000 manufactured by Malvern), and was used as the median value of the particle size distribution.
  • thermoelectric semiconductor particles are heat-treated in advance.
  • the heat treatment is not particularly limited, but also under an inert gas atmosphere such as nitrogen and argon in which the gas flow rate is controlled so as not to adversely affect the thermoelectric semiconductor particles before preparing the thermoelectric semiconductor composition. It is preferably performed in a reducing gas atmosphere such as hydrogen or under vacuum conditions, and more preferably in a mixed gas atmosphere of an inert gas and a reducing gas.
  • the specific temperature condition depends on the thermoelectric semiconductor particles used, but it is usually preferable to carry out the process at a temperature equal to or lower than the melting point of the particles and at 100 to 1500 ° C. for several minutes to several tens of hours.
  • thermoelectric semiconductor composition used in the present invention contains a binder resin.
  • the binder resin acts as a binder between thermoelectric semiconductor materials (thermoelectric semiconductor particles), can enhance the flexibility of the thermoelectric conversion module, and facilitates the formation of a thin film by coating or the like.
  • the binder resin is preferably a resin that decomposes by 90% by mass or more at a firing (annealing) temperature or higher, more preferably a resin that decomposes by 95% by mass or more, and a resin that decomposes by 99% by mass or more. Is particularly preferable. Further, when a coating film (thin film) made of a thermoelectric semiconductor composition is subjected to crystal growth such as firing (annealing) treatment, a resin that maintains various physical properties such as mechanical strength and thermal conductivity without being impaired. More preferred.
  • the binder resin If a resin that decomposes by 90% by mass or more at a firing (annealing) temperature or higher is used as the binder resin, the binder resin is decomposed by firing, so that the content of the binder resin that is an insulating component contained in the fired body is increased. Since the amount is reduced and the crystal growth of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is promoted, the voids in the thermoelectric conversion material layer can be reduced and the filling rate can be improved. Whether or not the resin decomposes at a predetermined value (for example, 90% by mass) or more at the firing (annealing) temperature or higher is determined by the mass reduction rate (before decomposition) at the firing (annealing) temperature by thermogravimetric analysis (TG). Judgment is made by measuring (the value obtained by dividing the mass after decomposition by the mass).
  • TG thermogravimetric analysis
  • thermoplastic resin examples include polyolefin resins such as polyethylene, polypropylene, polyisobutylene, and polymethylpentene; polycarbonate; thermoplastic polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polystyrene, acrylonitrile-styrene copolymer, and polyacetic acid.
  • Examples thereof include polyvinyl polymers such as vinyl, ethylene-vinyl acetate copolymers, vinyl chloride, polyvinylpyridine, polyvinyl alcohol, and polyvinylpyrrolidone; polyurethanes; cellulose derivatives such as ethyl cellulose; and the like.
  • the curable resin include thermosetting resins and photocurable resins.
  • examples of the thermosetting resin include epoxy resin and phenol resin.
  • Examples of the photocurable resin include a photocurable acrylic resin, a photocurable urethane resin, and a photocurable epoxy resin. These may be used alone or in combination of two or more.
  • thermoplastic resin a thermoplastic resin is preferable, a cellulose derivative such as polycarbonate and ethyl cellulose is more preferable, and polycarbonate is particularly preferable.
  • the binder resin is appropriately selected according to the firing (annealing treatment) temperature of the thermoelectric semiconductor material in the (D) firing (annealing treatment) step described later. It is preferable to bake (anneal) at a temperature equal to or higher than the final decomposition temperature of the binder resin from the viewpoint of the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer.
  • the "final decomposition temperature” is a temperature at which the mass reduction rate at the firing (annealing) temperature by thermogravimetric analysis (TG) is 100% (the mass after decomposition is 0% of the mass before decomposition).
  • the final decomposition temperature of the binder resin is usually 150 to 600 ° C, preferably 200 to 560 ° C, more preferably 220 to 460 ° C, and particularly preferably 240 to 360 ° C. If a binder resin having a final decomposition temperature in this range is used, it functions as a binder for the thermoelectric semiconductor material, and it becomes easy to form a thin film at the time of printing.
  • the content of the binder resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 0.5 to 10% by mass, and particularly preferably 0.5 to 5%. It is mass%.
  • the content of the binder resin is within the above range, the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer can be reduced.
  • the content of the binder resin in the thermoelectric conversion material is preferably 0 to 10% by mass, more preferably 0 to 5% by mass, and particularly preferably 0 to 1% by mass.
  • the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer can be reduced.
  • the thermoelectric semiconductor composition used in the present invention contains an ionic liquid.
  • the ionic liquid is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist as a liquid in any temperature range of ⁇ 50 ° C. or higher and lower than 400 ° C.
  • the ionic liquid has features such as extremely low vapor pressure, non-volatileity, excellent thermal stability and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, as a conductive auxiliary agent, it is possible to effectively suppress the reduction of the electric conductivity between the thermoelectric semiconductor particles. Further, since the ionic liquid exhibits high polarity based on the aprotic ionic structure and has excellent compatibility with the binder resin, the electric conductivity of the chip of the thermoelectric conversion material can be made uniform.
  • the ionic liquid may be, for example, (1) nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and derivatives thereof; amine-based cations of tetraalkylammonium and derivatives thereof; phosphonium, trialkylsulfonium. , Tetraalkylphosphonium and other phosphinic cations and their derivatives; lithium cations and their derivatives; and other cation components, and (2) Cl ⁇ , AlCl 4- , Al 2 Cl 7- , ClO 4- and other chloride ions.
  • nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and derivatives thereof; amine-based cations of tetraalkylammonium and derivatives thereof; phosphonium,
  • the cation component of the ionic liquid is pyridinium cation and its It preferably contains at least one selected from derivatives, imidazolium cations and derivatives thereof.
  • the anion component of the ionic liquid preferably contains a halide anion, and more preferably contains at least one selected from Cl ⁇ , Br ⁇ and I ⁇ .
  • ionic liquids in which the cation component contains a pyridinium cation and its derivatives include 4-methyl-butylpyridinium chloride, 3-methyl-butylpyridinium chloride, 4-methyl-hexylpyridinium chloride, 3-methyl-hexylpyridinium.
  • Chloride 4-methyl-octylpyridinium chloride, 3-methyl-octylpyridinium chloride, 3,4-dimethyl-butylpyridinium chloride, 3,5-dimethyl-butylpyridinium chloride, 4-methyl-butylpyridiniumtetrafluoroborate, 4- Methyl-butylpyridinium hexafluorophosphate, 1-butylpyridinium bromide, 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, 1-butyl-4-methylpyridinium iodide, etc. Be done. These may be used alone or in combination of two or more.
  • 1-butylpyridinium bromide 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, and 1-butyl-4-methylpyridinium iodide are preferable.
  • ionic liquid in which the cation component contains an imidazolium cation and a derivative thereof are [1-butyl-3- (2-hydroxyethyl) imidazolium bromide] and [1-butyl-3- (2).
  • the electric conductivity of the above ionic liquid is preferably 10-7 S / cm or more, more preferably 10-6 S / cm or more.
  • the electric conductivity is within the above range, the reduction of the electric conductivity between the thermoelectric semiconductor particles can be effectively suppressed as a conductivity auxiliary agent.
  • the above-mentioned ionic liquid preferably has a decomposition temperature of 300 ° C. or higher.
  • the decomposition temperature means a temperature at which the mass reduction rate at the firing (annealing) temperature by thermogravimetric analysis (TG) is 10%.
  • the mass reduction rate at 300 ° C. by thermogravimetric analysis (TG) is preferably 10% or less, more preferably 5% or less, and particularly preferably 1% or less. As long as the mass reduction rate is within the above range, the effect as a conductive auxiliary agent can be maintained even when the coating film (thin film) made of the thermoelectric semiconductor composition is fired (annealed) as described later.
  • the content of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and particularly preferably 1.0 to 20% by mass.
  • the content of the ionic liquid is within the above range, the decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
  • the content of the ionic liquid in the thermoelectric conversion material is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and particularly preferably 1.0 to 20% by mass.
  • the content of the ionic liquid in the thermoelectric conversion material is within the above range, the decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
  • the thermoelectric semiconductor composition used in the present invention may further contain an inorganic ionic compound.
  • Inorganic ionic compounds are compounds composed of at least cations and anions. Since the inorganic ionic compound is solid at room temperature, has a melting point in any temperature in the temperature range of 400 to 900 ° C., and has characteristics such as high ionic conductivity, it can be used as a conduction auxiliary agent. It is possible to suppress a decrease in electrical conductivity between thermoelectric semiconductor particles.
  • the content of the inorganic ionic compound in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and particularly preferably. Is 1.0 to 10% by mass.
  • the content of the inorganic ionic compound is within the above range, the decrease in electrical conductivity can be effectively suppressed, and as a result, a film having improved thermoelectric performance can be obtained.
  • the total content of the inorganic ionic compound and the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably. Is 0.5 to 30% by mass, particularly preferably 1.0 to 10% by mass.
  • the content of the inorganic ionic compound in the thermoelectric conversion material is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and particularly preferably 1.0 to 10% by mass.
  • the content of the inorganic ionic compound in the thermoelectric conversion material is within the above range, the decrease in electrical conductivity can be effectively suppressed, and as a result, a film having improved thermoelectric performance can be obtained.
  • thermoelectric semiconductor composition may further include a dispersant, a film-forming auxiliary, a photostabilizer, an antioxidant, a tackifier, a plasticizer, a colorant, a resin stabilizer, a filler, and the like. It may contain other additives such as pigments, conductive fillers, conductive polymers and hardeners. These may be used alone or in combination of two or more.
  • FIG. 1A and 1B are views for explaining a definition of a vertical cross section of a thermoelectric conversion material layer of the present invention
  • FIG. 1A is a plan view of a thermoelectric conversion material layer 2
  • FIG. 1A is a plan view of the thermoelectric conversion material layer 2.
  • It has a length X in the width direction and a length Y in the depth direction
  • FIG. 1B is a vertical cross section of the thermoelectric conversion material layer 2 formed on the substrate 1, and the vertical cross section is FIG. 1 (a). )
  • the length X and the thickness D obtained when cutting between A and A'in the width direction are included (the figure is a rectangle).
  • the thermoelectric conversion material layer 2 includes a void portion 3.
  • FIG. 2 is a schematic cross-sectional view for explaining a vertical cross section of the thermoelectric conversion material layer of the present invention before and after heating and pressurization
  • FIG. 2A is a thermoelectric conversion before heating and pressurizing formed on the substrate 1a.
  • the thermoelectric conversion material layer 2s has a vertical cross section consisting of a curve having a length X in the width direction, Dmin in the thickness direction, and a curve having a value of Dmax.
  • the upper portion is provided with a concave portion and a convex portion, and a gap portion 3a is present in the vertical cross section.
  • FIG. 2B is an example of a vertical cross section of the thermoelectric conversion material layer 2t formed on the substrate 1a after heating and pressurizing the thermoelectric conversion material layer 2s, and the vertical cross section of the thermoelectric conversion material layer 2t has a width.
  • the length is X in the direction and the thickness is D in the thickness direction [when the values of Dmin and Dmax in (a) of FIG. In the plane, there is a void portion 4a in which the number of voids and the volume are further suppressed.
  • Dmin means the minimum value of the thickness in the thickness direction of the vertical cross section
  • Dmax means the maximum value of the thickness in the thickness direction of the vertical cross section.
  • the filling rate of the thermoelectric conversion material in the thermoelectric conversion material layer is defined by the ratio of the area of the thermoelectric conversion material to the area of the longitudinal section including the central portion of the thermoelectric conversion material layer, and the larger the filling rate is, the more the filling rate is defined. ,
  • the voids in the thermoelectric conversion material layer are reduced.
  • the filling factor of the thermoelectric conversion material in the thermoelectric conversion material layer is preferably 0.800 or more and less than 1.000, more preferably 0.900 or more and less than 1.000, and further preferably 0.920 or more and 1. It is less than 000, more preferably 0.950 or more and less than 1.000, and most preferably 0.970 or more and less than 1.000.
  • thermoelectric conversion material in the thermoelectric conversion material layer When the filling factor is in this range, the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer is reduced (improvement of electrical conductivity), and the thermoelectric performance is improved.
  • the filling factor of the thermoelectric conversion material in the thermoelectric conversion material layer was measured by the method described in Examples described later.
  • thermoelectric conversion material layer of the present invention has an increased electric conductivity due to a high filling rate of the thermoelectric conversion material, which leads to an improvement in thermoelectric performance. Therefore, by applying it as a thermoelectric conversion material layer of a thermoelectric conversion module, a thermoelectric conversion module having high thermoelectric performance can be obtained.
  • the method for producing a thermoelectric conversion material layer of the present invention is a method for producing a thermoelectric conversion material layer composed of a fired body of a thermoelectric semiconductor composition containing thermoelectric semiconductor particles, a binder resin, an ionic liquid, and metal nanoparticles.
  • the nanoparticles are characterized by being sintered at 450 ° C. or lower.
  • (A) a step of forming a thin film of the thermoelectric conversion material layer (B) a step of drying the thin film of the thermoelectric conversion material layer obtained in the step (A), (C) the step (B).
  • thermoelectric conversion material layer obtained in the above step, and (D) firing the thin film of the heated and pressurized thermoelectric conversion material layer obtained in the step (C). It is preferable to include a step of annealing).
  • a thin film of the thermoelectric conversion material layer is formed, dried at a predetermined temperature, and then the upper surface of the thermoelectric conversion material layer is heated and pressed at a predetermined pressure and a predetermined temperature. After that, by firing at 450 ° C.
  • thermoelectric conversion material layer having improved electric conductivity can be obtained.
  • the thermoelectric conversion material layer after the step (A) and the step (B), the thermoelectric conversion material layer after drying obtained in the step (E) and the step (B) corresponding to the step (D).
  • a manufacturing method including a step of firing (annealing) the thin film of the above may be used.
  • FIG. 3A and 3B are explanatory views showing one aspect of the method for manufacturing a thermoelectric conversion material layer of the present invention in order of steps
  • FIG. 3A is a cross-sectional view showing an embodiment in which a thermoelectric conversion material layer 2s is formed on a substrate 1b.
  • the thermoelectric conversion material layer 2s is formed on the substrate 1b as a coating film (including the voids 3b) and dried at a predetermined temperature
  • (B) is a cross-sectional view showing an aspect after the heat-pressed portion 5 is opposed to the upper surface of the thermoelectric conversion material layer 2s, and the dried thermoelectric conversion material layer 2s and the heat-pressed portion 5 obtained in (a) are shown.
  • thermoelectric conversion material layer 2t (including the void portion 4b in which the number of voids and the volume are further reduced) of the present invention can be obtained.
  • thermoelectric conversion material layer forming step is a step of forming a thermoelectric conversion material layer on a substrate.
  • a thermoelectric semiconductor composition is formed on a substrate 1b. This is a step of applying and forming the thermoelectric conversion material layer 2s.
  • the substrate is not particularly limited, and examples thereof include glass, silicon, ceramic, metal, and plastic.
  • firing annealing treatment
  • glass, silicon, ceramic, and metal are preferable, and glass, silicon, and ceramic are more preferable from the viewpoint of dimensional stability after heat treatment.
  • the thickness of the substrate may be 100 to 10,000 ⁇ m from the viewpoint of process and dimensional stability.
  • thermoelectric semiconductor composition As described above, the thermoelectric semiconductor composition used in the present invention contains thermoelectric semiconductor particles, a binder resin, an ionic liquid, and metal nanoparticles. Further, as described above, it may contain an inorganic ionic compound or may contain other additives. The same applies to preferable materials, contents, etc. of thermoelectric semiconductor particles (thermoelectric semiconductor materials), binder resins, ionic liquids, metal nanoparticles, inorganic ionic compounds, and the like.
  • thermoelectric semiconductor composition used in the present invention is not particularly limited, and as described above, the thermoelectric semiconductor particles can be prepared by a known method such as an ultrasonic homogenizer, a spiral mixer, a planetary mixer, a disperser, or a hybrid mixer.
  • the thermoelectric semiconductor composition may be prepared by adding a binder resin, an ionic liquid, metal nanoparticles, an inorganic ionic compound or other additives as necessary, and a solvent, and mixing and dispersing them.
  • the solvent examples include solvents such as toluene, ethyl acetate, methyl ethyl ketone, alcohol, tetrahydrofuran, methylpyrrolidone, and ethyl cellosolve.
  • solvents such as toluene, ethyl acetate, methyl ethyl ketone, alcohol, tetrahydrofuran, methylpyrrolidone, and ethyl cellosolve.
  • solvents such as toluene, ethyl acetate, methyl ethyl ketone, alcohol, tetrahydrofuran, methylpyrrolidone, and ethyl cellosolve.
  • One of these solvents may be used alone, or two or more of them may be mixed and used.
  • the solid content concentration of the thermoelectric semiconductor composition is not particularly limited as long as the composition has a viscosity suitable for coating.
  • thermoelectric semiconductor composition As a method of applying the thermoelectric semiconductor composition on a substrate, a screen printing method, a flexographic printing method, a gravure printing method, a spin coating method, a dip coating method, a die coating method, a spray coating method, a bar coating method, a doctor blade method, etc.
  • Known methods such as the applicator method can be mentioned, and the present invention is not particularly limited.
  • the coating film is formed into a pattern, screen printing, stencil printing, slot die coating, etc., which can easily form a pattern using a screen plate having a desired pattern, are preferably used.
  • the thermoelectric conversion material layer may be formed on a substrate in the form of a solid film, and then individualized into a desired chip size. Further, as another preferred embodiment, a coating film may be formed on the substrate in the size of a chip of a thermoelectric conversion material described later. Further, from the viewpoint of shape controllability of the thermoelectric conversion material layer, as a more preferable embodiment, a grid-shaped pattern frame member or the like including separated openings having a chip shape of the thermoelectric conversion material may be used.
  • the chip size is, for example, about 0.1 to 20 mm on the short side and 0.2 to 25 mm on the long side.
  • thermoelectric conversion material layer in the case of using a grid-like pattern frame member including separated openings having a chip shape of the thermoelectric conversion material is as follows, for example.
  • P A grid-like pattern frame member including a separated opening having a chip shape of a thermoelectric conversion material is placed on the substrate;
  • Q A coating film of a thermoelectric conversion material layer is formed in the opening of the pattern frame member and dried at a predetermined temperature;
  • R After cooling the dried thermoelectric conversion material layer obtained in (q) to room temperature, the thermoelectric conversion material layer and the heating press unit (corresponding to the heating press unit 5 in FIG.
  • thermoelectric conversion material layer of the present invention is obtained by firing (annealing) the thermoelectric conversion material layer reflecting the shape of the opening of the pattern frame member obtained on the substrate.
  • the opening is not particularly limited, but may be rectangular, square, or circular as long as it has a shape that is reflected in the shape of the chip of the thermoelectric conversion material after the pattern frame member is released. Is preferable, and it is more preferable that the shape is rectangular or square. Further, as the pattern frame member, stainless steel, copper or the like can be used from the viewpoint of ease of formation.
  • thermoelectric conversion material layer drying step is a step of drying the thermoelectric conversion material layer obtained in the step (A). For example, in FIG. 3A, on the substrate 1b. This is a step of drying the thermoelectric conversion material layer 2s.
  • drying method conventionally known drying methods such as a hot air drying method, a hot roll drying method, and an infrared irradiation method can be adopted.
  • the heating temperature is usually 80 to 170 ° C, preferably 100 to 150 ° C, more preferably 110 to 145 ° C, still more preferably 120 to 140 ° C.
  • the heating time varies depending on the heating method, but is usually 30 seconds to 5 hours, preferably 1 minute to 3 hours, more preferably 5 minutes to 2 hours, and further preferably 10 minutes to 50 minutes.
  • the heating temperature and the heating time are within this range, it is easy to improve the electric conductivity of the thermoelectric conversion material layer after pressurization and firing (annealing treatment).
  • the heating temperature may be in a temperature range in which the used solvent can be dried or in a temperature range lower than that.
  • thermoelectric conversion material layer heating and pressurizing step is a step of heating and pressurizing the dried thermoelectric conversion material layer obtained in the step (B), for example, FIG. 3 (B).
  • the upper surface of the thermoelectric conversion material layer 2s is heated and pressed by the heating press unit 5.
  • This heat-pressurizing treatment is performed on the entire upper surface of the coating film (thin film) at a predetermined temperature, in an air atmosphere or under vacuum by using a physical pressurizing means such as a hydraulic press, a vacuum press, or a weight. This is a process of pressurizing at a predetermined pressure for a predetermined time.
  • the temperature of the heat-pressurizing treatment is not particularly limited, but is usually 100 to 300 ° C, preferably 200 to 300 ° C.
  • the pressure of the heat-pressurizing treatment is not particularly limited, but is usually 20 to 200 MPa, preferably 50 to 150 MPa.
  • the time of the heat-pressurizing treatment is not particularly limited, but is usually from several seconds to several tens of minutes, preferably from several tens of seconds to ten and several minutes.
  • the pressurization may be performed by increasing the pressurization amount to a predetermined amount at once, but the shape stability of the thermoelectric conversion material layer is maintained, the voids in the thermoelectric conversion material layer are reduced more, and the filling rate of the thermoelectric conversion material is reduced.
  • the pressure is adjusted as appropriate, but is usually 0.1 to 50 MPa / min, preferably 0.5 to 30 MPa / min, and more preferably 1.0 to 10 MPa / min to a predetermined pressurization amount. To increase. When the pressurizing amount and the pressurizing time are within this range, the filling rate is likely to increase, and the electric conductivity of the thermoelectric conversion material layer after firing (annealing treatment) is likely to be improved.
  • the firing (annealing treatment) step is, for example, a step of heat-treating the heated and pressurized thermoelectric conversion material layer obtained in the step (C) at a predetermined temperature.
  • the thermoelectric performance of the thermoelectric conversion material layer can be further improved.
  • FIG. 3C it is a step of annealing the thermoelectric conversion material layer 2s after heating and pressurizing at a predetermined temperature (after the annealing treatment, the thermoelectric conversion material layer 2t is obtained).
  • the firing (annealing treatment) is not particularly limited, but is usually carried out under an inert gas atmosphere such as nitrogen or argon, a reducing gas atmosphere, or a vacuum condition in which the gas flow rate is controlled.
  • an inert gas atmosphere such as nitrogen or argon, a reducing gas atmosphere, or a vacuum condition in which the gas flow rate is controlled.
  • a firing method a known method can be used.
  • the firing (annealing) temperature is as described above.
  • the firing (annealing treatment) time is not particularly limited, but is usually several minutes to several tens of hours, preferably several minutes to several hours.
  • the firing may be performed in a state where the thermoelectric conversion material layer is pressurized.
  • the amount of pressurization when pressurizing is performed under the same conditions as the above-mentioned heat pressurization treatment step.
  • the thickness of the thermoelectric conversion material layer is not particularly limited as long as the shape stability and thermoelectric performance are not impaired by pressurization, and are as described above.
  • thermoelectric conversion material layer of the present invention According to the method for manufacturing a thermoelectric conversion material layer of the present invention, a thermoelectric conversion material layer having improved electrical conductivity can be manufactured by a simple method.
  • the filling rate of the vertical cross section along the thickness direction was measured by the following method.
  • a longitudinal section including the central portion of the thermoelectric conversion material layer by a polishing device manufactured by Refine Tech, model name: Refine Polisher HV.
  • FE-SEM field emission scanning electron microscope
  • the filling rate defined by the ratio of the area of the thermoelectric conversion material to the area of the vertical cross section of the thermoelectric conversion material layer was calculated using ImageJ ver. 1.44P).
  • an SEM image (longitudinal cross section) having a magnification of 500 times is used, and the measurement range is set to a range surrounded by 1280 pixel in the width direction and 220 pixel in the thickness direction with respect to an arbitrary position of the thermoelectric conversion material layer.
  • Cut out as an image The cut out image is binarized from "Brightness / Control" with the maximum contrast, and the dark part in the binarization process is regarded as the void part and the bright part is regarded as the thermoelectric conversion material.
  • the filling rate of was calculated.
  • the filling factor was calculated for three SEM images and used as the average value thereof. The results are shown in Table 1.
  • thermoelectric semiconductor composition Preparation of thermoelectric semiconductor particles
  • P-type bismuth tellurium Bi 0.4 Te 3.0 Sb 1.6 manufactured by High Purity Chemical Laboratory, particle size: 20 ⁇ m
  • Thermoelectric semiconductor particles having an average particle size of 2.0 ⁇ m were prepared by pulverizing in a nitrogen gas atmosphere using line P-7).
  • thermoelectric semiconductor particles obtained by pulverization were measured by a laser diffraction type particle size analyzer (Mastersizer 3000 manufactured by Malvern).
  • thermoelectric semiconductor composition coating liquid
  • P-type bismasterlide Bi 0.4 Te 3.0 Sb 1.6 particles (average particle size 2.0 ⁇ m) 76.0% by mass obtained above, polyethylene carbonate (final decomposition temperature: 250 ° C.) as a binder resin.
  • thermoelectric semiconductor composition composed of a thermoelectric semiconductor composition in which 1.0% by mass was mixed and dispersed was prepared.
  • thermoelectric conversion material layer (2) Preparation of test piece (chip) made of thermoelectric conversion material (formation of thermoelectric conversion material layer)
  • the coating solution prepared in (1) above was printed as a solid film on a glass substrate (blue plate glass, 100 mm ⁇ 100 mm, thickness: 0.7 mm) using an applicator, and an argon atmosphere was obtained at a temperature of 120 ° C. for 10 minutes. It was dried underneath to form a thin film [thermoelectric conversion material layer before firing (annealing)].
  • thermoelectric conversion material layer (thickness: 55 ⁇ m) made of a fired body of the thermoelectric semiconductor composition was prepared by holding at ° C. for 30 minutes and firing the thermoelectric conversion material layer.
  • the obtained thermoelectric conversion material layer was cut into a size of 5 mm ⁇ 5 mm and used as a test piece (chip) made of the thermoelectric conversion material.
  • Example 2 In Example 1, the test was carried out in the same manner as in Example 1 except that the P-type Bi 0.4 Te 3.0 Sb 1.6 particles were 69.0% by mass and the silver nanoparticles were 8.0% by mass. Pieces (chip size: 5 mm ⁇ 5 mm ⁇ thickness 58 ⁇ m) were prepared.
  • Example 3 In Example 1, the glass substrate was replaced with a polyimide substrate, a coating liquid was printed, and the coating liquid was heated and dried at 120 ° C. for 10 minutes, and then a hydraulic press machine (tabletop test press SA-302 manufactured by Tester Sangyo Co., Ltd.) was used. The entire upper surface of the coating film (thin film) is heat-pressurized at 110 MPa for 10 minutes at 250 ° C. in an air atmosphere to form a thin film [thermoelectric conversion material layer before firing (annealing)].
  • a test piece (however, chip size: 5 mm ⁇ 6 mm ⁇ thickness 70 ⁇ m) was prepared in the same manner as in Example 1.
  • Example 4 In Example 2, the glass substrate was printed in place of the polyimide substrate, heated and dried at 120 ° C. for 10 minutes, and then the coating film (thin film) was formed at 250 ° C. in an air atmosphere using the hydraulic press machine.
  • a test piece (however, chip size: 5 mm ⁇ 6 mm ⁇ thickness 70 ⁇ m) was prepared in the same manner as in Example 2 except that the entire upper surface was pressurized at 110 MPa for 10 minutes.
  • Example 1 Comparative Example 1
  • the test was carried out in the same manner as in Example 1 except that P-type Bi 0.4 Te 3.0 Sb 1.6 particles were 77.0% by mass and silver nanoparticles were not blended (0% by mass).
  • Pieces (chip size: 5 mm ⁇ 5 mm ⁇ thickness 53 ⁇ m) were prepared.
  • Comparative Example 2 In Comparative Example 1, the coating liquid was printed in place of the polyimide substrate instead of the polyimide substrate, and after heating and drying at 120 ° C. for 10 minutes, the coating film (using the hydraulic press machine was used at 250 ° C. in an air atmosphere). The test piece (thin film) was subjected to pressure treatment at 110 MPa for 10 minutes on the entire upper surface of the thin film) to form a thin film [thermoelectric conversion material layer before firing (annealing treatment)] in the same manner as in Comparative Example 1 (thin film). However, a chip size (5 mm ⁇ 6 mm ⁇ thickness 70 ⁇ m) was produced.
  • thermoelectric conversion material produced in Examples 1 to 4 and Comparative Examples 1 and 2 was measured. The results are shown in Table 1.
  • the filling factor of the thermoelectric conversion material in the longitudinal section along the thickness direction of the thermoelectric conversion material layer of Example 1 containing silver nanoparticles is the longitudinal section along the thickness direction of the thermoelectric conversion material layer of Comparative Example 1 not containing silver nanoparticles. It can be seen that the filling rate of the thermoelectric conversion material is increased in comparison with the filling rate of the thermoelectric conversion material. Further, the filling rate of the thermoelectric conversion material in the vertical cross section along the thickness direction of the thermoelectric conversion material layer of Example 3 containing silver nanoparticles and combined with the heat and pressure treatment does not include silver nanoparticles and is combined with the heat and pressure treatment.
  • thermoelectric conversion material in the vertical cross section along the thickness direction of the thermoelectric conversion material layer of Comparative Example 2 is increased. From the above, it can be seen that the improvement of the filling rate increases the electric conductivity of the thermoelectric conversion material in the thermoelectric conversion material layer, which leads to the improvement of the thermoelectric performance.
  • thermoelectric conversion material layer of the present invention has an increased electric conductivity due to a high filling rate of the thermoelectric conversion material, which leads to an improvement in thermoelectric performance. Therefore, the thermoelectric conversion module using the thermoelectric conversion material layer of the present invention can be used for exhaust heat from various combustion furnaces such as factories, waste combustion furnaces, cement combustion furnaces, automobile combustion gas exhaust heat, and electronic equipment exhaust heat. It is conceivable to apply it to power generation applications that convert electricity into electricity. In the field of electronic equipment, for example, CPUs (Central Processing Units) used in smartphones, various computers, etc., CMOS (Complementary Metal Oxide Sensors), CCDs (Challge Coupled Devices), and other image sensors for cooling applications. , MEMS (Micro Electro Mechanical Systems), and can be applied to temperature control of various sensors such as light receiving elements.
  • CPUs Central Processing Units
  • CMOS Complementary Metal Oxide Sensors
  • CCDs Challge Coupled Devices
  • MEMS Micro Electro Mechanical Systems

Abstract

Provided is a thermoelectric conversion material layer composed of a fired body of a thermoelectric semiconductor composition and having high thermoelectric performance and an improved filling ratio of a thermoelectric conversion material in the thermoelectric conversion material layer, the thermoelectric conversion material layer being composed of a fired body of a thermoelectric semiconductor composition containing thermoelectric semiconductor particles, a binder resin, an ionic liquid, and metal nanoparticles, wherein the metal nanoparticles are particles that are sintered at 450ºC or lower.

Description

熱電変換材料層Thermoelectric conversion material layer
 本発明は、熱電変換材料層に関する。 The present invention relates to a thermoelectric conversion material layer.
 従来から、エネルギーの有効利用手段の一つとして、ゼーベック効果やペルチェ効果などの熱電効果を有する熱電変換モジュールにより、熱エネルギーと電気エネルギーとを直接相互変換するようにした装置がある。
 前記熱電変換モジュールとして、いわゆるπ型の熱電変換素子の使用が知られている。π型は、互いに離間するー対の電極を基板上に設け、例えば、―方の電極の上にP型熱電素子を、他方の電極の上にN型熱電素子を、同じく互いに離間して設け、両方の熱電材料の上面を対向する基板の電極に接続することで構成されている。また、いわゆるインプレーン型の熱電変換素子の使用が知られている。インプレーン型は、P型熱電素子とN型熱電素子とが基板の面内方向に交互に設けられ、例えば、両熱電素子間の接合部の下部を、電極を介在し直列に接続することで構成されている。
 このような中、熱電変換モジュールの屈曲性向上、薄型化及び熱電性能の向上等の要求がある。これらの要求を満足するために、特許文献1では、例えば、屈曲性の観点から、熱電変換モジュールに用いる基板として、ポリイミド等の樹脂基板が用いられている。また、屈曲性、薄型化及び熱電性能の観点から、例えば、熱電半導体材料として粒子化したビスマステルライド系材料(熱電半導体粒子)、それら粒子間のバインダーとして作用する樹脂等を含む熱電半導体組成物からなる熱電変換材料層が開示されている。
 特許文献2では、加工性、可撓性、熱電性能に優れる観点から、熱電半導体材料として金属ナノ粒子が担持されたカーボンナノチューブ、バインダーとして樹脂成分、及び溶媒を含む、熱電変換素子用組成物からなる熱電変換材料層が開示されている。
Conventionally, as one of the effective energy utilization means, there is a device in which thermal energy and electric energy are directly converted into each other by a thermoelectric conversion module having a thermoelectric effect such as the Zeebeck effect and the Pelche effect.
As the thermoelectric conversion module, the use of a so-called π-type thermoelectric conversion element is known. In the π type, a pair of electrodes separated from each other are provided on the substrate, for example, a P-type thermoelectric element is provided on one of the electrodes, and an N-type thermoelectric element is provided on the other electrode, also separated from each other. , It is configured by connecting the top surfaces of both thermoelectric materials to the electrodes of the opposing substrates. Further, the use of a so-called in-plane type thermoelectric conversion element is known. In the inplane type, P-type thermoelectric elements and N-type thermoelectric elements are alternately provided in the in-plane direction of the substrate. For example, the lower part of the joint between the two thermoelectric elements is connected in series with an electrode interposed therebetween. It is configured.
Under these circumstances, there are demands for improving the flexibility of the thermoelectric conversion module, making it thinner, and improving the thermoelectric performance. In order to satisfy these requirements, in Patent Document 1, for example, from the viewpoint of flexibility, a resin substrate such as polyimide is used as a substrate used for a thermoelectric conversion module. Further, from the viewpoint of flexibility, thinning, and thermoelectric performance, for example, from a thermoelectric semiconductor composition containing a bismuthellide-based material (thermoelectric semiconductor particles) atomized as a thermoelectric semiconductor material, a resin acting as a binder between the particles, and the like. The thermoelectric conversion material layer is disclosed.
In Patent Document 2, from the viewpoint of excellent processability, flexibility, and thermoelectric performance, a composition for a thermoelectric conversion element containing carbon nanotubes on which metal nanoparticles are supported as a thermoelectric semiconductor material, a resin component as a binder, and a solvent is used. The thermoelectric conversion material layer is disclosed.
国際公開第2016/104615号International Publication No. 2016/104615 国際公開第2017/122805号International Publication No. 2017/122805
 しかしながら、特許文献1では、熱電半導体粒子間のバインダーとして樹脂を用いていることから、形成された熱電変換材料層の熱電半導体粒子間には空隙が多く内包されてしまい、高い電気伝導率を十分に得ることができず、熱電性能が十分でなかった。
 特許文献2では、欠陥構造(六員環ネットワークが良好に形成されていない箇所)を有するCNT(カーボンナノチューブ)に金属ナノ粒子を担持させることで、CNTそのものの導電性を向上させているが、特許文献1と同様の問題を有していた。
However, in Patent Document 1, since the resin is used as the binder between the thermoelectric semiconductor particles, many voids are included between the thermoelectric semiconductor particles of the formed thermoelectric conversion material layer, and high electric conductivity is sufficiently achieved. The thermoelectric performance was not sufficient.
In Patent Document 2, the conductivity of the CNT itself is improved by supporting the metal nanoparticles on the CNT (carbon nanotube) having a defect structure (a place where the six-membered ring network is not well formed). It had the same problem as Patent Document 1.
 本発明は、上記を鑑み、熱電半導体組成物の焼成体からなる熱電変換材料層中の熱電変換材料の充填率が向上された、熱電性能の高い熱電変換材料層を提供することを課題とする。 In view of the above, it is an object of the present invention to provide a thermoelectric conversion material layer having high thermoelectric performance, in which the filling rate of the thermoelectric conversion material in the thermoelectric conversion material layer made of a fired body of a thermoelectric semiconductor composition is improved. ..
 本発明者らは上記課題を解決すべく鋭意研究した結果、特定の温度で焼結する金属ナノ粒子を熱電半導体組成物に含有し、熱電半導体粒子間の空隙を充填(空隙減少)することで、熱電変換材料の充填率が高い熱電変換材料層が得られ、当該熱電変換材料層が高い電気伝導率を有し熱電性能の向上につながることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の(1)~(8)を提供するものである。
(1)熱電半導体粒子、バインダー樹脂、イオン液体、及び金属ナノ粒子を含む熱電半導体組成物の焼成体からなる熱電変換材料層であって、前記金属ナノ粒子は、450℃以下で焼結する粒子である、熱電変換材料層。
(2)前記熱電半導体組成物中の前記金属ナノ粒子の平均粒径が200nm以下である、上記(1)に記載の熱電変換材料層。
(3)前記金属ナノ粒子は、300℃以下で焼結する粒子である、上記(1)又は(2)に記載の熱電変換材料層。
(4)前記金属ナノ粒子が、銀、銅、金、白金、パラジウム、アルミニウム、チタン、ニッケル、ビスマス、テルル及びそれらの合金からなる群から選ばれる、上記(1)~(3)のいずれかに記載の熱電変換材料層。
(5)前記金属ナノ粒子の比抵抗が6.0×10-3Ω・cm以下である、上記(1)~(4)のいずれかに記載の熱電変換材料層。
(6)前記金属ナノ粒子の前記熱電半導体組成物中の含有量が、0.01~15.00質量%である、上記(1)~(5)のいずれかに記載の熱電変換材料層。
(7)前記熱電変換材料層は、前記熱電半導体組成物の塗布膜の焼成体からなる、上記(1)~(6)のいずれかに記載の熱電変換材料層。
(8)前記熱電変換材料層は空隙を含む熱電変換材料から構成され、前記熱電変換材料層の中央部を含む縦断面の面積における前記熱電変換材料の面積の占める割合を充填率としたときに、前記充填率が、0.800以上1.000未満である、上記(1)~(7)のいずれかに記載の熱電変換材料層。
As a result of diligent research to solve the above problems, the present inventors have made the thermoelectric semiconductor composition contain metal nanoparticles that are sintered at a specific temperature, and fill the voids between the thermoelectric semiconductor particles (reduce the voids). The present invention has been completed by finding that a thermoelectric conversion material layer having a high filling rate of a thermoelectric conversion material can be obtained, and that the thermoelectric conversion material layer has a high electric conductivity and leads to improvement of thermoelectric performance.
That is, the present invention provides the following (1) to (8).
(1) A thermoelectric conversion material layer composed of a fired body of a thermoelectric semiconductor composition containing thermoelectric semiconductor particles, a binder resin, an ionic liquid, and metal nanoparticles, and the metal nanoparticles are particles sintered at 450 ° C. or lower. The thermoelectric conversion material layer.
(2) The thermoelectric conversion material layer according to (1) above, wherein the metal nanoparticles in the thermoelectric semiconductor composition have an average particle size of 200 nm or less.
(3) The thermoelectric conversion material layer according to (1) or (2) above, wherein the metal nanoparticles are particles sintered at 300 ° C. or lower.
(4) Any of the above (1) to (3), wherein the metal nanoparticles are selected from the group consisting of silver, copper, gold, platinum, palladium, aluminum, titanium, nickel, bismuth, tellurium and alloys thereof. The thermoelectric conversion material layer described in.
(5) The thermoelectric conversion material layer according to any one of (1) to (4) above, wherein the specific resistance of the metal nanoparticles is 6.0 × 10 -3 Ω · cm or less.
(6) The thermoelectric conversion material layer according to any one of (1) to (5) above, wherein the content of the metal nanoparticles in the thermoelectric semiconductor composition is 0.01 to 15.00% by mass.
(7) The thermoelectric conversion material layer according to any one of (1) to (6) above, wherein the thermoelectric conversion material layer is composed of a fired body of a coating film of the thermoelectric semiconductor composition.
(8) The thermoelectric conversion material layer is composed of a thermoelectric conversion material containing voids, and when the ratio of the area of the thermoelectric conversion material to the area of the vertical cross section including the central portion of the thermoelectric conversion material layer is taken as the filling factor. The thermoelectric conversion material layer according to any one of (1) to (7) above, wherein the filling rate is 0.800 or more and less than 1.000.
 本発明によれば、熱電半導体組成物の焼成体からなる熱電変換材料層中の熱電変換材料の充填率が向上された、熱電性能の高い熱電変換材料層を提供することができる。 According to the present invention, it is possible to provide a thermoelectric conversion material layer having high thermoelectric performance, in which the filling rate of the thermoelectric conversion material in the thermoelectric conversion material layer made of a fired body of a thermoelectric semiconductor composition is improved.
本発明の熱電変換材料層の縦断面の定義を説明するための図である。It is a figure for demonstrating the definition of the vertical cross section of the thermoelectric conversion material layer of this invention. 本発明の熱電変換材料層の加熱加圧前後の縦断面を説明するための断面摸式図である。It is sectional drawing for demonstrating the vertical cross section before and after heating and pressurizing the thermoelectric conversion material layer of this invention. 本発明の熱電変換材料層の製造方法の一態様を工程順に示す説明図である。It is explanatory drawing which shows one aspect of the manufacturing method of the thermoelectric conversion material layer of this invention in the order of a process.
[熱電変換材料層]
 本発明の熱電変換材料層は、熱電半導体粒子、バインダー樹脂、イオン液体、及び金属ナノ粒子を含む熱電半導体組成物の焼成体からなる熱電変換材料層であって、前記金属ナノ粒子は、450℃以下で焼結する粒子であることを特徴としている。
 450℃以下で焼結する金属ナノ粒子を熱電半導体組成物に含有し、前記温度以下でなる金属ナノ粒子の焼結体が熱電半導体粒子間の空隙を充填(空隙減少)することで、熱電変換材料の充填率が高い熱電変換材料層が得られ、これにより当該熱電変換材料が高い電気伝導率を示すことで、熱電性能を向上させることができる。
 なお、本明細書において、「熱電変換材料層」は、熱電変換材料と、空隙とによって構成される。すなわち、「熱電変換材料」とは、熱電変換材料層から空隙を除いた部分を意味する。
 また、「450℃以下で焼結する」とは、焼成前の熱電半導体組成物からなる薄膜を、450℃を上限とした雰囲気下に所定時間(後述する焼成時間に準じる)静置し常温に戻した後で、金属ナノ粒子同士の界面が確認できない領域がある、または金属ナノ粒子と熱電半導体粒子との界面が確認できない領域がある、状態のことをいう。
 「界面が確認できない領域がある状態」に係る評価は、具体的には、例えば、当該温度以下で焼成した熱電変換材料層の中央部を含む縦断面を切断し、該縦断面に含まれる焼結した金属ナノ粒子、及び熱電半導体粒子を、走査型電子顕微鏡(SEM)により観察した像から、以下の基準で行うことができる。
 観察視野サイズが1μm四方の像(金属ナノ粒子が少なくとも視野内に10個以上存在)において、金属ナノ粒子同士がネックを形成し界面が目視で確認できない領域が少なくとも1箇所ある。または、観察視野サイズが10μm四方の像(金属ナノ粒子と熱電半導体粒子との両方が少なくとも視野内に存在)において、金属ナノ粒子と熱電半導体粒子との界面が目視で確認できない領域が少なくとも1箇所ある。
 さらに、焼成前に熱電半導体組成物からなる薄膜にバインダー樹脂が含まれていた場合、バインダー樹脂が焼成により完全に分解した場合は、熱電変換材料層及び熱電変換材料には、バインダー樹脂は含まれないものとする。
[Thermoelectric conversion material layer]
The thermoelectric conversion material layer of the present invention is a thermoelectric conversion material layer composed of a fired body of a thermoelectric semiconductor composition containing thermoelectric semiconductor particles, a binder resin, an ionic liquid, and metal nanoparticles, and the metal nanoparticles are at 450 ° C. It is characterized by being particles to be sintered below.
The thermoelectric semiconductor composition contains metal nanoparticles sintered at 450 ° C. or lower, and the sintered body of the metal nanoparticles having a temperature of 450 ° C. or lower fills the voids between the thermoelectric semiconductor particles (reduces the voids), whereby thermoelectric conversion is performed. A thermoelectric conversion material layer having a high filling rate of the material can be obtained, whereby the thermoelectric conversion material exhibits high electrical conductivity, and thus thermoelectric performance can be improved.
In the present specification, the "thermoelectric conversion material layer" is composed of a thermoelectric conversion material and voids. That is, the "thermoelectric conversion material" means a portion obtained by removing voids from the thermoelectric conversion material layer.
Further, "sintering at 450 ° C or lower" means that a thin film made of a thermoelectric semiconductor composition before firing is allowed to stand in an atmosphere up to 450 ° C for a predetermined time (according to the firing time described later) at room temperature. After returning, there is a region where the interface between the metal nanoparticles cannot be confirmed, or there is a region where the interface between the metal nanoparticles and the thermoelectric semiconductor particles cannot be confirmed.
Specifically, the evaluation relating to "the state where there is a region where the interface cannot be confirmed" is performed by cutting a vertical cross section including the central portion of the thermoelectric conversion material layer fired at the temperature or lower, and firing included in the vertical cross section. The tied metal nanoparticles and thermoelectric semiconductor particles can be carried out according to the following criteria from the images observed by a scanning electron microscope (SEM).
In an image having an observation field size of 1 μm square (at least 10 metal nanoparticles are present in the field of view), there is at least one region where the metal nanoparticles form a neck and the interface cannot be visually confirmed. Alternatively, in an image having an observation field size of 10 μm square (both metal nanoparticles and thermoelectric semiconductor particles are present in the field at least), there is at least one region where the interface between the metal nanoparticles and the thermoelectric semiconductor particles cannot be visually confirmed. be.
Further, when the binder resin is contained in the thin film made of the thermoelectric semiconductor composition before firing, and when the binder resin is completely decomposed by firing, the binder resin is contained in the thermoelectric conversion material layer and the thermoelectric conversion material. Make it not exist.
 本発明の熱電変換材料層は、熱電半導体粒子、バインダー樹脂、イオン液体、及び金属ナノ粒子を含む熱電半導体組成物の焼成体からなる。
 焼成体は、好ましい一態様として、熱電半導体組成物の塗布膜の焼成体からなる。また、好ましい他の一態様として、熱電半導体組成物の蒸着膜やスパッタ膜等、公知の乾式成膜方法等により形成される薄膜の焼成体からなる。
The thermoelectric conversion material layer of the present invention comprises a fired body of a thermoelectric semiconductor composition containing thermoelectric semiconductor particles, a binder resin, an ionic liquid, and metal nanoparticles.
As a preferred embodiment, the fired body comprises a fired body of a coating film of a thermoelectric semiconductor composition. Further, as another preferred embodiment, it is composed of a fired body of a thin film formed by a known dry film forming method such as a vapor deposition film or a sputter film of a thermoelectric semiconductor composition.
 焼成温度は、金属ナノ粒子の焼結体を得る観点から、通常60~450℃、好ましくは130~450℃、より好ましくは140~450℃、さらに好ましくは160~450℃、特に好ましくは180~450℃である。焼成時間は、特に制限はないが、通常、数分間~数十時間、好ましくは数分間~数時間である。 The firing temperature is usually 60 to 450 ° C, preferably 130 to 450 ° C, more preferably 140 to 450 ° C, still more preferably 160 to 450 ° C, and particularly preferably 180 to 180 to obtain a sintered body of metal nanoparticles. It is 450 ° C. The firing time is not particularly limited, but is usually several minutes to several tens of hours, preferably several minutes to several hours.
 熱電変換材料層の厚さは、特に制限はないが、フレキシブル性、熱電性能と皮膜強度の観点から、好ましくは1nm~1000μm、より好ましくは3~600μm、さらに好ましくは5~400μmである。 The thickness of the thermoelectric conversion material layer is not particularly limited, but is preferably 1 nm to 1000 μm, more preferably 3 to 600 μm, and further preferably 5 to 400 μm from the viewpoint of flexibility, thermoelectric performance, and film strength.
<金属ナノ粒子>
 本発明に用いる熱電半導体組成物には、金属ナノ粒子を含む。
 金属ナノ粒子は、熱電半導体組成物の薄膜を焼成(アニール処理)し、焼成体(熱電変換材料層)とする過程で、金属ナノ粒子の焼結により金属ナノ粒子間の結合が進行することにより、熱電半導体粒子間の空隙を充填することができ、空隙の発生を抑制することができる。結果として、熱電変換材料層中の熱電変換材料の充填率を向上させることができる。同時に、後述するイオン液体と同様に、熱電半導体粒子間の電気伝導率の低減を効果的に抑制することができる。
<Metal nanoparticles>
The thermoelectric semiconductor composition used in the present invention contains metal nanoparticles.
Metal nanoparticles are obtained by firing (annealing) a thin film of a thermoelectric semiconductor composition to form a fired body (thermoelectric conversion material layer), and the bonding between the metal nanoparticles progresses due to sintering of the metal nanoparticles. , Voids between thermoelectric semiconductor particles can be filled, and the generation of voids can be suppressed. As a result, the filling factor of the thermoelectric conversion material in the thermoelectric conversion material layer can be improved. At the same time, similar to the ionic liquid described later, it is possible to effectively suppress the reduction of the electric conductivity between the thermoelectric semiconductor particles.
 金属ナノ粒子は、450℃以下で焼結する粒子である。130~450℃で焼結する粒子であることが好ましく、140~450℃で焼結する粒子であることがより好ましく、160~450℃で焼結する粒子であることがさらに好ましく、180~450℃で焼結する粒子であることが特に好ましい。金属ナノ粒子が上記の範囲で焼結する粒子であれば、熱電半導体組成物の薄膜中の熱電半導体粒子間の空隙を効率良く充填しやすくなり、結果的に、熱電変換材料層中の熱電変換材料の充填率を向上させ、熱電変換材料層の電気伝導率の向上につながる。 Metal nanoparticles are particles that sinter at 450 ° C or lower. The particles are preferably sintered at 130 to 450 ° C, more preferably particles sintered at 140 to 450 ° C, further preferably particles sintered at 160 to 450 ° C, and 180 to 450. It is particularly preferable that the particles are sintered at ° C. If the metal nanoparticles are sintered in the above range, it becomes easy to efficiently fill the voids between the thermoelectric semiconductor particles in the thin film of the thermoelectric semiconductor composition, and as a result, the thermoelectric conversion in the thermoelectric conversion material layer becomes easy. It improves the filling rate of the material and leads to the improvement of the electrical conductivity of the thermoelectric conversion material layer.
 金属ナノ粒子としては、熱電半導体粒子間の空隙を充填し、熱電半導体粒子間の電気伝導率の低減を抑制できれば、特に制限されないが、銀、銅、金、白金、パラジウム、アルミニウム、チタン、ニッケル、ビスマス、テルル及びそれらの合金からなる群から選ばれることが好ましく、銀、銅、金、ビスマス、テルル、アルミニウム及びそれらの合金からなる群から選ばれることがより好ましく、低温焼結性、安定性の観点から、銀、銅、金、及び、銀と銅との合金、銀と金との合金、銅と金との合金からなる群から選ばれることがさらに好ましい。 The metal nanoparticles are not particularly limited as long as they can fill the voids between the thermoelectric semiconductor particles and suppress the decrease in the electric conductivity between the thermoelectric semiconductor particles, but are not particularly limited, but are silver, copper, gold, platinum, palladium, aluminum, titanium, and nickel. , Bismus, tellurium and alloys thereof are preferably selected, and silver, copper, gold, bismuth, tellurium, aluminum and alloys thereof are more preferably selected, and low temperature sinterability and stability. From the viewpoint of sex, it is more preferable to be selected from the group consisting of silver, copper, gold, an alloy of silver and copper, an alloy of silver and gold, and an alloy of copper and gold.
 熱電半導体組成物中の金属ナノ粒子の平均粒径は、特に制限はないが、低温焼結性及び熱電半導体粒子間の狭い空隙を効率良く充填する観点から、好ましくは200nm以下であり、より好ましくは1~200nm以下であり、さらに好ましくは1~180nm、よりさらに好ましくは10~150nm、特に好ましくは15~120nm、最も好ましくは20~100nmである。金属ナノ粒子の平均粒径が上記範囲内であれば、熱電半導体組成物の薄膜中の熱電半導体粒子間の空隙を効率良く充填できるとともに、熱電半導体組成物の薄膜を焼成(アニール処理)し、焼成体(熱電変換材料層)とする過程で、金属ナノ粒子の焼結が進行することにより、さらに熱電半導体粒子間の空隙を充填することができ、結果的に、熱電変換材料層中の熱電変換材料の充填率を向上させ、熱電変換材料層の電気伝導率の向上につながる。
 なお、熱電半導体組成物中の金属ナノ粒子の平均粒径(一次粒子)は、透過型電子顕微鏡(TEM)により観察された任意の20個の金属ナノ粒子の平均粒径の算術平均値である。
 また、数十nm以下の金属粒子は、一般に粒子径が小さくなるにつれて、バルクの金属とは異なる種々の物理的、化学的特性を示すことが知られている。例えば、金属粒子の融点は、粒子径が小さくなると、バルクの金属の融点よりも低くなることが知られている。そのため、焼結温度を低温化する点も含め、本発明では、粒子径の小さい金属粒子を用いている。
The average particle size of the metal nanoparticles in the thermoelectric semiconductor composition is not particularly limited, but is preferably 200 nm or less, more preferably 200 nm or less, from the viewpoint of low-temperature sinterability and efficient filling of narrow voids between the thermoelectric semiconductor particles. Is 1 to 200 nm or less, more preferably 1 to 180 nm, still more preferably 10 to 150 nm, particularly preferably 15 to 120 nm, and most preferably 20 to 100 nm. When the average particle size of the metal nanoparticles is within the above range, the voids between the thermoelectric semiconductor particles in the thin film of the thermoelectric semiconductor composition can be efficiently filled, and the thin film of the thermoelectric semiconductor composition is fired (annealed). As the sintering of the metal nanoparticles progresses in the process of forming the fired body (thermoelectric conversion material layer), the voids between the thermoelectric semiconductor particles can be further filled, and as a result, the thermoelectric in the thermoelectric conversion material layer can be filled. It improves the filling rate of the conversion material and leads to the improvement of the electrical conductivity of the thermoelectric conversion material layer.
The average particle size (primary particles) of the metal nanoparticles in the thermoelectric semiconductor composition is an arithmetic average value of the average particle size of any 20 metal nanoparticles observed by a transmission electron microscope (TEM). ..
Further, it is known that metal particles having a diameter of several tens of nm or less generally exhibit various physical and chemical properties different from those of bulk metals as the particle size becomes smaller. For example, it is known that the melting point of metal particles becomes lower than the melting point of bulk metal as the particle size becomes smaller. Therefore, in the present invention, metal particles having a small particle diameter are used, including the point of lowering the sintering temperature.
 金属ナノ粒子の比抵抗は、好ましくは6.0×10-3Ω・cm以下であり、より好ましくは8×10-6Ω・cm以下であり、さらに好ましくは8×10-7Ω・cm以下であり、特に好ましくは8×10-8Ω・cm以下である。金属ナノ粒子の比抵抗が上記範囲内であれば、熱電半導体粒子間の電気的な接合性が向上し、熱電変換材料層の電気抵抗値が低下する。 The specific resistance of the metal nanoparticles is preferably 6.0 × 10 -3 Ω · cm or less, more preferably 8 × 10 -6 Ω · cm or less, and even more preferably 8 × 10 -7 Ω · cm. It is less than or equal to, and particularly preferably 8 × 10 -8 Ω · cm or less. When the specific resistance of the metal nanoparticles is within the above range, the electrical bondability between the thermoelectric semiconductor particles is improved, and the electrical resistance value of the thermoelectric conversion material layer is lowered.
 熱電半導体組成物中における金属ナノ粒子の含有量は、好ましくは0.01~15.00質量%、より好ましくは0.50~14.00質量%、さらに好ましくは1.00~12.00質量%であり、特に好ましくは2.00~11.00質量%であり、最も好ましくは5.00~10.00質量%である。熱電半導体組成物中における金属ナノ粒子の含有量が上記範囲内であれば、熱電半導体組成物からなる薄膜の焼成時の金属ナノ粒子の焼結体により、熱電半導体粒子間の空隙を効率良く充填しやすくなり、結果的に、熱電変換材料層中の熱電変換材料の充填率を向上させ、熱電変換材料層の電気伝導率の向上につながる。 The content of the metal nanoparticles in the thermoelectric semiconductor composition is preferably 0.01 to 15.00% by mass, more preferably 0.50 to 14.00% by mass, and further preferably 1.00 to 12.00% by mass. %, Particularly preferably 2.00 to 11.00% by mass, and most preferably 5.00 to 10.00% by mass. When the content of the metal nanoparticles in the thermoelectric semiconductor composition is within the above range, the voids between the thermoelectric semiconductor particles are efficiently filled by the sintered body of the metal nanoparticles at the time of firing the thin film made of the thermoelectric semiconductor composition. As a result, the filling rate of the thermoelectric conversion material in the thermoelectric conversion material layer is improved, which leads to the improvement of the electric conductivity of the thermoelectric conversion material layer.
 金属ナノ粒子の市販品としては、以下のものが挙げられる。例えば、銀ナノ粒子(三ツ星ベルト社製、商品名:MDot(登録商標) CF158、比抵抗:8×10-6Ω・cm、平均粒径:60nm)、銀ナノ粒子(ダイセル社製、商品名:Picosil(登録商標)、比抵抗:1.0×10-5Ω・cm、平均粒径:60nm)、銀ナノ粒子(錯体)(InkTec社製、商品名:Tec-PA-010、比抵抗:8×10-6Ω・cm、平均粒径:35nm)、銅ナノ粒子(大陽日酸社製、商品名:銅ナノペースト、比抵抗:2.5×10-5Ω・cm、平均粒径:120nm)等が挙げられる。 Commercially available products of metal nanoparticles include the following. For example, silver nanoparticles (manufactured by Samsung Belt Co., Ltd., trade name: MDot (registered trademark) CF158, resistivity: 8 × 10 -6 Ω · cm, average particle size: 60 nm), silver nanoparticles (manufactured by Daicel Co., Ltd., trade name). : Picosil (registered trademark), resistivity: 1.0 × 10-5 Ω · cm, average particle size: 60 nm), silver nanoparticles (complex) (manufactured by InkTek, trade name: Tec-PA-010, resistivity) : 8 x 10-6 Ω · cm, average particle size: 35 nm), copper nanoparticles (manufactured by Taiyo Nisshi Co., Ltd., trade name: copper nanopaste, resistivity: 2.5 x 10-5 Ω · cm, average Particle size: 120 nm) and the like.
<熱電半導体粒子>
 本発明に用いる熱電半導体組成物には、熱電半導体粒子を含む。
 熱電半導体粒子は、後述する熱電半導体材料を、微粉砕装置等により、所定のサイズまで粉砕したものである。
 熱電半導体材料としては、温度差を付与することにより、熱起電力を発生させることができる材料であれば、特に制限はなく、例えば、P型ビスマステルライド、N型ビスマステルライド等のビスマス-テルル系熱電半導体材料;GeTe、PbTe等のテルライド系熱電半導体材料;アンチモン-テルル系熱電半導体材料;ZnSb、ZnSb2、ZnSb等の亜鉛-アンチモン系熱電半導体材料;SiGe等のシリコン-ゲルマニウム系熱電半導体材料;BiSe等のビスマスセレナイド系熱電半導体材料;β―FeSi、CrSi、MnSi1.73、MgSi等のシリサイド系熱電半導体材料;酸化物系熱電半導体材料;FeVAl、FeVAlSi、FeVTiAl等のホイスラー材料;TiS等の硫化物系熱電半導体材料;などが用いられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、ビスマス-テルル系熱電半導体材料、テルライド系熱電半導体材料、アンチモン-テルル系熱電半導体材料、ビスマスセレナイド系熱電半導体材料が好ましく、高い熱電性能を得る観点から、P型ビスマステルライド、N型ビスマステルライド等のビスマス-テルル系熱電半導体材料がより好ましい。
<Thermoelectric semiconductor particles>
The thermoelectric semiconductor composition used in the present invention contains thermoelectric semiconductor particles.
The thermoelectric semiconductor particles are obtained by pulverizing a thermoelectric semiconductor material, which will be described later, to a predetermined size by a fine pulverizer or the like.
The thermoelectric semiconductor material is not particularly limited as long as it is a material capable of generating thermoelectromotive force by applying a temperature difference. For example, a bismuth-tellu system such as P-type bismasterlide and N-type bismasterlide. Thermoelectric semiconductor materials; telluride-based thermoelectric semiconductor materials such as GeTe and PbTe; antimon-tellu-based thermoelectric semiconductor materials; zinc-antimon-based thermoelectric semiconductor materials such as ZnSb, Zn 3 Sb 2, Zn 4 Sb 3 ; silicon-germanium such as SiGe. Bismus selenide thermoelectric semiconductor materials such as Bi 2 Se 3 ; silicide-based thermoelectric semiconductor materials such as β-FeSi 2 , CrSi 2 , MnSi 1.73 , Mg 2 Si; oxide thermoelectric semiconductor materials; Whistler materials such as FeVAL, FeVALSi, and FeVTiAl; sulfide-based thermoelectric semiconductor materials such as TiS 2 ; and the like are used. These may be used alone or in combination of two or more.
Among these, bismuth-tellu-based thermoelectric semiconductor material, telluride-based thermoelectric semiconductor material, antimony-tellu-based thermoelectric semiconductor material, and bismuth selenide-based thermoelectric semiconductor material are preferable, and from the viewpoint of obtaining high thermoelectric performance, P-type bismuth sterlide, N. Bismuth-tellu-based thermoelectric semiconductor materials such as type bismuth sterlide are more preferable.
 P型ビスマステルライドは、キャリアが正孔で、ゼーベック係数が正値であり、例えば、BiTeSb2-Xで表わされるものが好ましく用いられる。この場合、Xは、好ましくは0<X≦0.8であり、より好ましくは0.4≦X≦0.6である。Xが0より大きく0.8以下であるとゼーベック係数と電気伝導率が大きくなり、P型熱電素子としての特性が維持されるので好ましい。
 また、N型ビスマステルライドは、キャリアが電子で、ゼーベック係数が負値であり、例えば、BiTe3-YSeで表わされるものが好ましく用いられる。この場合、Yは、好ましくは0≦Y≦3(Y=0の時:BiTe)であり、より好ましくは0<Y≦2.7である。Yが0以上3以下であるとゼーベック係数と電気伝導率が大きくなり、N型熱電素子としての特性が維持されるので好ましい。
As the P-type bismuth telluride, one having a hole as a carrier and a positive Seebeck coefficient, for example, represented by Bi X Te 3 Sb 2-X is preferably used. In this case, X is preferably 0 <X ≦ 0.8, more preferably 0.4 ≦ X ≦ 0.6. When X is larger than 0 and 0.8 or less, the Seebeck coefficient and the electric conductivity become large, and the characteristics as a P-type thermoelectric element are maintained, which is preferable.
Further, as the N-type bismuth telluride, one having an electron carrier and a negative Seebeck coefficient, for example, represented by Bi 2 Te 3-Y Se Y is preferably used. In this case, Y is preferably 0 ≦ Y ≦ 3 (when Y = 0: Bi 2 Te 3 ), and more preferably 0 <Y ≦ 2.7. When Y is 0 or more and 3 or less, the Seebeck coefficient and the electric conductivity become large, and the characteristics as an N-type thermoelectric element are maintained, which is preferable.
 熱電半導体粒子の熱電半導体組成物中の含有量は、好ましくは30~99質量%、より好ましくは50~96質量%、特に好ましくは70~95質量%である。熱電半導体粒子の含有量が、上記範囲内であれば、ゼーベック係数(ペルチェ係数の絶対値)が大きく、また電気伝導率の低下が抑制され、熱伝導率のみが低下するため高い熱電性能を示すとともに、十分な皮膜強度、屈曲性を有する膜が得られ好ましい。 The content of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is preferably 30 to 99% by mass, more preferably 50 to 96% by mass, and particularly preferably 70 to 95% by mass. When the content of the thermoelectric semiconductor particles is within the above range, the Seebeck coefficient (absolute value of the Perche coefficient) is large, the decrease in the electric conductivity is suppressed, and only the thermal conductivity is decreased, so that high thermoelectric performance is exhibited. At the same time, a film having sufficient film strength and flexibility can be obtained, which is preferable.
 熱電半導体粒子の平均粒径は、好ましくは10nm~200μm、より好ましくは10nm~30μm、さらに好ましくは50nm~10μm、特に好ましくは1~6μmである。上記範囲内であれば、均一分散が容易になり、電気伝導率を高くすることができる。
 熱電半導体材料を粉砕して熱電半導体粒子を得る方法は、特に制限はなく、ジェットミル、ボールミル、ビーズミル、コロイドミル、ローラーミル等の公知の微粉砕装置等により、所定のサイズまで粉砕すればよい。
 なお、熱電半導体粒子の平均粒径は、レーザー回折式粒度分析装置(Malvern社製、マスターサイザー3000)にて測定することにより得られ、粒径分布の中央値とした。
The average particle size of the thermoelectric semiconductor particles is preferably 10 nm to 200 μm, more preferably 10 nm to 30 μm, still more preferably 50 nm to 10 μm, and particularly preferably 1 to 6 μm. Within the above range, uniform dispersion can be facilitated and the electrical conductivity can be increased.
The method of pulverizing the thermoelectric semiconductor material to obtain thermoelectric semiconductor particles is not particularly limited, and may be pulverized to a predetermined size by a known fine pulverizer such as a jet mill, a ball mill, a bead mill, a colloid mill, a roller mill or the like. ..
The average particle size of the thermoelectric semiconductor particles was obtained by measuring with a laser diffraction type particle size analyzer (Mastersizer 3000 manufactured by Malvern), and was used as the median value of the particle size distribution.
 また、熱電半導体粒子は、事前に熱処理されたものであることが好ましい。熱処理を行うことにより、熱電半導体粒子は、結晶性が向上し、さらに、熱電半導体粒子の表面酸化膜が除去されるため、熱電変換材料のゼーベック係数又はペルチェ係数が増大し、熱電性能指数をさらに向上させることができる。熱処理は、特に限定されないが、熱電半導体組成物を調製する前に、熱電半導体粒子に悪影響を及ぼすことがないように、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、同じく水素等の還元ガス雰囲気下、または真空条件下で行うことが好ましく、不活性ガス及び還元ガスの混合ガス雰囲気下で行うことがより好ましい。具体的な温度条件は、用いる熱電半導体粒子に依存するが、通常、粒子の融点以下の温度で、かつ100~1500℃で、数分間~数十時間行うことが好ましい。 Further, it is preferable that the thermoelectric semiconductor particles are heat-treated in advance. By performing the heat treatment, the crystallinity of the thermoelectric semiconductor particles is improved, and further, the surface oxide film of the thermoelectric semiconductor particles is removed, so that the Seebeck coefficient or the Perche coefficient of the thermoelectric conversion material is increased, and the thermoelectric performance index is further increased. Can be improved. The heat treatment is not particularly limited, but also under an inert gas atmosphere such as nitrogen and argon in which the gas flow rate is controlled so as not to adversely affect the thermoelectric semiconductor particles before preparing the thermoelectric semiconductor composition. It is preferably performed in a reducing gas atmosphere such as hydrogen or under vacuum conditions, and more preferably in a mixed gas atmosphere of an inert gas and a reducing gas. The specific temperature condition depends on the thermoelectric semiconductor particles used, but it is usually preferable to carry out the process at a temperature equal to or lower than the melting point of the particles and at 100 to 1500 ° C. for several minutes to several tens of hours.
<バインダー樹脂>
 本発明に用いる熱電半導体組成物には、バインダー樹脂を含む。
 バインダー樹脂は、熱電半導体材料(熱電半導体粒子)間のバインダーとして働き、熱電変換モジュールの屈曲性を高めることができるとともに、塗布等による薄膜の形成を容易にする。
<Binder resin>
The thermoelectric semiconductor composition used in the present invention contains a binder resin.
The binder resin acts as a binder between thermoelectric semiconductor materials (thermoelectric semiconductor particles), can enhance the flexibility of the thermoelectric conversion module, and facilitates the formation of a thin film by coating or the like.
 バインダー樹脂としては、焼成(アニール)温度以上で、90質量%以上が分解する樹脂であることが好ましく、95質量%以上が分解する樹脂であることがより好ましく、99質量%以上が分解する樹脂であることが特に好ましい。また、熱電半導体組成物からなる塗布膜(薄膜)を焼成(アニール)処理等により熱電半導体粒子を結晶成長させる際に、機械的強度及び熱伝導率等の諸物性が損なわれず維持される樹脂がより好ましい。
 バインダー樹脂として、焼成(アニール)温度以上で90質量%以上が分解する樹脂を用いると、焼成によりバインダー樹脂が分解するため、焼成体中に含まれる絶縁性の成分となるバインダー樹脂の含有量が減少し、熱電半導体組成物における熱電半導体粒子の結晶成長が促進されるので、熱電変換材料層における空隙を少なくして、充填率を向上させることができる。
 なお、焼成(アニール)温度以上で所定値(例えば、90質量%)以上が分解する樹脂であるか否かは、熱重量測定(TG)による焼成(アニール)温度における質量減少率(分解前の質量で分解後の質量を除した値)を測定することにより判断する。
The binder resin is preferably a resin that decomposes by 90% by mass or more at a firing (annealing) temperature or higher, more preferably a resin that decomposes by 95% by mass or more, and a resin that decomposes by 99% by mass or more. Is particularly preferable. Further, when a coating film (thin film) made of a thermoelectric semiconductor composition is subjected to crystal growth such as firing (annealing) treatment, a resin that maintains various physical properties such as mechanical strength and thermal conductivity without being impaired. More preferred.
If a resin that decomposes by 90% by mass or more at a firing (annealing) temperature or higher is used as the binder resin, the binder resin is decomposed by firing, so that the content of the binder resin that is an insulating component contained in the fired body is increased. Since the amount is reduced and the crystal growth of the thermoelectric semiconductor particles in the thermoelectric semiconductor composition is promoted, the voids in the thermoelectric conversion material layer can be reduced and the filling rate can be improved.
Whether or not the resin decomposes at a predetermined value (for example, 90% by mass) or more at the firing (annealing) temperature or higher is determined by the mass reduction rate (before decomposition) at the firing (annealing) temperature by thermogravimetric analysis (TG). Judgment is made by measuring (the value obtained by dividing the mass after decomposition by the mass).
 このようなバインダー樹脂として、熱可塑性樹脂や硬化性樹脂を用いることができる。熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリメチルペンテン等のポリオレフィン系樹脂;ポリカーボネート;ポリエチレンテレフタレート、ポリエチレンナフタレート等の熱可塑性ポリエステル樹脂;ポリスチレン、アクリロニトリル-スチレン共重合体、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、塩化ビニル、ポリビニルピリジン、ポリビニルアルコール、ポリビニルピロリドン等のポリビニル重合体;ポリウレタン;エチルセルロース等のセルロース誘導体;などが挙げられる。硬化性樹脂としては、熱硬化性樹脂や光硬化性樹脂が挙げられる。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂等が挙げられる。光硬化性樹脂としては、例えば、光硬化性アクリル樹脂、光硬化性ウレタン樹脂、光硬化性エポキシ樹脂等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、熱電変換材料層における熱電変換材料の電気抵抗率の観点から、熱可塑性樹脂が好ましく、ポリカーボネート、エチルセルロース等のセルロース誘導体がより好ましく、ポリカーボネートが特に好ましい。
As such a binder resin, a thermoplastic resin or a curable resin can be used. Examples of the thermoplastic resin include polyolefin resins such as polyethylene, polypropylene, polyisobutylene, and polymethylpentene; polycarbonate; thermoplastic polyester resins such as polyethylene terephthalate and polyethylene naphthalate; polystyrene, acrylonitrile-styrene copolymer, and polyacetic acid. Examples thereof include polyvinyl polymers such as vinyl, ethylene-vinyl acetate copolymers, vinyl chloride, polyvinylpyridine, polyvinyl alcohol, and polyvinylpyrrolidone; polyurethanes; cellulose derivatives such as ethyl cellulose; and the like. Examples of the curable resin include thermosetting resins and photocurable resins. Examples of the thermosetting resin include epoxy resin and phenol resin. Examples of the photocurable resin include a photocurable acrylic resin, a photocurable urethane resin, and a photocurable epoxy resin. These may be used alone or in combination of two or more.
Among these, from the viewpoint of the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer, a thermoplastic resin is preferable, a cellulose derivative such as polycarbonate and ethyl cellulose is more preferable, and polycarbonate is particularly preferable.
 バインダー樹脂は、後述する(D)焼成(アニール処理)工程における熱電半導体材料に対する焼成(アニール処理)温度に応じて適宜選択される。バインダー樹脂が有する最終分解温度以上で焼成(アニール処理)することが、熱電変換材料層における熱電変換材料の電気抵抗率の観点から好ましい。
 本明細書において、「最終分解温度」とは、熱重量測定(TG)による焼成(アニール)温度における質量減少率が100%(分解後の質量が分解前の質量の0%)となる温度をいう。
The binder resin is appropriately selected according to the firing (annealing treatment) temperature of the thermoelectric semiconductor material in the (D) firing (annealing treatment) step described later. It is preferable to bake (anneal) at a temperature equal to or higher than the final decomposition temperature of the binder resin from the viewpoint of the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer.
In the present specification, the "final decomposition temperature" is a temperature at which the mass reduction rate at the firing (annealing) temperature by thermogravimetric analysis (TG) is 100% (the mass after decomposition is 0% of the mass before decomposition). say.
 バインダー樹脂の最終分解温度は、通常150~600℃、好ましくは200~560℃、より好ましくは220~460℃、特に好ましくは240~360℃である。最終分解温度がこの範囲にあるバインダー樹脂を用いれば、熱電半導体材料のバインダーとして機能し、印刷時に薄膜の形成がしやすくなる。 The final decomposition temperature of the binder resin is usually 150 to 600 ° C, preferably 200 to 560 ° C, more preferably 220 to 460 ° C, and particularly preferably 240 to 360 ° C. If a binder resin having a final decomposition temperature in this range is used, it functions as a binder for the thermoelectric semiconductor material, and it becomes easy to form a thin film at the time of printing.
 バインダー樹脂の熱電半導体組成物中の含有量は、0.1~40質量%、好ましくは0.5~20質量%、より好ましくは0.5~10質量%、特に好ましくは0.5~5質量%である。バインダー樹脂の含有量が、上記範囲内であると、熱電変換材料層における熱電変換材料の電気抵抗率を減少させることができる。 The content of the binder resin in the thermoelectric semiconductor composition is 0.1 to 40% by mass, preferably 0.5 to 20% by mass, more preferably 0.5 to 10% by mass, and particularly preferably 0.5 to 5%. It is mass%. When the content of the binder resin is within the above range, the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer can be reduced.
 熱電変換材料中におけるバインダー樹脂の含有量は、好ましくは0~10質量%、より好ましくは0~5質量%、特に好ましくは0~1質量%である。熱電変換材料中におけるバインダー樹脂の含有量が、上記範囲内であれば、熱電変換材料層における熱電変換材料の電気抵抗率を減少させることができる。 The content of the binder resin in the thermoelectric conversion material is preferably 0 to 10% by mass, more preferably 0 to 5% by mass, and particularly preferably 0 to 1% by mass. When the content of the binder resin in the thermoelectric conversion material is within the above range, the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer can be reduced.
<イオン液体>
 本発明に用いる熱電半導体組成物には、イオン液体を含む。
 イオン液体は、カチオンとアニオンとを組み合わせてなる溶融塩であり、-50℃以上400℃未満の温度領域のいずれかの温度領域において、液体で存在し得る塩をいう。イオン液体は、蒸気圧が極めて低く不揮発性であること、優れた熱安定性及び電気化学安定性を有していること、粘度が低いこと、かつイオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体粒子間の電気伝導率の低減を効果的に抑制することができる。また、イオン液体は、非プロトン性のイオン構造に基づく高い極性を示し、バインダー樹脂との相溶性に優れるため、熱電変換材料のチップの電気伝導率を均一にすることができる。
<Ionic liquid>
The thermoelectric semiconductor composition used in the present invention contains an ionic liquid.
The ionic liquid is a molten salt formed by combining a cation and an anion, and refers to a salt that can exist as a liquid in any temperature range of −50 ° C. or higher and lower than 400 ° C. The ionic liquid has features such as extremely low vapor pressure, non-volatileity, excellent thermal stability and electrochemical stability, low viscosity, and high ionic conductivity. Therefore, as a conductive auxiliary agent, it is possible to effectively suppress the reduction of the electric conductivity between the thermoelectric semiconductor particles. Further, since the ionic liquid exhibits high polarity based on the aprotic ionic structure and has excellent compatibility with the binder resin, the electric conductivity of the chip of the thermoelectric conversion material can be made uniform.
 イオン液体は、公知または市販のものが使用できる。イオン液体は、例えば、(1)ピリジニウム、ピリミジニウム、ピラゾリウム、ピロリジニウム、ピペリジニウム、イミダゾリウム等の窒素含有環状カチオン化合物及びそれらの誘導体;テトラアルキルアンモニウムのアミン系カチオン及びそれらの誘導体;ホスホニウム、トリアルキルスルホニウム、テトラアルキルホスホニウム等のホスフィン系カチオン及びそれらの誘導体;リチウムカチオン及びその誘導体;などのカチオン成分と、(2)Cl、AlCl 、AlCl 、ClO 等の塩化物イオン;Br等の臭化物イオン;I等のヨウ化物イオン;BF 、PF 等のフッ化物イオン;F(HF) 等のハロゲン化物アニオン;NO 、CHCOO、CFCOO、CHSO 、CFSO 、(FSO、(CFSO、(CFSO、AsF 、SbF 、NbF 、TaF 、F(HF)n、(CN)、CSO 、(CSO、CCOO、(CFSO)(CFCO)N;などのアニオン成分とから構成されるものが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。 As the ionic liquid, a known or commercially available one can be used. The ionic liquid may be, for example, (1) nitrogen-containing cyclic cation compounds such as pyridinium, pyrimidinium, pyrazolium, pyrrolidinium, piperidinium, imidazolium and derivatives thereof; amine-based cations of tetraalkylammonium and derivatives thereof; phosphonium, trialkylsulfonium. , Tetraalkylphosphonium and other phosphinic cations and their derivatives; lithium cations and their derivatives; and other cation components, and (2) Cl , AlCl 4- , Al 2 Cl 7- , ClO 4- and other chloride ions. Bromide ions such as Br- ; iodide ions such as I- ; fluoride ions such as BF 4- , PF 6- ; halide anions such as F (HF) n- ; NO 3- , CH 3 COO- , CF 3 COO- , CH 3 SO 3- , CF 3 SO 3- , (FSO 2 ) 2 N- , (CF 3 SO 2 ) 2 N- , (CF 3 SO 2 ) 3 C- , AsF 6- , SbF 6- , NbF 6- , TaF 6- , F (HF) n- , (CN) 2 N- , C 4 F 9 SO 3- , (C 2 F 5 SO 2 ) 2 N- , C 3 F 7 COO - , (CF 3 SO 2 ) (CF 3 CO) N- ; etc., which are composed of anionic components. These may be used alone or in combination of two or more.
 上記のイオン液体の中で、高温安定性、熱電半導体粒子及びバインダー樹脂との相溶性、熱電半導体粒子間隙の電気伝導率の低下抑制等の観点から、イオン液体のカチオン成分が、ピリジニウムカチオン及びその誘導体、イミダゾリウムカチオン及びその誘導体から選ばれる少なくとも1種を含むことが好ましい。イオン液体のアニオン成分が、ハロゲン化物アニオンを含むことが好ましく、Cl、Br及びIから選ばれる少なくとも1種を含むことがさらに好ましい。 Among the above ionic liquids, the cation component of the ionic liquid is pyridinium cation and its It preferably contains at least one selected from derivatives, imidazolium cations and derivatives thereof. The anion component of the ionic liquid preferably contains a halide anion, and more preferably contains at least one selected from Cl , Br and I .
 カチオン成分が、ピリジニウムカチオン及びその誘導体を含むイオン液体の具体的な例として、4-メチル-ブチルピリジニウムクロライド、3-メチル-ブチルピリジニウムクロライド、4-メチル-ヘキシルピリジニウムクロライド、3-メチル-ヘキシルピリジニウムクロライド、4-メチル-オクチルピリジニウムクロライド、3-メチル-オクチルピリジニウムクロライド、3,4-ジメチル-ブチルピリジニウムクロライド、3,5-ジメチル-ブチルピリジニウムクロライド、4-メチル-ブチルピリジニウムテトラフルオロボレート、4-メチル-ブチルピリジニウムヘキサフルオロホスフェート、1-ブチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファート、1-ブチル-4-メチルピリジニウムヨージド等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、1-ブチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムブロミド、1-ブチル-4-メチルピリジニウムヘキサフルオロホスファート、1-ブチル-4-メチルピリジニウムヨージドが好ましい。
Specific examples of ionic liquids in which the cation component contains a pyridinium cation and its derivatives include 4-methyl-butylpyridinium chloride, 3-methyl-butylpyridinium chloride, 4-methyl-hexylpyridinium chloride, 3-methyl-hexylpyridinium. Chloride, 4-methyl-octylpyridinium chloride, 3-methyl-octylpyridinium chloride, 3,4-dimethyl-butylpyridinium chloride, 3,5-dimethyl-butylpyridinium chloride, 4-methyl-butylpyridiniumtetrafluoroborate, 4- Methyl-butylpyridinium hexafluorophosphate, 1-butylpyridinium bromide, 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, 1-butyl-4-methylpyridinium iodide, etc. Be done. These may be used alone or in combination of two or more.
Among these, 1-butylpyridinium bromide, 1-butyl-4-methylpyridinium bromide, 1-butyl-4-methylpyridinium hexafluorophosphate, and 1-butyl-4-methylpyridinium iodide are preferable.
 また、カチオン成分が、イミダゾリウムカチオン及びその誘導体を含むイオン液体の具体的な例として、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]、1-エチル-3-メチルイミダゾリウムクロライド、1-エチル-3-メチルイミダゾリウムブロミド、1-ブチル-3-メチルイミダゾリウムクロライド、1-ヘキシル-3-メチルイミダゾリウムクロライド、1-オクチル-3-メチルイミダゾリウムクロライド、1-デシル-3-メチルイミダゾリウムクロライド、1-デシル-3-メチルイミダゾリウムブロミド、1-ドデシル-3-メチルイミダゾリウムクロライド、1-テトラデシル-3-メチルイミダゾリウムクロライド、1-エチル-3-メチルイミダゾリウムテトラフロオロボレート、1-ブチル-3-メチルイミダゾリウムテトラフロオロボレート、1-ヘキシル-3-メチルイミダゾリウムテトラフロオロボレート、1-エチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-メチル-3-ブチルイミダゾリウムメチルスルフェート、1、3-ジブチルイミダゾリウムメチルスルフェート等が挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 これらの中でも、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムブロミド]、[1-ブチル-3-(2-ヒドロキシエチル)イミダゾリウムテトラフルオロボレイト]が好ましい。
Further, specific examples of the ionic liquid in which the cation component contains an imidazolium cation and a derivative thereof are [1-butyl-3- (2-hydroxyethyl) imidazolium bromide] and [1-butyl-3- (2). -Hydroxyethyl) imidazolium tetrafluoroborate], 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-hexyl-3 -Methylimidazolium chloride, 1-octyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium chloride, 1-decyl-3-methylimidazolium bromide, 1-dodecyl-3-methylimidazolium chloride, 1-Tetradecyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium tetrafluororobolate, 1-butyl-3-methylimidazolium tetrafuroboroborate, 1-hexyl-3-methylimidazolium tetraflolate Orobolate, 1-ethyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-methyl-3-butylimidazolium methylsulfate, 1,3-dibutylimidazolium methyl Sulfate and the like can be mentioned. These may be used alone or in combination of two or more.
Among these, [1-butyl-3- (2-hydroxyethyl) imidazolium bromide] and [1-butyl-3- (2-hydroxyethyl) imidazolium tetrafluoroborate] are preferable.
 上記のイオン液体の電気伝導率は、好ましくは10-7S/cm以上、より好ましくは10-6S/cm以上である。電気伝導率が上記の範囲であれば、導電補助剤として、熱電半導体粒子間の電気伝導率の低減を効果的に抑制することができる。 The electric conductivity of the above ionic liquid is preferably 10-7 S / cm or more, more preferably 10-6 S / cm or more. When the electric conductivity is within the above range, the reduction of the electric conductivity between the thermoelectric semiconductor particles can be effectively suppressed as a conductivity auxiliary agent.
 また、上記のイオン液体は、分解温度が300℃以上であることが好ましい。分解温度が上記範囲であれば、後述するように、熱電半導体組成物からなる塗布膜(薄膜)を焼成(アニール)処理した場合でも、導電補助剤としての効果を維持することができる。
 本明細書において、「分解温度」とは、熱重量測定(TG)による焼成(アニール)温度における質量減少率が10%となる温度をいう。
Further, the above-mentioned ionic liquid preferably has a decomposition temperature of 300 ° C. or higher. As long as the decomposition temperature is within the above range, the effect as a conductive auxiliary agent can be maintained even when the coating film (thin film) made of the thermoelectric semiconductor composition is fired (annealed) as described later.
As used herein, the "decomposition temperature" means a temperature at which the mass reduction rate at the firing (annealing) temperature by thermogravimetric analysis (TG) is 10%.
 また、上記のイオン液体において、熱重量測定(TG)による300℃における質量減少率は、好ましくは10%以下、より好ましくは5%以下、特に好ましくは1%以下である。質量減少率が上記範囲であれば、後述するように、熱電半導体組成物からなる塗布膜(薄膜)を焼成(アニール)処理した場合でも、導電補助剤としての効果を維持することができる。 Further, in the above ionic liquid, the mass reduction rate at 300 ° C. by thermogravimetric analysis (TG) is preferably 10% or less, more preferably 5% or less, and particularly preferably 1% or less. As long as the mass reduction rate is within the above range, the effect as a conductive auxiliary agent can be maintained even when the coating film (thin film) made of the thermoelectric semiconductor composition is fired (annealed) as described later.
 イオン液体の熱電半導体組成物中の含有量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、特に好ましくは1.0~20質量%である。イオン液体の含有量が、上記の範囲内であれば、電気伝導率の低下が効果的に抑制され、高い熱電性能を有する膜が得られる。 The content of the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and particularly preferably 1.0 to 20% by mass. When the content of the ionic liquid is within the above range, the decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
 熱電変換材料中におけるイオン液体の含有量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、特に好ましくは1.0~20質量%である。熱電変換材料中におけるイオン液体の含有量が、上記範囲内であれば、電気伝導率の低下が効果的に抑制され、高い熱電性能を有する膜が得られる。 The content of the ionic liquid in the thermoelectric conversion material is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and particularly preferably 1.0 to 20% by mass. When the content of the ionic liquid in the thermoelectric conversion material is within the above range, the decrease in electrical conductivity is effectively suppressed, and a film having high thermoelectric performance can be obtained.
〈無機イオン性化合物〉
 本発明に用いる熱電半導体組成物には、さらに無機イオン性化合物を含んでいてもよい。
 無機イオン性化合物は、少なくともカチオンとアニオンから構成される化合物である。無機イオン性化合物は室温において固体であり、400~900℃の温度領域のいずれかの温度に融点を有し、イオン伝導度が高いこと等の特徴を有しているため、導電補助剤として、熱電半導体粒子間の電気伝導率の低減を抑制することができる。
<Inorganic ionic compound>
The thermoelectric semiconductor composition used in the present invention may further contain an inorganic ionic compound.
Inorganic ionic compounds are compounds composed of at least cations and anions. Since the inorganic ionic compound is solid at room temperature, has a melting point in any temperature in the temperature range of 400 to 900 ° C., and has characteristics such as high ionic conductivity, it can be used as a conduction auxiliary agent. It is possible to suppress a decrease in electrical conductivity between thermoelectric semiconductor particles.
 無機イオン性化合物の熱電半導体組成物中の含有量は、熱電半導体組成物が無機イオン化合物を含む場合、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、特に好ましくは1.0~10質量%である。無機イオン性化合物の含有量が、上記範囲内であれば、電気伝導率の低下を効果的に抑制でき、結果として熱電性能が向上した膜が得られる。
 なお、無機イオン性化合物とイオン液体とを併用する場合においては、熱電半導体組成物中における、無機イオン性化合物及びイオン液体の含有量の総量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、特に好ましくは1.0~10質量%である。
When the thermoelectric semiconductor composition contains an inorganic ionic compound, the content of the inorganic ionic compound in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and particularly preferably. Is 1.0 to 10% by mass. When the content of the inorganic ionic compound is within the above range, the decrease in electrical conductivity can be effectively suppressed, and as a result, a film having improved thermoelectric performance can be obtained.
When the inorganic ionic compound and the ionic liquid are used in combination, the total content of the inorganic ionic compound and the ionic liquid in the thermoelectric semiconductor composition is preferably 0.01 to 50% by mass, more preferably. Is 0.5 to 30% by mass, particularly preferably 1.0 to 10% by mass.
 熱電変換材料中における無機イオン性化合物の含有量は、好ましくは0.01~50質量%、より好ましくは0.5~30質量%、特に好ましくは1.0~10質量%である。熱電変換材料中における無機イオン性化合物の含有量が、上記範囲内であれば、電気伝導率の低下を効果的に抑制でき、結果として熱電性能が向上した膜が得られる。 The content of the inorganic ionic compound in the thermoelectric conversion material is preferably 0.01 to 50% by mass, more preferably 0.5 to 30% by mass, and particularly preferably 1.0 to 10% by mass. When the content of the inorganic ionic compound in the thermoelectric conversion material is within the above range, the decrease in electrical conductivity can be effectively suppressed, and as a result, a film having improved thermoelectric performance can be obtained.
〈その他の添加剤〉
 熱電半導体組成物には、上記以外に、必要に応じて、さらに分散剤、造膜助剤、光安定剤、酸化防止剤、粘着付与剤、可塑剤、着色剤、樹脂安定剤、充てん剤、顔料、導電性フィラー、導電性高分子、硬化剤等の他の添加剤を含んでいてもよい。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
<Other additives>
In addition to the above, the thermoelectric semiconductor composition may further include a dispersant, a film-forming auxiliary, a photostabilizer, an antioxidant, a tackifier, a plasticizer, a colorant, a resin stabilizer, a filler, and the like. It may contain other additives such as pigments, conductive fillers, conductive polymers and hardeners. These may be used alone or in combination of two or more.
〈熱電変換材料層の縦断面〉
 本明細書における、「熱電変換材料層の中央部を含む縦断面」の定義を、図を用いて説明する。
 図1は、本発明の熱電変換材料層の縦断面の定義を説明するための図であり、図1(a)は、熱電変換材料層2の平面図であり、熱電変換材料層2は、幅方向に長さX、奥行き方向に長さYを有し、図1(b)は、基板1上に形成された熱電変換材料層2の縦断面であり、縦断面は、図1(a)における中央部Cを含み、幅方向にA-A’間で切断した時に得られる長さX、厚さDからなる(図では長方形としている)。なお、熱電変換材料層2中には空隙部3が含まれる。
<Vertical section of thermoelectric conversion material layer>
The definition of "longitudinal section including the central portion of the thermoelectric conversion material layer" in the present specification will be described with reference to the drawings.
1A and 1B are views for explaining a definition of a vertical cross section of a thermoelectric conversion material layer of the present invention, FIG. 1A is a plan view of a thermoelectric conversion material layer 2, and FIG. 1A is a plan view of the thermoelectric conversion material layer 2. It has a length X in the width direction and a length Y in the depth direction, and FIG. 1B is a vertical cross section of the thermoelectric conversion material layer 2 formed on the substrate 1, and the vertical cross section is FIG. 1 (a). ), The length X and the thickness D obtained when cutting between A and A'in the width direction are included (the figure is a rectangle). The thermoelectric conversion material layer 2 includes a void portion 3.
 本発明の熱電変換材料層の縦断面について、図を用いて説明する。
 図2は、本発明の熱電変換材料層の加熱加圧前後の縦断面を説明するための断面模式図であり、図2(a)は、基板1a上に形成した加熱加圧前の熱電変換材料層2sの縦断面の一例であり、熱電変換材料層2sは、幅方向に長さX、厚さ方向は、Dmin及び、Dmaxの値をとる曲線からなる縦断面を有し、縦断面の上部は凹部と凸部を備え、縦断面内には、空隙部3aが存在する。また、図2(b)は、基板1a上に形成した熱電変換材料層2sの加熱加圧後の熱電変換材料層2tの縦断面の一例であり、熱電変換材料層2tの縦断面は、幅方向に長さX、厚さ方向に厚さがD[図2の(a)におけるDminとDmaxの値が僅差の場合]からなり、縦断面の上部は、略直線状になっており、縦断面内には、空隙数、及び体積がさらに抑制された空隙部4aが存在する。なお、Dminは縦断面の厚さ方向の厚さの最小値、Dmaxは縦断面の厚さ方向の厚さの最大値を意味する。
The vertical cross section of the thermoelectric conversion material layer of the present invention will be described with reference to the drawings.
FIG. 2 is a schematic cross-sectional view for explaining a vertical cross section of the thermoelectric conversion material layer of the present invention before and after heating and pressurization, and FIG. 2A is a thermoelectric conversion before heating and pressurizing formed on the substrate 1a. It is an example of the vertical cross section of the material layer 2s, and the thermoelectric conversion material layer 2s has a vertical cross section consisting of a curve having a length X in the width direction, Dmin in the thickness direction, and a curve having a value of Dmax. The upper portion is provided with a concave portion and a convex portion, and a gap portion 3a is present in the vertical cross section. Further, FIG. 2B is an example of a vertical cross section of the thermoelectric conversion material layer 2t formed on the substrate 1a after heating and pressurizing the thermoelectric conversion material layer 2s, and the vertical cross section of the thermoelectric conversion material layer 2t has a width. The length is X in the direction and the thickness is D in the thickness direction [when the values of Dmin and Dmax in (a) of FIG. In the plane, there is a void portion 4a in which the number of voids and the volume are further suppressed. Note that Dmin means the minimum value of the thickness in the thickness direction of the vertical cross section, and Dmax means the maximum value of the thickness in the thickness direction of the vertical cross section.
 本発明において、熱電変換材料層中の熱電変換材料の充填率は、熱電変換材料層の中央部を含む縦断面の面積における熱電変換材料の面積の占める割合で定義され、当該充填率が大きいほど、熱電変換材料層中の空隙が少なくなる。
 熱電変換材料層中の熱電変換材料の充填率は、好ましくは0.800以上1.000未満であり、より好ましくは0.900以上1.000未満であり、さらに好ましくは0.920以上1.000未満であり、さらに好ましくは0.950以上1.000未満であり、最も好ましくは0.970以上1.000未満である。当該充填率がこの範囲にあると、熱電変換材料層における熱電変換材料の電気抵抗率が減少し(電気伝導率の向上)、熱電性能が向上する。
 なお、熱電変換材料層中の熱電変換材料の充填率は、後述する実施例に記載の方法により測定したものである。
In the present invention, the filling rate of the thermoelectric conversion material in the thermoelectric conversion material layer is defined by the ratio of the area of the thermoelectric conversion material to the area of the longitudinal section including the central portion of the thermoelectric conversion material layer, and the larger the filling rate is, the more the filling rate is defined. , The voids in the thermoelectric conversion material layer are reduced.
The filling factor of the thermoelectric conversion material in the thermoelectric conversion material layer is preferably 0.800 or more and less than 1.000, more preferably 0.900 or more and less than 1.000, and further preferably 0.920 or more and 1. It is less than 000, more preferably 0.950 or more and less than 1.000, and most preferably 0.970 or more and less than 1.000. When the filling factor is in this range, the electrical resistivity of the thermoelectric conversion material in the thermoelectric conversion material layer is reduced (improvement of electrical conductivity), and the thermoelectric performance is improved.
The filling factor of the thermoelectric conversion material in the thermoelectric conversion material layer was measured by the method described in Examples described later.
 本発明の熱電変換材料層は、熱電変換材料の充填率が高くなることにより、電気伝導率が増大することから、熱電性能の向上につながる。このため、熱電変換モジュールの熱電変換材料層として適用することにより、熱電性能が高い熱電変換モジュールを得ることができる。 The thermoelectric conversion material layer of the present invention has an increased electric conductivity due to a high filling rate of the thermoelectric conversion material, which leads to an improvement in thermoelectric performance. Therefore, by applying it as a thermoelectric conversion material layer of a thermoelectric conversion module, a thermoelectric conversion module having high thermoelectric performance can be obtained.
[熱電変換材料層の製造方法] 
 本発明の熱電変換材料層の製造方法は、熱電半導体粒子、バインダー樹脂、イオン液体、及び金属ナノ粒子を含む熱電半導体組成物の焼成体からなる熱電変換材料層の製造方法であって、前記金属ナノ粒子が450℃以下で焼結する粒子であることを特徴としている。一態様として、(A)熱電変換材料層の薄膜を形成する工程、(B)前記(A)の工程で得られた前記熱電変換材料層の薄膜を乾燥する工程、(C)前記(B)の工程で得られた乾燥後の前記熱電変換材料層の薄膜を加熱加圧する工程、及び(D)前記(C)の工程で得られた加熱加圧された熱電変換材料層の薄膜を焼成(アニール処理)する工程を含むことが好ましい。
 本発明の熱電変換材料層の製造方法においては、熱電変換材料層の薄膜を形成後、所定の温度で乾燥し、次いで、熱電変換材料層の上面を所定の圧力及び所定の温度で加熱加圧後、450℃以下で焼成することにより、金属ナノ粒子の含有及びそれらの焼結の進行により熱電変換材料層の空隙の充填が促進され、熱電変換材料層中の熱電変換材料の空隙の体積が減少することにより、電気伝導率が向上した熱電変換材料層が得られる。
 また、他の態様として、前記(A)の工程、(B)の工程後、(C)の工程における加熱温度で、焼成を同時に行い、(D)の工程を省略した製造方法であってもよい。
 さらに、他の態様として、前記(A)の工程、(B)の工程後、(D)の工程に相当する、(E)前記(B)の工程で得られた乾燥後の熱電変換材料層の薄膜を焼成(アニール処理)する工程を含む製造方法であってもよい。
[Manufacturing method of thermoelectric conversion material layer]
The method for producing a thermoelectric conversion material layer of the present invention is a method for producing a thermoelectric conversion material layer composed of a fired body of a thermoelectric semiconductor composition containing thermoelectric semiconductor particles, a binder resin, an ionic liquid, and metal nanoparticles. The nanoparticles are characterized by being sintered at 450 ° C. or lower. As one embodiment, (A) a step of forming a thin film of the thermoelectric conversion material layer, (B) a step of drying the thin film of the thermoelectric conversion material layer obtained in the step (A), (C) the step (B). The step of heating and pressurizing the dried thin film of the thermoelectric conversion material layer obtained in the above step, and (D) firing the thin film of the heated and pressurized thermoelectric conversion material layer obtained in the step (C). It is preferable to include a step of annealing).
In the method for producing a thermoelectric conversion material layer of the present invention, a thin film of the thermoelectric conversion material layer is formed, dried at a predetermined temperature, and then the upper surface of the thermoelectric conversion material layer is heated and pressed at a predetermined pressure and a predetermined temperature. After that, by firing at 450 ° C. or lower, the filling of the voids in the thermoelectric conversion material layer is promoted by the inclusion of metal nanoparticles and the progress of sintering thereof, and the volume of the voids in the thermoelectric conversion material layer in the thermoelectric conversion material layer is increased. By reducing the amount, a thermoelectric conversion material layer having improved electric conductivity can be obtained.
Further, as another embodiment, even in a manufacturing method in which firing is simultaneously performed at the heating temperature in the step (C) after the steps (A) and (B), and the step (D) is omitted. good.
Further, as another aspect, after the step (A) and the step (B), the thermoelectric conversion material layer after drying obtained in the step (E) and the step (B) corresponding to the step (D). A manufacturing method including a step of firing (annealing) the thin film of the above may be used.
 図3は、本発明の熱電変換材料層の製造方法の一態様を工程順に示す説明図であり、(a)は基板1b上に熱電変換材料層2sを形成した態様を示す断面図であり、基板1b上に熱電変換材料層2sを塗布膜(空隙部3bを含む)として形成し、所定の温度で乾燥させる;
(b)は熱電変換材料層2sの上面に加熱プレス部5を対向させた後の態様を示す断面図であり、(a)で得られた乾燥後の熱電変換材料層2sと加熱プレス部5とを対向させる;
(c)は加熱プレス部5により熱電変換材料層2sの上面を加熱加圧した後、熱電変換材料層2sから加熱プレス部5をリリースした後の態様を示す断面図である。
その後、焼成(アニール処理)を行うことにより、本発明の熱電変換材料層2t(空隙数及び体積がさらに減少した空隙部4bを含む)を得ることができる。
3A and 3B are explanatory views showing one aspect of the method for manufacturing a thermoelectric conversion material layer of the present invention in order of steps, and FIG. 3A is a cross-sectional view showing an embodiment in which a thermoelectric conversion material layer 2s is formed on a substrate 1b. The thermoelectric conversion material layer 2s is formed on the substrate 1b as a coating film (including the voids 3b) and dried at a predetermined temperature;
(B) is a cross-sectional view showing an aspect after the heat-pressed portion 5 is opposed to the upper surface of the thermoelectric conversion material layer 2s, and the dried thermoelectric conversion material layer 2s and the heat-pressed portion 5 obtained in (a) are shown. And face each other;
(C) is a cross-sectional view showing an embodiment after the upper surface of the thermoelectric conversion material layer 2s is heated and pressed by the heating press unit 5 and then the heating press unit 5 is released from the thermoelectric conversion material layer 2s.
Then, by performing firing (annealing treatment), the thermoelectric conversion material layer 2t (including the void portion 4b in which the number of voids and the volume are further reduced) of the present invention can be obtained.
(A)熱電変換材料層形成工程
 熱電変換材料層形成工程は、基板上に熱電変換材料層を形成する工程であり、例えば、図3(a)においては、基板1b上に熱電半導体組成物を塗布し、熱電変換材料層2sを形成する工程である。
(A) Thermoelectric conversion material layer forming step The thermoelectric conversion material layer forming step is a step of forming a thermoelectric conversion material layer on a substrate. For example, in FIG. 3A, a thermoelectric semiconductor composition is formed on a substrate 1b. This is a step of applying and forming the thermoelectric conversion material layer 2s.
(基板)
 基板としては、特に制限はなく、ガラス、シリコン、セラミック、金属、又はプラスチック等が挙げられる。焼成(アニール処理)を高温度下で行う場合は、ガラス、シリコン、セラミック、金属が好ましく、熱処理後の寸法安定性の観点から、ガラス、シリコン、セラミックを用いることがより好ましい。
 前記基板の厚さは、プロセス及び寸法安定性の観点から、100~10000μmのものが使用できる。
(substrate)
The substrate is not particularly limited, and examples thereof include glass, silicon, ceramic, metal, and plastic. When firing (annealing treatment) is performed at a high temperature, glass, silicon, ceramic, and metal are preferable, and glass, silicon, and ceramic are more preferable from the viewpoint of dimensional stability after heat treatment.
The thickness of the substrate may be 100 to 10,000 μm from the viewpoint of process and dimensional stability.
(熱電半導体組成物)
 本発明に用いる熱電半導体組成物は、前述したように、熱電半導体粒子、バインダー樹脂、イオン液体、及び金属ナノ粒子を含む。さらに、前述したように、無機イオン性化合物を含んでもよく、その他の添加剤を含んでもよい。熱電半導体粒子(熱電半導体材料)、バインダー樹脂、イオン液体、金属ナノ粒子、無機イオン性化合物等に関する、好ましい材料、含有量等も同様である。
(Thermoelectric semiconductor composition)
As described above, the thermoelectric semiconductor composition used in the present invention contains thermoelectric semiconductor particles, a binder resin, an ionic liquid, and metal nanoparticles. Further, as described above, it may contain an inorganic ionic compound or may contain other additives. The same applies to preferable materials, contents, etc. of thermoelectric semiconductor particles (thermoelectric semiconductor materials), binder resins, ionic liquids, metal nanoparticles, inorganic ionic compounds, and the like.
(熱電半導体組成物の調製方法)
 本発明で用いる熱電半導体組成物の調製方法は、特に制限はなく、前述したように、超音波ホモジナイザー、スパイラルミキサー、プラネタリーミキサー、ディスパーサー、ハイブリッドミキサー等の公知の方法により、熱電半導体粒子、バインダー樹脂、イオン液体、金属ナノ粒子、必要に応じて無機イオン性化合物やその他の添加剤、さらに溶媒を加えて、混合分散させ、当該熱電半導体組成物を調製すればよい。
 前記溶媒としては、例えば、トルエン、酢酸エチル、メチルエチルケトン、アルコール、テトラヒドロフラン、メチルピロリドン、エチルセロソルブ等の溶媒などが挙げられる。これらの溶媒は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。熱電半導体組成物の固形分濃度としては、該組成物が塗工に適した粘度であればよく、特に制限はない。
(Method for preparing thermoelectric semiconductor composition)
The method for preparing the thermoelectric semiconductor composition used in the present invention is not particularly limited, and as described above, the thermoelectric semiconductor particles can be prepared by a known method such as an ultrasonic homogenizer, a spiral mixer, a planetary mixer, a disperser, or a hybrid mixer. The thermoelectric semiconductor composition may be prepared by adding a binder resin, an ionic liquid, metal nanoparticles, an inorganic ionic compound or other additives as necessary, and a solvent, and mixing and dispersing them.
Examples of the solvent include solvents such as toluene, ethyl acetate, methyl ethyl ketone, alcohol, tetrahydrofuran, methylpyrrolidone, and ethyl cellosolve. One of these solvents may be used alone, or two or more of them may be mixed and used. The solid content concentration of the thermoelectric semiconductor composition is not particularly limited as long as the composition has a viscosity suitable for coating.
 熱電半導体組成物を、基板上に塗布する方法としては、スクリーン印刷法、フレキソ印刷法、グラビア印刷法、スピンコート法、ディップコート法、ダイコート法、スプレーコート法、バーコート法、ドクターブレード法、アプリケーター法等の公知の方法が挙げられ、特に制限されない。塗膜をパターン状に形成する場合は、所望のパターンを有するスクリーン版を用いて簡便にパターン形成が可能なスクリーン印刷、ステンシル印刷、スロットダイコート等が好ましく用いられる。 As a method of applying the thermoelectric semiconductor composition on a substrate, a screen printing method, a flexographic printing method, a gravure printing method, a spin coating method, a dip coating method, a die coating method, a spray coating method, a bar coating method, a doctor blade method, etc. Known methods such as the applicator method can be mentioned, and the present invention is not particularly limited. When the coating film is formed into a pattern, screen printing, stencil printing, slot die coating, etc., which can easily form a pattern using a screen plate having a desired pattern, are preferably used.
 熱電変換材料層は、好ましい態様として、基板上にベタ膜状に作製し、その後、目的とするチップサイズに個片化してもよい。また、好ましい他の態様として、基板上に後述する熱電変換材料のチップの大きさに塗布膜を形成してもよい。さらに、熱電変換材料層の形状制御性の観点から、より好ましい態様として、熱電変換材料のチップ形状を有する離間した開口部を含む、格子状のパターン枠部材等を用いて作製してもよい。
 チップサイズとしては、例えば、短辺0.1~20mm、長辺0.2~25mm程度である。
As a preferred embodiment, the thermoelectric conversion material layer may be formed on a substrate in the form of a solid film, and then individualized into a desired chip size. Further, as another preferred embodiment, a coating film may be formed on the substrate in the size of a chip of a thermoelectric conversion material described later. Further, from the viewpoint of shape controllability of the thermoelectric conversion material layer, as a more preferable embodiment, a grid-shaped pattern frame member or the like including separated openings having a chip shape of the thermoelectric conversion material may be used.
The chip size is, for example, about 0.1 to 20 mm on the short side and 0.2 to 25 mm on the long side.
 前記熱電変換材料のチップ形状を有する離間した開口部を含む、格子状のパターン枠部材を使用する場合の熱電変換材料層の製造方法は、例えば、以下のようである。
(p)基板上に、熱電変換材料のチップ形状を有する離間した開口部を含む、格子状のパターン枠部材を静置する;
(q)パターン枠部材の開口部に、熱電変換材料層の塗布膜を形成し、所定の温度で乾燥させる;
(r)(q)で得られた乾燥後の熱電変換材料層を常温まで冷却した後、熱電変換材料層と加熱プレス部(図3における加熱プレス部5に相当)とを対向させる;
(t)加熱プレス部で熱電変換材料層の上面を加圧し、熱電変換材料層の空隙数及び体積を減少させ、加熱プレス部を熱電変換材料層からリリースし、さらにパターン枠部材をリリースする;
(u)その後、基板上に得られたパターン枠部材の開口部の形状が反映された熱電変換材料層に対し焼成(アニール処理)を行うことにより、本発明のチップ状の熱電変換材料層を得る。
 前記開口部は、特に制限されないが、パターン枠部材をリリースした後、熱電変換材料のチップの形状に反映される形状を有するものであればよく、長方形状、正方形状、又は円形状であることが好ましく、長方形状、正方形状であることがさらに好ましい。
 また、前記パターン枠部材として、形成の容易さの観点から、ステンレス鋼、銅等を用いることができる。
A method for manufacturing a thermoelectric conversion material layer in the case of using a grid-like pattern frame member including separated openings having a chip shape of the thermoelectric conversion material is as follows, for example.
(P) A grid-like pattern frame member including a separated opening having a chip shape of a thermoelectric conversion material is placed on the substrate;
(Q) A coating film of a thermoelectric conversion material layer is formed in the opening of the pattern frame member and dried at a predetermined temperature;
(R) After cooling the dried thermoelectric conversion material layer obtained in (q) to room temperature, the thermoelectric conversion material layer and the heating press unit (corresponding to the heating press unit 5 in FIG. 3) are opposed to each other;
(T) The upper surface of the thermoelectric conversion material layer is pressed by the heating press section to reduce the number and volume of voids in the thermoelectric conversion material layer, the heating press section is released from the thermoelectric conversion material layer, and the pattern frame member is further released;
(U) After that, the chip-shaped thermoelectric conversion material layer of the present invention is obtained by firing (annealing) the thermoelectric conversion material layer reflecting the shape of the opening of the pattern frame member obtained on the substrate. obtain.
The opening is not particularly limited, but may be rectangular, square, or circular as long as it has a shape that is reflected in the shape of the chip of the thermoelectric conversion material after the pattern frame member is released. Is preferable, and it is more preferable that the shape is rectangular or square.
Further, as the pattern frame member, stainless steel, copper or the like can be used from the viewpoint of ease of formation.
(B)熱電変換材料層乾燥工程
 熱電変換材料層乾燥工程は、(A)の工程で得られた熱電変換材料層を乾燥する工程であり、例えば、図3(a)においては、基板1b上の熱電変換材料層2sを乾燥する工程である。
 乾燥方法としては、熱風乾燥法、熱ロール乾燥法、赤外線照射法等、従来公知の乾燥方法が採用できる。加熱温度は、通常、80~170℃であり、好ましくは100~150℃であり、より好ましくは110~145℃であり、さらに好ましくは120~140℃である。
 加熱時間は、加熱方法により異なるが、通常30秒~5時間、好ましくは1分~3時間、より好ましくは5分~2時間、さらに好ましくは10分~50分である。
 加熱温度及び加熱時間がこの範囲であれば、加圧後及び焼成(アニール処理)後の熱電変換材料層の電気伝導率の向上につながりやすくなる。
 また、熱電半導体組成物の調製において溶媒を使用した場合、加熱温度は、使用した溶媒が乾燥できる温度範囲であっても、それ以下の温度範囲であってもよい。
(B) Thermoelectric conversion material layer drying step The thermoelectric conversion material layer drying step is a step of drying the thermoelectric conversion material layer obtained in the step (A). For example, in FIG. 3A, on the substrate 1b. This is a step of drying the thermoelectric conversion material layer 2s.
As the drying method, conventionally known drying methods such as a hot air drying method, a hot roll drying method, and an infrared irradiation method can be adopted. The heating temperature is usually 80 to 170 ° C, preferably 100 to 150 ° C, more preferably 110 to 145 ° C, still more preferably 120 to 140 ° C.
The heating time varies depending on the heating method, but is usually 30 seconds to 5 hours, preferably 1 minute to 3 hours, more preferably 5 minutes to 2 hours, and further preferably 10 minutes to 50 minutes.
When the heating temperature and the heating time are within this range, it is easy to improve the electric conductivity of the thermoelectric conversion material layer after pressurization and firing (annealing treatment).
When a solvent is used in the preparation of the thermoelectric semiconductor composition, the heating temperature may be in a temperature range in which the used solvent can be dried or in a temperature range lower than that.
(C)熱電変換材料層加熱加圧工程
 熱電変換材料層加熱加圧工程は、(B)の工程で得られた乾燥後の熱電変換材料層を加熱加圧する工程であり、例えば、図3(b)においては、熱電変換材料層2sの上面を加熱プレス部5で加熱加圧する工程である。
(C) Thermoelectric conversion material layer heating and pressurizing step The thermoelectric conversion material layer heating and pressurizing step is a step of heating and pressurizing the dried thermoelectric conversion material layer obtained in the step (B), for example, FIG. 3 (B). In b), the upper surface of the thermoelectric conversion material layer 2s is heated and pressed by the heating press unit 5.
 この加熱加圧処理は、例えば、油圧式プレス、真空プレス機、重り等、物理的加圧手段を用いて、所定温度、大気雰囲気下又は真空下で、塗布膜(薄膜)の上面全体に対して所定圧力で所定時間、加圧する処理である。
 加熱加圧処理の温度としては、特に制限はないが、通常100~300℃、好ましくは200~300℃である。
 加熱加圧処理の圧力としては、特に制限はないが、通常、20~200MPa、好ましくは50~150MPaである。
 加熱加圧処理の時間としては、特に制限はないが、通常、数秒間~数十分間、好ましくは数十秒間~十数分間である。
 なお、加圧は、所定の加圧量まで一気に上げて行ってもよいが、熱電変換材料層の形状安定性の維持及び熱電変換材料層内の空隙をより多く減少させ熱電変換材料の充填率を向上させる観点から、適宜調整するが、通常0.1~50MPa/分、好ましくは0.5~30MPa/分、さらに好ましくは1.0~10MPa/分で所定の加圧量まで加圧量を増加させる。
 加圧量及び加圧時間がこの範囲であれば、充填率が増大しやすくなり、焼成(アニール処理)後の熱電変換材料層の電気伝導率が向上しやすくなる。
This heat-pressurizing treatment is performed on the entire upper surface of the coating film (thin film) at a predetermined temperature, in an air atmosphere or under vacuum by using a physical pressurizing means such as a hydraulic press, a vacuum press, or a weight. This is a process of pressurizing at a predetermined pressure for a predetermined time.
The temperature of the heat-pressurizing treatment is not particularly limited, but is usually 100 to 300 ° C, preferably 200 to 300 ° C.
The pressure of the heat-pressurizing treatment is not particularly limited, but is usually 20 to 200 MPa, preferably 50 to 150 MPa.
The time of the heat-pressurizing treatment is not particularly limited, but is usually from several seconds to several tens of minutes, preferably from several tens of seconds to ten and several minutes.
The pressurization may be performed by increasing the pressurization amount to a predetermined amount at once, but the shape stability of the thermoelectric conversion material layer is maintained, the voids in the thermoelectric conversion material layer are reduced more, and the filling rate of the thermoelectric conversion material is reduced. From the viewpoint of improving the pressure, the pressure is adjusted as appropriate, but is usually 0.1 to 50 MPa / min, preferably 0.5 to 30 MPa / min, and more preferably 1.0 to 10 MPa / min to a predetermined pressurization amount. To increase.
When the pressurizing amount and the pressurizing time are within this range, the filling rate is likely to increase, and the electric conductivity of the thermoelectric conversion material layer after firing (annealing treatment) is likely to be improved.
(D)焼成(アニール処理)工程((E)の工程含む)
 焼成(アニール処理)工程は、例えば、(C)の工程で得られた加熱加圧された熱電変換材料層を、所定の温度で熱処理する工程である。
 焼成(アニール処理)を行うことで、金属ナノ粒子の焼結体が得られることはもとより、熱電性能を安定化させるとともに、薄膜における熱電半導体組成物中の熱電半導体粒子を結晶成長させることができ、熱電変換材料層の熱電性能をさらに向上させることができる。
 例えば、図3(c)においては、加熱加圧後の熱電変換材料層2sを所定の温度でアニールする工程である(アニール処理後、熱電変換材料層2tが得られる)。
(D) Firing (annealing) step (including step (E))
The firing (annealing treatment) step is, for example, a step of heat-treating the heated and pressurized thermoelectric conversion material layer obtained in the step (C) at a predetermined temperature.
By performing firing (annealing treatment), not only a sintered body of metal nanoparticles can be obtained, but also the thermoelectric performance can be stabilized and the thermoelectric semiconductor particles in the thermoelectric semiconductor composition in the thin film can be crystallized. , The thermoelectric performance of the thermoelectric conversion material layer can be further improved.
For example, in FIG. 3C, it is a step of annealing the thermoelectric conversion material layer 2s after heating and pressurizing at a predetermined temperature (after the annealing treatment, the thermoelectric conversion material layer 2t is obtained).
 焼成(アニール処理)は、特に制限はないが、通常、ガス流量が制御された、窒素、アルゴン等の不活性ガス雰囲気下、還元ガス雰囲気下、または真空条件下で行われる。
 焼成方法として、公知の方法により行うことができる。
 焼成(アニール処理)温度は、前述したとおりである。
 焼成(アニール処理)時間は、特に制限はないが、通常、数分間~数十時間、好ましくは数分間~数時間である。
The firing (annealing treatment) is not particularly limited, but is usually carried out under an inert gas atmosphere such as nitrogen or argon, a reducing gas atmosphere, or a vacuum condition in which the gas flow rate is controlled.
As a firing method, a known method can be used.
The firing (annealing) temperature is as described above.
The firing (annealing treatment) time is not particularly limited, but is usually several minutes to several tens of hours, preferably several minutes to several hours.
 焼成(アニール処理)は、熱電変換材料層を加圧した状態で行ってもよい。加圧する場合の加圧量は、前述した加熱加圧処理工程と同様の条件で行う。 The firing (annealing treatment) may be performed in a state where the thermoelectric conversion material layer is pressurized. The amount of pressurization when pressurizing is performed under the same conditions as the above-mentioned heat pressurization treatment step.
 前記熱電変換材料層の厚さは、加圧により形状安定性及び熱電性能が損なわれなければ特に制限はなく、前述したとおりである。 The thickness of the thermoelectric conversion material layer is not particularly limited as long as the shape stability and thermoelectric performance are not impaired by pressurization, and are as described above.
 本発明の熱電変換材料層の製造方法によれば、簡便な方法で電気伝導率が向上された熱電変換材料層を製造することができる。 According to the method for manufacturing a thermoelectric conversion material layer of the present invention, a thermoelectric conversion material layer having improved electrical conductivity can be manufactured by a simple method.
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
 実施例及び比較例で作製した熱電変換材料からなる試験片(チップ)における、厚み方向に沿った縦断面の充填率測定は、以下の方法で行った。
(厚み方向に沿った縦断面の充填率測定)
 各実施例及び比較例で得られた熱電変換材料からなる試験片(チップ)それぞれについて、研磨装置(リファインテック社製、型名:リファイン・ポリッシャーHV)によって熱電変換材料層の中央部を含む縦断面出しを行い、電界放出型走査電子顕微鏡(FE―SEM)(日立ハイテクノロジーズ社製、型名:S-4700)を用い、縦断面の観察を行い、次いで、画像処理ソフト(National Institutes of Health製、ImageJ ver.1.44P)を用い、熱電変換材料層の縦断面の面積における熱電変換材料の面積の占める割合で定義される充填率を算出した。
 充填率の測定においては、倍率500倍のSEM画像(縦断面)を用いて、測定範囲を熱電変換材料層の任意の位置に対し、幅方向に1280pixel、厚さ方向に220pixelで囲まれる範囲とし、画像として切り出した。切り出した画像を「Brightness/Contrast」からコントラストを最大値にして二値化処理を行い、二値化処理における暗部を空隙部、明部を熱電変換材料と見なし「Threshold」にて、熱電変換材料の充填率を算出した。充填率はSEM画像3枚について算出し、それらの平均値とした。結果を表1に示す。
In the test piece (chip) made of the thermoelectric conversion material produced in Examples and Comparative Examples, the filling rate of the vertical cross section along the thickness direction was measured by the following method.
(Measurement of filling rate of vertical cross section along the thickness direction)
For each test piece (chip) made of the thermoelectric conversion material obtained in each Example and Comparative Example, a longitudinal section including the central portion of the thermoelectric conversion material layer by a polishing device (manufactured by Refine Tech, model name: Refine Polisher HV). Surface emission is performed, and a vertical cross section is observed using a field emission scanning electron microscope (FE-SEM) (manufactured by Hitachi High-Technologies Corporation, model name: S-4700), and then image processing software (National Instruments of Health) is used. The filling rate defined by the ratio of the area of the thermoelectric conversion material to the area of the vertical cross section of the thermoelectric conversion material layer was calculated using ImageJ ver. 1.44P).
In the measurement of the filling factor, an SEM image (longitudinal cross section) having a magnification of 500 times is used, and the measurement range is set to a range surrounded by 1280 pixel in the width direction and 220 pixel in the thickness direction with respect to an arbitrary position of the thermoelectric conversion material layer. , Cut out as an image. The cut out image is binarized from "Brightness / Control" with the maximum contrast, and the dark part in the binarization process is regarded as the void part and the bright part is regarded as the thermoelectric conversion material. The filling rate of was calculated. The filling factor was calculated for three SEM images and used as the average value thereof. The results are shown in Table 1.
(実施例1)
<熱電変換材料からなる試験片(チップ)の作製>
(1)熱電半導体組成物の調製
(熱電半導体粒子の調製)
 ビスマス-テルル系熱電半導体材料であるP型ビスマステルライドBi0.4Te3.0Sb1.6(高純度化学研究所製、粒径:20μm)を、遊星型ボールミル(フリッチュジャパン社製、Premium line P-7)を使用し、窒素ガス雰囲気下で粉砕することで、平均粒径2.0μmの熱電半導体粒子を調製した。粉砕して得られた熱電半導体粒子に関して、レーザー回折式粒度分析装置(Malvern社製、マスターサイザー3000)により粒度分布測定を行った。
(熱電半導体組成物(塗工液)の調製)
 上記で得られたP型ビスマステルライドBi0.4Te3.0Sb1.6粒子(平均粒径2.0μm)76.0質量%、バインダー樹脂としてポリエチレンカーボネート(最終分解温度:250℃)を含むポリエチレンカーボネート溶液(EMPOWER MATERIALS社製、QPAC25、溶媒:N-メチルピロリドン、固形分濃度:20質量%)16.5質量%(固形分3.3質量%)、イオン液体として1-ブチルピリジニウムブロミド(広栄化学工業社製、IL-P18B)6.5質量%、及び金属ナノ粒子として銀ナノ粒子(三ツ星ベルト社製、溶媒:N-メチルピロリドン、固形分濃度:90質量%、平均粒径60nm)1.0質量%を混合分散した熱電半導体組成物からなる塗工液を調製した。
(2)熱電変換材料からなる試験片(チップ)の作製(熱電変換材料層の形成)
 ガラス基板(青板ガラス、100mm×100mm、厚さ:0.7mm)上に、上記(1)で調製した塗工液を、アプリケーターを用いてベタ膜として印刷し、温度120℃で10分間アルゴン雰囲気下で乾燥し、薄膜[焼成(アニール処理)前の熱電変換材料層]を形成した。
 次いで、乾燥後の熱電変換材料層を室温まで冷却し、水素とアルゴンの混合ガス(水素:アルゴン=3体積%:97体積%)雰囲気下で、加温速度5K/minで昇温し、430℃で30分間保持し、該熱電変換材料層を焼成することにより、熱電半導体組成物の焼成体からなる熱電変換材料層(厚さ:55μm)を作製した。得られた熱電変換材料層を5mm×5mmサイズに切り出し熱電変換材料からなる試験片(チップ)とした。
(Example 1)
<Making a test piece (chip) made of thermoelectric conversion material>
(1) Preparation of thermoelectric semiconductor composition (preparation of thermoelectric semiconductor particles)
P-type bismuth tellurium Bi 0.4 Te 3.0 Sb 1.6 (manufactured by High Purity Chemical Laboratory, particle size: 20 μm), which is a bismuth-tellurium-based thermoelectric semiconductor material, is used in a planetary ball mill (manufactured by Fritsch Japan, Premium). Thermoelectric semiconductor particles having an average particle size of 2.0 μm were prepared by pulverizing in a nitrogen gas atmosphere using line P-7). The particle size distribution of the thermoelectric semiconductor particles obtained by pulverization was measured by a laser diffraction type particle size analyzer (Mastersizer 3000 manufactured by Malvern).
(Preparation of thermoelectric semiconductor composition (coating liquid))
P-type bismasterlide Bi 0.4 Te 3.0 Sb 1.6 particles (average particle size 2.0 μm) 76.0% by mass obtained above, polyethylene carbonate (final decomposition temperature: 250 ° C.) as a binder resin. Contains polyethylene carbonate solution (EMPOWER MATERIALS, QPAC25, solvent: N-methylpyrrolidone, solid content concentration: 20% by mass) 16.5% by mass (solid content 3.3% by mass), 1-butylpyridinium bromide as an ionic liquid. (IL-P18B, manufactured by Koei Chemical Industry Co., Ltd.) 6.5% by mass, and silver nanoparticles as metal nanoparticles (manufactured by Samsung Belt Co., solvent: N-methylpyrrolidone, solid content concentration: 90% by mass, average particle size 60 nm) ) A coating solution composed of a thermoelectric semiconductor composition in which 1.0% by mass was mixed and dispersed was prepared.
(2) Preparation of test piece (chip) made of thermoelectric conversion material (formation of thermoelectric conversion material layer)
The coating solution prepared in (1) above was printed as a solid film on a glass substrate (blue plate glass, 100 mm × 100 mm, thickness: 0.7 mm) using an applicator, and an argon atmosphere was obtained at a temperature of 120 ° C. for 10 minutes. It was dried underneath to form a thin film [thermoelectric conversion material layer before firing (annealing)].
Next, the dried thermoelectric conversion material layer is cooled to room temperature, and the temperature is raised at a heating rate of 5 K / min in an atmosphere of a mixed gas of hydrogen and argon (hydrogen: argon = 3% by volume: 97% by volume), 430. A thermoelectric conversion material layer (thickness: 55 μm) made of a fired body of the thermoelectric semiconductor composition was prepared by holding at ° C. for 30 minutes and firing the thermoelectric conversion material layer. The obtained thermoelectric conversion material layer was cut into a size of 5 mm × 5 mm and used as a test piece (chip) made of the thermoelectric conversion material.
(実施例2)
 実施例1において、P型Bi0.4Te3.0Sb1.6粒子を69.0質量%、銀ナノ粒子を8.0質量%にしたこと以外は、実施例1と同様にして試験片(チップサイズ:5mm×5mm×厚さ58μm)を作製した。
(Example 2)
In Example 1, the test was carried out in the same manner as in Example 1 except that the P-type Bi 0.4 Te 3.0 Sb 1.6 particles were 69.0% by mass and the silver nanoparticles were 8.0% by mass. Pieces (chip size: 5 mm × 5 mm × thickness 58 μm) were prepared.
(実施例3)
 実施例1において、ガラス基板をポリイミド基板に代えて塗工液を印刷し、120℃で10分間加熱乾燥し、次いで、油圧式プレス機(テスター産業社製、卓上型テストプレスSA-302)を用いて、250℃、大気雰囲気下において、塗布膜(薄膜)の上面全体に対して110MPaで10分間、加熱加圧処理を行って薄膜[焼成(アニール処理)前の熱電変換材料層]を形成したこと以外は、実施例1と同様にして試験片(但し、チップサイズ:5mm×6mm×厚さ70μm)を作製した。
(Example 3)
In Example 1, the glass substrate was replaced with a polyimide substrate, a coating liquid was printed, and the coating liquid was heated and dried at 120 ° C. for 10 minutes, and then a hydraulic press machine (tabletop test press SA-302 manufactured by Tester Sangyo Co., Ltd.) was used. The entire upper surface of the coating film (thin film) is heat-pressurized at 110 MPa for 10 minutes at 250 ° C. in an air atmosphere to form a thin film [thermoelectric conversion material layer before firing (annealing)]. A test piece (however, chip size: 5 mm × 6 mm × thickness 70 μm) was prepared in the same manner as in Example 1.
(実施例4)
 実施例2において、ガラス基板をポリイミド基板に代え印刷し、120℃で10分間加熱乾燥した後、次いで、前記油圧式プレス機を用いて、250℃、大気雰囲気下において、塗布膜(薄膜)の上面全体に対して110MPaで10分間、加圧処理を行ったこと以外は、実施例2と同様にして試験片(但し、チップサイズ:5mm×6mm×厚さ70μm)を作製した。
(Example 4)
In Example 2, the glass substrate was printed in place of the polyimide substrate, heated and dried at 120 ° C. for 10 minutes, and then the coating film (thin film) was formed at 250 ° C. in an air atmosphere using the hydraulic press machine. A test piece (however, chip size: 5 mm × 6 mm × thickness 70 μm) was prepared in the same manner as in Example 2 except that the entire upper surface was pressurized at 110 MPa for 10 minutes.
(比較例1)
 実施例1において、P型Bi0.4Te3.0Sb1.6粒子を77.0質量%とし、銀ナノ粒子を配合しない(0質量%)以外は、実施例1と同様にして試験片(チップサイズ:5mm×5mm×厚さ53μm)を作製した。
(Comparative Example 1)
In Example 1, the test was carried out in the same manner as in Example 1 except that P-type Bi 0.4 Te 3.0 Sb 1.6 particles were 77.0% by mass and silver nanoparticles were not blended (0% by mass). Pieces (chip size: 5 mm × 5 mm × thickness 53 μm) were prepared.
(比較例2)
 比較例1において、ガラス基板をポリイミド基板に代えて塗工液を印刷し、120℃で10分間加熱乾燥した後、前記油圧式プレス機を用いて、250℃、大気雰囲気下において、塗布膜(薄膜)の上面全体に対して110MPaで10分間、加圧処理を行って薄膜[焼成(アニール処理)前の熱電変換材料層]を形成したこと以外は、比較例1と同様にして試験片(但し、チップサイズ:5mm×6mm×厚さ70μm)を作製した。
(Comparative Example 2)
In Comparative Example 1, the coating liquid was printed in place of the polyimide substrate instead of the polyimide substrate, and after heating and drying at 120 ° C. for 10 minutes, the coating film (using the hydraulic press machine was used at 250 ° C. in an air atmosphere). The test piece (thin film) was subjected to pressure treatment at 110 MPa for 10 minutes on the entire upper surface of the thin film) to form a thin film [thermoelectric conversion material layer before firing (annealing treatment)] in the same manner as in Comparative Example 1 (thin film). However, a chip size (5 mm × 6 mm × thickness 70 μm) was produced.
 実施例1~4並びに比較例1及び2で作製した熱電変換材料の試験片(チップ)の厚み方向に沿った縦断面の充填率の測定を行った。結果を表1に示す。 The filling rate of the vertical cross section along the thickness direction of the test piece (chip) of the thermoelectric conversion material produced in Examples 1 to 4 and Comparative Examples 1 and 2 was measured. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 銀ナノ粒子を含む実施例1の熱電変換材料層の厚み方向に沿う縦断面における熱電変換材料の充填率が、銀ナノ粒子を含まない比較例1の熱電変換材料層の厚み方向に沿う縦断面における熱電変換材料の充填率に比べ増大していることがわかる。また、銀ナノ粒子を含み加熱加圧処理を併用した実施例3の熱電変換材料層の厚み方向に沿う縦断面における熱電変換材料の充填率が、銀ナノ粒子を含まず加熱加圧処理を併用した比較例2の熱電変換材料層の厚み方向に沿う縦断面における熱電変換材料の充填率に比べ増大していることがわかる。
 以上から、当該充填率の向上により熱電変換材料層中の熱電変換材料の電気伝導率が増大し、熱電性能の向上につながることがわかる。
The filling factor of the thermoelectric conversion material in the longitudinal section along the thickness direction of the thermoelectric conversion material layer of Example 1 containing silver nanoparticles is the longitudinal section along the thickness direction of the thermoelectric conversion material layer of Comparative Example 1 not containing silver nanoparticles. It can be seen that the filling rate of the thermoelectric conversion material is increased in comparison with the filling rate of the thermoelectric conversion material. Further, the filling rate of the thermoelectric conversion material in the vertical cross section along the thickness direction of the thermoelectric conversion material layer of Example 3 containing silver nanoparticles and combined with the heat and pressure treatment does not include silver nanoparticles and is combined with the heat and pressure treatment. It can be seen that the filling rate of the thermoelectric conversion material in the vertical cross section along the thickness direction of the thermoelectric conversion material layer of Comparative Example 2 is increased.
From the above, it can be seen that the improvement of the filling rate increases the electric conductivity of the thermoelectric conversion material in the thermoelectric conversion material layer, which leads to the improvement of the thermoelectric performance.
 本発明の熱電変換材料層は、熱電変換材料の充填率が高くなることにより、電気伝導率が増大することから、熱電性能の向上につながる。このため、本発明の熱電変換材料層を用いた熱電変換モジュールは、工場や廃棄物燃焼炉、セメント燃焼炉等の各種燃焼炉からの排熱、自動車の燃焼ガス排熱及び電子機器の排熱を電気に変換する発電用途に適用することが考えられる。冷却用途としては、エレクトロニクス機器の分野において、例えば、スマートフォン、各種コンピューター等に用いられるCPU(Central Processing Unit)、また、CMOS(Complementary Metal Oxide Semiconductor)、CCD(Charge Coupled Device)等のイメージセンサー、さらに、MEMS(Micro Electro Mechanical Systems)、受光素子等の各種センサーの温度制御等に適用することが考えられる。 The thermoelectric conversion material layer of the present invention has an increased electric conductivity due to a high filling rate of the thermoelectric conversion material, which leads to an improvement in thermoelectric performance. Therefore, the thermoelectric conversion module using the thermoelectric conversion material layer of the present invention can be used for exhaust heat from various combustion furnaces such as factories, waste combustion furnaces, cement combustion furnaces, automobile combustion gas exhaust heat, and electronic equipment exhaust heat. It is conceivable to apply it to power generation applications that convert electricity into electricity. In the field of electronic equipment, for example, CPUs (Central Processing Units) used in smartphones, various computers, etc., CMOS (Complementary Metal Oxide Sensors), CCDs (Challge Coupled Devices), and other image sensors for cooling applications. , MEMS (Micro Electro Mechanical Systems), and can be applied to temperature control of various sensors such as light receiving elements.
1,1a,1b:基板
2,2s,2t:熱電変換材料層
3,3a,3b,4a,4b:空隙部
5:加熱プレス部
X:長さ(幅方向)
Y:長さ(奥行き方向)
D:厚さ(厚さ方向)
Dmax:厚さ方向の厚さの最大値(縦断面)
Dmin:厚さ方向の厚さの最小値(縦断面)
C:熱電変換材料層の中央部

 
1,1a, 1b: Substrate 2,2s, 2t: Thermoelectric conversion material layer 3,3a, 3b, 4a, 4b: Void portion 5: Heat press portion X: Length (width direction)
Y: Length (depth direction)
D: Thickness (thickness direction)
Dmax: Maximum value of thickness in the thickness direction (vertical cross section)
Dmin: Minimum value of thickness in the thickness direction (vertical cross section)
C: Central part of thermoelectric conversion material layer

Claims (8)

  1.  熱電半導体粒子、バインダー樹脂、イオン液体、及び金属ナノ粒子を含む熱電半導体組成物の焼成体からなる熱電変換材料層であって、前記金属ナノ粒子は、450℃以下で焼結する粒子である、熱電変換材料層。 A thermoelectric conversion material layer composed of a fired body of a thermoelectric semiconductor composition containing thermoelectric semiconductor particles, a binder resin, an ionic liquid, and metal nanoparticles, wherein the metal nanoparticles are particles sintered at 450 ° C. or lower. Thermoelectric conversion material layer.
  2.  前記熱電半導体組成物中の前記金属ナノ粒子の平均粒径が200nm以下である、請求項1に記載の熱電変換材料層。 The thermoelectric conversion material layer according to claim 1, wherein the metal nanoparticles in the thermoelectric semiconductor composition have an average particle size of 200 nm or less.
  3.  前記金属ナノ粒子は、300℃以下で焼結する粒子である、請求項1又は2に記載の熱電変換材料層。 The thermoelectric conversion material layer according to claim 1 or 2, wherein the metal nanoparticles are particles sintered at 300 ° C. or lower.
  4.  前記金属ナノ粒子が、銀、銅、金、白金、パラジウム、アルミニウム、チタン、ニッケル、ビスマス、テルル及びそれらの合金からなる群から選ばれる、請求項1~3のいずれか1項に記載の熱電変換材料層。 The thermoelectric according to any one of claims 1 to 3, wherein the metal nanoparticles are selected from the group consisting of silver, copper, gold, platinum, palladium, aluminum, titanium, nickel, bismuth, tellurium and alloys thereof. Conversion material layer.
  5.  前記金属ナノ粒子の比抵抗が6.0×10-3Ω・cm以下である、請求項1~4のいずれか1項に記載の熱電変換材料層。 The thermoelectric conversion material layer according to any one of claims 1 to 4, wherein the specific resistance of the metal nanoparticles is 6.0 × 10 -3 Ω · cm or less.
  6.  前記金属ナノ粒子の前記熱電半導体組成物中の含有量が、0.01~15.00質量%である、請求項1~5のいずれか1項に記載の熱電変換材料層。 The thermoelectric conversion material layer according to any one of claims 1 to 5, wherein the content of the metal nanoparticles in the thermoelectric semiconductor composition is 0.01 to 15.00% by mass.
  7.  前記熱電変換材料層は、前記熱電半導体組成物の塗布膜の焼成体からなる、請求項1~6のいずれか1項に記載の熱電変換材料層。 The thermoelectric conversion material layer according to any one of claims 1 to 6, wherein the thermoelectric conversion material layer is composed of a fired body of a coating film of the thermoelectric semiconductor composition.
  8.  前記熱電変換材料層は空隙を含む熱電変換材料から構成され、前記熱電変換材料層の中央部を含む縦断面の面積における前記熱電変換材料の面積の占める割合を充填率としたときに、前記充填率が、0.800以上1.000未満である、請求項1~7のいずれか1項に記載の熱電変換材料層。

     
    The thermoelectric conversion material layer is composed of a thermoelectric conversion material containing voids, and the filling rate is defined as the ratio of the area of the thermoelectric conversion material to the area of the longitudinal section including the central portion of the thermoelectric conversion material layer. The thermoelectric conversion material layer according to any one of claims 1 to 7, wherein the rate is 0.800 or more and less than 1.000.

PCT/JP2021/034720 2020-09-30 2021-09-22 Thermoelectric conversion material layer WO2022071043A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022553857A JPWO2022071043A1 (en) 2020-09-30 2021-09-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020166453 2020-09-30
JP2020-166453 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022071043A1 true WO2022071043A1 (en) 2022-04-07

Family

ID=80950201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034720 WO2022071043A1 (en) 2020-09-30 2021-09-22 Thermoelectric conversion material layer

Country Status (3)

Country Link
JP (1) JPWO2022071043A1 (en)
TW (1) TW202224219A (en)
WO (1) WO2022071043A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523121A (en) * 2009-04-06 2012-09-27 スリーエム イノベイティブ プロパティズ カンパニー Composite thermoelectric material and method for producing the same
US20140174492A1 (en) * 2012-12-21 2014-06-26 Industrial Technology Research Institute Thermoelectric material and method for manufacturing the same
WO2020045378A1 (en) * 2018-08-28 2020-03-05 リンテック株式会社 Semiconductor element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523121A (en) * 2009-04-06 2012-09-27 スリーエム イノベイティブ プロパティズ カンパニー Composite thermoelectric material and method for producing the same
US20140174492A1 (en) * 2012-12-21 2014-06-26 Industrial Technology Research Institute Thermoelectric material and method for manufacturing the same
WO2020045378A1 (en) * 2018-08-28 2020-03-05 リンテック株式会社 Semiconductor element

Also Published As

Publication number Publication date
TW202224219A (en) 2022-06-16
JPWO2022071043A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
WO2016104615A1 (en) Peltier cooling element and method for manufacturing same
JP5712340B1 (en) Thermoelectric conversion material and manufacturing method thereof
CN103377753B (en) Inorganic reaction system for conducting composition
WO2018168837A1 (en) Electrode material for thermoelectric conversion modules and thermoelectric conversion module using same
JP7245652B2 (en) Flexible thermoelectric conversion element and manufacturing method thereof
JP7149476B2 (en) Thermoelectric conversion module
WO2022071043A1 (en) Thermoelectric conversion material layer
WO2020203612A1 (en) Thermoelectric material layer and method for producing same
JP7346427B2 (en) Method for manufacturing chips of thermoelectric conversion material and method for manufacturing thermoelectric conversion modules using chips obtained by the manufacturing method
US20210098672A1 (en) Thermoelectric conversion module
JP7207858B2 (en) Thermoelectric conversion module
WO2020071424A1 (en) Chip of thermoelectric conversion material
JP7348192B2 (en) semiconductor element
JPWO2021124860A1 (en) A thermoelectric converter, a thermoelectric converter module, and a method for manufacturing a thermoelectric converter.
WO2021241635A1 (en) Thermoelectric conversion module and manufacturing method therefor
WO2021193357A1 (en) Thermoelectric conversion module
EP2903043B1 (en) Methods for thick film thermoelectric device fabrication
WO2023013590A1 (en) Thermoelectric conversion material layer and thermoelectric conversion module
WO2020196709A1 (en) Method for manufacturing chip of thermoelectric conversion material
US11974504B2 (en) Thermoelectric conversion body, thermoelectric conversion module, and method for manufacturing thermoelectric conversion body
JP2021057481A (en) Manufacturing method for thermoelectric conversion element
WO2020203611A1 (en) Method for forming solder receiving layer on chip of thermoelectric conversion material
WO2022210996A1 (en) Thermoelectric conversion module
JP2020035818A (en) Thermoelectric conversion element and method of manufacturing the same
JP2022057937A (en) Electrode for thermoelectric conversion modules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553857

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875345

Country of ref document: EP

Kind code of ref document: A1