WO2020045036A1 - タイヤ装着状態検出システム、タイヤ装着状態検出方法及びタイヤ装着状態検出プログラム - Google Patents

タイヤ装着状態検出システム、タイヤ装着状態検出方法及びタイヤ装着状態検出プログラム Download PDF

Info

Publication number
WO2020045036A1
WO2020045036A1 PCT/JP2019/031407 JP2019031407W WO2020045036A1 WO 2020045036 A1 WO2020045036 A1 WO 2020045036A1 JP 2019031407 W JP2019031407 W JP 2019031407W WO 2020045036 A1 WO2020045036 A1 WO 2020045036A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
transmitter
transmitters
tire
receiver
Prior art date
Application number
PCT/JP2019/031407
Other languages
English (en)
French (fr)
Inventor
恭平 本田
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to AU2019333661A priority Critical patent/AU2019333661B2/en
Priority to US17/270,896 priority patent/US12005747B2/en
Priority to EP19854615.2A priority patent/EP3828012B1/en
Publication of WO2020045036A1 publication Critical patent/WO2020045036A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0415Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels
    • B60C23/0416Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels allocating a corresponding wheel position on vehicle, e.g. front/left or rear/right
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/005Devices specially adapted for special wheel arrangements
    • B60C23/007Devices specially adapted for special wheel arrangements having multiple wheels arranged side by side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0415Automatically identifying wheel mounted units, e.g. after replacement or exchange of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0435Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender
    • B60C23/0437Means for detecting electromagnetic field changes not being part of the signal transmission per se, e.g. strength, direction, propagation or masking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0433Radio signals
    • B60C23/0435Vehicle body mounted circuits, e.g. transceiver or antenna fixed to central console, door, roof, mirror or fender
    • B60C23/0444Antenna structures, control or arrangements thereof, e.g. for directional antennas, diversity antenna, antenna multiplexing or antennas integrated in fenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/20Devices for measuring or signalling tyre temperature only

Definitions

  • the present invention relates to a tire mounting state detecting system, a tire mounting state detecting method, and a tire mounting state detecting program for detecting a state of a transmitter mounted on a tire mounted on a vehicle.
  • a sensor including a transmitter for radio signals (radio waves) in the tire. are doing.
  • the information detected by the sensor needs to be managed in association with the wheel position (front right wheel, rear left wheel, etc.) of the vehicle on which the tire is mounted. However, since the wheel position where the tire (sensor) is mounted is changed due to rotation or the like, it is necessary to update the association between the sensor identifier (ID) and the wheel position each time.
  • a method of automatically detecting the position of a wheel on which a tire (sensor) is mounted is known in order to avoid such complicated updating.
  • a tire pressure monitoring system described in Patent Literature 1 disposes two receivers in the front-rear direction of a vehicle and uses a sensor provided in the tire to detect a rotation direction of the tire. (Sensor) automatically detects the position of the wheel to which it is attached.
  • each sensor is attached to each tire, and it is assumed that each sensor, specifically, each transmitter is operating normally.
  • a radio signal from a transmitter cannot be detected due to failure, forgetting to turn on the power, or forgetting to attach the tire. is there.
  • a plurality of sensors that is, transmitters may be erroneously attached to one tire.
  • the tire pressure monitoring system described above cannot correctly detect the wheel position where each tire (transmitter) is mounted.
  • the present invention has been made in view of such a situation, and in a case where a wheel position at which a tire (transmitter) is mounted is automatically detected, the transmitter is not normally attached to the tire.
  • One embodiment of the present invention is a tire mounted state detection system that detects the state of transmitters (sensors 41 to 46) mounted on tires (tires 31 to 36) mounted on a vehicle (eg, vehicle 10).
  • a vehicle configuration including a receiving unit (receiving unit 105) disposed on the vehicle and receiving a wireless signal transmitted from the transmitter, and including a number of wheels of the vehicle;
  • a vehicle configuration holding unit (vehicle configuration holding unit 230) that holds the number of transmitters based on the wireless signal received by the receiving unit (transmitter number detecting unit 250) And, based on the number of the wheels based on the vehicle configuration held by the vehicle configuration holding unit and the number of the transmitters detected by the transmitter number detection unit, the number of the transmitters, Of the wheel
  • a state detection unit (state detection unit 260) for detecting whether the number is greater or smaller than the number, and the number of the transmitters is larger or smaller than the number of the wheels by the state detector.
  • An output unit (output unit 270) for outputting
  • One aspect of the present invention is a tire mounted state detection method for detecting a state of a transmitter mounted on a tire mounted on a vehicle, wherein the wireless signal is disposed on the vehicle and transmitted from the transmitter.
  • a receiving unit to receive, detecting the number of the transmitters based on the radio signal received by the receiving unit; and detecting the number of wheels based on a vehicle configuration including the number of wheels of the vehicle; Detecting whether the number of the transmitters is greater than or less than the number of the wheels, based on the number of the transmitters, and determining whether the number of the transmitters is the number of the wheels.
  • One aspect of the present invention is a tire mounted state detection program that detects a state of a transmitter mounted on a tire mounted on a vehicle, wherein the wireless signal transmitted from the transmitter is arranged in the vehicle.
  • a receiving unit to receive, processing to maintain the vehicle configuration including the number of wheels of the vehicle, processing to detect the number of the transmitter based on the radio signal received by the receiving unit, the vehicle configuration Based on the number of the wheels, based on the number of the detected transmitter, the process of detecting whether the number of transmitters is greater than or less than the number of the wheels, If it is determined that the number of transmitters is greater than or less than the number of wheels, processing to output that the state of the transmitter is abnormal is included.
  • FIG. 1 is a schematic plan view of a vehicle 10 including a tire mounting state detection system 100.
  • FIG. 2 is a functional block configuration diagram of the tire condition detection device 200.
  • FIG. 3 is a diagram showing a state detection flow of the transmitter by the tire mounted state detection system 100.
  • FIG. 4 is a table of signal strengths of radio signals and calculation results according to the first example of state detection.
  • FIG. 5 is a table of signal strengths of radio signals and calculation results according to the state detection example 1.
  • FIG. 6 is a table of signal strengths of radio signals and calculation results according to the state detection example 1.
  • FIG. 7 is a table of signal strengths of radio signals and calculation results according to the state detection example 1.
  • FIG. 8 is a table of signal strengths of radio signals and calculation results according to the state detection example 2.
  • FIG. 4 is a table of signal strengths of radio signals and calculation results according to the first example of state detection.
  • FIG. 5 is a table of signal strengths of radio signals and calculation results according to the state detection example 1.
  • FIG. 9 is a table of signal strengths of radio signals and calculation results according to the state detection example 2.
  • FIG. 10 is a table of signal strengths of radio signals and calculation results according to the state detection example 2.
  • FIG. 11 is a table of signal strengths of radio signals and calculation results according to the state detection example 2.
  • FIG. 12 is a schematic plan view of a vehicle 10A according to a modification.
  • FIG. 13 is a schematic plan view and a schematic network configuration diagram of a vehicle 10B according to a modified example.
  • FIG. 1 is a schematic plan view of a vehicle 10 including a tire mounting state detection system 100.
  • the vehicle 10 is an automobile including a front wheel axle 21 and a rear wheel axle 22.
  • the type of the vehicle 10 is not particularly limited, the rear wheel axle 22 is a so-called double tire, and is mainly intended for large vehicles such as trucks and mining vehicles.
  • Tires 31 to 36 are mounted on the vehicle 10.
  • the tires 31 to 36 are tires (may be referred to as tire-wheel assemblies) mounted on rim wheels.
  • tires 32 to 36 are located at the right front wheel (2), the left outer rear wheel (3), the left inner rear wheel (4), the right inner rear wheel (5), and the right outer rear wheel (6). Each is attached.
  • a sensor 41 for measuring the internal pressure and temperature of the tire 31 is mounted on the tire 31.
  • the sensor 41 may include a sensor that measures acceleration.
  • the sensor 41 includes a transmitter for transmitting data of the measured internal pressure and temperature.
  • sensors 42 to 46 are mounted on the tires 32 to 36, respectively.
  • the sensors 41 to 46 can be suitably used for a tire pressure monitoring system (TPMS) and the like.
  • the sensor 41 is assigned “a” as a sensor ID for identifying the sensor 41 (transmitter).
  • the sensors 42 to 46 are assigned “b” to “f” as sensor IDs, respectively.
  • the tire mounted state detection system 100 detects the state of the tire mounted on the vehicle 10. Specifically, the tire mounted state detection system 100 detects the states of the transmitters mounted on the tires 31 to 36 mounted on the vehicle 10.
  • the tire mounting state detection system 100 includes a receiving unit 105 and a tire state detection device 200.
  • the receiving unit 105 is arranged in the vehicle 10 and receives wireless signals (radio waves) transmitted from the sensors 41 (transmitter) to the sensor 46.
  • the receiving unit 105 includes the receiver 110 and the receiver 120.
  • the receiver 110 constitutes a first receiver.
  • the receiver 120 constitutes a second receiver.
  • the receiver 110 is appropriately labeled “RX1” for convenience.
  • the receiver 110 receives a wireless signal transmitted from each sensor (transmitter), that is, the sensors 41 to 46. Note that the strength (transmission power) of the wireless signal, the frequency band used, and the like may differ depending on the area where the tire mounted state detection system 100 is used or the type of the vehicle 10.
  • the receiver 120 is appropriately labeled “RX2” for convenience.
  • the receiver 120 also receives the wireless signals transmitted from the sensors 41 to 46.
  • Receiver 120 is arranged at a different position from receiver 110. Specifically, receiver 120 is arranged at a position different from receiver 110 in the vehicle width direction. The receiver 120 is arranged at the same position as the receiver 110 in the vehicle front-rear direction.
  • the receiver 110 has one side based on a center line CL1 (center line in the width direction) between the left wheel (for example, “1”) and the right wheel (for example, “2”), specifically,
  • the receiver 120 is arranged on the other side with respect to the center line CL1, specifically, on the right side.
  • the receiver 110 and the receiver 120 are arranged symmetrically with respect to the center line CL1.
  • the receiver 110 and the receiver 120 are provided with a center line CL2 (front-rear center line) between the front wheels ("1", “2") and the rear wheels ("3" to “6”). ) Is arranged on one side, specifically, closer to the front wheel.
  • CL2 front-rear center line
  • the tire state detection device 200 uses the receiving unit 105 to detect the tire positions of the tires 31 to 36, that is, the wheel positions (“1” to “6”) where the sensors 41 to 46 are mounted.
  • the tire condition detection device 200 is incorporated as a part of an electronic control unit (ECU) mounted on the vehicle 10. Note that, as described later, the function realized by the tire condition detection device 200 may be provided outside the vehicle 10 (such as a cloud) connectable via a communication network.
  • FIG. 2 is a functional block configuration diagram of the tire condition detection device 200.
  • the tire condition detection device 200 includes a first measurement unit 210, a second measurement unit 220, a vehicle configuration holding unit 230, a calculation unit 240, a transmitter number detection unit 250, a state detection unit 260, and an output unit. 270.
  • each functional unit of the tire condition detection device 200 is realized by executing a computer program (software) on hardware such as a CPU and a memory.
  • the first measuring section 210 is connected to the receiver 110.
  • the first measuring section 210 measures the strength (first signal strength) of the radio signal received by the receiver 110 for each of the sensors 41 to 46 (transmitter).
  • the second measuring section 220 is connected to the receiver 120.
  • the second measuring unit 220 measures the strength (second signal strength) of the radio signal received by the receiver 120 for each of the sensors 41 to 46 (transmitter).
  • the signal from the transmitter received by the receiver 110 (first receiver) will be appropriately referred to as R1.
  • the signal from the transmitter received by the receiver 120 (receiver 120) is appropriately denoted as R2.
  • the strength of the radio signal to be measured by the first measuring unit 210 and the second measuring unit 220 may be at the voltage level or the power level. Further, it may be managed in decibels (dB). In the present embodiment, a voltage level (unit: V) is used.
  • the wireless signals transmitted from the sensors 41 to 46 include a sensor ID (identifier) for identifying each sensor (transmitter).
  • Vehicle configuration holding section 230 holds configuration information of vehicle 10. Specifically, the vehicle configuration holding unit 230 holds the vehicle configuration including the number of wheels of the vehicle 10.
  • the vehicle configuration holding unit 230 holds the vehicle configuration including the number of wheels of the vehicle on which the tire on which the sensor (transmitter) is mounted is mounted.
  • the vehicle configuration holding unit 230 may store the configuration information of the vehicle 10 in a memory in advance, or may acquire the configuration information from outside via a communication network.
  • the calculation unit 240 performs a calculation using the strength of the wireless signal received by the receiver 110 (first signal strength) and the strength of the wireless signal received by the receiver 120 (second signal strength).
  • the calculation unit 240 calculates the overall strength of the radio signal for each transmitter using the first signal strength and the second signal strength. More specifically, arithmetic unit 240 calculates the sum (sum) of the first signal strength and the second signal strength, that is, R1 + R2 for each transmitter.
  • the overall strength may be a value indicating the strength or magnitude of a wireless signal using the first signal strength and the second signal strength, and is not limited to R1 + R2.
  • a raised value such as (R1 2 + R2 2 ) may be used.
  • the calculating unit 240 calculates an intensity ratio, which is a ratio using the first signal intensity and the second signal intensity, for each transmitter.
  • the vehicle configuration holding unit 230 calculates the quotient of the first signal intensity and the second signal intensity for each sensor as the intensity ratio. Specifically, the vehicle configuration holding unit 230 calculates the quotient (R1 / R2) by dividing the first signal strength by the second signal strength.
  • the intensity ratio may be a ratio using the first signal intensity and the second signal intensity, and is not limited to R1 / R2. If it is a quotient, R2 / R1 may be used, or any value that can make the values of R1 and R2 dimensionless, such as (R1 ⁇ R2) / (R1 + R2), may be used.
  • the number-of-transmitters detecting section 250 detects the number of transmitters mounted on the tires 31 to 36 based on the radio signal received by the receiving unit 105. Specifically, the number-of-transmitters detecting section 250 detects the number of transmitters mounted on the tires 31 to 36 based on the radio signals (R1, R2) received by the receivers 110 and 120. I do.
  • the number-of-transmitters detecting unit 250 is based on the radio signals received by the receiver 110 and the receiver 120 during a predetermined time, based on the transmitter mounted on the tire mounted on the vehicle 10. Count the number.
  • the number-of-transmitters detecting section 250 determines the number of transmitters based on the sensor ID. , Count the number of transmitters.
  • the number-of-transmitters detecting unit 250 detects the number of transmitters mounted on the tires mounted on the vehicle 10 (own vehicle) by using the number of receptions of the radio signal transmitted from the same transmitter. I do.
  • the number-of-transmitters detecting section 250 may exclude the transmitter from the detection target.
  • the vehicle 10 when the vehicle 10 is parked (or stopped), there is a possibility that a vehicle of the same specification may be present in the vicinity, and a radio signal from a tire mounted on the vehicle may be erroneously detected. Because there is.
  • the operation itself of the tire condition detection device 200 may be stopped in order to prevent such erroneous detection.
  • whether or not the vehicle 10 is parked (or stopped) may be determined using information (e.g., traveling speed) provided from the vehicle 10 or may be determined by satellite positioning such as Global Positioning System (GPS). The determination may be made using a system.
  • information e.g., traveling speed
  • GPS Global Positioning System
  • the state detection unit 260 based on the number of wheels based on the vehicle configuration held by the vehicle configuration holding unit 230, and the number of transmitters detected by the transmitter number detection unit 250, the number of transmitters, It detects whether the number of wheels is over or under.
  • the number-of-transmitters detecting unit 250 determines whether the number of detected transmitters exceeds six (that is, seven or more), or Is also insufficient (that is, 5 or less).
  • the state detection unit 260 detects the overall strength of each of the detected transmitters, specifically, based on the magnitude relationship of R1 + R2, the number of transmitters has been exceeded.
  • the tire with two or more transmitters, or the number of transmitters is insufficient, specifically, tires that have not been activated transmitters or transmitters, It is detected whether the vehicle 10 is mounted at the front wheel position or the rear wheel position of the vehicle 10.
  • the state detection unit 260 based on the detected intensity ratio of each transmitter, specifically, based on the magnitude relationship of R1 / R2, the tires that have exceeded the number of transmitters, or the transmitter is activated. It is detected whether a tire that has not been mounted is mounted on the left wheel position of the vehicle 10 or mounted on the right wheel position of the vehicle 10.
  • the state detection unit 260 uses ⁇ n and ⁇ n to detect whether the number of transmitters is greater than or less than the number of wheels.
  • ⁇ n is obtained by rearranging the values of R1 + R2 in descending order, and calculating the difference from the next higher value (R1n + 1 , R2n + 1 ).
  • n indicates the order (corresponding to the order of the rows in the tables shown in FIGS. 4 to 11) based on the magnitude relationship of R1 + R2.
  • ⁇ n is obtained by rearranging the values of R1 / R2 in descending order, and calculating the difference from one higher order (R1 n + 1 , R2 n + 1 ).
  • R1 + R2 provides information on the transmitter in the vehicle front-rear direction, so by using ⁇ n, the tire whose transmitter is exceeded or deficient is located on either the front wheel side or the rear wheel side of the vehicle 10. You can determine whether they belong.
  • R1 / R2 provides information on the transmitter in the vehicle width direction (vehicle left-right direction), by using ⁇ n, the tires whose transmitters are excessive or insufficient may cause the left or right wheels of the vehicle 10 to be left or right. Which side the device belongs to.
  • the state detection unit 260 can detect at which wheel position of the vehicle 10 the tire having the excess or shortage of the transmitter is mounted by using ⁇ n and ⁇ n.
  • the output unit 270 outputs that the state of the transmitter is abnormal when the state detection unit 260 determines that the number of transmitters is greater than or less than the number of wheels.
  • the output unit 270 can output the position of the wheel on which the tire with or without the transmitter is mounted. That is, the output unit 270 outputs the detection result of the wheel position by the state detection unit 260.
  • the output unit 270 displays on the display device of the vehicle 10 that the state of the transmitter is abnormal, or the position of the wheel where the tire with the excess or insufficiency of the transmitter is mounted, or sounds an alarm sound. can do.
  • the output unit 270 may directly output the content to a control device of the vehicle 10 or the like.
  • FIG. 3 shows a transmitter state detection flow performed by the tire mounted state detection system 100.
  • the tire mounting state detection system 100 specifically, the tire state detection device 200 acquires the strength of the radio signal received by the receiver 110 (RX1) and the receiver 120 (RX2). (S10).
  • the tire condition detection device 200 acquires the signal strength of the radio signal for each transmitter received by the receiver 110 (RX1) and the receiver 120 (RX2).
  • the tire condition detection device 200 detects the number of transmitters based on the acquired signal strength (S20).
  • the tire condition detection device 200 is mounted on the tire mounted on the vehicle 10 based on the radio signals received by the receiver 110 and the receiver 120 during the predetermined time. Count the number of transmitters.
  • the tire condition detection device 200 determines whether or not the detected number of transmitters matches the number of wheels (6) based on the vehicle configuration of the vehicle 10 held (S30).
  • the tire condition detection device 200 determines whether the vehicle 10 is in a stopped state. Is determined (S40).
  • stop includes both parking and stopping of the vehicle 10. As described above, when the vehicle 10 is parked (or stopped), there is a possibility that a vehicle having the same specification may be present in the vicinity, and the wireless signal from the tire mounted on the vehicle may be erroneously detected. This is because it may happen.
  • the tire condition detection device 200 calculates the detected overall strength of each transmitter (S50). Specifically, the tire condition detection device 200 calculates the total value of the strength of the wireless signal received by the receiver 110 (first signal strength) and the strength of the wireless signal received by the receiver 120 (second signal strength). (Sum), that is, R1 + R2 is calculated for each transmitter.
  • the tire condition detection device 200 detects whether there is an excess or deficiency of the transmitter in the vehicle longitudinal direction based on the magnitude relationship of R1 + R2 (S60). Specifically, the tire state detection device 200 determines whether the wheel position where the number of transmitters is exceeded or the number of transmitters is insufficient (excess or insufficient position of the transmitter) is the front wheel side of the vehicle 10 or It is determined whether the vehicle 10 is on the rear wheel side.
  • the tire condition detection device 200 detects whether the excess or deficiency position of the transmitter is on the front wheel side of the vehicle 10 or the rear wheel side of the vehicle 10 using ⁇ n described above. In addition, an example of detecting the excess or deficiency position of the transmitter will be further described later.
  • the tire condition detecting device 200 calculates the intensity ratio of each of the detected transmitters (S70). Specifically, the tire condition detection device 200 calculates the quotient (R1 / R2) by dividing the first signal intensity by the second signal intensity.
  • the tire state detection device 200 detects the excess or deficiency of the transmitter in the vehicle width direction based on the magnitude relationship of R1 / R2 (S80). More specifically, the tire condition detection device 200 detects whether the excess or deficiency position of the transmitter is on the left side of the vehicle 10 or on the right side of the vehicle 10.
  • the tire condition detection device 200 detects whether the excess or deficiency position of the transmitter is on the left side of the vehicle 10 or on the right side of the vehicle 10 using ⁇ n described above.
  • the tire state detection device 200 detects the excess or deficiency position of the transmitter based on the detection result in step S60, that is, the detection result in the vehicle longitudinal direction, and the detection result in step S80, that is, the detection result in the vehicle width direction. (S90).
  • Step S50 The order of S60 and steps S70 and S80 may be reversed.
  • the tire state detection device 200 outputs the excess / shortage position of the transmitter (S100). Specifically, the tire state detection device 200 displays information indicating the wheel position where the transmitter has exceeded or lacks the mounted tire, on a display device of the vehicle 10, or a control device of the vehicle 10. Or output to
  • the tire condition detection device 200 may simply output that the condition of the transmitter (sensor) is abnormal, instead of the information indicating the specific wheel position.
  • FIG. 4 shows the signal intensity when two transmitters are mounted on the tire mounted on the wheel position “1” (see FIG. 1).
  • FIG. 5 shows the signal strength when two transmitters are mounted on the tire mounted on the wheel position “5”.
  • ⁇ 3 is the largest. This means that R1 + R2 is significantly different between P2 and P4.
  • the signal strengths of the transmitters P1 and P2 are much stronger than the signal strengths of the transmitters P3 to P6.
  • ⁇ 3 is maximum, because there are two sensors on the front wheel.
  • ⁇ 2 is the maximum. This is because the tire on which the extra transmitter is mounted is mounted on the rear wheel.
  • FIG. 6 corresponds to FIG. 4, and FIG. 7 corresponds to FIG. That is, FIG. 6 shows the signal strength when two transmitters are mounted on the tire mounted on the wheel position “1”. FIG. 7 shows the signal strength when two transmitters are mounted on the tire mounted on the wheel position “5”.
  • FIGS. 6 and 7 the transmitter group determined to be mounted on the front wheel side and the transmitter group determined to be mounted on the rear wheel side are shown so that the value of ⁇ n can be easily confirmed.
  • the values of R1 / R2 are listed in descending order. Note that ⁇ 3 in FIG. 6 and ⁇ 2 in FIG. 7 are comparisons between the transmitter on the front wheel side and the transmitter on the rear wheel side. It is left blank because it is not used to determine whether it is located on the left or right side.
  • ⁇ 1 is the minimum, which means that the difference between the value of R1 / R2 of the transmitter in the first row and the value of R1 / R2 of the transmitter in the second row is the minimum.
  • the transmitter with the smallest ⁇ n is mounted on the same tire as the transmitter in the next higher row. Therefore, ignoring the transmitter, after determining the wheel position for other transmitters, by allocating the same wheel position as the transmitter determined to be mounted on the same tire, each transmitter was mounted The position of the wheel on which the tire is mounted can be determined.
  • ⁇ 5 corresponding to P5 on which two transmitters are mounted is the minimum. In other words, the same determination can be made even when the tire on which two transmitters are mounted is mounted at the rear wheel position, which is a double tire.
  • FIG. 8 shows the signal strength when the transmitter of the tire mounted on the wheel position “1” (see FIG. 1) is not activated.
  • FIG. 9 shows the signal strength when the transmitter of the tire mounted on the wheel position “5” is not activated.
  • the state where the transmitter is not activated includes a case where the power of the transmitter is not turned on, a case where the transmitter is broken, or a case where the transmitter is not mounted. 8 and 9, the values of R1 + R2 are arranged in descending order so that the value of ⁇ n can be easily confirmed.
  • FIG. 10 corresponds to FIG. 8, and FIG. 11 corresponds to FIG. That is, FIG. 10 shows the signal strength when the transmitter of the tire mounted on the wheel position “1” (see FIG. 1) is not activated.
  • FIG. 11 shows the signal strength when the transmitter of the tire mounted on the wheel position “5” is not activated.
  • the transmitter group determined to be mounted on the front wheel side and the transmitter group determined to be mounted on the rear wheel side are shown so that the value of ⁇ n can be easily checked.
  • the values of R1 / R2 are listed in descending order.
  • R1 / R2 if the value of R1 / R2 is 1.00 or more, it can be determined that the tire on which the transmitter is mounted is mounted on the wheel position “2” (P2). On the other hand, if the value of R1 / R2 is 1.00 or less, it can be determined that the tire on which the transmitter is mounted is mounted on the wheel position “1” (P1).
  • the fact that R1 is larger than R2 means that the transmitter is located on the left side of the vehicle 10. Because it should. On the other hand, the reason that R2 is larger than R1 is that the transmitter should be located on the right side of the vehicle 10.
  • Wheel positions where the tires with the remaining transmitters are mounted may be wheel positions “3” (P3) to wheel positions “6” (P6) in descending order of R1 / R2.
  • ⁇ n is used as shown in FIG.
  • ⁇ n indicates the positional relationship between transmitters in the vehicle width direction, specifically, the distance between adjacent transmitters in the vehicle width direction. Therefore, when the wheel positions (P3, ⁇ P4 and P5, ⁇ P6) in the vehicle width direction on the rear wheel side are compared, ⁇ n becomes maximum.
  • the tire mounting state detection system 100 when it is determined that the number of transmitters is greater than or less than the number of wheels, the state of the transmitter is abnormal, or the number of transmitters A detection result of the wheel position where the number of wheels exceeds or the number of transmitters is insufficient (excess or insufficient position of the transmitter) is output.
  • the convenience of the system for automatically detecting the position of the wheel on which the tire (transmitter) is mounted can be greatly improved.
  • a radio signal from the transmitter cannot be detected due to a failure, forgetting to turn on the power, or forgetting to attach, or when a plurality of sensors (that is, transmitters) are mistakenly attached to one tire, It is possible to quickly recognize that the state of the transmitter is abnormal.
  • the overall strength of the radio signal is calculated for each transmitter using the first signal strength and the second signal strength. Further, based on the calculated magnitude relationship of the overall strength, it is detected that the excess or deficiency position of the transmitter is attached to any of the front wheel side of the vehicle 10 or the rear wheel side of the vehicle 10. .
  • an intensity ratio which is a ratio using the first signal intensity and the second signal intensity, is calculated for each transmitter. Further, based on the calculated magnitude ratio of the intensity ratios, it is detected that the excess or deficiency position of the transmitter is mounted on the wheel position on either the left side of the vehicle 10 or the right side of the vehicle 10.
  • FIG. 12 is a schematic plan view of a vehicle 10A according to a modification.
  • the vehicle 10A includes a front wheel axle 21 and two rear wheel axles, specifically, a rear wheel axle 22 and a rear wheel axle 23.
  • the case where the number of transmitters (sensors) is one is described. However, even when the number of transmitters is two or more, the above-described overall intensity (R1 + R2) and the intensity ratio (R1 / R2) are used. Thus, the position of the transmitter can be detected.
  • the receiver 110 and the receiver 120 are arranged closer to the front wheels with respect to the center line CL2 (see FIG. 1), but are arranged closer to the rear wheels with reference to the center line CL2. Is also good.
  • the tire condition detecting device 200 is incorporated as a part of an electronic control unit (ECU) mounted on the vehicle 10, but may be changed as follows.
  • ECU electronice control unit
  • FIG. 13 is a schematic plan view and a schematic network configuration diagram of a vehicle 10B according to a modification. As shown in FIG. 13, the vehicle 10B includes a communication device 310 instead of the tire condition detection device 200.
  • the communication device 310 can execute wireless communication with the wireless base station 320.
  • the communication device 310 is, for example, a wireless communication terminal connectable to a mobile communication network (such as LTE).
  • the server computer 330 is provided on the communication network, and each function (the first measurement unit 210, the second measurement unit 220, the vehicle configuration holding unit 230, the calculation unit 240, the number of transmitters) realized by the tire condition detection device 200 A detection unit 250, a state detection unit 260, and an output unit 270).
  • a program for realizing the function (which may be referred to as software or a program product) may be stored in a downloadable state on a communication network or provided in a form stored in a storage medium. Is also good.
  • the wireless signal transmitted from the sensor includes the identifier (sensor ID) for identifying the sensor (transmitter). If the sensor can be identified by a frequency band or a channel number, such an identifier is not necessarily required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

タイヤ装着状態検出システム(100)は、車両(10)の車輪の数を含む車両構成を保持する車両構成保持部(230)と、受信ユニットが受信した無線信号に基づいて、送信機の数を検出する送信機数検出部(250)と、車両構成に基づく車輪の数と、検出された送信機の数とに基づいて、送信機の数が、車輪の数に対して超過または不足しているか否かを検出する状態検出部(260)と、送信機の数が車輪の数に対して超過または不足していると判定された場合、送信機の状態が異常であることを出力する出力部(270)とを備える。

Description

タイヤ装着状態検出システム、タイヤ装着状態検出方法及びタイヤ装着状態検出プログラム
 本発明は、車両に装着されたタイヤに搭載されている送信機の状態を検出するタイヤ装着状態検出システム、タイヤ装着状態検出方法及びタイヤ装着状態検出プログラムに関する。
 車両に装着されるタイヤ(ここでは、リムホイールに組み付けられたタイヤを意味する)の内圧及び温度などを計測するため、タイヤ内に無線信号(電波)の送信機を含むセンサを取り付けることが普及している。
 当該センサが検出した情報は、タイヤが装着されている車両の車輪位置(右前輪、左後輪など)と対応付けて管理する必要がある。しかしながら、タイヤ(センサ)が装着される車輪位置は、ローテーションなどによって入れ替わるため、その都度、センサの識別子(ID)と車輪位置との対応付けをアップデートする必要がある。
 そこで、このようなアップデートの煩雑性を回避するため、タイヤ(センサ)が装着される車輪位置を自動的に検出する方法が知られている。例えば、特許文献1に記載されているタイヤ空気圧監視システムは、車両の前後方向に2つの受信機を配置するとともに、タイヤ内に設けられたタイヤの回転方向を感知するセンサを用いることによって、タイヤ(センサ)が装着される車輪位置を自動的に検出している。
特開2007-045201号公報
 上述したタイヤ空気圧監視システムでは、各タイヤに1つのセンサが取り付けられており、各センサ、具体的には、各送信機が正常に動作していることが前提となっている。
 しかしながら、実際の車両(特に、鉱山などの採掘現場を走行するダンプトラックなど)に装着されるタイヤでは、故障、電源投入忘れ、或いは取り付け忘れなどによって、送信機からの無線信号が検出できない場合がある。さらに、1つのタイヤに誤って複数のセンサ(つまり、送信機)が取り付けられてしまう場合もある。
 このような場合、上述したタイヤ空気圧監視システムでは、各タイヤ(送信機)が装着される車輪位置を正しく検出できなくなる。
 そこで、本発明は、このような状況に鑑みてなされたものであり、タイヤ(送信機)が装着される車輪位置を自動的に検出する場合において、送信機が正常にタイヤに取り付けられていない或いは動作していない状態を検出し得るタイヤ装着状態検出システム、タイヤ装着状態検出方法及びタイヤ装着状態検出プログラムの提供を目的とする。
 本発明の一態様は、車両(例えば、車両10)に装着されたタイヤ(タイヤ31~タイヤ36)に搭載されている送信機(センサ41~センサ46)の状態を検出するタイヤ装着状態検出システム(タイヤ装着状態検出システム100)であって、前記車両に配置され、前記送信機から送信される無線信号を受信する受信ユニット(受信ユニット105)を備え、前記車両の車輪の数を含む車両構成を保持する車両構成保持部(車両構成保持部230)と、前記受信ユニットが受信した前記無線信号に基づいて、前記送信機の数を検出する送信機数検出部(送信機数検出部250)と、前記車両構成保持部によって保持されている前記車両構成に基づく前記車輪の数と、前記送信機数検出部によって検出された前記送信機の数とに基づいて、前記送信機の数が、前記車輪の数に対して超過または不足しているか否かを検出する状態検出部(状態検出部260)と、前記状態検出部によって、前記送信機の数が前記車輪の数に対して超過または不足していると判定された場合、前記送信機の状態が異常であることを出力する出力部(出力部270)と備える。
 本発明の一態様は、車両に装着されたタイヤに搭載されている送信機の状態を検出するタイヤ装着状態検出方法であって、前記車両に配置され、前記送信機から送信される無線信号を受信する受信ユニットを用い、前記受信ユニットが受信した前記無線信号に基づいて、前記送信機の数を検出するステップと、前記車両の車輪の数を含む車両構成に基づく前記車輪の数と、検出された前記送信機の数とに基づいて、前記送信機の数が、前記車輪の数に対して超過または不足しているか否かを検出するステップと、前記送信機の数が前記車輪の数に対して超過または不足していると判定された場合、前記送信機の状態が異常であることを出力するステップとを含む。
 本発明の一態様は、車両に装着されたタイヤに搭載されている送信機の状態を検出するタイヤ装着状態検出プログラムであって、前記車両に配置され、前記送信機から送信される無線信号を受信する受信ユニットを用い、前記車両の車輪の数を含む車両構成を保持する処理と、前記受信ユニットが受信した前記無線信号に基づいて、前記送信機の数を検出する処理と、前記車両構成に基づく前記車輪の数と、検出された前記送信機の数とに基づいて、前記送信機の数が、前記車輪の数に対して超過または不足しているか否かを検出する処理と、前記送信機の数が前記車輪の数に対して超過または不足していると判定された場合、前記送信機の状態が異常であることを出力する処理とを含む。
図1は、タイヤ装着状態検出システム100を含む車両10の概略平面図である。 図2は、タイヤ状態検出デバイス200の機能ブロック構成図である。 図3は、タイヤ装着状態検出システム100による送信機の状態検出フローを示す図である。 図4は、状態検出例1に係る無線信号の信号強度及び演算結果の表である。 図5は、状態検出例1に係る無線信号の信号強度及び演算結果の表である。 図6は、状態検出例1に係る無線信号の信号強度及び演算結果の表である。 図7は、状態検出例1に係る無線信号の信号強度及び演算結果の表である。 図8は、状態検出例2に係る無線信号の信号強度及び演算結果の表である。 図9は、状態検出例2に係る無線信号の信号強度及び演算結果の表である。 図10は、状態検出例2に係る無線信号の信号強度及び演算結果の表である。 図11は、状態検出例2に係る無線信号の信号強度及び演算結果の表である。 図12は、変更例に係る車両10Aの概略平面図である。 図13は、変更例に車両10Bの概略平面図及び概略ネットワーク構成図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 (1)タイヤ装着状態検出システムを含む車両の概略構成
 図1は、タイヤ装着状態検出システム100を含む車両10の概略平面図である。図1に示すように、車両10は、前輪車軸21及び後輪車軸22を備える自動車である。車両10の種類は特に限定されないが、後輪車軸22は、いわゆるダブルタイヤであり、主にトラック及び鉱山用車両などの大型車両を想定している。
 車両10には、タイヤ31~タイヤ36が装着される。タイヤ31~タイヤ36は、リムホイールに組み付けられたタイヤ(タイヤ・ホイール組立体と呼ばれてもよい)である。
 ここでは、タイヤ31は、左前の車輪位置(図中の「1」、以下同)に装着される。同様に、タイヤ32~タイヤ36は、右前輪(2)、左外側後輪(3)、左内側後輪(4)、右内側後輪(5)、右外側後輪(6)の位置にそれぞれ装着される。
 タイヤ31には、タイヤ31の内圧及び温度を測定するセンサ41が搭載される。なお、センサ41は、加速度を測定するセンサを含んでもよい。センサ41は、測定した内圧及び温度のデータを送信する送信機を含む。同様に、タイヤ32~タイヤ36には、センサ42~センサ46が搭載される。センサ41~センサ46は、タイヤ空気圧監視システム(TPMS)などに好適に用い得る。
 センサ41には、センサ41(送信機)を識別する識別であるセンサIDとして「a」が割り当てられている。同様に、センサ42~センサ46には、センサIDとして「b」~「f」がそれぞれ割り当てられている。
 タイヤ装着状態検出システム100は、車両10に装着されたタイヤの状態を検出する。具体的には、タイヤ装着状態検出システム100は、車両10に装着されたタイヤ31~タイヤ36に搭載されている送信機の状態を検出する。
 タイヤ装着状態検出システム100は、受信ユニット105及びタイヤ状態検出デバイス200を含む。受信ユニット105は、車両10に配置され、センサ41(送信機)~センサ46から送信される無線信号(電波)を受信する。
 本実施形態では、受信ユニット105は、受信機110と、受信機120とによって構成される。本実施形態において、受信機110は、第1受信機を構成する。また、受信機120は、第2受信機を構成する。
 受信機110は、便宜上、適宜「RX1」と標記する。受信機110は、各センサ(送信機)、つまり、センサ41~センサ46から送信される無線信号を受信する。なお、無線信号の強度(送信電力)及び使用周波数帯などは、タイヤ装着状態検出システム100の使用地域、或いは車両10の種類によって異なり得る。
 受信機120は、便宜上、適宜「RX2」と標記する。受信機120も、センサ41~センサ46から送信される無線信号を受信する。受信機120は、受信機110と異なる位置に配置される。
具体的には、受信機120は、車幅方向において、受信機110と異なる位置に配置される。また、受信機120は、車両前後方向において、受信機110と同じ位置に配置される。
 本実施形態では、受信機110は、左輪(例えば、「1」)と、右輪(例えば、「2」との間における中心線CL1(幅方向中心線)を基準とした一方側、具体的には、左側に配置される。一方、受信機120は、中心線CL1を基準とした他方側、具体的には、右側に配置される。
 より具体的には、受信機110及び受信機120は、中心線CL1を基準として左右対称に配置される。
 また、本実施形態では、受信機110及び受信機120は、前輪(「1」,「2」)と後輪(「3」~「6」)との間における中心線CL2(前後方向中心線)を基準とした一方側、具体的には、前輪寄りに配置される。
 タイヤ状態検出デバイス200は、受信ユニット105を用いて、タイヤ31~タイヤ36、つまり、センサ41~センサ46が装着されている車輪位置(「1」~「6」)を検出する。本実施形態では、タイヤ状態検出デバイス200は、車両10に搭載される電子制御ユニット(ECU)の一部として組み込まれる。なお、後述するように、タイヤ状態検出デバイス200によって実現される機能は、通信ネットワーク経由で接続可能な車両10の外部(クラウドなど)に設けられても構わない。
 (2)タイヤ装着状態検出システムの機能ブロック構成
 次に、タイヤ装着状態検出システム100の機能ブロック構成について説明する。具体的には、タイヤ装着状態検出システム100を構成するタイヤ状態検出デバイス200の機能ブロック構成について説明する。
 図2は、タイヤ状態検出デバイス200の機能ブロック構成図である。図2に示すように、タイヤ状態検出デバイス200は、第1測定部210、第2測定部220、車両構成保持部230、演算部240、送信機数検出部250、状態検出部260及び出力部270を備える。
 なお、タイヤ状態検出デバイス200の各機能部は、CPU及びメモリなどのハードウェア上においてコンピュータプログラム(ソフトウェア)を実行することによって実現される。
 第1測定部210は、受信機110と接続される。第1測定部210は、受信機110が受信した無線信号の強度(第1信号強度)を、センサ41~センサ46(送信機)毎に測定する。
 第2測定部220は、受信機120と接続される。第2測定部220は、受信機120が受信した無線信号の強度(第2信号強度)を、センサ41~センサ46(送信機)毎に測定する。
 以下、受信機110(第1受信機)が受信した送信機からの信号をR1と適宜標記する。同様に、受信機120(受信機120)が受信した送信機からの信号をR2と適宜標記する。
 第1測定部210及び第2測定部220が測定対象とする無線信号の強度は、電圧レベルでも電力レベルでもよい。さらに、デシベル(dB)単位で管理してもよい。本実施形態では、電圧レベル(単位:V)が用いられる。
 また、本実施形態では、センサ41~センサ46から送信される無線信号には、各センサ(送信機)を識別するセンサID(識別子)が含まれる。
 車両構成保持部230は、車両10の構成情報を保持する。具体的には、車両構成保持部230は、車両10の車輪の数を含む車両構成を保持する。
 つまり、車両構成保持部230が、センサ(送信機)が搭載されたタイヤが装着される車両の車輪の数を含む車両構成を保持する。車両構成保持部230は、車両10の構成情報を予めメモリに保持してもよいし、通信ネットワーク経由で外部から取得してもよい。
 演算部240は、受信機110が受信した無線信号の強度(第1信号強度)と、受信機120が受信した無線信号の強度(第2信号強度)とを用いた演算を実行する。
 具体的には、演算部240は、第1信号強度と第2信号強度とを用いて、無線信号の全体強度を送信機毎に演算する。より具体的には、演算部240は、第1信号強度と第2信号強度との合計値(和)、すなわち、R1+R2を送信機毎に算出する。
 なお、全体強度とは、第1信号強度と第2信号強度とを用いた無線信号の強度或いは大きさを示す値であればよく、R1+R2に限定されない。例えば(R12+R22)のような累乗された値を用いてもよい。
 また、演算部240は、第1信号強度と第2信号強度とを用いた比率である強度比を、送信機毎に演算する。
 本実施形態では、車両構成保持部230は、強度比として、第1信号強度と第2信号強度との商を、センサ毎に演算する。具体的には、車両構成保持部230は、第1信号強度を第2信号強度で除し、商(R1/R2)を算出する。
 なお、強度比は、第1信号強度と第2信号強度とを用いた比率であればよく、R1/R2に限定されない。商であれば、R2/R1でもよいし、(R1-R2)/(R1+R2)のように、R1及びR2の値を無次元化できるようなものであればよい。
 送信機数検出部250は、受信ユニット105が受信した無線信号に基づいて、タイヤ31~タイヤ36に搭載されている送信機の数を検出する。具体的には、送信機数検出部250は、受信機110及び受信機120が受信した無線信号(R1, R2)に基づいて、タイヤ31~タイヤ36に搭載されている送信機の数を検出する。
 より具体的には、送信機数検出部250は、所定時間中に受信機110及び受信機120が受信した無線信号に基づいて、車両10に装着されているタイヤに搭載されている送信機の個数をカウントする。
 本実施形態では、上述したように、無線信号には、各センサ(送信機)を識別するセンサID(識別子)が含まれているため、送信機数検出部250は、当該センサIDに基づいて、送信機の個数をカウントする。
 また、送信機数検出部250は、同一の送信機から送信された無線信号の受信回数を用いて、車両10(自車両)に装着されているタイヤに搭載されている送信機の数を検出する。
 つまり、送信機数検出部250は、同一の送信機から送信された無線信号の受信回数が所定回数に満たない場合、当該送信機を検出対象から除外してもよい。特に、車両10が、駐車(または停車)している場合、近隣に同仕様の車両が存在する可能性があり、当該車両に装着されているタイヤからの無線信号を誤検出してしまう場合があるためである。
 さらに、後述するように、車両10が、駐車(または停車)している場合、このような誤検出を防止するため、タイヤ状態検出デバイス200の動作自体を停止してもよい。
 なお、車両10が、駐車(または停車)しているか否かは、車両10から提供される情報(走行速度など)を用いて判定してもよいし、Global Positioning system(GPS)などの衛星測位システムを用いて判定してもよい。
 状態検出部260は、車両構成保持部230によって保持されている車両構成に基づく車輪の数と、送信機数検出部250によって検出された送信機の数とに基づいて、送信機の数が、車輪の数に対して超過または不足しているか否かを検出する。
 具体的には、送信機数検出部250は、車両10の車輪の数(6)に基づいて、検出された送信機の数が、6を超過(つまり、7以上)するか、または6よりも不足(つまり、5以下)であるか否かを検出する。
 より具体的には、状態検出部260は、検出されたそれぞれの送信機の全体強度、具体的には、R1+R2の大小関係に基づいて、送信機の数が超過している、具体的には、2つ以上の送信機が搭載されているタイヤ、または送信機の数が不足している、具体的には、送信機が起動していない或いは送信機が搭載されていないタイヤが、車両10の前輪側の車輪位置に装着されているか、または車両10の後輪側の車輪位置に装着されているかを検出する。
 また、状態検出部260は、検出されたそれぞれの送信機の強度比、具体的には、R1/R2の大小関係に基づいて、送信機の数が超過しているタイヤ、または送信機が起動していないタイヤが、車両10の左側の車輪位置に装着されているか、または車両10の右側の車輪位置に装着されているかを検出する。
 本実施形態では、状態検出部260は、Δn及びδnを用いて、送信機の数が、車輪の数に対して超過または不足しているか否かを検出する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 Δnは、R1+R2の値を降順で並べ替え、一つ上位(R1n+1, R2n+1)との差分を求めたものである。nは、R1+R2の大小関係に基づく順位(図4~図11に示す表の行の順番と対応)を示す。
 同様に、δnは、R1/R2の値を降順で並べ替え、一つ上位(R1n+1, R2n+1)との差分を求めたものである。
 ここで、R1+R2は、車両前後方向における送信機の情報をもたらすため、Δnを用いることによって、送信機が超過または不足しているタイヤが、車両10の前輪側または後輪側の何れに属するかを判定できる。
 また、R1/R2は、車幅方向(車両左右方向)における送信機の情報をもたらすため、Δnを用いることによって、送信機が超過または不足しているタイヤが、車両10の左輪側または右輪側の何れに属するかを判定できる。
 つまり、状態検出部260は、Δn及びδnを用いることによって、送信機が超過または不足しているタイヤが、車両10の何れの車輪位置に装着されているかを検出できる。
 出力部270は、状態検出部260によって、送信機の数が車輪の数に対して超過または不足していると判定された場合、送信機の状態が異常であることを出力する。
 具体的には、出力部270は、送信機が超過または不足しているタイヤが装着されている車輪位置を出力できる。つまり、出力部270は、状態検出部260による車輪位置の検出結果を出力する。
 出力部270は、送信機の状態が異常であること、または送信機が超過または不足しているタイヤが装着されている車輪位置を車両10の表示装置に表示させたり、警報音を鳴動させたりすることができる。或いは、出力部270は、当該内容を車両10の制御装置などに直接出力してもよい。
 (3)タイヤ装着状態検出システムの動作
 次に、上述したタイヤ装着状態検出システム100の動作について説明する。具体的には、車両10に装着されたタイヤ31~タイヤ36に搭載されている送信機の状態を検出する動作について説明する。
 (3.1)送信機の状態検出フロー
 図3は、タイヤ装着状態検出システム100による送信機の状態検出フローを示す。図3に示すように、タイヤ装着状態検出システム100、具体的には、タイヤ状態検出デバイス200は、受信機110(RX1)及び受信機120(RX2)によって受信された無線信号の強度を取得する(S10)。
 具体的には、タイヤ状態検出デバイス200は、受信機110(RX1)及び受信機120(RX2)によって受信された送信機毎の無線信号の信号強度を取得する。
 タイヤ状態検出デバイス200は、取得した信号強度に基づいて、送信機の数を検出する(S20)。
 本実施形態では、上述したように、タイヤ状態検出デバイス200は、所定時間中に受信機110及び受信機120が受信した無線信号に基づいて、車両10に装着されているタイヤに搭載されている送信機の個数をカウントする。
 タイヤ状態検出デバイス200は、検出した送信機の数と、保持している車両10の車両構成に基づく車輪の数(6)とが一致するか否かを判定する(S30)。
 送信機の数と車輪の数とが一致しない場合、つまり、送信機の数が、車輪の数に対して超過または不足している場合、タイヤ状態検出デバイス200は、車両10が停止状態か否かを判定する(S40)。
 なお、停止とは、車両10の駐車及び停車の何れも含まれる。上述したように、車両10が、駐車(または停車)している場合、近隣に同仕様の車両が存在する可能性があり、当該車両に装着されているタイヤからの無線信号を誤検出してしまう場合があるためである。
 また、S30及びS40の処理は、逆にしてもよい。つまり、車両10が停止状態か否かを判定した後、検出した送信機の数と、保持している車両10の車両構成に基づく車輪の数とが一致するか否かを判定してもよい。
 車両10が停止状態でない場合、タイヤ状態検出デバイス200は、検出されたそれぞれの送信機の全体強度を演算する(S50)。具体的には、タイヤ状態検出デバイス200は、受信機110が受信した無線信号の強度(第1信号強度)と、受信機120が受信した無線信号の強度(第2信号強度)との合計値(和)、すなわち、R1+R2を送信機毎に算出する。
 タイヤ状態検出デバイス200は、R1+R2の大小関係に基づいて、車両前後方向における送信機の過不足を検出する(S60)。具体的には、タイヤ状態検出デバイス200は、送信機の数が超過している、または送信機の数が不足している車輪位置(送信機の過不足位置)が、車両10の前輪側または車両10の後輪側の何れであるかを検出する。
 より具体的には、タイヤ状態検出デバイス200は、上述したΔnを用いて送信機の過不足位置が、車両10の前輪側または車両10の後輪側の何れであるかを検出する。なお、送信機の過不足位置に検出例については、さらに後述する。
 次いで、タイヤ状態検出デバイス200は、検出されたそれぞれの送信機の強度比を演算する(S70)。具体的には、タイヤ状態検出デバイス200は、第1信号強度を第2信号強度で除し、商(R1/R2)を算出する。
 タイヤ状態検出デバイス200は、R1/R2の大小関係に基づいて、車幅方向における送信機の過不足を検出する(S80)。具体的には、タイヤ状態検出デバイス200は、送信機の過不足位置が、車両10の左側または車両10の右側の何れであるかを検出する。
 より具体的には、タイヤ状態検出デバイス200は、上述したδnを用いて送信機の過不足位置が、車両10の左側または車両10の右側の何れであるかを検出する。
 タイヤ状態検出デバイス200は、ステップS60の検出結果、つまり、車両前後方向における検出結果と、ステップS80の検出結果、つまり、車幅方向における検出結果とに基づいて、送信機の過不足位置を検出する(S90)。
 なお、送信機の過不足位置に検出例については、さらに後述する。また、ステップS50,
S60と、ステップS70, S80との順序は逆でもよい。
 タイヤ状態検出デバイス200は、送信機の過不足位置を出力する(S100)。具体的には、タイヤ状態検出デバイス200は、送信機が超過または不足しているタイヤが装着されている車輪位置を示す情報を、車両10の表示装置に表示させたり、車両10の制御装置などに出力したりする。
 なお、タイヤ状態検出デバイス200は、上述したように、具体的な車輪位置を示す情報に代えて、単に送信機(センサ)の状態が異常であることを出力してもよい。
 (3.2)送信機の状態検出例
 次に、タイヤ装着状態検出システム100による送信機の状態検出例について説明する。具体的には、送信機の数が車輪の数に対して超過している状態の検出例、及び送信機の数が車輪の数に対して不足している状態の検出例について説明する。
 (3.2.1)状態検出例1
 本状態検出例では、送信機(センサ)が車輪の数よりも1つ多い場合について説明する。図4~図7は、状態検出例1に係る無線信号の信号強度及び演算結果の表である。
 図4では、車輪位置「1」(図1参照)に装着されたタイヤに送信機が2つ搭載されている場合における信号強度が示されている。また、図5では、車輪位置「5」に装着されたタイヤに送信機が2つ搭載されている場合における信号強度が示されている。
 図4及び図5では、センサのID(a, bなど)ではなく、当該送信機が搭載されているタイヤが装着されている車輪位置(P1, P2など)が示されている。さらに、図4及び図5では、Δnの値を容易に確認できるように、R1+R2の値が降順で並べられている。
 図4では、Δ3が最も大きい。これは、P2とP4とにおいて、R1+R2が大きく異なることを意味する。
 本実施形態では、受信機110及び受信機120が車両10の前方に配置されているため、P1, P2の送信機の信号強度は、P3~P6の送信機の信号強度よりも極めて強い。
 このため、余分な送信機が搭載されていないならば、R1+R2の値が降順でデータを並べ替えれば、上位2つの送信機が前輪に装着されており、2番目と3番目とを比較するΔ2が最大となるはずである。
 図4ではΔ3が最大だが、これは前輪にセンサが2つあるためである。また、図5では、Δ2が最大である。これは余分な送信機が搭載されているタイヤが後輪に装着されているためである。このような特徴を用いることによって、余分な送信機が車両10の前輪側または後輪側に属するかを判定できる。
 図6は図4と対応し、図7は図5と対応する。つまり、図6では、車輪位置「1」に装着されたタイヤに送信機が2つ搭載されている場合における信号強度が示されている。また、図7では、車輪位置「5」に装着されたタイヤに送信機が2つ搭載されている場合における信号強度が示されている。
 また、図6及び図7では、δnの値を容易に確認できるように、前輪側に装着されていると判定された送信機群と、後輪側に装着されていると判定された送信機群とのそれぞれについて、R1/R2の値が降順で並べられている。なお、図6のδ3、及び図7のδ2は、前輪側の送信機と、後輪側の送信機とを比較しているため、余分な送信機が搭載されているタイヤが、車両10の左側または右側に位置するかの判定には用いられないため、空欄としている。
 図6では、δ1が最小だが、これは1行目の送信機のR1/R2の値と、2行目の送信機のR1/R2の値との差分が最小であることを意味する。
 受信機110及び受信機120は、車幅方向に並んで配置されているため、R1/R2の値の差が少ないことは、送信機の車幅方向における位置に差が少ないことと同義である。
 つまり、δnが最小となる送信機は、1つ上の行の送信機と同じタイヤに搭載されていると判定してよい。よって、当該送信機を無視して、他の送信機について車輪位置を判定した後、同じタイヤに搭載されていると判定した送信機と同じ車輪位置を割り振ることによって、各送信機が搭載されたタイヤが装着されている車輪位置を決定することができる。
 また、図7では、送信機が2つ搭載されているP5に対応するδ5が最小である。つまり、送信機が2つ搭載されているタイヤがダブルタイヤである後輪側の車輪位置に装着されている場合でも、同様の判定が可能である。
 (3.2.2)状態検出例2
 本状態検出例では、送信機(センサ)が車輪の数よりも1つ少なかった場合について説明する。図8~図11は、状態検出例2に係る無線信号の信号強度及び演算結果の表である。
 図8では、車輪位置「1」(図1参照)に装着されたタイヤの送信機が起動していない場合における信号強度が示されている。また、図9では、車輪位置「5」に装着されたタイヤの送信機が起動していない場合における信号強度が示されている。
 なお、送信機が起動していない状態には、送信機の電源が投入れていない場合、送信機の故障、或いは送信機が搭載されていない場合が含まれる。また、図8及び図9では、Δnの値を容易に確認できるように、R1+R2の値が降順で並べられている。
 状態検出例1と同様に、Δnが最大であるnに基づいて、起動していない送信機が車両10の前輪側または後輪側に属するかを判定できる。
 Δ1が最大の場合、前輪側に送信機が1つしかないことになり、起動していない送信機が搭載されるタイヤは前輪側に装着されている(図8参照)。Δ2が最大の場合、起動していない送信機が搭載されるタイヤは後輪側に装着されている(図9参照)。
 図10は図8と対応し、図11は図9と対応する。つまり、図10では、車輪位置「1」(図1参照)に装着されたタイヤの送信機が起動していない場合における信号強度が示されている。また、図11では、車輪位置「5」に装着されたタイヤの送信機が起動していない場合における信号強度が示されている。
 また、図10及び図11では、δnの値を容易に確認できるように、前輪側に装着されていると判定された送信機群と、後輪側に装着されていると判定された送信機群とのそれぞれについて、R1/R2の値が降順で並べられている。
 Δnに基づいて、起動していない送信機が車両10の前輪側に属すると判定された場合、R1/R2の値のみを用いて、起動していない送信機が搭載されるタイヤが装着されている車輪位置を判定できる。
 具体的には、R1/R2の値が1.00以上であれば、当該送信機が搭載されるタイヤは、車輪位置「2」(P2)に装着されていると判定できる。一方、R1/R2の値が1.00以下であれば、当該送信機が搭載されるタイヤは、車輪位置「1」(P1)に装着されていると判定できる。
 つまり、受信機110が車両10の左側に配置され、受信機120が車両10の右側に配置されているため、R1がR2よりも大きいということは、当該送信機は、車両10の左側に位置するはずだからである。一方、R2がR1よりも大きいということは、当該送信機は、車両10の右側に位置するはずだからである。
 図10では、R1+R2が最大(4.85)となる送信機からの無線信号の信号強度に基づくR1/R2の値が1.00以下(0.91)であるため、当該送信機は、車輪位置「2」(P2)に装着されているタイヤに搭載されていると判定できる。つまり、起動していない送信機が搭載されるタイヤは、車輪位置「1」(P1)に装着されていると判定できる。
 なお、残りの送信機が搭載されているタイヤが装着されている車輪位置は、R1/R2の大きい順に車輪位置「3」(P3)~車輪位置「6」(P6)とすればよい。
 一方、Δnに基づいて、起動していない送信機が車両10の後輪側に属すると判定された場合、図11に示すように、δnが用いられる。
 上述したように、δnは、送信機間の車幅方向における位置関係、具体的には、隣接する送信機との車幅方向における距離を示している。よって、後輪側の車幅方向における車輪位置(P3, P4とP5, P6)を比較した際に、δnが最大となる。
 図11では、車輪位置「5」(P5)に装着されたタイヤの送信機が起動していないため、P4とP6との間のδ4が最大となる。つまり、δnが最大となるnが3であればP3, P4の何れかにおいて、送信機が起動していないと判定できる。
 同様に、δnが最大となるnが4であればP5, P6の何れかにおいて、送信機が起動していないと判定できる。
 次いで、R1/R2の大きさに基づいて、送信機が起動していないタイヤが、P3, P4(P5, P6)の何れなのかを判定すればよい。
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、タイヤ装着状態検出システム100によれば、車両10の車両構成に基づく車輪の数と、送信機数検出部250によって検出された送信機(センサ)の数とに基づいて、送信機の数が、車輪の数に対して超過または不足しているか否かが検出される。
 さらに、タイヤ装着状態検出システム100によれば、送信機の数が車輪の数に対して超過または不足していると判定された場合、送信機の状態が異常であること、或いは送信機の数が超過している、または送信機の数が不足している車輪位置(送信機の過不足位置)の検出結果が出力される。
 このため、タイヤ(送信機)が装着される車輪位置を自動的に検出する場合において、送信機が正常にタイヤに取り付けられていない或いは動作していない状態を検出し得る。
さらに、送信機の過不足位置を検出し得る。
 これにより、タイヤ(送信機)が装着される車輪位置を自動的に検出するシステムの利便性を飛躍的に向上し得る。特に、故障、電源投入忘れ、或いは取り付け忘れなどによって、送信機からの無線信号が検出できない場合や、1つのタイヤに誤って複数のセンサ(つまり、送信機)が取り付けられてしまった場合でも、送信機の状態が異常であることを速やかに認識し得る。
 本実施形態では、第1信号強度と第2信号強度とを用いて、無線信号の全体強度が送信機毎に演算される。さらに、演算された全体強度の大小関係に基づいて、送信機の過不足位置が、車両10の前輪側または車両10の後輪側の何れかの車輪位置に装着されていることが検出される。
 また、本実施形態では、第1信号強度と第2信号強度とを用いた比率である強度比が送信機毎に演算される。さらに、演算された強度比の大小関係に基づいて、送信機の過不足位置が、車両10の左側または車両10の右側の何れかの車輪位置に装着されていることが検出される。
 このような検出方法を組み合わせることによって、具体的な送信機の過不足位置を検出し得る。このため、送信機を正常な状態に復帰させる作業が格段に容易になる。
 (5)その他の実施形態
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 例えば、タイヤ装着状態検出システム100は、車両10とは車両構成が異なる車両でも同様に機能し得る。図12は、変更例に係る車両10Aの概略平面図である。
 図12に示すように、車両10Aは、前輪車軸21と、2つの後輪車軸、具体的には、後輪車軸22及び後輪車軸23を備える。
 車両10Aの場合でも、上述した全体強度(R1+R2)及び強度比(R1/R2)を用いることによって、送信機の過不足位置を検出し得る。
 上述した実施形態では、送信機(センサ)が1つ多い場合について説明したが、送信機が2つ以上多い場合でも、上述した全体強度(R1+R2)及び強度比(R1/R2)を用いることによって、送信機の過不足位置を検出し得る。
 上述した実施形態では、受信機110及び受信機120は、中心線CL2(図1参照)を基準とした前輪寄りに配置されていたが、中心線CL2を基準とした後輪寄りに配置されてもよい。
 上述した実施形態では、タイヤ状態検出デバイス200が車両10に搭載される電子制御ユニット(ECU)の一部として組み込まれていたが、次のように変更してもよい。
 図13は、変更例に係る車両10Bの概略平面図及び概略ネットワーク構成図である。図13に示すように、車両10Bは、タイヤ状態検出デバイス200に代えて、通信デバイス310を備える。
 通信デバイス310は、無線基地局320と無線通信を実行することができる。通信デバイス310は、例えば、移動通信ネットワーク(LTEなど)に接続可能な無線通信端末である。
 サーバコンピュータ330は、通信ネットワーク上に設けられ、タイヤ状態検出デバイス200によって実現されていた各機能(第1測定部210、第2測定部220、車両構成保持部230、演算部240、送信機数検出部250、状態検出部260及び出力部270)を実現する。
 また、当該機能を実現するプログラム、(ソフトウェア、プログラム製品と呼ばれてもよい)は、通信ネットワーク上にダウロード可能な状態で保存されてもよいし、記憶媒体に保存された形態で提供されてもよい。
 さらに、上述した実施形態では、センサ(送信機)から送信される無線信号には、当該センサ(送信機)を識別する識別子(センサID)が含まれていたが、他の方法(例えば、使用周波数帯、またはチャネル番号など)により、センサを識別可能な場合には、このような識別子は必ずしも必要ない。
 上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 10, 10A, 10B 車両
 21 前輪車軸
 22, 23 後輪車軸
 31~36 タイヤ
 41~46 センサ
 100, 100A タイヤ装着状態検出システム
 105 受信ユニット
 110, 120 受信機
 200 タイヤ状態検出デバイス
 210 第1測定部
 220 第2測定部
 230 車両構成保持部
 240 演算部
 250 送信機数検出部
 260 状態検出部
 310 通信デバイス
 320 無線基地局
 330 サーバコンピュータ

Claims (6)

  1.  車両に装着されたタイヤに搭載されている送信機の状態を検出するタイヤ装着状態検出システムであって、
     前記車両に配置され、前記送信機から送信される無線信号を受信する受信ユニットを備え、
     前記車両の車輪の数を含む車両構成を保持する車両構成保持部と、
     前記受信ユニットが受信した前記無線信号に基づいて、前記送信機の数を検出する送信機数検出部と、
     前記車両構成保持部によって保持されている前記車両構成に基づく前記車輪の数と、前記送信機数検出部によって検出された前記送信機の数とに基づいて、前記送信機の数が、
    前記車輪の数に対して超過または不足しているか否かを検出する状態検出部と、
     前記状態検出部によって、前記送信機の数が前記車輪の数に対して超過または不足していると判定された場合、前記送信機の状態が異常であることを出力する出力部と
    を備えるタイヤ装着状態検出システム。
  2.  前記受信ユニットは、第1受信機と、第2受信機とを含み、
     前記第2受信機は、車幅方向において、前記第1受信機と異なる位置に配置され、
     前記第1受信機及び前記第2受信機は、前記車両の前輪寄りまたは前記車両の後輪寄りに配置され、
     前記第1受信機が受信した前記無線信号の強度である第1信号強度を、前記送信機毎に測定する第1測定部と、
     前記第2受信機が受信した前記無線信号の強度である第2信号強度を、前記送信機毎に測定する第2測定部と、
     前記第1信号強度と前記第2信号強度とを用いて、前記無線信号の全体強度を前記送信機毎に演算する演算部と
    を備え、
     前記状態検出部は、前記全体強度の大小関係に基づいて、前記送信機の数が超過しているタイヤ、または前記送信機が起動していないタイヤが、前記車両の前輪側または前記車両の後輪側の何れかの車輪位置に装着されていることを検出する請求項1に記載のタイヤ装着状態検出システム。
  3.  前記受信ユニットは、第1受信機と、第2受信機とを含み、
     前記第1受信機は、左輪と右輪との間における幅方向中心線を基準とした一方側に配置され、
     前記第2受信機は、前記幅方向中心線を基準とした他方側に配置され、
     前記第1受信機が受信した前記無線信号の強度である第1信号強度を、前記送信機毎に測定する第1測定部と、
     前記第2受信機が受信した前記無線信号の強度である第2信号強度を、前記送信機毎に測定する第2測定部と、
     前記第1信号強度と前記第2信号強度とを用いた比率である強度比を、前記送信機毎に演算する演算部と
    を備え、
     前記状態検出部は、前記強度比の大小関係に基づいて、前記送信機の数が超過しているタイヤ、または前記送信機が起動していないタイヤが、前記車両の左側または前記車両の右側の何れかの車輪位置に装着されていることを検出する請求項1に記載のタイヤ装着状態検出システム。
  4.  前記出力部は、前記状態検出部による前記車輪位置の検出結果を出力する請求項2または3に記載のタイヤ装着状態検出システム。
  5.  車両に装着されたタイヤに搭載されている送信機の状態を検出するタイヤ装着状態検出方法であって、
     前記車両に配置され、前記送信機から送信される無線信号を受信する受信ユニットを用い、
     前記受信ユニットが受信した前記無線信号に基づいて、前記送信機の数を検出するステップと、
     前記車両の車輪の数を含む車両構成に基づく前記車輪の数と、検出された前記送信機の数とに基づいて、前記送信機の数が、前記車輪の数に対して超過または不足しているか否かを検出するステップと、
     前記送信機の数が前記車輪の数に対して超過または不足していると判定された場合、前記送信機の状態が異常であることを出力するステップと
    を含むタイヤ装着状態検出方法。
  6.  車両に装着されたタイヤに搭載されている送信機の状態を検出するタイヤ装着状態検出プログラムであって、
     前記車両に配置され、前記送信機から送信される無線信号を受信する受信ユニットを用い、
     前記車両の車輪の数を含む車両構成を保持する処理と、
     前記受信ユニットが受信した前記無線信号に基づいて、前記送信機の数を検出する処理と、
     前記車両構成に基づく前記車輪の数と、検出された前記送信機の数とに基づいて、前記送信機の数が、前記車輪の数に対して超過または不足しているか否かを検出する処理と、
     前記送信機の数が前記車輪の数に対して超過または不足していると判定された場合、前記送信機の状態が異常であることを出力する処理と
    を含むタイヤ装着状態検出プログラム。
PCT/JP2019/031407 2018-08-28 2019-08-08 タイヤ装着状態検出システム、タイヤ装着状態検出方法及びタイヤ装着状態検出プログラム WO2020045036A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2019333661A AU2019333661B2 (en) 2018-08-28 2019-08-08 Tire mounting status detection system, tire mounting status detection method and tire mounting status detection program
US17/270,896 US12005747B2 (en) 2018-08-28 2019-08-08 Tire mounting state detection system, tire mounting state detection method, and tire mounting state detection program
EP19854615.2A EP3828012B1 (en) 2018-08-28 2019-08-08 Tire mounting status detection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-159282 2018-08-28
JP2018159282A JP7365109B2 (ja) 2018-08-28 2018-08-28 タイヤ装着状態検出システム、タイヤ装着状態検出方法及びタイヤ装着状態検出プログラム

Publications (1)

Publication Number Publication Date
WO2020045036A1 true WO2020045036A1 (ja) 2020-03-05

Family

ID=69644902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031407 WO2020045036A1 (ja) 2018-08-28 2019-08-08 タイヤ装着状態検出システム、タイヤ装着状態検出方法及びタイヤ装着状態検出プログラム

Country Status (5)

Country Link
US (1) US12005747B2 (ja)
EP (1) EP3828012B1 (ja)
JP (1) JP7365109B2 (ja)
AU (1) AU2019333661B2 (ja)
WO (1) WO2020045036A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024086430A (ja) * 2022-12-16 2024-06-27 株式会社ブリヂストン タイヤ管理装置及びタイヤ管理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263021A (ja) * 2004-03-18 2005-09-29 Denso Corp タイヤ状態監視装置
JP2007045201A (ja) 2005-08-08 2007-02-22 Mitsubishi Motors Corp タイヤ空気圧監視システム
JP2008074163A (ja) * 2006-09-19 2008-04-03 Denso Corp タイヤ空気圧検出装置
US20090002146A1 (en) * 2007-06-28 2009-01-01 Trw Automotive U.S. Llc Method and apparatus for determining and associating sensor location in a tire pressure monitoring system using dual antennas
KR20110052822A (ko) * 2009-11-13 2011-05-19 현대모비스 주식회사 타이어 압력 모니터링 시스템에서의 타이어 위치 자동 인식 시스템
JP2014031089A (ja) * 2012-08-02 2014-02-20 Tokai Rika Co Ltd タイヤ位置検出システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133306A (ja) * 1984-07-26 1986-02-17 Masasuke Ito 自動車タイヤの空気圧異常警告方法と装置
JP3061047B1 (ja) 1999-02-15 2000-07-10 トヨタ自動車株式会社 タイヤ空気圧警報装置
JP4000891B2 (ja) 2002-04-12 2007-10-31 トヨタ自動車株式会社 タイヤ状態取得装置
JP4144521B2 (ja) 2003-12-18 2008-09-03 株式会社デンソー タイヤ盗難検知装置
JP2005349958A (ja) 2004-06-10 2005-12-22 Mitsubishi Motors Corp タイヤ空気圧監視装置
JP4816344B2 (ja) * 2006-09-05 2011-11-16 株式会社デンソー 車輪位置検出装置とその製造方法、および車輪位置検出装置を備えたタイヤ空気圧検出装置
JP5339333B2 (ja) 2008-03-11 2013-11-13 オムロンオートモーティブエレクトロニクス株式会社 タイヤモニタ装置
KR101365925B1 (ko) * 2010-05-13 2014-02-25 주식회사 만도 타이어 압력 센서모듈 식별장치
CN102452279B (zh) * 2010-10-22 2015-07-15 上海保隆汽车科技股份有限公司 轮胎压力信号接收和处理方法及其装置
JP2013001219A (ja) 2011-06-15 2013-01-07 Denso Corp 車輪位置検出装置およびそれを備えたタイヤ空気圧検出装置
JP2015058822A (ja) * 2013-09-19 2015-03-30 株式会社東海理化電機製作所 タイヤid登録システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263021A (ja) * 2004-03-18 2005-09-29 Denso Corp タイヤ状態監視装置
JP2007045201A (ja) 2005-08-08 2007-02-22 Mitsubishi Motors Corp タイヤ空気圧監視システム
JP2008074163A (ja) * 2006-09-19 2008-04-03 Denso Corp タイヤ空気圧検出装置
US20090002146A1 (en) * 2007-06-28 2009-01-01 Trw Automotive U.S. Llc Method and apparatus for determining and associating sensor location in a tire pressure monitoring system using dual antennas
KR20110052822A (ko) * 2009-11-13 2011-05-19 현대모비스 주식회사 타이어 압력 모니터링 시스템에서의 타이어 위치 자동 인식 시스템
JP2014031089A (ja) * 2012-08-02 2014-02-20 Tokai Rika Co Ltd タイヤ位置検出システム

Also Published As

Publication number Publication date
US12005747B2 (en) 2024-06-11
JP2020032798A (ja) 2020-03-05
JP7365109B2 (ja) 2023-10-19
US20210213788A1 (en) 2021-07-15
EP3828012A1 (en) 2021-06-02
AU2019333661B2 (en) 2022-10-20
AU2019333661A1 (en) 2021-03-25
EP3828012B1 (en) 2024-05-22
EP3828012A4 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
JP5380848B2 (ja) タイヤ空気圧監視装置
US9956833B2 (en) In-vehicle reporting apparatus and reporting system
JP2008195120A (ja) 車載センサシステム、その制御方法およびプログラム
WO2019116667A1 (ja) タイヤ装着位置検出システム、タイヤ装着位置検出方法及びタイヤ装着位置検出プログラム
WO2020045036A1 (ja) タイヤ装着状態検出システム、タイヤ装着状態検出方法及びタイヤ装着状態検出プログラム
US8217776B2 (en) Tire pressure sensor location identification
US11780277B2 (en) Tire mounting position detection system, tire mounting position detection method, and tire mounting position detection program
US11479065B2 (en) Position sensing system and method for locating tire pressure monitoring sensors using correlation to wheel end sensors
JP6036528B2 (ja) 盗難検知システム、当該システムを構成する送信装置及び受信装置
JP2005335525A (ja) タイヤ監視システム
JP7309938B2 (ja) 複数のアンテナを備えるタイヤ空気圧検出器の自動測位方法
JP4458273B2 (ja) タイヤ空気圧監視システム
JP3951947B2 (ja) タイヤ空気圧検出装置
JP7060593B2 (ja) タイヤ装着位置検出システム、タイヤ装着位置検出方法及びタイヤ装着位置検出プログラム
KR101427757B1 (ko) 타이어 압력 모니터링 방법 및 그 장치
JP4458274B2 (ja) タイヤ空気圧監視システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19854615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019854615

Country of ref document: EP

Effective date: 20210223

ENP Entry into the national phase

Ref document number: 2019333661

Country of ref document: AU

Date of ref document: 20190808

Kind code of ref document: A