WO2020044923A1 - 細胞培養方法及び細胞培養装置 - Google Patents

細胞培養方法及び細胞培養装置 Download PDF

Info

Publication number
WO2020044923A1
WO2020044923A1 PCT/JP2019/029990 JP2019029990W WO2020044923A1 WO 2020044923 A1 WO2020044923 A1 WO 2020044923A1 JP 2019029990 W JP2019029990 W JP 2019029990W WO 2020044923 A1 WO2020044923 A1 WO 2020044923A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
cell
aggregate
mesh
cells
Prior art date
Application number
PCT/JP2019/029990
Other languages
English (en)
French (fr)
Inventor
饗場 聡
裕太 村上
達也 藤浪
兼太 松原
勝子 佐藤
綾子 山本
英俊 高山
隆史 涌井
慎市 菊池
雅也 長瀬
霄 凌
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020044923A1 publication Critical patent/WO2020044923A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/18External loop; Means for reintroduction of fermented biomass or liquid percolate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/14Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus with filters, sieves or membranes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/04Cell isolation or sorting

Definitions

  • the disclosed technology relates to a cell culture method and a cell culture device.
  • Patent Document 1 discloses a culture system including a passage filter unit having a mesh capable of dividing aggregates of pluripotent stem cells.
  • stem cells are suspended in a medium.
  • a suspension culture in which the cells are cultured in a state in which the cells are cultured is known.
  • Stem cells floating in the medium stably proliferate by forming spherical aggregates (spheres) in which a plurality of single cells aggregate.
  • spherical aggregates spheres
  • a division process of dividing the aggregate into smaller-sized aggregates is performed at an appropriate time during the culture period.
  • a method of mechanically dividing the aggregates by passing a cell suspension containing the aggregates through a mesh having a plurality of openings (mesh) has been proposed.
  • the dividing process of the aggregate using the mesh is preferably performed under an appropriate condition according to the adhesiveness of a plurality of cells forming the aggregate. If the division processing is performed under inappropriate conditions, damage to the cells may increase, and the survival rate of the cells may decrease.
  • an object is to perform a division treatment under appropriate conditions according to the adhesiveness of cells forming an aggregate.
  • the cell culture method performs an adhesion culture in which cells are adhered to a culture surface and cultured, and a cell mass formed on the culture surface in the adhesion culture is separated from the culture surface, and the cell mass separated from the culture surface is removed.
  • the processing condition of the division processing may be determined based on a change in the spatial parameter of the cell mass before and after detachment from the culture surface.
  • the number of cell clumps C1 before detachment from the culture surface and the number C2 of cell clumps after detachment from the culture surface are determined based on the number ratio C2 / C1.
  • the method of dividing the aggregate may be determined.
  • the adhesiveness of the cell aggregate can be appropriately determined.
  • the aggregate is passed through a first mesh having a relatively large pore size and then passed through a second mesh having a relatively small pore size.
  • the number of mesh steps through which the aggregates pass may be smaller than when the number ratio C2 / C1 is smaller than a predetermined value. Thereby, damage to cells can be suppressed.
  • the number ratio C2 / C1 may be derived based on an image obtained by imaging the cell mass. This makes it possible to automate the derivation of the number ratio C2 / C1.
  • the aggregate may be divided by passing the aggregate through a mesh.
  • the speed at which the aggregates pass through the mesh is relatively reduced, and when the number ratio C2 / C1 is larger than the predetermined value, the aggregates are reduced. May pass through the mesh at a relatively high speed. Thereby, damage to cells can be suppressed.
  • the total value S1 of the respective areas of the cell mass before detachment from the culture surface, and the cell mass after detachment from the culture surface, of the cell mass located at the outermost periphery may be determined based on the area ratio S2 / S1, which is the ratio of the area S2 of the region surrounded by the contacting outline.
  • the area ratio S2 / S1 is the ratio of the area S2 of the region surrounded by the contacting outline.
  • cells forming the cell mass and the aggregate may be stem cells.
  • the cell culture device includes a mesh that divides cell aggregates, and an adhesive culture in which cells are adhered to a culture surface in an adherent culture. And a control unit that determines processing conditions of a division process of dividing the image by passing through a mesh. This makes it possible to perform the division treatment under appropriate conditions according to the adhesiveness of the cells forming the aggregate.
  • FIG. 1 is a diagram illustrating an example of a configuration of a cell culture device according to an embodiment of the disclosed technology.
  • FIG. 9 is a cross-sectional view illustrating an example of a configuration of a division processing unit according to an embodiment of the disclosed technology.
  • FIG. 4 is a plan view of a mesh according to an embodiment of the disclosed technology.
  • 11 is a flowchart illustrating an example of a flow of a process in which a control unit according to an embodiment of the disclosed technology determines a processing condition of a division process. It is a figure showing an example of division processing performed in a cell culture device concerning an embodiment of art of an indication. It is a figure showing an example of division processing performed in a cell culture device concerning an embodiment of art of an indication. 11 is a flowchart illustrating an example of a flow of a process in which a control unit according to an embodiment of the disclosed technology determines a processing condition of a division process. It is the top view which looked at the culture surface from above.
  • FIG. 1 is a diagram illustrating an example of a configuration of a cell culture device according to an embodiment of the disclosed technology.
  • 11 is a flowchart illustrating an example of a flow of a process in which a control unit according to an embodiment of the disclosed technology determines a processing condition of a division process.
  • FIG. 1 is a process flowchart illustrating an example of a cell culture method according to an embodiment of the disclosed technology.
  • stem cells having a proliferative property such as iPS cells, mesenchymal embryo cells, and ES cells are to be cultured.
  • FIG. 2A is a perspective view showing an example of a state of adhesion culture.
  • the cells are cultured in a state of being adhered to the bottom surface of the culture vessel 10 to which the medium 11 has been added.
  • the culture vessel 10 may have, for example, a petri dish form.
  • An imaging device 20 is provided above the culture vessel 10.
  • the imaging device 20 images cells to be adhered and cultured on the bottom surface of the culture vessel 10.
  • the image acquired by the imaging device 20 is stored in the storage unit 21 connected to the imaging device 20.
  • the storage unit 21 is a nonvolatile storage medium such as a flash memory.
  • FIG. 2B is a plan view of the bottom surface of the culture vessel 10 serving as the cell culture surface 12 as viewed from above. As the proliferation of the cells progresses by the adhesion culture, a cell mass (colony) 100 in which a plurality of cells are aggregated is formed on the culture surface 12.
  • step A2 of the cell culture method according to the embodiment of the disclosed technology a peeling process of peeling the cell mass 100 from the culture surface 12 is performed.
  • an image of the state of the cell mass 100 before detachment from the culture surface 12 is acquired by the imaging device 20 and stored in the storage unit 21. You.
  • the detachment treatment of the cell mass is performed by adding a detachment agent containing a proteolytic enzyme such as trypsin.
  • a tapping process of applying an external shock to the culture container 10 to generate vibration may be performed.
  • FIG. 3A is a perspective view showing a state of the cell mass 100 after a predetermined time has elapsed after the addition of the release agent
  • FIG. 3B is a plan view of the culture surface 12 viewed from above.
  • step A3 of the cell culture method according to the embodiment of the disclosed technology the cells detached from the culture surface 12 are cultured by suspension culture.
  • FIG. 4 is a diagram illustrating an example of a configuration of the cell culture device 1 according to the embodiment of the disclosed technology.
  • the cell culture device 1 has a configuration for realizing cell culture by a suspension culture method.
  • the cell culture device 1 includes a culture container 30, a collection container 33, division processing units 31A, 31B, 31C, and a control unit 32.
  • the control unit 32 is communicably connected to the storage unit 21.
  • the culture vessel 30 contains cells that have undergone the adhesion culture step and a cell suspension containing a medium.
  • the culture vessel 30 may have, for example, the form of a bag including a film having gas permeability.
  • a polymer compound having no cytotoxicity may be added for the purpose of continuously suspending cells and preventing excessive close contact between cells.
  • the polymer compound added to the medium for the above purpose is, for example, a polymer compound that adjusts the specific gravity of the medium, a polymer compound that adjusts the viscosity of the medium, and a polymer compound that forms a three-dimensional network structure in the medium. .
  • Examples of such a polymer compound include methylcellulose and gellan gum.
  • spherical aggregates in which a plurality of cells aggregate are formed. If the growth of cells progresses and the size of the aggregates (spheres) becomes excessive, the supply of oxygen, carbon dioxide and nutrients to the center of the aggregates (spheres) becomes insufficient, and the cells in the center may be necrotic. Can occur. Therefore, in order to prevent the size of the aggregates (spheres) from becoming excessively large, a division process of dividing the aggregates (spheres) into smaller-sized aggregates (spheres) at an appropriate time during the culture period is performed. Done.
  • the division processing units 31A, 31B, and 31C respectively perform division processing on aggregates (spheres) that have grown to a predetermined size.
  • the cell culture device 1 has a first channel F1 and a second channel F2 arranged in parallel between the culture container 30 and the collection container 33. That is, the culture vessel 30 and the collection vessel 33 are connected to each other via the first flow path F1 and the second flow path F2.
  • Two division processing sections 31A and 31B are provided in the middle of the first flow path F1, and one division processing section 31C is provided in the middle of the second flow path F2.
  • valves Q1 and Q2 are provided at one end and the other end of the first flow path F1
  • valves Q3 and Q4 are provided at one end and the other end of the second flow path F2.
  • a pump P1 is provided in the middle of a flow path that connects the collection container 33 to the first flow path F1 and the second flow path F2.
  • the control unit 32 controls the opening and closing of the valves Q1, Q2, Q3, and Q4 and the drive of the pump P1. That is, the valves Q1, Q2, Q3, and Q4 open and close according to the control signal supplied from the control unit 32, and the pump P1 is driven according to the control signal supplied from the control unit 32.
  • the valves Q1 and Q2 are controlled to be open
  • the valves Q3 and Q4 are controlled to be closed
  • the pump P1 is driven
  • the cell suspension accommodated in the culture vessel 30 becomes the first cell suspension. It is collected in the collection container 33 via the flow path F1.
  • the aggregates (spheres) included in the cell suspension are divided by each of the division processing units 31A and 31B provided in the middle of the first flow path F1.
  • the valves Q3 and Q4 are controlled to be open, the valves Q1 and Q2 are controlled to be closed, and the pump P1 is driven, the cell suspension accommodated in the culture vessel 30 is in the second state. It is collected in the collection container 33 via the flow path F2. In this case, the aggregate (sphere) included in the cell suspension is divided by the division processing unit 31C provided in the middle of the second flow path F2.
  • FIG. 5A is a cross-sectional view illustrating an example of the configuration of the division processing units 31A, 31B, and 31C.
  • the basic configurations of the division processing units 31A, 31B, and 31C are the same as each other.
  • Each of the division processing units 31A, 31B, and 31C includes a case 201 having an inlet 202 and an outlet 203, and a mesh 210 provided between the inlet 202 and the outlet 203 inside the case 201. It is composed of
  • FIG. 5B is a plan view of the mesh 210
  • FIG. 5C is an enlarged view of a portion Y surrounded by a broken line in FIG. 5B.
  • the mesh 210 has a plurality of openings (mesh) 211 formed by, for example, plain weaving a plurality of fibrous members 212.
  • the weaving method of the fibrous member 212 is not limited to plain weaving.
  • the material of the fibrous member 212 is not particularly limited, but is preferably made of a material having high corrosion resistance. For example, nylon or stainless steel can be suitably used.
  • the mesh 210 is installed in the case 201 such that a main surface having a plurality of openings 211 extends in a direction intersecting with the flow direction FL of the cell suspension. When the cell suspension passes through the mesh 210, aggregates (spheres) included in the cell suspension are mechanically divided.
  • the diameter (hereinafter, referred to as the hole diameter L) of the opening 211 of the mesh 210 included in the division processing unit 31B disposed on the first flow path F1 on the downstream side in the flow direction of the cell suspension is equal to the cell suspension. Is smaller than the hole diameter L of the mesh 210 included in the division processing unit 31 ⁇ / b> A arranged on the upstream side in the flow direction FL. That is, the aggregates (spheres) included in the cell suspension passing through the first flow path F1 are subjected to the division processing by the mesh 210 having the relatively large pore diameter L in the division processing unit 31A, and then the division processing is performed. In the portion 31B, a division process is performed by the mesh 210 having a relatively small hole diameter L.
  • the hole diameter L of the opening 211 of the mesh 210 included in the division processing unit 31C disposed on the second flow path F2 is the same as the hole diameter L of the opening 211 of the mesh 210 included in the division processing unit 31B. That is, the cell aggregates contained in the cell suspension passing through the second flow path F2 are subjected to the division processing by the mesh 210 having the pore diameter L smaller than the pore diameter L of the mesh 210 of the division processing unit 31A.
  • the pore diameter L of the mesh 210 included in the division processing unit 31A is, for example, smaller than the average diameter of the aggregate (sphere) before the division processing.
  • the average diameter of the aggregates (spheres) it is possible to apply the arithmetic average of the diameters of the spherical shapes when each of the aggregates (spheres) is approximated to a sphere.
  • the hole diameter L of the mesh 210 included in the division processing units 31B and 31C is determined according to the target size of the aggregate (sphere) after the division processing.
  • step A4 of the cell culture method according to the embodiment of the disclosed technology the processing conditions of the division processing are determined based on the state of the cell mass (colony) detached from the culture surface 12 in step A2.
  • step A5 of the cell culture method according to the embodiment of the disclosed technology the division processing is performed according to the processing conditions determined in step A4.
  • the control unit 32 determines the processing conditions of the dividing process based on the image acquired by the imaging device 20, and performs the valves Q1 to Q4 and the pump P1 to perform the dividing process based on the determined processing conditions. Control.
  • FIG. 6 is a flowchart illustrating an example of a flow of a process in which the control unit 32 determines a processing condition of the division process.
  • step B1 the control unit 32 reads from the storage unit 21 an image of the state of the cell mass before detachment from the culture surface 12 (see FIG. 2B) stored in the storage unit 21.
  • step B2 the control unit 32 derives the number C1 of cell clumps (colonies) before being detached from the culture surface 12, from the image read in step B1.
  • the derivation of the number C1 can be performed using a known image analysis technique.
  • FIG. 2B the case where the number of cell masses (colonies) before being detached from the culture surface 12 is one is illustrated, but in the adhesion culture, two or more cell masses (colonies) are used. May be formed on the culture surface 12.
  • step B3 the control unit 32 reads from the storage unit 21 an image of the state of the cell mass after detachment from the culture surface 12 (see FIG. 3B) stored in the storage unit 21.
  • step B4 the control unit 32 derives the number C2 of cell clumps (colonies) after being detached from the culture surface 12, from the image read in step B3.
  • the control unit 32 by peeling the cell mass (colonies) from the culture surface 12 using the peeling agent, the adhesive force between cells forming the cell mass (colonies) decreases.
  • the cell mass (colonies) is decomposed into a plurality of small pieces or single cells, so that C2> C1 is usually satisfied.
  • the derivation of the number C2 can be performed by using a known image analysis technique.
  • step B5 the control unit 32 calculates a number ratio C2 / C1, which is a ratio between the number C1 of cell clumps (colonies) before detachment from the culture surface and the number C2 of cell clumps after detachment from the culture surface, It is derived as an index value X indicating the adhesiveness between cells.
  • a number ratio C2 / C1 which is a ratio between the number C1 of cell clumps (colonies) before detachment from the culture surface and the number C2 of cell clumps after detachment from the culture surface.
  • step B6 the control unit 32 determines whether or not the index value X derived in step B5 is equal to or less than a predetermined threshold X1.
  • the control unit 32 determines that the index value X is equal to or smaller than the threshold value X1 (that is, when the adhesive force between the cells forming the aggregate (sphere) is relatively strong)
  • the control unit 32 shifts the processing to step B7, and
  • it is determined that the value X is larger than the threshold value X1 that is, when the adhesive force between cells forming an aggregate (sphere) is relatively weak
  • the process proceeds to step B8.
  • step B7 the control unit 32 determines that the aggregate (sphere) is to be divided by the two-stage mesh 210 configured so that the hole diameter L decreases stepwise as the processing condition of the division processing.
  • the control unit 32 controls the valves Q1 and Q2 to open and the valves Q3 and Q4 to close and drives the pump P1 in order to perform the division process according to the determined processing conditions.
  • FIG. 7A the cell suspension flowing out of the culture vessel 30 passes through the first channel F1.
  • Aggregates (spheres) contained in the cell suspension passing through the first flow path F1 are divided by the mesh 210 having a relatively large pore diameter L in the division processing unit 31A, and then divided in the division processing unit 31B. It is divided by a mesh 210 having a relatively small hole diameter L.
  • the cell suspension containing the aggregate (sphere) that has been subjected to the division treatment is collected in the collection container 33.
  • step B8 the control unit 32 determines that the aggregate (sphere) is to be divided by one-stage mesh as a processing condition of the division processing.
  • the control unit 32 controls the valves Q3 and Q4 to open and the valves Q1 and Q2 to close to drive the pump P1 in order to perform the division process according to the determined processing conditions.
  • the cell suspension flowing out of the culture vessel 30 passes through the second channel F2.
  • Aggregates (spheres) contained in the cell suspension passing through the second flow path F2 are divided by the mesh 210 having the same hole diameter L as the mesh 210 of the division processing unit 31B in the division processing unit 31C.
  • the cell suspension containing the aggregate (sphere) that has been subjected to the division treatment is collected in the collection container 33.
  • cell clumps (colonies) formed on the culture surface 12 in the adhesive culture are separated from the culture surface 12 and separated from the culture surface 12.
  • the processing conditions of the division processing are determined based on the state of the cell mass (colony) thus determined, and the division processing is performed according to the determined processing conditions.
  • the state of the cell mass (colony) detached from the culture surface 12 reflects the adhesiveness between cells forming aggregates (spheres) floating in the medium in the suspension culture. Therefore, by determining the processing conditions of the dividing process based on the state of the cell mass (colonies) detached from the culture surface 12, an appropriate dividing process according to the adhesive force between the cells forming the aggregate (sphere) is determined. Processing conditions can be determined.
  • the processing conditions of the division processing are determined based on the change in the spatial parameter of the cell mass before and after detachment from the culture surface.
  • the spatial parameter of the cell cluster is a parameter including spatial elements such as the number, area, perimeter, distance between cells, degree of spread, and the like of the cell cluster.
  • the number C1 of cell clumps (colonies) before separation from the culture surface 12 and the cell clumps (colonies) after separation from the culture surface 12 The number ratio C2 / C1, which is the ratio to the number C2, is applied as an index value X indicating the adhesiveness between cells forming aggregates (spheres). This makes it possible to appropriately evaluate the adhesiveness between cells forming aggregates (spheres).
  • the index value X is equal to or less than the threshold value X1 (that is, when the adhesive force between cells forming an aggregate (sphere) is relatively strong).
  • the aggregate (sphere) is divided by the mesh 210 having a relatively large pore diameter L in the division processing section 31A, and then divided by the mesh 210 having a relatively small pore diameter L in the division processing section 31B.
  • the dividing process is performed stepwise using a two-stage mesh configured so that the pore diameter L decreases stepwise. Thus, damage to cells can be suppressed.
  • an agglomerate (sphere) having a relatively strong adhesive force between cells is subjected to the division processing only by the division processing unit 31B having the mesh 210 with a relatively small pore diameter L, the cells are added to the cells. The shear force becomes excessive, and the damage to the cells increases.
  • the aggregate (sphere) is divided by the division processing unit 31C. It is divided by the mesh 210 having the same hole diameter L as the mesh 210 of the processing unit 31B. For the aggregates (spheres) having relatively weak adhesion between cells, even if the division process is performed only with the mesh 210 having a relatively small pore diameter L, the shear force applied to the cells does not become excessive, Damage to is small. Aggregates (spheres) having relatively weak adhesion between cells can be reduced by performing a division process using a smaller number of meshes.
  • two or more divided processing units which are smaller in number than the divided processing units provided in the middle of the first flow path F1, are provided in the second flow path, and the aggregates passing through the second flow path F2 (
  • the sphere may be divided by two or more meshes configured such that the hole diameter L decreases stepwise.
  • the mesh provided in the middle of the first flow path F1 may have a three-stage structure
  • the mesh provided in the middle of the second flow path F2 may have a two-stage structure.
  • FIG. 8 is a flowchart illustrating an example of a process flow in which the control unit 32 determines a processing condition of the division process according to the second embodiment of the disclosed technology.
  • step B11 the control unit 32 reads from the storage unit 21 an image of the state of the cell mass before detachment from the culture surface 12 (see FIG. 2B) stored in the storage unit 21.
  • step B12 the control unit 32 derives the total value S1 of the area of the cell mass (colony) before being detached from the culture surface 12, from the image read in step B11.
  • the area of the cell mass (colony) corresponds to S1.
  • step B13 the control unit 32 reads from the storage unit 21 an image of the state of the cell mass after detachment from the culture surface 12 (see FIG. 3B) stored in the storage unit 21.
  • step B14 the control unit 32 contacts each of the cell clusters 100 located at the outermost periphery among the cell clusters 100 that have been decomposed and diffused by the release agent from the image read in step B13, as shown in FIG.
  • a contour 300 is derived.
  • the outline 300 may be approximated by a circle, for example.
  • the control unit 32 derives an area S2 of a region surrounded by the outline 300.
  • the adhesive force between cells forming the cell mass (colonies) decreases.
  • the cell mass (colony) is decomposed into a plurality of small pieces and diffuses outward, so that normally S2> S1 is satisfied.
  • the derivation of the outline 300 and the area S2 can be performed using a known image analysis technique.
  • step B15 the control unit 32 determines the area ratio S2, which is the ratio of the sum S1 of the area of the cell mass (colony) before being detached from the culture surface 12 to the area S2 of the region surrounded by the contour 300.
  • / S1 is derived as an index value X indicating the adhesiveness between cells.
  • the area ratio S2 / S1 can be used as an index value X indicating the adhesiveness between cells forming a cell mass (colony).
  • step B16 the control unit 32 determines whether or not the index value X derived in step B15 is equal to or less than a predetermined threshold X2.
  • the control unit 32 determines that the index value X is equal to or less than the threshold value X2 (that is, when the adhesive force between the cells forming the aggregate (sphere) is relatively strong)
  • the control unit 32 shifts the processing to step B17, and proceeds to step B17.
  • the process proceeds to step B18.
  • step B17 the control unit 32 determines that the aggregate (sphere) is to be divided by a two-stage mesh configured so that the hole diameter L decreases stepwise as a processing condition of the division processing.
  • the control unit 32 controls the valves Q1 and Q2 to open and the valves Q3 and Q4 to close and drives the pump P1 in order to perform the division process according to the determined processing conditions.
  • the cell suspension flowing out of the culture vessel 30 passes through the first channel F1.
  • Aggregates (spheres) contained in the cell suspension passing through the first flow path F1 are divided by the mesh 210 having a relatively large pore diameter L in the division processing unit 31A, and then divided in the division processing unit 31B. It is divided by a mesh 210 having a relatively small hole diameter L.
  • the cell suspension containing the aggregate (sphere) that has been subjected to the division treatment is collected in the collection container 33.
  • step B18 the control unit 32 determines that the aggregate (sphere) is to be divided by one-stage mesh as a processing condition of the division processing.
  • the control unit 32 controls the valves Q3 and Q4 to open and the valves Q1 and Q2 to close to drive the pump P1 in order to perform the division process according to the determined processing conditions.
  • the cell suspension flowing out of the culture vessel 30 passes through the second channel F2.
  • Aggregates (spheres) contained in the cell suspension passing through the second flow path F2 are subjected to division processing by the mesh 210 having the same hole diameter L as the mesh 210 of the division processing section 31B in the division processing section 31C. You.
  • the cell suspension containing the aggregate (sphere) that has been subjected to the division treatment is collected in the collection container 33.
  • the cell culture method and the cell culture device similarly to the first embodiment, it is possible to determine processing conditions of an appropriate division process according to an adhesive force between cells forming an aggregate (sphere). Can be.
  • the total value S1 of the area of the cell mass (colony) before being detached from the culture surface 12 and the outermost circumference after being detached from the culture surface 12 is an index value indicating the adhesiveness between cells forming aggregates (spheres). Applied. Thereby, similarly to the case where the number ratio C2 / C1 is applied as the index value X, it becomes possible to appropriately evaluate the adhesiveness between cells forming aggregates (spheres).
  • FIG. 10 is a diagram illustrating an example of a configuration of a cell culture device 1A according to a third embodiment of the disclosed technology.
  • the cell culture device 1 ⁇ / b> A has a single division processing unit 31 between the culture container 30 and the collection container 33.
  • FIG. 11 is a flowchart illustrating an example of a flow of a process in which the control unit 32 determines a processing condition of the division process.
  • the processing from step B21 to step B26 is the same as step B1 to step B6 in the flowchart shown in FIG.
  • step B26 If the control unit 32 determines in step B26 that the index value X is equal to or smaller than the threshold value X1 (that is, if the adhesive force between the cells forming the aggregate (sphere) is relatively strong), the control unit 32 performs the division in step B27. As a processing condition of the processing, it is determined that the speed at which the aggregate (sphere) passes through the mesh of the division processing unit 31 is set to a relatively low speed V1. The control unit 32 controls the valves Q1 and Q2 to open to drive the pump P1 at a rotation speed corresponding to the speed V1 so as to perform the division process according to the determined processing conditions. The cell suspension containing the aggregate (sphere) that has been subjected to the division treatment is collected in the collection container 33.
  • step B26 when the control unit 32 determines that the index value X is larger than the threshold value X1 in step B26 (that is, when the adhesive force between cells forming an aggregate (sphere) is relatively weak), the control unit 32 returns to step B28.
  • V2 relatively high speed
  • the control unit 32 controls the valves Q1 and Q2 to open to drive the pump P1 at a rotation speed corresponding to the speed V1 so as to perform the division process according to the determined processing conditions.
  • the cell suspension containing the aggregate (sphere) that has been subjected to the division treatment is collected in the collection container 33.
  • the cell culture method and the cell culture device similarly to the first embodiment, it is possible to determine processing conditions of an appropriate division process according to an adhesive force between cells forming an aggregate (sphere). Can be.
  • the index value X is equal to or less than the threshold value X1 (that is, when the adhesive force between cells forming an aggregate (sphere) is relatively strong).
  • the speed at which the aggregates (spheres) pass through the mesh of the division processing unit 31 is set to a relatively low speed V1.
  • V1 the speed at which the aggregates (spheres) pass through the mesh of the division processing unit 31.
  • the aggregate (sphere) passes through the mesh of the division processing unit 31.
  • Speed V2 is relatively high speed V2.
  • the shear force applied to the cells is excessive. No damage to cells.
  • the speed at which the aggregates (spheres) pass through the mesh of the division processing unit 31 is prevented from being excessively low, so that the aggregation Damage can be suppressed.
  • the case where the division processing is performed by the single division processing unit 31 is exemplified.
  • a plurality of division processing units 31 connected in series are provided, and the configuration is such that the hole diameter L decreases stepwise.
  • the dividing process may be performed using two or more meshes.
  • the area ratio S2 / S1 may be applied as an index value indicating the adhesiveness between cells forming an aggregate (sphere).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Analytical Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

培養面に細胞を接着させて培養する接着培養を行い、接着培養において培養面に形成される細胞塊を培養面から剥離する。その後、培養面から剥離した細胞塊を形成する複数の細胞を培地中に浮遊させた状態で培養する浮遊培養を行う。培養面から剥離した細胞塊の状態に基づいて、浮遊培養において形成される細胞の凝集体をメッシュに通すことにより分割する分割処理の処理条件を決定し、決定した処理条件によって分割処理を行う。

Description

細胞培養方法及び細胞培養装置
 開示の技術は、細胞培養方法及び細胞培養装置に関する。
 浮遊培養により複数の細胞が凝集した球状の凝集体(スフェア)を形成する幹細胞を培養する細胞培養装置に関する技術として、例えば以下のものが知られている。例えば、国際公開第2014/136581号(特許文献1)には、多能性幹細胞の凝集体を分割可能なメッシュを有する継代用フィルタ部を備えた培養システムが開示されている。
 iPS細胞(induced pluripotent stem cells)、間葉系胚細胞(MSC:Mesenchymal stem cell)、ES細胞(embryonic stem cells)等の増殖性を有する幹細胞を大量に培養する方法として、幹細胞を培地中に浮遊させた状態で培養する浮遊培養が知られている。培地中に浮遊する幹細胞は、複数の単一細胞が凝集した球状の凝集体(スフェア)を形成することで、安定して増殖する。しかしながら、細胞の増殖が進み、凝集体のサイズが過大となると凝集体の中心部への酸素、二酸化炭素及び栄養分の供給が不十分となり、中心部の細胞が壊死するといった問題が生じ得る。従って、凝集体のサイズが過大となることを防止するために、培養期間中の適切な時期に、凝集体をより小さいサイズの凝集体に分割する分割処理が行われている。
 細胞の凝集体を分割する手法として、凝集体を含む細胞懸濁液を、複数の開口部(網目)を有するメッシュに通過させることで凝集体を機械的に分割する手法が提案されている。メッシュを用いた凝集体の分割処理は、凝集体を形成する複数の細胞同士の接着性に応じた適切な条件で処理を行うことが好ましい。不適切な条件で分割処理が行われた場合、細胞へのダメージが大きくなり、細胞の生存率が低下するおそれがある。
 開示の技術は、一つの側面として、凝集体を形成する細胞同士の接着性に応じた適切な条件で分割処理を行うことを目的とする。
 開示の技術に係る細胞培養方法は、培養面に細胞を接着させて培養する接着培養を行い、接着培養において培養面に形成される細胞塊を培養面から剥離し、培養面から剥離した細胞塊を形成する複数の細胞を培地中に浮遊させた状態で培養する浮遊培養を行い、培養面から剥離した細胞塊の状態に基づいて、浮遊培養において形成される細胞の凝集体をメッシュに通すことにより分割する分割処理の処理条件を決定し、決定した処理条件によって分割処理を行うことを含む。これにより、凝集体を形成する細胞同士の接着性に応じた適切な条件で分割処理を行うことが可能となる。
 開示の技術に係る培養方法において、培養面からの剥離前後における細胞塊の空間的パラメータの変化に基づいて、分割処理の処理条件を決定してもよい。
 開示の技術に係る培養方法において、培養面からの剥離前における細胞塊の個数C1と、培養面からの剥離後における細胞塊の個数C2との比である個数比C2/C1に基づいて、凝集体の分割方法を決定してもよい。個数比C2/C1を細胞の凝集体の接着性を示す指標値として用いることで、細胞の凝集体の接着性を適切に判定することができる。
 個数比C2/C1が所定値よりも小さい場合には、凝集体を、孔径が相対的に大きい第1のメッシュに通した後、孔径が相対的に小さい第2のメッシュに通すことが好ましい。また、個数比C2/C1が所定値よりも大きい場合には、凝集体が通過するメッシュの段数を、個数比C2/C1が所定値よりも小さい場合と比較して少なくしてもよい。これにより、細胞へのダメージを抑制することができる。
 細胞塊を撮像した画像に基づいて、個数比C2/C1を導出してもよい。これにより、個数比C2/C1の導出を自動化することができる。
 開示の技術に係る細胞培養方法において、凝集体の分割は、凝集体をメッシュに通すことにより行われてもよい。この場合、個数比C2/C1が所定値よりも小さい場合には、凝集体がメッシュを通過する速度を相対的に低くし、個数比C2/C1が所定値よりも大きい場合には、凝集体がメッシュを通過する速度を相対的に高くしてもよい。これにより、細胞へのダメージを抑制することができる。
 開示の技術に係る培養方法において、培養面からの剥離前における細胞塊の各々の面積の合算値S1と、培養面からの剥離後における細胞塊のうち、最外周に位置する細胞塊の外縁に接する輪郭線に囲まれた領域の面積S2との比である面積比S2/S1に基づいて、細胞塊を分割する分割方法を決定してもよい。面積比S2/S1を細胞の凝集体の接着性を示す指標値として用いることで、細胞の凝集体の接着性を適切に判定することができる。
 開示の技術に係る培養方法において、細胞塊及び前記凝集体を形成する細胞は幹細胞であってもよい。
 開示の技術に係る細胞培養装置は、細胞の凝集体を分割するメッシュと、培養面に細胞を接着した状態で培養する接着培養において、培養面から剥離した細胞塊の状態に基づいて、凝集体をメッシュに通すことにより分割する分割処理の処理条件を決定する制御部と、を含む。これにより、凝集体を形成する細胞同士の接着性に応じた適切な条件で分割処理を行うことが可能となる。
 開示の技術によれば、凝集体を形成する細胞同士の接着性に応じた適切な条件で分割処理を行うことが可能となる。
開示の技術の実施形態に係る細胞培養方法の一例を示す工程フロー図である。 開示の技術の実施形態に係る接着培養の様子の一例を示す斜視図である。 培養面を上方から眺めた平面図である。 培養面から剥離された細胞塊の状態を示す斜視図である。 培養面を上方から眺めた平面図である。 開示の技術の実施形態に係る細胞培養装置の構成の一例を示す図である。 開示の技術の実施形態に係る分割処理部の構成の一例を示す断面図である。 開示の技術の実施形態に係るメッシュの平面図である。 図5Bにおいて破線で囲んだ部分の拡大図である。 開示の技術の実施形態に係る制御部が分割処理の処理条件を決定する処理の流れの一例を示すフローチャートである。 開示の技術の実施形態に係る細胞培養装置において行われる分割処理の一例を示す図である。 開示の技術の実施形態に係る細胞培養装置において行われる分割処理の一例を示す図である。 開示の技術の実施形態に係る制御部が分割処理の処理条件を決定する処理の流れの一例を示すフローチャートである。 培養面を上方から眺めた平面図である。 開示の技術の実施形態に係る細胞培養装置の構成の一例を示す図である。 開示の技術の実施形態に係る制御部が分割処理の処理条件を決定する処理の流れの一例を示すフローチャートである。
 以下、開示の技術の実施形態の一例を、図面を参照しつつ説明する。なお、各図面において同一または等価な構成要素および部分には同一の参照符号を付与している。
[第1の実施形態]
 図1は、開示の技術の実施形態に係る細胞培養方法の一例を示す工程フロー図である。開示の技術の実施形態に係る細胞培養方法においては、iPS細胞、間葉系胚細胞、ES細胞等の増殖性を有する幹細胞を培養の対象とする。
 開示の技術の実施形態に係る細胞培養方法の工程A1は、初期培養工程であり、細胞は接着培養によって培養される。図2Aは、接着培養の様子の一例を示す斜視図である。図2Aに示すように、細胞は、培地11が添加された培養容器10の底面に接着した状態で培養される。培養容器10は、例えばシャーレの形態を有するものであってもよい。培養容器10の上方には撮像装置20が設けられている。撮像装置20は、培養容器10の底面に接着培養される細胞を撮像する。撮像装置20によって取得された画像は、撮像装置20に接続された記憶部21に格納される。記憶部21は、フラッシュメモリ等の不揮発性の記憶媒体である。なお、記憶部21は撮像装置20に内蔵されていてもよい。図2Bは、細胞の培養面12となる培養容器10の底面を上方から眺めた平面図である。接着培養により細胞の増殖が進行すると、培養面12上には、複数の細胞が集合した細胞塊(コロニー)100が形成される。
 開示の技術の実施形態に係る細胞培養方法の工程A2において、細胞塊100を培養面12から剥離する剥離処理が行われる。本実施形態に係る細胞培養方法においては、剥離処理に先立って、培養面12から剥離される前の細胞塊100の状態を撮像した画像が、撮像装置20によって取得され、記憶部21に格納される。細胞塊の剥離処理は、例えばトリプシン等のタンパク分解酵素を含む剥離剤を添加することにより行われる。細胞塊100の培養面12からの剥離を促進させるために、培養容器10に外部から衝撃を加えて振動を生じさせるタッピング処理を実施してもよい。
 図3Aは、剥離剤を添加してから所定時間が経過した後の細胞塊100の状態を示す斜視図であり、図3Bは、培養面12を上方から眺めた平面図である。細胞塊100に剥離剤を添加することにより、細胞塊100と培養面12との間の接着力が低下して培養面12から細胞塊100が剥離する。また、剥離剤の添加により細胞塊100を形成する細胞同士の接着力も低下するので、細胞塊100は、複数の小片に分解される。本実施形態に係る細胞培養方法においては、剥離剤を添加してから所定時間が経過した後の細胞塊100の状態を撮像した画像が、撮像装置20によって取得され、記憶部21に格納される。
 開示の技術の実施形態に係る細胞培養方法の工程A3において、培養面12から剥離された細胞は、浮遊培養により培養される。
 図4は、開示の技術の実施形態に係る細胞培養装置1の構成の一例を示す図である。細胞培養装置1は、浮遊培養方式による細胞培養を実現するための構成を有する。細胞培養装置1は、培養容器30、回収容器33、分割処理部31A、31B、31C及び制御部32を有する。制御部32は、記憶部21と通信可能に接続される。
 培養容器30には、接着培養工程を経た細胞及び培地を含む細胞懸濁液が収容される。培養容器30は、例えばガス透過性を有するフィルムを含んで構成されるバッグの形態を有していてもよい。培養容器30に収容される培地には、細胞を継続的に浮遊させる目的、及び細胞同士の過度の密着を防ぐ目的で、細胞毒性を有しない高分子化合物が添加されていてもよい。上記目的で培地に添加される高分子化合物は、例えば、培地の比重を調整する高分子化合物、培地の粘度を調整する高分子化合物、培地中で三次元ネットワーク構造を形成する高分子化合物である。このような高分子化合物としては、メチルセルロース及びジェランガムなどが挙げられる。
 幹細胞の浮遊培養においては、複数の細胞が凝集した球状の凝集体(スフェア)が形成される。細胞の増殖が進み、凝集体(スフェア)のサイズが過大となると凝集体(スフェア)の中心部への酸素、二酸化炭素及び栄養分の供給が不十分となり、中心部の細胞が壊死するといった問題が生じ得る。従って、凝集体(スフェア)のサイズが過大となることを防止するために、培養期間中の適切な時期に、凝集体(スフェア)をより小さいサイズの凝集体(スフェア)に分割する分割処理が行われる。
 分割処理部31A、31B、31Cは、それぞれ、所定のサイズにまで成長した凝集体(スフェア)に対して分割処理を施す。細胞培養装置1は、培養容器30と回収容器33との間に並列に配置された第1の流路F1及び第2の流路F2を有する。すなわち、培養容器30及び回収容器33は、第1の流路F1及び第2の流路F2を介して互いに接続されている。第1の流路F1の途中には2つの分割処理部31A、31Bが設けられ、第2の流路F2の途中には、1つの分割処理部31Cが設けられている。また、第1の流路F1の一端及び他端にはバルブQ1及びQ2が設けられ、第2の流路F2の一端及び他端にはバルブQ3及びQ4が設けられている。回収容器33と、第1の流路F1及び第2の流路F2とを接続する流路の途中にはポンプP1が設けられている。
 制御部32は、バルブQ1、Q2、Q3、Q4の開閉制御及びポンプP1の駆動制御を行う。すなわち、バルブQ1、Q2、Q3、Q4は、制御部32から供給される制御信号に応じて開閉し、ポンプP1は、制御部32から供給される制御信号に応じて駆動する。例えば、バルブQ1、Q2が開状態に制御され、バルブQ3、Q4が閉状態に制御され、ポンプP1が駆動されることで、培養容器30に収容されている細胞懸濁液は、第1の流路F1を経由して回収容器33に回収される。この場合、細胞懸濁液に含まれる凝集体(スフェア)は、第1の流路F1の途中に設けられた分割処理部31A及び31Bの各々によって分割される。一方、バルブQ3、Q4が開状態に制御され、バルブQ1、Q2が閉状態に制御され、ポンプP1が駆動されることで、培養容器30に収容されている細胞懸濁液は、第2の流路F2を経由して回収容器33に回収される。この場合、細胞懸濁液に含まれる凝集体(スフェア)は、第2の流路F2の途中に設けられた分割処理部31Cによって分割される。
 図5Aは、分割処理部31A、31B、31Cの構成の一例を示す断面図である。分割処理部31A、31B、31Cの基本的な構成は、互いに同じである。分割処理部31A、31B、31Cは、それぞれ、流入口202及び流出口203を有するケース201と、ケース201の内部の、流入口202と流出口203との間に設けられたメッシュ210とを含んで構成されている。
 図5Bは、メッシュ210の平面図、図5Cは、図5Bにおいて破線で囲んだ部分Yの拡大図である。メッシュ210は、複数の繊維状部材212を例えば平織りすることによって形成された複数の開口部(網目)211を有する。なお、繊維状部材212の織り方は、平織りに限定されない。繊維状部材212の材質は、特に限定されるものではないが、耐食性の高い材料で構成されていることが好ましく、例えばナイロンまたはステンレスを好適に用いることができる。メッシュ210は、複数の開口部211を有する主面が、細胞懸濁液の流れ方向FLと交差する方向に延在するようにケース201内に設置されている。細胞懸濁液が、メッシュ210を通過することで、細胞懸濁液に含まれる凝集体(スフェア)が機械的に分割される。
 第1の流路F1上において細胞懸濁液の流れ方向の下流側に配置される分割処理部31Bが有するメッシュ210の開口部211の径(以下、孔径Lと称する)は、細胞懸濁液の流れ方向FLの上流側に配置される分割処理部31Aが有するメッシュ210の孔径Lよりも小さい。すなわち、第1の流路F1を通過する細胞懸濁液に含まれる凝集体(スフェア)は、分割処理部31Aにおいて孔径Lが相対的に大きいメッシュ210による分割処理が施された後、分割処理部31Bにおいて孔径Lが相対的に小さいメッシュ210による分割処理が施される。
 第2の流路F2上に配置される分割処理部31Cが有するメッシュ210の開口部211の孔径Lは、分割処理部31Bが有するメッシュ210の開口部211の孔径Lと同じである。すなわち、第2の流路F2を通過する細胞懸濁液に含まれる細胞の凝集体は、分割処理部31Aが有するメッシュ210の孔径Lよりも小さい孔径Lを有するメッシュ210による分割処理が施される。
 分割処理部31Aが有するメッシュ210の孔径Lは、例えば、分割処理前の凝集体(スフェア)の平均径よりも小さい大きさとされる。凝集体(スフェア)の平均径として、凝集体(スフェア)の各々を球形近似したときの、当該球形の直径の算術平均を適用することが可能である。分割処理部31B及び31Cが有するメッシュ210の孔径Lは、分割処理後の凝集体(スフェア)の目標サイズに応じて定められる。
 開示の技術の実施形態に係る細胞培養方法の工程A4において、工程A2において培養面12から剥離した細胞塊(コロニー)の状態に基づいて、分割処理の処理条件が決定される。開示の技術の実施形態に係る細胞培養方法の工程A5において、工程A4において決定した処理条件によって分割処理が行われる。本実施形態においては、制御部32が、撮像装置20によって取得された画像に基づいて、分割処理の処理条件を決定し、決定した処理条件によって分割処理を行うべく、バルブQ1~Q4及びポンプP1を制御する。
 図6は、制御部32が分割処理の処理条件を決定する処理の流れの一例を示すフローチャートである。
 ステップB1において、制御部32は、記憶部21に格納されている、培養面12から剥離される前の細胞塊の状態(図2B参照)を撮像した画像を記憶部21から読み出す。
 ステップB2において、制御部32は、ステップB1において読み出した画像から、培養面12から剥離される前の細胞塊(コロニー)の個数C1を導出する。なお、個数C1の導出は、公知の画像解析技術を用いて行うことが可能である。図2Bに示す例では、培養面12から剥離される前の細胞塊(コロニー)の個数が1つである場合が例示されているが、接着培養においては、2つ以上の細胞塊(コロニー)が培養面12に形成される場合もある。
 ステップB3において、制御部32は、記憶部21に格納されている、培養面12から剥離された後の細胞塊の状態(図3B参照)を撮像した画像を記憶部21から読み出す。
 ステップB4において、制御部32は、ステップB3において読み出した画像から、培養面12から剥離された後の細胞塊(コロニー)の個数C2を導出する。上記したように、剥離剤を用いて細胞塊(コロニー)を培養面12から剥離することで、細胞塊(コロニー)を形成する細胞同士の接着力が低下する。その結果、細胞塊(コロニー)は、複数の小片または単一細胞に分解されることから、通常C2>C1が成立する。なお、個数C2の導出は、公知の画像解析技術を用いて行うことが可能である。
 ステップB5において、制御部32は、培養面からの剥離前における細胞塊(コロニー)の個数C1と、培養面からの剥離後における細胞塊の個数C2との比である個数比C2/C1を、細胞同士の接着性を示す指標値Xとして導出する。ここで、細胞塊(コロニー)を形成する細胞同士の接着力が強い程、剥離剤による細胞塊(コロニー)の分解は生じにくくなり、培養面12から剥離された後の細胞塊(コロニー)の個数C2は、小さくなる。従って、個数比C2/C1を、細胞塊(コロニー)を形成する細胞同士の接着性を示す指標値Xとして用いることが可能である。また、細胞塊(コロニー)を形成する細胞同士の接着性は、浮遊培養において培地中を浮遊する凝集体(スフェア)を形成する細胞同士の接着性と相関性を有する。従って、指標値X(=C2/C1)は、浮遊培養において培地中を浮遊する凝集体(スフェア)を形成する細胞同士の接着性をも示す。例えば、指標値Xが小さい程、凝集体(スフェア)を形成する細胞同士の接着力は強いものと判定することができる。
 ステップB6において、制御部32は、ステップB5において導出した指標値Xが、所定の閾値X1以下であるか否かを判定する。制御部32は、指標値Xが閾値X1以下であると判定した場合(すなわち、凝集体(スフェア)を形成する細胞同士の接着力が比較的強い場合)、処理をステップB7に移行し、指標値Xが閾値X1よりも大きいと判定した場合(すなわち、凝集体(スフェア)を形成する細胞同士の接着力が比較的弱い場合)、処理をステップB8に移行する。
 ステップB7において、制御部32は、分割処理の処理条件として、孔径Lが段階的に小さくなるように構成された2段のメッシュ210によって凝集体(スフェア)を分割することを決定する。制御部32は、決定した処理条件によって分割処理を行うべく、バルブQ1、Q2を開状態、バルブQ3、Q4を閉状態に制御し、ポンプP1を駆動させる。これにより、図7Aに示すように、培養容器30から流出した細胞懸濁液は、第1の流路F1を通過する。第1の流路F1を通過する細胞懸濁液に含まれる凝集体(スフェア)は、分割処理部31Aにおいて、孔径Lが相対的に大きいメッシュ210によって分割され、その後、分割処理部31Bにおいて、孔径Lが相対的に小さいメッシュ210によって分割される。分割処理済みの凝集体(スフェア)を含む細胞懸濁液は、回収容器33に回収される。
 ステップB8において、制御部32は、分割処理の処理条件として、1段のメッシュによって凝集体(スフェア)を分割することを決定する。制御部32は、決定した処理条件によって分割処理を行うべく、バルブQ3、Q4を開状態、バルブQ1、Q2を閉状態に制御し、ポンプP1を駆動させる。これにより、図7Bに示すように、培養容器30から流出した細胞懸濁液は、第2の流路F2を通過する。第2の流路F2を通過する細胞懸濁液に含まれる凝集体(スフェア)は、分割処理部31Cにおいて、分割処理部31Bのメッシュ210と同じ孔径Lを有するメッシュ210によって分割される。分割処理済みの凝集体(スフェア)を含む細胞懸濁液は、回収容器33に回収される。
 以上のように、本実施形態に係る細胞培養方法及び細胞培養装置1によれば、接着培養において培養面12に形成される細胞塊(コロニー)が培養面12から剥離され、培養面12から剥離した細胞塊(コロニー)の状態に基づいて分割処理の処理条件が決定され、決定された処理条件によって分割処理が行われる。培養面12から剥離した細胞塊(コロニー)の状態は、浮遊培養において培地中を浮遊する凝集体(スフェア)を形成する細胞同士の接着性を反映する。従って、培養面12から剥離した細胞塊(コロニー)の状態に基づいて、分割処理の処理条件を決定することで、凝集体(スフェア)を形成する細胞同士の接着力に応じた適切な分割処理の処理条件を定めることができる。
 本実施形態に係る細胞培養方法及び細胞培養装置1によれば、培養面からの剥離前後における細胞塊の空間的パラメータの変化に基づいて、分割処理の処理条件が決定される。ここで細胞塊の空間的パラメータとは、細胞塊の個数、面積、周長、相互間距離、広がり具合等の空間的要素を含むパラメータである。
 本実施形態に係る細胞培養方法及び細胞培養装置1によれば、培養面12から剥離される前の細胞塊(コロニー)の個数C1と、培養面12から剥離された後の細胞塊(コロニー)の個数C2との比である個数比C2/C1が、凝集体(スフェア)を形成する細胞同士の接着性を示す指標値Xとして適用される。これにより、凝集体(スフェア)を形成する細胞同士の接着性を適切に評価することが可能となる。
 本実施形態に係る細胞培養方法及び細胞培養装置1によれば、指標値Xが、閾値X1以下である場合(すなわち、凝集体(スフェア)を形成する細胞同士の接着力が比較的強い場合)、凝集体(スフェア)は、分割処理部31Aにおいて、孔径Lが相対的に大きいメッシュ210によって分割され、その後、分割処理部31Bにおいて、孔径Lが相対的に小さいメッシュ210によって分割される。このように、細胞同士の接着力が比較的強い凝集体(スフェア)に対して、孔径Lが段階的に小さくなるように構成された2段のメッシュを用いて段階的に分割処理を行うことで、細胞へのダメージを抑制することができる。仮に、細胞同士の接着力が比較的強い凝集体(スフェア)に対して、孔径Lが相対的に小さいメッシュ210を備えた分割処理部31Bのみによる分割処理を行った場合には、細胞に加わるせん断力が過大となり、細胞へのダメージが大きくなる。
 一方、指標値Xが、閾値X1よりも大きい場合(すなわち、凝集体(スフェア)を形成する細胞同士の接着力が比較的弱い場合)、凝集体(スフェア)は、分割処理部31Cにおいて、分割処理部31Bのメッシュ210と同じ孔径Lを有するメッシュ210によって分割される。細胞同士の接着力が比較的弱い凝集体(スフェア)に対しては、孔径Lが相対的に小さいメッシュ210のみによる分割処理を行った場合でも、細胞に加わるせん断力は過大とならず、細胞へのダメージは小さい。細胞同士の接着力が比較的弱い凝集体(スフェア)に対しては、より少ない段数のメッシュによって分割処理を行うことで細胞へのダメージを抑制することができる。
 なお、本実施形態においては、第1の流路F1の途中に2つの分割処理部31A及び31Bを設け、第2の流路F2に、1つの分割処理部31Cを設ける場合を例示したが、この態様に限定されない。第1の流路F1の途中に3つ以上の分割処理部を設け、第1の流路F1を通過する凝集体(スフェア)に対して、孔径Lが段階的に小さくなるように構成された3段以上のメッシュによって分割処理を行ってもよい。また、第1の流路F1の途中に設けられた分割処理部の個数よりも少ない2個以上の分割処理部を第2の流路に設け、第2の流路F2を通過する凝集体(スフェア)に対して、孔径Lが段階的に小さくなるように構成された2段以上のメッシュによって分割処理を行ってもよい。例えば、第1の流路F1の途中に設けられるメッシュを3段構成とし、第2の流路F2の途中に設けられるメッシュを2段構成としてもよい。
[第2の実施形態]
 図8は、開示の技術の第2の実施形態に係る、制御部32が分割処理の処理条件を決定する処理の流れの一例を示すフローチャートである。
 ステップB11において、制御部32は、記憶部21に格納されている、培養面12から剥離される前の細胞塊の状態(図2B参照)を撮像した画像を記憶部21から読み出す。
 ステップB12において、制御部32は、ステップB11において読み出した画像から、培養面12から剥離される前の細胞塊(コロニー)の面積の合算値S1を導出する。培養面12から剥離される前の細胞塊(コロニー)が1である場合、当該細胞塊(コロニー)の面積がS1に相当する。培養面12から剥離される前の細胞塊(コロニー)が2つ以上である場合、細胞塊(コロニー)の各々の面積を合計した面積がS1に相当する。細胞塊(コロニー)の面積の合算値S1の導出は、公知の画像解析技術を用いて行うことが可能である。
 ステップB13において、制御部32は、記憶部21に格納されている、培養面12から剥離された後の細胞塊の状態(図3B参照)を撮像した画像を記憶部21から読み出す。
 ステップB14において、制御部32は、ステップB13において読み出した画像から、図9に示すように、剥離剤によって分解され、拡散した細胞塊100のうち、最外周に位置する細胞塊100の各々に接する輪郭線300を導出する。輪郭線300は、例えば円形で近似してもよい。続いて、制御部32は、輪郭線300に囲まれた領域の面積S2を導出する。上記したように、剥離剤を用いて細胞塊(コロニー)を培養面12から剥離することで、細胞塊(コロニー)を形成する細胞同士の接着力が低下する。その結果、細胞塊(コロニー)は、複数の小片に分解され、外側に拡散することから、通常S2>S1が成立する。輪郭線300の導出及び面積S2の導出は、公知の画像解析技術を用いて行うことが可能である。
 ステップB15において、制御部32は、培養面12から剥離される前の細胞塊(コロニー)の面積の合算値S1と、輪郭線300に囲まれた領域の面積S2との比である面積比S2/S1を細胞同士の接着性を示す指標値Xとして導出する。ここで、細胞塊(コロニー)を形成する細胞同士の接着力が強い程、剥離剤による細胞塊(コロニー)の分解は生じにくくなり、輪郭線300に囲まれた領域の面積S2は小さくなる。従って、面積比S2/S1を、細胞塊(コロニー)を形成する細胞同士の接着性を示す指標値Xとして用いることが可能である。また、細胞塊(コロニー)を形成する細胞同士の接着性は、浮遊培養において培地中を浮遊する凝集体(スフェア)を形成する細胞同士の接着性と相関性を有する。従って、指標値X(=S2/S1)は、浮遊培養において培地中を浮遊する凝集体(スフェア)を形成する細胞同士の接着性をも示す。例えば、指標値Xが小さい程、凝集体(スフェア)を形成する細胞同士の接着力は強いものと判定することができる。
 ステップB16において、制御部32は、ステップB15において導出した指標値Xが、所定の閾値X2以下であるか否かを判定する。制御部32は、指標値Xが閾値X2以下であると判定した場合(すなわち、凝集体(スフェア)を形成する細胞同士の接着力が比較的強い場合)、処理をステップB17に移行し、指標値Xが閾値X2よりも大きいと判定した場合(すなわち、凝集体(スフェア)を形成する細胞同士の接着力が比較的弱い場合)、処理をステップB18に移行する。
 ステップB17において、制御部32は、分割処理の処理条件として、孔径Lが段階的に小さくなるように構成された2段のメッシュによって凝集体(スフェア)を分割することを決定する。制御部32は、決定した処理条件によって分割処理を行うべく、バルブQ1、Q2を開状態、バルブQ3、Q4を閉状態に制御し、ポンプP1を駆動させる。これにより、図7Aに示すように、培養容器30から流出した細胞懸濁液は、第1の流路F1を通過する。第1の流路F1を通過する細胞懸濁液に含まれる凝集体(スフェア)は、分割処理部31Aにおいて、孔径Lが相対的に大きいメッシュ210によって分割され、その後、分割処理部31Bにおいて、孔径Lが相対的に小さいメッシュ210によって分割される。分割処理済みの凝集体(スフェア)を含む細胞懸濁液は、回収容器33に回収される。
 ステップB18において、制御部32は、分割処理の処理条件として、凝集体(スフェア)を1段のメッシュによって分割することを決定する。制御部32は、決定した処理条件によって分割処理を行うべく、バルブQ3、Q4を開状態、バルブQ1、Q2を閉状態に制御し、ポンプP1を駆動させる。これにより、図7Bに示すように、培養容器30から流出した細胞懸濁液は、第2の流路F2を通過する。第2の流路F2を通過する細胞懸濁液に含まれる凝集体(スフェア)は、分割処理部31Cにおいて、分割処理部31Bのメッシュ210と同じ孔径Lを有するメッシュ210による分割処理が施される。分割処理済みの凝集体(スフェア)を含む細胞懸濁液は、回収容器33に回収される。
 本実施形態に係る細胞培養方法及び細胞培養装置によれば、第1の実施形態と同様、凝集体(スフェア)を形成する細胞同士の接着力に応じた適切な分割処理の処理条件を定めることができる。
 本実施形態に係る細胞培養方法及び細胞培養装置によれば、培養面12から剥離される前の細胞塊(コロニー)の面積の合算値S1と、培養面12から剥離された後の最外周に位置する細胞塊(コロニー)に接する輪郭線300に囲まれた領域の面積S2との比X(=S2/S1)が、凝集体(スフェア)を形成する細胞同士の接着性を示す指標値として適用される。これにより、指標値Xとして個数比C2/C1を適用する場合と同様、凝集体(スフェア)を形成する細胞同士の接着性を適切に評価することが可能となる。
[第3の実施形態]
 図10は、開示の技術の第3の実施形態に係る細胞培養装置1Aの構成の一例を示す図である。細胞培養装置1Aは、培養容器30と回収容器33との間に、単一の分割処理部31を有する。
 図11は、制御部32が分割処理の処理条件を決定する処理の流れの一例を示すフローチャートである。なお、ステップB21からステップB26までの処理は、図6に示すフローチャートのおけるステップB1からステップB6と同一であるため、説明は省略する。
 制御部32は、ステップB26において、指標値Xが閾値X1以下であると判定した場合(すなわち、凝集体(スフェア)を形成する細胞同士の接着力が比較的強い場合)、ステップB27において、分割処理の処理条件として、凝集体(スフェア)が、分割処理部31のメッシュを通過する速度を相対的に低い速度V1に設定することを決定する。制御部32は、決定した処理条件によって分割処理を行うべく、バルブQ1、Q2を開状態に制御し、ポンプP1を速度V1に対応した回転数で駆動させる。分割処理済みの凝集体(スフェア)を含む細胞懸濁液は、回収容器33に回収される。
 一方、制御部32は、ステップB26において、指標値Xが閾値X1よりも大きいと判定した場合(すなわち、凝集体(スフェア)を形成する細胞同士の接着力が比較的弱い場合)、ステップB28において、分割処理の処理条件として、凝集体(スフェア)が、分割処理部31のメッシュを通過する速度を相対的に高い速度V2(>V1)に設定することを決定する。制御部32は、決定した処理条件によって分割処理を行うべく、バルブQ1、Q2を開状態に制御し、ポンプP1を速度V1に対応した回転数で駆動させる。分割処理済みの凝集体(スフェア)を含む細胞懸濁液は、回収容器33に回収される。
 本実施形態に係る細胞培養方法及び細胞培養装置によれば、第1の実施形態と同様、凝集体(スフェア)を形成する細胞同士の接着力に応じた適切な分割処理の処理条件を定めることができる。
 本実施形態に係る細胞培養方法及び細胞培養装置1によれば、指標値Xが、閾値X1以下である場合(すなわち、凝集体(スフェア)を形成する細胞同士の接着力が比較的強い場合)、凝集体(スフェア)が分割処理部31のメッシュを通過する速度が、相対的に低い速度V1とされる。このように、細胞同士の接着力が比較的強い凝集体(スフェア)に対する分割処理を、相対的に低い速度V1で行うことで、細胞へのダメージを抑制することができる。仮に、細胞同士の接着力が比較的強い凝集体(スフェア)に対する分割処理を、速度V1よりも高い速度V2で行った場合には、細胞に加わるせん断力が過大となり、細胞へのダメージが大きくなる。
 一方、指標値Xが、閾値X1よりも大きい場合(すなわち、凝集体(スフェア)を形成する細胞同士の接着力が比較的弱い場合)、凝集体(スフェア)が分割処理部31のメッシュを通過する速度が、相対的に高い速度V2とされる。細胞同士の接着力が比較的弱い凝集体(スフェア)に対しては、凝集体(スフェア)が分割処理部31のメッシュを通過する速度を高くしても、細胞に加わるせん断力は過大とならず、細胞へのダメージは小さい。細胞同士の接着力が比較的弱い凝集体(スフェア)に対しては、凝集体(スフェア)が分割処理部31のメッシュを通過する速度が、過度に低くならないようにすることで、細胞へのダメージを抑制することができる。
 なお、本実施形態では、単一の分割処理部31によって分割処理を行う場合を例示したが、直列接続された複数の分割処理部31を設け、孔径Lが段階的に小さくなるように構成された2段以上のメッシュによって分割処理を行ってもよい。
 また、第2の実施形態(図8参照)の例に倣って、面積比S2/S1を、凝集体(スフェア)を形成する細胞同士の接着性を示す指標値として適用してもよい。
 日本出願特願2018-163900号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
1、1A 細胞培養装置
10 培養容器
11 培地
12 培養面
20 撮像装置
21 記憶部
30 培養容器
31、31A、31B、31C 分割処理部
32 制御部
33 回収容器
100 細胞塊
300 輪郭線
201 ケース
202 流入口
203 流出口
210 メッシュ
211 開口部
212 繊維状部材
F1、F2 流路
P1 ポンプ
Q1、Q2、Q3、Q4 バルブ

Claims (10)

  1.  培養面に細胞を接着させて培養する接着培養を行い、
     前記接着培養において前記培養面に形成される細胞塊を前記培養面から剥離し、
     前記培養面から剥離した前記細胞塊を形成する複数の細胞を培地中に浮遊させた状態で培養する浮遊培養を行い、
     前記培養面から剥離した前記細胞塊の状態に基づいて、前記浮遊培養において形成される細胞の凝集体をメッシュに通すことにより分割する分割処理の処理条件を決定し、
     決定した前記処理条件によって前記分割処理を行う
     細胞培養方法。
  2.  前記培養面からの剥離前後における前記細胞塊の空間的パラメータの変化に基づいて、前記分割処理の処理条件を決定する
     請求項1に記載の細胞培養方法。
  3.  前記培養面からの剥離前における前記細胞塊の個数C1と、前記培養面からの剥離後における前記細胞塊の個数C2との比である個数比C2/C1に基づいて、前記凝集体の分割方法を決定する
     請求項1または請求項2に記載の細胞培養方法。
  4.  前記個数比C2/C1が所定値よりも小さい場合には、前記凝集体を、孔径が相対的に大きい第1のメッシュに通した後、孔径が相対的に小さい第2のメッシュに通す
     請求項3に記載の細胞培養方法。
  5.  前記個数比C2/C1が前記所定値よりも大きい場合には、前記凝集体が通過するメッシュの段数を、前記個数比C2/C1が所定値よりも小さい場合と比較して少なくする
     請求項4に記載の細胞培養方法。
  6.  前記細胞塊を撮像した画像に基づいて、前記個数比C2/C1を導出する
     請求項3から請求項5のいずれか1項に記載の細胞培養方法。
  7.  前記凝集体の分割は、前記凝集体をメッシュに通すことにより行われ、
     前記個数比C2/C1が所定値よりも小さい場合には、前記凝集体が前記メッシュを通過する速度を相対的に低くし、
     前記個数比C2/C1が前記所定値よりも大きい場合には、前記凝集体が前記メッシュを通過する速度を相対的に高くする、
     請求項3に記載の細胞培養方法。
  8.  前記培養面からの剥離前における前記細胞塊の各々の面積の合算値S1と、前記培養面からの剥離後における前記細胞塊のうち、最外周に位置する細胞塊の外縁に接する輪郭線に囲まれた領域の面積S2との比である面積比S2/S1に基づいて、前記細胞塊を分割する分割方法を決定する
     請求項1または請求項2に記載の細胞培養方法。
  9.  前記細胞塊及び前記凝集体を形成する細胞は幹細胞である
     請求項1から請求項8のいずれか1項に記載の細胞培養方法。
  10.  細胞の凝集体を分割するメッシュと、
     培養面に細胞を接着した状態で培養する接着培養において、前記培養面から剥離した細胞塊の状態に基づいて、前記凝集体を前記メッシュに通すことにより分割する分割処理の処理条件を決定する制御部と、
     を含む細胞培養装置。
PCT/JP2019/029990 2018-08-31 2019-07-31 細胞培養方法及び細胞培養装置 WO2020044923A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018163900 2018-08-31
JP2018-163900 2018-08-31

Publications (1)

Publication Number Publication Date
WO2020044923A1 true WO2020044923A1 (ja) 2020-03-05

Family

ID=69643668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029990 WO2020044923A1 (ja) 2018-08-31 2019-07-31 細胞培養方法及び細胞培養装置

Country Status (1)

Country Link
WO (1) WO2020044923A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121840A1 (ja) * 2015-01-29 2016-08-04 国立大学法人 東京大学 細胞の培養方法、細胞の凝集体、細胞凝集制御剤、及び、培地
WO2018143102A1 (ja) * 2017-01-31 2018-08-09 富士フイルム株式会社 細胞培養装置、撮像ユニット及び培養監視方法
WO2018154791A1 (ja) * 2017-02-27 2018-08-30 剛士 田邊 細胞処理システム及び細胞処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121840A1 (ja) * 2015-01-29 2016-08-04 国立大学法人 東京大学 細胞の培養方法、細胞の凝集体、細胞凝集制御剤、及び、培地
WO2018143102A1 (ja) * 2017-01-31 2018-08-09 富士フイルム株式会社 細胞培養装置、撮像ユニット及び培養監視方法
WO2018154791A1 (ja) * 2017-02-27 2018-08-30 剛士 田邊 細胞処理システム及び細胞処理装置

Similar Documents

Publication Publication Date Title
KR102580754B1 (ko) 생물반응기 및 이의 사용 방법
JP6979687B2 (ja) 幹細胞の凝集塊の集団の調製方法
US20180245041A1 (en) Pluripotent stem cell production system
US20160304823A1 (en) Device and system for cell culture
WO2014115799A1 (ja) 多能性幹細胞の継代培養方法
WO2020044923A1 (ja) 細胞培養方法及び細胞培養装置
JP6942448B2 (ja) 細胞培養容器、これを用いた細胞培養システム、および細胞培養方法
JP2018023291A (ja) 細胞培養容器、これを用いた細胞培養システム、および細胞培養方法
US20210317394A1 (en) Cell culture system and cell mass production method using same
CN113430110A (zh) 一种用于自动化可持续大规模3d细胞生产系统装置
JP2004236553A (ja) マイクロキャリア並びにこれを使用した細胞培養装置及び細胞培養方法
WO2015129577A1 (ja) 細胞培養治具およびこの細胞培養治具を用いた細胞培養方法
CN216155857U (zh) 一种用于自动化可持续大规模3d细胞生产系统装置
WO2022258037A1 (zh) 一种培养装置及基于培养装置的培养方法
US20210115379A1 (en) Cell culture method and cell culture apparatus
CN116964188A (zh) 生物反应器及其使用方法
JP2017046592A (ja) 細胞培養容器および細胞継代培養システム並びに細胞継代培養方法
JP6952297B2 (ja) 細胞培養用中空糸膜及び細胞培養方法
JP2020036608A (ja) 多能性幹細胞製造システム、幹細胞の誘導方法、幹細胞の浮遊培養方法、幹細胞の浮遊培養器、人工多能性幹細胞の作製方法、及び動物細胞から特定の体細胞を作製する方法
Huang et al. Modulating the behaviors of C3A cells via surface charges of polyelectrolyte multilayers
WO2023163107A1 (ja) 細胞分離装置および細胞分離方法
WO2020044984A1 (ja) 細胞培養方法及び細胞培養装置
CN112570050B (zh) 一种流体输运控制系统及方法
CN112805365A (zh) 用于分割细胞块的器件、及使用其分割细胞块的方法
JP2021065186A (ja) 接着性細胞を静置培養するための装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP