WO2020044386A1 - 冷凍装置および熱源側ユニット - Google Patents

冷凍装置および熱源側ユニット Download PDF

Info

Publication number
WO2020044386A1
WO2020044386A1 PCT/JP2018/031488 JP2018031488W WO2020044386A1 WO 2020044386 A1 WO2020044386 A1 WO 2020044386A1 JP 2018031488 W JP2018031488 W JP 2018031488W WO 2020044386 A1 WO2020044386 A1 WO 2020044386A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
flow path
unit
side heat
source side
Prior art date
Application number
PCT/JP2018/031488
Other languages
English (en)
French (fr)
Inventor
誠 江上
英希 大野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020539164A priority Critical patent/JP7229256B2/ja
Priority to GB2102395.7A priority patent/GB2591352B/en
Priority to PCT/JP2018/031488 priority patent/WO2020044386A1/ja
Publication of WO2020044386A1 publication Critical patent/WO2020044386A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0401Refrigeration circuit bypassing means for the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0403Refrigeration circuit bypassing means for the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube

Definitions

  • the present invention relates to a refrigeration apparatus and a heat source side unit.
  • JP-A-2006-336967 discloses a refrigeration apparatus in which high-temperature refrigerant discharged from a compressor is supplied to a heat exchanger to be defrosted during a defrosting operation.
  • the refrigerant supplied from the compressor to the heat exchanger to be defrosted during the defrosting operation flows out of the heat exchanger and is compressed without flowing through another heat exchanger. Inhaled by the machine. Therefore, in the refrigerating apparatus, it is necessary to limit the amount of heat supplied to the heat exchanger to be defrosted, and it has been difficult to increase the defrosting efficiency.
  • a main object of the present invention is to provide a refrigeration apparatus having a higher defrosting efficiency than a conventional refrigeration apparatus and a heat source side unit constituting a part of the refrigeration apparatus.
  • the refrigeration apparatus includes a refrigerant circuit through which the refrigerant circulates.
  • the refrigerant circuit includes a compressor, a heat source side heat exchanger, a first pressure reducing unit, a use side heat exchanger, a second pressure reducing unit, an auxiliary heat exchanger, and a flow switching unit.
  • the heat source side heat exchanger and the auxiliary heat exchanger function as a first condenser
  • the use side heat exchanger functions as a first evaporator
  • the refrigerant is a compressor, a first condenser, A first state in which the first decompression section and the first evaporator sequentially flow
  • the use-side heat exchanger acts as a second condenser
  • the auxiliary heat exchanger acts as a second evaporator
  • the refrigerant is supplied to the compressor.
  • auxiliary heat exchanger acts as an evaporator in the second state
  • a refrigeration unit having a higher defrosting efficiency than a conventional refrigeration unit and a heat source side unit constituting a part of the refrigeration unit are provided. Can be provided.
  • FIG. 3 is a diagram illustrating a refrigeration apparatus and a heat source side unit according to Embodiment 1.
  • FIG. 2 is a diagram illustrating a first state of the refrigeration apparatus and the heat source side unit illustrated in FIG. 1.
  • FIG. 2 is a diagram illustrating a second state of the refrigeration apparatus and the heat source side unit illustrated in FIG. 1.
  • FIG. 6 is a diagram illustrating a refrigeration apparatus and a heat source side unit according to Embodiment 2.
  • FIG. 5 is a diagram illustrating a first state of the refrigeration apparatus and the heat source side unit illustrated in FIG. 4.
  • FIG. 5 is a diagram illustrating a second state of the refrigeration apparatus and the heat source side unit illustrated in FIG. 4. It is a figure which shows the refrigerating apparatus and heat source side unit which concern on Embodiment 3.
  • FIG. 8 is a diagram illustrating a second state of the refrigeration apparatus and the heat source side unit illustrated in FIG. 7. It is a figure which shows the refrigerating apparatus and heat source side unit which concern on Embodiment 4. It is a figure which shows the 1st state of the refrigerating apparatus and heat source side unit shown in FIG. It is a figure which shows the 2nd state of the refrigerating apparatus and heat source side unit shown in FIG. It is a figure which shows the modification of the refrigerating apparatus and heat-source side unit which concern on Embodiment 4.
  • FIG. 8 is a diagram illustrating a second state of the refrigeration apparatus and the heat source side unit illustrated in FIG. 7. It is a figure which shows the refrigerating apparatus and heat source side unit which concern on Embodiment 4. It is a figure which shows the 1st state of the refrigerating apparatus and heat source side unit shown in FIG. It is a figure which shows the 2nd state of the refrigerating apparatus and heat source side unit shown in FIG. It is a
  • FIG. 5 is a diagram showing another modification of the refrigeration apparatus and the heat source side unit according to Embodiment 1.
  • FIG. 7 is a diagram illustrating a first state of still another modification of the refrigeration apparatus and the heat source side unit according to Embodiment 1.
  • FIG. 16 is a diagram illustrating a second state of the refrigeration apparatus and the heat source side unit illustrated in FIG. 15.
  • FIG. 17 is a diagram illustrating a first state of a modification of the refrigerating apparatus and the heat source side unit illustrated in FIGS. 15 and 16.
  • FIG. 6 is a diagram showing still another modification of the refrigeration apparatus and the heat source side unit according to Embodiment 1.
  • refrigeration apparatus 100 includes a refrigerant circuit in which refrigerant circulates.
  • the refrigerant circuit includes a compressor 1, a heat source side heat exchanger 2, an auxiliary heat exchanger 3, a first decompression unit 4, a use side heat exchanger 5, a second decompression unit 6, a plurality of flow path switching units, and a plurality of Includes rectifier.
  • the refrigeration apparatus 100 further includes a first fan 7, a second fan 8, and a third fan 9.
  • the refrigerant is not particularly limited, but is, for example, a refrigerant having a low global warming potential (GWP) and includes at least one selected from the group consisting of R410A, R32, and CO 2 .
  • the refrigerant may be a mixed refrigerant containing at least one selected from the above group.
  • the compressor 1 has a suction port 1A through which the refrigerant is sucked and a discharge port 1B through which the refrigerant is discharged.
  • the compressor 1 is, for example, an inverter compressor whose rotation speed is inverter-controlled.
  • the heat source side heat exchanger 2, the auxiliary heat exchanger 3, and the use side heat exchanger 5 are provided so as to perform, for example, heat exchange between refrigerant and air.
  • the heat source side heat exchanger 2 has a first outflow / inflow portion 2A and a second outflow / inflow portion 2B through which the refrigerant flows.
  • the auxiliary heat exchanger 3 has a third outflow / inflow portion 3A and a fourth outflow / inflow portion 3B through which the refrigerant flows.
  • the use side heat exchanger 5 has a fifth outflow / inflow portion 5A and a sixth outflow / inflow portion 5B through which the refrigerant flows in and out.
  • the first pressure reducing section 4 and the second pressure reducing section 6 are, for example, electronic expansion valves whose opening degree can be adjusted. Note that the first decompression unit 4 and the second decompression unit 6 may be capillaries whose opening degree cannot be adjusted.
  • the use side heat exchanger 5 is disposed inside a space to be cooled by the refrigeration apparatus 100, for example, in a freezer.
  • the compressor 1, the heat source side heat exchanger 2, the auxiliary heat exchanger 3, the first decompression unit 4, and the second decompression unit 6 are arranged outside the space, for example, outside the freezer.
  • the first fan 7 supplies air outside the freezer to the heat source side heat exchanger 2.
  • the second fan 8 supplies air outside the freezer to the auxiliary heat exchanger 3.
  • the third fan 9 supplies the air in the freezer to the use-side heat exchanger 5.
  • the plurality of flow path switching units are provided so as to switch the circulation path of the refrigerant in the refrigerant circuit to switch between a first state and a second state described later.
  • the plurality of channel switching units include, for example, a first channel switching unit and a second channel switching unit.
  • the first flow path switching unit 10A includes, for example, a first on-off valve 11, a second on-off valve 12, a fifth on-off valve 15, and a sixth on-off valve 16.
  • the second flow path switching unit 10B has, for example, a third on-off valve 13 and a fourth on-off valve 14. Note that the first flow path switching unit may have two three-way valves instead of the four on-off valves.
  • the second flow path switching unit may have one three-way valve instead of two on-off valves.
  • the refrigerant circuit includes a first flow path and a second flow path that connect between the discharge port 1B of the compressor 1 and the fifth inflow / outflow portion 5A of the use side heat exchanger 5, and a sixth flow path of the use side heat exchanger 5. It has a third flow path and a fourth flow path that connect between the inflow / outflow portion 5B and the suction port 1A of the compressor 1.
  • the first flow path connects the discharge port 1B of the compressor 1 and the fifth inflow / outflow portion 5A of the use side heat exchanger 5 via the auxiliary heat exchanger 3 and the heat source side heat exchanger 2.
  • the discharge port 1B of the compressor 1, the auxiliary heat exchanger 3, the heat source side heat exchanger 2, the first decompression unit 4, and the fifth inflow / outlet unit 5A of the use side heat exchanger 5 are sequentially connected in series.
  • a first on-off valve 11 and a fifth on-off valve 15 for opening and closing the first flow path are arranged in the first flow path.
  • the first on-off valve 11 is disposed between the discharge port 1B of the compressor 1 and the third inflow / outflow portion 3A of the auxiliary heat exchanger 3.
  • the fifth on-off valve 15 is provided between the second inflow / outflow portion 2B of the heat source side heat exchanger 2 and the first pressure reducing portion 4 and between the discharge port 1B of the compressor 1 and the first pressure reducing portion 4. Are located.
  • the second flow path connects between the discharge port 1B of the compressor 1 and the fifth inflow / outflow portion 5A of the use side heat exchanger 5 without passing through the auxiliary heat exchanger 3 and the heat source side heat exchanger 2.
  • the discharge port 1B of the compressor 1 and the fifth inflow / outflow portion 5A of the use side heat exchanger 5 are connected in series.
  • a second on-off valve 12 and a sixth on-off valve 16 for opening and closing the second flow path are arranged in the second flow path.
  • the second on-off valve 12 is disposed between the discharge port 1B of the compressor 1 and the fifth inflow / outflow portion 5A of the use-side heat exchanger 5.
  • the sixth on-off valve 16 is located between the second inflow / outflow portion 2B of the heat source side heat exchanger 2 and the fifth inflow / outflow portion 5A of the use side heat exchanger 5, and is connected to the discharge port 1B of the compressor 1 and the use side. It is arranged between the heat exchanger 5 and the fifth outflow / inflow portion 5A.
  • the first flow path and the second flow path have a first branch point, a second branch point, a fifth branch point, and a sixth branch point where the refrigerant branches or merges.
  • the first branch point, the second branch point, the fifth branch point, and the sixth branch point are sequentially connected in series.
  • the first branch point is located upstream of the third inflow / outflow portion 3A of the auxiliary heat exchanger 3 in the first flow path.
  • the second branch point is located downstream of the second inflow / outflow section 2B of the heat source side heat exchanger 2 and upstream of the first pressure reducing section 4 in the first flow path.
  • the fifth branch point is disposed downstream of the second branch point and upstream of the first pressure reducing unit 4 in the first flow path.
  • the sixth branch point is disposed downstream of the first pressure reducing unit 4 in the first flow path.
  • the first flow path and the second flow path connect the first branch point and the second branch point in parallel, and connect the fifth branch point and the sixth branch point in parallel.
  • the first flow path and the second flow path connect the discharge port 1 ⁇ / b> B of the compressor 1 and the first branch point by a common pipeline, and connect the sixth branch point and the use side heat exchanger 5.
  • the fifth inflow / outflow portion 5A is connected by a common pipeline.
  • the second flow path has a first bypass flow path and a second bypass flow path branched from the first flow path.
  • the first bypass flow path connects between the first branch point and the second branch point.
  • the second bypass flow path connects between the fifth branch point and the sixth branch point.
  • the first bypass flow path bypasses the auxiliary heat exchanger 3 and the heat source side heat exchanger 2.
  • the second bypass flow path bypasses the first pressure reducing unit 4.
  • the first flow path switching unit 10A is provided to switch between the first flow path and the first bypass flow path.
  • the third flow path switching unit 10C is provided to switch between the first flow path and the second bypass flow path.
  • the second flow path is formed by closing the first flow path and opening the first bypass flow path and the second bypass flow path by the first flow path switching unit 10A and the third flow path switching unit 10C. Is done.
  • the first flow path and the second flow path are formed of a common conduit, and include a first common flow path C1, a second common flow path C2, and a fifth common flow path. It has a road C5. Further, the first flow path has a first non-common flow path L1 and a fifth non-common flow path L5 that are configured by different pipelines from the second flow path. The second flow path has a second non-common flow path L2 and a sixth non-common flow path L6 that are configured by different pipes from the first flow path.
  • One end of the first common flow path C1 is connected to the discharge port 1B of the compressor 1.
  • the other end of the first common channel C1 is connected to a first branch point.
  • the first common channel C1 is arranged between the discharge port 1B of the compressor 1 and the first channel switching unit 10A.
  • One end of the second common flow path C2 is connected to the second branch point.
  • the other end of the second common flow path C2 is connected to a fifth branch point.
  • the second common flow path C2 is disposed between the second inflow / outflow section 2B of the heat source side heat exchanger 2 and the first pressure reduction section 4 in the first flow path.
  • One end of the fifth common channel C5 is connected to the sixth branch point.
  • the other end of the fifth common flow path C5 is connected to the fifth inflow / outflow portion 5A of the use side heat exchanger 5.
  • the fifth common flow path C5 is disposed between the first pressure reducing section 4 and the fifth inflow / outflow section 5A of the use side heat exchanger 5 in the first flow path.
  • the first non-common channel L1 and the second non-common channel L2 connect the first common channel C1 and the second common channel C2 in parallel with each other.
  • One end of each of the first non-common channel L1 and the second non-common channel L2 is connected to a first branch point.
  • the other ends of the first non-common channel L1 and the second non-common channel L2 are connected to a second branch point.
  • the second non-common channel L2 constitutes the first bypass channel.
  • the fifth non-common channel L5 and the sixth non-common channel L6 connect the second common channel C2 and the fifth common channel C5 in parallel with each other.
  • One end of each of the fifth non-common channel L5 and the sixth non-common channel L6 is connected to a fifth branch point.
  • the other ends of the fifth non-common channel L5 and the sixth non-common channel L6 are connected to a sixth branch point.
  • the sixth non-common channel L6 constitutes the second bypass channel.
  • the first common channel C1, the first non-common channel L1, the second common channel C2, the fifth non-common channel L5, and the fifth common channel C5 are connected in series.
  • the first common channel C1, the second non-common channel L2, the second common channel C2, the sixth non-common channel L6, and the fifth common channel C5 are connected in series. .
  • the first non-common flow path L1 includes the auxiliary heat exchanger 3 and the heat source side heat exchanger 2.
  • the fifth non-common channel L5 includes the first pressure reducing unit 4. That is, the first flow path connects the auxiliary heat exchanger 3, the heat source side heat exchanger 2, and the first depressurization between the discharge port 1B of the compressor 1 and the fifth inflow / outflow portion 5A of the use side heat exchanger 5. Connect via section 4.
  • the first non-common flow path L1 further includes a first on-off valve 11.
  • the fifth non-common flow path L5 further includes a fifth on-off valve 15. That is, when the first on-off valve 11 and the fifth on-off valve 15 are opened, the refrigerant flows through the first flow path.
  • the second non-common flow path L2 does not include the auxiliary heat exchanger 3 and the heat source side heat exchanger 2.
  • the sixth non-common channel L6 does not include the first pressure reducing unit 4. That is, the second flow path connects the auxiliary heat exchanger 3, the heat source side heat exchanger 2, and the first decompression section between the discharge port 1 ⁇ / b> B of the compressor 1 and the fifth inflow / outlet section 5 ⁇ / b> A of the use side heat exchanger 5. The connection is made without passing through the section 4.
  • the second non-common flow path L2 includes the second on-off valve 12.
  • the sixth non-common channel L6 includes a sixth on-off valve 16. That is, when the second on-off valve 12 and the sixth on-off valve 16 are opened, the refrigerant flows through the second flow path.
  • the third flow path connects between the sixth inflow / outflow portion 5B of the use side heat exchanger 5 and the suction port 1A of the compressor 1 via the second decompression portion 6 and the auxiliary heat exchanger 3.
  • the sixth inflow / outlet portion 5B of the use side heat exchanger 5, the second decompression portion 6, the auxiliary heat exchanger 3, and the suction port 1A of the compressor 1 are connected in series in this order.
  • a third on-off valve 13 that opens and closes the third flow path is disposed in the third flow path.
  • the third on-off valve 13 is disposed between the fourth inflow / outflow portion 3B of the auxiliary heat exchanger 3 and the suction port 1A of the compressor 1.
  • the fourth flow path connects between the sixth inflow / outflow portion 5B of the use side heat exchanger 5 and the suction port 1A of the compressor 1 without passing through the second decompression portion 6 and the auxiliary heat exchanger 3.
  • the sixth inflow / outflow portion 5B of the use side heat exchanger 5 and the suction port 1A of the compressor 1 are connected in series.
  • a fourth on-off valve 14 for opening and closing the fourth flow path is disposed in the fourth flow path.
  • the fourth on-off valve 14 is arranged between the sixth inflow / outflow portion 5B of the use side heat exchanger 5 and the suction port 1A of the compressor 1.
  • the third flow path and the fourth flow path have a third branch point and a fourth branch point where the refrigerant branches or merges.
  • the third branch point and the fourth branch point are connected in series in order.
  • the third branch point is located upstream of the second pressure reducing unit 6 in the third flow path.
  • the fourth branch point is disposed downstream of the fourth inflow / outflow portion 3B of the auxiliary heat exchanger 3 in the third flow path.
  • the third flow path and the fourth flow path connect the third branch point and the fourth branch point in parallel.
  • the third flow path and the fourth flow path connect the sixth inflow / outlet portion 5B of the use side heat exchanger 5 and the third branch point by a common pipeline, and the fourth branch point and the compressor
  • the first suction port 1A is connected to the first suction port 1A by a common conduit.
  • the fourth flow path has a third bypass flow path branched from the third flow path.
  • One end of the third bypass flow path is connected to the third branch point, and the other end of the third bypass flow path is connected to the fourth branch point.
  • the second flow path switching unit 10B is provided to switch between the third flow path and the third bypass flow path.
  • the fourth flow path is formed by the second flow path switching unit 10B closing the third flow path and opening the third bypass flow path.
  • the third flow path and the fourth flow path have a third common flow path C3 and a fourth common flow path C4 formed of a common conduit. Further, the third flow path has a third non-common flow path L3 configured by a pipe different from the fourth flow path. The fourth flow path has a fourth non-common flow path L4 configured by a pipe different from the third flow path.
  • One end of the third common flow path C3 is connected to the sixth inflow / outflow portion 5B of the use side heat exchanger 5. That is, the third common flow path C3 is connected to the fifth common flow path C5 via the use side heat exchanger 5. The other end of the third common channel C3 is connected to a third branch point.
  • the third common flow channel C3 is disposed between the sixth inflow / outflow portion 5B of the use side heat exchanger 5 and the second pressure reduction portion 6 in the third flow channel.
  • One end of the fourth common flow path C4 is connected to the fourth branch point.
  • the other end of the fourth common flow path C4 is connected to the suction port 1A of the compressor 1.
  • the fourth common flow path C4 is disposed between the second flow path switching unit 10B and the suction port 1A of the compressor 1.
  • the third non-common channel L3 and the fourth non-common channel L4 connect the third common channel C3 and the fourth common channel C4 in parallel with each other.
  • the fourth non-common flow path L4 constitutes the third bypass flow path.
  • a third common flow path C3, a third non-common flow path L3, and a fourth common flow path C4 are connected in series.
  • a third common flow path C3, a fourth non-common flow path L4, and a fourth common flow path C4 are connected in series.
  • the third non-common channel L3 includes the second decompression unit 6 and the auxiliary heat exchanger 3.
  • the third flow path connects between the sixth inflow / outlet section 5B of the use side heat exchanger 5 and the suction port 1A of the compressor 1 via the second pressure reducing section 6 and the auxiliary heat exchanger 3.
  • the fourth non-common channel L4 does not include the second decompression unit 6 and the auxiliary heat exchanger 3.
  • the fourth flow path connects between the sixth inflow / outflow portion 5B of the use side heat exchanger 5 and the suction port 1A of the compressor 1 without passing through the second decompression portion 6 and the auxiliary heat exchanger 3.
  • the third non-common channel L3 further includes a third on-off valve 13.
  • the fourth non-common channel L4 further includes a fourth on-off valve 14. That is, when the third on-off valve 13 is opened, the refrigerant flows through the third flow path, and when the fourth on-off valve 14 is opened, the refrigerant flows through the fourth flow path.
  • the first on-off valve 11, the fourth on-off valve 14, and the fifth on-off valve 15 are opened, and the second on-off valve 12, the third on-off valve 13, and the sixth on-off valve 16 is closed.
  • the first on-off valve 11, the fourth on-off valve 14, and the fifth on-off valve 15 are closed, and the second on-off valve 12, the third on-off valve 13, and the sixth on-off valve The on-off valve 16 is opened.
  • the first non-common flow path L1 of the first flow path and the third non-common flow path L3 of the third flow path include the auxiliary heat exchanger 3 in common. That is, the first non-common channel L ⁇ b> 1 and the third non-common channel L ⁇ b> 3 have the sixth common channel C ⁇ b> 6 including the auxiliary heat exchanger 3.
  • the refrigerant circuit further includes a plurality of rectification units for rectifying the refrigerant.
  • the plurality of rectifiers include a first rectifier 17, a second rectifier 18, and a third rectifier 19.
  • the first rectification unit 17 is provided between the second decompression unit 6 and the third inflow / outflow unit 3A of the auxiliary heat exchanger 3 in the third non-common flow path L3, specifically, the sixth decompression unit 6 and the sixth common flow passage L3. It is arranged between the flow path C6.
  • the first rectifying unit 17 allows the refrigerant flowing from the second pressure reducing unit 6 to the third inflow / outflow unit 3A of the auxiliary heat exchanger 3 to restrict the flow of the refrigerant in the opposite direction.
  • the second rectification unit 18 is provided between the fourth inflow / outflow unit 3B of the auxiliary heat exchanger 3 and the first inflow / outflow unit 2A of the heat source side heat exchanger 2 in the first non-common flow path L1, specifically, the sixth common flow passage L1. It is arranged between the flow path C6 and the first inflow / outflow portion 2A of the heat source side heat exchanger 2.
  • the second rectifying unit 18 allows the refrigerant flowing from the fourth inflow / outflow unit 3B of the auxiliary heat exchanger 3 to the first inflow / outflow unit 2A of the heat source side heat exchanger 2 to restrict the flow of the refrigerant in the opposite direction.
  • the third rectification unit 19 is disposed between the second inflow / outflow unit 2B of the heat source side heat exchanger 2 and the second branch point in the first non-common flow path L1.
  • the third rectifying section 19 allows the refrigerant flowing from the second inflow / outflow section 2B of the heat source side heat exchanger 2 toward the second common flow path C2 to restrict the flow of the refrigerant in the opposite direction.
  • the refrigeration apparatus 100 includes the heat source side unit 200 and the decompression unit 300 arranged outside the space to be cooled, and the use side unit 400 arranged inside the space to be cooled.
  • the heat source side unit 200 is configured separately from, for example, the decompression unit 300.
  • the heat source side unit 200 is housed in the first housing.
  • the decompression unit 300 is housed in the fifth housing.
  • the first housing forms an outer shell of the heat source side unit 200.
  • the fifth housing forms an outer shell of the decompression unit 300.
  • the first housing includes a part of the refrigerant circuit including the compressor 1, the heat source side heat exchanger 2, the auxiliary heat exchanger 3, and the second pressure reducing unit 6, and the first fan 7 and the second fan 8. Housed inside.
  • the fifth housing houses a part of the refrigerant circuit including the first decompression unit 4 therein.
  • Each part of the first flow path and the second flow path, the third flow path, and the fourth flow path are arranged inside the first housing.
  • Another part of the first flow path and the second flow path is disposed inside the fifth housing.
  • the use-side unit 400 includes a second housing (not shown).
  • the second housing forms an outer shell of the usage-side unit 400.
  • the second housing houses another part of the refrigerant circuit including the use-side heat exchanger 5 and the third fan 9 therein.
  • a part of the refrigerant circuit arranged inside the first housing and another part of the refrigerant circuit arranged inside the second housing are connected via two pipes. .
  • the heat source side unit 200 includes, for example, a first unit 500 and a second unit 600, and is configured as a connection body in which the units are detachably connected to each other.
  • the first unit 500 includes, for example, the compressor 1, the heat source side heat exchanger 2, and the first fan 7.
  • the second unit 600 includes an auxiliary heat exchanger 3, a second fan 8, a first flow switching unit 10A, a second flow switching unit 10B, a first rectifying unit 17, a second rectifying unit 18, and a third rectifying unit. 19 inclusive.
  • the pressure reducing unit 300 includes a first pressure reducing unit 4 and a third flow switching unit 10C.
  • the first unit 500 includes a first pipe 210A forming a part of the first common flow path C1, a second pipe 210B and a third pipe 210C forming a part of the first non-common flow path L1, and a fourth common flow path. It is connected to the second unit 600 via a total of four pipes, a fourth pipe 210D forming a part of C4.
  • the second unit 600 is connected to the pressure reducing unit 300 via a pipe forming a part of the second common flow path C2.
  • the second unit 600 is connected to the use-side unit 400 via a pipe forming a part of the third common flow path C3.
  • the decompression unit 300 is connected to the use-side unit 400 via a pipe forming a part of the fifth common flow path C5.
  • the first unit 500 and the second unit 600 are arranged, for example, adjacent to each other, but may be arranged apart from each other.
  • the first unit 500 further includes, for example, a third housing (not shown).
  • the second unit 600 further includes a fourth housing (not shown).
  • the decompression unit 300 further includes, for example, a fifth housing (not shown).
  • the third housing houses the compressor 1, the heat source side heat exchanger 2, and the first fan 7 therein.
  • the fourth housing includes an auxiliary heat exchanger 3, a second pressure reducing unit 6, a second fan 8, a first flow switching unit 10A, a second flow switching unit 10B, a first rectifying unit 17, and a second rectifying unit 18. , And the third rectifying unit 19 are housed therein.
  • the fifth housing houses the first decompression unit 4 and the third flow path switching unit 10C inside.
  • the third housing and the fourth housing are housed inside the first housing.
  • the refrigeration apparatus 100 performs a cooling operation of cooling a space to be cooled by the use side heat exchanger 5 acting as an evaporator, and a defrosting operation of melting and removing frost attached to the use side heat exchanger 5 by the cooling operation. And switch.
  • the refrigerant circuit is set to the first state shown in FIG.
  • the refrigerant circuit is in the second state shown in FIG. Switching between the first state and the second state is performed by a plurality of flow path switching units.
  • the first on-off valve 11, the fourth on-off valve 14, and the fifth on-off valve 15 are opened, and the second on-off valve 12, the third on-off valve 13, and the sixth on-off valve The on-off valve 16 is closed.
  • the refrigerant flows through the first flow path and the fourth flow path and does not flow through the second flow path and the third flow path.
  • the refrigerant sequentially flows through the compressor 1, the auxiliary heat exchanger 3, the heat source side heat exchanger 2, the first pressure reducing unit 4, and the use side heat exchanger 5, and the heat source side heat exchanger 2
  • the auxiliary heat exchanger 3 acts as a first condenser
  • the use side heat exchanger 5 acts as a first evaporator.
  • the second on-off valve 12, the third on-off valve 13, and the sixth on-off valve 16 are opened, and the first on-off valve 11, the fourth on-off valve 14, and the fifth on-off valve The on-off valve 15 is closed.
  • the refrigerant flows through the second flow path and the third flow path, but does not flow through the first flow path and the fourth flow path. That is, in the second state, the refrigerant flows through the compressor 1, the use-side heat exchanger 5, the second decompression unit 6, and the auxiliary heat exchanger 3 in order, and the use-side heat exchanger 5 acts as a second condenser.
  • the auxiliary heat exchanger 3 acts as a second evaporator.
  • the refrigeration apparatus 100 can defrost the use-side heat exchanger 5.
  • the second fan 8 supplies sufficient air to the auxiliary heat exchanger 3 in the first state and the second state.
  • the drive of the first fan 7 is stopped in the second state, for example.
  • the rotation speed of the first fan 7 in the second state is lower than that in the first state.
  • the third on-off valve 13 and the first rectifying unit 17 prevent the refrigerant discharged from the compressor 1 in the first state from flowing out of the sixth common flow path C6 to the third flow path.
  • the second rectifying unit 18 is configured such that when switching from the first state to the second state, the high-pressure liquid-phase refrigerant upstream of the first inflow / outflow unit 2A of the heat source side heat exchanger 2 is sucked into the compressor 1.
  • the third rectifying unit 19 prevents the refrigerant discharged from the compressor 1 in the second state from flowing out of the second flow path to the first non-common flow path L1.
  • the switching from the first state to the second state and the switching from the second state to the first state are performed, for example, periodically.
  • the switching from the first state to the second state is performed, for example, when the elapsed time from the previous switching from the second state to the first state reaches a predetermined time.
  • the switching from the first state to the second state may be performed when the use-side heat exchanger 5 detects frost adhesion.
  • switching from the first state to the second state is performed by switching a plurality of flow path switching units based on a control signal output from the detection device. May be.
  • the plurality of flow path switching units are switched based on a control signal input by the operator, thereby switching from the first state to the second state. You may.
  • the switching from the second state to the first state is performed, for example, when the refrigerant temperature (outlet pipe temperature) of the sixth inflow / outflow portion 5B of the use-side heat exchanger 5 becomes higher than a predetermined temperature.
  • the refrigeration apparatus 100 includes a refrigerant circuit through which the refrigerant circulates.
  • the refrigerant circuit includes a compressor 1, a heat source side heat exchanger 2, an auxiliary heat exchanger 3, a first pressure reducing unit 4, a use side heat exchanger 5, a second pressure reducing unit 6, and a flow switching unit.
  • the flow path switching unit switches between the first state and the second state. In the first state, the heat source side heat exchanger 2 and the auxiliary heat exchanger 3 function as a first condenser, the use side heat exchanger 5 functions as a first evaporator, and the refrigerant flows through the compressor 1, the first heat exchanger.
  • the use-side heat exchanger 5 acts as a second condenser
  • the auxiliary heat exchanger 3 acts as a second evaporator
  • the refrigerant flows through the compressor 1, the second condenser, and the second decompression unit. 6, and the second evaporator.
  • the refrigeration apparatus 100 performs the defrosting operation, the refrigerant circuit is in the second state, and the auxiliary heat exchanger 3 functions as an evaporator. Therefore, unlike the conventional refrigeration apparatus provided so as to flow only through the use-side heat exchanger during the defrosting operation and not to flow through the other heat exchangers, the refrigeration apparatus 100 performs a defrosting operation using a refrigeration cycle. . As a result, the efficiency of the defrosting operation of the refrigeration apparatus 100 is higher than that of the above-described conventional refrigeration apparatus, and the defrosting operation time of the refrigeration apparatus 100 is shorter than that of the above-described conventional refrigeration apparatus.
  • the refrigeration apparatus 100 when the refrigeration apparatus 100 performs the cooling operation, the refrigerant circuit is set to the first state, and the auxiliary heat exchanger 3 functions as the first condenser together with the heat source side heat exchanger 2. Therefore, compared to a conventional refrigeration system without an auxiliary heat exchanger, the refrigeration system 100 can increase the amount of heat exchange of the first condenser during the cooling operation. In this case, the cooling operation of the refrigeration system 100 is more efficient than that of the conventional refrigeration system. Further, the power consumption of the refrigeration apparatus 100 during the cooling operation is reduced as compared with that of the above-described conventional refrigeration apparatus.
  • frost may adhere to the auxiliary heat exchanger 3 acting as an evaporator.
  • the auxiliary heat exchanger 3 is arranged upstream of the heat source side heat exchanger 2 in the refrigerant circuit. That is, in the refrigeration apparatus 100, the gas-phase refrigerant (hot gas) discharged from the compressor 1 in the first state is supplied to the auxiliary heat exchanger 3. Therefore, the refrigeration apparatus 100 can efficiently remove frost attached to the auxiliary heat exchanger 3 during the defrosting operation during the cooling operation.
  • the refrigerant condensed in the auxiliary heat exchanger 3 in the first state is supplied to the heat source side heat exchanger 2. Therefore, in the refrigeration apparatus 100, the temperature rise inside the first unit 500 is suppressed as compared with the case where the refrigerant discharged from the compressor 1 is supplied to the heat source side heat exchanger 2. As a result, in the refrigeration apparatus 100, for example, the temperature inside the first unit 500 is suppressed from rising to an extent that causes a problem in the control unit that controls the rotation speed of the compressor 1.
  • the refrigerant discharged from the compressor 1 in the first state is supplied to the auxiliary heat exchanger 3, so that the temperature inside the second unit 600 in the first state is relatively high. Is done. Therefore, after switching from the first state to the second state, the auxiliary heat exchanger 3 acts as an evaporator under a relatively high temperature environment. As a result, the auxiliary heat exchanger 3 can evaporate the refrigerant with relatively high efficiency.
  • the sixth non-common channel L6 including the sixth on-off valve 16 since the sixth non-common channel L6 including the sixth on-off valve 16 is provided, the first decompression in the first channel is smaller than that of the refrigeration apparatus 105 shown in FIG. The degree of freedom of arrangement of the part 4 is high. Therefore, in the refrigeration apparatus 100, the pressure loss of the refrigerant in the first state can be reduced by arranging the first pressure reducing unit 4 near the use side heat exchanger 5.
  • the heat source side heat exchanger 2 and the auxiliary heat exchanger 3 are housed inside the first housing. Therefore, when the refrigeration apparatus 100 is performing the cooling operation, the temperature around the heat source side heat exchanger 2 and the auxiliary heat exchanger 3 in the first housing is relatively high. Therefore, the auxiliary heat exchanger 3 after the refrigeration apparatus 100 is switched from the cooling operation to the defrosting operation acts as an evaporator in a relatively high temperature environment in the first housing. Therefore, the refrigerant evaporates efficiently in the auxiliary heat exchanger 3. As a result, the defrosting efficiency of the refrigeration apparatus 100 is higher than that of the refrigeration apparatus 100 in which the heat source side heat exchanger 2 and the auxiliary heat exchanger 3 are not housed in one housing.
  • Embodiment 2 FIG. As shown in FIGS. 4 to 6, the refrigeration apparatus 101 according to Embodiment 2 basically has the same configuration as the refrigeration apparatus 100 according to Embodiment 1, but in the first state, the heat source side heat The difference is that the exchanger 2 is disposed upstream of the auxiliary heat exchanger 3 in the refrigerant circuit.
  • the refrigerant circuit of the refrigeration apparatus 101 has a fifth flow path and a sixth flow path instead of the first flow path and the second flow path of the refrigeration apparatus 100.
  • the fifth flow path and the sixth flow path connect between the discharge port 1B of the compressor 1 and the fifth inflow / outflow portion 5A of the use-side heat exchanger 5.
  • the sixth inflow / outflow section 5B of the use side heat exchanger 5 and the suction port 1A of the compressor 1 are connected by the third flow path and the fourth flow path, similarly to the refrigeration apparatus 100. .
  • the fifth flow path connects the discharge port 1B of the compressor 1 and the fifth inflow / outflow portion 5A of the use side heat exchanger 5 via the auxiliary heat exchanger 3 and the heat source side heat exchanger 2.
  • the discharge port 1B of the compressor 1, the heat source side heat exchanger 2, the auxiliary heat exchanger 3, the first decompression unit 4, and the fifth inflow / outlet unit 5A of the use side heat exchanger 5 are sequentially connected in series.
  • a seventh on-off valve 21 and a fifth on-off valve 15 for opening and closing the fifth passage are arranged in the fifth passage.
  • the seventh on-off valve 21 is disposed between the second inflow / outflow portion 2B of the heat source side heat exchanger 2 and the third inflow / outflow portion 3A of the auxiliary heat exchanger 3.
  • the sixth flow path connects the discharge port 1B of the compressor 1 and the fifth inflow / outflow portion 5A of the use side heat exchanger 5 without passing through the auxiliary heat exchanger 3 and the heat source side heat exchanger 2.
  • the discharge port 1B of the compressor 1 and the fifth inflow / outflow portion 5A of the use-side heat exchanger 5 are connected in series.
  • An eighth on-off valve 22 and a sixth on-off valve 16 for opening and closing the sixth flow path are arranged in the sixth flow path.
  • the eighth on-off valve 22 is arranged between the discharge port 1B of the compressor 1 and the fifth inflow / outflow portion 5A of the use-side heat exchanger 5.
  • the fifth flow path and the sixth flow path have a seventh branch point, an eighth branch point, the fifth branch point, and the sixth branch point at which the refrigerant branches or merges.
  • the seventh branch point, the eighth branch point, the fifth branch point, and the sixth branch point are sequentially connected in series.
  • the seventh branch point is located upstream of the first inflow / outflow portion 2A of the heat source side heat exchanger 2 in the first flow path.
  • the eighth branch point is located downstream of the fourth inflow / outflow section 3B of the auxiliary heat exchanger 3 and upstream of the first pressure reducing section 4 in the first flow path.
  • the fifth flow path and the sixth flow path connect the seventh branch point and the eighth branch point in parallel, and connect the fifth branch point and the sixth branch point in parallel.
  • the fifth flow path and the sixth flow path connect the discharge port 1 ⁇ / b> B of the compressor 1 and the seventh branch point with a common pipeline, and connect the sixth branch point and the use side heat exchanger 5.
  • the fifth inflow / outflow portion 5A is connected by a common pipeline.
  • the sixth flow path has a fourth bypass flow path branched from the fifth flow path and the second bypass flow path.
  • One end of the fourth bypass flow path is connected to the seventh branch point.
  • the other end of the fourth bypass flow path is connected to the eighth branch point.
  • the eighth on-off valve 22 opens and closes the fourth bypass flow path.
  • the fifth flow path is closed by the seventh open / close valve 21 and the fifth open / close valve 15, and the fourth bypass flow path and the second bypass flow path are closed by the eighth open / close valve 22 and the sixth open / close valve 16. It is formed by being opened.
  • each of the fifth flow path and the sixth flow path is constituted by a common conduit, and the rest is constituted by different conduits.
  • the fifth flow path and the sixth flow path have a seventh common flow path C7, an eighth common flow path C8, and a fifth common flow path C5, which are configured by a common conduit.
  • the fifth flow path has a seventh non-common flow path L7 and a fifth non-common flow path L5 which are configured by pipes different from the sixth flow path.
  • the sixth flow path has an eighth non-common flow path L8 and a sixth non-common flow path L6 which are configured by different pipelines from the fifth flow path.
  • One end of the seventh common flow path C7 is connected to the discharge port 1B of the compressor 1.
  • the other end of the seventh common channel C7 is connected to a seventh branch point.
  • One end of the eighth common flow path C8 is connected to the eighth branch point.
  • the other end of the eighth common flow path C8 is connected to the fifth branch point.
  • the seventh non-common channel L7 and the eighth non-common channel L8 connect the seventh common channel C7 and the eighth common channel C8 in parallel with each other.
  • the fifth non-common channel L5 and the sixth non-common channel L6 connect the eighth common channel C8 and the fifth common channel C5 in parallel with each other.
  • a seventh common flow path C7, a seventh non-common flow path L7, an eighth common flow path C8, a fifth non-common flow path L5, and a fifth common flow path C5 are connected in series.
  • the seventh common flow path C7, the eighth non-common flow path L8, the eighth common flow path C8, the sixth non-common flow path L6, and the fifth common flow path C5 are connected in series. .
  • the seventh non-common channel L7 includes the heat source side heat exchanger 2 and the auxiliary heat exchanger 3.
  • the fifth non-common channel L5 includes the first pressure reducing unit 4.
  • the fifth flow path connects the heat source side heat exchanger 2, the auxiliary heat exchanger 3, and the first decompression path between the discharge port 1B of the compressor 1 and the fifth inflow / outflow portion 5A of the use side heat exchanger 5.
  • the seventh non-common flow path L7 further includes a seventh on-off valve 21 and a fifth on-off valve 15. That is, when the seventh on-off valve 21 and the fifth on-off valve 15 are opened, the refrigerant flows through the fifth flow path.
  • the eighth non-common channel L8 does not include the heat source side heat exchanger 2 and the auxiliary heat exchanger 3.
  • the eighth non-common channel L8 forms the fourth bypass channel.
  • the sixth flow path connects the heat source side heat exchanger 2, the auxiliary heat exchanger 3, and the first decompression section between the discharge port 1B of the compressor 1 and the fifth inflow / outflow section 5A of the use side heat exchanger 5. The connection is made without passing through the section 4.
  • the eighth non-common flow path L8 further includes an eighth on-off valve 22 and a sixth on-off valve 16. That is, when the eighth on-off valve 22 and the sixth on-off valve 16 are opened, the refrigerant flows through the sixth flow path.
  • the seventh on-off valve 21, the eighth on-off valve 22, the fifth on-off valve 15, and the sixth on-off valve 16 switch the fifth flow path and the sixth flow path. Constitutes the fourth flow path switching unit 20A provided in the second flow path.
  • the seventh on-off valve 21, the fifth on-off valve 15, and the fourth on-off valve 14 are opened, and the eighth on-off valve 22, the sixth on-off valve 16, and the third on-off valve 13 are closed.
  • the seventh on-off valve 21, the fifth on-off valve 15, and the fourth on-off valve 14 are closed, and the eighth on-off valve 22, the sixth on-off valve 16, and the third on-off valve 13 are opened.
  • the seventh non-common channel L7 of the fifth channel and the third non-common channel L3 of the third channel commonly include the auxiliary heat exchanger 3. That is, the seventh non-common channel L7 and the third non-common channel L3 have a ninth common channel C9 including the auxiliary heat exchanger 3.
  • the refrigerant circuit further includes a plurality of rectification units for rectifying the refrigerant.
  • the plurality of rectifiers include a first rectifier 17 and a fourth rectifier 23.
  • the fourth rectifying unit 23 is provided between the fourth inflow / outflow unit 3B of the auxiliary heat exchanger 3 and the eighth branch point, specifically, the ninth common channel C9 and the It is arranged between the eight branch points.
  • the fourth rectifying section 23 allows the refrigerant flowing from the fourth inflow / outlet section 3B of the auxiliary heat exchanger 3 toward the eighth common flow path C8 to restrict the flow of the refrigerant in the opposite direction.
  • the third on-off valve 13, fourth on-off valve 14, fifth on-off valve 15, sixth on-off valve 16, first rectifier 17, seventh on-off valve 21, eighth on-off valve 22, and fourth rectifier 23 are It is arranged inside the heat source side unit 201, specifically, inside the second unit 601.
  • the first unit 501 and the second unit 601 are formed by a fifth pipe 210E forming a seventh non-common flow path L7, a sixth pipe 210F forming an eighth non-common flow path L8, and a fourth common flow path. They are connected via a total of three pipes, a fourth pipe 210D forming C4.
  • the refrigeration apparatus 101 is switched between the first state shown in FIG. 5 and the second state shown in FIG. 6 by the plurality of flow path switching units.
  • the seventh on-off valve 21, the fourth on-off valve 14, and the fifth on-off valve 15 are opened, and the eighth on-off valve 22, the third on-off valve 13, and the sixth on-off valve 13, The on-off valve 16 is closed.
  • the refrigerant flows through the fifth flow path and the fourth flow path, but does not flow through the sixth flow path and the third flow path. That is, in the first state, the refrigerant flows through the compressor 1, the heat source side heat exchanger 2, the auxiliary heat exchanger 3, the first decompression unit 4, and the use side heat exchanger 5 in this order.
  • the heat source side heat exchanger 2 and the auxiliary heat exchanger 3 function as a first condenser, and the use side heat exchanger 5 functions as a first evaporator. As a result, in the first state, the refrigeration apparatus 101 cools the space to be cooled.
  • the eighth on-off valve 22, the third on-off valve 13, and the sixth on-off valve 16 are opened, and the seventh on-off valve 21, the fourth on-off valve 14, and the fifth on-off valve The on-off valve 15 is closed.
  • the refrigerant flows through the sixth flow path and the third flow path but does not flow through the fifth flow path and the fourth flow path. That is, in the second state, the refrigerant flows through the compressor 1, the use-side heat exchanger 5, the second pressure reducing unit 6, and the auxiliary heat exchanger 3 in this order.
  • the use side heat exchanger 5 acts as a second condenser
  • the auxiliary heat exchanger 3 acts as a second evaporator. That is, when the second state is realized, the refrigeration apparatus 101 defrosts the use-side heat exchanger 5.
  • the third on-off valve 13 and the first rectifying unit 17 prevent the refrigerant discharged from the compressor 1 from flowing out of the ninth common flow path C9 to the third flow path in the first state.
  • the fourth rectifying unit 23 prevents the refrigerant discharged from the compressor 1 in the second state from flowing out of the sixth flow path to the third non-common flow path L3.
  • the discharge port 1B of the compressor 1 and the first inflow / outflow portion 2A of the heat source side heat exchanger 2 are directly connected without going through an on-off valve or the like. Therefore, in the refrigeration apparatus 101, the shortest distance on the refrigerant circuit between the discharge port 1B of the compressor 1 and the condenser in the first state can be shorter than that of the refrigeration apparatus 100. In this case, the length of the pipe in the refrigeration apparatus 101 through which the gas-phase refrigerant flows becomes shorter than the length of the pipe in the refrigeration apparatus 100 through which the gas-phase refrigerant flows. In such a refrigeration apparatus 101, the pressure loss of the refrigerant during the cooling operation is reduced as compared with that of the refrigeration apparatus 100.
  • the first unit 501 and the second unit 601 are configured such that the fifth pipe 210E forming the seventh non-common flow path L7, the sixth pipe 210F forming the eighth non-common flow path L8, and the fourth common flow path L8.
  • the connection is made via a total of three pipes, that is, a fourth pipe 210D forming the flow path C4. That is, the number of pipes connecting the first unit 501 and the second unit 601 in the refrigeration apparatus 101 is smaller than the number of pipes connecting the first unit 500 and the second unit 600 in the refrigeration apparatus 100. Therefore, the assemblability of the heat source side unit 201 is higher than that of the heat source side unit 200.
  • Embodiment 3 As shown in FIGS. 7 to 9, the refrigeration apparatus 102 according to Embodiment 3 has basically the same configuration as the refrigeration apparatus 100 according to Embodiment 1, but in the first state, the heat source side heat exchange is performed. The difference is that the heat exchanger 2 and the auxiliary heat exchanger 3 are connected in parallel with each other.
  • the refrigerant circuit of the refrigeration apparatus 102 has a seventh flow path and an eighth flow path instead of the first flow path and the second flow path of the refrigeration apparatus 100.
  • the seventh flow path and the eighth flow path connect between the discharge port 1B of the compressor 1 and the fifth inflow / outflow portion 5A of the use-side heat exchanger 5.
  • the sixth inflow / outflow portion 5 ⁇ / b> B of the use side heat exchanger 5 and the suction port 1 ⁇ / b> A of the compressor 1 are connected by the third flow path and the fourth flow path as in the refrigeration apparatus 100. .
  • the seventh flow path connects between the discharge port 1B of the compressor 1 via the heat source side heat exchanger 2 and the fifth inflow / outlet portion 5A of the use side heat exchanger 5, and via the auxiliary heat exchanger 3.
  • the connection between the discharge port 1B of the compressor 1 and the fifth inflow / outflow portion 5A of the use-side heat exchanger 5 is established.
  • the discharge port 1B of the compressor 1, the heat source side heat exchanger 2, the first decompression unit 4, and the fifth inflow / outlet unit 5A of the use side heat exchanger 5 are connected in series in this order, and The first discharge port 1B, the auxiliary heat exchanger 3, the first decompression unit 4, and the fifth inflow / outflow unit 5A of the use-side heat exchanger 5 are connected in series.
  • the heat source side heat exchanger 2 and the auxiliary heat exchanger 3 are connected in parallel with each other.
  • a ninth on-off valve 31, a tenth on-off valve 32, and a fifth on-off valve 15, which open and close the seventh passage, are arranged in the seventh passage.
  • the ninth on-off valve 31 is disposed between the second inflow / outflow portion 2 ⁇ / b> B of the heat source side heat exchanger 2 and the first pressure reducing portion 4.
  • the tenth on-off valve 32 is disposed between the discharge port 1B of the compressor 1 and the third inflow / outflow portion 3A of the auxiliary heat exchanger 3.
  • the eighth flow path connects between the discharge port 1B of the compressor 1 and the fifth inflow / outflow portion 5A of the use side heat exchanger 5 without passing through the heat source side heat exchanger 2 and the auxiliary heat exchanger 3.
  • the discharge port 1B of the compressor 1 and the fifth inflow / outflow portion 5A of the use side heat exchanger 5 are connected in series in order.
  • An eleventh on-off valve 33 and a sixth on-off valve 16 for opening and closing the eighth passage are arranged in the eighth passage.
  • the eleventh on-off valve 33 is disposed between the discharge port 1B of the compressor 1 and the fifth inflow / outlet section 5A of the use side heat exchanger 5 and the third inflow / outlet section 3A of the auxiliary heat exchanger 3.
  • the seventh flow path and the eighth flow path form a ninth branch point, a tenth branch point, a fifth branch point, an eleventh branch point, a twelfth branch point, and a sixth branch point at which the refrigerant branches or merges.
  • the ninth branch point, the tenth branch point, the fifth branch point, and the sixth branch point are sequentially connected in series.
  • the ninth branch point, the twelfth branch point, the tenth branch point, the fifth branch point, and the sixth branch point are connected in series in order, and the ninth branch point, the eleventh branch point , A twelfth branch, a tenth branch, a fifth branch, and a sixth branch are connected in series in this order.
  • the ninth branch point is located upstream of the first inflow / outflow section 2A of the heat source side heat exchanger 2 and the third inflow / outflow section 3A of the auxiliary heat exchanger 3 in the seventh flow path.
  • the tenth branch point is located downstream of the second inflow / outflow section 2B of the heat source side heat exchanger 2 and the fourth inflow / outflow section 3B of the auxiliary heat exchanger 3 and upstream of the first decompression section 4 in the seventh flow path.
  • the eleventh branch point is disposed downstream of the ninth branch point in the seventh flow path and upstream of the third inflow / outflow portion 3A of the auxiliary heat exchanger 3.
  • the twelfth branch point is located downstream of the second inflow / outflow section 2B of the heat source side heat exchanger 2 and the fourth inflow / outflow section 3B of the auxiliary heat exchanger 3 and upstream of the tenth branch point in the seventh flow path. Have been.
  • the eighth flow path has a seventh bypass flow path branched from the seventh flow path and the second bypass flow path.
  • One end of the seventh bypass flow path is connected to the eleventh branch point.
  • the other end of the seventh bypass flow path is connected to a tenth branch point.
  • the eleventh on-off valve 33 opens and closes the seventh bypass flow path.
  • the eighth flow path is closed by the ninth on-off valve 31, the tenth on-off valve 32, and the fifth on-off valve 15, and the seventh bypass flow path is closed by the eleventh on-off valve 33 and the sixth on-off valve 16. And it is formed by opening the second bypass flow path.
  • each of the seventh flow path and the eighth flow path is constituted by a common conduit, and the remaining portions are constituted by different conduits.
  • the seventh flow path and the eighth flow path have a tenth common flow path C10, an eleventh common flow path C11, a twelfth common flow path C12, and a fifth common flow path C5, which are configured by a common conduit. are doing.
  • the seventh flow path has a ninth non-common flow path L9, a tenth non-common flow path L10, and a fifth non-common flow path L5, which are configured by different pipelines from the eighth flow path.
  • the eighth flow path has an eleventh non-common flow path L11 and a sixth non-common flow path L6 which are configured by different pipelines from the seventh flow path.
  • One end of the tenth common flow path C10 is connected to the discharge port 1B of the compressor 1.
  • the other end of the tenth common flow path C10 is connected to one end of each of the ninth non-common flow path L9 and the eleventh common flow path C11, that is, the ninth branch point.
  • the tenth common flow path C10 is provided between the discharge port 1B of the compressor 1 and the first inflow / outflow portion 2A of the heat source side heat exchanger 2 in the seventh flow path, and between the discharge port 1B of the compressor 1 and the auxiliary heat exchanger. 3 and the third inflow / outflow portion 3A.
  • One end of the eleventh common channel C11 is connected to the other end of the tenth common channel C10 and the one end of the ninth non-common channel L9.
  • the other end of the eleventh common channel C11 is connected to one end of each of the tenth non-common channel L10 and the eleventh non-common channel L11, that is, to the eleventh branch point.
  • the eleventh common flow channel C11 is disposed between the discharge port 1B of the compressor 1 and the third inflow / outflow portion 3A of the auxiliary heat exchanger 3 in the seventh flow channel.
  • One end of the twelfth common flow path C12 is connected to the other ends of the ninth non-common flow path L9, the tenth non-common flow path L10, and the eleventh non-common flow path L11, that is, to the tenth branch point.
  • the other end of the twelfth common channel C12 is connected to the fifth branch point of the fifth non-common channel L5 and the sixth non-common channel L6.
  • the twelfth common flow path C12 is provided between the second flow-in / out section 2B of the heat source side heat exchanger 2 and the first pressure reducing section 4 and the fourth flow-out / flow section 3B of the auxiliary heat exchanger 3 in the seventh flow path. It is arranged between the pressure reducing unit 4.
  • the ninth non-common channel L9, the tenth non-common channel L10, and the eleventh non-common channel L11 connect the tenth common channel C10 and the twelfth common channel C12 in parallel with each other. . Further, the tenth non-common channel L10 and the eleventh non-common channel L11 connect the eleventh common channel C11 and the twelfth common channel C12 in parallel with each other. The fifth non-common channel L5 and the sixth non-common channel L6 connect the twelfth common channel C12 and the fifth common channel C5 in parallel with each other.
  • a tenth common flow path C10, a ninth non-common flow path L9, a twelfth common flow path C12, a fifth non-common flow path L5, and a fifth common flow path C5 are connected in series.
  • the tenth common channel C10, the eleventh common channel C11, the tenth non-common channel L10, the twelfth common channel C12, the fifth non-common channel L5, and the fifth common channel C5 are connected in series. Have been.
  • the tenth common flow path C10, the eleventh common flow path C11, the eleventh non-common flow path L11, the twelfth common flow path C12, the sixth non-common flow path L6, and the fifth common flow path C5 Are connected in series.
  • the ninth non-common channel L9 includes the heat source side heat exchanger 2.
  • the tenth non-common channel L10 includes the auxiliary heat exchanger 3. That is, the seventh flow path connects the discharge port 1B of the compressor 1 and the fifth inflow / outflow portion 5A of the use side heat exchanger 5 via the heat source side heat exchanger 2 and the first pressure reduction portion 4. At the same time, they are connected via the auxiliary heat exchanger 3 and the first decompression unit 4.
  • the eleventh non-common channel L11 does not include the heat source side heat exchanger 2 and the auxiliary heat exchanger 3.
  • the eleventh non-common channel L11 constitutes the seventh bypass channel.
  • the eighth flow path connects the heat source side heat exchanger 2, the auxiliary heat exchanger 3, and the first decompression passage between the discharge port 1B of the compressor 1 and the fifth inflow / outflow portion 5A of the use side heat exchanger 5. The connection is made without passing through the section 4.
  • the ninth non-common channel L9 further includes a ninth on-off valve 31.
  • the tenth non-common flow path L10 further includes a tenth on-off valve 32.
  • the eleventh non-common channel L11 further includes an eleventh on-off valve 33.
  • the ninth non-common flow path L9 and the tenth non-common flow path L10 of the seventh flow path have a thirteenth common flow path C13 formed of a common conduit.
  • One end of the thirteenth common channel C13 is connected to a twelfth branch point, which is a junction of the ninth non-common channel L9 and the tenth non-common channel L10.
  • the other end of the thirteenth common channel C13 is connected to the tenth branch point.
  • the ninth on-off valve 31 is provided, for example, on the thirteenth common flow path C13.
  • the ninth on-off valve 31, the tenth on-off valve 32, the eleventh on-off valve 33, the fifth on-off valve 15, and the sixth on-off valve 16 are connected to the seventh flow path and the eighth on-off valve. It constitutes a fifth switching section provided to switch between the flow path.
  • the ninth on-off valve 31, the tenth on-off valve 32, the fifth on-off valve 15, and the third on-off valve 13 are opened, and the eleventh on-off valve 33, the sixth on-off valve 16, and the fourth on-off valve 14 is closed.
  • the ninth on-off valve 31, the tenth on-off valve 32, the fifth on-off valve 15, and the third on-off valve 13 are closed, and the eleventh on-off valve 33, the sixth on-off valve 16, and the fourth on-off valve 14 is opened.
  • the ninth non-common channel L9 of the seventh channel and the third non-common channel L3 of the third channel commonly include the auxiliary heat exchanger 3. That is, the ninth non-common channel L9 and the third non-common channel L3 have a fourteenth common channel C14 including the auxiliary heat exchanger 3.
  • the refrigerant circuit further includes a plurality of rectification units for rectifying the refrigerant.
  • the plurality of rectifiers include a first rectifier 17, a fifth rectifier 34, and a sixth rectifier 35.
  • the fifth rectifying section 34 is provided between the fourth inflow / outflow section 3B of the auxiliary heat exchanger 3 and the merging portion of the ninth non-common flow path L9 and the tenth non-common flow path L10 in the tenth non-common flow path L10. Are located in The fifth rectifying section 34 allows the refrigerant flowing from the fourth inflow / outlet section 3B of the auxiliary heat exchanger 3 to the thirteenth common flow path C13 to restrict the flow of the refrigerant in the opposite direction.
  • the sixth rectification unit 35 is disposed between the second inflow / outflow unit 2B of the heat source side heat exchanger 2 and the eleventh branch point in the ninth non-common channel L9.
  • the sixth rectifying unit 35 passes at least the refrigerant flowing from the second inflow / outflow unit 2B of the heat source side heat exchanger 2 toward the twelfth common flow path C12, and restricts the flow of the refrigerant in the opposite direction.
  • the sixth rectifying unit 35 is provided, for example, on the thirteenth common channel C13.
  • the sixth rectifying unit 35 is connected to the refrigerant flowing from the second inflow / outflow portion 2B of the heat source side heat exchanger 2 to the twelfth common flow channel C12 and from the fourth outflow / inflow portion 3B of the auxiliary heat exchanger 3 to the twelfth common flow channel C12.
  • the flow of the refrigerant in the opposite direction is restricted by passing the refrigerant toward the refrigerant.
  • the rectifying unit 34 and the sixth rectifying unit 35 are arranged inside the heat source side unit 202, specifically, inside the second unit 602.
  • the first unit 502 and the second unit 602 are formed by an eighth pipe 210H forming a tenth non-common flow path L10, a ninth pipe 210I forming a ninth non-common flow path L9, and a fourth common flow path. It is connected via a total of three pipes, a tenth pipe 210J that forms C4.
  • the refrigeration apparatus 102 is switched between the first state illustrated in FIG. 8 and the second state illustrated in FIG. 9 by the plurality of flow path switching units.
  • the ninth on-off valve 31, the tenth on-off valve 32, the fifth on-off valve 15, and the third on-off valve 13 are opened, and the eleventh on-off valve 33, the sixth on-off valve The valve 16 and the fourth on-off valve 14 are closed.
  • the refrigerant flows through the seventh flow path and the fourth flow path, but does not flow through the eighth flow path and the third flow path. That is, in the first state, the refrigerant flows through the compressor 1, the heat source side heat exchanger 2, the first pressure reducing unit 4, and the use side heat exchanger 5 in order, and the compressor 1, the auxiliary heat exchanger 3, the first It flows through the pressure reducing section 4 and the use side heat exchanger 5 in order.
  • the heat source side heat exchanger 2 and the auxiliary heat exchanger 3 function as a third condenser, and the use side heat exchanger 5 functions as a third evaporator.
  • the refrigeration apparatus 102 cools the space to be cooled.
  • the ninth on-off valve 31, the tenth on-off valve 32, the fifth on-off valve 15, and the third on-off valve 13 are closed, and the eleventh on-off valve 33, the sixth on-off valve The valve 16 and the fourth on-off valve 14 are opened.
  • the refrigerant flows through the eighth flow path and the third flow path, but does not flow through the seventh flow path and the fourth flow path. That is, in the second state, the refrigerant flows through the compressor 1, the use-side heat exchanger 5, the second pressure reducing unit 6, and the auxiliary heat exchanger 3 in this order.
  • the use side heat exchanger 5 acts as a second condenser, and the auxiliary heat exchanger 3 acts as a second evaporator. That is, when the second state is realized, the refrigeration apparatus 102 defrosts the use-side heat exchanger 5.
  • the heat source side heat exchanger 2 and the auxiliary heat exchanger 3 are connected in parallel to the discharge port 1B of the compressor 1. Therefore, in the refrigeration apparatus 102, the pressure loss of the refrigerant during the cooling operation is reduced as compared with the refrigeration apparatuses 100 and 101.
  • the first unit 502 and the second unit 602 are connected via three pipes. Therefore, the number of pipes connecting first unit 502 and second unit 602 in refrigeration apparatus 102 is smaller than the number of pipes connecting first unit 500 and second unit 600 in refrigeration apparatus 100. Therefore, the assemblability of the heat source side unit 202 is higher than that of the heat source side unit 200.
  • refrigeration apparatus 103 according to Embodiment 4 has basically the same configuration as refrigeration apparatus 100 according to Embodiment 1, but a heat medium circuit in which a heat medium circulates. And the heat source side heat exchanger 2 is provided so as to perform heat exchange between the refrigerant circulating in the refrigerant circuit and the heat medium circulating in the heat medium circuit.
  • the heat medium circuit is disposed inside the heat source side unit 203, specifically, inside the first unit 503.
  • the heat medium circulating in the heat medium circuit is, for example, a refrigerant.
  • the refrigeration apparatus 103 is configured as a so-called binary refrigeration apparatus, and the refrigerant circuit forms a low-temperature circuit and the heat medium circuit forms a high-temperature circuit.
  • the heat medium circuit includes a high-temperature side compressor 51, a high-temperature side condenser 52, a high-temperature side decompression unit 53, and a heat source side heat exchanger 2 acting as a high-temperature side evaporator.
  • the heat medium flows through the high-temperature side compressor 51, the high-temperature side condenser 52, the high-temperature side decompression unit 53, and the heat source-side heat exchanger 2 in this order.
  • Each of the second unit 600, the decompression unit 300, and the use side unit 400 has the same configuration as each of the second unit 600, the decompression unit 300, and the use side unit 400 of the refrigeration apparatus 100.
  • the high temperature side compressor 51 compresses and discharges the heat medium evaporated in the heat source side heat exchanger 2.
  • the high-temperature side condenser 52 heat exchange between the heat medium discharged from the high-temperature side compressor 51 and the air is performed.
  • a fourth fan 54 that supplies air outside the freezer to the high-temperature side condenser 52 is arranged inside the first unit 503, instead of the first fan 7 in the first unit 500.
  • the high temperature side pressure reducing unit 53 is, for example, an electronic expansion valve.
  • the heat source side heat exchanger 2 is, for example, a plate heat exchanger.
  • the heat source side heat exchanger 2 further has a seventh inflow / outflow portion 2C and an eighth outflow / inflow portion 2D through which the heat medium flows.
  • the seventh inflow / outflow section 2C is connected to the high-temperature side condenser 52 via the high-temperature side pressure reducing section 53.
  • the eighth inflow / outflow portion 2D is connected to a suction port of the high temperature side compressor 51.
  • the first unit 503 and the second unit 600 are housed in the same housing, for example.
  • the auxiliary heat exchanger 3 and the high-temperature side condenser 52 may be provided integrally, for example. From a different point of view, a part of one heat exchanger may constitute the auxiliary heat exchanger 3, and another part of the one heat exchanger may constitute the high-temperature side condenser 52.
  • the plurality of flow path switching units switch between the first state shown in FIG. 11 and the second state shown in FIG. As shown in FIGS. 11 and 12, switching between the first state and the second state in the refrigeration apparatus 103 is performed in the same manner as switching between the eleventh state and the second state in the refrigeration apparatus 100.
  • each of the refrigerant in the refrigerant circuit and the heat medium in the heat medium circuit repeats the refrigeration cycle.
  • the refrigerant flows through the compressor 1, the auxiliary heat exchanger 3, the heat source side heat exchanger 2, the first pressure reducing unit 4, and the use side heat exchanger 5 in order, and the heat medium flows through the high temperature side compressor 51, It flows through the high-temperature side condenser 52, the high-temperature side decompression unit 53, and the heat source-side heat exchanger 2 in order.
  • the heat source side heat exchanger 2 acts as a first condenser
  • the use side heat exchanger 5 acts as a first evaporator
  • the refrigeration apparatus 103 is a cooling object. Space can be cooled.
  • the refrigeration apparatus 103 operates similarly to the refrigeration apparatus 100 to defrost the use-side heat exchanger 5.
  • the refrigerating device 103 is configured as a binary refrigerating device, the cooling efficiency is improved as compared with a refrigerating device that operates in a single refrigerating cycle.
  • the auxiliary heat exchanger 3 acts as a condenser in the refrigerant circuit, the cooling efficiency of the refrigeration apparatus 103 is different from that of the conventional binary refrigeration apparatus without the auxiliary heat exchanger 3. In comparison, it is enhanced.
  • the defrosting efficiency is improved as compared with the conventional binary refrigeration apparatus.
  • the refrigeration apparatus 104 shown in FIG. 13 is a modification of the refrigeration apparatus 103 shown in FIGS.
  • the refrigeration apparatus 104 has basically the same configuration as the refrigeration apparatus 103, except that the heat medium circulating in the heat medium circuit is water or brine.
  • the heat medium in the refrigeration apparatus 104 does not change its phase when circulating through the heat medium circuit.
  • the heat medium circuit has a pump 55 in place of the high temperature side compressor 51 shown in FIGS. 10 to 12, and has a heat exchanger 56 in place of the high temperature side condenser 52.
  • the pump 55 circulates the heat medium in the heat medium circuit.
  • the heat exchanger 56 is provided to exchange heat between the heat medium circulating in the heat medium circuit and air outside the freezer.
  • the auxiliary heat exchanger 3 is provided to exchange heat between the refrigerant circulating in the refrigerant circuit and air outside the freezer. Therefore, also in the refrigeration apparatus 104, the first state and the second state are realized similarly to the refrigeration apparatus 100. As a result, the refrigeration apparatus 104 can achieve the same effect as the refrigeration apparatus 100.
  • the auxiliary heat exchanger 3 during the defrosting operation includes: There is a possibility that the heat medium exchanges heat with the refrigerant condensed in the use side heat exchanger 5 and freezes.
  • the refrigerating device 104 the refrigerant condensed in the use-side heat exchanger 5 is not supplied to the heat-source-side heat exchanger 2, so that the freezing of the heat medium is suppressed even during the defrosting operation.
  • frost may adhere to the auxiliary heat exchanger 3 by the defrosting operation on the use-side heat exchanger 5, but this frost may be melted and removed by the cooling operation.
  • the refrigerant circuits of the refrigeration units 103 and 104 may have the same configuration as the refrigerant circuit of the refrigeration units 101 and 102.
  • the heat medium circuit of each of the refrigeration units 103 and 104 may include the heat source side heat exchanger 2 of the refrigeration unit 101 or the refrigeration unit 102.
  • the refrigeration apparatus 105 shown in FIG. 14 is a modification of the refrigeration apparatus 100 shown in FIGS.
  • the second flow path has only one bypass flow path, that is, only the second non-common flow path L2.
  • the first flow path and the second flow path do not have the second common flow path C2, the second branch point, and the fifth branch point.
  • one end of the second non-common channel L2 is connected to the first branch point as in the refrigeration apparatus 100.
  • the other end of the second non-common flow path L2 is connected to the first flow path downstream of the first pressure reducing unit 4 and upstream of the fifth inflow / outflow part 5A of the use side heat exchanger 5.
  • the second non-common flow path L2 is provided so as to bypass the auxiliary heat exchanger 3, the heat source side heat exchanger 2, and the first pressure reducing unit 4.
  • the sixth on-off valve 16 is not required.
  • the refrigerating apparatuses 101, 102, 103, and 104 can also adopt the same modified example as the refrigerating apparatus 105.
  • Refrigerator 106 shown in FIGS. 15 and 16 is a modification of refrigerator 100 shown in FIGS.
  • Refrigeration apparatus 106 further includes an economizer circuit in which the refrigerant circulates.
  • the economizer circuit includes a compressor 1, a heat source side heat exchanger 2, an economizer flow path 60, an economizer heat exchanger 61, an economizer pressure reducing unit 62, a fifth bypass flow path 63, and a twelfth on-off valve 64.
  • the compressor 1 includes, for example, a low pressure section, a high pressure section, and an intermediate pressure section disposed between the low pressure section and the high pressure section.
  • the economizer flow path 60 is branched from the first flow path of the refrigerant circuit. One end of the economizer flow path 60 is connected between the second inflow / outflow portion 2B of the heat source side heat exchanger 2 and the second branch point. The other end of the economizer flow path 60 is connected to, for example, an intermediate pressure section of the compressor 1. Thereby, the economizer circuit causes a part of the refrigerant condensed in the heat source side heat exchanger 2 to flow into the intermediate pressure section of the compressor 1.
  • the economizer decompression unit 62 decompresses the refrigerant that has condensed in the heat source side heat exchanger 2 and then flows into the economizer flow path.
  • the economizer heat exchanger 61 performs heat exchange between the refrigerant decompressed by the economizer decompression unit 62 and the refrigerant condensed in the heat source side heat exchanger 2 and then flowing toward the use side heat exchanger 5. Is provided.
  • the economizer circuit is included in the heat source side unit 206.
  • the compressor 1, the heat source side heat exchanger 2, the economizer flow path 60, the economizer heat exchanger 61, and the economizer pressure reducing unit 62 are included in the first unit 506.
  • the fifth bypass channel 63 is provided so as to bypass the first on-off valve 11, the auxiliary heat exchanger 3, and the second rectifier 18 in the first channel.
  • One end of the fifth bypass channel 63 is connected between the first branch point and the first on-off valve 11 in the first non-common channel L1.
  • the other end of the fifth bypass channel 63 is connected between the second rectification unit 18 and the first inflow / outflow unit 2A of the heat source side heat exchanger 2 in the first non-common channel L1.
  • the twelfth on-off valve 64 opens and closes the fifth bypass channel 63.
  • the fifth bypass channel 63 and the twelfth on-off valve 64 are included in the second unit 606.
  • the economizer circuit includes a portion located between the discharge port 1 ⁇ / b> B of the compressor 1 and the one end of the fifth bypass channel 63, and the other end of the fifth bypass channel 63 and the one end of the economizer channel 60. The portion located therebetween is shared with the first flow path of the refrigerant circuit.
  • the refrigerant circuit of the refrigeration apparatus 106 further includes an economizer flow path 60 and a fifth bypass flow path 63.
  • the first common flow path C1 the portion of the first non-common flow path L1 located between the first branch point and the one end of the economizer flow path 60, and the economizer flow path 60 Constitute an economizer circuit.
  • a portion located between the first branch point and the one end of the fifth bypass channel 63 in the first common channel C1 and the first non-common channel L1 and the fifth bypass constitute an economizer circuit.
  • the economizer circuit of the refrigeration apparatus 106 may be configured to return a part of the refrigerant condensed in the heat source side heat exchanger 2 to the compressor 1.
  • the other end of the economizer flow path 60 may be connected to the low-pressure section of the compressor 1 or the suction port 1A.
  • the configuration of the compressor 1 in the refrigeration apparatus 106 is not particularly limited, and may be, for example, a multi-stage compressor or, for example, a single-stage compressor.
  • the refrigeration apparatus 106 when the refrigeration apparatus 106 performs the cooling operation, the first on-off valve 11, the fourth on-off valve 14, and the fifth on-off valve 15 are opened, and the second on-off valve 12, the third on-off valve The thirteenth, sixth on-off valve 16 and twelfth on-off valve 64 are closed.
  • the refrigerant discharged from the compressor 1 is supplied to the heat source side heat exchanger 2 as the first condenser, the auxiliary heat exchanger 3, the first decompression unit 4, and the utilization side heat exchanger as the first evaporator. 5, and the remainder of the refrigerant discharged from the compressor 1 sequentially flows through the heat source side heat exchanger 2 and the economizer flow path 60.
  • the efficiency of the cooling operation of the refrigeration apparatus 106 is further improved by utilizing the economizer circuit as compared with that of the conventional refrigeration apparatus.
  • the second on-off valve 12, the third on-off valve 13, the sixth on-off valve 16, and the twelfth on-off valve 64 are opened, and the first on-off valve 64 is opened.
  • the on-off valve 11, the fourth on-off valve 14, and the fifth on-off valve 15 are closed.
  • the refrigeration apparatus 106 when the refrigeration apparatus 106 is performing the defrosting operation, part of the refrigerant discharged from the compressor 1 is used by the use-side heat exchanger 5 as the second condenser, the second decompression unit 6, and the second At the same time, the remaining portion of the refrigerant discharged from the compressor 1 flows sequentially through the fifth bypass channel 63, the heat source side heat exchanger 2, and the economizer channel 60 while flowing through the auxiliary heat exchanger 3 as an evaporator.
  • the heat source side heat exchanger 2 does not act as a condenser, whereas when the refrigerant circuit of the refrigerating apparatus 106 is in the second state, The heat source side heat exchanger 2 functions as a condenser.
  • the amount of heat exchanged in the heat source side heat exchanger 2 is changed to the amount of heat exchanged in the auxiliary heat exchanger 3 in order to increase the amount of heat used for defrosting in the use side heat exchanger 5. Preferably, it is reduced compared to the amount.
  • the rotation speed of the first fan 7 when the refrigeration apparatus 106 is performing the defrosting operation includes the rotation speed of the second fan 8 when the refrigeration apparatus 106 is performing the defrosting operation, and It is preferable to reduce the rotation speed of the first fan 7 during the rotation.
  • the refrigeration apparatus 106 When the refrigeration apparatus 106 performs the defrosting operation, the refrigerant flows through the first flow path and the economizer flow path 60. However, since the amount of heat exchange in the heat source side heat exchanger 2 is sufficiently reduced, the use side heat exchange is performed. The amount of heat used for defrosting in the vessel 5 is sufficiently large.
  • the defrosting operation of the refrigeration apparatus 100 also uses a refrigeration cycle, unlike a conventional refrigeration apparatus provided so as to flow only through the use-side heat exchanger and not flow through other heat exchangers during the defrosting operation. . As a result, the efficiency of the defrosting operation of the refrigeration system 106 is higher than that of the conventional refrigeration system.
  • the economizer circuit of the refrigeration system 106 may include a capillary tube 65 instead of the twelfth on-off valve 64.
  • the capillary tube 65 is disposed in the fifth bypass channel 63.
  • the pressure loss of the refrigerant in the capillary tube 65 is higher than the pressure loss of the refrigerant in the auxiliary heat exchanger 3.
  • the capillary pipe 65 is configured such that when the refrigerant circuit is in the first state, the flow rate of the refrigerant flowing through the fifth bypass channel 63 is set so as not to affect the cooling performance of the refrigeration apparatus 106.
  • the refrigerant is provided so that the flow rate of the refrigerant flowing through the fifth bypass passage 63 is less than the minimum flow rate that can affect the cooling performance of the refrigeration apparatus 106.
  • the capillary pipe 65 substantially blocks the flow of the refrigerant in the fifth bypass passage 63 when the first on-off valve 11 is opened, and the fifth bypass flow when the first on-off valve 11 is closed.
  • the refrigerant is circulated in the passage 63.
  • the refrigerating device 106 including the capillary tube 65 can achieve the same effect as the refrigerating device 106 including the twelfth on-off valve 64.
  • the refrigerating apparatuses 101 to 105 can also adopt the same modified example as the refrigerating apparatus 106.
  • Refrigerator 107 shown in FIG. 18 is a modification of refrigerator 100 shown in FIGS.
  • the plurality of compressors 1 are connected in parallel to each other in the first flow path and the second flow path.
  • a plurality of heat source side heat exchangers 2 are connected in parallel in the first flow path.
  • Such a refrigeration apparatus 107 also has basically the same configuration as the refrigeration apparatus 100, and thus can provide the same effects as the refrigeration apparatus 100.
  • the refrigerating apparatuses 101 to 106 can also adopt the same modified example as the refrigerating apparatus 107.
  • the decompression unit 300 may be arranged outside the first housing.
  • the decompression unit 300 may be arranged in a space to be cooled together with, for example, the use side unit 400. Further, the pressure reducing unit 300 may be configured integrally with the use side unit 400.
  • the heat source side units 200 to 207 may include the pressure reducing unit 300.
  • the decompression unit 300 is, for example, integrated with or separate from the first units 500 to 507 and the second units 600 to 605 in the heat source units 200 to 207, and is arranged inside the first housing.
  • Reference Signs List 1 compressor, 1A suction port, 1B discharge port, 2 heat source side heat exchanger, 2A first outflow / inflow section, 2B second outflow / inflow section, 2C seventh outflow / inflow section, 2D eighth outflow / inflow section, 3 auxiliary heat exchanger, 3A 3rd inflow / outflow section, 3B ⁇ fourth inflow / outflow section, 4 ⁇ first decompression section, 5 # utilization side heat exchanger, 5A ⁇ 5th inflow / outflow section, 5B ⁇ 6th outflow / inflow section, 6 # second decompression section, 7 # first fan, 8 # 2nd Fans, 9 ⁇ third fan, 10A ⁇ first flow switching unit, 10B ⁇ second flow switching unit, 10C ⁇ third flow switching unit, 11 first on-off valve, 12 second on-off valve, 13 third on-off valve, 14 4th opening / closing valve, 15 # fifth opening / closing valve, 16 # sixth opening / closing valve, 17 # first rectifying section, 18 #

Abstract

冷凍装置(100)は、冷媒が循環する冷媒回路を備える。冷媒回路は、圧縮機(1)、熱源側熱交換器(2)、補助熱交換器(3)、第1減圧部(4)、利用側熱交換器(5)、第2減圧部(6)、および流路切替部を含む。流路切替部は、第1状態と第2状態とを切り替える。第1状態では、熱源側熱交換器(2)および補助熱交換器(3)が第1凝縮器として作用し、利用側熱交換器(5)が第1蒸発器として作用し、かつ冷媒が圧縮機(1)、第1凝縮器、第1減圧部(4)、および第1蒸発器を順に流れる。第2状態では、利用側熱交換器(5)が第2凝縮器として作用し、補助熱交換器(3)が第2蒸発器として作用し、かつ冷媒が圧縮機(1)、第2凝縮器、第2減圧部(6)、および第2蒸発器を順に流れる。

Description

冷凍装置および熱源側ユニット
 本発明は、冷凍装置および熱源側ユニットに関する。
 従来、蒸発器(利用側熱交換器)による冷却運転と該蒸発器に対する除霜運転とが切り替えられる冷凍装置が知られている。
 特開2006-336967号公報には、除霜運転時に、圧縮機から吐出された高温冷媒が除霜対象の熱交換器に供給される冷凍装置が開示されている。
特開2006-336967号公報
 しがしながら、上記冷凍装置では、除霜運転時に圧縮機から除霜対象の熱交換器に供給された冷媒は、該熱交換器から流出した後、他の熱交換器を流れることなく圧縮機に吸入される。そのため、上記冷凍装置では、除霜対象の熱交換器に供給する熱量を制限する必要があり、除霜効率を高めることは困難であった。
 本発明の主たる目的は、従来の冷凍装置と比べて除霜効率の高い冷凍装置および該冷凍装置の一部を構成する熱源側ユニットを提供することにある。
 本発明に係る冷凍装置は、冷媒が循環する冷媒回路を備える。冷媒回路が、圧縮機、熱源側熱交換器、第1減圧部、利用側熱交換器、第2減圧部、補助熱交換器、および流路切替部を含む。流路切替部は、熱源側熱交換器および補助熱交換器が第1凝縮器として作用し、利用側熱交換器が第1蒸発器として作用し、かつ冷媒が圧縮機、第1凝縮器、第1減圧部、および第1蒸発器を順に流れる第1状態と、利用側熱交換器が第2凝縮器として作用し、補助熱交換器が第2蒸発器として作用し、かつ冷媒が圧縮機、第2凝縮器、第2減圧部、および第2蒸発器を順に流れる第2状態とを切り替える。
 本発明によれば、第2状態において補助熱交換器が蒸発器として作用するため、従来の冷凍装置と比べて除霜効率の高い冷凍装置および該冷凍装置の一部を構成する熱源側ユニットを提供することができる。
実施の形態1に係る冷凍装置および熱源側ユニットを示す図である。 図1に示される冷凍装置および熱源側ユニットの第1状態を示す図である。 図1に示される冷凍装置および熱源側ユニットの第2状態を示す図である。 実施の形態2に係る冷凍装置および熱源側ユニットを示す図である。 図4に示される冷凍装置および熱源側ユニットの第1状態を示す図である。 図4に示される冷凍装置および熱源側ユニットの第2状態を示す図である。 実施の形態3に係る冷凍装置および熱源側ユニットを示す図である。 図7に示される冷凍装置および熱源側ユニットの第1状態を示す図である。 図7に示される冷凍装置および熱源側ユニットの第2状態を示す図である。 実施の形態4に係る冷凍装置および熱源側ユニットを示す図である。 図11に示される冷凍装置および熱源側ユニットの第1状態を示す図である。 図11に示される冷凍装置および熱源側ユニットの第2状態を示す図である。 実施の形態4に係る冷凍装置および熱源側ユニットの変形例を示す図である。 実施の形態1に係る冷凍装置および熱源側ユニットの他の変形例を示す図である。 実施の形態1に係る冷凍装置および熱源側ユニットのさらに他の変形例の第1状態を示す図である。 図15に示される冷凍装置および熱源側ユニットの第2状態を示す図である。 図15および図16に示される冷凍装置および熱源側ユニットの変形例の第1状態を示す図である。 実施の形態1に係る冷凍装置および熱源側ユニットのさらに他の変形例を示す図である。
 以下、図面を参照して、本発明の実施の形態について説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。
 実施の形態1.
 図1~図3に示されるように、実施の形態1に係る冷凍装置100は、冷媒が循環する冷媒回路を備える。冷媒回路は、圧縮機1、熱源側熱交換器2、補助熱交換器3、第1減圧部4、利用側熱交換器5、第2減圧部6、複数の流路切替部、および複数の整流部を含む。冷凍装置100は、第1ファン7、第2ファン8、および第3ファン9をさらに備える。冷媒は、特に制限されるものではないが、例えば地球温暖化係数(GWP)が低い冷媒であり、R410A、R32およびCOからなる群から選択される少なくとも1つを含む。冷媒は、上記群から選択される少なくとも1つを含んだ混合冷媒であってもよい。
 圧縮機1は、冷媒が吸入される吸入口1Aと、冷媒が吐出される吐出口1Bとを有している。圧縮機1は、例えば回転数がインバータ制御されるインバータ圧縮機である。熱源側熱交換器2、補助熱交換器3および利用側熱交換器5は、例えば冷媒と空気との間の熱交換を行うように設けられている。熱源側熱交換器2は、冷媒が流出入する第1流出入部2Aおよび第2流出入部2Bを有している。補助熱交換器3は、冷媒が流出入する第3流出入部3Aおよび第4流出入部3Bを有している。利用側熱交換器5は、冷媒が流出入する第5流出入部5Aおよび第6流出入部5Bを有している。第1減圧部4および第2減圧部6は、例えば開度を調整できる電子膨張弁である。なお、第1減圧部4および第2減圧部6は、開度を調整できない毛細管であってもよい。
 利用側熱交換器5は、冷凍装置100が冷却対象とする空間の内部、例えば冷凍庫内に配置される。圧縮機1、熱源側熱交換器2、補助熱交換器3、第1減圧部4、および第2減圧部6は、上記空間の外部、例えば冷凍庫外に配置される。第1ファン7は、熱源側熱交換器2に冷凍庫外の空気を供給する。第2ファン8は、補助熱交換器3に冷凍庫外の空気を供給する。第3ファン9は、利用側熱交換器5に冷凍庫内の空気を供給する。
 複数の流路切替部は、冷媒回路内の冷媒の循環経路を切り替えて、後述する第1状態と第2状態とを切り替えるように設けられている。複数の流路切替部は、例えば第1流路切替部および第2流路切替部を含む。第1流路切替部10Aは、例えば第1開閉弁11、第2開閉弁12、第5開閉弁15および第6開閉弁16を有している。第2流路切替部10Bは、例えば第3開閉弁13および第4開閉弁14を有している。なお、第1流路切替部は、4つの開閉弁に替えて2つの三方弁を有していてもよい。第2流路切替部は、2つの開閉弁に替えて1つの三方弁を有していてもよい。
 冷媒回路は、圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間を接続する第1流路および第2流路と、利用側熱交換器5の第6流出入部5Bと圧縮機1の吸入口1Aとの間を接続する第3流路および第4流路とを有している。
 第1流路は、圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間を補助熱交換器3および熱源側熱交換器2を介して接続する。第1流路では、圧縮機1の吐出口1B、補助熱交換器3、熱源側熱交換器2、第1減圧部4、および利用側熱交換器5の第5流出入部5Aが順に直列に接続される。第1流路には、第1流路を開閉する第1開閉弁11および第5開閉弁15が配置されている。第1開閉弁11は、圧縮機1の吐出口1Bと補助熱交換器3の第3流出入部3Aとの間に配置されている。第5開閉弁15は、熱源側熱交換器2の第2流出入部2Bと第1減圧部4との間であって、かつ圧縮機1の吐出口1Bと第1減圧部4との間に配置されている。
 第2流路は、圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間を補助熱交換器3および熱源側熱交換器2を介さずに接続する。第2流路では、圧縮機1の吐出口1Bおよび利用側熱交換器5の第5流出入部5Aが直列に接続される。第2流路には、第2流路を開閉する第2開閉弁12および第6開閉弁16が配置されている。第2開閉弁12は、圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間に配置されている。第6開閉弁16は、熱源側熱交換器2の第2流出入部2Bと利用側熱交換器5の第5流出入部5Aとの間であって、かつ圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間に配置されている。
 第1流路および第2流路は、冷媒が分流または合流する第1分岐点、第2分岐点、第5分岐点、および第6分岐点を有している。第1流路および第2流路において、第1分岐点、第2分岐点、第5分岐点、および第6分岐点は順に直列に接続されている。第1分岐点は、第1流路において補助熱交換器3の第3流出入部3Aよりも上流側に配置されている。第2分岐点は、第1流路において熱源側熱交換器2の第2流出入部2Bよりも下流側かつ第1減圧部4よりも上流側に配置されている。第5分岐点は、第1流路において第2分岐点よりも下流側かつ第1減圧部4よりも上流側に配置されている。第6分岐点は、第1流路において第1減圧部4よりも下流側に配置されている。
 第1流路および第2流路は、第1分岐点と第2分岐点との間を並列に接続し、かつ第5分岐点と第6分岐点との間を並列に接続している。第1流路および第2流路は、圧縮機1の吐出口1Bと第1分岐点との間を共通の管路で接続しており、かつ第6分岐点と利用側熱交換器5の第5流出入部5Aとの間を共通の管路で接続している。
 異なる観点から言えば、第2流路は、第1流路から分岐された第1バイパス流路および第2バイパス流路を有している。第1バイパス流路は、第1分岐点と第2分岐点との間を接続する。第2バイパス流路は、第5分岐点と第6分岐点との間を接続する。これにより、第1バイパス流路は補助熱交換器3および熱源側熱交換器2をバイパスする。第2バイパス流路は第1減圧部4をバイパスする。第1流路切替部10Aは、第1流路と第1バイパス流路とを切り替えるように設けられている。第3流路切替部10Cは、第1流路と第2バイパス流路とを切り替えるように設けられている。第2流路は、第1流路切替部10Aおよび第3流路切替部10Cによって、第1流路が閉止されかつ第1バイパス流路および第2バイパス流路が開放されることにより、形成される。
 図1~図3に示されるように、第1流路および第2流路は、共通の管路で構成された、第1共通流路C1、第2共通流路C2、および第5共通流路C5を有している。さらに、第1流路は、第2流路とは異なる管路で構成された第1非共通流路L1および第5非共通流路L5を有している。第2流路は、第1流路とは異なる管路で構成された第2非共通流路L2および第6非共通流路L6を有している。
 第1共通流路C1の一端は圧縮機1の吐出口1Bに接続されている。第1共通流路C1の他端は第1分岐点に接続されている。第1共通流路C1は、圧縮機1の吐出口1Bと第1流路切替部10Aとの間に配置されている。
 第2共通流路C2の一端は第2分岐点に接続されている。第2共通流路C2の他端は第5分岐点に接続されている。第2共通流路C2は、第1流路において熱源側熱交換器2の第2流出入部2Bと第1減圧部4との間に配置される。
 第5共通流路C5の一端は第6分岐点に接続されている。第5共通流路C5の他端は利用側熱交換器5の第5流出入部5Aに接続されている。第5共通流路C5は、第1流路において第1減圧部4と利用側熱交換器5の第5流出入部5Aとの間に配置されている。
 第1非共通流路L1および第2非共通流路L2は、第1共通流路C1と第2共通流路C2との間を互いに並列に接続している。第1非共通流路L1および第2非共通流路L2の各一端は、第1分岐点に接続されている。第1非共通流路L1および第2非共通流路L2の各他端は、第2分岐点に接続されている。第2非共通流路L2が、上記第1バイパス流路を構成している。
 第5非共通流路L5および第6非共通流路L6は、第2共通流路C2と第5共通流路C5との間を互いに並列に接続している。第5非共通流路L5および第6非共通流路L6の各一端は、第5分岐点に接続されている。第5非共通流路L5および第6非共通流路L6の各他端は、第6分岐点に接続されている。第6非共通流路L6が、上記第2バイパス流路を構成している。
 第1流路では、第1共通流路C1、第1非共通流路L1、第2共通流路C2、第5非共通流路L5、および第5共通流路C5が直列に接続されている。第2流路では、第1共通流路C1、第2非共通流路L2、第2共通流路C2、第6非共通流路L6、および第5共通流路C5が直列に接続されている。
 第1非共通流路L1は、補助熱交換器3および熱源側熱交換器2を含む。第5非共通流路L5は、第1減圧部4を含む。つまり、第1流路は、圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間を、補助熱交換器3、熱源側熱交換器2、および第1減圧部4を介して接続する。第1非共通流路L1は、第1開閉弁11をさらに含む。第5非共通流路L5は、第5開閉弁15をさらに含む。つまり、第1開閉弁11および第5開閉弁15が開放されたときに、冷媒は第1流路を流通する。
 第2非共通流路L2は、補助熱交換器3および熱源側熱交換器2を含まない。第6非共通流路L6は、第1減圧部4を含まない。つまり、第2流路は、圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間を、補助熱交換器3、熱源側熱交換器2、および第1減圧部4を介さずに接続する。第2非共通流路L2は、第2開閉弁12を含む。第6非共通流路L6は、第6開閉弁16を含む。つまり、第2開閉弁12および第6開閉弁16が開放されたときに、冷媒は第2流路を流通する。
 第3流路は、利用側熱交換器5の第6流出入部5Bと圧縮機1の吸入口1Aとの間を第2減圧部6および補助熱交換器3を介して接続する。第3流路では、利用側熱交換器5の第6流出入部5B、第2減圧部6、補助熱交換器3、および圧縮機1の吸入口1Aが順に直列に接続される。第3流路には、第3流路を開閉する第3開閉弁13が配置されている。第3開閉弁13は、補助熱交換器3の第4流出入部3Bと圧縮機1の吸入口1Aとの間に配置されている。
 第4流路は、利用側熱交換器5の第6流出入部5Bと圧縮機1の吸入口1Aとの間を第2減圧部6および補助熱交換器3を介さずに接続する。第4流路では、利用側熱交換器5の第6流出入部5Bおよび圧縮機1の吸入口1Aが直列に接続される。第4流路には、第4流路を開閉する第4開閉弁14が配置されている。第4開閉弁14は、利用側熱交換器5の第6流出入部5Bと圧縮機1の吸入口1Aとの間に配置されている。
 第3流路および第4流路は、冷媒が分流または合流する第3分岐点および第4分岐点を有している。第3流路および第4流路において、第3分岐点および第4分岐点は順に直列に接続されている。第3分岐点は、第3流路において第2減圧部6よりも上流側に配置されている。第4分岐点は、第3流路において補助熱交換器3の第4流出入部3Bよりも下流側に配置されている。
 第3流路および第4流路は、第3分岐点と第4分岐点との間を並列に接続している。第3流路および第4流路は、利用側熱交換器5の第6流出入部5Bと第3分岐点との間を共通の管路で接続しており、かつ第4分岐点と圧縮機1の吸入口1Aとの間を共通の管路で接続している。
 異なる観点から言えば、第4流路は、第3流路から分岐された第3バイパス流路を有している。第3バイパス流路の一端は第3分岐点に接続されており、第3バイパス流路の他端は第4分岐点に接続されている。第2流路切替部10Bは、第3流路と第3バイパス流路とを切り替えるように設けられている。第4流路は、第2流路切替部10Bによって、第3流路が閉止されかつ第3バイパス流路が開放されることにより、形成される。
 図1~図3に示されるように、第3流路および第4流路は、共通の管路で構成された第3共通流路C3および第4共通流路C4を有している。さらに、第3流路は、第4流路とは異なる管路で構成された第3非共通流路L3を有している。第4流路は、第3流路とは異なる管路で構成された第4非共通流路L4を有している。
 第3共通流路C3の一端は利用側熱交換器5の第6流出入部5Bに接続されている。すなわち、第3共通流路C3は、利用側熱交換器5を介して第5共通流路C5と接続されている。第3共通流路C3の他端は第3分岐点に接続されている。第3共通流路C3は、第3流路において利用側熱交換器5の第6流出入部5Bと第2減圧部6との間に配置されている。
 第4共通流路C4の一端は第4分岐点に接続されている。第4共通流路C4の他端は圧縮機1の吸入口1Aに接続されている。第4共通流路C4は、第2流路切替部10Bと圧縮機1の吸入口1Aとの間に配置されている。
 第3非共通流路L3および第4非共通流路L4は、第3共通流路C3と第4共通流路C4との間を互いに並列に接続している。第4非共通流路L4が、上記第3バイパス流路を構成している。第3流路では、第3共通流路C3、第3非共通流路L3、第4共通流路C4が直列に接続されている。第4流路では、第3共通流路C3、第4非共通流路L4、第4共通流路C4が直列に接続されている。
 第3非共通流路L3は、第2減圧部6および補助熱交換器3を含む。第3流路は、利用側熱交換器5の第6流出入部5Bと圧縮機1の吸入口1Aとの間を、第2減圧部6および補助熱交換器3を介して接続する。第4非共通流路L4は、第2減圧部6および補助熱交換器3を含まない。第4流路は、利用側熱交換器5の第6流出入部5Bと圧縮機1の吸入口1Aとの間を、第2減圧部6および補助熱交換器3を介さずに接続する。第3非共通流路L3は、第3開閉弁13をさらに含む。第4非共通流路L4は、第4開閉弁14をさらに含む。つまり、第3開閉弁13が開放されたときに冷媒は第3流路を流通し、第4開閉弁14が開放されたときに冷媒は第4流路を流通する。
 図2に示されるように、第1状態では、第1開閉弁11、第4開閉弁14および第5開閉弁15が開放され、第2開閉弁12、第3開閉弁13および第6開閉弁16が閉止される。図3に示されるように、第2状態では、第1開閉弁11、第4開閉弁14、および第5開閉弁15が閉止され、第2開閉弁12、第3開閉弁13、および第6開閉弁16が開放される。
 第1流路の第1非共通流路L1および第3流路の第3非共通流路L3は、補助熱交換器3を共通して含む。すなわち、第1非共通流路L1および第3非共通流路L3は、補助熱交換器3を含む第6共通流路C6を有している。
 冷媒回路は、冷媒を整流する複数の整流部をさらに含む。複数の整流部は、第1整流部17、第2整流部18、および第3整流部19を有する。
 第1整流部17は、第3非共通流路L3において、第2減圧部6と補助熱交換器3の第3流出入部3Aとの間、具体的には第2減圧部6と第6共通流路C6との間に配置されている。第1整流部17は、第2減圧部6から補助熱交換器3の第3流出入部3Aに向かう冷媒を通し、その逆方向への冷媒の流通を制限する。
 第2整流部18は、第1非共通流路L1において、補助熱交換器3の第4流出入部3Bと熱源側熱交換器2の第1流出入部2Aの間、具体的には第6共通流路C6と熱源側熱交換器2の第1流出入部2Aとの間に配置されている。第2整流部18は、補助熱交換器3の第4流出入部3Bから熱源側熱交換器2の第1流出入部2Aに向かう冷媒を通し、その逆方向への冷媒の流通を制限する。
 第3整流部19は、第1非共通流路L1において、熱源側熱交換器2の第2流出入部2Bと上記第2分岐点との間に配置されている。第3整流部19は、熱源側熱交換器2の第2流出入部2Bから第2共通流路C2に向かう冷媒を通し、その逆方向への冷媒の流通を制限する。
 冷凍装置100は、冷却対象とする空間の外部に配置される熱源側ユニット200および減圧ユニット300と、冷却対象とする空間の内部に配置される利用側ユニット400とを備える。熱源側ユニット200は、例えば減圧ユニット300と別体として構成されている。熱源側ユニット200は、第1筐体に収容されている。減圧ユニット300は、第5筐体に収容されている。第1筐体は、熱源側ユニット200の外郭を成している。第5筐体は、減圧ユニット300の外郭を成している。第1筐体は、圧縮機1、熱源側熱交換器2、補助熱交換器3、および第2減圧部6を含む上記冷媒回路の一部と、第1ファン7および第2ファン8とを内部に収容している。第5筐体は、第1減圧部4を含む上記冷媒回路の一部を内部に収容している。第1流路および第2流路の各一部、第3流路、および第4流路は、第1筐体の内部に配置されている。第1流路および第2流路の他の一部は、第5筐体の内部に配置されている。
 利用側ユニット400は、図示しない第2筐体を備えている。第2筐体は、利用側ユニット400の外郭を成している。第2筐体は、利用側熱交換器5を含む上記冷媒回路の他の一部と、第3ファン9とを内部に収容している。第1筐体の内部に配置された上記冷媒回路の一部と、第2筐体の内部に配置された上記冷媒回路の他の一部とは、2本の配管を介して接続されている。
 熱源側ユニット200は、例えば第1ユニット500、第2ユニット600を備え、各ユニットが互いに着脱可能に接続された接続体として構成されている。第1ユニット500は、例えば圧縮機1、熱源側熱交換器2、および第1ファン7を含む。第2ユニット600は、補助熱交換器3、第2ファン8、第1流路切替部10A、第2流路切替部10B、第1整流部17、第2整流部18、および第3整流部19を含む。減圧ユニット300は、第1減圧部4および第3流路切替部10Cを含む。
 第1ユニット500は、第1共通流路C1の一部を成す第1配管210A、第1非共通流路L1の一部を成す第2配管210Bおよび第3配管210C、および第4共通流路C4の一部を成す第4配管210Dの計4本の配管を介して、第2ユニット600に接続されている。第2ユニット600は、第2共通流路C2の一部を成す配管を介して、減圧ユニット300に接続されている。第2ユニット600は、第3共通流路C3の一部を成す配管を介して、利用側ユニット400に接続されている。減圧ユニット300は、第5共通流路C5の一部を成す配管を介して、利用側ユニット400に接続されている。第1ユニット500および第2ユニット600は、例えば隣接して配置されているが、離間して配置されていてもよい。
 第1ユニット500は、例えば図示しない第3筐体をさらに含む。第2ユニット600は、図示しない第4筐体をさらに含む。減圧ユニット300は、例えば図示しない第5筐体をさらに含む。第3筐体は、圧縮機1、熱源側熱交換器2、および第1ファン7を内部に収容している。第4筐体は、補助熱交換器3、第2減圧部6、第2ファン8、第1流路切替部10A、第2流路切替部10B、第1整流部17、第2整流部18、および第3整流部19を内部に収容している。第5筐体は、第1減圧部4および第3流路切替部10Cを内部に収容している。第3筐体および第4筐体は、第1筐体の内部に収容されている。
 <冷凍装置の動作>
 冷凍装置100は、蒸発器として作用する利用側熱交換器5によって冷却対象とする空間を冷却する冷却運転と、該冷却運転により利用側熱交換器5に付着した霜を融解除去する除霜運転とを切り替える。冷凍装置100が冷却運転しているとき、冷媒回路は図2に示される第1状態とされる。冷凍装置100が除霜運転しているとき、冷媒回路は図3に示される第2状態とされる。第1状態と第2状態との切り替えは、複数の流路切替部によって行われる。
 図2に示されるように、第1状態では、第1開閉弁11、第4開閉弁14、および第5開閉弁15が開放され、第2開閉弁12、第3開閉弁13、および第6開閉弁16が閉止される。これにより、第1状態では、冷媒は、第1流路および第4流路を流れ、第2流路および第3流路を流れない。つまり、第1状態では、冷媒は圧縮機1、補助熱交換器3、熱源側熱交換器2、第1減圧部4、および利用側熱交換器5を順に流れ、熱源側熱交換器2および補助熱交換器3が第1凝縮器として作用し、利用側熱交換器5が第1蒸発器として作用する。その結果、冷媒回路が第1状態とされているときに、冷凍装置100は冷却対象とする空間を冷却することができる。
 図3に示されるように、第2状態では、第2開閉弁12、第3開閉弁13、および第6開閉弁16が開放され、第1開閉弁11、第4開閉弁14、および第5開閉弁15が閉止される。これにより、第2状態では、冷媒は、第2流路および第3流路を流れ、第1流路および第4流路を流れない。つまり、第2状態では、冷媒は圧縮機1、利用側熱交換器5、第2減圧部6、および補助熱交換器3を順に流れ、利用側熱交換器5が第2凝縮器として作用し、補助熱交換器3が第2蒸発器として作用する。つまり、冷媒回路が第2状態とされているときに、冷凍装置100は利用側熱交換器5を除霜することができる。なお、第2ファン8は、第1状態および第2状態において、補助熱交換器3に十分な空気を供給する。一方、第1ファン7は、例えば第2状態において駆動停止される。または第2状態での第1ファン7の回転速度は、第1状態のそれと比べて低下される。
 第3開閉弁13および第1整流部17は、第1状態において圧縮機1から吐出された冷媒が第6共通流路C6から第3流路へ流出することを防止する。第2整流部18は、第1状態から第2状態への切り替え時に熱源側熱交換器2の第1流出入部2Aよりも上流側にある高圧の液相冷媒が圧縮機1に吸入されることを防止する。第3整流部19は、第2状態において圧縮機1から吐出された冷媒が第2流路から第1非共通流路L1に流出することを防止する。
 第1状態から第2状態への切り替え、および第2状態から第1状態への切り替えは、例えば定期的に行われる。第1状態から第2状態への切り替えは、例えば直前の第2状態から第1状態への切り替え時からの経過時間が予め定められた時間に達したときに行われる。また、第1状態から第2状態への切り替えは、利用側熱交換器5において霜の付着が検出されたときに行われてもよい。例えば着霜の検出が検出装置によって行われる場合には、検出装置から出力された制御信号に基づいて複数の流路切替部が切り替えられることにより、第1状態から第2状態への切り替えが行われてもよい。例えば着霜の検出が作業者によって行われる場合には、作業者が入力した制御信号に基づいて複数の流路切替部が切り替えられることにより、第1状態から第2状態への切り替えが行われてもよい。
 第2状態から第1状態への切り替えは、例えば利用側熱交換器5の第6流出入部5Bの冷媒温度(出口管温度)が予め定められた温度以上になったときに行われる。
 <作用効果>
 冷凍装置100は、冷媒が循環する冷媒回路を備える。冷媒回路は、圧縮機1、熱源側熱交換器2、補助熱交換器3、第1減圧部4、利用側熱交換器5、第2減圧部6、および流路切替部を含む。流路切替部は、第1状態と第2状態とを切り替える。第1状態では、熱源側熱交換器2および補助熱交換器3が第1凝縮器として作用し、利用側熱交換器5が第1蒸発器として作用し、かつ冷媒が圧縮機1、第1凝縮器、第1減圧部4、および第1蒸発器を順に流れる。第2状態では、利用側熱交換器5が第2凝縮器として作用し、補助熱交換器3が第2蒸発器として作用し、かつ冷媒が圧縮機1、第2凝縮器、第2減圧部6、および第2蒸発器を順に流れる。
 冷凍装置100が除霜運転する時には冷媒回路が第2状態とされ、補助熱交換器3は蒸発器として作用する。そのため、除霜運転時に利用側熱交換器のみを流れ他の熱交換器を流れないように設けられた従来の冷凍装置とは異なり、冷凍装置100では冷凍サイクルを利用した除霜運転が行われる。その結果、冷凍装置100の除霜運転は上記従来の冷凍装置のそれと比べて高効率化されており、冷凍装置100の除霜運転時間は上記従来の冷凍装置のそれと比べて短縮される。
 さらに、冷凍装置100が冷却運転する時には冷媒回路が第1状態とされ、補助熱交換器3は熱源側熱交換器2とともに第1凝縮器として作用する。そのため、補助熱交換器を備えない従来の冷凍装置と比べて、冷凍装置100では冷却運転時の第1凝縮器の熱交換量が多くされ得る。この場合、冷凍装置100の冷却運転は、上記従来の冷凍装置のそれと比べて、高効率化されている。さらに、冷凍装置100の冷却運転時の消費電力は、上記従来の冷凍装置のそれと比べて、低減化されている。
 なお、冷凍装置100が除霜運転時には、蒸発器として作用する補助熱交換器3に霜が付着する場合がある。
 これに対し、冷凍装置100の第1状態では、補助熱交換器3が熱源側熱交換器2よりも冷媒回路における上流側に配置される。つまり、冷凍装置100では、第1状態において圧縮機1から吐出された気相冷媒(ホットガス)が補助熱交換器3に供給される。そのため、冷凍装置100は、除霜運転時に補助熱交換器3に付着した霜を冷却運転時に効率的に除去することができる。
 さらに、冷凍装置100では、第1状態において補助熱交換器3で凝縮された冷媒が熱源側熱交換器2に供給される。そのため、圧縮機1から吐出された冷媒が熱源側熱交換器2に供給される場合と比べて、冷凍装置100では第1ユニット500の内部の温度上昇が抑制される。その結果、冷凍装置100では、例えば第1ユニット500の内部の温度が圧縮機1の回転数を制御する制御部に不具合を生じさせる程度に上昇することが抑制される。
 さらに、冷凍装置100では、第1状態において圧縮機1から吐出された冷媒が補助熱交換器3に供給されるため、第1状態での第2ユニット600の内部の温度は比較的高い温度とされる。そのため、第1状態から第2状態に切り替えられた後に、補助熱交換器3は比較的高温の環境下で蒸発器として作用する。その結果、補助熱交換器3は比較的高効率で冷媒を蒸発させることができる。
 さらに、冷凍装置100では、第6開閉弁16を含む第6非共通流路L6が設けられているため、後述する図14に示される冷凍装置105と比べて、第1流路における第1減圧部4の配置の自由度が高い。そのため、冷凍装置100では、第1減圧部4を利用側熱交換器5の近くに配置することにより、第1状態での冷媒の圧力損失が低減され得る。
 さらに、冷凍装置100では、熱源側熱交換器2および補助熱交換器3が、第1筐体の内部に収容されている。そのため、冷凍装置100が冷却運転しているとき、第1筐体内において熱源側熱交換器2および補助熱交換器3の周囲の温度は比較的高温になっている。そのため、冷凍装置100が冷却運転から除霜運転に切り替えられた後の補助熱交換器3は、第1筐体内の比較的高温とされた環境下で、蒸発器として作用する。そのため、冷媒は、補助熱交換器3において効率良く蒸発する。その結果、冷凍装置100の除霜効率は、熱源側熱交換器2および補助熱交換器3が1つの筐体内に収容されていない冷凍装置100のそれと比べて、高められている。
 実施の形態2.
 図4~図6に示されるように、実施の形態2に係る冷凍装置101は、基本的には実施の形態1に係る冷凍装置100と同様の構成を備えるが、第1状態において熱源側熱交換器2が補助熱交換器3よりも冷媒回路における上流側に配置される点で異なる。
 冷凍装置101の冷媒回路は、冷凍装置100の第1流路および第2流路に替えて、第5流路および第6流路を有している。第5流路および第6流路は、圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間を接続する。冷凍装置101において利用側熱交換器5の第6流出入部5Bと圧縮機1の吸入口1Aとの間は、冷凍装置100と同様に、第3流路および第4流路によって接続されている。
 第5流路は、圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間を補助熱交換器3および熱源側熱交換器2を介して接続する。第5流路では、圧縮機1の吐出口1B、熱源側熱交換器2、補助熱交換器3、第1減圧部4、および利用側熱交換器5の第5流出入部5Aが順に直列に接続される。第5流路には、第5流路を開閉する第7開閉弁21および第5開閉弁15が配置されている。第7開閉弁21は、熱源側熱交換器2の第2流出入部2Bと補助熱交換器3の第3流出入部3Aとの間に配置されている。
 第6流路は、圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間を補助熱交換器3および熱源側熱交換器2を介さずに接続する。第6流路では、圧縮機1の吐出口1Bおよび利用側熱交換器5の第5流出入部5Aが直列に接続される。第6流路には、第6流路を開閉する第8開閉弁22および第6開閉弁16が配置されている。第8開閉弁22は、圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間に配置されている。
 第5流路および第6流路は、冷媒が分流または合流する第7分岐点、第8分岐点、上記第5分岐点、および上記第6分岐点を有している。第5流路および第6流路において、第7分岐点、第8分岐点、第5分岐点、および第6分岐点は順に直列に接続されている。第7分岐点は、第1流路において熱源側熱交換器2の第1流出入部2Aよりも上流側に配置されている。第8分岐点は、第1流路において補助熱交換器3の第4流出入部3Bよりも下流側かつ第1減圧部4よりも上流側に配置されている。
 第5流路および第6流路は、第7分岐点と第8分岐点との間を並列に接続し、かつ第5分岐点と第6分岐点との間を並列に接続している。第5流路および第6流路は、圧縮機1の吐出口1Bと第7分岐点との間を共通の管路で接続しており、かつ第6分岐点と利用側熱交換器5の第5流出入部5Aとの間を共通の管路で接続している。
 異なる観点から言えば、第6流路は、第5流路から分岐された第4バイパス流路および上記第2バイパス流路を有している。第4バイパス流路の一端は第7分岐点に接続されている。第4バイパス流路の他端は第8分岐点に接続されている。これにより、第4バイパス流路は、熱源側熱交換器2および補助熱交換器3をバイパスする。第8開閉弁22は、第4バイパス流路を開閉する。第6流路は、第7開閉弁21および第5開閉弁15によって第5流路が閉止され、第8開閉弁22および第6開閉弁16によって第4バイパス流路および第2バイパス流路が開放されることにより、形成される。
 図4~図6に示されるように、第5流路および第6流路の各一部は共通の管路で構成されており、各残部が異なる管路で構成されている。第5流路および第6流路は、共通の管路で構成された、第7共通流路C7、第8共通流路C8、および第5共通流路C5を有している。さらに、第5流路は、第6流路とは異なる管路で構成された第7非共通流路L7および第5非共通流路L5を有している。第6流路は、第5流路とは異なる管路で構成された第8非共通流路L8および第6非共通流路L6を有している。
 第7共通流路C7の一端は圧縮機1の吐出口1Bに接続されている。第7共通流路C7の他端は第7分岐点に接続されている。
 第8共通流路C8の一端は第8分岐点に接続されている。第8共通流路C8の他端は第5分岐点に接続されている。
 第7非共通流路L7および第8非共通流路L8は、第7共通流路C7と第8共通流路C8との間を互いに並列に接続している。第5非共通流路L5および第6非共通流路L6は、第8共通流路C8と第5共通流路C5との間を互いに並列に接続している。第5流路では、第7共通流路C7、第7非共通流路L7、第8共通流路C8、第5非共通流路L5、および第5共通流路C5が直列に接続されている。第6流路では、第7共通流路C7、第8非共通流路L8、第8共通流路C8、第6非共通流路L6、および第5共通流路C5が直列に接続されている。
 第7非共通流路L7は、熱源側熱交換器2および補助熱交換器3を含む。第5非共通流路L5は、第1減圧部4を含む。つまり、第5流路は、圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間を、熱源側熱交換器2、補助熱交換器3、および第1減圧部4を介して接続する。第7非共通流路L7は、第7開閉弁21および第5開閉弁15をさらに含む。つまり、第7開閉弁21および第5開閉弁15が開放されたときに、冷媒は第5流路を流通する。
 第8非共通流路L8は、熱源側熱交換器2および補助熱交換器3を含まない。第8非共通流路L8は、上記第4バイパス流路を構成している。つまり、第6流路は、圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間を、熱源側熱交換器2、補助熱交換器3、および第1減圧部4を介さずに接続する。第8非共通流路L8は、第8開閉弁22および第6開閉弁16をさらに含む。つまり、第8開閉弁22および第6開閉弁16が開放されたときに、冷媒は第6流路を流通する。
 図4~図6に示されるように、第7開閉弁21、第8開閉弁22、第5開閉弁15、および第6開閉弁16は、第5流路と第6流路とを切り替えるように設けられている第4流路切替部20Aを構成している。
 第1状態では、第7開閉弁21、第5開閉弁15、および第4開閉弁14が開放され、第8開閉弁22、第6開閉弁16、および第3開閉弁13が閉止される。第2状態では、第7開閉弁21、第5開閉弁15、および第4開閉弁14が閉止され、第8開閉弁22、第6開閉弁16、および第3開閉弁13が開放される。
 第5流路の第7非共通流路L7および第3流路の第3非共通流路L3は、補助熱交換器3を共通して含む。すなわち、第7非共通流路L7および第3非共通流路L3は、補助熱交換器3を含む第9共通流路C9を有している。
 冷媒回路は、冷媒を整流する複数の整流部をさらに含む。複数の整流部は、第1整流部17および第4整流部23を有する。
 第4整流部23は、第7非共通流路L7において、補助熱交換器3の第4流出入部3Bと上記第8分岐点との間、具体的には第9共通流路C9と上記第8分岐点との間に配置されている。第4整流部23は、補助熱交換器3の第4流出入部3Bから第8共通流路C8に向かう冷媒を通し、その逆方向への冷媒の流通を制限する。
 第3開閉弁13、第4開閉弁14、第5開閉弁15、第6開閉弁16、第1整流部17、第7開閉弁21、第8開閉弁22、および第4整流部23は、熱源側ユニット201の内部、具体的には第2ユニット601の内部に配置されている。
 冷凍装置101では、第1ユニット501および第2ユニット601が、第7非共通流路L7を成す第5配管210E、第8非共通流路L8を成す第6配管210F、および第4共通流路C4を成す第4配管210Dの計3本の配管を介して接続されている。
 <冷凍装置の動作>
 上述のように、冷凍装置101は、複数の流路切替部によって、図5に示される第1状態と、図6に示される第2状態とが切り替えられる。
 図5に示されるように、第1状態では、第7開閉弁21、第4開閉弁14、および第5開閉弁15が開放され、第8開閉弁22、第3開閉弁13、および第6開閉弁16が閉止される。これにより、冷媒は、第5流路および第4流路を流れ、第6流路および第3流路を流れない。つまり、第1状態では、冷媒は圧縮機1、熱源側熱交換器2、補助熱交換器3、第1減圧部4、および利用側熱交換器5を順に流れる。熱源側熱交換器2および補助熱交換器3が第1凝縮器として作用し、利用側熱交換器5が第1蒸発器として作用する。その結果、第1状態では、冷凍装置101は冷却対象とする空間を冷却する。
 図6に示されるように、第2状態では、第8開閉弁22、第3開閉弁13、および第6開閉弁16が開放され、第7開閉弁21、第4開閉弁14、および第5開閉弁15が閉止される。これにより、冷媒は、第6流路および第3流路を流れ、第5流路および第4流路を流れない。つまり、第2状態では、冷媒は圧縮機1、利用側熱交換器5、第2減圧部6、および補助熱交換器3を順に流れる。その結果、第2状態では、利用側熱交換器5が第2凝縮器として作用し、補助熱交換器3が第2蒸発器として作用する。つまり、第2状態が実現されているときに、冷凍装置101は利用側熱交換器5を除霜する。
 第3開閉弁13および第1整流部17は、第1状態において圧縮機1から吐出された冷媒が第9共通流路C9から第3流路へ流出することを防止する。第4整流部23は、第2状態において圧縮機1から吐出された冷媒が第6流路から第3非共通流路L3に流出することを防止する。
 <作用効果>
 冷凍装置101は、冷凍装置100と基本的に同様の構成を備えるため、冷凍装置100と同様の効果を奏することができる。
 さらに、冷凍装置101では、第1状態において圧縮機1の吐出口1Bと熱源側熱交換器2の第1流出入部2Aとが開閉弁等を介せずに直接接続される。そのため、冷凍装置101では、第1状態における圧縮機1の吐出口1Bと凝縮器との間の冷媒回路上での最短距離が、冷凍装置100のそれと比べて、短くされ得る。この場合、冷凍装置101において気相冷媒が流れる配管の長さは、冷凍装置100において気相冷媒が流れる配管の長さと比べて、短くなる。このような冷凍装置101では、冷却運転時の冷媒の圧力損失が冷凍装置100のそれと比べて低減されている。
 さらに、冷凍装置101では、第1ユニット501および第2ユニット601が、第7非共通流路L7を成す第5配管210E、第8非共通流路L8を成す第6配管210F、および第4共通流路C4を成す第4配管210Dの計3本の配管を介して接続されている。つまり、冷凍装置101において第1ユニット501と第2ユニット601とを接続する配管の本数は、冷凍装置100において第1ユニット500と第2ユニット600とを接続する配管の本数と比べて少ない。そのため、熱源側ユニット201の組立性は、熱源側ユニット200のそれと比べて高い。
 実施の形態3.
 図7~図9に示されるように、実施の形態3に係る冷凍装置102は、実施の形態1に係る冷凍装置100と基本的に同様の構成を備えるが、第1状態において熱源側熱交換器2と補助熱交換器3とが互いに並列に接続される点で異なる。
 冷凍装置102の冷媒回路は、冷凍装置100の第1流路および第2流路に替えて、第7流路および第8流路を有している。第7流路および第8流路は、圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間を接続する。冷凍装置102において利用側熱交換器5の第6流出入部5Bと圧縮機1の吸入口1Aとの間は、冷凍装置100と同様に、第3流路および第4流路によって接続されている。
 第7流路は、熱源側熱交換器2を介して圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間を接続し、かつ補助熱交換器3を介して圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間を接続する。第7流路では、圧縮機1の吐出口1B、熱源側熱交換器2、第1減圧部4、および利用側熱交換器5の第5流出入部5Aが順に直列に接続され、かつ圧縮機1の吐出口1B、補助熱交換器3、第1減圧部4、および利用側熱交換器5の第5流出入部5Aが直列に接続される。言い換えると、第7流路では、熱源側熱交換器2と補助熱交換器3とが互いに並列に接続される。
 第7流路には、第7流路を開閉する第9開閉弁31、第10開閉弁32、および第5開閉弁15が配置されている。第9開閉弁31は、熱源側熱交換器2の第2流出入部2Bと第1減圧部4との間に配置されている。第10開閉弁32は、圧縮機1の吐出口1Bと補助熱交換器3の第3流出入部3Aとの間に配置されている。
 第8流路は、圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間を熱源側熱交換器2および補助熱交換器3を介さずに接続する。第8流路では、圧縮機1の吐出口1Bおよび利用側熱交換器5の第5流出入部5Aが順に直列に接続される。
 第8流路には、第8流路を開閉する第11開閉弁33および第6開閉弁16が配置されている。第11開閉弁33は、圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5A補助熱交換器3の第3流出入部3Aとの間に配置されている。
 第7流路および第8流路は、冷媒が分流または合流する第9分岐点、第10分岐点、上記第5分岐点、第11分岐点、第12分岐点、および上記第6分岐点を有している。第7流路および第8流路において、第9分岐点、第10分岐点、第5分岐点、および第6分岐点は順に直列に接続されている。第7流路では、第9分岐点、第12分岐点、第10分岐点、第5分岐点、および第6分岐点が順に直列に接続されており、かつ第9分岐点、第11分岐点、第12分岐点、第10分岐点、第5分岐点、および第6分岐点が順に直列に接続されている。
 第9分岐点は、第7流路において熱源側熱交換器2の第1流出入部2Aおよび補助熱交換器3の第3流出入部3Aよりも上流側に配置されている。第10分岐点は、第7流路において熱源側熱交換器2の第2流出入部2Bおよび補助熱交換器3の第4流出入部3Bよりも下流側かつ第1減圧部4よりも上流側に配置されている。第11分岐点は、第7流路において第9分岐点よりも下流側かつ補助熱交換器3の第3流出入部3Aよりも上流側に配置されている。第12分岐点は、第7流路において熱源側熱交換器2の第2流出入部2Bおよび補助熱交換器3の第4流出入部3Bよりも下流側かつ第10分岐点よりも上流側に配置されている。
 異なる観点から言えば、第8流路は、第7流路から分岐された第7バイパス流路および上記第2バイパス流路を有している。第7バイパス流路の一端は第11分岐点に接続されている。第7バイパス流路の他端は第10分岐点に接続されている。これにより、第7バイパス流路は、補助熱交換器3および熱源側熱交換器2をバイパスする。第11開閉弁33は、第7バイパス流路を開閉する。第8流路は、第9開閉弁31、第10開閉弁32、および第5開閉弁15によって第7流路が閉止され、第11開閉弁33および第6開閉弁16によって第7バイパス流路および第2バイパス流路が開放されることにより、形成される。
 図7~図9に示されるように、第7流路および第8流路の各一部は共通の管路で構成されており、各残部が異なる管路で構成されている。第7流路および第8流路は、共通の管路で構成された、第10共通流路C10、第11共通流路C11、第12共通流路C12、および第5共通流路C5を有している。さらに、第7流路は、第8流路とは異なる管路で構成された第9非共通流路L9、第10非共通流路L10および第5非共通流路L5を有している。第8流路は、第7流路とは異なる管路で構成された第11非共通流路L11および第6非共通流路L6を有している。
 第10共通流路C10の一端は、圧縮機1の吐出口1Bに接続されている。第10共通流路C10の他端は、第9非共通流路L9および第11共通流路C11の各一端、すなわち第9分岐点に接続されている。第10共通流路C10は、第7流路において圧縮機1の吐出口1Bと熱源側熱交換器2の第1流出入部2Aとの間、かつ圧縮機1の吐出口1Bと補助熱交換器3の第3流出入部3Aとの間に配置されている。
 第11共通流路C11の一端は、第10共通流路C10の上記他端および第9非共通流路L9の上記一端に接続されている。第11共通流路C11の他端は、第10非共通流路L10および第11非共通流路L11の各一端、すなわち第11分岐点に接続されている。第11共通流路C11は、第7流路において圧縮機1の吐出口1Bと補助熱交換器3の第3流出入部3Aとの間に配置されている。
 第12共通流路C12の一端は、第9非共通流路L9、第10非共通流路L10、および第11非共通流路L11の各他端、すなわち第10分岐点に接続されている。第12共通流路C12の他端は、第5非共通流路L5および第6非共通流路L6の上記第5分岐点に接続されている。第12共通流路C12は、第7流路において熱源側熱交換器2の第2流出入部2Bと第1減圧部4との間、かつ補助熱交換器3の第4流出入部3Bと第1減圧部4との間に配置されている。
 第9非共通流路L9、第10非共通流路L10、および第11非共通流路L11は、第10共通流路C10と第12共通流路C12との間を互いに並列に接続している。さらに、第10非共通流路L10および第11非共通流路L11は、第11共通流路C11と第12共通流路C12との間を互いに並列に接続している。第5非共通流路L5および第6非共通流路L6は、第12共通流路C12と第5共通流路C5との間を互いに並列に接続している。第7流路では、第10共通流路C10、第9非共通流路L9、第12共通流路C12、第5非共通流路L5、および第5共通流路C5が直列に接続されているとともに、第10共通流路C10、第11共通流路C11、第10非共通流路L10、第12共通流路C12、第5非共通流路L5、および第5共通流路C5が直列に接続されている。第8流路では、第10共通流路C10、第11共通流路C11、第11非共通流路L11、第12共通流路C12、第6非共通流路L6、および第5共通流路C5が直列に接続されている。
 第9非共通流路L9は、熱源側熱交換器2を含む。第10非共通流路L10は、補助熱交換器3を含む。つまり、第7流路は、圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間を、熱源側熱交換器2および第1減圧部4を介して接続するとともに、補助熱交換器3および第1減圧部4を介して接続する。
 第11非共通流路L11は、熱源側熱交換器2および補助熱交換器3を含まない。第11非共通流路L11は、上記第7バイパス流路を構成している。つまり、第8流路は、圧縮機1の吐出口1Bと利用側熱交換器5の第5流出入部5Aとの間を、熱源側熱交換器2、補助熱交換器3、および第1減圧部4を介さずに接続する。
 第9非共通流路L9は、第9開閉弁31をさらに含む。第10非共通流路L10は、第10開閉弁32をさらに含む。第11非共通流路L11は、第11開閉弁33をさらに含む。
 第7流路の第9非共通流路L9および第10非共通流路L10は、共通の管路で構成された第13共通流路C13を有している。第13共通流路C13の一端は、第9非共通流路L9および第10非共通流路L10の合流部分である第12分岐点に接続されている。第13共通流路C13の他端は、第10分岐点に接続されている。第9開閉弁31は、例えば第13共通流路C13上に設けられている。
 図7~図9に示されるように、第9開閉弁31、第10開閉弁32、第11開閉弁33、第5開閉弁15、および第6開閉弁16は、第7流路と第8流路とを切り替えるように設けられている第5切替部を構成している。
 第1状態では、第9開閉弁31、第10開閉弁32、第5開閉弁15、および第3開閉弁13が開放され、第11開閉弁33、第6開閉弁16、および第4開閉弁14が閉止される。第2状態では、第9開閉弁31、第10開閉弁32、第5開閉弁15、および第3開閉弁13が閉止され、第11開閉弁33、第6開閉弁16、および第4開閉弁14が開放される。
 第7流路の第9非共通流路L9および第3流路の第3非共通流路L3は、補助熱交換器3を共通して含む。すなわち、第9非共通流路L9および第3非共通流路L3は、補助熱交換器3を含む第14共通流路C14を有している。
 冷媒回路は、冷媒を整流する複数の整流部をさらに含む。複数の整流部は、第1整流部17、第5整流部34、および第6整流部35を有する。
 第5整流部34は、第10非共通流路L10において、補助熱交換器3の第4流出入部3Bと第9非共通流路L9および第10非共通流路L10の上記合流部分との間に配置されている。第5整流部34は、補助熱交換器3の第4流出入部3Bから第13共通流路C13に向かう冷媒を通し、その逆方向への冷媒の流通を制限する。
 第6整流部35は、第9非共通流路L9において、熱源側熱交換器2の第2流出入部2Bと上記第11分岐点との間に配置されている。第6整流部35は、少なくとも、熱源側熱交換器2の第2流出入部2Bから第12共通流路C12に向かう冷媒を通し、その逆方向への冷媒の流通を制限する。第6整流部35は、例えば第13共通流路C13上に設けられている。第6整流部35は、熱源側熱交換器2の第2流出入部2Bから第12共通流路C12に向かう冷媒、および補助熱交換器3の第4流出入部3Bから第12共通流路C12に向かう冷媒を通し、各逆方向への冷媒の流通を制限する。
 第9開閉弁31、第10開閉弁32、第11開閉弁33、第5開閉弁15、第6開閉弁16、第3開閉弁13、第4開閉弁14、第1整流部17、第5整流部34、および第6整流部35は、熱源側ユニット202の内部、具体的には第2ユニット602の内部に配置されている。
 冷凍装置102では、第1ユニット502および第2ユニット602が、第10非共通流路L10を成す第8配管210H、第9非共通流路L9を成す第9配管210I、および第4共通流路C4を成す第10配管210Jの計3本の配管を介して接続されている。
 <冷凍装置の動作>
 上述のように、冷凍装置102は、複数の流路切替部によって、図8に示される第1状態と、図9に示される第2状態とが切り替えられる。
 図8に示されるように、第1状態では、第9開閉弁31、第10開閉弁32、第5開閉弁15、および第3開閉弁13が開放され、第11開閉弁33、第6開閉弁16、および第4開閉弁14が閉止される。これにより、冷媒は、第7流路および第4流路を流れ、第8流路および第3流路を流れない。つまり、第1状態では、冷媒は圧縮機1、熱源側熱交換器2、第1減圧部4、および利用側熱交換器5を順に流れるとともに、圧縮機1、補助熱交換器3、第1減圧部4、および利用側熱交換器5を順に流れる。熱源側熱交換器2および補助熱交換器3が第3凝縮器として作用し、利用側熱交換器5が第3蒸発器として作用する。その結果、第1状態では、冷凍装置102は冷却対象とする空間を冷却する。
 図9に示されるように、第2状態では、第9開閉弁31、第10開閉弁32、第5開閉弁15、および第3開閉弁13が閉止され、第11開閉弁33、第6開閉弁16、および第4開閉弁14が開放される。これにより、冷媒は、第8流路および第3流路を流れ、第7流路および第4流路を流れない。つまり、第2状態では、冷媒は圧縮機1、利用側熱交換器5、第2減圧部6、および補助熱交換器3を順に流れる。その結果、第2状態では、利用側熱交換器5が第2凝縮器として作用し、補助熱交換器3が第2蒸発器として作用する。つまり、第2状態が実現されているときに、冷凍装置102は利用側熱交換器5を除霜する。
 <作用効果>
 冷凍装置102は、冷凍装置100と基本的に同様の構成を備えるため、冷凍装置100と同様の効果を奏することができる。
 さらに、冷凍装置102では、冷媒回路が第1状態とされているときに熱源側熱交換器2および補助熱交換器3が圧縮機1の吐出口1Bに対して並列に接続されている。そのため、冷凍装置102では、冷凍装置100,101と比べて、冷却運転時の冷媒の圧力損失が低減されている。
 さらに、冷凍装置102では、第1ユニット502および第2ユニット602が、3本の配管を介して接続されている。そのため、冷凍装置102において第1ユニット502と第2ユニット602とを接続する配管の本数は、冷凍装置100において第1ユニット500と第2ユニット600とを接続する配管の本数と比べて少ない。そのため、熱源側ユニット202の組立性は、熱源側ユニット200のそれと比べて高い。
 実施の形態4.
 図10~図12に示されるように、実施の形態4に係る冷凍装置103は、実施の形態1に係る冷凍装置100と基本的に同様の構成を備えるが、熱媒体が循環する熱媒体回路をさらに備え、熱源側熱交換器2が冷媒回路を循環する冷媒と熱媒体回路を循環する熱媒体との間の熱交換を行うように設けられている点で異なる。
 熱媒体回路は、熱源側ユニット203の内部、具体的には第1ユニット503の内部に配置されている。熱媒体回路を循環する熱媒体は、例えば冷媒である。冷凍装置103は、いわゆる二元冷凍装置として構成されており、上記冷媒回路が低温側回路、熱媒体回路が高温側回路を成している。熱媒体回路は、高温側圧縮機51、高温側凝縮器52、高温側減圧部53、および高温側蒸発器として作用する熱源側熱交換器2を含む。上記熱媒体は、高温側圧縮機51、高温側凝縮器52、高温側減圧部53、および熱源側熱交換器2を順に流れる。第2ユニット600、減圧ユニット300、および利用側ユニット400の各々は、冷凍装置100の第2ユニット600、減圧ユニット300、および利用側ユニット400の各々と同様の構成を備えている。
 高温側圧縮機51は、熱源側熱交換器2において蒸発した熱媒体を圧縮して吐出する。高温側凝縮器52では、高温側圧縮機51から吐出された熱媒体と空気との間の熱交換が行われる。第1ユニット503の内部には、第1ユニット500における第1ファン7に替えて、高温側凝縮器52に冷凍庫外の空気を供給する第4ファン54が配置されている。高温側減圧部53は、例えば電子膨張弁である。
 熱源側熱交換器2は、例えばプレート式熱交換器である。熱源側熱交換器2は、熱媒体が流出入する第7流出入部2Cおよび第8流出入部2Dをさらに有している。第7流出入部2Cは、高温側減圧部53を介して高温側凝縮器52に接続されている。第8流出入部2Dは、高温側圧縮機51の吸入口に接続されている。
 第1ユニット503および第2ユニット600は、例えば同一の筐体内に収容されている。この場合、補助熱交換器3および高温側凝縮器52は、例えば一体として設けられていてもよい。異なる観点から言えば、1つの熱交換器の一部領域が補助熱交換器3を構成し、かつ当該1つの熱交換器の他の領域が高温側凝縮器52を構成していてもよい。
 <冷凍装置の動作>
 冷凍装置103では、複数の流路切替部によって、図11に示される第1状態と、図12に示される第2状態とが切り替えられる。図11および図12に示されるように、冷凍装置103における第1状態と第2状態との切り替えは、冷凍装置100における第11状態と第2状態との切り替えと同様に行われる。
 図11に示されるように、冷媒回路が第1状態にあるときに、冷媒回路内の冷媒および熱媒体回路内の熱媒体の各々が冷凍サイクルを繰り返す。第1状態では、冷媒は圧縮機1、補助熱交換器3、熱源側熱交換器2、第1減圧部4、および利用側熱交換器5を順に流れ、熱媒体は高温側圧縮機51、高温側凝縮器52、高温側減圧部53、および熱源側熱交換器2を順に流れる。これにより、第1状態では、熱源側熱交換器2において冷媒と熱媒体との間の熱交換が行われて、冷媒が凝縮し、かつ熱媒体が蒸発する。その結果、第1状態では熱源側熱交換器2および補助熱交換器3が第1凝縮器として作用し、利用側熱交換器5が第1蒸発器として作用し、冷凍装置103は冷却対象とする空間を冷却することができる。
 図12に示されるように、冷媒回路が第2状態にあるときに、冷媒回路内の冷媒のみが該冷媒回路内を循環して冷凍サイクルを繰り返し、熱媒体回路内の熱媒体は該熱媒体回路内を循環せず冷凍サイクルを繰り返さない。つまり、冷媒回路が第2状態にあるときに、冷凍装置103は、冷凍装置100と同様に動作して、利用側熱交換器5を除霜する。
 <作用効果>
 冷凍装置103は、冷凍装置100と基本的に同様の構成を備えるため、冷凍装置100と同様の効果を奏することができる。
 さらに、冷凍装置103では、二元冷凍装置として構成されているため、単一の冷凍サイクルで作動している冷凍装置と比べて冷却効率が高められている。異なる観点から言えば、冷凍装置103では補助熱交換器3が冷媒回路において凝縮器として作用するため、冷凍装置103の冷却効率は、補助熱交換器3を備えない従来の二元冷凍装置のそれと比べて、高められている。さらに、冷凍装置103では、上記従来の二元冷凍装置と比べて、除霜効率が高められている。
<変形例>
 図13に示される冷凍装置104は、図10~図12に示される冷凍装置103の変形例である。冷凍装置104は、冷凍装置103と基本的に同様の構成を備えるが、上記熱媒体回路を循環する熱媒体が水またはブライン等である点で異なる。冷凍装置104における熱媒体は、熱媒体回路を循環するときに相変化しない。熱媒体回路は、図10~図12に示される高温側圧縮機51に替えてポンプ55を有し、かつ高温側凝縮器52に替えて熱交換器56を有している。ポンプ55は、熱媒体回路内において熱媒体を循環させる。熱交換器56は、熱媒体回路内を循環する熱媒体と冷凍庫外の空気との間の熱交換を行うように設けられている。補助熱交換器3は、上述のように、冷媒回路を循環する冷媒と冷凍庫外の空気との間の熱交換を行うように設けられている。そのため、冷凍装置104においても、冷凍装置100と同様に、第1状態と第2状態とが実現される。その結果、冷凍装置104は、冷凍装置100と同様の効果を奏することができる。
 また、補助熱交換器3が冷媒回路を循環する冷媒と熱媒体回路を循環する冷媒との間の熱交換を行うように設けられている場合、除霜運転時の補助熱交換器3では、熱媒体が利用側熱交換器5で凝縮された冷媒と熱交換して凍結するおそれがある。これに対し、冷凍装置104では、利用側熱交換器5で凝縮された冷媒が熱源側熱交換器2に供給されないため、除霜運転時においても熱媒体の凍結が抑制されている。なお、冷凍装置104においても、冷凍装置100と同様に、利用側熱交換器5に対する除霜運転によって補助熱交換器3に霜が付着し得るが、この霜は冷却運転によって融解除去され得る。
 冷凍装置103,104の冷媒回路は、冷凍装置101または冷凍装置102の冷媒回路と同様の構成を備えていてもよい。冷凍装置103,104の熱媒体回路は、冷凍装置101または冷凍装置102の熱源側熱交換器2を含んでいてもよい。
 図14に示される冷凍装置105は、図1~図3に示される冷凍装置100の変形例である。冷凍装置105では、第2流路が1つのバイパス流路のみ、すなわち第2非共通流路L2のみを有している。異なる観点から言えば、冷凍装置105では、第1流路および第2流路が第2共通流路C2、上記第2分岐点、および上記第5分岐点を有していない。この場合、第2非共通流路L2の一端は、冷凍装置100におけるそれと同様に、上記第1分岐点に接続されている。第2非共通流路L2の他端は、第1流路において第1減圧部4よりも下流側かつ利用側熱交換器5の第5流出入部5Aよりも上流側に接続されている。第2非共通流路L2は、補助熱交換器3、熱源側熱交換器2および第1減圧部4をバイパスするように、設けられている。冷凍装置105では、第6開閉弁16が不要とされる。
 なお、冷凍装置101,102,103,104も、冷凍装置105と同様の変形例を採ることが出来る。
 図15および図16に示される冷凍装置106は、図1~図3に示される冷凍装置100の変形例である。冷凍装置106は、冷媒が循環するエコノマイザ回路をさらに備える。エコノマイザ回路は、圧縮機1、熱源側熱交換器2、エコノマイザ流路60、エコノマイザ熱交換器61、エコノマイザ減圧部62、第5バイパス流路63、および第12開閉弁64を含む。
 圧縮機1は、例えば低圧部と、高圧部と、低圧部と高圧部との間に配置された中間圧部とを含む。エコノマイザ流路60は、冷媒回路の上記第1流路から分岐されている。エコノマイザ流路60の一端は、熱源側熱交換器2の第2流出入部2Bと上記第2分岐点との間に接続されている。エコノマイザ流路60の他端は、例えば圧縮機1の中間圧部に接続されている。これにより、エコノマイザ回路は、熱源側熱交換器2で凝縮された冷媒の一部を圧縮機1の上記中間圧部に流入させる。エコノマイザ減圧部62は、熱源側熱交換器2で凝縮された後エコノマイザ流路に流入した冷媒を減圧する。エコノマイザ熱交換器61は、エコノマイザ減圧部62により減圧された冷媒と、熱源側熱交換器2で凝縮された後利用側熱交換器5に向かって流れる冷媒との間の熱交換を行うように設けられている。エコノマイザ回路は、熱源側ユニット206に含まれている。圧縮機1、熱源側熱交換器2、エコノマイザ流路60、エコノマイザ熱交換器61、およびエコノマイザ減圧部62は、第1ユニット506に含まれている。
 第5バイパス流路63は、第1流路において第1開閉弁11、補助熱交換器3および第2整流部18をバイパスするように設けられている。第5バイパス流路63の一端は、第1非共通流路L1において第1分岐点と第1開閉弁11との間に接続されている。第5バイパス流路63の他端は、第1非共通流路L1において第2整流部18と熱源側熱交換器2の第1流出入部2Aとの間に接続されている。第12開閉弁64は、第5バイパス流路63を開閉する。第5バイパス流路63および第12開閉弁64は、第2ユニット606に含まれている。
 エコノマイザ回路は、圧縮機1の吐出口1Bと第5バイパス流路63の上記一端との間に位置する部分、および第5バイパス流路63の上記他端とエコノマイザ流路60の上記一端との間に位置する部分を、上記冷媒回路の第1流路と共有している。
 異なる観点から言えば、冷凍装置106の冷媒回路は、エコノマイザ流路60および第5バイパス流路63をさらに含む。冷媒回路が第1状態にあるときには、第1共通流路C1、第1非共通流路L1において第1分岐点とエコノマイザ流路60の上記一端との間に位置する部分、およびエコノマイザ流路60が、エコノマイザ回路を構成する。冷媒回路が第2状態にあるときには、第1共通流路C1、第1非共通流路L1において第1分岐点と第5バイパス流路63の上記一端との間に位置する部分および第5バイパス流路63の上記他端とエコノマイザ流路60の上記一端との間に位置する部分、第5バイパス流路63、ならびにエコノマイザ流路60が、エコノマイザ回路を構成する。なお、冷凍装置106のエコノマイザ回路は、熱源側熱交換器2で凝縮された冷媒の一部を圧縮機1に戻すように構成されていればよい。エコノマイザ流路60の他端は、圧縮機1の低圧部または吸入口1Aに接続されていてもよい。また、冷凍装置106における圧縮機1の構成は、特に限られるものではなく、例えば多段圧縮機であってもよいし、例えば単段圧縮機であってもよい。
 図15に示されるように、冷凍装置106が冷却運転しているとき、第1開閉弁11、第4開閉弁14および第5開閉弁15が開放され、第2開閉弁12、第3開閉弁13、第6開閉弁16、および第12開閉弁64が閉止される。これにより、圧縮機1から吐出された冷媒は、第1凝縮器としての熱源側熱交換器2、補助熱交換器3、第1減圧部4、および第1蒸発器としての利用側熱交換器5を順に流れるとともに、圧縮機1から吐出された冷媒の残部が熱源側熱交換器2、およびエコノマイザ流路60を順に流れる。その結果、冷凍装置106の冷却運転は、エコノマイザ回路が活かされることにより、上記従来の冷凍装置のそれと比べてさらに高効率化されている。
 図16に示されるように、冷凍装置106が除霜運転しているとき、第2開閉弁12、第3開閉弁13、第6開閉弁16、および第12開閉弁64が開放され、第1開閉弁11、第4開閉弁14および第5開閉弁15が閉止される。これにより、冷凍装置106が除霜運転しているとき、圧縮機1から吐出された冷媒の一部が、第2凝縮器としての利用側熱交換器5、第2減圧部6、および第2蒸発器としての補助熱交換器3を順に流れる同時に、圧縮機1から吐出された冷媒の残部が第5バイパス流路63、熱源側熱交換器2、およびエコノマイザ流路60を順に流れる。つまり、冷凍装置100~105の冷媒回路が第2状態にあるときに、熱源側熱交換器2は凝縮器として作用しないのに対し、冷凍装置106の冷媒回路が第2状態にあるときに、熱源側熱交換器2は凝縮器として作用する。冷凍装置106の除霜運転では、利用側熱交換器5において除霜に利用される熱量を多くするために、熱源側熱交換器2での熱交換量が補助熱交換器3での熱交換量と比べて少なくされるのが好ましい。そのため、冷凍装置106が除霜運転しているときの第1ファン7の回転速度は、冷凍装置106が除霜運転しているときの第2ファン8の回転速度、および冷凍装置106が冷却運転しているときの第1ファン7の回転速度およびと比べて少なくされるのが好ましい。
 冷凍装置106が除霜運転するときに冷媒は第1流路およびエコノマイザ流路60を流れるが、熱源側熱交換器2での熱交換量が十分に少なくされていることにより、利用側熱交換器5において除霜に利用される熱量は十分に多い。また、冷凍装置100の除霜運転も、除霜運転時に利用側熱交換器のみを流れ他の熱交換器を流れないように設けられた従来の冷凍装置とは異なり、冷凍サイクルが利用される。その結果、冷凍装置106の除霜運転は上記従来の冷凍装置のそれと比べて高効率化されている。
 図17に示されるように、冷凍装置106のエコノマイザ回路は、第12開閉弁64に替えて、キャピラリ管65を含んでいてもよい。キャピラリ管65は、第5バイパス流路63に配置されている。キャピラリ管65における冷媒の圧力損失は、補助熱交換器3における冷媒の圧力損失と比べて、高い。キャピラリ管65は、冷媒回路が上記第1状態とされているときに、第5バイパス流路63を流れる冷媒の流量が冷凍装置106の冷却性能に影響を与えないような流量となるように、言い換えると、第5バイパス流路63を流れる冷媒の流量が冷凍装置106の冷却性能に影響を与え得る最少流量未満となるように設けられている。この場合、キャピラリ管65は、第1開閉弁11が開放されたときには第5バイパス流路63内の冷媒の流れを実質的に遮断し、第1開閉弁11が閉止されたときには第5バイパス流路63内に冷媒を流通させる。これにより、キャピラリ管65を備える冷凍装置106は、第12開閉弁64を備える冷凍装置106と同様の効果を奏することができる。なお、冷凍装置101~105も、冷凍装置106と同様の変形例を採ることが出来る。
 図18に示される冷凍装置107は、図1~図3に示される冷凍装置100の変形例である。冷凍装置107では、複数の圧縮機1が第1流路および第2流路において互いに並列に接続されている。さらに、複数の熱源側熱交換器2が第1流路において互いに並列に接続されている。このような冷凍装置107も、冷凍装置100と基本的に同様の構成を備えるため、冷凍装置100と同様の効果を奏することができる。なお、冷凍装置101~106も、冷凍装置107と同様の変形例を採ることが出来る。
 冷凍装置100~107において、減圧ユニット300は第1筐体の外部に配置されていてもよい。減圧ユニット300は、例えば利用側ユニット400とともに、冷却対象とする空間内に配置されていてもよい。また、減圧ユニット300は利用側ユニット400と一体として構成されていてもよい。
 また、冷凍装置100~107において、熱源側ユニット200~207は減圧ユニット300を備えていてもよい。減圧ユニット300は、例えば、熱源側ユニット200~207において第1ユニット500~507および第2ユニット600~605と一体または別体として構成され、第1筐体の内部に配置されている。
 以上のように本発明の実施の形態について説明を行なったが、上述の実施の形態を様々に変形することも可能である。また、本発明の範囲は上述の実施の形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むことが意図される。
 1 圧縮機、1A 吸入口、1B 吐出口、2 熱源側熱交換器、2A 第1流出入部、2B 第2流出入部、2C 第7流出入部、2D 第8流出入部、3 補助熱交換器、3A 第3流出入部、3B 第4流出入部、4 第1減圧部、5 利用側熱交換器、5A 第5流出入部、5B 第6流出入部、6 第2減圧部、7 第1ファン、8 第2ファン、9 第3ファン、10A 第1流路切替部、10B 第2流路切替部、10C 第3流路切替部、11 第1開閉弁、12 第2開閉弁、13 第3開閉弁、14 第4開閉弁、15 第5開閉弁、16 第6開閉弁、17 第1整流部、18 第2整流部、19 第3整流部、20A 第4流路切替部、21 第7開閉弁、22 第8開閉弁、23 第4整流部、31 第9開閉弁、32 第10開閉弁、33 第11開閉弁、34 第5整流部、35 第6整流部、51 高温側圧縮機、52 高温側凝縮器、53 高温側減圧部、54 第4ファン、55 ポンプ、56 熱交換器、60 エコノマイザ流路、61 エコノマイザ熱交換器、62 エコノマイザ減圧部、63 第5バイパス流路、64 第12開閉弁、65 キャピラリ管、100,101,102,103,104,105,106,107 冷凍装置、200,201,202 熱源側ユニット、210A 第1配管、210B 第2配管、210C 第3配管、210D 第4配管、210E 第5配管、210F 第6配管、210H 第8配管、210I 第9配管、210J 第10配管、300 利用側ユニット、400,401,402,403 第1ユニット、500,501,502,503 第2ユニット、600 第3ユニット。

Claims (10)

  1.  冷媒が循環する冷媒回路を備え、
     前記冷媒回路が、圧縮機、熱源側熱交換器、第1減圧部、利用側熱交換器、第2減圧部、補助熱交換器、および流路切替部を含み、
     前記流路切替部は、
     前記熱源側熱交換器および前記補助熱交換器が第1凝縮器として作用し、前記利用側熱交換器が第1蒸発器として作用し、かつ冷媒が前記圧縮機、前記第1凝縮器、前記第1減圧部、および前記第1蒸発器を順に流れる第1状態と、
     前記利用側熱交換器が第2凝縮器として作用し、前記補助熱交換器が第2蒸発器として作用し、かつ冷媒が前記圧縮機、前記第2凝縮器、前記第2減圧部、および前記第2蒸発器を順に流れる第2状態とを切り替えるように設けられている、冷凍装置。
  2.  前記第1状態では、前記補助熱交換器が前記熱源側熱交換器よりも前記冷媒回路における上流側に配置される、請求項1に記載の冷凍装置。
  3.  前記冷媒回路は、
     前記圧縮機の吐出口と前記利用側熱交換器との間を、前記補助熱交換器、前記熱源側熱交換器、および前記第1減圧部を介して接続する第1流路、
     前記圧縮機の吐出口と前記利用側熱交換器との間を、前記補助熱交換器、前記熱源側熱交換器、および前記第1減圧部を介さずに接続する第2流路、
     前記利用側熱交換器と前記圧縮機の吸入口との間を、前記第2減圧部および前記補助熱交換器を介して接続する第3流路、および、
     前記利用側熱交換器と前記圧縮機の吸入口との間を、前記第2減圧部および前記補助熱交換器を介さずに接続する第4流路を含み、
     前記流路切替部は、
     前記第1流路と前記第2流路とを切り替える第1流路切替部および前記第3流路と前記第4流路とを切り替える第2流路切替部を有し、
     前記第1流路切替部は、前記第1状態では前記第1流路を形成し、かつ前記第2状態では前記第2流路を形成し、
     前記第2流路切替部は、前記第1状態では前記第4流路を形成し、かつ前記第2状態では前記第3流路を形成する、請求項2に記載の冷凍装置。
  4.  前記第1状態では、前記熱源側熱交換器が前記補助熱交換器よりも前記冷媒回路における上流側に配置される、請求項1に記載の冷凍装置。
  5.  前記第1状態では、前記熱源側熱交換器および前記補助熱交換器が並列に接続される、請求項1に記載の冷凍装置。
  6.  熱媒体が循環する熱媒体回路をさらに備え、
     前記熱源側熱交換器は、前記冷媒回路を循環する冷媒と前記熱媒体回路を循環する熱媒体との間の熱交換を行うように設けられている、請求項1~5のいずれか1項に記載の冷凍装置。
  7.  冷媒が循環するエコノマイザ回路をさらに備え、
     前記エコノマイザ回路は、前記圧縮機および前記熱源側熱交換器を含み、
     前記エコノマイザ回路は、前記熱源側熱交換器で凝縮された冷媒の一部を前記圧縮機に戻すエコノマイザ流路をさらに含み、
     前記第2状態では、前記熱源側熱交換器および前記利用側熱交換器が前記第2凝縮器として作用し、
     前記熱源側熱交換器に送風する第1ファンと、前記補助熱交換器に送風する第2ファンとをさらに備える、請求項1~6のいずれか1項に記載の冷凍装置。
  8.  前記熱源側熱交換器および前記補助熱交換器を内部に収容している第1筐体をさらに備える、請求項1~7のいずれか1項に記載の冷凍装置。
  9.  前記第1筐体は、さらに前記圧縮機、前記第1減圧部および前記第2減圧部を内部に収容しており、
     前記利用側熱交換器を内部に収容している第2筐体をさらに備える、請求項8に記載の冷凍装置。
  10.  圧縮機、熱源側熱交換器、第1減圧部、利用側熱交換器、第2減圧部、補助熱交換器、および流路切替部を含み、冷媒が循環する冷媒回路を備える冷凍装置の一部を構成する熱源側ユニットであって、
     前記圧縮機、前記熱源側熱交換器、前記補助熱交換器、前記第2減圧部、および前記流路切替部を含む前記冷媒回路の一部と、
     前記冷媒回路の一部から前記冷媒回路の他の一部に流出する流出口と、
     前記冷媒回路の他の一部から前記冷媒回路の一部に流入する流入口とを備え、
     前記流路切替部は、
     前記熱源側熱交換器および前記補助熱交換器が第1凝縮器として作用し、かつ冷媒が前記流入口、前記圧縮機、前記第1凝縮器、および前記流出口を順に流れる第1状態と、
     前記補助熱交換器が第1蒸発器として作用し、かつ冷媒が前記流入口、前記第2減圧部、前記第1蒸発器、前記圧縮機、および前記流出口を順に流れる第2状態とを切り替える、熱源側ユニット。
PCT/JP2018/031488 2018-08-27 2018-08-27 冷凍装置および熱源側ユニット WO2020044386A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020539164A JP7229256B2 (ja) 2018-08-27 2018-08-27 冷凍装置および熱源側ユニット
GB2102395.7A GB2591352B (en) 2018-08-27 2018-08-27 Refrigeration apparatus and heat source-side unit
PCT/JP2018/031488 WO2020044386A1 (ja) 2018-08-27 2018-08-27 冷凍装置および熱源側ユニット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/031488 WO2020044386A1 (ja) 2018-08-27 2018-08-27 冷凍装置および熱源側ユニット

Publications (1)

Publication Number Publication Date
WO2020044386A1 true WO2020044386A1 (ja) 2020-03-05

Family

ID=69642751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031488 WO2020044386A1 (ja) 2018-08-27 2018-08-27 冷凍装置および熱源側ユニット

Country Status (3)

Country Link
JP (1) JP7229256B2 (ja)
GB (1) GB2591352B (ja)
WO (1) WO2020044386A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318180A (ja) * 1996-05-29 1997-12-12 Matsushita Electric Ind Co Ltd 多室形空気調和機及びその組立方法
JPH10205933A (ja) * 1997-01-20 1998-08-04 Fujitsu General Ltd 空気調和機
JP2008249236A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 空気調和装置
JP2013083421A (ja) * 2011-09-30 2013-05-09 Daikin Industries Ltd 給湯空調システム
JP2013096607A (ja) * 2011-10-28 2013-05-20 Hitachi Appliances Inc 冷蔵庫

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61211674A (ja) * 1985-03-18 1986-09-19 株式会社日立製作所 ヒ−トポンプ式空気調和機
JPS63205933A (ja) * 1987-02-23 1988-08-25 Hitachi Ltd 封止方法および装置
JPS63231154A (ja) * 1987-03-17 1988-09-27 中野冷機株式会社 冷凍装置
JPS63302269A (ja) * 1987-05-29 1988-12-09 シャープ株式会社 冷暖房装置
JPH08189724A (ja) * 1995-01-05 1996-07-23 Daikin Ind Ltd 対向流熱交換器
JP5912052B2 (ja) 2012-02-28 2016-04-27 株式会社日本クライメイトシステムズ 車両用空調装置
JP2015155277A (ja) 2014-02-21 2015-08-27 本田技研工業株式会社 車両用空調装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318180A (ja) * 1996-05-29 1997-12-12 Matsushita Electric Ind Co Ltd 多室形空気調和機及びその組立方法
JPH10205933A (ja) * 1997-01-20 1998-08-04 Fujitsu General Ltd 空気調和機
JP2008249236A (ja) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp 空気調和装置
JP2013083421A (ja) * 2011-09-30 2013-05-09 Daikin Industries Ltd 給湯空調システム
JP2013096607A (ja) * 2011-10-28 2013-05-20 Hitachi Appliances Inc 冷蔵庫

Also Published As

Publication number Publication date
GB2591352A (en) 2021-07-28
JPWO2020044386A1 (ja) 2021-08-10
GB202102395D0 (en) 2021-04-07
GB2591352B (en) 2022-06-08
GB2591352A9 (en) 2022-02-02
JP7229256B2 (ja) 2023-02-27

Similar Documents

Publication Publication Date Title
JP5239824B2 (ja) 冷凍装置
JP5396831B2 (ja) 冷凍装置
JP3775358B2 (ja) 冷凍装置
WO2009131083A1 (ja) 冷凍装置
KR101146460B1 (ko) 냉매시스템
EP2860471B1 (en) Multi-room air conditioner
JP4651452B2 (ja) 冷凍空調装置
JP5237157B2 (ja) 空気熱源ターボヒートポンプ
JP2010112582A (ja) 冷凍装置
JP3998035B2 (ja) 冷凍装置
JP2010014343A (ja) 冷凍装置
JP2004325023A (ja) 冷凍装置
WO2020044386A1 (ja) 冷凍装置および熱源側ユニット
WO2018074370A1 (ja) 冷凍システムおよび室内ユニット
JP6692082B2 (ja) 冷凍システムおよび冷凍装置
JP2008032337A (ja) 冷凍装置
JP4375393B2 (ja) 冷凍装置
JP2004347269A (ja) 冷凍装置
WO2018074272A1 (ja) 冷凍装置
JP2007162992A (ja) 冷凍装置
JP2013210133A (ja) 冷凍装置
JP5982773B2 (ja) 冷凍装置
JP2014119233A (ja) コンテナ用冷凍装置
JP4036231B2 (ja) 冷凍装置
JP4424162B2 (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931605

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020539164

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202102395

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180827

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931605

Country of ref document: EP

Kind code of ref document: A1