WO2020042841A1 - 一种(1r,3s)-3-氨基-1-环戊醇及其盐的制备方法 - Google Patents

一种(1r,3s)-3-氨基-1-环戊醇及其盐的制备方法 Download PDF

Info

Publication number
WO2020042841A1
WO2020042841A1 PCT/CN2019/097921 CN2019097921W WO2020042841A1 WO 2020042841 A1 WO2020042841 A1 WO 2020042841A1 CN 2019097921 W CN2019097921 W CN 2019097921W WO 2020042841 A1 WO2020042841 A1 WO 2020042841A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino
cyclopentanol
salt
reaction
structural formula
Prior art date
Application number
PCT/CN2019/097921
Other languages
English (en)
French (fr)
Inventor
林文清
郑宏杰
朱剑平
张勇
王建冲
Original Assignee
重庆博腾制药科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆博腾制药科技股份有限公司 filed Critical 重庆博腾制药科技股份有限公司
Priority to CA3108358A priority Critical patent/CA3108358C/en
Priority to EP19853589.0A priority patent/EP3845518A4/en
Priority to KR1020217003015A priority patent/KR102658673B1/ko
Priority to JP2021527275A priority patent/JP7174851B2/ja
Publication of WO2020042841A1 publication Critical patent/WO2020042841A1/zh
Priority to US17/163,532 priority patent/US11459291B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/08Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/42Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups or hydroxy groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • C07C215/44Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups or hydroxy groups bound to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton bound to carbon atoms of the same ring or condensed ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D261/00Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
    • C07D261/20Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/08Systems containing only non-condensed rings with a five-membered ring the ring being saturated

Definitions

  • the present disclosure relates to the field of organic synthesis, and in particular, to a method for preparing (1R, 3S) -3-amino-1-cyclopentanol and a salt thereof.
  • Bictegravir is a HIV drug developed by Gilead Company.
  • Bictargravir (50mg), Emtricitabine (200mg), and Tenofovir alafenamide (25mg) are composed of three ingredients, Biktarvy, which was approved by the FDA for market launch on February 8, 2018. Among them, the structural formula of Bictegravir is as follows,
  • (1R, 3S) -3-amino-1-cyclopentanol is an important intermediate for the synthesis of Bictegravir.
  • (1R, 3S) -3-amino-1-cyclopentanol contains two chiral centers.
  • the existing synthetic scheme There are mainly chiral splitting and chiral source synthesis. Among them, chiral resolution includes enzymatic resolution with enzymes and chemical resolution with chiral acids. However, the theoretical yield of chiral resolution can only reach 50%, and the actual yield can only reach 30% to 45%, causing a lot of waste of raw materials.
  • Chiral source synthesis that is, synthesis using chiral raw materials, greatly improves the utilization rate of raw materials, but also has the disadvantages of difficult synthesis of chiral raw materials, high prices, and high economic costs.
  • the purpose of the present disclosure includes, for example, providing a method for preparing (1R, 3S) -3-amino-1-cyclopentanol and a salt thereof, the raw materials of which are simple and readily available, the raw material utilization is high, and the production cost is low. Moreover, the operation is simple, the conditions are mild, and the obtained product has high optical purity and stable quality, which is suitable for large-scale production.
  • the object of the present disclosure includes, for example, providing an intermediate for synthesizing (1R, 3S) -3-amino-1-cyclopentanol and a salt thereof, which has simple preparation and wide sources, and is suitable for (1R, 3S)- Mass production of 3-amino-1-cyclopentanol and its salts.
  • the present disclosure provides a method for preparing (1R, 3S) -3-amino-1-cyclopentanol, which includes:
  • the structural formula of the N-acyl hydroxylamine compound is The structural formula of intermediate I is The structural formula of intermediate II is The structural formula of intermediate III is The structural formula of (1R, 3S) -3-amino-1-cyclopentanol is
  • R is selected from a C1 to C4 alkyl group or a C6 to C10 aryl group.
  • the present disclosure also provides a method for preparing (1R, 3S) -3-amino-1-cyclopentanolate, which includes:
  • the structural formula of the chiral N-acyl hydroxylamine compound is The structural formula of intermediate I is The structural formula of intermediate II is The structure of the salt of intermediate III is The structural formula of (1R, 3S) -3-amino-1-cyclopentanol salt is
  • R is selected from C1 to C4 alkyl or C6 to C10 aryl
  • HA is selected from any one of HCl, HBr, H 2 SO 4 , HOTs, and HOMs.
  • the present disclosure also provides an amide intermediate for synthesizing (1R, 3S) -3-amino-1-cyclopentanol, whose structural formula is
  • R is selected from a C1 to C4 alkyl group or a C6 to C10 aryl group.
  • the present disclosure also provides an amine salt intermediate for synthesizing (1R, 3S) -3-amino-1-cyclopentanol, whose structural formula is
  • HA is selected from any one of HCl, HBr, H 2 SO 4 , HOTs, and HOMs.
  • the present disclosure also provides the use of a compound of formula as an intermediate for the synthesis of (1R, 3S) -3-amino-1-cyclopentanol,
  • R is selected from a C1 to C4 alkyl group or a C6 to C10 aryl group.
  • the present disclosure also provides the use of a compound of the following formula or a salt thereof as an intermediate for the synthesis of (1R, 3S) -3-amino-1-cyclopentanol,
  • HA is selected from any one of HCl, HBr, H 2 SO 4 , HOTs, and HOMs.
  • R is selected from C2 to C4 alkyl or C6 to C10 aryl.
  • R is selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, and tert-butyl, for example, R is tert-butyl.
  • R is selected from the group including methyl, ethyl, n-propyl, isopropyl, and tert-butyl.
  • R is tert-butyl
  • R is selected from phenyl and substituted phenyl, preferably, R is phenyl
  • the embodiment of the present disclosure provides a method for preparing (1R, 3S) -3-amino-1-cyclopentanol and a salt thereof, which uses a chiral center in an N-acyl hydroxylamine compound as a chiral induction and Diene undergoes asymmetric cycloaddition reaction to construct two chiral centers of the target product.
  • the N-acyl hydroxylamine compound can be obtained by one-step derivation of hydroxylamine, which has a wide range of sources, is cheap and easy to obtain, and can effectively reduce the cost of raw materials.
  • the preparation method has a reasonable route, simple operation, mild reaction conditions, and high atomic economy. In addition, its stereoselectivity is good, and the prepared product has high optical purity and stable quality, which is suitable for large-scale industrial production.
  • the embodiment of the present disclosure also provides an intermediate for synthesizing (1R, 3S) -3-amino-1-cyclopentanol and a salt thereof, which has simple preparation and wide sources, and is suitable for (1R, 3S)- Mass production of 3-amino-1-cyclopentanol and its salts.
  • the embodiment of the present disclosure provides a method for preparing (1R, 3S) -3-amino-1-cyclopentanol, which includes:
  • the structural formula of the N-acyl hydroxylamine compound is The structural formula of intermediate I is The structural formula of intermediate II is The structural formula of intermediate III is The structural formula of (1R, 3S) -3-amino-1-cyclopentanol is
  • R is selected from a C1 to C4 alkyl group or a C6 to C10 aryl group.
  • the C1-C4 alkyl group includes, but is not limited to, methyl, ethyl, n-propyl, isopropyl, tert-butyl and the like.
  • C6-C10 aryl groups include, but are not limited to, phenyl, naphthyl, and substituted phenyl.
  • the substituted phenyl group includes a phenyl group in which at least one of the ortho, meta, and para positions is substituted with an alkyl group, a halogen group, a nitro group, an alkoxy group, or the like.
  • R is phenyl.
  • R is selected from C2 to C4 alkyl or C6 to C10 aryl.
  • R is selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, and tert-butyl.
  • R is tert-butyl.
  • R is selected from the group including methyl, ethyl, n-propyl, isopropyl, and tert-butyl.
  • R is tert-butyl
  • the reaction of the N-acylhydroxylamine compound with cyclopentadiene is performed in the presence of an oxidant.
  • an asymmetric cycloaddition reaction between the N-acylhydroxylamine compound and cyclopentadiene occurs to obtain intermediate I.
  • the oxidant includes at least one of periodate, oxygen, hydrogen peroxide, and NBS.
  • the hydrogenation reduction of the intermediate I is performed under a hydrogen atmosphere and using palladium carbon or Raney nickel as a catalyst.
  • the intermediate I is subjected to hydrogenation reduction.
  • the hydrogen pressure needs to be controlled under the conditions of 0.05 to 0.1 MPa and a temperature of -10 to 15 ° C. Next.
  • the intermediate I is subjected to hydrogenation reduction.
  • the lower activity Raney nickel is used as the catalyst, it needs to be controlled under the conditions of a hydrogen pressure of 0.1 to 2 MPa and a temperature of -10 to 15 ° C. ongoing.
  • the hydrolysis of the amide bond of the intermediate II is performed under the catalysis of an acid or a base.
  • the acid includes at least one of hydrochloric acid, hydrogen bromide, sulfuric acid, p-toluenesulfonic acid, and methanesulfonic acid
  • the base includes at least one of ammonia gas, hydrazine hydrate, aqueous hydroxylamine solution, sodium methoxide, and sodium ethoxide.
  • the hydrolysis of the amide bond of the intermediate II is performed under base catalysis, and the reaction temperature is -10 to 40 ° C. After completion of the reaction, the reaction solution was acidified, and the aqueous phase was collected and subjected to alkaline extraction to obtain intermediate III.
  • the hydrolysis of the amide bond of the intermediate II is performed under acid catalysis, and the reaction temperature is 0-60 ° C. After completion of the reaction, the solvent can be directly removed by concentration to obtain a salt of Intermediate III. It is worth noting that, even if the salt of intermediate III is obtained, there is not much difference in nature between acid catalysis and base catalysis.
  • the salt of intermediate III can be directly subjected to hydrogenation reaction,
  • the hydrogenation reduction of the intermediate III or a salt thereof is performed under a hydrogen atmosphere and using palladium carbon as a catalyst.
  • the hydrogenation conditions of the intermediate III are more severe, and it is necessary to use a more active palladium carbon as a catalyst under a hydrogen pressure of 0.1-1 MPa and a temperature of 20-50 ° C.
  • the embodiment of the present disclosure also provides a method for preparing (1R, 3S) -3-amino-1-cyclopentanolate, which includes:
  • the structural formula of the chiral N-acyl hydroxylamine compound is The structural formula of intermediate I is The structural formula of intermediate II is The structure of the salt of intermediate III is The structural formula of (1R, 3S) -3-amino-1-cyclopentanol salt is
  • R is selected from C1 to C4 alkyl or C6 to C10 aryl
  • HA is selected from any one of HCl, HBr, H 2 SO 4 , HOTs, and HOMs.
  • the alcoholysis of the amide bond of the intermediate II is performed under the condition of an acid catalyst and a reaction temperature of 0 to 60 ° C.
  • the acid includes at least one of HCl, HBr, H 2 SO 4 , HOTs, and HOMs.
  • the hydrogenation reduction of the salt of the intermediate III is performed under a hydrogen atmosphere and using palladium carbon or Raney nickel as a catalyst.
  • the hydrogenation reduction of the salt of the intermediate III is performed using palladium-carbon as a catalyst under a hydrogen pressure of 0.1 to 1 MPa and a temperature of 20 to 50 ° C.
  • the reduction of the salt of the intermediate III is performed by using Raney nickel as a catalyst under the conditions of a hydrogen pressure of 0.1 to 2 MPa and a temperature of 20 to 50 ° C.
  • the embodiment of the present disclosure also provides an amide intermediate for synthesizing (1R, 3S) -3-amino-1-cyclopentanol. Its structural formula is
  • R is selected from a C1 to C4 alkyl group or a C6 to C10 aryl group.
  • R is selected from phenyl and substituted phenyl, for example, R is phenyl.
  • R is selected from C2 to C4 alkyl or C6 to C10 aryl.
  • R is selected from the group consisting of methyl, ethyl, n-propyl, isopropyl and tert-butyl.
  • R is selected from ethyl, n-propyl, isopropyl And t-butyl, for example, R is t-butyl.
  • R is selected from the group including methyl, ethyl, n-propyl, isopropyl, and tert-butyl.
  • R is tert-butyl
  • the embodiment of the present disclosure also provides an amine salt intermediate for synthesizing (1R, 3S) -3-amino-1-cyclopentanol. Its structural formula is:
  • HA is selected from any one of HCl, HBr, H 2 SO 4 , HOTs, and HOMs.
  • the HA is selected from HCl.
  • This embodiment provides a method for preparing intermediate I.
  • the reaction formula is
  • This embodiment provides a method for preparing intermediate I.
  • the reaction formula is
  • This embodiment provides a method for preparing intermediate I.
  • the reaction formula is
  • This embodiment provides a method for preparing intermediate I.
  • the reaction formula is
  • This embodiment provides a method for preparing intermediate II.
  • the reaction formula is:
  • This embodiment provides a method for preparing intermediate II.
  • the reaction formula is:
  • This embodiment provides a method for preparing intermediate II.
  • the reaction formula is:
  • This embodiment provides a method for preparing intermediate III.
  • the reaction formula is
  • This embodiment provides a method for preparing intermediate III.
  • the reaction formula is
  • This embodiment provides a method for preparing intermediate III.
  • the reaction formula is
  • This embodiment provides a method for preparing intermediate III.
  • the reaction formula is
  • This embodiment provides a method for preparing intermediate III.
  • the reaction formula is
  • This embodiment provides a method for preparing the hydrochloride salt of intermediate III.
  • the reaction formula is
  • HRMS The detection value is 100.0814, and the theoretical value is 100.0757. (Calculated as C 5 H 10 NO + ).
  • This embodiment provides a method for preparing a hydrobromide salt of intermediate III.
  • the reaction formula is
  • This embodiment provides a method for preparing a sulfate of intermediate III.
  • the reaction formula is
  • This embodiment provides a method for preparing p-toluenesulfonate of intermediate III.
  • the reaction formula is
  • This embodiment provides a method for preparing a mesylate salt of intermediate III.
  • the reaction formula is
  • This embodiment provides a method for preparing (1R, 3S) -3-amino-1-cyclopentanol.
  • the reaction formula is
  • This embodiment provides a method for preparing (1R, 3S) -3-amino-1-cyclopentanol hydrochloride.
  • the reaction formula is
  • This embodiment provides a method for preparing (1R, 3S) -3-amino-1-cyclopentanol hydrochloride.
  • the reaction formula is
  • the embodiment of the present disclosure provides a method for preparing (1R, 3S) -3-amino-1-cyclopentanol and a salt thereof, which uses a chiral center in an N-acylhydroxylamine compound as the chirality.
  • Induction asymmetric cycloaddition reaction with cyclopentadiene is performed to construct two chiral centers of the target product.
  • the N-acyl hydroxylamine compound can be obtained by one-step derivation of hydroxylamine, which has a wide range of sources, is cheap and easy to obtain, and can effectively reduce the cost of raw materials.
  • the preparation method has a reasonable route, simple operation, mild reaction conditions, and high atomic economy.
  • its stereoselectivity is good, and the prepared product has high optical purity and stable quality, which is suitable for large-scale industrial production.
  • the embodiment of the present disclosure also provides an intermediate for synthesizing (1R, 3S) -3-amino-1-cyclopentanol and a salt thereof, which has simple preparation and wide sources, and is suitable for (1R, 3S)- Mass production of 3-amino-1-cyclopentanol and its salts.
  • the embodiment of the present disclosure provides a method for preparing (1R, 3S) -3-amino-1-cyclopentanol and a salt thereof, which uses a chiral center in an N-acyl hydroxylamine compound as a chiral induction and Diene undergoes asymmetric cycloaddition reaction to construct two chiral centers of the target product.
  • the N-acyl hydroxylamine compound can be obtained by one-step derivation of hydroxylamine, which has a wide range of sources, is cheap and easy to obtain, and can effectively reduce the cost of raw materials.
  • the preparation method has a reasonable route, simple operation, mild reaction conditions, and high atomic economy. In addition, its stereoselectivity is good, and the prepared product has high optical purity and stable quality, which is suitable for large-scale industrial production.
  • the embodiment of the present disclosure also provides an intermediate for synthesizing (1R, 3S) -3-amino-1-cyclopentanol and a salt thereof, which has simple preparation and wide sources, and is suitable for (1R, 3S)- Mass production of 3-amino-1-cyclopentanol and its salts.

Abstract

一种(1R,3S)-3-氨基-1-环戊醇及其盐的制备方法,涉及有机合成领域,其以N-酰基羟胺化合物中的手性源作为手性诱导,与环戊二烯进行不对称环加成反应来构建目标产物的两个手性中心。N-酰基羟胺化合物通过手性羟基酸酯与羟胺进行一步氨解反应即可得到。此线路的原料来源广泛、廉价易得,能有效降低原料成本。该制备方法的路线合理,操作简单,反应条件温和,具有较高的原子经济性,生产成本较低。并且,其立体选择性好,制备得到的产品具有较高的光学纯度,且质量稳定,适合进行大规模的工业化生产。

Description

一种(1R,3S)-3-氨基-1-环戊醇及其盐的制备方法
相关申请的交叉引用
本申请要求于2018年08月28日提交中国专利局的申请号为201810991670.2、名称为“一种(1R,3S)-3-氨基-1-环戊醇及其盐的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及有机合成领域,具体而言,涉及一种(1R,3S)-3-氨基-1-环戊醇及其盐的制备方法。
背景技术
艾滋病是一种危害性极大的传染病,由感染艾滋病病毒(HIV病毒)引起。Bictegravir是Gilead公司开发的治疗HIV的药物,由Bictegravir(50mg)、Emtricitabine(200mg)、与Tenofovir alafenamide(25mg)三种成分组成的药物Biktarvy,于2018年2月8日经FDA批准在美国上市。其中,Bictegravir的结构式如下,
Figure PCTCN2019097921-appb-000001
(1R,3S)-3-氨基-1-环戊醇是合成Bictegravir的重要中间体,(1R,3S)-3-氨基-1-环戊醇包含两个手性中心,现有的合成方案中主要有手性拆分和手性源合成。其中,手性拆分包括以酶进行的酶拆分,以及以手性酸进行拆分的化学拆分。但是,手性拆分的理论收率仅能达到50%,实际收率仅能达到30%~45%,造成原料的大量浪费。而手性源合成,即采用本身具备手性的原料进行合成,大大地提高了对原料的利用率,但又存在着手性原料合成困难,价格昂贵,经济成本高的劣势。
发明内容
本公开的目的包括例如提供一种(1R,3S)-3-氨基-1-环戊醇及其盐的制备方法,其原料简单易得,原料利用率高,生产成本低。并且其操作简单,条件温和,得到的产品光学纯度高,质量稳定,适合进行规模化生产。
本公开的目的包括例如提供一种用于合成(1R,3S)-3-氨基-1-环戊醇及其盐的中间体,其制备简单,来源广泛,适合用于(1R,3S)-3-氨基-1-环戊醇及其盐的批量生产。
本公开提供一种(1R,3S)-3-氨基-1-环戊醇的制备方法,其包括:
以N-酰基羟胺化合物为原料,与环戊二烯发生不对称环加成反应,得到中间体I;
将中间体I进行氢化还原,得到中间体II;
将中间体II的酰胺键断裂,得到中间体III;
将中间体III进行氢化还原,得到(1R,3S)-3-氨基-1-环戊醇;
其中,N-酰基羟胺化合物的结构式为
Figure PCTCN2019097921-appb-000002
中间体I的结构式为
Figure PCTCN2019097921-appb-000003
中间体II的结构式为
Figure PCTCN2019097921-appb-000004
中间体III的结构式为
Figure PCTCN2019097921-appb-000005
(1R,3S)-3-氨基-1-环戊醇的结构式为
Figure PCTCN2019097921-appb-000006
式中,R选自C1~C4烷基或C6~C10芳基。
本公开还提供一种(1R,3S)-3-氨基-1-环戊醇盐的制备方法,其包括:
以手性N-酰基羟胺化合物为原料,与环戊二烯发生不对称环加成反应,得到中间体I;
将中间体I进行氢化还原,得到中间体II;
将中间体II的酰胺键在酸催化下进行醇解,得到中间体III的盐;
将中间体III的盐进行氢化还原,得到(1R,3S)-3-氨基-1-环戊醇的盐;
其中,手性N-酰基羟胺化合物的结构式为
Figure PCTCN2019097921-appb-000007
中间体I的结构式为
Figure PCTCN2019097921-appb-000008
中间体II的结构式为
Figure PCTCN2019097921-appb-000009
中间体III的盐的结构式为
Figure PCTCN2019097921-appb-000010
(1R,3S)-3-氨基-1-环戊醇的盐的结构式为
Figure PCTCN2019097921-appb-000011
式中,R选自C1~C4烷基或C6~C10芳基,HA选自HCl、HBr、H 2SO 4、HOTs和HOMs中的任一种。
本公开还提供一种用于合成(1R,3S)-3-氨基-1-环戊醇的酰胺中间体,其结构式为
Figure PCTCN2019097921-appb-000012
式中,R选自C1~C4烷基或C6~C10芳基。
本公开还提供一种用于合成(1R,3S)-3-氨基-1-环戊醇的胺盐中间体,其结构式为
Figure PCTCN2019097921-appb-000013
式中,HA选自HCl、HBr、H 2SO 4、HOTs和HOMs中的任一种。
本公开还提供下式化合物作为中间体用于合成(1R,3S)-3-氨基-1-环戊醇的用途,
Figure PCTCN2019097921-appb-000014
式中,R选自C1~C4烷基或C6~C10芳基。
本公开还提供下式化合物或其盐作为中间体用于合成(1R,3S)-3-氨基-1-环戊醇的用途,
Figure PCTCN2019097921-appb-000015
其中所述化合物的盐为
Figure PCTCN2019097921-appb-000016
HA选自HCl、HBr、H 2SO 4、HOTs和HOMs中的任一种。
在一种或多种实施方式中,R选自C2~C4烷基或C6~C10芳基。
在一种或多种实施方式中,R选自由甲基、乙基、正丙基、异丙基和叔丁基组成的组,例如,R为叔丁基。
在一种或多种实施方式中,R选自包括甲基、乙基、正丙基、异丙基和叔丁基的组。
在一种或多种实施方式中,R为叔丁基。
在一种或多种实施方式中,R选自苯基及取代苯基,优选地,R为苯基
本公开实施例的有益效果至少包括:
本公开实施例提供了一种(1R,3S)-3-氨基-1-环戊醇及其盐的制备方法,其以N-酰基羟胺化合物中的手性中心作为手性诱导,与环戊二烯进行不对称环加成反应来构建目标产物的两个手性中心。N-酰基羟胺化合物通过羟胺进行一步衍生即可得到,来源广泛、廉价易得,能有效降低原料成本。该制备方法的路线合理,操作简单,反应条件温和,具有较高的原 子经济性。并且,其立体选择性好,制备得到的产品具有较高的光学纯度,且质量稳定,适合进行大规模的工业化生产。
本公开实施例还提供了一种用于合成(1R,3S)-3-氨基-1-环戊醇及其盐的中间体,其制备简单,来源广泛,适合用于(1R,3S)-3-氨基-1-环戊醇及其盐的批量生产。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
除非本文另有定义,否则结合本公开使用的科学和技术术语应具有本领域普通技术人员通常理解的含义。以下描述示例性方法和材料,但是与本文描述的那些类似或等同的方法和材料也可以用于本公开中。
下面对本公开实施例的(1R,3S)-3-氨基-1-环戊醇的制备方法进行具体说明。
本公开实施例提供了一种(1R,3S)-3-氨基-1-环戊醇的制备方法,其包括:
以N-酰基羟胺化合物为原料,与环戊二烯发生不对称环加成反应,得到中间体I;
将中间体I进行氢化还原,得到中间体II;
将中间体II的酰胺键断裂,得到中间体III;
将中间体III进行氢化还原,得到(1R,3S)-3-氨基-1-环戊醇;
其中,N-酰基羟胺化合物的结构式为
Figure PCTCN2019097921-appb-000017
中间体I的结构式为
Figure PCTCN2019097921-appb-000018
中间体II的结构式为
Figure PCTCN2019097921-appb-000019
中间体III的结构式为
Figure PCTCN2019097921-appb-000020
(1R,3S)-3-氨基-1-环戊醇的结构式为
Figure PCTCN2019097921-appb-000021
式中,R选自C1~C4烷基或C6~C10芳基。
其中,C1~C4烷基包括但不限于甲基、乙基、正丙基、异丙基、叔丁基等。C6~C10芳基包括但不限于苯基、萘基以及取代苯基。取代苯基包括邻位、间位、对位中的至少一个位点被烷基、卤素、硝基、烷氧基等取代的苯基。在一种或多种实施方式中,R为苯基。
在一种或多种实施方式中,R选自C2~C4烷基或C6~C10芳基。
在一种或多种实施方式中,R选自由甲基、乙基、正丙基、异丙基和叔丁基组成的组, 例如,R为叔丁基。
在一种或多种实施方式中,R选自包括甲基、乙基、正丙基、异丙基和叔丁基的组。
在一种或多种实施方式中,R为叔丁基。
在一种或多种实施方式中,N-酰基羟胺化合物与环戊二烯的反应是在氧化剂存在下进行的。在氧化剂的作用下,N-酰基羟胺化合物与环戊二烯发生不对称环加成反应,得到中间体I。其中,氧化剂包括高碘酸盐、氧气、双氧水和NBS中的至少一种。
在一种或多种实施方式中,对中间体I进行氢化还原,是在氢气氛围下,以钯碳或兰尼镍作为催化剂的条件下进行的。
在一种或多种实施方式中,对中间体I进行氢化还原,当以活性较高的钯碳作为催化剂时,需要控制在氢气压力为0.05~0.1MPa,温度为-10~15℃的条件下进行的。
在一种或多种实施方式中,对中间体I进行氢化还原,当以活性较低的兰尼镍作为催化剂,需要控制在氢气压力为0.1~2MPa,温度为-10~15℃的条件下进行的。
在一种或多种实施方式中,将中间体II的酰胺键进行水解,是在酸或碱的催化下进行的。其中,酸包括盐酸、溴化氢、硫酸、对甲苯磺酸和甲磺酸中的至少一种,碱包括氨气、水合肼、羟胺水溶液、甲醇钠和乙醇钠中的至少一种。
在一种或多种实施方式中,将中间体II的酰胺键进行水解,是在碱催化下进行的,反应温度为-10~40℃。反应结束后,对反应液进行酸化,收集水相,再进行碱化萃取,得到中间体III。
在一种或多种实施方式中,将中间体II的酰胺键进行水解,是在酸催化下进行的,反应温度为0~60℃。反应结束后,可直接浓缩除去溶剂,得到中间体III的盐。值得注意的是,即使得到的是中间体III的盐,酸催化和碱催化在本质上并没有太大区别。得到中间体III的盐可直接进行氢化反应,
在一种或多种实施方式中,将中间体III或其盐进行氢化还原,是在氢气氛围下,以钯碳作为催化剂的条件下进行的。相比于中间体I的还原氢化来说,中间体III的氢化条件更为苛刻,需要以活性较高的钯碳作为催化剂,在氢气压力为0.1~1MPa,温度为20~50℃下进行。
本公开实施例还提供了一种(1R,3S)-3-氨基-1-环戊醇盐的制备方法,其包括:
以手性N-酰基羟胺化合物为原料,与环戊二烯发生不对称环加成反应,得到中间体I;
将中间体I进行氢化还原,得到中间体II;
将中间体II的酰胺键在酸催化下进行醇解,得到中间体III的盐;
将中间体III的盐进行氢化还原,得到(1R,3S)-3-氨基-1-环戊醇的盐;
其中,手性N-酰基羟胺化合物的结构式为
Figure PCTCN2019097921-appb-000022
中间体I的结构式为
Figure PCTCN2019097921-appb-000023
中间体II的结构式为
Figure PCTCN2019097921-appb-000024
中间体III的盐的结构式为
Figure PCTCN2019097921-appb-000025
(1R,3S)-3-氨基-1-环戊醇的盐的结构式为
Figure PCTCN2019097921-appb-000026
式中,R选自C1~C4烷基或C6~C10芳基,HA选自HCl、HBr、H 2SO 4、HOTs和HOMs中的任一种。
在一种或多种实施方式中,将中间体II的酰胺键进行醇解,是在酸的催化下,反应温度为0~60℃的条件下进行的。酸包括HCl、HBr、H 2SO 4、HOTs和HOMs中的至少一种。
在一种或多种实施方式中,对中间体III的盐进行氢化还原,是在氢气氛围下,以钯碳或兰尼镍作为催化剂的条件下进行的。
在一种或多种实施方式中,将中间体III的盐进行氢化还原,是以钯碳作为催化剂,在氢气压力为0.1~1MPa,温度为20~50℃下的条件下进行的。
在一种或多种实施方式中,将中间体III的盐进行氢化还原,是以兰尼镍作为催化剂,在氢气压力为0.1~2MPa,温度为20~50℃下的条件下进行的。
本公开实施例还提供了一种用于合成(1R,3S)-3-氨基-1-环戊醇的酰胺中间体,其结构式为
Figure PCTCN2019097921-appb-000027
式中,R选自C1~C4烷基或C6~C10芳基。
在一种或多种实施方式中,R选自苯基及取代苯基,例如,R为苯基。
在一种或多种实施方式中,R选自C2~C4烷基或C6~C10芳基。
在一种或多种实施方式中,R选自由甲基、乙基、正丙基、异丙基和叔丁基组成的组,优选地,R选自乙基、正丙基、异丙基和叔丁基组成的组,例如,R为叔丁基。
在一种或多种实施方式中,R选自包括甲基、乙基、正丙基、异丙基和叔丁基的组。
在一种或多种实施方式中,R为叔丁基。
本公开实施例还提供了一种用于合成(1R,3S)-3-氨基-1-环戊醇的胺盐中间体,其结构式 为
Figure PCTCN2019097921-appb-000028
式中,HA选自HCl、HBr、H 2SO 4、HOTs和HOMs中的任一种。
在一种或多种实施方式中,HA选自HCl。
以下结合实施例对本公开的特征和性能作进一步的详细描述。
实施例1
本实施例提供一种中间体I的制备方法,其反应式为
Figure PCTCN2019097921-appb-000029
具体的制备方法包括:
向反应瓶中加入83.5g N-酰基羟胺化合物((R)-N,2-二羟基-2-苯基乙酰胺)和300mL甲醇,搅拌溶解完全,冷却到-10℃左右,加入环戊二烯,再滴加高碘酸钠的水溶液。反应完全后,过滤,收集滤液,向滤液中加入饱和亚硫酸氢钠淬灭反应,减压浓缩蒸去甲醇,水相中加入乙酸乙酯萃取二次,合并萃取液,无水硫酸钠干燥,过滤,浓缩得中间体I(99.7g,收率:86.3%,dr=3.5/1,重结晶后de>95%)。
实施例2
本实施例提供一种中间体I的制备方法,其反应式为
Figure PCTCN2019097921-appb-000030
具体的制备方法包括:
向反应瓶中加入25g N-酰基羟胺化合物((R)-N,2-二羟基-2-苯基乙酰胺),200mL四氢呋喃,1mol%氯化亚铜催化剂和吡啶,再加入新蒸环戊二烯,搅拌均匀。向反应瓶中持续通入氧气,直至反应完全为止。向反应液中加入5%的乙二胺四乙酸钠(EDTA)溶液,充分搅拌后静置,过滤,滤液浓缩蒸去四氢呋喃,水相用乙酸乙酯萃取三次,合并萃取液,无水硫酸钠干燥,过滤,浓缩后得中间体I(22.4g,收率:64.8%,dr=1.5/1)。
实施例3
本实施例提供一种中间体I的制备方法,其反应式为
Figure PCTCN2019097921-appb-000031
具体的制备方法包括:
向反应瓶中加入50g N-酰基羟胺化合物((R)-N,2-二羟基-2-苯基乙酰胺),250mL四氢呋喃,0.05g[Ir(COD)Cl]催化剂和环戊二烯,将反应液冷却到0℃左右,滴加30%双氧水溶液。反应完成后,加入甲叔醚萃取,有机相用无水硫酸钠干燥,过滤,浓缩后得中间体I(63g,收率:91.1%,dr=3/1)。
实施例4
本实施例提供一种中间体I的制备方法,其反应式为
Figure PCTCN2019097921-appb-000032
具体的制备方法包括:
向反应瓶中加入100g N-酰基羟胺化合物((R)-N,2-二羟基-2-叔丁基乙酰胺),300mL二氯甲烷,吡啶,环戊二烯,将反应液冷却到-20℃左右,向反应瓶中加入N-溴代丁二酰亚胺(NBS),反应完成后,加入水淬灭反应,静置分层,水相用二氯甲烷萃取,合并有机相。有机相用无水硫酸钠干燥,过滤,浓缩后得中间体I(85g,收率:59.2%,dr=4.5/1)。
实施例5
本实施例提供了一种中间体II的制备方法,其反应式为,
Figure PCTCN2019097921-appb-000033
具体的制备方法包括:
向氢化釜中加12.0g中间体I,100mL甲醇,0.6g 10%Pd/C,关闭釜盖,用氮气置换釜内空气,再用氢置换釜内氮气,并充氢气到0.1MPa,控制温度约-5℃反应。反应结束后,排除釜内余气,氮气转换后,打开釜盖,取出釜内反应液,过滤,浓缩后得产品,重结晶后得到中间体II(白色固体,7.6g,收率:62.8%)。
本实施例所提供的中间体II的表征如下:
1H-NMR(CDCl 3,400MHz):δppm 7.21-7.41(m,5H),5.23(d,1H,J=6.4Hz),4.84(s,1H), 4.66(s,1H),4.25(d,1H,J=6.8Hz),1.95-2.10(m,1H),1.69-1.75(m,1H),1.53-1.65(m,2H),1.39-1.52(m,1H),0.92-1.05(m,1H).
13C-NMR(CDCl 3,100MHz):δppm 169.52,145.53,139.01,128.23,128.04,127.42,80.54,71.12,57.38,38.31,28.07,27.84.
HRMS:检测值为234.1169,理论值为234.1125(按C 13H 16NO 3 +计算)。
实施例6
本实施例提供了一种中间体II的制备方法,其反应式为,
Figure PCTCN2019097921-appb-000034
具体的制备方法包括:
向氢化釜中加41.2g中间体I,100mL甲醇,11g兰尼镍,关闭釜盖,用氮气置换釜内空气,再用氢置换釜内氮气,并充氢气到0.1MPa,加热到15℃反应。反应结束后,排除釜内余气,氮气置换后,打开釜盖,取出釜内反应液,过滤,浓缩后得到中间体II(38.5g,收率:92.6%。)
实施例7
本实施例提供了一种中间体II的制备方法,其反应式为,
Figure PCTCN2019097921-appb-000035
具体的制备方法包括:
向氢化釜中加12.0g中间体I,50mL四氢呋喃,2.2g兰尼镍,关闭釜盖,用氮气置换釜内空气,再用氢置换釜内氮气,并充氢气到2.0MPa,保温在-5℃反应。反应结束后,排除釜内余气,氮气置换后,打开釜盖,取出釜内反应液,过滤,浓缩后得中间体II(9.73g,收率:80.3%)。
实施例8
本实施例提供了一种中间体III的制备方法,其反应式为
Figure PCTCN2019097921-appb-000036
具体的制备方法包括:
向不锈钢压力釜中,加入5g中间体II,25mL 25%氨/甲醇溶液,合上釜盖,升温到约40℃反应。反应完成后,排出余气,取出反应液,减压浓缩,向浓缩得到的残余物中加入甲基叔丁基醚和2M盐酸水溶液,分层,水层用2M氢氧化钠碱化,然后用甲叔醚萃取,合并萃取液,无水硫酸镁干燥,过滤,浓缩后得到中间体III(1.2g,收率:56.7%)。
实施例9
本实施例提供了一种中间体III的制备方法,其反应式为
Figure PCTCN2019097921-appb-000037
具体的制备方法包括:
向反应瓶中加入10g中间体II,30mL甲醇,80%水合肼溶液,保温在25℃反应。反应完成后加入2M盐酸溶液酸化,二氯甲烷萃取,水相用2M氢氧化钠碱化,再用二氯甲烷萃取,合并萃取液,无水硫酸镁干燥,过滤,浓缩后得中间体III(2.6g,收率:61.3%)。
实施例10
本实施例提供了一种中间体III的制备方法,其反应式为
Figure PCTCN2019097921-appb-000038
具体的制备方法包括:
向反应瓶中入10g中间体II,30mL甲醇,50%羟胺水溶液,升温到50℃反应。反应完成后加入2M盐酸溶液酸化,蒸去甲醇,水相用二氯甲烷萃取,水相再用2M氢氧化钠碱化,然后用二氯甲烷萃取水相,合并萃取液,无水硫酸镁干燥,过滤,浓缩后得中间体III(3.2g,收率:75.4%)。
实施例11
本实施例提供了一种中间体III的制备方法,其反应式为
Figure PCTCN2019097921-appb-000039
具体的制备方法包括:
向反应瓶中加入17.50g中间体II,20%甲醇钠甲醇溶液,降温到-10℃度反应。反应完成后,用2M盐酸酸化反应液,蒸馏除去酸化液中的甲醇,水相用二氯甲烷萃取,然后用 2M氢氧化钠碱化,再用二氯甲烷萃取,合并萃取液,无水硫酸镁干燥,过滤,浓缩后得中间体III(6.1g产品,收率82.1%)。
实施例12
本实施例提供了一种中间体III的制备方法,其反应式为
Figure PCTCN2019097921-appb-000040
具体的制备方法包括:
向反应瓶中加入17.50g中间体II,20mL无水乙醇,降温至10℃,再加入乙醇钠,保持10℃至反应完。反应完成后,用2M盐酸溶液酸化,蒸馏除去酸化液中的乙醇,水相用二氯甲烷萃取,然后用2M氢氧化钠碱化,再用二氯甲烷萃取,合并萃取液,无水硫酸镁干燥,过滤,浓缩后得中间体III(6.0g产品,收率80.7%)。
实施例13
本实施例提供了一种中间体III的盐酸盐的制备方法,其反应式为
Figure PCTCN2019097921-appb-000041
具体的制备方法包括:
向反应瓶中加入5g中间体II,再加入30mL 4M的氯化氢/甲醇溶液,0℃反应至原料消失。浓缩反应液后得白色固体,加入丙酮浆洗,过滤、烘干后得中间体III的盐酸盐(1.9g,收率:65.2%)。
本实施例所提供的中间体III的表征如下:
1H-NMR(D 2O,400MHz):δppm 5.02-5.04(m,1H),4.51-4.54(m,1H),2.14-2.21(m,2H),1.92-1.99(m,2H),1.87-1.92(m,2H).
13C-NMR(D 2O,100MHz):δppm 82.37,60.04,37.70,28.09,23.86.
HRMS:检测值为100.0814,理论值为100.0757.(按C 5H 10NO +计算)。
实施例14
本实施例提供了一种中间体III的氢溴酸盐的制备方法,其反应式为
Figure PCTCN2019097921-appb-000042
具体的制备方法包括:
向反应瓶中加入5g中间体II,再加入30mL 2M的溴化氢/乙醇溶液,10℃反应至原料消失。浓缩反应液后得白色固体,加入甲基叔丁基醚浆洗,过滤,烘干后得中间体III的氢溴酸盐(白色固体,2.1g,收率:54.4%)。
实施例15
本实施例提供了一种中间体III的硫酸盐的制备方法,其反应式为
Figure PCTCN2019097921-appb-000043
具体的制备方法包括:
向反应瓶中加入8.5g中间体II,再加入3mL浓硫酸,30mL甲醇溶液,25℃反应至原料消失,浓缩后得白色固体,加入乙酸乙酯浆洗,过滤,烘干后得中间体III的硫酸盐(白色固体,3.3g,收率46.6%)。
实施例16
本实施例提供了一种中间体III的对甲苯磺酸盐的制备方法,其反应式为
Figure PCTCN2019097921-appb-000044
具体的制备方法包括:
向反应瓶中加入3.5g中间体II,再加入2.85g对甲苯磺酸,35mL甲醇,升温至60℃反应,直至反应完全。减压浓缩,残余物用丙酮将洗,过滤,烘干后得中间体III的对甲苯磺酸盐(白色固体,2.2g,收率54.0%)。
实施例17
本实施例提供了一种中间体III的甲磺酸盐的制备方法,其反应式为
Figure PCTCN2019097921-appb-000045
具体的制备方法包括:
向反应瓶中加入3g中间体II,1.6g甲磺酸,30mL甲醇。升温至40℃反应,直到原料消失。减压浓缩,得中间体III的甲磺酸盐(油状液体)。
实施例18
本实施例提供了一种(1R,3S)-3-氨基-1-环戊醇的制备方法,其反应式为
Figure PCTCN2019097921-appb-000046
具体的制备方法包括:
向反应瓶中加入3.2g中间体III,20mL甲醇,0.3g 10%钯碳。充氢气0.1MPa,30℃反应24小时。过滤,浓缩得粗品,用丙酮浆洗,过滤,烘干后得(1R,3S)-3-氨基-1-环戊醇(白色固体,2.6g,收率:81.0%,光学纯度>99.5%)。
本实施例所提供的(1R,3S)-3-氨基-1-环戊醇的表征如下:
1H-NMR(D 2O,400MHz):δppm 4.28-4.32(m,1H),3.61-3.67(m,1H),2.13-2.21(m,1H),2.02-2.11(m,1H),1.70-1.86(m,3H),1.60-1.66(m,1H).
实施例19
本实施例提供了一种(1R,3S)-3-氨基-1-环戊醇盐酸盐的制备方法,其反应式为
Figure PCTCN2019097921-appb-000047
具体的制备方法包括:
向反应瓶中加入12g中间体III,60mL甲基叔丁基醚,1.0g 10%钯碳。充氢气1.0MPa,20℃反应24小时。过滤除去催化剂,向滤液中通入干燥的HCl气体,反应完全后,过滤,烘干后得(1R,3S)-3-氨基-1-环戊醇盐酸盐(白色固体,9.7g,收率:58.2%,光学纯度>99.5%)。
实施例20
本实施例提供了一种(1R,3S)-3-氨基-1-环戊醇盐酸盐的制备方法,其反应式为
Figure PCTCN2019097921-appb-000048
具体的制备方法包括:
12.7g中间体III的盐酸盐用200mL异丙醇溶解,将此溶液转移到不锈钢应釜中,加入2.3g钯碳,置换釜内气体后,充氢气至1.0MPa,升温至50℃反应。反应结束后,取出反应液,过滤除去催化剂,浓缩,向残余物中加入60mL无水乙腈分散、过滤并烘干后得(1R,3S)-3-氨基-1-环戊醇盐酸盐(白色固体,5.76g,收率:45.3%,光学纯度>99.5%)。
综上所述,本公开实施例提供了一种(1R,3S)-3-氨基-1-环戊醇及其盐的制备方法,其以N-酰基羟胺化合物中的手性中心作为手性诱导,与环戊二烯进行不对称环加成反应来构建目标产物的两个手性中心。N-酰基羟胺化合物通过羟胺进行一步衍生即可得到,来源广泛、廉价易得,能有效降低原料成本。该制备方法的路线合理,操作简单,反应条件温和,具 有较高的原子经济性。并且,其立体选择性好,制备得到的产品具有较高的光学纯度,且质量稳定,适合进行大规模的工业化生产。
本公开实施例还提供了一种用于合成(1R,3S)-3-氨基-1-环戊醇及其盐的中间体,其制备简单,来源广泛,适合用于(1R,3S)-3-氨基-1-环戊醇及其盐的批量生产。
以上所述仅为本公开的实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开实施例提供了一种(1R,3S)-3-氨基-1-环戊醇及其盐的制备方法,其以N-酰基羟胺化合物中的手性中心作为手性诱导,与环戊二烯进行不对称环加成反应来构建目标产物的两个手性中心。N-酰基羟胺化合物通过羟胺进行一步衍生即可得到,来源广泛、廉价易得,能有效降低原料成本。该制备方法的路线合理,操作简单,反应条件温和,具有较高的原子经济性。并且,其立体选择性好,制备得到的产品具有较高的光学纯度,且质量稳定,适合进行大规模的工业化生产。
本公开实施例还提供了一种用于合成(1R,3S)-3-氨基-1-环戊醇及其盐的中间体,其制备简单,来源广泛,适合用于(1R,3S)-3-氨基-1-环戊醇及其盐的批量生产。

Claims (23)

  1. 一种(1R,3S)-3-氨基-1-环戊醇的制备方法,包括:
    以手性N-酰基羟胺化合物为原料,与环戊二烯发生不对称环加成反应,得到中间体I;
    将所述中间体I进行氢化还原,得到中间体II;
    将所述中间体II的酰胺键进行水解、氨解、肼解或醇解,得到中间体III;
    将所述中间体III进行氢化还原,得到(1R,3S)-3-氨基-1-环戊醇;
    其中,所述手性N-酰基羟胺化合物的结构式为
    Figure PCTCN2019097921-appb-100001
    所述中间体I的结构式为
    Figure PCTCN2019097921-appb-100002
    所述中间体II的结构式为
    Figure PCTCN2019097921-appb-100003
    所述中间体III的结构式为
    Figure PCTCN2019097921-appb-100004
    所述(1R,3S)-3-氨基-1-环戊醇的结构式为
    Figure PCTCN2019097921-appb-100005
    式中,R选自C1~C4烷基或C6~C10芳基。
  2. 根据权利要求1所述的制备方法,其中,R选自C2~C4烷基或C6~C10芳基。
  3. 根据权利要求1所述的制备方法,其中,R选自由甲基、乙基、正丙基、异丙基和叔丁基组成的组,优选地,R选自乙基、正丙基、异丙基和叔丁基组成的组,优选地,R为叔丁基。
  4. 根据权利要求1或2所述的制备方法,其中,R选自苯基及取代苯基,优选地,R为苯基。
  5. 根据权利要求1-4任一项所述的制备方法,其中,所述N-酰基羟胺化合物与所述环戊二烯的反应是在氧化剂存在下进行的,所述氧化剂包括高碘酸盐、氧气、双氧水和NBS中的至少一种。
  6. 根据权利要求1-5任一项所述的制备方法,其中,对所述中间体I进行氢化还原,是在氢气氛围下,以钯碳或兰尼镍作为催化剂的条件下进行的;
    优选地,是以钯碳作为催化剂,在氢气压力为0.05~0.1MPa,温度为-10~15℃的条件下进行的;
    或优选地,是以兰尼镍作为催化剂,在氢气压力为0.1~2MPa,温度为-10~15℃的条件下进行的。
  7. 根据权利要求1-6任一项所述的制备方法,其中,将所述中间体II的酰胺键进行氨解或醇解,是在酸或碱的催化下进行的。
  8. 根据权利要求7所述的制备方法,其中,所述酸包括盐酸、溴化氢、硫酸、对甲苯磺酸和甲磺酸中的至少一种。
  9. 根据权利要求7所述的制备方法,其中,所述碱包括氨气、水合肼、羟胺水溶液、甲醇钠和乙醇钠中的至少一种。
  10. 根据权利要求9所述的制备方法,其中,将所述中间体II的酰胺键进行氨解或醇解,是在所述碱的催化下进行的,反应温度为-10~40℃。
  11. 根据权利要求1-10任一项所述的制备方法,其中,对所述中间体III进行氢化还原,是在氢气氛围下,以钯碳或兰尼镍作为催化剂的条件下进行的;
    优选地,是以钯碳作为催化剂,在氢气压力为0.1~1MPa,温度为20~50℃下的条件下进行的;
    或优选地,是以兰尼镍作为催化剂,在氢气压力为0.1~2MPa,温度为20~50℃下的条件下进行的。
  12. 一种(1R,3S)-3-氨基-1-环戊醇盐的制备方法,包括:
    以手性N-酰基羟胺化合物为原料,与环戊二烯发生不对称环加成反应,得到中间体I;
    将所述中间体I进行氢化还原,得到中间体II;
    将所述中间体II的酰胺键在酸催化下进行醇解,得到中间体III的盐;
    将所述中间体III的盐进行氢化还原,得到(1R,3S)-3-氨基-1-环戊醇的盐;
    其中,所述手性N-酰基羟胺化合物的结构式为
    Figure PCTCN2019097921-appb-100006
    所述中间体I的结构式为
    Figure PCTCN2019097921-appb-100007
    所述中间体II的结构式为
    Figure PCTCN2019097921-appb-100008
    所述中间体III的盐的结构式为
    Figure PCTCN2019097921-appb-100009
    所述(1R,3S)-3-氨基-1-环戊醇的盐的结构式为
    Figure PCTCN2019097921-appb-100010
    式中,R选自C1~C4烷基或C6~C10芳基,HA选自HCl、HBr、H 2SO 4、HOTs和HOMs中的任一种。
  13. 根据权利要求12所述的制备方法,其中,将所述中间体II的酰胺键进行醇解, 是在所述酸的催化下,反应温度为0~60℃的条件下进行的。
  14. 根据权利要求13所述的制备方法,其中,所述酸包括HCl、HBr、H 2SO 4、HOTs和HOMs中的至少一种。
  15. 根据权利要求12-14任一项所述的制备方法,其中,对所述中间体III的盐进行氢化还原,是在氢气氛围下,以钯碳或兰尼镍作为催化剂的条件下进行的;
    优选地,是以钯碳作为催化剂,在氢气压力为0.1~1MPa,温度为20~50℃下的条件下进行的;
    或优选地,是以兰尼镍作为催化剂,在氢气压力为0.1~2MPa,温度为20~50℃下的条件下进行的。
  16. 一种用于合成(1R,3S)-3-氨基-1-环戊醇的酰胺中间体,其结构式为
    Figure PCTCN2019097921-appb-100011
    式中,R选自C1~C4烷基或C6~C10芳基。
  17. 根据权利要求16所述的酰胺中间体,其中,R选自C2~C4烷基或C6~C10芳基。
  18. 根据权利要求16所述的酰胺中间体,其中,R选自由甲基、乙基、正丙基、异丙基、叔丁基组成的组,优选地,R选自乙基、正丙基、异丙基和叔丁基组成的组,优选地,R为叔丁基。
  19. 根据权利要求16或17所述的酰胺中间体,其中,R选自苯基及取代苯基,优选地,R为苯基。
  20. 一种用于合成(1R,3S)-3-氨基-1-环戊醇的胺盐中间体,其结构式为
    Figure PCTCN2019097921-appb-100012
    式中,HA选自HCl、HBr、H 2SO 4、HOTs和HOMs中的任一种。
  21. 根据权利要求20所述的胺盐中间体,其中,HA选自HCl。
  22. 下式化合物作为中间体用于合成(1R,3S)-3-氨基-1-环戊醇的用途,
    Figure PCTCN2019097921-appb-100013
    式中,R选自C1~C4烷基或C6~C10芳基,优选地R选自C2~C4烷基或C6~C10芳基。
  23. 下式化合物或其盐作为中间体用于合成(1R,3S)-3-氨基-1-环戊醇的用途,
    Figure PCTCN2019097921-appb-100014
    其中所述化合物的盐为
    Figure PCTCN2019097921-appb-100015
    HA选自HCl、HBr、H 2SO 4、HOTs和HOMs中的任一种。
PCT/CN2019/097921 2018-08-28 2019-07-26 一种(1r,3s)-3-氨基-1-环戊醇及其盐的制备方法 WO2020042841A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3108358A CA3108358C (en) 2018-08-28 2019-07-26 Preparation method for (1r,3s)-3-amino-1-cyclopentanol and salts thereof
EP19853589.0A EP3845518A4 (en) 2018-08-28 2019-07-26 PROCESS FOR THE PREPARATION OF (1R, 3S) -3-AMINO-1-CYCLOPENTANOL AND ITS SALTS
KR1020217003015A KR102658673B1 (ko) 2018-08-28 2019-07-26 (1r,3s)-3-아미노기-1-사이클로펜탄올 및 그 염의 제조방법
JP2021527275A JP7174851B2 (ja) 2018-08-28 2019-07-26 (1r,3s)-3-アミノ-1-シクロペンタノール及びその塩の調製方法
US17/163,532 US11459291B2 (en) 2018-08-28 2021-01-31 Method of preparation of (1R,3S)-3-amino-1-cyclopentanol and salt thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810991670.2A CN110862325B (zh) 2018-08-28 2018-08-28 一种(1r,3s)-3-氨基-1-环戊醇及其盐的制备方法
CN201810991670.2 2018-08-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/163,532 Continuation-In-Part US11459291B2 (en) 2018-08-28 2021-01-31 Method of preparation of (1R,3S)-3-amino-1-cyclopentanol and salt thereof

Publications (1)

Publication Number Publication Date
WO2020042841A1 true WO2020042841A1 (zh) 2020-03-05

Family

ID=69642843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097921 WO2020042841A1 (zh) 2018-08-28 2019-07-26 一种(1r,3s)-3-氨基-1-环戊醇及其盐的制备方法

Country Status (6)

Country Link
US (1) US11459291B2 (zh)
EP (1) EP3845518A4 (zh)
JP (1) JP7174851B2 (zh)
CN (1) CN110862325B (zh)
CA (1) CA3108358C (zh)
WO (1) WO2020042841A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633657A (zh) * 2012-03-30 2012-08-15 兰州中泰和生物科技有限公司 一种顺式3-氨基-环戊醇盐酸盐的制备方法
WO2018005328A1 (en) * 2016-06-27 2018-01-04 Concert Pharmaceuticals, Inc. Deuterated bictegravir

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103923055B (zh) * 2014-04-02 2015-11-18 黄河三角洲京博化工研究院有限公司 一种制备(1s,2r,3s,4r)-2,3-o-亚异丙基-4-氨基环戊烷-1,2,3-三醇的方法
TWI744723B (zh) * 2014-06-20 2021-11-01 美商基利科學股份有限公司 多環型胺甲醯基吡啶酮化合物之合成
CN106279095A (zh) * 2015-06-01 2017-01-04 重庆圣华曦药业股份有限公司 一种替格瑞洛关键中间体的制备方法
CN109020911B (zh) * 2018-04-16 2022-06-28 常州制药厂有限公司 用于制备bictegravir的中间体及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633657A (zh) * 2012-03-30 2012-08-15 兰州中泰和生物科技有限公司 一种顺式3-氨基-环戊醇盐酸盐的制备方法
WO2018005328A1 (en) * 2016-06-27 2018-01-04 Concert Pharmaceuticals, Inc. Deuterated bictegravir

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUST GEORGE, CUTRONE LUIGI: "2, 3-0xazabicyclo[2.2.1]heptane", CANADIAN JOURNAL OF CHEMISTRY, vol. 54, no. 6, 31 December 1976 (1976-12-31), pages 867 - 870, XP009525434, DOI: 10.1139/v76-125 *
See also references of EP3845518A4 *

Also Published As

Publication number Publication date
EP3845518A1 (en) 2021-07-07
CN110862325A (zh) 2020-03-06
JP7174851B2 (ja) 2022-11-17
EP3845518A4 (en) 2021-11-10
JP2021532184A (ja) 2021-11-25
US20210147339A1 (en) 2021-05-20
CA3108358A1 (en) 2020-03-05
US11459291B2 (en) 2022-10-04
CA3108358C (en) 2023-08-01
KR20210028665A (ko) 2021-03-12
CN110862325B (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
US8884033B2 (en) Process for preparing aminobenzoylbenzofuran derivatives
WO2016026380A1 (zh) 艾德拉尼的制备方法
TWI513691B (zh) 製備苯并咪唑衍生物之方法
WO2017096996A1 (zh) 卡比替尼的制备方法
KR20170131508A (ko) 레디파스비르 및 이의 유도체의 제조방법 및 레디파스비르를 제조하기 위한 중간체 화합물
WO2018153380A1 (zh) 维帕他韦及其衍生物的制备
AU2018366342A1 (en) Method for preparing Baricitinib
WO2016055015A1 (zh) 一种不对称还原法制备西他列汀中间体的方法
KR102122569B1 (ko) 1-([1,3]디옥솔란-4-일메틸)-1η-피라졸-3-일아민을 제조하는 방법
WO2016161826A1 (zh) 一种4-异丙氨基-1-丁醇的制备方法
WO2014056421A1 (zh) 1-氰基-1-(7-甲氧基-1-萘基)甲醇酯类化合物及其制备方法和应用
WO2020042841A1 (zh) 一种(1r,3s)-3-氨基-1-环戊醇及其盐的制备方法
US20100298574A1 (en) Process For The Synthesis Of (+) And (-)-1-(3,4-Dichlorophenyl)-3-Azabicyclo[3.1.0]Hexane
WO2015085827A1 (zh) 一种西洛多辛及其中间体的制备方法
CN107935909B (zh) 一种尼达尼布(nintedanib)及其中间体的合成方法
KR100696187B1 (ko) 2-(2-아미노에틸)-1-메틸피롤리딘의 제조방법
US9428461B2 (en) Process for the preparation of a benzazepine derivative
KR102658673B1 (ko) (1r,3s)-3-아미노기-1-사이클로펜탄올 및 그 염의 제조방법
RU2741389C1 (ru) Способ получения промежуточного соединения для синтеза лекарственного средства
CN110590641B (zh) 一种3-羟基异吲哚-1-酮系列化合物的绿色制备方法
WO2011157670A2 (en) Novel process
WO2017017696A1 (en) Process for the preparation of lumacaftor
CN113527117A (zh) Aeea的制备方法
US20120022292A1 (en) Method for preparing eplivanserin hemifumarate
KR101059275B1 (ko) 개선된 4-[2-(디-엔-프로필아미노)에틸]-1,3-디하이드로-2에이치-인돌-2-온의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853589

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527275

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217003015

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3108358

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019853589

Country of ref document: EP

Effective date: 20210329