WO2020042557A1 - 一种从西瓜中提取瓜氨酸的方法 - Google Patents

一种从西瓜中提取瓜氨酸的方法 Download PDF

Info

Publication number
WO2020042557A1
WO2020042557A1 PCT/CN2019/076459 CN2019076459W WO2020042557A1 WO 2020042557 A1 WO2020042557 A1 WO 2020042557A1 CN 2019076459 W CN2019076459 W CN 2019076459W WO 2020042557 A1 WO2020042557 A1 WO 2020042557A1
Authority
WO
WIPO (PCT)
Prior art keywords
citrulline
extract
resin
extraction
adsorption
Prior art date
Application number
PCT/CN2019/076459
Other languages
English (en)
French (fr)
Inventor
焦中高
刘杰超
张春岭
张强
刘慧�
吕真真
杨文博
陈大磊
Original Assignee
中国农业科学院郑州果树研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国农业科学院郑州果树研究所 filed Critical 中国农业科学院郑州果树研究所
Priority to JP2020567255A priority Critical patent/JP6946577B2/ja
Publication of WO2020042557A1 publication Critical patent/WO2020042557A1/zh
Priority to US16/888,779 priority patent/US10837035B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/18Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0261Solvent extraction of solids comprising vibrating mechanisms, e.g. mechanical, acoustical
    • B01D11/0265Applying ultrasound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • B01D11/0288Applications, solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0018Evaporation of components of the mixture to be separated
    • B01D9/0022Evaporation of components of the mixture to be separated by reducing pressure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/18Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas
    • C07C273/189Purification, separation, stabilisation, use of additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0036Crystallisation on to a bed of product crystals; Seeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/004Fractional crystallisation; Fractionating or rectifying columns
    • B01D9/0045Washing of crystals, e.g. in wash columns
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/10Citrulline; Arginine; Ornithine

Definitions

  • the invention belongs to the technical field of natural substance extraction, and particularly relates to a method for extracting citrulline from watermelon.
  • Watermelons are widely planted in China, with short growth periods and high yields.
  • the annual planting area is about 2 million hectares, with a total output of 68 million tons, accounting for 58.99% and 71.45% of the world ’s total watermelon cultivation area and total output, ranking first in the world .
  • Due to the strong seasonality of watermelon planting the market is concentrated, and it is not easy to store.
  • the imbalance between supply and demand has caused watermelon prices to fall sharply or even to slow sales, causing a lot of decay.
  • the defective melons in the planting process are not suitable for fresh sales, and often can only be rotten in the ground or sold extremely cheaply, resulting in a waste of resources.
  • the key to solving these problems lies in vigorously developing deep processing of watermelon and increasing the added value of watermelon.
  • Citrulline also known as Carbamylornithine ornithin, is named after it was first isolated from watermelon juice. It has the functions of improving the immune system, maintaining joint motion, balancing normal blood sugar levels, Scavenge free radicals, help maintain normal cholesterol levels, improve healthy sexual function, cause smooth muscle relaxation, relax blood vessels, maintain healthy lung function, improve mental clarity, reduce stress, and overcome depression, and many other physiological effects.
  • the extraction method of citrulline in watermelon is generally water extraction, membrane filtration, cation exchange resin adsorption, decolorization of activated carbon or macroporous resin, and crystal recrystallization.
  • the method disclosed in the patent 200810056075 "A method for extracting complex amino acids from watermelon or melon" is: juice extraction, ultrafiltration nanofiltration, ion exchange resin adsorption, decolorization, and spray drying.
  • Patent 200610113510 a method for extracting citrulline from watermelon
  • patent 200710120714 an industrial method for extracting natural L-citrulline from plant tissues such as watermelon or melon.
  • the main steps of the disclosed method Membrane treatment, ion exchange resin adsorption, and crystallization.
  • Patent 200510072130 a method for extracting citrulline from watermelon rind
  • Zhou Xiaohua et al. Published a method of "L. citrulline in HD.8 resin to separate L. citrulline from trichosanthin”.
  • the method disclosed was the use of trichosanthin as a raw material for water extraction, ion exchange resin adsorption, and macroporous resin adsorption and decolorization.
  • citrulline crude extract contains sugar, protein, starch and other substances in addition to citrulline, which seriously affects the further isolation and purification of citrulline. Therefore, the extraction solution needs to be pretreated to ensure the effect of further purification.
  • the sugar content in the crude extract will affect the viscosity of the crude extract, making it difficult to cross the column, and it will also affect the crystallization effect of citrulline.
  • an object of the present invention is to provide a method for extracting and purifying citrulline from watermelon, which can not only efficiently extract citrulline from watermelon, extract heavy metals from citrulline, and Microorganisms and other indicators meet relevant sanitary requirements and product quality standards, and can also obtain high-purity citrulline.
  • a method for purifying citrulline the steps are as follows:
  • Microbial fermentation adding yeast to the citrulline crude extract for 24h;
  • citrulline crystals are precipitated out at 4 ° C.
  • the precipitate is centrifuged, washed, and dried to obtain a white powdery solid.
  • step b Repeat step b one or two times, centrifuge the precipitate, wash, and dry to obtain a refined solid citrulline powder.
  • the added amount of the yeast is 5% (v / v).
  • the ion exchange resin is purified into static adsorption or dynamic exchange adsorption in a shaker.
  • the shaking static adsorption is that the activated wet resin is mixed with the citrulline extract solution after fermentation by the microorganism according to 1: 15-20 (g / mL), and the static adsorption is 100-150r / min for 15min;
  • the ion exchange resin is purified into one of D001, D113, HD-8, 732, and 252H;
  • the macroporous adsorption resin is one of XDA-5, XAD-761, AB-8, and HZ-803.
  • a method for extracting citrulline from watermelon comprising the steps of raw material pretreatment, ultrasonic-enzymatic hydrolysis assisted solvent extraction and purification steps;
  • the purification step is:
  • Microbial fermentation Add 5% (v / v) yeast to the extract or mixed solution of extract and melon peel juice for 24 hours to remove sugar;
  • citrulline crystals are precipitated out at 4 ° C.
  • the precipitate is centrifuged, washed, and dried to obtain a white powdery solid.
  • step b Repeat step b one or two times, centrifuge the precipitate, wash, and dry to obtain a refined solid citrulline powder.
  • the enzymolysis is the addition of 0.1 to 0.2% (m / m) biological enzyme, 40 to 50 ° C, and 1 to 2 hours of enzymolysis.
  • the biological enzyme is one or two of pectinase and cellulase.
  • the extraction conditions are: material-liquid ratio 1: 10-1: 20 (kg / L), ultrasonic power 100-140W, and extraction temperature 30-50 °C, extraction time 60 ⁇ 120min, extraction times twice.
  • the method for extracting citrulline from watermelon includes the following steps:
  • the filter residue obtained after the juice is squeezed or the cucumber is dried to be ground into a powder;
  • Microbial fermentation Add 5% (v / v) yeast to the extract or mixed solution of extract and melon peel juice for 24 hours to remove sugar;
  • citrulline crystals are precipitated out at 4 ° C.
  • the precipitate is centrifuged, washed, and dried to obtain a white powdery solid.
  • step b Repeat step b one or two times, centrifuge the precipitate, wash, and dry to obtain a refined solid citrulline powder.
  • the citrulline is used in the preparation of foods for enhancing immunity, anti-oxidation, improving exercise function, protecting heart and brain blood vessels, and improving male sexual function.
  • the food is a health product.
  • the yeast number is CICC-1012, China Industrial Microbial Collection and Management Center.
  • the pectinase and cellulase were purchased from Tianjin Lihua Enzyme Preparation Technology Co., Ltd.
  • the enzyme activity was 1000 U / mg.
  • the invention uses watermelon peel as a raw material, and extracts citrulline by enzymatic hydrolysis and ultrasonic-assisted solvent.
  • the extraction conditions are mild, and the citrulline has a high extraction rate.
  • the sugar content in the extraction solution is mild, the operation is simple and safe, and it has almost no effect on the content of citrulline.
  • the purity of citrulline obtained by ion exchange resin purification, macroporous adsorption resin decolorization and recrystallization purification is high, and the use of resin Long life, easy regeneration, and low cost; the citrulline extracted by the invention can be used as a raw material in the food and health products industry, and has natural safety advantages;
  • the present invention tests the physical, chemical and hygienic indicators of the obtained citrulline extract and compares it with the quality standards of commercially available citrulline products. The results show that the citrulline obtained by the present invention meets the relevant health requirements and product quality standards.
  • a method for extracting citrulline from watermelon the steps are as follows:
  • the filter residue obtained after the juice is squeezed or the cucumber is dried to be ground into a powder;
  • Microbial fermentation Add 5% (v / v) yeast to the extract or mixed solution of extract and melon peel juice for 24 hours to remove sugar;
  • citrulline crystals are precipitated out at 4 ° C.
  • the precipitate is centrifuged, washed, and dried to obtain a white powdery solid.
  • step b Repeat step b one or two times, centrifuge the precipitate, wash, and dry to obtain a refined solid citrulline powder.
  • a method for extracting citrulline from watermelon the steps are as follows: the ratio of resin to citrulline extract is 1:15 (g / mL),
  • the filter residue obtained after the juice is squeezed or the cucumber is dried to be ground into a powder;
  • Microbial fermentation Add 5% (v / v) yeast to the extract or mixed solution of extract and melon peel juice for 24 hours to remove sugar;
  • citrulline crystals are precipitated out at 4 ° C.
  • the precipitate is centrifuged, washed, and dried to obtain a white powdery solid.
  • step b Repeat step b one or two times, centrifuge the precipitate, wash, and dry to obtain a refined solid citrulline powder.
  • a method for extracting citrulline from watermelon the steps are as follows:
  • the filter residue obtained after the juice is squeezed or the cucumber is dried to be ground into a powder;
  • Microbial fermentation Add 5% (v / v) yeast to the extract or mixed solution of extract and melon peel juice for 24 hours to remove sugar;
  • citrulline crystals are precipitated out at 4 ° C.
  • the precipitate is centrifuged, washed, and dried to obtain a white powdery solid.
  • step b Repeat step b one or two times, centrifuge the precipitate, wash, and dry to obtain a refined solid citrulline powder.
  • a method for extracting citrulline from watermelon the steps are as follows:
  • the filter residue obtained after the juice is squeezed or the cucumber is dried to be ground into a powder;
  • Microbial fermentation Add 5% (v / v) yeast to the extract or mixed solution of extract and melon peel juice for 24 hours to remove sugar;
  • citrulline crystals are precipitated out at 4 ° C.
  • the precipitate is centrifuged, washed, and dried to obtain a white powdery solid.
  • step b Repeat step b one or two times, centrifuge the precipitate, wash, and dry to obtain a refined solid citrulline powder.
  • a method for extracting citrulline from watermelon the steps are as follows:
  • the filter residue obtained after the juice is squeezed or the cucumber is dried to be ground into a powder;
  • Microbial fermentation 8% (v / v) yeast is added to the extract or the mixture of the extract and the melon peel juice for 24 hours to remove sugar;
  • citrulline crystals are precipitated out at 4 ° C.
  • the precipitate is centrifuged, washed, and dried to obtain a white powdery solid.
  • step b Repeat step b one or two times, centrifuge the precipitate, wash, and dry to obtain a refined solid citrulline powder.
  • a method for extracting citrulline from watermelon the steps are as follows:
  • the filter residue obtained after the juice is squeezed or the cucumber is dried to be ground into a powder;
  • Microbial fermentation 3% (v / v) yeast is added to the extract or the mixture of the extract and the melon peel juice for 24 hours to remove sugar;
  • citrulline crystals are precipitated out at 4 ° C.
  • the precipitate is centrifuged, washed, and dried to obtain a white powdery solid.
  • step b Repeat step b one or two times, centrifuge the precipitate, wash, and dry to obtain a refined solid citrulline powder.
  • Example 2 On the basis of the citrulline extraction method in Example 1, enzymatic hydrolysis was performed without ultrasonic-assisted extraction (complex enzymatic method), without enzymatic treatment (ultrasonic method), without ultrasonic-assisted extraction, and without adding biological enzymes. In the treatment, only the solvent extraction method (control) and the extraction method (ultrasonic-enzymatic method) of Example 1 were used to extract citrulline in watermelon, and the extraction effect was determined as shown in FIG. 2.
  • both the ultrasonic extraction and the combined enzymatic treatment can improve the extraction effect of citrulline.
  • the ultrasonic-enzymatic method combined with the two has the best extraction effect on citrulline.
  • the method of the present invention can efficiently extract citrulline from watermelon rind. After three extractions, more than 98% of citrulline can be extracted from watermelon rind. Among them, the first two extraction rates reached 93.43%, so In the extraction of citrulline from watermelon rind, it can be extracted twice.
  • the selected cationic resins can exchange and adsorb the citrulline in the crude citrulline extract.
  • the strong acid ion exchange resins such as D001, HD-8, 732, and 252H have an effect on The exchange adsorption capacity is strong, while D113 is a weak acid ion exchange resin, which has a weak exchange adsorption capacity for citrulline.
  • D001, HD-8, 732, and 252H have an effect on The exchange adsorption capacity is strong
  • D113 is a weak acid ion exchange resin, which has a weak exchange adsorption capacity for citrulline.
  • HD-8 resin has the strongest exchange capacity for citrulline in the crude citrulline extract, and its equilibrium adsorption capacity reaches 36.69 mg / g wet resin.
  • Example 6 The physical and chemical and hygienic indicators of the citrulline extract extracted in Example 1 were analyzed and compared with the quality standards of commercially available citrulline products. The results are shown in Table 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Seasonings (AREA)
  • Compounds Of Unknown Constitution (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种从西瓜中提取瓜氨酸的方法,属于天然物质提取技术领域。本发明所述从西瓜中提取瓜氨酸的方法,包括原料预处理、超声-酶解辅助溶剂浸提和纯化步骤;所述纯化步骤包括微生物发酵、离子交换树脂纯化、大孔吸附树脂脱色、结晶与重结晶。本发明提取瓜氨酸的方法简单,条件温和,对瓜氨酸具有较高的提取效果,经纯化后瓜氨酸的纯度在90%以上,此外,本发明方法提取的瓜氨酸符合相关卫生要求与产品质量标准,可以作为原料用于食品和保健品行业,具有天然的安全性优势。

Description

一种从西瓜中提取瓜氨酸的方法 技术领域
本发明属于天然物质提取技术领域,具体涉及一种从西瓜中提取瓜氨酸的方法。
背景技术
西瓜在我国种植范围广,生长周期短,产量高,年种植面积约200万公顷,总产量6800万吨,分别占当年世界西瓜栽培总面积和总产量的58.99%和71.45%,均居世界首位。由于西瓜种植的季节性强,上市集中,不易贮存,供需失衡导致西瓜价格大幅下跌甚至滞销,造成大量腐烂。此外种植过程中的残次瓜,不适宜作为鲜销,常常只能烂在地里或者极其廉价出售,造成资源的浪费。解决这些问题的关键在于大力发展西瓜深加工,提高西瓜的附加值。
目前国内对西瓜加工通常是侧重于西瓜饮料(包括西瓜汁、西瓜酒、西瓜醋等)及西瓜酱的研制,但是,利用西瓜加工成直接食用的初级产品,对作为原料的西瓜品质(例如成熟程度、新鲜程度)要求比较高,即使这样,西瓜经过热处理后会丧失原有的风味,依然难以符合消费者的口味,所以将西瓜加工成饮料或果酱的可操作性较差,难以实现产业化。
瓜氨酸(Citrulline),又名氨基甲酰鸟氨酸(Carbamylornithine ornithin),因其最早由西瓜汁中分离得到而得名,其具有提高免疫系统功能、维护关节运动机能、平衡正常血糖水平、清除自由基、帮助保持胆固醇正常水平、提高健康性功能、导致平滑肌舒张、使血管获得松弛、维护健康的肺功能、提高脑力清晰度、降低压力和克服沮丧情绪等多种生理功效。
目前,对西瓜中瓜氨酸的提取方法一般水提取,膜过滤,阳离子交换树脂吸附,活性炭脱色或大孔树脂脱色,结晶重结晶。如专利200810056075“一种从西瓜或打瓜中提取复合氨基酸的方法”所公开的方法是:榨汁、超滤纳滤、离子交换树脂吸附、脱色、喷雾干燥。再如专利200610113510“一种从西瓜中提取瓜氨酸的方法”和专利200710120714“一种从西瓜或打瓜等植物组织中提取天然L-瓜氨酸的工业方法”,所公开的方法主要工序也是膜处理、离子交换树脂吸附,结晶。专利200510072130“一种从西瓜皮中提取瓜氨酸的方法”所公开的方法是采用压汁浓缩、离子交换树脂吸附、结晶等方法。周小华等发表的“HD.8树脂分离天花粉中的L.瓜氨酸”文献公开的方法是采用天花粉为原料水提,离子交换树脂吸附、大孔树脂吸附脱色等工序。
以上工艺存在除杂效果不好、能耗大,产品含量低。此外,瓜氨酸粗提液中除含有瓜氨酸外,还含有糖、蛋白质、淀粉等物质,严重影响瓜氨酸的进一步分离纯化。因此,需要对提取液进行预处理,以保证进一步纯化的效果。其粗提液中的糖分会影响粗提液的粘度,造成过柱困难,而且也会影响瓜氨酸的结晶效果。
发明内容
针对现有技术中存在的问题,本发明的目的在于提供一种西瓜中瓜氨酸提取及纯化的方 法,该方法不仅能够高效的提取西瓜中的瓜氨酸,提取的瓜氨酸中重金属及微生物等指标均符合相关卫生要求与产品质量标准,而且还能获得高纯度的瓜氨酸。
为了达到上述目的,本发明的技术方案为:
一种瓜氨酸的纯化方法,步骤如下:
(1)微生物发酵:向瓜氨酸粗提液中添加酵母菌发酵24h;
(2)离子交换树脂纯化:将微生物发酵后的瓜氨酸提取液过滤除去酵母菌后加入活化湿树脂中,吸附瓜氨酸,然后采用0.5mol/L氨水溶液洗脱,洗脱速度2BV/h;
(3)大孔吸附树脂脱色:将活化湿树脂与瓜氨酸洗脱液按照1∶20(g/mL)混合,100~150r/min室温条件下进行静态吸附;
(4)结晶与重结晶:
a、将瓜氨酸粗提液真空浓缩至可溶性固形物含量≥30%,调节浓缩液pH为5.97,4℃使瓜氨酸结晶析出,离心分离沉淀,洗涤,烘干,得到白色粉末状固体瓜氨酸结晶;
b、将(a)中的瓜氨酸粉末加水溶解,调pH为5.97,同时加入0.1%的瓜氨酸晶体作为晶种,4℃使瓜氨酸结晶析出,离心分离沉淀;
c、重复步骤b 1~2次,离心分离沉淀、洗涤,烘干,得到精制瓜氨酸固体粉末。
在上述方案的基础上,所述酵母菌的添加量为5%(v/v)。
在上述方案的基础上,所述离子交换树脂纯化为摇床静态吸附或动态交换吸附
在上述方案的基础上,所述摇动静态吸附为活化湿树脂与微生物发酵后的瓜氨酸提取液按照1∶15~20(g/mL)混合,100~150r/min静态吸附15min;
所述动态交换吸附为将180g活化湿树脂装填于内径26mm、高400mm的玻璃层析柱中,将微生物发酵后的瓜氨酸提取液以2~6BV/h的速度通过树脂柱,对瓜氨酸进行吸附。
在上述方案的基础上,
所述离子交换树脂纯化为D001、D113、HD-8、732、252H中的一种;
所述大孔吸附树脂为XDA-5、XAD-761、AB-8、HZ-803中的一种。
一种从西瓜中提取瓜氨酸的方法,包括原料预处理、超声-酶解辅助溶剂浸提和纯化步骤;
所述纯化步骤为:
(1)微生物发酵:向浸提液或浸提液和瓜皮汁混合液中添加5%(v/v)酵母菌发酵24h去除糖分;
(2)离子交换树脂纯化:将微生物发酵后的瓜氨酸提取液过滤除去酵母菌后加入HD-8活化湿树脂中,吸附瓜氨酸,然后采用0.5mol/L氨水溶液洗脱,洗脱速度2BV/h;
(3)大孔吸附树脂脱色:将XAD-761活化湿树脂与瓜氨酸洗脱液按照1∶20(g/mL)混合,100~150r/min室温条件下进行静态吸附2h;
(4)结晶与重结晶:
a、将瓜氨酸粗提液真空浓缩至可溶性固形物含量≥30%,调节浓缩液pH为5.97,4℃使瓜氨酸结晶析出,离心分离沉淀,洗涤,烘干,得到白色粉末状固体瓜氨酸结晶;
b、将(a)中的瓜氨酸粉末加水溶解,调pH为5.97,同时加入0.1%的瓜氨酸晶体作为晶种,4℃使瓜氨酸结晶析出,离心分离沉淀;
c、重复步骤b 1~2次,离心分离沉淀、洗涤,烘干,得到精制瓜氨酸固体粉末。
在上述方案的基础上,所述酶解为添加0.1~0.2%(m/m)生物酶,40~50℃、酶解1~2h。
在上述方案的基础上,所述生物酶为果胶酶和纤维素酶中的一种或两种。
在上述方案的基础上,所述超声-酶解辅助溶剂浸提中,提取条件为:料液比1∶10~1∶20(kg/L)、超声功率100~140W、提取温度30~50℃、提取时间60~120min、提取次数2次。
在上述方案的基础上,所述西瓜中提取瓜氨酸的方法,步骤如下:
原料预处理
西瓜瓜皮去除外表皮后,瓜翠经榨汁后得到的滤渣或瓜翠经干燥后研磨成粉末;
超声-酶解辅助溶剂浸提
向预处理后的物料中按料液比1∶10~1∶20(kg/L)加入水,加入0.1%(m/m)果胶酶和0.1%(m/m)纤维素酶;调节pH4.0,超声功率100~140W、提取温度30~50℃、提取时间60~120min、提取次数2次,得浸提液;
纯化
(1)微生物发酵:向浸提液或浸提液和瓜皮汁混合液中添加5%(v/v)酵母菌发酵24h去除糖分;
(2)离子交换树脂纯化:将微生物发酵后的瓜氨酸提取液过滤除去酵母菌后加入HD-8活化湿树脂中,吸附瓜氨酸,然后采用0.5mol/L氨水溶液洗脱,洗脱速度2BV/h;
(3)大孔吸附树脂脱色:将XAD-761活化湿树脂与瓜氨酸洗脱液按照1∶20(g/mL)混合,100~150r/min室温条件下进行静态吸附2h;
(4)结晶与重结晶:
a、将瓜氨酸粗提液真空浓缩至可溶性固形物含量≥30%,调节浓缩液pH为5.97,4℃使瓜氨酸结晶析出,离心分离沉淀,洗涤,烘干,得到白色粉末状固体瓜氨酸结晶;
b、将(a)中的瓜氨酸粉末加水溶解,调pH为5.97,同时加入0.1%(m/m)的瓜氨酸晶体作为晶种,4℃使瓜氨酸结晶析出,离心分离沉淀;
c、重复步骤b 1~2次,离心分离沉淀、洗涤,烘干,得到精制瓜氨酸固体粉末。
上述方法制备的瓜氨酸。
在上述方案的基础上,所述的瓜氨酸在制备增强免疫力、抗氧化、提高运动机能、保护心脑血管、提高男性性功能食品中的应用。
在上述方案的基础上,所述的食品为保健品。
酵母菌编号为CICC-1012,中国工业微生物菌种保藏管理中心。
所述果胶酶、纤维素酶购自天津市利华酶制剂技术有限公司,酶活为1000U/mg。
本发明技术方案的优点
本发明以西瓜皮为原料,采用酶解处理和超声辅助溶剂提取瓜氨酸,提取条件温和,对瓜氨酸具有较高的提取率,提取率高达93.43%;此外,采用微生物降解法去除粗提液中的糖分,条件温和,操作简单安全,对瓜氨酸的含量几乎没有影响,采用离子交换树脂纯化、大孔吸附树脂脱色结晶与重结晶纯化获得的瓜氨酸纯度高,树脂的使用寿命长,易再生,成本低;本发明提取的瓜氨酸可以作为原料用于食品和保健品行业,具有天然的安全性优势;
本发明对所得的瓜氨酸提取物的理化及卫生指标进行检验,并与市售瓜氨酸产品的质量标准比较,结果显示本发明所得的瓜氨酸符合相关卫生要求与产品质量标准。
附图说明
图1提取温度和提取时间对瓜氨酸提取效果的影响;
图2不同提取方法对瓜氨酸提取效果的影响;
图3吸附时间对HD-8树脂交换吸附瓜氨酸的影响;
图4 HD-8树脂对瓜氨酸的动态交换吸附曲线。
具体实施方式
在本发明中所使用的术语,除非有另外说明,一般具有本领域普通技术人员通常理解的含义。
下面结合具体实施例,并参照数据进一步详细的描述本发明。以下实施例只是为了举例说明本发明,而非以任何方式限制本发明的范围。
实施例1
一种西瓜中提取瓜氨酸的方法,步骤如下:
1、原料预处理
西瓜瓜皮去除外表皮后,瓜翠经榨汁后得到的滤渣或瓜翠经干燥后研磨成粉末;
2、超声-酶解辅助溶剂浸提
向预处理后的物料中按料液比1∶10加入水,加入0.1%果胶酶和0.1%纤维素酶;调节酶解料pH4.0,超声功率100W、提取温度50℃、提取时间90min、提取次数2次,得浸提液;
3、纯化
(1)微生物发酵:向浸提液或浸提液和瓜皮汁混合液中添加5%(v/v)酵母菌发酵24h去除糖分;
(2)离子交换树脂纯化:将微生物发酵后的瓜氨酸提取液过滤除去酵母菌后加入HD-8活化湿树脂中,动态交换吸附瓜氨酸,然后采用0.5mol/L氨水溶液洗脱,洗脱速度2BV/h;
所述动态交换吸附为将180g活化湿树脂装填于内径26mm、高400mm的玻璃层析柱中, 将微生物发酵后的瓜氨酸提取液以2BV/h的速度通过树脂柱,对瓜氨酸进行吸附;
(3)大孔吸附树脂脱色:将XAD-761活化湿树脂与瓜氨酸洗脱液按照1∶20(g/mL)混合,100~150r/min室温条件下进行静态吸附2h;
(4)结晶与重结晶:
a、将瓜氨酸粗提液真空浓缩至可溶性固形物含量≥30%,调节浓缩液pH为5.97,4℃使瓜氨酸结晶析出,离心分离沉淀,洗涤,烘干,得到白色粉末状固体瓜氨酸结晶;
b、将(a)中的瓜氨酸粉末加水溶解,调pH为5.97,同时加入0.1%的瓜氨酸晶体作为晶种,4℃使瓜氨酸结晶析出,离心分离沉淀;
c、重复步骤b 1~2次,离心分离沉淀、洗涤,烘干,得到精制瓜氨酸固体粉末。
经测定,上述方法中瓜氨酸的提取率为93.43%,经纯化后瓜氨酸提取物的纯度为99.35%。
实施例2
一种西瓜中提取瓜氨酸的方法,步骤如下:树脂与瓜氨酸提取液的用量比为1∶15(g/mL),
1、原料预处理
西瓜瓜皮去除外表皮后,瓜翠经榨汁后得到的滤渣或瓜翠经干燥后研磨成粉末;
2、超声-酶解辅助溶剂浸提
向预处理后的物料中按料液比1∶15加入水,加入0.1%果胶酶和0.1%纤维素酶;调节酶解料pH4.0,超声功率120W、提取温度30℃、提取时间60min、提取次数2次,得浸提液;
3、纯化
(1)微生物发酵:向浸提液或浸提液和瓜皮汁混合液中添加5%(v/v)酵母菌发酵24h去除糖分;
(2)离子交换树脂纯化:将微生物发酵后的瓜氨酸提取液过滤除去酵母菌后加入HD-8活化湿树脂中,动态交换吸附瓜氨酸,然后采用0.5mol/L氨水溶液洗脱,洗脱速度2BV/h;
所述动态交换吸附为将180g活化湿树脂装填于内径26mm、高400mm的玻璃层析柱中,将微生物发酵后的瓜氨酸提取液以2BV/h的速度通过树脂柱,对瓜氨酸进行吸附;
(3)大孔吸附树脂脱色:将XAD-761活化湿树脂与瓜氨酸洗脱液按照1∶20(g/mL)混合,100~150r/min室温条件下进行静态吸附2h;
(4)结晶与重结晶:
a、将瓜氨酸粗提液真空浓缩至可溶性固形物含量≥30%,调节浓缩液pH为5.97,4℃使瓜氨酸结晶析出,离心分离沉淀,洗涤,烘干,得到白色粉末状固体瓜氨酸结晶;
b、将(a)中的瓜氨酸粉末加水溶解,调pH为5.97,同时加入0.1%的瓜氨酸晶体作为晶种,4℃使瓜氨酸结晶析出,离心分离沉淀;
c、重复步骤b 1~2次,离心分离沉淀、洗涤,烘干,得到精制瓜氨酸固体粉末。
经测定,上述方法中瓜氨酸的提取率为79.87%,经纯化后瓜氨酸提取物的纯度为97.65%。
实施例3
一种西瓜中提取瓜氨酸的方法,步骤如下:
1、原料预处理
西瓜瓜皮去除外表皮后,瓜翠经榨汁后得到的滤渣或瓜翠经干燥后研磨成粉末;
2、超声-酶解辅助溶剂浸提
向预处理后的物料中按料液比1∶20加入水,加入0.1%果胶酶和0.1%纤维素酶;调节酶解料pH4.0,超声功率140W、提取温度40℃、提取时间120min、提取次数2次,得浸提液;
3、纯化
(1)微生物发酵:向浸提液或浸提液和瓜皮汁混合液中添加5%(v/v)酵母菌发酵24h去除糖分;
(2)离子交换树脂纯化:将微生物发酵后的瓜氨酸提取液过滤除去酵母菌后加入HD-8活化湿树脂中,动态交换吸附瓜氨酸,然后采用0.5mol/L氨水溶液洗脱,洗脱速度2BV/h;
所述动态交换吸附为将180g活化湿树脂装填于内径26mm、高400mm的玻璃层析柱中,将微生物发酵后的瓜氨酸提取液以2BV/h的速度通过树脂柱,对瓜氨酸进行吸附。
(3)大孔吸附树脂脱色:将XAD-761活化湿树脂与瓜氨酸洗脱液按照1∶20(g/mL)混合,100~150r/min室温条件下进行静态吸附2h;
(4)结晶与重结晶:
a、将瓜氨酸粗提液真空浓缩至可溶性固形物含量≥30%,调节浓缩液pH为5.97,4℃使瓜氨酸结晶析出,离心分离沉淀,洗涤,烘干,得到白色粉末状固体瓜氨酸结晶;
b、将(a)中的瓜氨酸粉末加水溶解,调pH为5.97,同时加入0.1%的瓜氨酸晶体作为晶种,4℃使瓜氨酸结晶析出,离心分离沉淀;
c、重复步骤b 1~2次,离心分离沉淀、洗涤,烘干,得到精制瓜氨酸固体粉末。
经测定,上述方法中瓜氨酸的提取率为86.58%,经纯化后瓜氨酸提取物的纯度为98.11%。
对比例1
一种西瓜中提取瓜氨酸的方法,步骤如下:
1、原料预处理
西瓜瓜皮去除外表皮后,瓜翠经榨汁后得到的滤渣或瓜翠经干燥后研磨成粉末;
2、超声-酶解辅助溶剂浸提
向预处理后的物料中按料液比1∶10加入水,加入0.1%果胶酶和0.1%纤维素酶;调节酶解料pH4.0,超声功率100W、提取温度50℃、提取时间90min、提取次数2次,得浸提液;
3、纯化
(1)微生物发酵:向浸提液或浸提液和瓜皮汁混合液中添加5%(v/v)酵母菌发酵24h去除糖分;
(2)离子交换树脂纯化:将微生物发酵后的瓜氨酸提取液过滤除去酵母菌后加入HD-8活化湿树脂中,动态交换吸附瓜氨酸,然后采用0.1mol/L氨水溶液洗脱,洗脱速度2BV/h;
所述动态交换吸附为将180g活化湿树脂装填于内径26mm、高400mm的玻璃层析柱中,将微生物发酵后的瓜氨酸提取液以2BV/h的速度通过树脂柱,对瓜氨酸进行吸附。
(3)大孔吸附树脂脱色:将XAD-761活化湿树脂与瓜氨酸洗脱液按照1∶20(g/mL)混合,100~150r/min室温条件下进行静态吸附2h;
(4)结晶与重结晶:
a、将瓜氨酸粗提液真空浓缩至可溶性固形物含量≥30%,调节浓缩液pH为5.97,4℃使瓜氨酸结晶析出,离心分离沉淀,洗涤,烘干,得到白色粉末状固体瓜氨酸结晶;
b、将(a)中的瓜氨酸粉末加水溶解,调pH为5.97,同时加入0.1%的瓜氨酸晶体作为晶种,4℃使瓜氨酸结晶析出,离心分离沉淀;
c、重复步骤b 1~2次,离心分离沉淀、洗涤,烘干,得到精制瓜氨酸固体粉末。
经测定,上述方法中瓜氨酸的提取率为74.28%,经纯化后瓜氨酸提取物的纯度为95.74%。
对比例2
一种西瓜中提取瓜氨酸的方法,步骤如下:
1、原料预处理
西瓜瓜皮去除外表皮后,瓜翠经榨汁后得到的滤渣或瓜翠经干燥后研磨成粉末;
2、超声-酶解辅助溶剂浸提
向预处理后的物料中按料液比1∶10加入水,加入0.1%果胶酶和0.1%纤维素酶;调节酶解料pH4.0,超声功率100W、提取温度50℃、提取时间90min、提取次数2次,得浸提液;
3、纯化
(1)微生物发酵:向浸提液或浸提液和瓜皮汁混合液中添加8%(v/v)酵母菌发酵24h去除糖分;
(2)离子交换树脂纯化:将微生物发酵后的瓜氨酸提取液过滤除去酵母菌后加入HD-8活化湿树脂中,动态交换吸附瓜氨酸,然后采用1.0mol/L氨水溶液洗脱,洗脱速度2BV/h;
所述动态交换吸附为将180g活化湿树脂装填于内径26mm、高400mm的玻璃层析柱中,将微生物发酵后的瓜氨酸提取液以2BV/h的速度通过树脂柱,对瓜氨酸进行吸附。
(3)大孔吸附树脂脱色:将XAD-761活化湿树脂与瓜氨酸洗脱液按照1∶20(g/mL)混合,100~150r/min室温条件下进行静态吸附2h;
(4)结晶与重结晶:
a、将瓜氨酸粗提液真空浓缩至可溶性固形物含量≥30%,调节浓缩液pH为5.97,4℃使瓜氨酸结晶析出,离心分离沉淀,洗涤,烘干,得到白色粉末状固体瓜氨酸结晶;
b、将(a)中的瓜氨酸粉末加水溶解,调pH为5.97,同时加入0.1%的瓜氨酸晶体作为 晶种,4℃使瓜氨酸结晶析出,离心分离沉淀;
c、重复步骤b 1~2次,离心分离沉淀、洗涤,烘干,得到精制瓜氨酸固体粉末。
经测定,上述方法中瓜氨酸的提取率为79.73%,经纯化后瓜氨酸提取物的纯度为92.47%。
对比例3
一种西瓜中提取瓜氨酸的方法,步骤如下:
1、原料预处理
西瓜瓜皮去除外表皮后,瓜翠经榨汁后得到的滤渣或瓜翠经干燥后研磨成粉末;
2、超声-酶解辅助溶剂浸提
向预处理后的物料中按料液比1∶10加入水,加入0.1%果胶酶和0.1%纤维素酶;调节酶解料pH4.0,超声功率100W、提取温度50℃、提取时间90min、提取次数2次,得瓜氨酸浸提液;
3、纯化
(1)微生物发酵:向浸提液或浸提液和瓜皮汁混合液中添加3%(v/v)酵母菌发酵24h去除糖分;
(2)离子交换树脂纯化:将微生物发酵后的瓜氨酸提取液过滤除去酵母菌后加入HD-8活化湿树脂中,动态交换吸附瓜氨酸,然后采用0.5mol/L氨水溶液洗脱,洗脱速度1BV/h;
所述动态交换吸附为将180g活化湿树脂装填于内径26mm、高400mm的玻璃层析柱中,将微生物发酵后的瓜氨酸提取液以4BV/h的速度通过树脂柱,对瓜氨酸进行吸附。
(3)大孔吸附树脂脱色:将XAD-761活化湿树脂与瓜氨酸洗脱液按照1∶20(g/mL)混合,100~150r/min室温条件下进行静态吸附2h;
(4)结晶与重结晶:
a、将瓜氨酸粗提液真空浓缩至可溶性固形物含量≥30%,调节浓缩液pH为5.97,4℃使瓜氨酸结晶析出,离心分离沉淀,洗涤,烘干,得到白色粉末状固体瓜氨酸结晶;
b、将(a)中的瓜氨酸粉末加水溶解,调pH为5.97,同时加入0.1%的瓜氨酸晶体作为晶种,4℃使瓜氨酸结晶析出,离心分离沉淀;
c、重复步骤b 1~2次,离心分离沉淀、洗涤,烘干,得到精制瓜氨酸固体粉末。
经测定,上述方法中瓜氨酸的提取率为84.77%,经纯化后瓜氨酸提取物的纯度为97.63%。
一、不同提取温度和提取时间对瓜氨酸提取效果的影响
在实施例1提取方法的基础上,在超声辅助溶剂提取过程中,分别采用30、40、50℃等三个不同的提取温度,每一个提取温度下又分别设置不同的提取时间(30、60、90、120、180min),以此来研究不同提取温度和提取时间对瓜氨酸提取效果的影响,结果如图1所示。
由图1可知,提高温度可以加速瓜氨酸的提取,对提高提取率也有一定的效果。但随着温度的提高,西瓜皮中其它成分的溶解度也会加大,Maillard反应加剧,为后续的纯化工作 带来困难,因此,提取温度以不超过50℃为宜。同时由图1还可以看出,随提取时间的加长,提取瓜氨酸的量略有增加,但1.5h后基本可以提取完全,进一步延长提取时间对提取率的增加影响很小。因此,选择1.5-2h为较佳的提取时间。
二、不同提取方法对瓜氨酸提取效果的影响
在实施例1瓜氨酸提取方法的基础上,分别采用不经超声辅助提取(复合酶法)、不经酶解处理(超声波法)、既不经超声辅助提取也不添加生物酶进行酶解处理的只采用溶剂浸提法(对照)和实施例1的提取方法(超声-酶法)对西瓜中的瓜氨酸进行提取,并测定提取效果如图2所示。
由图2可知,超声提取和复合酶法处理均能提高瓜氨酸的提取效果,此外,两者联合使用的超声-酶法对瓜氨酸的提取效果最好。
三、不同酶处理对西瓜瓜氨酸提取效果的影响
在实施例1瓜氨酸提取方法的基础上,分别添加不同的生物酶对瓜翠进行酶解处理,并测定不同酶处理对西瓜瓜氨酸提取效果的影响,对照组不添加生物酶,结果如表1所示。
表1不同酶处理对西瓜皮中瓜氨酸提取效果的影响
Figure PCTCN2019076459-appb-000001
表1结果表明,对西瓜皮原料添加果胶酶、纤维素酶进行预处理都有利于瓜氨酸的提取,其中复合酶处理的效果优于任意一种单一酶处理的效果。
四、提取次数对瓜氨酸提取效果的影响
在实施例1瓜氨酸提取方法的基础上,分别检测每提取一次对瓜氨酸的提取量,共提取3次,结果如表2所示:
表2提取次数对提取率的影响
Figure PCTCN2019076459-appb-000002
由表2可知,本发明的方法可以高效提取西瓜皮中的瓜氨酸,经过三次提取即可提取出西瓜皮中98%以上的瓜氨酸,其中,前两次提取率达到93.43%,因此在西瓜皮中瓜氨酸的提取中,提取2次即可。
五、微生物发酵对瓜氨酸含量的影响
向瓜氨酸粗提液中接入5%(v/v)酵母菌,发酵24h,比较发酵前后糖分和瓜氨酸含量的变化,结果见表3所示。
表3发酵前后糖分和瓜氨酸含量的比较
Figure PCTCN2019076459-appb-000003
由表3可知,瓜氨酸粗提液经酵母发酵后,总糖含量大幅下降,而瓜氨酸含量却变化很小,说明微生物发酵法可以有效去除其中的糖分,而对瓜氨酸含量影响很小。
六、不同离子交换树脂对瓜氨酸吸附效果的影响
6.1静态吸附
取五种型号的活化湿树脂各5g,分别装于250mL具塞锥形瓶中,并加入100mL的瓜氨酸粗提液于常温条件下进行摇床静态吸附,8小时后测定提取液中残留瓜氨酸的含量,以考察不同树脂对瓜氨酸的吸附效果。结果见表4。
表4不同树脂对瓜氨酸的吸附效果
Figure PCTCN2019076459-appb-000004
由表4的结果知,所选用的阳离子树脂均能交换吸附瓜氨酸粗提液中的瓜氨酸,其中,D001、HD-8、732、252H等强酸型离子交换树脂对瓜氨酸的交换吸附能力较强,而D113为弱酸型离子交换树脂,对瓜氨酸的交换吸附能力较弱。此外,在四种强酸型离子交换树脂中,以HD-8树脂对瓜氨酸粗提液中瓜氨酸的交换能力为最强,其平衡吸附量达到36.69mg/g湿树脂。
6.2吸附时间对HD-8树脂交换瓜氨酸的影响
取10g活化HD-8湿树脂,装于250mL具塞锥形瓶中,并加入150mL瓜氨酸粗提液于常温条件下进行摇床静态吸附,定时取样测定上清液中剩余瓜氨酸浓度,以考察HD-8树脂交换吸附瓜氨酸的动态平衡时间。结果如图3所示。
由图3可知,HD-8树脂交换吸附瓜氨酸的速度非常快,在初始5min内快速交换吸附提取液中的瓜氨酸,5min以后交换吸附速度趋缓,至15min以后已基本达到平衡状态。
6.3动态交换吸附
将180g活化湿树脂装填于内径26mm、高400mm的玻璃层析柱中,将瓜氨酸粗提液在 室温条件下分别以2、4、6BV/h的速度通过树脂柱,分部收集并测定流出液中残留的瓜氨酸含量,以考察HD-8树脂对瓜氨酸的动态交换吸附效果。结果见图4。
由图4可知,随着流出液体积的增大,过柱液中残留的瓜氨酸浓度也逐渐增加,表明HD-8树脂对提取液中瓜氨酸的吸附百分比逐渐降低。此外,随着过柱流速的降低,瓜氨酸的漏过率也大大降低,吸附百分比下降的速度显著变慢,表明适当降低过柱流速可以提高HD-8树脂对提取液中瓜氨酸的动态吸附效果。这是由于当过柱流速过大时,提取液中的瓜氨酸来不及扩散到树脂的内表面,从而造成HD-8树脂对提取液中瓜氨酸的吸附百分比快速下降。因此,过柱流速以2BV/h较为适宜,此流速下当流出液体积为2000mL时吸附百分比仍可达到50%以上。
七、不同大孔吸附树脂对瓜氨酸洗脱液的脱色效果
分别称取XDA-5、XAD-761、AB-8、HZ-803活化湿树脂各5克于250ml具塞三角瓶中,并加入100ml瓜氨酸洗脱液,100~150r/min室温条件下进行静态吸附,2小时后过滤取样测定透光率和瓜氨酸浓度,以考察静态吸附条件下不同大孔吸附树脂对瓜氨酸洗脱液中色素的脱除效果,结果见表5。
表5不同大孔吸附树脂对瓜氨酸洗脱液的脱色效果
Figure PCTCN2019076459-appb-000005
由表5可知,四种供试大孔吸附树脂均可有效脱除瓜氨酸洗脱液中的色素,而且对瓜氨酸的吸附较少。综合考虑脱色效果和对瓜氨酸的吸附作用,以选用XAD-761大孔吸附树脂对瓜氨酸洗脱液进行脱色为宜。
八、本发明瓜氨酸提取物的分析检测结果
对实施例1提取的瓜氨酸提取物的理化及卫生指标进行了检验分析,并与市售瓜氨酸产品的质量标准比较,结果见表6。
表6瓜氨酸提取物的理化及卫生指标
Figure PCTCN2019076459-appb-000006
由表6检验结果可知,本发明方法提取的瓜氨酸提取物的重金属及微生物等指标均符合相关卫生要求与产品质量标准。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (10)

  1. 一种瓜氨酸的纯化方法,其特征在于:步骤如下:
    (1)微生物发酵:向瓜氨酸粗提液中添加酵母菌发酵24h;
    (2)离子交换树脂纯化:将微生物发酵后的瓜氨酸提取液过滤除去酵母菌后加入活化湿树脂中,吸附瓜氨酸,然后采用0.5mol/L氨水溶液洗脱,洗脱速度2BV/h;
    (3)大孔吸附树脂脱色:将活化湿树脂与瓜氨酸洗脱液按照1∶20(g/mL)混合,100~150r/min室温条件下进行静态吸附;
    (4)结晶与重结晶:
    a、将瓜氨酸粗提液真空浓缩至可溶性固形物含量≥30%,调节浓缩液pH为5.97,4℃使瓜氨酸结晶析出,离心分离沉淀,洗涤,烘干,得到白色粉末状固体瓜氨酸结晶;
    b、将(a)中的瓜氨酸粉末加水溶解,调pH为5.97,同时加入0.1%的瓜氨酸晶体作为晶种,4℃使瓜氨酸结晶析出,离心分离沉淀;
    c、重复步骤b 1~2次,离心分离沉淀、洗涤,烘干,得到精制瓜氨酸固体粉末。
  2. 根据权利要求1所述瓜氨酸的纯化方法,其特征在于:所述酵母菌的添加量为5%。
  3. 根据权利要求1或2所述瓜氨酸的纯化方法,其特征在于:所述离子交换树脂纯化为摇动静态吸附或动态交换吸附
  4. 根据权利要求3所述瓜氨酸的纯化方法,其特征在于:所述摇动静态吸附为活化湿树脂与微生物发酵后的瓜氨酸提取液按照1∶15~20(g/mL)混合,100~150r/min静态吸附15min;
    所述动态交换吸附为将180g活化湿树脂装填于内径26mm、高400mm的玻璃层析柱中,将微生物发酵后的瓜氨酸提取液以2~6BV/h的速度通过树脂柱,对瓜氨酸进行吸附。
  5. 根据权利要求3所述瓜氨酸的纯化方法,其特征在于:
    所述离子交换树脂纯化为D001、D113、HD-8、732、252H中的一种;
    所述大孔吸附树脂为XDA-5、XAD-761、AB-8、HZ-803中的一种。
  6. 一种从西瓜中提取瓜氨酸的方法,其特征在于:包括原料预处理、超声-酶法辅助溶剂浸提和纯化步骤;
    所述纯化步骤为:
    (1)微生物发酵:向浸提液或浸提液和瓜皮汁混合液中添加5%酵母菌发酵24h去除糖分;
    (2)离子交换树脂纯化:将微生物发酵后的瓜氨酸提取液过滤除去酵母菌后加入HD-8活化湿树脂中,吸附瓜氨酸,然后采用0.5mol/L氨水溶液洗脱,洗脱速度2BV/h;
    (3)大孔吸附树脂脱色:将XAD-761活化湿树脂与瓜氨酸洗脱液按照1∶20(g/mL)混合,100~150r/min室温条件下进行静态吸附2h;
    (4)结晶与重结晶:
    a、将瓜氨酸粗提液真空浓缩至可溶性固形物含量≥30%,调节浓缩液pH为5.97,4℃使 瓜氨酸结晶析出,离心分离沉淀,洗涤,烘干,得到白色粉末状固体瓜氨酸结晶;
    b、将(a)中的瓜氨酸粉末加水溶解,调pH为5.97,同时加入0.1%的瓜氨酸晶体作为晶种,4℃使瓜氨酸结晶析出,离心分离沉淀;
    c、重复步骤b 1~2次,离心分离沉淀、洗涤,烘干,得到精制瓜氨酸固体粉末。
  7. 根据权利要求6所述从西瓜中提取瓜氨酸的方法,其特征在于:所述酶解为添加0.1~0.2%生物酶。
  8. 根据权利要求7所述从西瓜中提取瓜氨酸的方法,其特征在于:所述生物酶为果胶酶和纤维素酶中的一种或两种。
  9. 根据权利要求6所述从西瓜中提取瓜氨酸的方法,其特征在于:所述超声-酶法辅助溶剂浸提中,提取条件为:料液比1∶10~1∶20、超声功率100~140W、提取温度30~50℃、提取时间60~120min、提取次数2次。
  10. 根据权利要求6~9任一项所述西瓜中提取瓜氨酸的方法,其特征在于:步骤如下:
    原料预处理
    西瓜瓜皮去除外表皮后,瓜翠经榨汁后得到的滤渣和瓜皮汁或瓜翠经干燥后研磨成粉末;
    超声-酶法辅助溶剂浸提
    向预处理后的物料中按料液比1∶10~1∶20加入水,加入0.1%果胶酶和0.1%纤维素酶;调节pH4.0,超声功率100~140W、提取温度30~50℃、提取时间60~120min、提取次数2次,得浸提液;
    纯化
    (1)微生物发酵:向浸提液或浸提液和瓜皮汁混合液中添加5%酵母菌发酵24h去除糖分;
    (2)离子交换树脂纯化:将微生物发酵后的瓜氨酸提取液过滤除去酵母菌后加入HD-8活化湿树脂中,吸附瓜氨酸,然后采用0.5mol/L氨水溶液洗脱,洗脱速度2BV/h;
    (3)大孔吸附树脂脱色:将XAD-761活化湿树脂与瓜氨酸洗脱液按照1∶20(g/mL)混合,100~150r/min室温条件下进行静态吸附2h;
    (4)结晶与重结晶:
    a、将瓜氨酸粗提液真空浓缩至可溶性固形物含量≥30%,调节浓缩液pH为5.97,4℃使瓜氨酸结晶析出,离心分离沉淀,洗涤,烘干,得到白色粉末状固体瓜氨酸结晶;
    b、将(a)中的瓜氨酸粉末加水溶解,调pH为5.97,同时加入0.1%的瓜氨酸晶体作为晶种,4℃使瓜氨酸结晶析出,离心分离沉淀;
    c、重复步骤b 1~2次,离心分离沉淀、洗涤,烘干,得到精制瓜氨酸固体粉末。
PCT/CN2019/076459 2018-08-30 2019-02-28 一种从西瓜中提取瓜氨酸的方法 WO2020042557A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020567255A JP6946577B2 (ja) 2018-08-30 2019-02-28 スイカからシトルリンを抽出するための方法
US16/888,779 US10837035B2 (en) 2018-08-30 2020-05-31 Method for extracting citrulline from watermelon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811002367.1 2018-08-30
CN201811002367.1A CN108822001B (zh) 2018-08-30 2018-08-30 一种从西瓜中提取瓜氨酸的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/888,779 Continuation US10837035B2 (en) 2018-08-30 2020-05-31 Method for extracting citrulline from watermelon

Publications (1)

Publication Number Publication Date
WO2020042557A1 true WO2020042557A1 (zh) 2020-03-05

Family

ID=64150660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076459 WO2020042557A1 (zh) 2018-08-30 2019-02-28 一种从西瓜中提取瓜氨酸的方法

Country Status (4)

Country Link
US (1) US10837035B2 (zh)
JP (1) JP6946577B2 (zh)
CN (1) CN108822001B (zh)
WO (1) WO2020042557A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108822001B (zh) * 2018-08-30 2019-08-16 中国农业科学院郑州果树研究所 一种从西瓜中提取瓜氨酸的方法
CN112657231B (zh) * 2020-12-24 2022-06-10 西安蓝晓科技新材料股份有限公司 一种三七总皂苷的提纯工艺
CN112891988B (zh) * 2021-01-26 2023-02-03 河北万博生物科技有限公司 一种阿维菌素提取工艺及装置
WO2024020843A1 (zh) * 2022-07-27 2024-02-01 中国科学院广州生物医药与健康研究院 瓜氨酸或其药学上可接受的盐在制备提高免疫力或预防或治疗焦虑症药物中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101372465A (zh) * 2007-08-24 2009-02-25 北京健健康康生物技术有限公司 一种从西瓜或打瓜等植物组织中提取天然l-瓜氨酸的工业方法
CN101880245A (zh) * 2010-04-27 2010-11-10 南京泽朗农业发展有限公司 一种从西瓜中提纯瓜氨酸的方法
US8173837B1 (en) * 2009-12-03 2012-05-08 The United States of America, as represented by the Secretary of Agriculure Process for the production of L-citrulline from watermelon flesh and rind
CN103360283A (zh) * 2012-04-11 2013-10-23 周学义 从硒砂瓜植物组织中提取瓜氨酸的方法
CN105400851A (zh) * 2015-12-25 2016-03-16 天津宏顺科生物科技有限公司 α-熊果苷的制备方法
CN108822001A (zh) * 2018-08-30 2018-11-16 中国农业科学院郑州果树研究所 一种从西瓜中提取瓜氨酸的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8353896B2 (en) 2004-04-19 2013-01-15 The Invention Science Fund I, Llc Controllable release nasal system
CN1931835A (zh) * 2006-09-29 2007-03-21 北京化工大学 一种从西瓜中提取瓜氨酸的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101372465A (zh) * 2007-08-24 2009-02-25 北京健健康康生物技术有限公司 一种从西瓜或打瓜等植物组织中提取天然l-瓜氨酸的工业方法
US8173837B1 (en) * 2009-12-03 2012-05-08 The United States of America, as represented by the Secretary of Agriculure Process for the production of L-citrulline from watermelon flesh and rind
CN101880245A (zh) * 2010-04-27 2010-11-10 南京泽朗农业发展有限公司 一种从西瓜中提纯瓜氨酸的方法
CN103360283A (zh) * 2012-04-11 2013-10-23 周学义 从硒砂瓜植物组织中提取瓜氨酸的方法
CN105400851A (zh) * 2015-12-25 2016-03-16 天津宏顺科生物科技有限公司 α-熊果苷的制备方法
CN108822001A (zh) * 2018-08-30 2018-11-16 中国农业科学院郑州果树研究所 一种从西瓜中提取瓜氨酸的方法

Also Published As

Publication number Publication date
CN108822001B (zh) 2019-08-16
JP6946577B2 (ja) 2021-10-06
US20200291437A1 (en) 2020-09-17
JP2021519106A (ja) 2021-08-10
US10837035B2 (en) 2020-11-17
CN108822001A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
WO2020042557A1 (zh) 一种从西瓜中提取瓜氨酸的方法
CN108324633B (zh) 一种化妆品用糙米发酵原液的制备方法及其产品
CN101283760A (zh) 从桃渣中提取制备膳食纤维的方法
CN107188911B (zh) 利用大豆糖蜜提取大豆低聚糖和大豆异黄酮的方法
CN101880245A (zh) 一种从西瓜中提纯瓜氨酸的方法
CN116042342A (zh) 一种人参露酒及其生产工艺
CN103755586A (zh) 一种l-谷氨酰胺的制备方法
CN104418774A (zh) 栝楼瓤微生物发酵提取l-瓜氨酸的方法
CN106867739A (zh) 一种人参蜂蜜葡萄酒及其制备方法
US10870612B1 (en) Method for simultaneously extracting lycopene and citrulline from watermelon
CN106138130B (zh) 一种芒果核黄酮提取物及其制备方法
CN112626150A (zh) 一种昆布多糖的提取方法及应用
CN102071180A (zh) 一种菠萝蛋白酶制备新工艺
CN103601647B (zh) 一种基因工程菌产l-丙氨酸发酵液脱盐脱色的方法
CN113694152B (zh) 一种高稳定性酶解法获取薏苡仁提取液的方法
CN112143769B (zh) 一种使用葛根药渣制备葛根多肽提取物的方法以及由此制得的葛根多肽提取物
CN109548951A (zh) 藜麦麸皮蛋白质的提取方法及其在食品方面的应用
CN110963933A (zh) 一种茶叶中γ-氨基丁酸提取纯化工艺
CN105441297B (zh) 一种葛根醋的制备方法
CN103445160A (zh) 一种果胶酶酶解制备人参浆的方法以及人参浆
CN107582582A (zh) 一种提取纯化辣木黄酮的工艺
LU506089B1 (en) Eucommia ulmoides instant tea
CN111549083B (zh) 侧耳木霉菌株zj-03在工业大麻精深加工中的应用
CN103695492B (zh) 一种提高l-谷氨酰胺收率的方法
CN111588760A (zh) 一种生物法制备抗衰老生物制品的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020567255

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853995

Country of ref document: EP

Kind code of ref document: A1