WO2020042451A1 - 换热管及空调器 - Google Patents

换热管及空调器 Download PDF

Info

Publication number
WO2020042451A1
WO2020042451A1 PCT/CN2018/121922 CN2018121922W WO2020042451A1 WO 2020042451 A1 WO2020042451 A1 WO 2020042451A1 CN 2018121922 W CN2018121922 W CN 2018121922W WO 2020042451 A1 WO2020042451 A1 WO 2020042451A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
fin
region
exchange tube
pipe body
Prior art date
Application number
PCT/CN2018/121922
Other languages
English (en)
French (fr)
Inventor
胡东兵
杨旭峰
王丽
王春连
胡海利
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020042451A1 publication Critical patent/WO2020042451A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins

Definitions

  • the present invention relates to the field of refrigeration technology, and in particular, to a heat exchange tube and an air conditioner.
  • Water-cooled condensers have developed rapidly due to their compact structure and wide applicability. High efficiency, energy saving and replacement of new refrigerants are still the main research directions at present.
  • Water-cooled heat exchangers are mostly horizontal shell-and-tube heat exchangers. Freon is taken in the shell side and water is taken in the tube side.
  • a factor that has a relatively large effect on its heat exchange is the performance of the heat exchange tubes in the shell. Inside the shell side, the refrigerant outside the condensing tube undergoes a phase change for heat exchange. The refrigerant condenses outside the tube to form a liquid film covering the surface of the heat exchange tube.
  • the current general strengthening uses a combination cutter to extrude a metal fin tube that spirally expands along the circumference of the tube outside the tube, and performs secondary rolling on the fin to form a boss and a sharp point.
  • the main strengthening mechanism is to increase the surface area outside the tube.
  • the thinned liquid film reduces the thermal resistance by using different bosses and sharp corners and radius of curvature.
  • the lower fins are spirally connected and form channels. Drain the liquid refrigerant.
  • the embodiments of the present invention provide a heat exchange tube and an air conditioner, so as to solve the technical problem that the liquid refrigerant in the prior art when the heat exchange tube is in use cannot be easily eliminated.
  • An embodiment of the present application provides a heat exchange tube, which includes a tube body and fins disposed on an outer surface of the tube body.
  • a first heat exchange enhancement structure is formed in a middle and upper portion of the fin with respect to the tube body.
  • the middle and lower part of the tube body is a raw fin structure.
  • a second heat exchange enhancement structure is formed in a middle portion of the fin with respect to the pipe body, and the drainage resistance of the second heat exchange enhancement structure is smaller than that of the first heat exchange enhancement structure.
  • the first heat exchange enhancement structure includes a first boss pointed structure formed on a first side of the fin, and a second boss pointed structure formed on a second side of the fin.
  • the second heat exchange enhancement structure includes a third boss sharp-angled structure formed on the first side of the fin, or a third boss sharp-angled structure formed on the second side of the fin.
  • first and second bosses and / or the third and / or third bosses include: a boss formed on a side surface of the fin, and a boss Sharp corners that are connected and projected relative to the sides of the fins.
  • the sharp corner knurling is triangular knurling, trapezoidal knurling, arc knurling or pentagonal knurling.
  • the first heat exchange enhancement structure is distributed in an area a relative to the middle and upper part of the pipe body, and the area a is an area of 0 ° to 150 ° centered on the vertical center plane.
  • the raw fin structure It is distributed in the c area relative to the middle and lower part of the pipe body, and the c area is an area from 0 ° to 150 ° centered on the vertical center plane.
  • the first heat exchange enhancement structure is distributed in an area a relative to the middle and upper part of the pipe body, and the area a is an area of 0 ° to 150 ° centered on the vertical center plane.
  • the second heat exchange enhancement structure is It is distributed in the area b relative to the middle part of the pipe body.
  • the area b is the left and right areas of 0 ° to 120 ° with the horizontal center plane as the center.
  • the raw fin structure is distributed in the area c relative to the middle and lower part of the pipe body.
  • the region c is a region from 0 ° to 150 ° centered on the vertical center plane, and the sum of the angles of the regions a, b, and c is 360 °.
  • a channel is formed between adjacent fins, and a deflector is also formed on the fin.
  • the deflector communicates the adjacent channel, and the deflector is used to circulate the refrigerant.
  • the guide grooves are distributed in the middle and / or upper part of the fin with respect to the pipe body.
  • the present application also provides an air conditioner including a heat exchange tube, and the heat exchange tube is the above-mentioned heat exchange tube.
  • a first heat exchange enhancement structure is provided to enhance the heat exchange for a situation where heat exchange is intense at the top of the pipe body.
  • the phase change heat is weakened, and the liquid film is easy to accumulate at the bottom of the tube.
  • the raw fin structure of the fins can enhance the drainage function of the heat exchange tubes, The membrane is drained in time to help heat exchange.
  • FIG. 1 is a schematic diagram of the overall structure of an embodiment of a heat exchange tube according to the present invention.
  • FIG. 2 is a schematic view showing the distribution of a heat transfer enhancement structure of fins in a vertical direction of a heat exchange tube according to the present invention
  • FIG. 3 is a partially enlarged structural diagram of the heat exchange tube of FIG. 1;
  • FIG. 4 is a schematic structural diagram of a sharp corner of the heat exchange enhancing structure of FIG. 3;
  • FIG. 5 is a schematic diagram of a distribution area of a heat exchange enhancement structure of a heat exchange tube on a pipe body according to the present invention.
  • FIG. 6 is a schematic diagram of a distribution area of a guide groove of a heat exchange tube on a tube body according to the present invention.
  • the vapor refrigerant is condensed on the upper layer of the heat exchange tubes or on the outer surface of the upper part of the circumference of the tube.
  • the channel between the fins on the body flows under the heat exchange tube and is drained from the bottom of the tube body.
  • the heat exchange tube includes a tube body 10 and a fin 20 provided on an outer surface of the tube body 10.
  • the middle and upper part of the fin 20 with respect to the pipe body 10 is formed with a first heat exchange enhancement structure 21, and the middle and lower part of the fin 20 with respect to the pipe body 10 is an unfinished fin structure 22.
  • the first heat exchange enhancement structure 21 is provided to enhance its heat exchange.
  • the phase-change heat is weakened, and the liquid film at the bottom of the tube body 10 is prone to accumulate.
  • the raw fin structure 22 of the fin 20 can enhance the drainage function of the heat exchange tube.
  • the liquid film is drained away in time to help heat exchange.
  • the heat transfer tube heat exchange includes phase-conversion heat and convective heat transfer, the phase-conversion heat accounted for the highest proportion at the top of the tube body 10, the convective heat transfer on both sides of the tube body 10 is gradually enhanced, and the bottom of the tube body 10 Convection heat has the highest proportion. Therefore, the installation position of the first heat exchange enhancement structure 21 is more suitable for enhancing heat exchange, and the installation position of the raw fin structure 22 is more suitable for drainage.
  • the second heat exchange enhancement structure 23 of the second heat exchange enhancement structure 23 is formed in the middle of the fin 20 with respect to the tube body 10.
  • the drainage resistance is smaller than the drainage resistance of the first heat exchange enhancement structure 21. Because in the middle of the pipe body 10, the heat exchange demand and liquid discharge demand are between the upper and lower parts of the pipe body 10, a suitable second heat exchange enhancement structure 23 is provided to meet the heat exchange needs of the heat exchange pipe. It also meets the drainage needs of heat exchange tubes and reduces the impact of structural mutations on heat exchange / drain capacity.
  • the first heat exchange enhancement structure 21 includes a first convex-pointed corner structure formed on a first side surface of the fin 20, and a first convex structure formed on the fin 20.
  • the second heat exchange enhancement structure 23 includes a third convex-pointed corner structure formed on the first side of the fin 20. Setting the first and second boss sharp-pointed structures on both sides of the fin 20 can better address the situation where the phase-conversion heat ratio is highest at the top of the tube body 10, on one side of the fin 20
  • the third corner structure with sharp corners can be used to meet the needs of both heat exchange and liquid drainage needs.
  • the third boss sharp angle structure may also be formed on the second side of the fin 20.
  • the structures of the first and second bosses and the third and third bosses have the same structure, and both include: formed on the fin 20 And a sharp corner 212 connected to the boss 211 and protruding from the side of the fin 20.
  • the top knurling of the sharp corner 212 is triangular knurling, trapezoidal knurling, arc knurling, or pentagonal knurling.
  • the boss 211 is formed by extruding the top of the original fin using a knurling die. While forming the boss 211, due to the good plasticity of the metal material, One side of the fin 20 naturally forms a protruding sharp corner 212.
  • the second heat exchange enhancement structure 23 is distributed in a region b with respect to the middle portion of the pipe body 10, and the region b is two left and right regions of 0 ° to 120 ° centered on the horizontal center plane.
  • b 60 °.
  • a channel is formed between adjacent fins 20, and a guide groove 24 is also formed on the fin 20.
  • the channels communicate with each other, and the guide groove 24 is used for circulating the refrigerant.
  • adjacent channels can be communicated, which is conducive to rapid diffusion of the refrigerant in the circumferential direction of the surface of the heat exchange tube, increases the wettability of the refrigerant on the surface of the heat exchange tube, and enhances the heat exchange effect.
  • the guide grooves 24 are distributed in the middle and / or upper part of the fin 20 with respect to the pipe body 10.
  • the guide grooves 24 are distributed in a shape of a d area of the fin 20 relative to the middle and / or upper part of the pipe body 10.
  • the d region is a 180 ° upper region centered on the vertical center plane.
  • the present invention also provides an air conditioner, which includes the above-mentioned heat exchange tube.
  • the air conditioner using the above heat exchange tube has better heat exchange performance and higher refrigeration efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种换热管及空调器。换热管包括管体(10)和设置在管体(10)的外表面上的翅片(20)。翅片(20)的相对于管体(10)的中上部形成有第一换热增强结构(21),翅片(20)的相对于管体(10)的中下部为未加工的翅片结构(22)。针对在管体(10)顶部换热剧烈的状况,设置第一换热增强结构(21)以增强其换热。由于在自上而下的结构上对流换热增强,相变换热减弱,管体(10)的底部容易产生液膜堆积,翅片(20)的未加工的翅片结构(22)可以增强换热管排液功能,将液膜及时排走,有助于换热。根据换热管的工作模式,既可以满足换热管的换热需求,又可以满足换热管的排液需求。

Description

换热管及空调器
本申请要求于2018年08月30日提交中国专利局、申请号为201811005537.1、发明名称为“换热管及空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及制冷技术领域,具体而言,涉及一种换热管及空调器。
背景技术
在空调与制冷行业中,水冷式冷凝器因结构紧凑,适用性宽广,得到了快速发展。高效、节能以及新冷媒的替代仍是目前主要的研究方向。水冷式换热器大多为卧式壳管式换热器,壳程内走氟利昂,管程内走水。而在冷凝器中,对其换热影响比较大的一个因素就是壳体中换热管的性能的优劣。在壳程内部,冷凝管外侧的冷媒发生相变进行换热,冷媒在管外凝结形成液膜覆盖在换热管表面,该液膜的存在增大了冷媒侧的热阻,管内通过增加扰动进行换热。所以热阻分布主要存在管外,根据弱侧强化原则,对管外进行强化显得尤为重要,应最大限度的降低管外热阻提高换热性能。
对于冷凝管管外强化,现行的一般强化通过组合刀具在管外挤压出沿管子圆周螺旋扩张的金属翅片的管子,并在翅片上进行二次滚压,形成凸台和尖锐的尖角。其主要强化机理,是在于增加了管外的表面积,在利用形成的凸台和尖锐的尖角和曲率半径不同,摊薄液膜降低热阻。而下层翅片螺旋相连,并形成通道。将液态冷媒排走。
但是,由于翅片上凸台和尖角结构的存在,增加了液膜的滴落和排除的阻力,使得冷凝管表面上凝结的液体冷媒不易被及时排走,进而存在液膜积存加厚,影响传热效率的问题。
发明内容
本发明实施例提供了一种换热管及空调器,以解决现有技术中换热管在使用时存在的液体冷媒不易排除的技术问题。
本申请实施方式提供了一种换热管,包括管体和设置在管体的外表面上的翅片,翅片的相对于管体的中上部形成有第一换热增强结构,翅片的相对于管体的中下部为未加工的翅片结构。
在一个实施方式中,翅片的相对于管体的中部形成有第二换热增强结构,第二换热增强结构的排液阻力小于第一换热增强结构的排液阻力。
在一个实施方式中,第一换热增强结构包括形成在翅片的第一侧面上的第一凸台尖角结构,和形成在翅片的第二侧面上的第二凸台尖角结构。
在一个实施方式中,第二换热增强结构包括形成在翅片的第一侧面上的第三凸台尖角结构,或者形成在翅片的第二侧面上的第三凸台尖角结构。
在一个实施方式中,第一凸台尖角结构和/或第二凸台尖角结构和/或第三凸台尖角结构包括:形成在翅片的侧面上的凸台,以及与凸台相连并相对于翅片的侧面凸出的尖角。
在一个实施方式中,尖角的顶面滚花为三角形滚花、梯形滚花、弧形滚花或者五边形滚花。
在一个实施方式中,第一换热增强结构分布在相对于管体的中上部a区域内,a区域为以竖直中心面为中心的0°~150°的区域,未加工的翅片结构分布在相对于管体的中下部c区域内,c区域为以竖直中心面为中心的0°~150°的区域。
在一个实施方式中,第一换热增强结构分布在相对于管体的中上部a区域内,a区域为以竖直中心面为中心的0°~150°的区域,第二换热增强结构分布在相对于管体的中部b区域内,b区域为以水平中心面为中心的0°~120°的左右两个区域,未加工的翅片结构分布在相对于管体的中下部c区域内,c区域为以竖直中心面为中心的0°~150°的区域,a区域与b区域与c区域的角度之和为360°。
在一个实施方式中,相邻的翅片之间形成有通道,翅片上还形成有导流槽,导流槽将相邻的通道连通,导流槽用于流通冷媒。
在一个实施方式中,导流槽形分布在翅片的相对于管体的中部和/或中上部。
本申请还提供了一种空调器,包括换热管,换热管为上述的换热管。
在上述实施例中,针对在管体顶部换热剧烈的状况,设置第一换热增强结构以增强其换热。由于在自上而下的结构上对流换热增强,相变换热减弱,管体的底部容易产生液膜堆积,翅片的未加工的翅片结构可以增强换热管排液功能,将液膜及时排走,有助于换热。采用本发明的技术方案,可以根据换热管的工作模式,既可以满足换热管的换热需求,又可以满足换热管的排液需求。
附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明的换热管的实施例的整体结构示意图;
图2是根据本发明的换热管在竖直方向上翅片的换热增强结构的分布示意图;
图3是图1的换热管的局部放大结构示意图;
图4是图3的换热增强结构的尖角的结构示意图;
图5是根据本发明的换热管的换热增强结构在管体上的分布区域示意图;
图6是根据本发明的换热管的导流槽在管体上的分布区域示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施方式和附图,对本发明做进一步详细说明。在此,本发明的示意性实施方式及其说明用于解释本发明,但并不作为对本发明的限定。
根据对换热管的传热实验研究发现,换热管在冷凝使用的过程中,汽态冷媒在换热管上层或者占管体圆周方向上部外表面进行凝结,之后凝结形成的液态冷媒沿管体上翅片之间的通道流动到换热管的下面,并从管体底部排走。
基于上述原理,如图1和图2所示,在本发明的技术方案中,换热管 包括管体10和设置在管体10的外表面上的翅片20。翅片20的相对于管体10的中上部形成有第一换热增强结构21,翅片20的相对于管体10的中下部为未加工的翅片结构22。
这样,针对在管体10顶部换热剧烈的状况,设置第一换热增强结构21以增强其换热。由于在自上而下的结构上对流换热增强,相变换热减弱,管体10的底部容易产生液膜堆积,翅片20的未加工的翅片结构22可以增强换热管排液功能,将液膜及时排走,有助于换热。采用本发明的技术方案,可以根据换热管的工作模式,既可以满足换热管的换热需求,又可以满足换热管的排液需求。
此外,还需要说明的是,换热管换热包括相变换热和对流换热,管体10顶部相变换热占比最高,管体10两侧对流换热逐步增强,管体10底部对流变换热占比最高。因此,第一换热增强结构21的设置位置更适宜于增强换热,未加工的翅片结构22的设置位置更适宜于排液。
基于上述原理,如图1和图2所示,在本实施例的技术方案中,翅片20的相对于管体10的中部形成有第二换热增强结构23第二换热增强结构23的排液阻力小于第一换热增强结构21的排液阻力。由于在管体10的中部,换热需求和排液需求都介于管体10的上部和下部之间,设置合适的第二换热增强结构23,可以既满足换热管的换热需求,又满足换热管的排液需求,降低结构突变对换热/排液能力的影响。
如图2所示,在本实施例的技术方案中,第一换热增强结构21包括形成在翅片20的第一侧面上的第一凸台尖角结构,和形成在翅片20的第二侧面上的第二凸台尖角结构。可选的,第二换热增强结构23包括形成在翅片20的第一侧面上的第三凸台尖角结构。在翅片20的两侧设置第一凸台尖角结构和第二凸台尖角结构可以更好地针对于管体10顶部相变换热占比最高的情况,在翅片20的一侧设置第三凸台尖角结构,可以针对于需要兼顾换热需求和排液需求的情况。作为其他的可选的实施方式,第三凸台尖角结构还可以形成在翅片20的第二侧面上。
如图3所示,在本实施例的技术方案中,第一凸台尖角结构和第二凸台尖角结构和第三凸台尖角结构的结构相同,均包括:形成在翅片20的侧面上的凸台211,以及与凸台211相连并相对于翅片20的侧面凸出的尖角212。可选的,如图4所示,尖角212的顶面滚花为三角形滚花、梯形 滚花、弧形滚花或者五边形滚花。
具体的,在本实施例的技术方案中,凸台211的形成是利用滚花模具在原有翅片顶部进行挤压而成,在形成凸台211的同时,由于金属材料本身良好的塑性,在翅片20的一侧自然形成凸出的尖角212。
如图5所示,在本实施例的技术方案中,第一换热增强结构21分布在相对于管体10的中上部a区域内,a区域为以竖直中心面为中心的0°~150°的区域。优选的,a=120°。
第二换热增强结构23分布在相对于管体10的中部b区域内,b区域为以水平中心面为中心的0°~120°的左右两个区域。优选的,b=60°。
未加工的翅片结构22分布在相对于管体10的中下部c区域内,c区域为以竖直中心面为中心的0°~150°的区域,a区域与b区域与c区域的角度之和为360°。优选的,c=120°。
如图1和图3所示,在本实施例的技术方案中,相邻的翅片20之间形成有通道,翅片20上还形成有导流槽24,导流槽24将相邻的通道连通,导流槽24用于流通冷媒。通过翅片20上开设的导流槽24,可以使得相邻的通道连通,有利于冷媒在换热管表面周向迅速扩散,增加了冷媒在换热管表面的浸润性,加强换热效果。
优选的,如图1和图2所示,在本实施例的技术方案中,导流槽24形分布在翅片20的相对于管体10的中部和/或中上部。如图6所示,导流槽24形分布在翅片20的相对于管体10的中部和/或中上部的d区域。优选的,d区域为以竖直中心面为中心的180°的上部区域。
需要说明的是,上述换热管的技术方案尤其适用于冷凝管。
本发明还提供了一种空调器,该空调器包括上述的换热管。采用上述换热管的空调器,换热性能更好,制冷效率更高。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明实施例可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种换热管,包括管体(10)和设置在所述管体(10)的外表面上的翅片(20),其特征在于,所述翅片(20)的相对于所述管体(10)的中上部形成有第一换热增强结构(21),所述翅片(20)的相对于所述管体(10)的中下部为未加工的翅片结构(22)。
  2. 根据权利要求1所述的换热管,其特征在于,所述翅片(20)的相对于所述管体(10)的中部形成有第二换热增强结构(23),所述第二换热增强结构(23)的排液阻力小于所述第一换热增强结构(21)的排液阻力。
  3. 根据权利要求2所述的换热管,其特征在于,所述第一换热增强结构(21)包括形成在所述翅片(20)的第一侧面上的第一凸台尖角结构,和形成在所述翅片(20)的第二侧面上的第二凸台尖角结构。
  4. 根据权利要求3所述的换热管,其特征在于,所述第二换热增强结构(23)包括形成在所述翅片(20)的第一侧面上的第三凸台尖角结构,或者形成在所述翅片(20)的第二侧面上的第三凸台尖角结构。
  5. 根据权利要求4所述的换热管,其特征在于,所述第一凸台尖角结构和/或所述第二凸台尖角结构和/或所述第三凸台尖角结构包括:形成在所述翅片(20)的侧面上的凸台(211),以及与所述凸台(211)相连并相对于所述翅片(20)的侧面凸出的尖角(212)。
  6. 根据权利要求5所述的换热管,其特征在于,所述尖角(212)的顶面滚花为三角形滚花、梯形滚花、弧形滚花或者五边形滚花。
  7. 根据权利要求1所述的换热管,其特征在于,所述第一换热增强结构(21)分布在相对于所述管体(10)的中上部a区域内,所述a区域为以竖直中心面为中心的0°~150°的区域,所述未加工的翅片结构(22)分布在相对于所述管体(10)的中下部c区域内,所述c区域为以竖直中心面为中心的0°~150°的区域。
  8. 根据权利要求2所述的换热管,其特征在于,所述第一换热增强结构(21)分布在相对于所述管体(10)的中上部a区域内,所述a区域为以竖直中心面为中心的0°~150°的区域,所述第二换热增强结构(23)分布在相对于所述管体(10)的中部b区域内,所述b区域为以水平中心面为中心的0°~120°的左右两个区域,所述未加工的翅片结构(22)分布在相对于所述管体(10)的中下部c区域内,所述c区域为以竖直中心 面为中心的0°~150°的区域,所述a区域与所述b区域与所述c区域的角度之和为360°。
  9. 根据权利要求1所述的换热管,其特征在于,相邻的所述翅片(20)之间形成有通道,所述翅片(20)上还形成有导流槽(24),所述导流槽(24)将相邻的所述通道连通,所述导流槽(24)用于流通冷媒。
  10. 根据权利要求9所述的换热管,其特征在于,所述导流槽(24)形分布在所述翅片(20)的相对于所述管体(10)的中部和/或中上部。
  11. 一种空调器,包括换热管,其特征在于,所述换热管为权利要求1至10中任一项所述的换热管。
PCT/CN2018/121922 2018-08-30 2018-12-19 换热管及空调器 WO2020042451A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811005537.1A CN109099747A (zh) 2018-08-30 2018-08-30 换热管及空调器
CN201811005537.1 2018-08-30

Publications (1)

Publication Number Publication Date
WO2020042451A1 true WO2020042451A1 (zh) 2020-03-05

Family

ID=64864575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121922 WO2020042451A1 (zh) 2018-08-30 2018-12-19 换热管及空调器

Country Status (2)

Country Link
CN (1) CN109099747A (zh)
WO (1) WO2020042451A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB341198A (en) * 1929-11-21 1931-01-15 Frederic Randle Radiator and condenser tubes
CN2042175U (zh) * 1988-10-10 1989-08-02 郑渭良 管翅组合板式鼓风强冻柜
CN1190733A (zh) * 1996-12-30 1998-08-19 三星电子株式会社 用于空气调节器的热交换器翅片
CN101482377A (zh) * 2009-01-07 2009-07-15 西安交通大学 一种组合式管翅强化换热表面结构
CN202692733U (zh) * 2012-05-09 2013-01-23 苏州新太铜高效管有限公司 带有吸液芯体的翅片冷凝管

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008121724A1 (en) * 2007-03-29 2008-10-09 Wolverine Tube, Inc. Condensing tube with corrugated fins
CN202101591U (zh) * 2011-05-24 2012-01-04 苏州新锐低温设备有限公司 一种翅片换热管
CN206420361U (zh) * 2017-01-18 2017-08-18 无锡市林源热交换器有限公司 新型翅片式换热管
CN207600274U (zh) * 2017-12-11 2018-07-10 珠海格力电器股份有限公司 换热管、换热器及空调器
CN208920938U (zh) * 2018-08-30 2019-05-31 珠海格力电器股份有限公司 换热管及空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB341198A (en) * 1929-11-21 1931-01-15 Frederic Randle Radiator and condenser tubes
CN2042175U (zh) * 1988-10-10 1989-08-02 郑渭良 管翅组合板式鼓风强冻柜
CN1190733A (zh) * 1996-12-30 1998-08-19 三星电子株式会社 用于空气调节器的热交换器翅片
CN101482377A (zh) * 2009-01-07 2009-07-15 西安交通大学 一种组合式管翅强化换热表面结构
CN202692733U (zh) * 2012-05-09 2013-01-23 苏州新太铜高效管有限公司 带有吸液芯体的翅片冷凝管

Also Published As

Publication number Publication date
CN109099747A (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
EP3736521A1 (en) Heat exchange tube, heat exchanger and heat pump unit
JPH06221788A (ja) 熱交換器の管
US7299863B2 (en) Louver fin type heat exchanger having improved heat exchange efficiency by controlling water blockage
KR102048356B1 (ko) 냉매 배관과, 이를 포함하는 핀형 열교환기 및 공기조화기
CN109141094A (zh) 换热管及空调器
WO2020042425A1 (zh) 换热管及空调器
CN109099746A (zh) 换热管及空调器
US9683791B2 (en) Condensation enhancement heat transfer pipe
WO2020042451A1 (zh) 换热管及空调器
US5275234A (en) Split resistant tubular heat transfer member
CN210512784U (zh) 一种微通道换热器
KR101572674B1 (ko) 배수성이 향상된 방열핀을 이용한 열교환기
CN117628951A (zh) 一种冷凝段微通道换热的热管设备
CN108413803A (zh) 管翅单体和具有其的换热器、空调器
JP2010139115A (ja) 熱交換器及び熱交換器ユニット
CN208920938U (zh) 换热管及空调器
JP2005127570A (ja) 伝熱管及びこれを用いた冷凍装置
JP4212780B2 (ja) 熱交換器用伝熱管、その作製方法、熱交換器及びそれを用いた冷凍空調装置
CN208920939U (zh) 换热管及空调器
CN106440324A (zh) 一种换热器及采用其的空调
JPH0247417Y2 (zh)
WO2019114325A1 (zh) 换热管、换热器及空调器
JP3747974B2 (ja) 内面溝付伝熱管
CN110425778A (zh) 一种高低翅强化冷凝换热管
CN208920937U (zh) 换热管及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932046

Country of ref document: EP

Kind code of ref document: A1