WO2020042308A1 - 一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法 - Google Patents

一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法 Download PDF

Info

Publication number
WO2020042308A1
WO2020042308A1 PCT/CN2018/111455 CN2018111455W WO2020042308A1 WO 2020042308 A1 WO2020042308 A1 WO 2020042308A1 CN 2018111455 W CN2018111455 W CN 2018111455W WO 2020042308 A1 WO2020042308 A1 WO 2020042308A1
Authority
WO
WIPO (PCT)
Prior art keywords
foaming
fluidized bed
valve
foamed beads
temperature
Prior art date
Application number
PCT/CN2018/111455
Other languages
English (en)
French (fr)
Inventor
冯云平
Original Assignee
广东奔迪新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东奔迪新材料科技有限公司 filed Critical 广东奔迪新材料科技有限公司
Publication of WO2020042308A1 publication Critical patent/WO2020042308A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3461Making or treating expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2355/00Characterised by the use of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08J2323/00 - C08J2353/00
    • C08J2355/02Acrylonitrile-Butadiene-Styrene [ABS] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2359/00Characterised by the use of polyacetals containing polyoxymethylene sequences only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention relates to the technical field of the preparation of thermoplastic polymer foaming materials, in particular to a method for preparing thermoplastic polymer foamed beads in a clean and anhydrous process.
  • thermoplastic polymer foamed beads not only have a high expansion ratio, but also can mold a variety of complex shapes and high dimensional accuracy products, which greatly expands the application field of thermoplastic polymer foamed materials.
  • Thermoplastic polymer foamed beads Granular products are increasingly used in fields such as shock-proof packaging, sports shoe cushioning, lightweight vehicles, children's toys, sports equipment, and water buoys.
  • thermoplastic polymer bead foaming process is divided into two categories: batch autoclave foaming method and continuous extrusion foaming method.
  • the batch autoclaved foaming method is easy to control the process conditions, and foaming beads with adjustable magnification and closed cell ratio can be prepared.
  • JSP, BASF, KANA and other companies use this method for production.
  • a batch-type reaction kettle foaming method is used to produce thermoplastic polymer foam beads. The method is to load thermoplastic polymer particles, an aqueous dispersion medium, and a dispersant together into a closed autoclave, and pass in a physical foaming agent.
  • the thermoplastic polymer resin particles in the kettle are heated to a temperature higher than the softening point by a heating device.
  • thermoplastic polymer resin particles Under the action of stirring, the foaming agent is fully impregnated with the thermoplastic polymer resin particles to reach a solubility equilibrium, and then quickly passes through the kettle body.
  • the pressure relief causes the thermoplastic polymer particles to foam, thereby obtaining thermoplastic polymer expanded beads.
  • the thermoplastic polymer beads are then sintered into a variety of products by steam molding.
  • Application publication number CN 106336523 A discloses a method for preparing thermoplastic polymer foamed beads.
  • the polymer particles are dispersed in water during autoclaved foaming, and the blowing agent gas is dissolved and diffused into the polymer particles at high temperature and pressure, and then passes through. The pressure is quickly released, causing the nucleation and growth of air bubbles to form foamed beads.
  • Application Publication No. CN 106380624 A discloses a method for preparing polypropylene foaming beads which is easy to be molded.
  • the dispersant is hydrated aluminosilicate kaolin inorganic fine particles. Due to the good suspension performance of the dispersant in water, In the cleaning process after the bead foaming is completed, the dispersant is more easily removed from the surface of the foamed particles, and the inorganic substances on the surface of the foamed particles are less blocked during the molding process.
  • the foamed particles can have a good performance at a lower steam pressure. Sintering, saving energy consumption when molding foam beads.
  • the batch autoclaved water-suspended bead foaming process suspends the particles in a water bath, and passes a blowing agent gas, such as CO2, N2, to foam the polymer particles.
  • a blowing agent gas such as CO2, N2
  • the advantage of water is that the particle temperature consistency is high, and the surfactant and inorganic particles added in the water can avoid particle adhesion.
  • the problem is that water needs to absorb a large amount of heat, resulting in longer batch production times and higher energy consumption during production.
  • the obtained foamed particles need to be washed with water to remove surface surfactants and drying.
  • the water-cooking process can easily hydrolyze the polymers, such as thermoplastic polyurethane (TPU), polylactic acid (PLA), etc., which is not suitable for cooking with water for a long time at high temperature .
  • TPU thermoplastic polyurethane
  • PLA polylactic acid
  • the continuous extrusion foaming method is a method in which a thermoplastic polymer homogeneous melt containing a foaming agent is extruded from a die die, and the pressure is rapidly released to carry out phase separation to dissolve the thermoplastic polymer homogeneous melt. The gas expands, and then nucleates, grows, and solidifies as the bubbles are extruded and foamed at one time.
  • a continuous production line of foamed polypropylene beads the equipment is connected in the following order: storage tank, metering tank, low temperature and high speed mixing system, fully automatic feeding system, three-screw extruder, water Annular hot pelletizing system, centrifugal dryer, vibrating separator, transfer silo, product silo, packaging system, supercritical fluid quantitative filling system are set in the homogenization section of the three-screw extruder; the machine of the three-screw extruder
  • the head is also provided with a screen changer and a melt pump in this order.
  • the continuous production line of extruded foamed polypropylene beads has high efficiency, high degree of industrialization, and reduced labor intensity.
  • the prepared foamed polypropylene beads products have no residual foaming agent decomposition products, can be secondary foamed, and have stable quality and micropores. Uniform distribution, adjustable foaming ratio.
  • a method for preparing high-yield, low-cost and environmentally-friendly polypropylene beads discloses a method for preparing high-yield, low-cost, and environmentally-friendly polypropylene beads using a three-screw extruder.
  • the propylene resin is mixed with other raw materials or auxiliaries at low temperature and high speed to obtain a high melt strength polypropylene foaming material, and the high melt strength polypropylene foaming material is added to a product-shaped three-screw extruder for plasticizing and mixing.
  • Supercritical fluid is added to the homogenization section of the three-screw extruder to form a homogeneous body, and then foamed at the die mouth, and then hot-granulated by the water ring to form ultra-fine microporous polypropylene beads, which are finally dewatered by centrifugation It is dried and vibrated and sieved to obtain high-yield and low-cost environmentally friendly polypropylene beads.
  • Continuous extrusion foaming is used to make polymer foam beads.
  • the main problem is that the polymer in the extrusion foaming process is likely to cause the bubbles in the air beads to form an open cell structure, and the open cell ratio of the bubbles is high.
  • the foamed bead product is easy to shrink and deform, and it is easy to cause product defects in the subsequent molding process.
  • the present invention proposes a method for preparing thermoplastic polymer foamed beads in a clean and anhydrous process.
  • the focus is on the preparation of thermoplastic polymer foamed beads using an anhydrous process, using a high-pressure fluidized bed.
  • the supercritical fluid physical foaming agent is introduced, and the particles are fluidized through the air distribution plate in the kettle, so that the particles are in a fluidized state.
  • the sulfurized kettle body is heated to the target temperature, and the particles are foaming. Keep heat and pressure for 10-30min under pressure and foaming temperature, open the discharge port valve to release the pressure, and the gas carries beads out of the fluidized bed.
  • the foam beads produced Due to the rapid pressure difference between the inside and outside of the vulcanization kettle, particles at the outlet of the fluidized bed are caused. Immediately foamed to obtain polymer expanded beads.
  • the method requires less heat, low cost, strong controllability, and high production efficiency.
  • the foam beads produced have fine micropores, good uniformity of the cell pore diameters, and high overall safety and cleanliness during the production process.
  • a method for preparing thermoplastic polymer foamed beads in a clean water-free process comprising a reciprocating booster pump, a make-up valve, a fluidized bed, and a feeding port valve and a discharging port valve connected to the fluidized bed, and reciprocating
  • the booster pump is connected to the fluidized bed through a thermal insulation pipeline, and the supplementary gas valve is connected to the thermal insulation pipeline.
  • the fluidized bed includes a vulcanizing kettle body, an air distribution plate, a ventilation net, and a heating interlayer;
  • the polymer particles in step 1) are selected from, but not limited to, any one of PS, PE, PP, TPE, TPU, m-PPE, TPEE, PEBAX, PA series, and PET.
  • the blowing agent gas in step 2) is selected from CO2, N2, or a mixture of the two.
  • the foaming agent gas in step 2) is a mixture of CO2 and N2, and the volume ratio of the two is 1: 0.3-0.7.
  • the polymer particles are semi-crystalline polymers, and the foaming temperature in step 3) is 2-5 ° C. below the melting point of the semi-crystalline polymers.
  • the polymer particles are amorphous polymers, and the foaming temperature in step 3) is 2-10 ° C higher than the glass transition temperature.
  • the foaming ratio of the prepared polymer foamed beads is 10-50 times, and the cell diameter is 1-100 ⁇ m.
  • the invention proposes a device (shown in Figure 1) involved in a method for preparing thermoplastic polymer foamed beads in a clean and anhydrous process, which includes: a feed port valve, a make-up valve, a reciprocating booster pump, and a fluidized bed And discharge valve.
  • the reciprocating booster pump is connected to the fluidized bed through a thermal insulation pipe.
  • the inlet valve is used to add polymer particles
  • the make-up valve is used to replenish the gas
  • the discharge valve is used to release pressure. Foaming to obtain polymer expanded beads.
  • the fluidized bed is composed of an air distribution plate, a ventilation net and a heating interlayer.
  • the supercritical fluid is pumped by the reciprocating booster pump, and cyclic failure is formed through the vulcanizing vessel.
  • the supercritical fluid flows through the air distribution plate in the vulcanizing kettle and blows into the inside of the vulcanizing kettle, so that the polymer particles are in a fluidized state, and the air-permeable mesh is used to block the polymer particles from entering the circulation pipeline.
  • the polymer particles are in a high temperature and high pressure supercritical fluid environment in the fluidized bed, and the dissolution and diffusion balance of the supercritical fluid into the polymer particle matrix is reached.
  • the discharge valve is opened to quickly reduce the pressure and cause the polymer particle matrix to bubble.
  • the nucleation, growth and foaming of the pores are shaped to obtain polymer foamed beads.
  • the present invention has the following beneficial effects:
  • the method for preparing thermoplastic polymer foamed beads by using a clean anhydrous process, and the direct use of supercritical fluid foaming technology has less heat demand, low cost, and can be controlled It has strong performance and high production efficiency.
  • the foam beads produced have fine micropores, good uniformity of cell pore diameter, and high overall safety and cleanliness during the production process.
  • the invention improves the preparation of polymer foamed beads through a reasonable process, and the method has the following advantages:
  • the particles are in a fluidized state and no sticking occurs.
  • the heat demand of the process is relatively small, and the heating efficiency of the particles in the fluidized state is very high.
  • the particle temperature is uniform, and the foaming consistency is good.
  • the process is clean and anhydrous, which is especially suitable for polymer materials that are easily hydrolyzed.
  • High production efficiency easy to realize automated production.
  • Figure 1 is a schematic diagram of the process equipment of the present invention.
  • a method for preparing thermoplastic polymer foamed beads in a clean and anhydrous process comprising a reciprocating booster pump, an air supply valve, a fluidized bed, and a feed port valve and a discharge port valve connected to the fluidized bed.
  • the reciprocating booster pump is connected to the fluidized bed through a thermal insulation pipeline, and the supplementary gas valve is connected to the thermal insulation pipeline, and the fluidized bed includes a vulcanizing kettle body, an air distribution plate, a ventilation net, and a heating interlayer;
  • the polymer particles are semi-crystalline polymers (such as PE, PP, POM, Nylon, etc.), the foaming temperature in step 3) is 2-5 ° C lower than the melting point of the semi-crystalline polymer; and the foaming agent gas in step 2) It is a mixture of CO 2 and N 2 , and the volume ratio of the two added is 1: 0.5; the foaming ratio of the prepared polymer foamed beads is 35 times, and the cell diameter is 10-100 ⁇ m.
  • the foaming temperature in step 3 is 2-5 ° C lower than the melting point of the semi-crystalline polymer
  • the foaming agent gas in step 2 It is a mixture of CO 2 and N 2 , and the volume ratio of the two added is 1: 0.5; the foaming ratio of the prepared polymer foamed beads is 35 times, and the cell diameter is 10-100 ⁇ m.
  • a method for preparing thermoplastic polymer foamed beads in a clean and anhydrous process comprising a reciprocating booster pump, an air supply valve, a fluidized bed, and a feed port valve and a discharge port valve connected to the fluidized bed.
  • the reciprocating booster pump is connected to the fluidized bed through a thermal insulation pipeline, and the supplementary gas valve is connected to the thermal insulation pipeline, and the fluidized bed includes a vulcanizing kettle body, an air distribution plate, a ventilation net, and a heating interlayer;
  • the polymer particles are amorphous polymers (such as ABS, PS, PVC, PMMA, PC, etc.), the foaming temperature in step 3) is higher than the glass transition temperature T g 2-10 ° C; foaming in step 2)
  • the agent gas is a mixture of CO 2 and N 2.
  • the added volume ratio of the two is 1: 0.5.
  • the foaming ratio of the prepared polymer foam beads is 40 times, and the cell diameter is 10-100 ⁇ m.
  • a method for preparing thermoplastic polymer foamed beads in a clean and anhydrous process comprising a reciprocating booster pump, an air supply valve, a fluidized bed, and a feed port valve and a discharge port valve connected to the fluidized bed.
  • the reciprocating booster pump is connected to the fluidized bed through a thermal insulation pipeline, and the supplementary gas valve is connected to the thermal insulation pipeline, and the fluidized bed includes a vulcanizing kettle body, an air distribution plate, a ventilation net, and a heating interlayer;
  • the polymer particles are semi-crystalline polymers (such as PE, PP, POM, Nylon), the foaming temperature in step 3) is 2-5 ° C lower than the melting point of the semi-crystalline polymer; the foaming agent gas in step 2) is The mixture of CO 2 and N 2 has a volume ratio of 1: 0.3; the foaming ratio of the prepared polymer foam beads is 40 times, and the cell diameter is 10-100 ⁇ m.
  • a method for preparing thermoplastic polymer foamed beads in a clean and anhydrous process comprising a reciprocating booster pump, an air supply valve, a fluidized bed, and a feed port valve and a discharge port valve connected to the fluidized bed.
  • the reciprocating booster pump is connected to the fluidized bed through a thermal insulation pipeline, and the supplementary gas valve is connected to the thermal insulation pipeline, and the fluidized bed includes a vulcanizing kettle body, an air distribution plate, a ventilation net, and a heating interlayer;
  • the polymer particles are amorphous polymers (such as ABS, PS, PVC, PMMA, PC, etc.), the foaming temperature in step 3) is higher than the glass transition temperature T g 2-10 ° C; foaming in step 2)
  • the agent gas is a mixture of CO 2 and N 2.
  • the added volume ratio of the two is 1: 0.3.
  • the foaming ratio of the prepared polymer foam beads is 43 times, and the cell diameter is 10-100 ⁇ m.
  • a method for preparing thermoplastic polymer foamed beads in a clean and anhydrous process comprising a reciprocating booster pump, an air supply valve, a fluidized bed, and a feed port valve and a discharge port valve connected to the fluidized bed.
  • the reciprocating booster pump is connected to the fluidized bed through a thermal insulation pipeline, and the supplementary gas valve is connected to the thermal insulation pipeline, and the fluidized bed includes a vulcanizing kettle body, an air distribution plate, a ventilation net, and a heating interlayer;
  • the polymer particles are semi-crystalline polymers (such as PE, PP, POM, Nylon), the foaming temperature in step 3) is 2-5 ° C lower than the melting point of the semi-crystalline polymer; the foaming agent gas in step 2) is For a mixture of CO 2 and N 2 , the volume ratio of the two added is 1: 0.7; the foaming ratio of the prepared polymer foam beads is 33 times, and the cell diameter is 10-100 ⁇ m.
  • the foaming temperature in step 3 is 2-5 ° C lower than the melting point of the semi-crystalline polymer
  • the foaming agent gas in step 2) is For a mixture of CO 2 and N 2 , the volume ratio of the two added is 1: 0.7; the foaming ratio of the prepared polymer foam beads is 33 times, and the cell diameter is 10-100 ⁇ m.
  • a method for preparing thermoplastic polymer foamed beads in a clean and anhydrous process comprising a reciprocating booster pump, an air supply valve, a fluidized bed, and a feed port valve and a discharge port valve connected to the fluidized bed.
  • the reciprocating booster pump is connected to the fluidized bed through a thermal insulation pipeline, and the supplementary gas valve is connected to the thermal insulation pipeline, and the fluidized bed includes a vulcanizing kettle body, an air distribution plate, a ventilation net, and a heating interlayer;
  • the polymer particles are amorphous polymers (such as ABS, PS, PVC, PMMA, PC, etc.), the foaming temperature in step 3) is higher than the glass transition temperature T g 2-10 ° C; foaming in step 2)
  • the agent gas is a mixture of CO 2 and N 2.
  • the added volume ratio of the two is 1: 0.7.
  • the foaming ratio of the prepared polymer foam beads is 36 times, and the cell diameter is 10-100 ⁇ m.
  • the invention uses high-pressure fluidized bed for preparation, and directly uses supercritical fluid foaming technology, with less heat demand, low cost, strong controllability, and high production efficiency.
  • the finished product has strong foaming uniformity and good quality.
  • the overall safety and cleanliness is good, and the foaming ratio of the prepared polymer foamed beads is 10-50 times, and the cell diameter is 10-100 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明提出了一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法,包括以下制备步骤:打开硫化釜体的进料口阀,将适量的聚合物粒子投入硫化釜体,然后关闭进料口阀,通过硫化釜体内形成循坏;打开往复式增压泵的补气阀,向硫化釜体内通入发泡剂气体,调节发泡压力为5-30MPa,关闭补气阀;待聚合物粒子完全处于流化状态时,调节硫化釜体升温至发泡温度;保温保压10-30min,打开排料口阀,泄压速率为1-1000MPa/s,气体携带珠粒出流化床,即得聚合物发泡珠粒;本发明利用高压流化床进行制备,直接利用超临界流体发泡技术,热量需求量少,成本低,可控性强,且生产效率高,制得的发泡珠粒微孔细密,泡孔孔径均一性好,生产过程整体安全洁净度高。

Description

一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法 技术领域
本发明涉及热塑性聚合物发泡材料制备的技术领域,具体涉及一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法。
背景技术
热塑性聚合物发泡珠粒既有高的膨胀比,又能模塑成型各种形状复杂、尺寸精度高的制品,极大地扩展了热塑性聚合物发泡材料的应用领域,热塑性聚合物发泡珠粒制品在防震包装、运动鞋缓冲、汽车轻量化、儿童玩具、体育器材、水上浮标等领域的使用日益增加。
目前,热塑性聚合物珠粒发泡工艺分为两类:间歇式釜压发泡法、连续式挤出发泡法。间歇式釜压发泡法工艺条件容易控制,可以制备倍率和闭孔率可调控的发泡珠粒。在世界范围内有JSP,BASF,KANKA等公司采用该方法进行生产。工业上采用间歇式反应釜发泡法生产热塑性聚合物发泡珠粒,该方法是将热塑性聚合物颗粒、水性分散介质、分散剂一起被装入密闭的高压釜,通入物理发泡剂,通过加热装置将釜中的热塑性聚合物树脂颗粒加热至高于软化点的温度,在搅拌的作用下,让发泡剂充分地浸渍热塑性聚合物树脂颗粒,使之达到溶解度平衡,然后通过釜体快速泄压使热塑性聚合物颗粒发泡,从而得到热塑性聚合物发泡珠粒。然后通过水蒸气模塑成型的方法将热塑性聚合物珠粒熔结成各式各样的使用产品。
申请公布号CN 106336523 A公开了一种制备热塑性聚合物发泡珠粒的方法,釜压发泡中聚合物粒子分散于水中,发泡剂气体在高温高压下溶解扩散进入聚合物粒子,后通过快速泄压,引发气泡的成核和生长,形成发泡珠粒。
申请公布号CN 106380624 A,公开了一种易于模塑成型的聚丙烯发泡珠粒的制备方法,分散剂为水合硅铝酸盐的高岭土无机物微 粒,由于分散剂在水中悬浮性能好,在珠粒发泡完成后的清洗工艺中,分散剂更易从发泡粒子的表面除去,成型过程中发泡粒子表面的无机物阻隔少,在更低的蒸汽压力下发泡粒子能有很好的熔结,节省发泡珠粒模塑成型时的能耗。
间歇式釜压水悬浮珠粒发泡工艺将粒子悬浮在水浴里,并通入发泡剂气体,如CO2、N2,使聚合物粒子发泡。水的优点是粒子温度一致性较高,同时加在水里面的表面活性剂和无机粒子可避免粒子粘结。问题是,水需要吸收大量的热量,导致批次生产时间较长,并且生产时的能耗较高。得到的发泡粒子需要经过水洗,以去除表面的表面活性剂和干燥等工序。另外,发泡珠粒经水槽水洗后其表面仍会粘附一定量的表面活性剂,这会阻碍发泡粒子在蒸汽模塑过程中相互熔结,导致热塑性聚合物发泡珠粒模塑成型的蒸汽压力更高,且易出现表面熔结缺陷,再次造成水资源的浪费和成本增加。
水悬浮发泡工艺对于容易水解的聚合物而言,水蒸煮过程易使其聚合物水解,如热塑性聚氨醋(TPU)、聚乳酸(PLA)等,不适合在高温下用水蒸煮较长时间。
连续式挤出发泡法是将含有发泡剂的热塑性聚合物均相熔体从机头口模挤出时,通过快速泄压,进行相分离,使溶于热塑性聚合物均相熔体的气体膨胀,再随着气泡成核、长大、固化,一次性完成挤出和发泡。
申请公布号CN 106493870 A,一种发泡聚丙烯珠粒连续生产线,设备按以下顺序依次相连:储料罐、计量罐、低温高速混合系统、全自动上料系统、三螺杆挤出机、水环热切粒系统、离心干燥器、振动分离筛、中转料仓、产品料仓、包装系统,超临界流体定量加注系统设置在三螺杆挤出机的均化段;三螺杆挤出机的机头处还依次设置有换网器和熔体泵。挤出发泡聚丙烯珠粒连续生产线效率高,工业化程度高,降低了劳动强度,制备的发泡聚丙烯珠粒产品无发泡剂分解物 残留,可二次发泡,质量稳定,微孔分布均匀,发泡倍率可调。
申请公布号CN 107602903 A,一种高产量低成本环保型聚丙烯珠粒的制备方法,公开了一种采用三螺杆挤出机制备高产量低成本环保型聚丙烯珠粒的方法,首先将聚丙烯树脂与其他原料或助剂进行低温高速混合,得到高熔体强度聚丙烯发泡料,再将高熔体强度聚丙烯发泡料加入品字型三螺杆挤出机,进行塑化混炼,并将超临界流体加注到三螺杆挤出机均化段形成均相体,再在模口发泡,经水环热切造粒,形成超细微孔聚丙烯珠粒,最后经离心脱水干燥、振动过筛,得到高产量低成本环保型聚丙烯珠粒。
连续挤出发泡用于制造聚合物发泡珠粒,主要问题是挤出发泡过程由于聚合物处于熔融态,容易造成气珠粒内部的气泡形成开孔结构,泡的开孔率较高,导致发泡珠粒产品容易收缩变形,在后续的成型过程中容易造成制品缺陷。
发明内容
针对上述存在的问题,本发明提出了一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法,重点在于制备热塑性聚合物发泡珠粒采用无水工艺,利用高压流化床,直接通入超临界流体物理发泡剂,通过釜体内气流分配板,吹进硫化釜体内部,使粒子处于流化状态,当粒子处于流化状态后,硫化釜体升温至目标温度,粒子在发泡压力和发泡温度下保温保压10-30min,打开排料口阀排气泄压,气体携带珠粒出流化床,由于硫化釜体内外的快速压差变化,导致流化床出口的粒子立即发泡,得到聚合物发泡珠粒。该方法热量需求量少,成本低,可控性强,且生产效率高,制得的发泡珠粒微孔细密,泡孔孔径均一性好,生产过程整体安全洁净度高。
为了实现上述的目的,本发明采用以下的技术方案:
一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法,包括往复式增压泵、补气阀、流化床以及与流化床相连通的进料口阀、排料口 阀,往复增压泵与流化床通过保温管道相连,补气阀连通设于保温管道上,流化床包括硫化釜体、气流分布板、透气网、加热夹层;
具体制备步骤如下:
5)打开流化床的进料口阀,将适量的聚合物粒子投入流化床,然后关闭阀门,无需加入水介质和防粘隔离剂;
6)打开往复式增压泵的补气阀,向硫化釜体内通入发泡剂气体,调节发泡压力为5-30MPa,关闭补气阀,超临界流体在往复式增压泵的泵送下,通过硫化釜体内形成循坏;
7)待聚合物粒子在气流分布板上方完全处于流化状态时,调节硫化釜体升温至发泡温度;
8)保温保压10-30min,打开排料口阀,泄压速率为1-1000MPa/s,气体携带珠粒出流化床,即得聚合物发泡珠粒。
优选的,步骤1)中的聚合物粒子选自但不限于PS、PE、PP、TPE、TPU、m-PPE、TPEE、PEBAX、PA系列、PET中的任意一种。
优选的,步骤2)中发泡剂气体选自CO2、N2、或两者混合物。
优选的,步骤2)中发泡剂气体为CO2、N2的混合物,两者添加体积比为1:0.3-0.7。
优选的,聚合物粒子采用半结晶聚合物,步骤3)中发泡温度为低于半结晶聚合物熔点2-5℃。
优选的,聚合物粒子采用无定形聚合物,步骤3)中发泡温度为高于玻璃化温度2-10℃。
优选的,制得的聚合物发泡珠粒发泡倍率为10-50倍,泡孔直径为1-100μm。
本发明提出了一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法所涉及的装置(图1所示)包括:进料口阀,补气阀,往复式增压泵,流化床和排料口阀。往复增压泵与流化床通过保温管道相连,进料口阀用于加入聚合物粒子,补气阀用于补充气体,排料口阀用于 泄压排出,导致流化床出口的粒子立即发泡,得到聚合物发泡珠粒。流化床由气流分布板、透气网和加热夹层组成。超临界流体在往复式增压泵的泵送下,通过硫化釜体内形成循坏。超临界流体流动经过硫化釜体内的气流分布板吹进硫化釜体内部,使聚合物粒子处于流化状态,透气网用于阻隔聚合物粒子进入循环管道。聚合物粒子在流化床内处于高温高压的超临界流体环境,达到超临界流体向聚合物粒子基体内的溶解扩散平衡,打开排料口阀排气迅速降低压力,引发聚合物粒子基体内泡孔的成核、生长和发泡定型,得到聚合物发泡珠粒。
由于采用上述的技术方案,本发明的有益效果是:本发明利用洁净无水工艺制备热塑性聚合物发泡珠粒方法,直接利用超临界流体发泡技术,热量需求量少,成本低,可控性强,且生产效率高,制得的发泡珠粒微孔细密,泡孔孔径均一性好,生产过程整体安全洁净度高。
本发明通过合理的工艺改进制备聚合物发泡珠粒,该方法具有以下优点:
(1)粒子处于流化状态,不会发生粘结。(2)过程的热量需求比较少,流化状态的粒子的加热效率非常高。(3)粒子温度均匀,发泡的一致性好。(4)过程清洁,无水工艺,特别适合易水解的聚合物材料。(5)生产效率高,易实现自动化生产。(6)适合绝大多数的聚合物的珠粒发泡。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明工艺设备示意图。
图中:1补气阀、2往复式增压泵、3保温套管、4流化床、5硫化釜体、6加热夹层、7透气网、8气流分布板、9排料口阀、10进 料口阀。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述。基于本发明的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法,包括往复式增压泵、补气阀、流化床以及与流化床相连通的进料口阀、排料口阀,所述往复增压泵与流化床通过保温管道相连,所述补气阀连通设于所述保温管道上,所述流化床包括硫化釜体、气流分布板、透气网、加热夹层;
具体制备步骤如下:
1)打开流化床的进料口阀,将适量的聚合物粒子投入流化床,然后关闭阀门,无需加入水介质和防粘隔离剂;
2)打开往复式增压泵的补气阀,向硫化釜体内通入发泡剂气体,调节发泡压力为30MPa,关闭补气阀,超临界流体在往复式增压泵的泵送下,通过硫化釜体内形成循坏;
3)待聚合物粒子在气流分布板上方完全处于流化状态时,调节硫化釜体升温至发泡温度;
4)保温保压20min,打开排料口阀,泄压速率为500MPa/秒,气体携带珠粒出流化床,即得聚合物发泡珠粒。
其中:聚合物粒子采用半结晶聚合物(如PE、PP、POM、Nylon等),步骤3)中发泡温度为低于半结晶聚合物熔点2-5℃;步骤2)中发泡剂气体为CO 2、N 2的混合物,两者添加体积比为1:0.5;制得的聚合物发泡珠粒发泡倍率为35倍,泡孔直径为10-100μm。
实施例2:
一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法,包括往复式增压泵、补气阀、流化床以及与流化床相连通的进料口阀、排料口阀,所述往复增压泵与流化床通过保温管道相连,所述补气阀连通设于所述保温管道上,所述流化床包括硫化釜体、气流分布板、透气网、加热夹层;
具体制备步骤如下:
1)打开流化床的进料口阀,将适量的聚合物粒子投入流化床,然后关闭阀门,无需加入水介质和防粘隔离剂;
2)打开往复式增压泵的补气阀,向硫化釜体内通入发泡剂气体,调节发泡压力为30MPa,关闭补气阀,超临界流体在往复式增压泵的泵送下,通过硫化釜体内形成循坏;
3)待聚合物粒子在气流分布板上方完全处于流化状态时,调节硫化釜体升温至发泡温度;
4)保温保压20min,打开排料口阀,泄压速率为500MPa/秒,气体携带珠粒出流化床,即得聚合物发泡珠粒。
其中:聚合物粒子采用无定型聚合物(如ABS、PS、PVC、PMMA、PC等),步骤3)中发泡温度为高于玻璃化温度T g 2-10℃;步骤2)中发泡剂气体为CO 2、N 2的混合物,两者添加体积比为1:0.5;制得的聚合物发泡珠粒发泡倍率为40倍,泡孔直径为10-100μm。
实施例3:
一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法,包括往复式增压泵、补气阀、流化床以及与流化床相连通的进料口阀、排料口阀,所述往复增压泵与流化床通过保温管道相连,所述补气阀连通设于所述保温管道上,所述流化床包括硫化釜体、气流分布板、透气网、加热夹层;
具体制备步骤如下:
1)打开流化床的进料口阀,将适量的聚合物粒子投入流化床, 然后关闭阀门,无需加入水介质和防粘隔离剂;
2)打开往复式增压泵的补气阀,向硫化釜体内通入发泡剂气体,调节发泡压力为20MPa,关闭补气阀,超临界流体在往复式增压泵的泵送下,通过硫化釜体内形成循坏;
3)待聚合物粒子在气流分布板上方完全处于流化状态时,调节硫化釜体升温至发泡温度;
4)保温保压30min,打开排料口阀,泄压速率为800MPa/秒,气体携带珠粒出流化床,即得聚合物发泡珠粒。
其中:聚合物粒子采用半结晶聚合物(如PE、PP、POM、Nylon),步骤3)中发泡温度为低于半结晶聚合物熔点2-5℃;步骤2)中发泡剂气体为CO 2、N 2的混合物,两者添加体积比为1:0.3;制得的聚合物发泡珠粒发泡倍率为40倍,泡孔直径为10-100μm。
实施例4:
一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法,包括往复式增压泵、补气阀、流化床以及与流化床相连通的进料口阀、排料口阀,所述往复增压泵与流化床通过保温管道相连,所述补气阀连通设于所述保温管道上,所述流化床包括硫化釜体、气流分布板、透气网、加热夹层;
具体制备步骤如下:
1)打开流化床的进料口阀,将适量的聚合物粒子投入流化床,然后关闭阀门,无需加入水介质和防粘隔离剂;
2)打开往复式增压泵的补气阀,向硫化釜体内通入发泡剂气体,调节发泡压力为20MPa,关闭补气阀,超临界流体在往复式增压泵的泵送下,通过硫化釜体内形成循坏;
3)待聚合物粒子在气流分布板上方完全处于流化状态时,调节硫化釜体升温至发泡温度;
4)保温保压30min,打开排料口阀,泄压速率为800MPa/秒,气 体携带珠粒出流化床,即得聚合物发泡珠粒。
其中:聚合物粒子采用无定型聚合物(如ABS、PS、PVC、PMMA、PC等),步骤3)中发泡温度为高于玻璃化温度T g 2-10℃;步骤2)中发泡剂气体为CO 2、N 2的混合物,两者添加体积比为1:0.3;制得的聚合物发泡珠粒发泡倍率为43倍,泡孔直径为10-100μm。
实施例5:
一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法,包括往复式增压泵、补气阀、流化床以及与流化床相连通的进料口阀、排料口阀,所述往复增压泵与流化床通过保温管道相连,所述补气阀连通设于所述保温管道上,所述流化床包括硫化釜体、气流分布板、透气网、加热夹层;
具体制备步骤如下:
1)打开流化床的进料口阀,将适量的聚合物粒子投入流化床,然后关闭阀门,无需加入水介质和防粘隔离剂;
2)打开往复式增压泵的补气阀,向硫化釜体内通入发泡剂气体,调节发泡压力为10MPa,关闭补气阀,超临界流体在往复式增压泵的泵送下,通过硫化釜体内形成循坏;
3)待聚合物粒子在气流分布板上方完全处于流化状态时,调节硫化釜体升温至发泡温度;
4)保温保压20min,打开排料口阀,泄压速率为600MPa/秒,气体携带珠粒出流化床,即得聚合物发泡珠粒。
其中:聚合物粒子采用半结晶聚合物(如PE、PP、POM、Nylon),步骤3)中发泡温度为低于半结晶聚合物熔点2-5℃;步骤2)中发泡剂气体为CO 2、N 2的混合物,两者添加体积比为1:0.7;制得的聚合物发泡珠粒发泡倍率为33倍,泡孔直径为10-100μm。
实施例6:
一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法,包括往复 式增压泵、补气阀、流化床以及与流化床相连通的进料口阀、排料口阀,所述往复增压泵与流化床通过保温管道相连,所述补气阀连通设于所述保温管道上,所述流化床包括硫化釜体、气流分布板、透气网、加热夹层;
具体制备步骤如下:
1)打开流化床的进料口阀,将适量的聚合物粒子投入流化床,然后关闭阀门,无需加入水介质和防粘隔离剂;
2)打开往复式增压泵的补气阀,向硫化釜体内通入发泡剂气体,调节发泡压力为10MPa,关闭补气阀,超临界流体在往复式增压泵的泵送下,通过硫化釜体内形成循坏;
3)待聚合物粒子在气流分布板上方完全处于流化状态时,调节硫化釜体升温至发泡温度;
4)保温保压20min,打开排料口阀,泄压速率为600MPa/秒,气体携带珠粒出流化床,即得聚合物发泡珠粒。
其中:聚合物粒子采用无定型聚合物(如ABS、PS、PVC、PMMA、PC等),步骤3)中发泡温度为高于玻璃化温度T g 2-10℃;步骤2)中发泡剂气体为CO 2、N 2的混合物,两者添加体积比为1:0.7;制得的聚合物发泡珠粒发泡倍率为36倍,泡孔直径为10-100μm。
本发明利用高压流化床进行制备,直接利用超临界流体发泡技术,热量需求量少,成本低,可控性强,且生产效率高,制得的成品发泡均一性强,品质好,整体安全洁净度性好,制得的聚合物发泡珠粒发泡倍率为10-50倍,泡孔直径为10-100μm。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (7)

  1. 一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法,其特征在于:包括往复式增压泵、补气阀、流化床以及与流化床相连通的进料口阀、排料口阀,所述往复增压泵与流化床通过保温管道相连,所述补气阀连通设于所述保温管道上,所述流化床包括硫化釜体、气流分布板、透气网、加热夹层;
    具体制备步骤如下:
    1)打开流化床的进料口阀,将适量的聚合物粒子投入流化床,然后关闭阀门,无需加入水介质和防粘隔离剂;
    2)打开往复式增压泵的补气阀,向硫化釜体内通入发泡剂气体,调节发泡压力为5-30MPa,关闭补气阀,超临界流体在往复式增压泵的泵送下,通过硫化釜体内形成循坏;
    3)待聚合物粒子在气流分布板上方完全处于流化状态时,调节硫化釜体升温至发泡温度;
    4)保温保压10-30min,打开排料口阀,泄压速率为1-1000MPa/s,气体携带珠粒出流化床,即得聚合物发泡珠粒。
  2. 根据权利要求1所述的洁净无水工艺制备热塑性聚合物发泡珠粒的方法,其特征在于:步骤1)中所述的聚合物粒子选自但不限于PS、PE、PP、TPE、TPU、m-PPE、TPEE、PEBAX、PA系列、PET中的任意一种。
  3. 根据权利要求1所述的洁净无水工艺制备热塑性聚合物发泡珠粒的方法,其特征在于:步骤2)中所述发泡剂气体选自CO2、N2、或两者混合物。
  4. 根据权利要求3所述的洁净无水工艺制备热塑性聚合物发泡珠粒的方法,其特征在于:步骤2)中所述发泡剂气体为CO2、N2的混合物,两者添加体积比为1:0.3-0.7。
  5. 根据权利要求1-4任一项所述的洁净无水工艺制备热塑性聚合物发泡珠粒的方法,其特征在于:聚合物粒子采用半结晶聚合物, 步骤3)中所述发泡温度为低于半结晶聚合物熔点2-5℃。
  6. 根据权利要求1-4任一项所述的洁净无水工艺制备热塑性聚合物发泡珠粒的方法,其特征在于:聚合物粒子采用无定形聚合物,步骤3)中所述发泡温度为高于玻璃化温度T g 2-10℃。
  7. 根据权利要求5或6所述的洁净无水工艺制备热塑性聚合物发泡珠粒的方法,其特征在于:制得的聚合物发泡珠粒发泡倍率为10-50倍,泡孔直径为10-100μm。
PCT/CN2018/111455 2018-08-31 2018-10-23 一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法 WO2020042308A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811011347.0 2018-08-31
CN201811011347.0A CN109265725A (zh) 2018-08-31 2018-08-31 一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法

Publications (1)

Publication Number Publication Date
WO2020042308A1 true WO2020042308A1 (zh) 2020-03-05

Family

ID=65155117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111455 WO2020042308A1 (zh) 2018-08-31 2018-10-23 一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法

Country Status (2)

Country Link
CN (1) CN109265725A (zh)
WO (1) WO2020042308A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110126171B (zh) * 2019-05-17 2021-11-02 苏州申赛新材料有限公司 一种聚合物粒子一体化发泡成型工艺
CN111730794B (zh) * 2020-06-30 2022-02-11 华东理工大学 热塑性弹性体的超临界流体发泡方法及其产品、应用
CN115648527A (zh) * 2022-11-02 2023-01-31 北京化工大学 一种聚合物发泡珠粒连续制备装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1158627A (zh) * 1994-08-23 1997-09-03 巴斯福股份公司 聚烯烃泡沫微球的制备
JP2001294701A (ja) * 2000-04-12 2001-10-23 Mitsubishi Kagaku Form Plastic Kk スチレン系発泡性樹脂粒子の製造方法
CN104212036A (zh) * 2014-09-05 2014-12-17 华侨大学 一种聚烯烃材料发泡颗粒及其生产方法
CN107778516A (zh) * 2017-10-19 2018-03-09 宁波致微新材料科技有限公司 一种聚合物微孔发泡材料的制备方法
CN108359123A (zh) * 2018-03-07 2018-08-03 华东理工大学 一种热塑性聚合物发泡珠粒及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI272434B (en) * 2005-08-31 2007-02-01 Chi Lin Technology Co Ltd Method of making light-reflecting article
CN106336523A (zh) * 2016-08-31 2017-01-18 杭州博适特新材料科技有限公司 一种制备热塑性聚合物发泡珠粒的方法
CN106493870A (zh) * 2016-10-17 2017-03-15 广东聚石化学股份有限公司 一种发泡聚丙烯珠粒连续生产线
CN107722331A (zh) * 2017-09-15 2018-02-23 浙江大学 超临界二氧化碳两步泄压发泡技术制备具有双孔结构骨组织工程支架的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1158627A (zh) * 1994-08-23 1997-09-03 巴斯福股份公司 聚烯烃泡沫微球的制备
JP2001294701A (ja) * 2000-04-12 2001-10-23 Mitsubishi Kagaku Form Plastic Kk スチレン系発泡性樹脂粒子の製造方法
CN104212036A (zh) * 2014-09-05 2014-12-17 华侨大学 一种聚烯烃材料发泡颗粒及其生产方法
CN107778516A (zh) * 2017-10-19 2018-03-09 宁波致微新材料科技有限公司 一种聚合物微孔发泡材料的制备方法
CN108359123A (zh) * 2018-03-07 2018-08-03 华东理工大学 一种热塑性聚合物发泡珠粒及其制备方法

Also Published As

Publication number Publication date
CN109265725A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
WO2020042308A1 (zh) 一种洁净无水工艺制备热塑性聚合物发泡珠粒的方法
US11772308B2 (en) Intra-mode moulding foam molding device of thermoplastic polymer particle and molding method for same
WO2018040624A1 (zh) 一种制备热塑性聚合物发泡珠粒的方法
WO2020047958A1 (zh) 一种超临界流体制备无模立体结构发泡制品的方法
CN109551701A (zh) 一种半结晶聚合物原位发泡模塑成型方法
CN109251412B (zh) 一种超疏水聚四氟乙烯/高分子材料复合微孔泡沫及其制备方法
CN104987526B (zh) 聚丙烯系树脂复合发泡颗粒及其制备方法与应用
CN1718410A (zh) 半熔融模压成型制备开孔型微孔塑料制品的方法
CN112888542B (zh) 用于制备三维物体的3d打印系统
TW201609343A (zh) 聚(甲基)丙烯醯亞胺粒子在封閉式模具內進行模具發泡以製造硬式泡沫芯材
WO2019024586A1 (zh) 一种微粒径热塑性微气囊聚氨酯弹性体材料及其制备方法
TW201615378A (zh) 用於製造硬質發泡芯材之聚(甲基)丙烯醯亞胺粒子在封閉式模具中隨壓力之模發泡
CN111168921A (zh) 一种微孔泡沫颗粒材料的恒温恒压连续发泡成型装置及其制备方法
CN112876796A (zh) 一种单分散聚合物多孔微球及其制备方法
CN108359123B (zh) 一种热塑性聚合物发泡珠粒及其制备方法
CN105291340B (zh) 利用高吸水树脂作为载体的水发泡注射方法
CN111086145A (zh) 一种粒子熔合超临界模压发泡生产工艺及装置
KR840000070B1 (ko) 성형용 열가소성 물질을 팽창시키는 방법
CN210477572U (zh) 一种粒子熔合超临界模压发泡生产装置
JP2013503061A (ja) 発泡した重合体材料からプラスティックスの栓を圧縮成形する方法
CN112172002A (zh) 一种用于制备聚合物发泡材料的方法和装置
CN108749062B (zh) 基于模板制备的拉胀纤维的加工方法、装置及用途
JP7445209B2 (ja) ポリマー発泡材料を製造するための方法及び装置
CN211868424U (zh) 一种微孔泡沫颗粒材料的恒温恒压连续发泡成型装置
CN103072253B (zh) 一种适用于热塑性弹性体挤出吹塑的成型工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18932120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18932120

Country of ref document: EP

Kind code of ref document: A1