WO2020040502A1 - 금속이온에 결합된 이온화합물을 포함하는 암 치료용 약학 조성물 - Google Patents

금속이온에 결합된 이온화합물을 포함하는 암 치료용 약학 조성물 Download PDF

Info

Publication number
WO2020040502A1
WO2020040502A1 PCT/KR2019/010485 KR2019010485W WO2020040502A1 WO 2020040502 A1 WO2020040502 A1 WO 2020040502A1 KR 2019010485 W KR2019010485 W KR 2019010485W WO 2020040502 A1 WO2020040502 A1 WO 2020040502A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
pharmaceutical composition
synergistic
cells
lactate
Prior art date
Application number
PCT/KR2019/010485
Other languages
English (en)
French (fr)
Inventor
배철민
Original Assignee
주식회사 메타파인즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=67254810&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2020040502(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 메타파인즈 filed Critical 주식회사 메타파인즈
Priority to AU2019324286A priority Critical patent/AU2019324286B2/en
Priority to US17/269,347 priority patent/US20210244757A1/en
Priority to CN201980054305.1A priority patent/CN112584830B/zh
Priority to JP2021534100A priority patent/JP7112791B2/ja
Priority to EP19850999.4A priority patent/EP3842042A4/en
Priority to BR112021003078-6A priority patent/BR112021003078A2/pt
Priority to MX2021002027A priority patent/MX2021002027A/es
Priority to CA3109360A priority patent/CA3109360C/en
Publication of WO2020040502A1 publication Critical patent/WO2020040502A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/375Ascorbic acid, i.e. vitamin C; Salts thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/16Inorganic salts, minerals or trace elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/191Carboxylic acids, e.g. valproic acid having two or more hydroxy groups, e.g. gluconic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/06Aluminium, calcium or magnesium; Compounds thereof, e.g. clay
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/52Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an inorganic compound, e.g. an inorganic ion that is complexed with the active ingredient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/15Vitamins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/308Foods, ingredients or supplements having a functional effect on health having an effect on cancer prevention

Definitions

  • the present invention relates to a pharmaceutical composition for treating cancer, and more particularly, the pharmaceutical composition for treating cancer includes an ionic compound in which two compounds selected from ascorbic acid, dichloroacetic acid and lactate are combined with one metal ion.
  • the pharmaceutical composition for treating cancer includes an ionic compound in which two compounds selected from ascorbic acid, dichloroacetic acid and lactate are combined with one metal ion.
  • different compounds are simultaneously uptake into cancer cells, and they act through different mechanisms on cancer cells, and thus, the metabolic processes of cancer cells are overlapped and complex, thereby focusing on one specific mutation or cancer cell growth signal.
  • the present invention relates to a pharmaceutical composition for treating cancer that is more effective than an anticancer agent, and is less susceptible to drug resistance, thereby more effectively inhibiting cancer cell proliferation, invasion, metastasis, and the like.
  • Surgical treatment, chemotherapy or radiation therapy which is possible in early and intermediate cancers, is the first priority for treating cancers with high mortality.
  • current cancer therapies generally have a variety of side effects, such as only the initial cancer treatment or the likelihood of recurrence and destruction of normal cells in addition to cancer cells.
  • the side effects of active treatment may be more serious. Therefore, a treatment that slows the progress of cancer cells and reduces side effects and improves the quality of life is often selected.
  • chemotherapy is a method of destroying or inhibiting DNA or related enzymes (Enzyme) necessary for the proliferation of cancer cells by administering drugs orally or by injection.
  • Chemotherapy is used as a standard therapy for treating metastatic cancer in that it can reach cancer and treat metastatic cancer in any part of the body, compared to radiotherapy or surgical operation.
  • chemotherapy can not cure cancer, but it plays an important role in relieving symptoms, improving the quality of life and extending the life of the patient.
  • the problem with most chemotherapy drugs is not only cancer cells, but also normal cells, especially bone marrow, hair follicles, and gastrointestinal endothelial cells that are proliferating in the human body.
  • Normal cells produce energy by completely oxidizing glucose to water and carbon dioxide by oxidative phosphorylation in the presence of oxygen, whereas cancer cells oxidize glucose to pyruvate in a hypoxia environment (Hypoxia). After that, the route to reduce to lactate (lactate) is selected. Thus, cancer cells consume greater amounts of glucose than normal cells, revealing that they consume less oxygen than normal cells and revealing the presence of enormous amounts of lactate in the ascites of cancer patients. It was found that the metabolic pathway that produces ATP was used through the glycolytic process of producing excessive amounts of.
  • cancer cells particularly solid cancer cells
  • ATPs energy sources
  • the Warburg effect can also be attributed to the adaptation of cancer cells to the hypoxia microenvironment, which inhibits the proteosomal degradation of HIF1 (a transcription factor induced when cells lack oxygen). Stabilizes HIF1 and induces its activation as a transcription factor.
  • HIF1 protein type 1 that transports sugars
  • MCT4 monocarboxylic acid transporter
  • HIF1 Lactate dehydrogenase A
  • LDHA Lactate dehydrogenase A
  • PDH pyruvate dehydrogenase
  • HIF1 is a very important factor inducing the Warburg effect through direct expression control of various factors related to glucose influx and glycolysis.
  • cancer cells quickly release lactate, which is the end result of glycolysis, to prevent acidification by itself, and the released lactate is produced from cytotoxic T cells and dendritic cells, resulting in anti-cancer effects.
  • cytokine Cytokine
  • NKp46 a cognitive receptor for NK cells, a natural killer cell
  • immunokillers and inhibitors Inhibits apoptosis of cancer cells.
  • endothelial cells around cancer cells infiltrate the released lactate and activate IL-8 (a protein that acts as a chemical inducer that activates inflammatory cells and attracts them to the site of inflammation) and VEGF (angiogenesis factor).
  • IL-8 a protein that acts as a chemical inducer that activates inflammatory cells and attracts them to the site of inflammation
  • VEGF angiogenesis factor
  • angiogenesis Induces the expression and promotes the migration of vascular endothelial cells, resulting in angiogenesis (Angiogenesis).
  • This metabolic reprogramming of cancer cells is an evolutionarily chosen metabolic transformation strategy to produce precursors such as nucleotides, lipids and amino acids needed for the synthesis of cellular components of rapidly growing cancer cells rather than simply producing ATP. It is understood that growing cancer cells use this metabolic pathway strategically.
  • the development of cancer by various carcinogenic factors that induce the formation and growth of existing cancers is closely related to cancer cell metabolism, and reprogramming of cell metabolism may be an important anticancer target to effectively treat cancer. .
  • the development of metabolic target therapeutics for controlling glucose metabolism of cancer cells has been intensively performed. Development of cancer treatments using drugs effectively is being carried out.
  • an object of the present invention is a pharmaceutical for cancer treatment comprising an ionic compound in which two compounds selected from ascorbic acid, dichloroacetic acid and lactate are combined with one metal ion selected from Ca, Zn, Mg and Fe. It is to provide a composition.
  • the present inventors have focused on the main metabolic pathways unique to cancer cells in order to develop a method for effectively inhibiting the proliferation and metastasis of cancer cells.
  • Aerobic glycolysis is a cancer cell that uses oxygen instead of oxygen instead of oxidative phosphorylation, an energy metabolic process that requires oxygen.
  • Normal cells can survive in hypoxia environments, such as insurmountable solid cancers, and inactivate apoptosis control processes that originate from the mitochondria.
  • the second notable metabolic pathway of cancer cells relates to the large amount of lactate produced through glycolysis, and the lactate is quickly discharged out of the cancer cells to prevent the cancer cells from acidifying themselves.
  • Acidification Acidosis
  • the activity of NK and CTL cells are inhibited by the acidified environment, and eventually lead to angiogenesis, metastasis of cancer cells and immunosuppression.
  • calcium is known to be maintained at low concentrations in cancer cells. Reducing the supply of calcium to the mitochondria in cancer cells inhibits cancer cell proliferation due to energy depletion, while increasing the calcium supply overloads the mitochondria and kills the cancer cells. Therefore, it was noted that cancer cells react more sensitively to calcium than normal cells, and when homeostasis of calcium in the cancer cells is destroyed, cancer cells die beyond the inhibition of proliferation.
  • the present invention is a metal ion selected from Ca, Zn, Mg, Fe is selected from two compounds selected from ascorbic acid, dichloroacetic acid and lactate, which is an ionic compound effectively acting on the main metabolic pathways unique to cancer cells. It provides a pharmaceutical composition for treating cancer comprising an ionic compound combined with.
  • the pharmaceutical composition for treating cancer according to the present invention comprises an ionic compound in which two compounds selected from ascorbic acid, dichloroacetic acid and lactate are combined with one metal ion selected from Ca, Zn, Mg, and Fe as an active ingredient. It can be used as a metabolic anticancer agent, and can effectively inhibit the proliferation of cancer cells.
  • the pharmaceutical composition for treating cancer according to the present invention includes compounds having different mechanisms, such as cancer cell growth inhibitory compound and cancer cell metastasis inhibiting compound, thereby simultaneously acting on major metabolic enzymes to duplicate the metabolism of cancer cells.
  • compounds having different mechanisms such as cancer cell growth inhibitory compound and cancer cell metastasis inhibiting compound, thereby simultaneously acting on major metabolic enzymes to duplicate the metabolism of cancer cells.
  • cancer cell growth inhibitory compound and cancer cell metastasis inhibiting compound thereby simultaneously acting on major metabolic enzymes to duplicate the metabolism of cancer cells.
  • the pharmaceutical composition for treating cancer according to the present invention can improve uptake of cancer cells when administered in the body as an ionic compound.
  • the pharmaceutical composition for treating cancer according to the present invention improves cancer cell uptake by converting an acidic compound into a neutral metal salt form, and is less susceptible to drug resistance, and acts as a cancer cell proliferation, infiltration and metastasis. Can be effectively suppressed.
  • the present invention may provide a method for treating cancer and a method for inhibiting cancer metastasis using the pharmaceutical composition for treating cancer according to the present invention.
  • the present invention can provide a food composition for cancer metastasis suppression or cancer improvement, including the pharmaceutical composition for treating cancer according to the present invention.
  • the pharmaceutical composition for treating cancer according to the present invention has low side effects in the body, so that it can be used as an additive in food and high dose administration.
  • Figure 1a is a graph showing the calcium concentration in cancer cells treated with the calcium salt of Examples 1 to 3.
  • FIG. 1B is an image showing calcium in cancer cells treated with the calcium salts of Examples 1 to 3.
  • FIG. 1B is an image showing calcium in cancer cells treated with the calcium salts of Examples 1 to 3.
  • Figure 2 is a graph showing the lactate concentration in cancer cells treated with the calcium salt of Examples 1 to 3.
  • Figure 3 is a graph showing the concentration of lactate released in cancer cells treated with the calcium salt of Examples 1 to 3.
  • Figure 4 is a graph showing the concentration of ascorbic acid in cancer cells treated with calcium salts of Examples 1 and 2 and Comparative Examples 1 and 2.
  • Figure 5 is a graph showing the pH in cancer cells treated with the calcium salt of Examples 1 to 3.
  • Figure 6 is a graph showing the pyruvic acid concentration in cancer cells treated with the calcium salt of Examples 1 to 3.
  • Figure 7 is a graph showing the ⁇ -KG concentration in cancer cells treated with the calcium salt of Examples 1 to 3.
  • Figure 8 is a graph showing the expression amount of PARP, ⁇ -catenin, VEGF and ⁇ -actin expressed from cancer cells treated with the calcium salt of Examples 1 to 3.
  • Example 11 is an image confirming the cell colonization ability by treating the calcium salt of Example 1 to colorectal cancer cell line.
  • Figure 13 is a graph confirming the co-delivery effect by treating the calcium salt and 5-FU anticancer agent of Example 1 to the colon cancer cell line HCT-116.
  • Example 14 is a graph confirming the co-delivery effect by treating calcium salt and 5-FU anticancer agent of Example 2 to HCT-116, a colorectal cancer cell line.
  • Figure 15 is a graph confirming the co-delivery effect by treating the calcium salt and SN-38 anticancer agent of Example 1 to the colon cancer cell line HCT-116.
  • Figure 16 is a graph confirming the co-delivery effect by treating calcium salt and SN-38 anticancer agent of Example 2 to HCT-116, a colon cancer cell line.
  • 17 is a graph confirming the co-delivery effect by treating calcium salt and Paclitaxel anticancer agent of Example 1 to HCT-116, a colorectal cancer cell line.
  • Example 18 is a graph confirming the combined delivery effect by treating calcium salt and Paclitaxel anticancer agent of Example 2 to HCT-116, a colon cancer cell line.
  • Figure 19a is a photograph of the observation result after injecting the calcium salt of Example 1 to the mouse model (DLD-1 orthotopic model) after 1 week
  • Figure 19b is a mouse model of the calcium salt of Example 1 (DLD- 1 orthotopic model) is a graph measuring the weight of cancer tissue dissected 1 week after administration.
  • 20 is an image photograph of the growth saturation of cancer by date after luminescence imaging measurement after administering calcium salts of Examples 1 to 3 in a mouse model implanted with A549 / LUC cells in the lung.
  • FIG. 21 is a graph showing the image of FIG. 20 by measuring a region of interest (ROI) which is a program of an IVIS spectrum (Xenogen).
  • ROI region of interest
  • Xenogen IVIS spectrum
  • FIG. 22 is a graph showing the survival rate after the administration of the calcium salts of Examples 1 to 3 in a mouse model implanted with A549 / LUC cells in the lung.
  • the present invention is an ionic compound in which two compounds selected from ascorbic acid, dichloroacetic acid, and lactate are combined with one metal ion selected from Ca, Zn, Mg, and Fe. It provides a pharmaceutical composition for treating cancer comprising as an active ingredient.
  • the ascorbic acid (L-ascorbic acid) is a vitamin C, Nobel Prize winner Linus Pauling has already been identified as a non-toxic anticancer drug.
  • ascorbic acid does not show any particular toxicity even when administered to the human body in excess (50g or more), and due to the structure similar to glucose can competitively suppress glucose addition of cancer cells (glucose addition).
  • high doses of ascorbic acid can induce cancer cell necrosis by dropping glutathione or NADPH in cancer cells and generating free radicals (ROS).
  • ROS free radicals
  • ascorbic acid can induce cancer cells to differentiate into normal cells and inhibit the spread of cancer cells to peri-cancerous tissues through the blocking of enzymes that help collagen synthesis and cancer metastasis.
  • apoptosis of cancer cells may be induced by a decrease in the potential of the mychondrial membrane, expression of Tf transporters, reduction of iron uptake, and an increase in free radicals (ROS) in cancer cells.
  • ROS free radicals
  • the stability of the body is increased, the uptake into cancer cells is increased, which is more than the anticancer effect of conventional ascorbic acid, and can induce cancer cell self-killing even at relatively low concentrations. .
  • hypoxia-inducible factor-1 HIF-1
  • HIF-1 hypoxia-inducible factor-1
  • Pyruvate Dehydogenase Kinase which is expressed by pyruvate kinase.
  • Rubinate dehydrogenase complex (Pyruvate Dehydrogenase Complex) is inhibited.
  • pyruvic acid is not converted into acetyl-CoA, and pyruvic acid accumulates, resulting in a decrease in energy synthesis of mitochondria.
  • pyruvate accumulates in excess, pyruvate is converted into lactate and lactate accumulates around cancer cells.
  • lactate accumulation occurs, starting with the expression of pyruvate kinase.
  • the dichloroacetic acid is not toxic and may block the aerobic glycolysis pathway described above.
  • the expression of pyruvate kinase can be inhibited to inhibit the accumulation of lactate.
  • reconstitution of the TCA cycle Tricarboxylic Acid Cycle
  • glucose metabolism reprogramming ie normalization of mitochondrial metabolism
  • the dichloroacetic acid can be combined with a suitable metal ion, thereby improving the anticancer effect of the existing dichloroacetic acid, induce mitochondrial metabolism normalization, induce free radicals (ROS) can kill cancer cells.
  • ROS free radicals
  • dichloroacetic acid is combined with a suitable metal ion, thereby reducing the accumulation of lactate can inhibit the acidification (Tumor acidosis) of cancer cells.
  • the lactate includes lactic acid (Latic acid), D-lactate and L-lactate, it also means to include D-lactic acid and L-lactic acid.
  • L-lactate dehydrogenase B an enzyme that converts lactate or lactic acid to pyruvic acid and simultaneously NAD + to NADH
  • LDHA L-lactate dehydrogenase A; reverse reaction enzyme of LDHB
  • MCT monocarboxylate transporters
  • inhibitortion of LDHA or “activation of LDHB” means the conversion of lactate to pyruvic acid.
  • inhibition of expression of MCT means inhibiting the expression of MCT involved in the inflow and outflow of lactate, thereby activating the expression of NKp46 and activating apoptosis of cancer cells.
  • lactate by combining the lactate with a suitable metal ion it can be introduced into cancer cells to acidify the inside to induce cell death.
  • the metal ion may be one selected from Ca, Zn, Mg, and Fe. Preferably it is Ca, Mg, Fe, More preferably, it is a Ca2 + ion, It is not limited to this.
  • the Ca 2+ ions affects calcium homeostasis of cancer cells, and induces calcium accumulation in the mitochondria, thereby generating excess free radicals in cancer cells. Can cause cancer cell death.
  • cancer cells in the mitochondria responsible for energy production calcium is directly linked to alpha-ketoglutarate dehydrogenase, an important factor in the normal operation of the TCA circuit, the loss of calcium homeostasis is a cancer cell Is known to be particularly important in reducing Excessive increase in intracellular calcium levels activates endonuclease and many proteases, leads to mitochondrial metabolism, releases cytochrome C, activates caspase 9, and subsequently activates carspace 3 and 7. This leads to apoptosis.
  • Ionic compound refers to a compound in which ions having charges opposite to each other by electrostatic force are formed through ionic bonds, which generally exhibit electrical neutrality.
  • the ionic compounds included in the pharmaceutical composition according to the invention are preferably calcium salts of ascorbic acid and dichloroacetic acid, calcium salts of ascorbic acid and lactate, calcium salts of dichloroacetic acid and lactate, ascorbic acid and Magnesium salts of dichloroacetic acid, magnesium salts of ascorbic acid and lactate, magnesium salts of dichloroacetic acid and lactate, magnesium salts of ascorbic acid and dichloroacetic acid, magnesium salts of ascorbic acid and lactate, dichloroacetic acid and lactate Magnesium salt of ascorbic acid and iron salts of dichloroacetic acid, iron salts of ascorbic acid and lactate, iron salts of dichloroacetic acid and lactate, more preferably ascorbic acid and dichloroacetic acid Calcium salts, ascorbic acid and lactate calcium salts, dichloro Which may be a one, but are not limited to, of the calcium salt of acetate and lactate.
  • the "calcium salt” refers to an ionic compound produced or synthesized in a form in which the compound is combined with calcium ions
  • the “magnesium salt” refers to an ionic compound produced or synthesized in a form in which the compound is combined with magnesium ions
  • the term “iron salt” means an ionic compound produced or synthesized in a form in which the compound is combined with iron ions.
  • compositions according to the invention can be used for radiation therapy or in combination therapy with anticancer agents.
  • anticancer agents since the expression of PARP, HIF-1 ⁇ and VEGF, which imparts radiation resistance to cancer cells during radiation irradiation, is reduced, the anticancer activity of radiation is enhanced when combined with irradiation, thereby increasing the radiation dose. It can be made to exhibit the same level of anti-cancer activity while reducing.
  • the irradiation dose of radiation that can be used is not particularly limited to 2 to 10Gy per day, the radiation may be irradiated once a day, may be irradiated over several days by dividing the dose.
  • the pharmaceutical composition according to the present invention comprises two kinds of compounds selected from ascorbic acid, dichloroacetic acid, and lactate by combining an ionic compound with one metal ion selected from Ca, Zn, Mg, and Fe.
  • Compounds can be simultaneously uptake in cancer cells without sacrificing their respective anticancer effects. This effect may be superior to the existing anti-cancer drug combination (Combi-therapy).
  • the pharmaceutical composition according to the present invention when combined with the pharmaceutical composition according to the present invention and an anticancer agent, it may exhibit a better anticancer effect than the anticancer effect by the administration of a single anticancer agent.
  • the anticancer agent which may be co-administered with the pharmaceutical composition according to the present invention is not particularly limited so long as it does not directly affect the overall metabolic process of cancer cells, and is known as an example of an anticancer agent Imatinib, 5-FU ( 5-Florouracil, Irinotecan, Sunnytinib, Sunitinib, Oxaliplatin, Paclitaxel, Lapatinib, Trastuzumab, Herceptin, Gefitinib, Erlotinib, Erlotinib (Erlotinib), Methotrexate, Carboplatin, Docetaxel, Everolimus, Sorafenib, Inhibitor of carbonic anhydrase, Monocarboxyl Inhibitors of the monocarboxylate transporter, Pembrolizumab, Atezolizumab, PD-1 anticancer drugs, Nivolumab, PARP-1 (Poly (ADP-ribose) polymerase 1) ) In
  • the cancer is a cancer that can be suppressed proliferation, infiltration, metastasis, etc. by the disturbance of metabolic processes, for example lung cancer, breast cancer, colon cancer, gastric cancer, brain cancer, pancreatic cancer, thyroid cancer, skin cancer, bone marrow cancer, lymphoma, Cancer may be selected from the group consisting of uterine cancer, cervical cancer, kidney cancer and melanoma.
  • the pharmaceutical composition of the present invention may be prepared in the form of a pharmaceutical composition for treating cancer further comprising a suitable carrier, excipient or diluent commonly used in the manufacture of the pharmaceutical composition.
  • a suitable carrier excipient or diluent commonly used in the manufacture of the pharmaceutical composition.
  • the pharmaceutical composition powder, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, oral dosage forms, external preparations, external patches, suppositories, and sterile injectable solutions, respectively, according to a conventional method.
  • Formulated in the form of can be used.
  • carriers, excipients and diluents which may be included in the pharmaceutical composition include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, Calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil and the like.
  • Solid form preparations for oral administration include tablets, depots, pills, powders, granules, capsules, oral patches, and such solid form preparations, for example at least one excipient in the extract and its fractions, for example , Starch, calcium carbonate (calcium carbonate), sucrose (sucrose) or lactose (lactose), gelatin and the like can be prepared by mixing.
  • lubricants such as magnesium styrate and talc may also be used.
  • Liquid preparations for oral use may include various excipients such as wetting agents, sweeteners, fragrances, preservatives, etc., in addition to water and liquid paraffin, which are simple diluents commonly used for suspensions, solutions, emulsions, and syrups. have.
  • Formulations for parenteral administration may include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized formulations, external patches, suppositories, and the like.
  • the non-aqueous solvent and suspending agent propylene glycol, polyethylene glycol, vegetable oils such as olive oil, injectable esters such as ethyl oleate and the like can be used.
  • As the base of the suppository witepsol, macrogol, tween 61, cacao butter, laurin butter, glycerogelatin and the like can be used.
  • the content of the ionic compound included in the pharmaceutical composition of the present invention is not particularly limited, but may be included in an amount of 0.0001 to 50% by weight, more preferably 0.01 to 20% by weight based on the total weight of the final composition.
  • the concentration of metal ion in one dose of the pharmaceutical composition may be 0.1 to 300 mM.
  • the pharmaceutical composition of the present invention may be administered in a pharmaceutically effective amount, the term "pharmaceutically effective amount" of the present invention to treat or prevent a disease at a reasonable benefit / risk ratio applicable to medical treatment or prevention
  • Sufficient amount means an effective dose level refers to the severity of the disease, the activity of the drug, the age, weight, health, sex of the patient, the sensitivity to the drug of the patient, the time of administration of the composition of the invention used, the route of administration and the rate of release Period of time, factors including drugs used in combination or coincidental with the composition of the invention used, and other factors well known in the medical art.
  • the pharmaceutical compositions of the present invention may be administered alone or in combination with known anticancer agents or ingredients known to exhibit anticancer activity. In consideration of all the above factors, it is important to administer an amount that can obtain the maximum effect in a minimum amount without side effects.
  • the dosage of the pharmaceutical composition of the present invention can be determined by those skilled in the art in consideration of the purpose of use, the degree of addiction of the disease, the age, weight, sex, history, or type of substance used as an active ingredient of the patient.
  • the pharmaceutical composition of the present invention may be administered at about 1 ng to about 2,000 mg / kg, preferably 1 mg to about 400 mg / kg, per adult, and the frequency of administration of the composition of the present invention is specifically Although not limited, it can be administered once a day or several times in divided doses.
  • the dose or frequency of administration is not intended to limit the scope of the invention in any aspect.
  • the present invention provides a method of treating cancer, comprising administering the pharmaceutical composition to a subject having cancer in a pharmaceutically effective amount.
  • the term "individual” of the present invention may include without limitation mammals, farmed fish, and the like, including cancer, mice, livestock, humans, and the like.
  • treatment of the present invention refers to any action to improve or benefit the symptoms of cancer by administering a pharmaceutical composition comprising the ionic compound of the present invention as an active ingredient to a subject having cancer.
  • the type of cancer to be treated is the same as described above.
  • composition may be administered in single or multiple doses in a pharmaceutically effective amount.
  • the composition may be administered in the form of a liquid, powder, aerosol, injection, infusion (ring gel), capsule, pill, tablet, suppository or patch.
  • the route of administration of the pharmaceutical composition for treating cancer of the present invention may be administered via any general route as long as it can reach the target tissue.
  • the pharmaceutical composition of the present invention is not particularly limited, but as desired, intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration, transdermal patch administration, oral administration, intranasal administration, intrapulmonary administration, rectal administration It may be administered via such a route.
  • oral administration can be administered in an unformulated form, and since the lactate metal salt can be denatured or degraded by gastric acid, the oral composition is formulated to coat the active agent or to protect it from degradation in the stomach. It may also be administered orally in the form of oral patches. In addition, it can be administered in a long acting injection (Long acting injection) to maximize the efficacy in the injection administration.
  • the composition may be administered by any device in which the active agent may migrate to the target cell.
  • the pharmaceutical composition of the present invention can be formulated into a sustained release formulation to effectively sustain the concentration of the drug, that is, the ionic compound in the body.
  • the rate at which the drug is released in the body can be controlled while maintaining the drug by administration once or once a week.
  • the sustained release formulation may include a carrier, an excipient, and a diluent, as described above.
  • a cancer metastasis including an ionic compound in which two compounds selected from ascorbic acid, dichloroacetic acid and lactate is combined with one metal ion selected from Ca, Zn, Mg, and Fe It provides a pharmaceutical composition for inhibition.
  • the ionic compound provided in the present invention can inhibit various properties that can induce cancer cell metastasis, such as cancer cell metastasis, invasion, neovascularization, and colonization ability, as an active ingredient of the pharmaceutical composition for inhibiting cancer metastasis Can be used.
  • the ionic compound and the metal ion are the same as described above.
  • the target cancer of the metastasis is the same as defined above, for example, the pharmaceutical composition for inhibiting cancer metastasis is metastatic lung cancer, breast cancer, colon cancer, stomach cancer, brain cancer, pancreatic cancer, thyroid cancer, skin cancer, bone marrow cancer, lymphoma, And melanoma may be used to inhibit the development of one or more metastatic cancers.
  • the present invention provides a method for inhibiting metastasis of cancer, comprising administering the pharmaceutical composition to a subject in anticipated metastasis of the cancer.
  • cancer refers to a condition in which cancer or a malignant tumor has spread to other tissues away from the organ.
  • the metastasis can be suppressed.
  • the type of cancer to be metastasis suppressed the type of drug to be administered, the route of drug administration and the like are the same as described above.
  • the present invention provides a pharmaceutical composition for preventing or improving fatigue related to cancer, including the ionic compound as an active ingredient.
  • cancer-related fatigue is one of the most frequent side effects during or after the treatment of cancer, and for example, cancer-related fatigue (CRF).
  • CPF cancer-related fatigue
  • cancer fatigue syndrome refers to a symptom that is painful and persistent, irrelevant to recent activities, and interferes with daily functioning as a subjective sense of fatigue and exhaustion caused by cancer and its treatment.
  • the ionic compound according to the present invention is prepared by combining two or more compounds containing ascorbic acid and metal ions, and when applied to cancer patients to restore immune function, reduce muscle pain, stress It can be used to prevent or ameliorate cancer fatigue syndrome by exhibiting an effect of reducing fatigue. These effects can also increase the survival rate of cancer patients.
  • the present invention provides a food composition for cancer improvement comprising the ionic compound as an active ingredient.
  • the ionic compound is the same as described above.
  • the ionic compounds can be prepared and consumed in the form of foods that can improve cancer while still being common sense.
  • the content of the calcium salt contained in the food is not particularly limited, but may be included as an example of 0.001 to 10% by weight, and other examples 0.1 to 1% by weight relative to the total weight of the food composition.
  • the food is a beverage, it may be included in a ratio of 1 to 10g, 2 to 20g as another example based on 100ml as an example.
  • the composition may include additional ingredients that are commonly used in food compositions to improve the smell, taste, time and the like.
  • additional ingredients may include vitamins A, D, E, B1, B2, B6, B12, niacin, biotin, folate, panthotenic acid, and the like.
  • minerals such as zinc (Zn), iron (Fe), calcium (Ca), chromium (Cr), magnesium (Mg), manganese (Mn), and copper (Cu) may be included. It may also contain amino acids such as lysine, tryptophan, cysteine, valine and the like.
  • preservatives potassium sorbate, sodium benzoate, salicylic acid, sodium dehydroacetic acid, etc.
  • fungicides bleaching powder and highly bleaching powder, sodium hypochlorite, etc.
  • antioxidants butylhydroxyanisol (BHA), butylhydroxytoluene ( BHT), etc.
  • colorants such as tar pigments
  • colorants such as sodium nitrite, sodium nitrite
  • bleach sodium sulfite
  • seasonings such as MSG glutamate
  • sweeteners ducin, cyclate, saccharin, sodium, etc.
  • Food additives such as flavorings (vanillin, lactones, etc.), swelling agents (alum, aluminium, D-potassium hydrogenate, etc.), reinforcing agents, emulsifiers, thickeners (pigments), coatings, gum herbicides, foam inhibitors, solvents, improvers, etc.
  • the additive is selected according to the
  • the ionic compound can produce a functional food for cancer improvement.
  • the food composition may be used to produce a processed food that can improve cancer, for example, sweets, beverages, alcoholic beverages, fermented foods, canned food, milk processed foods, meat processed foods or noodles processed foods It can be prepared as a dietary supplement.
  • the confectionery includes biscuits, pies, cakes, bread, candy, jelly, gum, cereals (including meal substitutes such as grain flour).
  • Beverages include drinking water, carbonated drinks, functional hot drinks, juices (eg, apples, pears, grapes, aloes, citrus fruits, peaches, carrots, tomato juices, and the like), sikhye, and the like.
  • Alcoholic beverages include sake, whiskey, shochu, beer, liquor, fruit wine, and the like.
  • Fermented foods include soy sauce, miso, and red pepper paste.
  • Canned food includes canned seafood (eg, canned tuna, mackerel, saury, canned seashells, etc.), canned animal products (eg beef, pork, chicken, turkey canned, etc.), canned produce (corn, peaches, canned apples, etc.).
  • Milk processed foods include cheese, butter, yogurt, and the like.
  • Processed meat products include pork cutlet, beef cutlet, chicken cutlet and sausage. Includes sweet and sour pork, nuggets, breadfruits and more.
  • Noodle-processed foods include dried noodles, carded noodles, ramen noodles, udon noodles, cold noodles, sealed packaged noodles, and the like.
  • the composition may be used in retort food, soups and the like.
  • the term "functional food” of the present invention is the same term as a food for special health use (FOSHU), and the medicine, medical effect processed to efficiently display the bioregulatory function in addition to nutrition It means a high food, the food may be prepared in various forms such as tablets, capsules, powders, granules, liquid, pill to obtain a useful effect in the improvement of cancer.
  • FOSHU special health use
  • a dichloroacetic acid solution was prepared by dissolving 129 mg of dichloroacetic acid in 125 ml of distilled water, and an ascorbic acid solution was prepared by dissolving 176 mg of ascorbic acid in 125 ml of distilled water. Ascorbic acid solution was added to the dichloroacetic acid solution with gentle stirring. Then, 105 mg of calcium carbonate (CaCO 3 ) was slowly added and stirred at room temperature for 30 minutes, and then the reaction temperature was gradually raised to 60 ° C. until no further CO 2 was generated.
  • CaCO 3 calcium carbonate
  • a lactic acid solution was prepared by dissolving 90 mg of l-lactic acid in 125 ml of distilled water, and an ascorbic acid solution was prepared by dissolving 176 mg of ascorbic acid in 125 ml of distilled water.
  • Ascorbic acid solution was added to the lactic acid solution with gentle stirring.
  • 105 mg of calcium carbonate (CaCO 3 ) was slowly added and stirred at room temperature for 30 minutes, and then the reaction temperature was gradually raised to 60 ° C. until no further CO 2 was generated.
  • Dichloroacetic acid and lactate prepared according to Preparation Example 1-3 is calcium salt combined with calcium ion.
  • Example 1 To human colon cancer cell lines (HCT-116) of 5 x 10 6 cell number cultured at 37 ° C. and 5% CO 2 conditions in cancer cell culture medium (RPMI1640 medium containing 10% FBS and 1% penicillin / streptomycin).
  • the calcium salts of Examples 1 to 3 were each treated with 1 mM and incubated for 24 hours.
  • the cultured cancer cells were pulverized with a homogenizer and centrifuged, and the concentration of calcium contained in the lysate was measured using a calcium analysis kit (Biovision, SanFrancisco, CA), and is shown in FIG. 1A. In this case, cancer cells that did not receive calcium salt were used as a control.
  • the concentration of calcium in the cancer cells treated with the calcium salt of Examples 1 to 3 increased. Accordingly, it was confirmed that the composition for treating cancer containing the ionic compound bound to the metal ion according to the present invention can penetrate into cancer cells.
  • the concentration of lactate in the cancer cells treated with the calcium salts of Examples 1 to 3 was increased. Accordingly, it was confirmed that the composition for treating cancer containing the ionic compound bound to the metal ion according to the present invention can penetrate into cancer cells and increase the concentration of lactate.
  • the concentration of lactate released in cancer cells treated with the calcium salts of Examples 1 to 3 is substantially reduced. Accordingly, it was confirmed that the composition for treating cancer containing the ionic compound bound to the metal ion according to the present invention can reduce the concentration of lactate released from the cancer cells to the outside.
  • the concentration of ascorbic acid was increased in the cancer cells treated with Examples 1 and 2, while the cancer cells treated with Comparative Examples 1 and 2 were cancer cells treated with Examples 1 and 2.
  • the increased concentration of ascorbic acid was low. Accordingly, it was confirmed that the composition for cancer treatment containing the ionic compound bound to the metal ion according to the present invention is easy to penetrate into cancer cells.
  • the calcium salts of Examples 1 to 3 were treated to cancer cells to determine the effects on cancer metabolism.
  • Example 1 1 mM
  • Example 2 1 mM
  • Example 3 1 mM
  • the cultured cells were pulverized with a homogenizer and centrifuged, and the concentration of pyruvic acid contained in the lysate was measured using a pyruvic acid analysis kit (Biovision, SanFrancisco, CA), and is shown in FIG. 6. At this time, cancer cells that did not process anything was used as a control.
  • the concentration of pyruvic acid was increased in the cancer cells treated with the calcium salts of Examples 1 to 3. Accordingly, it was confirmed that the composition for treating cancer containing the ionic compound bound to the metal ion according to the present invention can increase the concentration of pyruvic acid by penetrating into cancer cells.
  • Example 1 1 mM
  • Example 2 1 mM
  • Example 3 1 mM
  • the cultured cells were crushed by a homogenizer and centrifuged, and the concentration of alpha ketoglutamic acid contained in the lysate was measured using an alpha ketoglutamic acid analysis kit (Biovision, SanFrancisco, CA) and shown in FIG. 7. At this time, cancer cells that did not process anything was used as a control.
  • the concentration of alpha ketoglutamic acid was increased in the cancer cells treated with the calcium salts of Examples 1 to 3. Accordingly, it was confirmed that the composition for treating cancer containing the ionic compound bound to the metal ion according to the present invention can increase the concentration of alpha ketoglutamic acid by infiltrating into cancer cells and inducing oxidative phosphorylation of mitochondria.
  • HCT-116 human colon cancer cell lines (HCT-116) of 5 x 10 6 cell number cultured at 37 ° C. and 5% CO 2 conditions in cancer cell culture medium (RPMI1640 medium containing 10% FBS and 1% penicillin / streptomycin).
  • RPMI1640 medium containing 10% FBS and 1% penicillin / streptomycin.
  • Various concentrations of the calcium salts of Examples 1, 2 and 3 were respectively treated and incubated for 24 hours. Cultured cells were crushed by a homogenizer and centrifuged, and the expression levels of the poly (ADP-ribose) polymerase 1 (PARP-1), ⁇ -catenin, VEGF and ⁇ -actin proteins contained in the lysate were measured. It measured using the blot and shown in FIG.
  • PARP-1 poly (ADP-ribose) polymerase 1
  • cancer cells treated with the calcium salts of Examples 1 to 3 had low expression levels of PARP-1.
  • PARP-1 is commonly used as apoptosis marker because cleavage occurs by caspase-3, which is activated when cells undergo programmed cell death, apoptosis.
  • Example 1 at 0.18 mg / ml
  • Example 2 at 0.34 mg / ml
  • Example 3 at 0.3 mg / ml
  • the full length PAPR-1 decreased the most, leading to concentration-dependent death of cancer cells. Confirmed. Accordingly, it was confirmed that the composition for treating cancer containing the ionic compound bound to the metal ion according to the present invention can reduce the expression of full length PAPR-1 and induce cancer cell death.
  • cancer cells treated with the calcium salts of Examples 1 to 3 reduced the protein level of ⁇ -catenin in a concentration-dependent manner.
  • ⁇ -catenin is a transcription factor that is mutated or overexpressed in various carcinomas such as colorectal cancer, lung cancer, breast cancer, and ovarian cancer and plays an important role in cell growth, cancer metastasis, and survival such as c-myc, cyclin D1, MMP7, and survivin. It is known to regulate the expression of proteins. Accordingly, it was confirmed that the composition for treating cancer containing the ionic compound bound to the metal ion according to the present invention can inhibit the growth of cancer cells by reducing the protein of ⁇ -catenin.
  • VEGF signaling system plays an important role in cell growth, invasion, and metastasis by regulating the lower MAPK signaling and PI3K / Akt signaling. In particular, it promotes cancer cell metastasis by increasing gene expression of matrix metalloproteinases (MMPs), which are essential for cancer cell metastasis. Therefore, it was confirmed that the composition for treating cancer containing the ionic compound bound to the metal ion according to the present invention exhibited the effect of inhibiting the metastasis of cancer cells by inhibiting the action of factors inducing angiogenesis.
  • MMPs matrix metalloproteinases
  • DCF-DA Dichlorofluorescin diacetate
  • RPMI1640 medium containing 10% FBS and 1% penicillin / streptomycin
  • cancer cells treated with calcium salts of Examples 1 to 3 increased free radicals, suggesting the possibility of inducing cell death, compared to the control without any treatment.
  • a human colon cancer cell line (HCT-116) of 3 x 10 4 cells was laid on a 6-well plate for 24 hours. After incubation, calcium salts of various concentrations of Example 1 (1 mM), Example 2 (1 mM) and Example 3 (1 mM) were treated for 24 hours, washed twice with DPBS, and trypsin-EDTA (trypsin-EDTA). ), Stained with Annexin-V / PI protocol, and measured by cell death using a FACSCanto TM II flow cytometer (Becton-Dickinson, Franklin Lakes, Nj, USA), primary argon laser.
  • FACSCanto TM II flow cytometer Becton-Dickinson, Franklin Lakes, Nj, USA
  • phosphatidyl serine In normal living cells, phosphatidyl serine (PS) is located inside the cell membrane. However, at the time of apoptosis, PS is exposed to the outside of the cell membrane, and annexin V binds to and fluoresces with PS. propidium iodide (PI) enters the cell and stains the nucleus. Cells in the early stages of apoptosis are stained only with annexin-V and not with PI, while cells in the late stages of apoptosis or cells undergoing necrosis. These cells show that the integrity of the cell membrane is impaired, so that annexin-V and PI are stained at the same time, and living cells are not stained at all. As shown in FIG. 10, cancer cells treated with the calcium salts of Examples 1 to 3 than the control without any treatment suggested the possibility of inducing apoptosis.
  • colorectal cancer cell line DLD-1
  • breast cancer cell line MDA-MB-231
  • brain cancer cell line U87MG
  • Salts were added to each well by concentration (20 mg / ml, 4 mg / ml, 0.8 mg / ml, 0.16 mg / ml, 0.032 mg / ml, 0.0064 mg / ml, 0.00128 mg / ml, 0.000256 mg / ml)
  • Ascorbic acid and dichloroacetic acid were also diluted in the same way and added to the wells for relative comparison.
  • IC 50 50% inhibitory concentration
  • IC 50 (mg / ml) of colorectal cancer cell line IC 50 of breast cancer cell line (mg / ml) IC 50 of brain cancer cell line (mg / ml)
  • Example 1 0.07 0.04 0.5
  • Example 2 0.07 0.05 0.6
  • Example 3 0.86 0.05 0.8
  • Dichloroacetic acid 1.21 0.43 3.71 Ascorbic acid 0.09 0.06 0.9
  • the calcium salts of Examples 1 and 2 are all lower in IC 50 values for colorectal cancer, breast cancer, and brain cancer cell lines compared to ascorbic acid and dichloroacetic acid. It was confirmed that the cancer cell killing effect superior to acetic acid.
  • Example 3 Calcium salt of Example 3, the IC 50 value for colorectal cancer, breast cancer, brain cancer cell line shows a lower value than dichloroacetic acid, it was confirmed that has a superior cancer cell killing effect than dichloroacetic acid.
  • the calcium salt of Example 3 shows that the IC 50 value for the colorectal cancer cell line is higher than that of ascorbic acid, but the IC 50 value for breast cancer and brain cancer cell line shows a lower value than the ascorbic acid, It was confirmed that having a superior breast cancer and brain cancer cell killing effect.
  • Seven cancer cell lines including two types of colorectal cancer cell lines (colon cancer cell lines (HCT-116, HT-29), lung cancer cell lines (A-549), liver cancer cell lines (HepG2), pancreatic cancer cell lines (PANC-1), gastric cancer cell lines ( SNU-638) and ovarian cancer cell line (A2780)) were evaluated for inhibiting cancer cell proliferation of Examples 1 and 2.
  • colon cancer cell lines HCT-116, HT-29
  • lung cancer cell lines A-549
  • liver cancer cell lines HepG2
  • pancreatic cancer cell lines PANC-1
  • gastric cancer cell lines SNU-638
  • ovarian cancer cell line A2780
  • Example 1 and Example 2 concentrations (5, 2.5, 1.25, 0.625, 0.313, 0.156, 0.078 mM). Ascorbic acid and dichloroacetic acid were treated in the same manner for relative comparison.
  • Cell lines treated with the drug were incubated for 48 hours at 37 ° C., 5% CO 2 incubator, and 10 ⁇ l of 5 mg / ml MTT reagent was added to each well. After incubation for 4 hours, the culture medium was removed, and 100 ⁇ l of each well was treated with DMSO to dissolve the MTT dye precipitate, and the absorbance was measured at 540 nm using a microplate reader.
  • 50% inhibitory concentration (IC 50 ) was defined as the concentration of the drug such that the survival rate is 50%, it is shown in Table 2 using the IC 50 value as an indicator of the anticancer effect.
  • the calcium salts of Examples 1 and 2 showed anticancer efficacy in lung cancer, liver cancer, pancreatic cancer, gastric cancer and ovarian cancer in addition to colon cancer.
  • the IC 50 value was lower than that of dichloroacetic acid, and thus had superior cancer cell killing effect compared to dichloroacetic acid.
  • Example 1 Calcium salt of Example 1, although the IC 50 value for colorectal cancer (HCT-116), pancreatic cancer, ovarian cancer cell line shows higher value than ascorbic acid, colorectal cancer (HT-29), lung cancer, liver cancer, stomach cancer IC 50 value for the cell line was lower than that of ascorbic acid, and it was confirmed that it has excellent colon cancer (HT-29), lung cancer, liver cancer, gastric cancer cell killing effect compared to ascorbic acid.
  • HCT-116 colorectal cancer
  • HT-29 colorectal cancer
  • lung cancer liver cancer
  • stomach cancer IC 50 value for the cell line was lower than that of ascorbic acid, and it was confirmed that it has excellent colon cancer (HT-29), lung cancer, liver cancer, gastric cancer cell killing effect compared to ascorbic acid.
  • Calcium salt of Example 2 has a higher IC 50 value for colorectal cancer (HCT-116) and pancreatic cancer cell lines than for ascorbic acid, but for colorectal cancer (HT-29), lung cancer, liver cancer, gastric cancer, and ovarian cancer IC 50 value for the cell line was lower than that of ascorbic acid, and it was confirmed that it had superior colon cancer (HT-29), lung cancer, liver cancer, gastric cancer, and ovarian cancer cell killing effect compared to ascorbic acid.
  • HCT-116 colorectal cancer
  • HT-29 colorectal cancer
  • Human colorectal cancer cell line HCT-116 and each ascorbic acid (0 mM, 0.2 mM, 0.5 mM), calcium salts of Examples 1 and 2 (0 mM, 0.2 mM, 0.5 mM), dichloroacetic acid (0 mM, 2 mM, 5 mM), inoculated into a solid medium containing the calcium salt of Example 3 (0 mM, 2 mM, 5 mM) and incubated for 72 hours, after the incubation was completed, the cells were fixed, and then Cancer cells in which colonies were formed by staining with matocillin were observed and shown in FIG. 11.
  • composition for treating cancer containing the metal ion-bonded ionic compound according to the present invention can reduce the survival rate of cancer cells such as colon cancer, breast cancer and brain cancer.
  • cancer cells such as colon cancer, breast cancer and brain cancer.
  • a combination of known anticancer agents and calcium salts of Examples 1 to 3 was used to verify the therapeutic effect on various cancer cell lines.
  • Colorectal cancer cell line (HCT-116) was dispensed with 1 X 10 3 cells in each of the 6-well plates containing RPMI1640 medium, and the medium was freshly replaced.
  • Calcium salt of 2 (0.2 mM), calcium salt of Example 3 (2 mM) and 5 ⁇ M of 5-FU alone were treated to each well, and 5-FU and calcium salt of Example 1 0.2 mM), 5-FU at 5 ⁇ M concentration and calcium salt of Example 2 (0.2 mM), 5-FU at 5 ⁇ M concentration, and calcium salt of Example 3 (2 mM), followed by colonization of cells
  • the formation ability was compared and shown in FIG.
  • a human colorectal cancer cell line (HCT-116) treated with no drug was used.
  • the colon cancer cell line which did not process anything formed about one hundred colonies, but the combination of 5-FU and the calcium salts of Examples 1 to 3 was treated with 5-FU alone rather than 5-FU alone. It was observed that the effect of inhibiting the colonizing ability of the cancer was more excellent.
  • Example 1 or Example 2 After dispensing 2 X 10 3 HCT-116 cells in each 96 well plate and incubating for 24 hours, various concentrations of Example 1 or Example 2 and the chemocancer Fluorouracil (5-FU), SN-38, Paclitaxel (PTX) is used in combination. After 48 hours of exposure, the combinational index (CI) was used to evaluate the cell growth inhibition rate (%) and the combined delivery effect of the combination anticancer drug combination. The synergistic effect was CI ⁇ 0.85, the additive effect was 0.85 ⁇ CI ⁇ 1.15, and the antagonistic (antagonistic) effect was CI> 1.15. In combination with Example 1 or Example 2 and the chemotherapy agent Fluorouracil (5-FU), SN-38, Paclitaxel (PTX) at most concentrations, it was confirmed that the synergistic effect was shown.
  • Example 1 and 5-FU or Example 2 and 5-FU After treating Example 1 and 5-FU or Example 2 and 5-FU in combination with HCT-116 cells for 48 hours, cell growth inhibition rate (%) and CI values are shown in Tables 4 and 5, respectively. By subdividing the values, synergistic, additive or antagonistic effects are shown in FIGS. 13 and 14, respectively.
  • Embodiment 1 or Embodiment 2 and 5-FU the Example 1 or Example 2 If the same than the IC 50 value, or the combination treatment at lower concentrations eoteuna indicate some antagonistic effects, Embodiment 1 or 2 of the IC 50 than In the case of co-treatment at high concentrations above 1,000 ⁇ M, most synergistic effects were observed under various concentration conditions.
  • Example 1 and SN-38 or Example 2 and SN-38 in combination with HCT-116 cells After treating Example 1 and SN-38 or Example 2 and SN-38 in combination with HCT-116 cells for 48 hours, cell growth inhibition rate (%) and CI values are shown in Tables 6 and 7, respectively. By subdividing the synergy, addition or antagonistic effect is shown in Figure 15 and 16, respectively.
  • Example 2 synergistic effects with SN-38 were observed at most concentration combinations, especially below the IC 50 value (430 ⁇ M) of Example 2 and below the IC 50 value (0.25 ⁇ M) of SN-38. Synergy was also observed in the combination of concentrations.
  • Example 1 and Paclitaxel or Example 2 and Paclitaxel After treating Example 1 and Paclitaxel or Example 2 and Paclitaxel for 48 hours in combination with HCT-116 cells, cell growth inhibition rate (%) and CI values are shown in Table 8 and Table 9, respectively. , Addition or antagonistic effects are shown in FIGS. 17 and 18, respectively. Combinations of concentrations below the IC 50 value (311 ⁇ M) of Example 1 or below the IC 50 value (430 ⁇ M) of Example 2 with Paclitaxel of 0.1 ⁇ M (100 nM) or less result in synergistic effects in most combinations of concentrations. Showed. Example 1, performed when the second example of the combined use of lower concentration than the IC 50 value and the Paclitaxel concentration lower than the IC 50 value (7.8 nM) treatment a synergistic effect was observed in most combinations concentration.
  • a colon cancer mouse model (DLD-1 orthotopic model) was constructed by transplanting general DLD-1 cells into the large intestine, and a lung cancer mouse model (A549 / LUC orthotopic model) was constructed by transplanting heterologous isotopes into the lung. Each mouse model was then dosed with drugs as shown in Table 10 below.
  • Example 1 The calcium salt of Example 1 was administered to the same mouse model (DLD-1 orthotopic model) constructed in Experimental Example 5-1, dissected 1 week later, and the growth state of the cancer cells was observed in FIG. 19A. Cancer tissue weight was measured to confirm the anticancer efficacy of the inventive substance in vivo and is shown in FIG. 19B.
  • the calcium salts of Examples 1 to 3 were respectively administered to the same mouse model (A549 / LUC orthotopic model) constructed in Experimental Example 5-1, and the tissue distribution, metastasis, and anticancer efficacy of the inventive substances were confirmed in vivo.
  • the image photograph is shown in FIG.
  • the results obtained by measuring the in vivo image by measuring a region of interest (ROI), which is a program of the IVIS spectrum (Xenogen) are shown in FIG. 21, and in FIG. 22, a mouse model (A549 / The survival rate of the LUC orthotopic model was measured.
  • ROI region of interest
  • Xenogen a program of the IVIS spectrum
  • Example 1 the calcium salt of Examples 1 to 3 was confirmed to have excellent anti-cancer efficacy, metastasis suppression ability and excellent survival rate compared to the control.
  • Example 1 the growth and metastasis of cancer tissues were not shown at all, even after the drug administration period was stopped, which suggests that mitochondria in the cancer cells have been normalized.
  • the experimental results described above confirmed that the ionic compound bound to the metal ion according to the present invention can increase the uptake for cancer cells, it was confirmed that it can be acidified by lowering the pH in the cancer cells, 1 It was confirmed that the ionic compound in which two compounds were combined with metal ions than the compounds of each species (ascorbic acid or dichloroacetic acid) was more effective in killing cancer cells.
  • the ionic compound was found to increase the pyruvic acid and alpha ketoglutamic acid, thereby inhibiting glycolysis of cancer cells, cancer cell proliferation and metastasis through the change in the expression level of ⁇ -catenin, PARP, and VEGF Confirmed that it can be reduced.
  • the proliferation test of cancer cell lines it was confirmed that when combined with a conventional anticancer agent can exhibit a better anticancer effect.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Oncology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 암 치료용 약학 조성물에 관한 것으로, 보다 구체적으로 암 치료용 약학 조성물은 아스코빅산, 다이클로로아세트산 및 락테이트 중 선택된 2종의 화합물이 칼슘이온과 결합된 이온화합물을 포함하며, 서로 다른 화합물이 암 세포에 동시에 uptake됨으로서 암 세포의 서로 다른 기작을 갖는 주요 대사 효소에 동시에 작용하여 암 세포의 대사과정을 중복적, 복합적으로 교란함으로써 하나의 특정 돌연변이나 암 세포 성장 신호에 초점이 맞추어진 항암제보다 치료효과가 뛰어나고, 약물 저항성 발생에 덜 취약하여 암 세포의 증식, 침윤, 전이 등의 작용을 보다 효과적으로 억제할 수 있는 암 치료용 약학 조성물에 관한 것이다.

Description

금속이온에 결합된 이온화합물을 포함하는 암 치료용 약학 조성물
본 발명은 암 치료용 약학 조성물에 관한 것으로, 보다 구체적으로 암 치료용 약학 조성물은 아스코빅산, 다이클로로아세트산 및 락테이트 중 선택된 2종의 화합물이 1종의 금속이온과 결합된 이온화합물을 포함하며, 서로 다른 화합물이 암 세포에 동시에 uptake됨으로써 각각 암 세포에 서로 다른 기작을 통해 작용하여 암 세포의 대사과정을 중복적, 복합적으로 교란하여 하나의 특정 돌연변이나 암 세포 성장 신호에 초점이 맞추어진 종래의 항암제보다 치료효과가 뛰어나고, 약물 저항성 발생에 덜 취약하여 암 세포의 증식, 침윤, 전이 등의 작용을 보다 효과적으로 억제할 수 있는 암 치료용 약학 조성물에 관한 것이다.
일반적으로 암을 치료하는 방법으로는 외과적 수술, 방사선치료 및 화학요법의 세 가지가 있다. 각 방법은 암치료를 위해 독자적으로 사용될 수도 있고 두 가지 이상의 방법을 복합적으로 사용할 수도 있다. 많은 초기 단계의 암들은 외과적 수술로 치료가 가능하나 암이 많이 진전되었거나, 전이가 일어난 경우에는 외과적 수술만으로는 치료가 어렵고 다른 방법을 함께 사용해야 한다. 방사선 요법은 외과적 수술이 곤란한 부위나 방사선에 특히 반응성 좋은 암의 치료에 사용되는데 약물치료와 병행하거나 외과적 수술 전후에 사용될 수도 있다. 그러나 방사선요법은 방사선의 고 에너지에 의한 부작용으로 국소 부위의 정상피부에 손상을 유도하기도 하고, 전이성 암의 경우 암 줄기세포가 방사선에 내성을 보이면서 추후에 재발이나 전이가 발생하는 단점을 가지고 있다. 높은 사망률을 보이는 암을 치료하기 위하여 초기와 중기 암에서 가능한 수술치료, 항암제 요법 또는 방사선 치료법이 최우선으로 손꼽힌다. 그러나 현재의 암 치료법들은 일반적으로 초기암의 치료만 가능하거나 재발의 가능성이 높고 암 세포 이외에 정상세포까지 파괴하는 등 다양한 부작용을 가지고 있다. 특히 중증의 말기암 환자의 경우 적극적인 치료요법에 따르는 부작용이 상대적으로 더욱 심각할 수 있기 때문에 암 세포의 진행을 늦추어 부작용을 줄이고 삶의 질을 높이는 치료법이 선택되곤 한다.
일반적으로 화학요법은 약물을 경구나 주사로 투여하여, 암 세포의 증식에 필요한 DNA나 관련 효소(Enzyme)를 파괴하거나 억제하는 방법이다. 화학요법은 방사선 치료나 외과적 수술에 비해 몸의 어떤 부위에 생긴 암이라도 약물이 도달할 수 있고 전이된 암을 치료할 수 있다는 점에서 전이성 암 치료에 표준요법으로 사용되고 있다. 물론 화학요법으로 전이된 암을 완치시킬 수 있는 것은 아니지만 증상을 완화시켜 환자의 삶의 질(Quality of life)을 개선시키고 수명을 연장시켜주는 중요한 역할을 한다. 하지만 대부분 화학요법제의 문제점은 암 세포만이 아니라 정상세포 특히 인체에서 증식이 왕성하게 일어나고 있는 골수, 모낭, 위장관 내피세포 등에도 영향을 미치기 때문에 약물 치료를 받는 암환자는 골수에서 만들어지는 면역에 관계하는 세포인 백혈구 및 혈소판의 감소 등으로 세균감염, 자연출혈, 탈모, 메스꺼움 및 구토 등의 부작용을 겪게 된다. 또한 약제 내성(Drug resistance)의 발현으로 처음에는 효과가 나타났다가 결국 치료에 실패한다. 유전자 기술을 이용하여 면역력을 강화시켜 암을 치료하는 맞춤형 치료법인 면역 항암치료법은 암이 많이 진행된 단계에서는 암 세포의 활성도가 커지기 때문에 면역기능으로만은 암 세포를 제거하기 쉽지 않으며 면역체계가 너무 많이 손상된 환자, PD-1(활성화된 T 세포 표면에 존재하는 단백질)이 많이 발현되지 않은 환자에게는 잘 듣지 않는다는 단점이 있고 대량생산이 불가능하여 상당한 비용이 요구되며 임상중 환자가 사망하는 등 예상치 못한 단점들이 발현될 가능성이 있다.
최근 기존 항암제의 부작용을 줄이고 정상세포를 보호하면서 암 세포만을 선택적으로 사멸시키는 표적항암제의 출시가 증가하고 있는데 암생성 과정의 특정 인자만을 공격하기 때문에 동종의 암이라도 특정 표적인자가 나타나는 환자에게만 효과가 있다는 단점이 있다. 오랜 세월 암을 치료하기 위해 암 세포의 특징인 지속적인 세포증식 및 전이억제 조절에 기반을 둔 많은 항암제가 개발되어 왔지만 복잡한 신호전달 경로의 네트워크에 의해 조절되는 암 세포의 증식을 효과적으로 억제하는 항암제를 개발하는 것은 아직도 상당히 어려운 과제로 남아있다.
암 질환의 치료에 쉽게 적용가능하고 정상 조직에 적게 영향을 주면서 효과적으로 치료할 수 있는 새로운 치료법의 개발이 절실하다.
이를 만족하기 위해, 최근 암 세포의 고유한 대사 특징을 이용한 신규한 대사항암제가 주목받고 있다. 1970년대에 유전공학과 분자생물학 기술의 발달로 암을 유발하는 돌연변이와 염색체 이상이 발견되면서 암 연구의 초점은 암의 유전적 원인에 집중되었고 암의 독특한 대사경로는 암의 원인이 아니라 암의 발달과정에서 생기는 부수적인 효과로 인식되어서 오랫동안 연구가 되지 않았다. 하지만 암의 대사 신호와 관련된 유전자의 변이와 여러 대사체들이 직접적으로 암을 유발할 수 있음이 밝혀지고 바이오기술의 발전으로 대사체에 대한 분석이 가능해짐에 따라 암 세포의 대사 경로가 암을 치료할 수 있는 강력한 항암 타겟으로 다시 떠올랐다. 암 세포가 정상세포와는 다른 대사 경로를 사용한다는 사실이 처음 밝혀진 것은 암 세포가 새로운 경로 즉 해당작용(Aerobic glycolysis, Warburg effect)을 통한 당 대사 경로를 사용한다고 발표하여 노벨상을 수상한 독일의 생화학자 Otto Warburg에 의해서였다.
정상세포는 산소가 존재하는 환경에서는 산화적 인산화에 의해 포도당을 물과 이산화탄소로 완전히 산화시키면서 에너지를 생산하지만, 반면에 암 세포는 산소가 결여된 환경(Hypoxia)에서는 포도당을 피루브산(Pyruvate)으로 산화한 후 다시 락테이트(Lactate, 젖산)로 환원하는 경로를 선택한다. 따라서, 암 세포는 정상 세포에 비해 산소 소모량이 적다는 사실과 암환자의 복수(腹水)에서 엄청난 양의 락테이트가 존재함을 밝혀내면서 암 세포가 정상세포보다 엄청난 양의 포도당을 소비하여 락테이트를 과량으로 생산하는 해당(解糖) 과정을 통하여 ATP를 생산하는 특이한 대사 경로를 사용한다는 것이 밝혀진 것이다.
다수의 경우 암 세포, 특히 고형암 세포는 해당작용을 에너지원(ATP) 생산을 위한 대사적 경로로 이용하는데 이들 기전 중에는 미토콘드리아 결함과 기능이상, 종양의 저산소 미세환경에 대한 적응, 암유발성 신호경로 및 대사성 효소의 비정상적 발현이 포함된다. Warburg 효과는 저산소(Hypoxia) 미세환경에 암 세포가 적응한 결과라고도 할 수 있는데, 저산소 환경은 HIF1(세포가 산소가 부족할 때 유도되는 전사인자)의 유비퀴틴화 단백질 분해과정(Proteosomal Degradation)을 억제하여 HIF1를 안정화하고 전사인자로서의 활성화를 유도한다. 한편, GLUT1(당을 수송하는 단백질 1형)은 HIF1에 의해 발현이 유도되어, 포도당이 암 세포내로 유입되는 것을 지원하고, MCT4(모노카르복실산 수송체)도 HIF1의 직접적 표적인자로서, 피루브산을 락테이트로 변환하는 락테이트 탈수소효소(Lactate Dehydrogenase A; LDHA)에 의하여 락테이트를 암 세포의 내부에서 외부로 방출되도록 한다. 또한 HIF1는 피루브산을 Acetyl-Co로 변환시키는 효소인 피루브산 탈수소효소(Pyruvate Dehydrogenase; PDH)를 저해하는 피루브산 탈수소효소 키나아제(Pyruvate Dehydrogenase Kinase)의 발현을 유도하여 산화적 인산화 과정으로의 경로를 폐쇄하는 역할을 수행한다. 따라서, HIF1는 포도당 유입 및 해당과정에 관련한 다양한 인자들의 직접적 발현조절을 통하여 Warburg 효과를 유도하는 매우 중요한 인자라 할 수 있다.
한편 암 세포는 스스로 산성화가 되는 것을 막기 위해 해당작용의 최종 결과물인 락테이트를 빠르게 밖으로 배출하는데 배출된 락테이트는 세포독성 T 세포(Cytotoxic T Cell)와 수지상세포(Dendritic Cell)에서 생산되어 항암 효과를 나타내는데 중요한 역할을 하는 사이토카인(Cytokine)을 불활성화하며, 자연살해세포(Natural KillerCell)의 활성화 수용체인 NKp46(자연살해세포인 NK세포의 인지 수용체)의 발현을 억제하고 면역저해 및 억제물질생산을 촉진함으로써 암 세포의 세포사멸능을 억제한다. 더불어 암 세포 주변 혈관내피세포(Endothelial Cell)는 배출된 락테이트를 유입시켜 IL-8(염증세포들을 활성화하고, 이들을 염증부위로 유인하는 화학유인인자 역할을 하는 단백질)과 VEGF(혈관생성인자)의 발현을 유도하고 혈관내피세포의 이동을 촉진하여 결과적으로 신생혈관형성(Angiogenesis)을 유도한다. 이러한 암 세포의 대사 재프로그래밍은 단순히 ATP를 생산하기보다는 빠르게 성장하는 암 세포의 세포 구성물질 합성에 필요한 뉴클레오티드, 지질, 아미노산 등과 같은 전구물질을 생산하기 위하여 진화적으로 선택된 대사변환 전략이며 지속적으로 빠르게 성장하는 암 세포가 이러한 대사경로를 전략적으로 이용한다고 이해되고 있다. 이와 같이 기존의 암의 형성과 성장을 유도하는 다양한 발암인자들에 의한 암의 발달과정이 암 세포 대사와 밀접한 관련이 있으며 세포 대사의 재프로그래밍이 암을 효과적으로 치료할 수 있는 중요한 항암 타겟이 될 수 있다. 이러한 암 세포만의 특이적인 대사신호를 이해하여 종양을 선택적으로 제거하고자 암 세포의 당 대사를 조절하기 위한 대사 표적치료제 개발이 현재 집중적으로 수행되고 있는데 특히 기존에 당 대사 및 감염성 질환에 사용되었던 다양한 약물을 효과적으로 이용한 암 치료제 개발이 수행되고 있다.
[선행기술문헌]
[특허문헌]
1. 대한민국 공개특허공보 제10-2016-0082918호(2016. 07. 11.)
2. 미국 특허출원 공개공보 US2011/0117210호(2011. 05. 19.)
3. 대한민국 공개특허공보 제10-2005-0058278호(2005. 06. 16.)
본 발명자들은 암 세포만의 특이적인 대사신호를 이해하고 이에 기초하여 종양을 선택적으로 제거할 수 있는 암 표적 치료제 및 치료방법을 개발하기 위하여, 다각도로 연구한 결과 아스코빅산, 다이클로로아세트산 및 락테이트 중 선택된 2종의 화합물이 Ca, Zn, Mg, Fe로부터 선택되는 1종의 금속이온과 결합된 이온화합물을 이용하는 경우, 암 세포의 증식, 침윤, 전이 등을 효과적으로 억제할 수 있음을 확인하여 본 발명을 완성하였다.
따라서, 본 발명의 목적은 아스코빅산, 다이클로로아세트산 및 락테이트 중 선택된 2종의 화합물이 Ca, Zn, Mg, Fe로부터 선택되는 1종의 금속이온과 결합된 이온화합물을 포함하는 암 치료용 약학 조성물을 제공하는 것이다.
상기 목적을 달성하기 위해, 본 발명자는 암 세포의 증식 및 전이를 효과적으로 억제하는 방법을 개발하고자 암 세포 특유의 주요 대사경로에 주목하였다.
첫 번째로 주목한 암 세포의 대사 경로는 해당작용(Aerobic glycolysis)으로, 암 세포는 산소를 필요로 하는 에너지 대사과정인 산화적 인산화(Oxidative phosphorylation)보다 산소가 필요하지 않는 해당작용을 주로 이용함으로써 정상세포는 살 수 없는 고형암 같은 저산소(Hypoxia) 환경에서도 생존이 가능하며 미토콘드리아로부터 시작되는 세포사멸 조절 과정이 비활성화 된다는 점이다.
두 번째로 주목한 암 세포의 대사 경로는 해당작용을 통해서 생산된 다량의 락테이트(Lactate)에 관한 것으로, 락테이트가 암 세포 자체가 산성화되는 것을 막기 위하여 암 세포 밖으로 빠르게 배출되어 암 세포주변 환경을 산성화(Acidosis)로 만들고, 산성화된 주변환경에 의하여 NK 및 CTL세포의 활성은 저해되고, 결국 신생혈관형성(Angiogenesis), 암 세포의 전이 및 면역억제를 유도하게 된다는 점이다.
세 번째로, 칼슘은 암 세포의 생존 및 증식에 필수적인 요소로서 세포질의 칼슘 완충작용(Cytosolic calcium buffering)에 주 역할을 하며, 활성산소 생산과 관련된 세포의 자기사멸(Apoptosis)과 자기소화작용(Autophagy)에도 큰 영양을 미친다는 점에 주목하였다. 특히 칼슘은 암 세포에서 저농도로 유지되는 것으로 알려져 있는데 암 세포에서 미토콘드리아에 칼슘의 공급량을 줄이면 에너지 고갈로 암 세포 증식이 억제되고 반대로 칼슘 공급량을 늘리면 미토콘드리아에 과부하가 걸려 암 세포가 사멸한다는 점이다. 따라서, 정상세포에 비해 암 세포는 칼슘에 보다 예민하게 반응하여 암 세포내의 칼슘의 항상성(Homeostasis)이 파괴되면 암 세포의 증식이 억제되는 것을 넘어서 사멸한다는 점에 주목하였다.
본 발명은 이러한 암 세포 특유의 주요 대사경로에 효과적으로 작용하는 이온화합물인, 아스코빅산, 다이클로로아세트산 및 락테이트 중 선택된 2종의 화합물이 Ca, Zn, Mg, Fe로부터 선택되는 1종의 금속이온과 결합된 이온화합물을 포함하는 암 치료용 약학 조성물을 제공한다.
본 발명에 따른 암 치료용 약학 조성물은 아스코빅산, 다이클로로아세트산 및 락테이트 중 선택된 2종의 화합물이 Ca, Zn, Mg, Fe로부터 선택되는 1종의 금속이온과 결합된 이온화합물을 유효성분으로 포함하는 대사 항암제로 이용될 수 있으며 암 세포의 증식을 효과적으로 억제할 수 있다.
또한, 본 발명에 따른 암 치료용 약학 조성물은 암 세포의 성장억제 화합물 및 암 세포 전이억제 화합물과 같이 서로 다른 기작을 갖는 화합물을 포함함으로써, 주요 대사 효소에 동시에 작용하여 암 세포의 대사과정을 중복적, 복합적으로 교란하여 하나의 특정한 돌연변이나 대사 과정 차단에 초점이 맞추어진 종래의 항암제와는 달리 세포 수준에서 약효를 동시에 발휘할 수 있다.
또한 본 발명에 따른 암 치료용 약학 조성물은 이온화합물로서, 체내에 투여될 시 암 세포의 uptake을 향상시킬 수 있다.
또한 본 발명에 따른 암 치료용 약학 조성물은 산성(acid) 화합물을 중성의 금속염 형태로 변환하여 암 세포 uptake을 향상시키며, 약물 저항성 발생에 덜 취약하고, 암 세포의 증식, 침윤, 전이 등의 작용을 효과적으로 억제할 수 있다.
또한, 본 발명에 따른 암 치료용 약학 조성물을 이용한 암 치료방법 및 암 전이 억제방법을 제공할 수 있다.
또한, 본 발명에 따른 암 치료용 약학 조성물을 포함한 암 전이억제용 또는 암 개선용 식품 조성물을 제공할 수 있다.
또한, 본 발명에 따른 암 치료용 약학 조성물은 체내 부작용이 낮아서 식품의 첨가제로 사용가능하고 고용량 투여가 가능하다.
도 1a는 실시예 1 내지 3의 칼슘염을 처리한 암 세포 내의 칼슘농도를 나타낸 그래프이다.
도 1b는 실시예 1 내지 3의 칼슘염을 처리한 암 세포 내의 칼슘을 나타낸 이미지이다.
도 2는 실시예 1 내지 3의 칼슘염을 처리한 암 세포 내의 락테이트 농도를 나타낸 그래프이다.
도 3은 실시예 1 내지 3의 칼슘염을 처리한 암 세포 내에서 배출된 락테이트 농도를 나타낸 그래프이다.
도 4는 실시예 1 및 2와 비교예 1 및 2의 칼슘염을 처리한 암 세포 내의 아스코빅산 농도를 나타낸 그래프이다.
도 5는 실시예 1 내지 3의 칼슘염을 처리한 암 세포 내의 pH를 나타낸 그래프이다.
도 6은 실시예 1 내지 3의 칼슘염을 처리한 암 세포 내의 피루브산 농도를 나타낸 그래프이다.
도 7은 실시예 1 내지 3의 칼슘염을 처리한 암 세포 내의 α-KG 농도를 나타낸 그래프이다.
도 8은 실시예 1 내지 3의 칼슘염을 처리한 암 세포로부터 발현된 PARP, β-catenin, VEGF 및 β-actin의 발현양을 나타낸 그래프이다.
도 9는 실시예 1 내지 3의 칼슘염을 처리한 암 세포로부터 발현된 활성산소의 발현양을 나타낸 그래프이다.
도 10은 실시예 1 내지 3의 칼슘염을 처리한 암 세포의 자기사멸을 나타낸 그래프이다.
도 11은 실시예 1 내지 3의 칼슘염을 대장암 세포주에 처리하여 세포군집형성능을 확인한 이미지이다.
도 12는 실시예 1 내지 3의 칼슘염과 기존의 5-FU 항암제를 대장암 세포주에 병용 투여하여 세포군집형성능을 확인한 그래프이다.
도 13은 실시예 1의 칼슘염과 5-FU 항암제를 대장암 세포주인 HCT-116에 처리하여 병용전달 효과를 확인한 그래프이다.
도 14는 실시예 2의 칼슘염과 5-FU 항암제를 대장암 세포주인 HCT-116에 처리하여 병용전달 효과를 확인한 그래프이다.
도 15는 실시예 1의 칼슘염과 SN-38 항암제를 대장암 세포주인 HCT-116에 처리하여 병용전달 효과를 확인한 그래프이다.
도 16은 실시예 2의 칼슘염과 SN-38 항암제를 대장암 세포주인 HCT-116에 처리하여 병용전달 효과를 확인한 그래프이다.
도 17은 실시예 1의 칼슘염과 Paclitaxel 항암제를 대장암 세포주인 HCT-116에 처리하여 병용전달 효과를 확인한 그래프이다.
도 18은 실시예 2의 칼슘염과 Paclitaxel 항암제를 대장암 세포주인 HCT-116에 처리하여 병용전달 효과를 확인한 그래프이다.
도 19a는 실시예 1의 칼슘염을 마우스 모델(DLD-1 orthotopic model)에 투여하고 1주 후 절개한 후 관찰한 이미징 결과 사진이며, 도 19b는 실시예 1의 칼슘염을 마우스 모델(DLD-1 orthotopic model)에 투여하고 1주 후 절개한 암조직 무게를 측정한 그래프이다.
도 20은 폐에 A549/LUC 세포를 이식한 마우스 모델에 실시예 1 내지 3의 칼슘염을 투여한 후 luminescence 이미징 측정으로 암의 성장 포화도를 날짜별로 촬영한 영상사진이다.
도 21은 상기 도 20의 이미지를 IVIS 스펙트럼(Xenogen)의 프로그램인 ROI(Region Of Interest)를 측정하여 나타낸 그래프이다.
도 22는 폐에 A549/LUC 세포를 이식한 마우스 모델에 실시예 1 내지 3의 칼슘염을 투여한 후 생존율을 측정하여 나타낸 그래프이다.
본 발명은 아스코빅산(Ascorbic acid), 다이클로로아세트산(Dichloroacetic acid) 및 락테이트(Lactate) 중 선택된 2종의 화합물이 Ca, Zn, Mg, Fe로부터 선택되는 1종의 금속이온과 결합된 이온화합물을 유효성분으로 포함하는 암 치료용 약학 조성물을 제공한다.
상기 아스코빅산(L-ascorbic acid)은 비타민 C로, 노벨상 수상자인 라이너스 폴링의 연구를 통해 독성이 없는 항암제로 이미 밝혀졌다. 또한, 아스코빅산은 인체에 과량(50g 이상)을 투여하여도 특별한 독성이 나타나지 않으며, 포도당과 유사한 구조로 인하여 암 세포의 포도당 과흡수(glucose addition)를 경쟁적으로 억제할 수 있다. 한편 고농도(mega dose)의 아스코빅산은 암 세포내 글루타치온이나 NADPH 등을 떨어트리고 활성산소(ROS)를 발생시켜 암 세포의 괴사를 유도할 수 있다. 또한 아스코빅산은 암 세포가 정상세포로 분화하도록 유도하고 콜라겐 합성과 암 전이를 돕는 효소들의 차단을 통해 암 세포가 암주위 조직으로 퍼지는 것을 억제할 수 있다. 더불어 암 세포 내로 들어와 세포막을 파괴하는 동시에 암성통증을 줄여주고, 암환자의 중요 장기를 디톡스(Detox; Detoxification)하여 면역을 증진하며, 암의 신생혈관 생성을 억제시킬 수 있다. 또한, 다른 항암제 치료나 방사선 치료의 효력을 상승시키고 부작용을 줄여줌으로 암 예방과 치료에 중요한 역할을 할 수 있다.
한편, 상기 아스코빅산이 저농도일 경우에는 암 세포의 자가사멸이 관찰되지 않았지만 암 세포의 G1단계에서 완전한 성장을 저해하고, p53 레벨이 증가한 반면 CDK2 활성이 저해하며, p38MARK의 활성화와 COX-2 발현을 감소시킬 수 있다.
상기 아스코빅산이 고농도일 경우에는 마이콘드리아 막의 전위의 감소와 Tf수송수용체의 발현이 감소하고 철분 흡수 감소 및 암 세포 내 활성산소(ROS) 증가를 통해 암 세포에 대한 자기사멸(Apoptosis)을 유도할 수 있다.
상기 아스코빅산이 적절한 금속이온과 결합하게 되면, 체내 안정성이 높아지고, 암 세포내로의 uptake가 증가하여 기존 아스코빅산의 항암효과보다 더 향상되고, 상대적으로 저농도에서도 암 세포의 자가사멸을 유도할 수 있다.
일반적으로, 암 세포는 저산소 상태가 되면, 저산소유도인자(hypoxia-inducible factor-1, HIF-1)가 활성화되어 피루빈산키나제(Pyruvate Dehydogenase Kinase)가 발현되고 발현된 피루빈산키나제에 의하여 피루빈산탈수소 효소(Pyruvate Dehydrogenase Complex)가 억제된다. 이로 인해 피루빈산이 아세틸-CoA로 변환되지 않아 피루브산이 축적되고, 미토콘드리아의 에너지 합성 저하가 이루어진다. 이처럼 피루브산이 과량 축적될 경우, 피루브산이 락테이트(Lactate)로 변환되어 락테이트가 암 세포 주변에 축적되게 된다. 이를 종합하여 간단히 말하자면, 암 세포가 저산소상태가 되면 피루빈산키나제 발현을 시작으로 락테이트의 축적이 일어난다.
상기 다이클로로아세트산은 독성이 없고, 앞서 설명한 해당작용(Aerobic glycolysis) 경로를 차단시킬 수 있다. 또한, 피루빈산키나제의 발현을 저해시켜 락테이트의 축적을 억제시킬 수 있다. 더불어, TCA 회로(Tricarboxylic Acid Cycle)를 다시 회복함으로 미토콘드리아의 호흡 항진에 의해 포도당 대사 재프로그래밍(즉 미토콘드리아 대사 정상화)을 유도할 수 있다.
한편, 상기 다이클로로아세트산은 적절한 금속이온과 결합함으로써, 기존 다이클로로아세트산의 항암효과를 향상시키고, 미토콘드리아 대사 정상화를 유도하여, 활성산소(ROS)를 유도시켜 암 세포를 사멸시킬 수 있다.
또한 상기 다이클로로아세트산은 적절한 금속이온과 결합함으로써, 락테이트의 축적을 줄여 암 세포의 산성화(Tumor acidosis)를 억제할 수 있다.
상기 락테이트는 락트산(Latic acid), D-락테이트 및 L-락테이트를 포함하며, D-락트산 및 L-락트산도 포함하는 것을 의미한다.
상기 락테이트를 적절한 금속이온과 결합함으로써, 암 세포내의 락테이트를 과하게 축적시켜 LDHB(L-lactate dehydrogenase B; 락테이트 또는 젖산을 피루브산으로 바꾸는 효소이며, 동시에 NAD+를 NADH로 바꾸는 효소)가 활성화되거나 LDHA(L-lactate dehydrogenase A; LDHB의 역반응 효소)가 억제되어 MCT(Monocarboxylate transporters)의 발현을 억제시킬 수 있다.
여기서, "LDHA의 억제" 또는 "LDHB의 활성화"란, 락테이트를 피루브산으로 변환시키는 것을 의미한다. 또한, "MCT의 발현 억제"란, 락테이트의 유입과 배출에 관여하는 MCT의 발현을 억제함으로써, NKp46의 발현을 활성화시켜 암 세포의 세포사멸능을 활성화하는 것을 의미한다.
또한, 상기 락테이트를 적절한 금속이온과 결합함으로써 암 세포내 투입되어 내부를 산성화시켜 세포사멸을 유도할 수 있다.
상기 금속이온은 Ca, Zn, Mg, Fe로부터 선택되는 1종일 수 있다. 바람직하게는 Ca, Mg, Fe이며, 더욱 바람직하게는 Ca2+ 이온이나, 이에 제한되지 않는다.
이때, 상기 Ca2+ 이온(칼슘이온)은 암 세포의 칼슘 항상성(Homeostasis)에 영향을 미치는 것으로, 미토콘드리아의 칼슘축적을 유도하여 암 세포내 과량의 활성산소를 발생시킬 수 있으며, 발생된 활성산소에 의해 암 세포사멸을 초래시킬 수 있다.
좀 더 구체적으로 설명하자면, 암 세포는 에너지 생산을 담당하고 있는 미토콘드리아에 있어서, 칼슘은 alpha-ketoglutarate dehydrogenase와 직접적으로 결합을 하여 TCA 회로의 정상적인 작동에 중요한 요소로, 칼슘의 항상성의 상실이 암 세포가 줄어드는데 특히 중요하다고 알려져 있다. 암 세포내 칼슘 농도가 과도하게 증가하면 endonuclease 및 많은 protease가 활성화되고 미토콘드리아의 대사장애를 일으키는 동시에 cytochrome C를 유리하며 caspase 9를 활성화시켜 연쇄적으로 카스페이스 3과 7을 활성화한다. 이로써, 자기사멸(Apoptosis)에 이르게 된다.
본 명세서에서, "이온화합물(Ionic compound)"이란, 정전기력에 의해 서로 반대되는 전하를 가진 이온들이 이온 결합을 통해 구성된 화합물을 말하며, 이 화합물은 대체로 전기적인 중성을 나타낸다.
본 발명에 따른 약학 조성물에 포함된 이온화합물은 바람직하게 아스코빅산 및 다이클로로아세트산의 칼슘염(Calcium salts), 아스코빅산 및 락테이트의 칼슘염, 다이클로로아세트산 및 락테이트의 칼슘염, 아스코빅산 및 다이클로로아세트산의 마그네슘 염, 아스코빅산 및 락테이트의 마그네슘 염, 다이클로로아세트산 및 락테이트의 마그네슘 염, 아스코빅산 및 다이클로로아세트산의 마그네슘 염, 아스코빅산 및 락테이트의 마그네슘 염, 다이클로로아세트산 및 락테이트의 마그네슘 염 아스코빅산 및 다이클로로아세트산의 철염(iron salts), 아스코빅산 및 락테이트의 철염, 다이클로로아세트산 및 락테이트의 철염 중 어느 하나일 수 있으며, 더욱 바람직하게는 아스코빅산 및 다이클로로아세트산의 칼슘염, 아스코빅산 및 락테이트의 칼슘염, 다이클로로아세트산 및 락테이트의 칼슘염 중 어느 하나일 수 있으나, 이에 제한되지 않는다.
여기서, 상기 "칼슘염"이란, 화합물이 칼슘이온과 결합된 형태로 생성 또는 합성된 이온화합물을 의미하며, 상기 "마그네슘 염"이란, 화합물이 마그네슘 이온과 결합된 형태로 생성 또는 합성된 이온화합물을 의미하며, 상기 "철염"이란, 화합물이 철 이온과 결합된 형태로 생성 또는 합성된 이온화합물을 의미한다.
본 발명에 따른 약학 조성물은 방사선 조사 또는 항암제와의 병용 치료에 사용될 수 있다. 일반적으로 방사선 조사시에 암 세포에 방사선에 대한 내성을 부여하는 PARP, HIF-1α 및 VEGF의 발현을 감소시키므로, 방사선 조사와 병용 투여할 경우에는 방사선의 항암활성을 증진시켜서, 종래보다도 방사선의 조사량을 감소시키면서도, 동등한 수준의 항암활성을 나타내도록 할 수 있다. 이때, 사용될 수 있는 방사선의 조사량은 특별히 이에 제한되지 않으나 1일 2 내지 10Gy가 될 수 있는데, 상기 방사선은 1일 1회 조사될 수도 있고, 상기 선량을 나누어 여러 일에 걸쳐 조사될 수도 있다.
본 발명에 따른 약학 조성물은 아스코빅산, 다이클로로아세트산 및 락테이트 중 선택된 2종의 화합물이 Ca, Zn, Mg, Fe부터 선택되는 1종의 금속이온과 결합된 이온화합물을 포함함으로써, 2종의 화합물이 원래 가지고 있던 각각의 항암효과가 상쇄되지 않으면서 암 세포 내 동시에 uptake되어 효능을 동시에 발휘할 수 있다. 이러한 효과는 기존의 항암제 복합투여(Combi-therapy)보다 더 우수한 효과를 나타낼 수 있다.
한편, 본 발명에 따른 약학 조성물과 항암제를 병용투여할 경우, 단독 항암제 투여에 의한 항암효과에 비해 더 우수한 항암효과를 나타낼 수 있다.
이때, 본 발명에 따른 약학 조성물과 병용투여될 수 있는 항암제는 암 세포의 전반 대사과정에 직접 작용하지 않는 한 특별히 이에 제한되지 않으며 일 예로서 공지된 항암제인 이매티닙(Imatinib), 5-FU(5-Florouracil), 이리노테칸(Irinotecan), 서니티닙(Sunitinib), 옥살리플라틴(Oxaliplatin), 파클리탁셀(Paclitaxel), 라파티닙(Lapatinib), 트라스트주맵(Trastuzumab, Herceptin), 제피티닙(Gefitinib), 에를로티닙(Erlotinib), 메토트렉세이트(Methotrexate), 카보플라틴(Carboplatin), 도세탁셀(Docetaxel), 에버롤리무스(Everolimus), 소라페닙(Sorafenib), 카르보닉 언하이드라제(carbonic anhydrase)의 억제제, 모노카르복실레이트 트랜스포터(monocarboxylate transporter)의 억제제, 펌브로 펨브롤리주맙(Pembrolizumab), 아테졸리주맙(Atezolizumab), PD-1계열 항암제, 니볼루맙(Nivolumab), PARP-1(Poly(ADP-ribose) polymerase 1)의 억제제, PARP-2(Poly(ADP-ribose) polymerase 2)의 억제제, 올라파립(Olaparib), 루카파립(Rucaparib), 니카파립(Niraparib), 베바시주맙(Bevacizumab) 및 VEGF 억제제뿐만 아니라 항암활성을 나타낸다고 알려진 다른 항암제가 될 수 있다.
본 발명에서, 상기 암은 대사과정의 교란에 의하여 증식, 침윤, 전이 등이 억제될 수 있는 암으로, 일 예로 폐암, 유방암, 대장암, 위암, 뇌암, 췌장암, 갑상선암, 피부암, 골수암, 림프종, 자궁암, 자궁경부암, 신장암 및 흑색종으로 구성된 군으로부터 선택되는 암일 수 있다.
본 발명의 약학 조성물은, 약학 조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제 또는 희석제를 추가로 포함하는 암 치료용 약학 조성물의 형태로 제조될 수 있다. 구체적으로, 상기 약학 조성물은, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸, 경구패치 등의 경구형 제형, 외용제, 외용패치제, 좌제 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다.
본 발명에서, 상기 약학 조성물에 포함될 수 있는 담체, 부형제 및 희석제로는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트, 광물유 등을 들 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제될 수 있다. 경구투여를 위한 고형제제에는 정제, 데포(depot), 환제, 산제, 과립제, 캡슐제, 경구패치제 등이 포함되며, 이러한 고형제제는 상기 추출물과 이의 분획물들에 적어도 하나 이상의 부형제, 예를 들면, 전분, 칼슘 카보네이트(calcium carbonate), 수크로스(sucrose) 또는 락토오스(lactose), 젤라틴 등을 섞어 조제될 수 있다. 또한, 단순한 부형제 이외에 마그네슘 스티레이트, 탈크 같은 윤활제들도 사용될 수 있다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는 데 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제, 외용패치제, 좌제 등이 포함될 수 있다. 비수성용제, 현탁제로는 프로필렌글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈(tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.
본 발명의 약학 조성물에 포함된 상기 이온화합물의 함량은 특별히 이에 제한되지 않으나, 최종 조성물 총 중량을 기준으로 0.0001 내지 50 중량%, 보다 바람직하게는 0.01 내지 20 중량%의 함량으로 포함될 수 있는데, 상기 약학 조성물의 1회 투여량에 포함된 금속이온의 농도는 0.1 내지 300 mM이 될 수 있다.
상기 본 발명의 약학 조성물은 약제학적으로 유효한 양으로 투여될 수 있는데, 본 발명의 용어 "약제학적으로 유효한 양"이란 의학적 치료 또는 예방에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료 또는 예방하기에 충분한 양을 의미하며, 유효 용량 수준은 질환의 중증도, 약물의 활성, 환자의 연령, 체중, 건강, 성별, 환자의 약물에 대한 민감도, 사용된 본 발명 조성물의 투여 시간, 투여 경로 및 배출 비율 치료기간, 사용된 본 발명의 조성물과 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 본 발명의 약학 조성물은 단독으로 투여하거나 공지된 항암제 또는 항암활성을 나타내는 것으로 알려진 성분과 병용하여 투여될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하다.
본 발명의 약학 조성물의 투여량은 사용목적, 질환의 중독도, 환자의 연령, 체중, 성별, 기왕력, 또는 유효성분으로서 사용되는 물질의 종류 등을 고려하여 당업자가 결정할 수 있다. 예를 들어, 본 발명의 약학 조성물은 성인 1인당 약 1 ng 내지 약 2,000 mg/kg, 바람직하게는 1 mg 내지 약 400 mg/kg로 투여할 수 있고, 본 발명의 조성물의 투여빈도는 특별히 이에 제한되지 않으나, 1일 1회 투여하거나 또는 용량을 분할하여 수회 투여할 수 있다. 상기 투여량 또는 투여횟수는 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.
본 발명은 다른 하나의 양태로서 상기 약학 조성물을 약제학적으로 유효한 양으로 암이 발병된 개체에 투여하는 단계를 포함하는 암의 치료방법을 제공한다.
본 발명의 용어 "개체"란 암이 발병된 쥐, 가축, 인간 등을 포함하는 포유동물, 양식어류 등을 제한 없이 포함할 수 있다.
본 발명의 용어 "치료"란, 본 발명의 이온화합물을 유효 성분으로 포함하는 약학 조성물을 암이 발병된 개체에 투여하여 암의 증세가 호전되도록 하거나 이롭게 되도록 하는 모든 행위를 의미한다.
본 발명의 암을 치료하는 방법에 있어서, 치료대상이 되는 암의 종류는 상술한 바와 동일하다.
상기 조성물은 약학적으로 유효한 양으로 단일 또는 다중 투여될 수 있다. 이때, 조성물은 액제, 산제, 에어로졸, 주사제, 수액제(링겔), 캡슐제, 환제, 정제, 좌제 또는 패치의 형태로 제형화되어 투여할 수 있다.
본 발명의 암 치료용 약학 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여도 투여될 수 있다.
본 발명의 약학 조성물은 특별히 이에 제한되지 않으나, 목적하는 바에 따라 복강내 투여, 정맥내 투여, 근육내 투여, 피하 투여, 피내 투여, 경피패치투여, 경구 투여, 비내 투여, 폐내 투여, 직장내 투여 등의 경로를 통해 투여될 수 있다. 다만, 경구 투여 시에는 제형화되지 않은 형태로도 투여할 수 있고, 위산에 의하여 상기 락테이트 금속염이 변성 또는 분해될 수 있기 때문에 경구용 조성물은 활성 약제를 코팅하거나 위에서의 분해로부터 보호되도록 제형화된 형태 또는 경구용 패치형태로 구강내에 투여할 수도 있다. 또한, 주사 투여시 효능의 극대화를 위한 서방형 주사형태(Long acting injection)로 투여될 수 있다. 또한, 상기 조성물은 활성 물질이 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수 있다.
또한, 본 발명의 약학 조성물은 서방성 제제로 제형화하여 체내 약물 즉, 이온화합물의 농도를 효과적으로 지속시킬 수 있다. 예로, 1일 1회 또는 1주일 1회 투여로 약효를 유지하면서 체내 약물이 방출되는 속도를 조절할 수 있다. 이때, 서방성 제제는 앞서 서술한 바와 같이, 담체, 부형제 및 희석제를 포함할 수 있다.
본 발명은 다른 일 실시예로, 아스코빅산, 다이클로로아세트산 및 락테이트 중 선택된 2종의 화합물이 Ca, Zn, Mg, Fe로부터 선택되는 1종의 금속이온과 결합된 이온화합물을 포함하는 암 전이억제용 약학 조성물을 제공한다.
본 발명에서 제공하는 이온화합물은 암 세포의 전이, 침윤, 신생혈관 형성, 군집형성능 등의 암 세포의 전이를 유도할 수 있는 다양한 특성을 억제할 수 있으므로, 암 전이억제용 약학 조성물의 유효성분으로 사용될 수 있다.
또한, 상기 이온화합물 및 금속이온은 앞서 설명한 바와 동일하다.
이때, 전이억제의 대상이 되는 암은 앞서 정의한 바와 동일한데, 일 예로서, 상기 암 전이억제용 약학 조성물은 전이성 폐암, 유방암, 대장암, 위암, 뇌암, 췌장암, 갑상선암, 피부암, 골수암, 림프종, 및 흑색종으로 구성된 군으로부터 선택되는 하나 이상의 전이암의 발병을 억제하는데 사용될 수 있다.
본 발명은 또 다른 일 실시예로, 상기 약학 조성물을 약제학적으로 유효한 양으로 암의 전이가 예상되는 개체에 투여하는 단계를 포함하는 암의 전이를 억제하는 방법을 제공한다.
본 발명의 용어 "전이(metastasis)"란 암 또는 악성 종양이 발병한 장기에서 떨어진 다른 조직으로 전파한 상태를 의미한다.
본 발명에서 제공하는 이온화합물을 투여할 경우, 상기 전이를 억제할 수 있다.
본 발명의 암의 전이를 억제하는 방법에 있어서, 전이 억제대상이 되는 암의 종류, 투여되는 약물의 형태, 약물의 투여경로 등은 상술한 바와 동일하다.
본 발명은 또 다른 일 실시예로, 상기 이온화합물을 유효성분으로 포함하는 암 관련 피로 예방 또는 개선용 약학 조성물을 제공한다.
여기서, 암 관련 피로란, 암을 치료 중이거나 치료 후에 가장 빈번하게 나타나는 부작용 중 하나이며, 일 예로 암 피로증후군(Cancer-related fatigue; CRF)을 들수 있다. 여기서, 암 피로증후군이란 암과 그 치료에 따른 피곤함과 기진맥진에 대한 주관적인 감각으로 고통스럽고 지속적이면서 최근 활동과 무관하며 일상적인 기능을 방해하는 증상을 의미한다.
일반적으로 암 환자가 아스코빅산이 부족해지면 뇌-혈액 장벽 투과력이 증가하여 신경독성 물질이나 바이러스들이 쉽게 뇌로 침범함으로써 여러가지 피로 증후군을 유발시키는 것으로 알려져 있으며, 또한, 아스코빅산이 부족해지면 아드레노크롬이나 노아드레노크롬 등 신경독성물질이 증가하여 장기 손상을 야기한다.
이에 본 발명에 따른 이온화합물이 아스코빅산이 포함된 2종 이상의 화합물과 금속이온을 결합시켜 제조된 것으로, 이를 암 환자에 적용했을 시 면역 기능을 회복시키는 작용을 하고, 근육통을 줄여주며, 스트레스로 인한 피로감을 감소시키는 효과를 나타내어 암 피로증후군을 예방 또는 개선할 수 있다. 또한 이러한 효과는 암 환자의 생존율을 높일 수 있다.
본 발명은 또 다른 일 실시예로, 상기 이온화합물을 유효성분으로 포함하는 암 개선용 식품 조성물을 제공한다.
이때, 상기 이온화합물은 앞서 상술한 바와 동일하다.
상기 이온화합물을 상식할 수 있으면서도 암의 개선을 도모할 수 있는 식품의 형태로 제조되어 섭취할 수 있다. 이때, 상기 식품에 포함되는 상기 칼슘염의 함량은 특별히 이에 제한되지 않으나, 일 예로서 식품 조성물의 총 중량에 대하여 0.001 내지 10 중량%, 다른 예로서 0.1 내지 1 중량%로 포함될 수 있다. 식품이 음료인 경우에는 일 예로서 100㎖를 기준으로 1 내지 10g, 다른 예로서 2 내지 20g의 비율로 포함될 수 있다.
또한, 상기 조성물은 식품 조성물에 통상 사용되어 냄새, 맛, 시각 등을 향상시킬 수 있는 추가 성분을 포함할 수 있다. 예를 들어, 비타민 A, D, E, B1, B2, B6, B12, 니아신(niacin), 비오틴(biotin), 폴레이트(folate), 판토텐산(panthotenic acid) 등을 포함할 수 있다. 또한, 아연(Zn), 철(Fe), 칼슘(Ca), 크롬(Cr), 마그네슘(Mg), 망간(Mn), 구리(Cu) 등의 미네랄을 포함할 수 있다. 또한, 라이신, 트립토판, 시스테인, 발린 등의 아미노산을 포함할 수 있다. 또한, 방부제(소르빈산 칼륨, 벤조산나트륨, 살리실산, 데히드로초산나트륨 등), 살균제(표백분과 고도 표백분, 차아염소산나트륨 등), 산화방지제(부틸히드록시아니졸(BHA), 부틸히드록시톨류엔(BHT) 등), 착색제(타르색소 등), 발색제(아질산 나트륨, 아초산 나트륨 등), 표백제(아황산나트륨), 조미료(MSG 글루타민산나트륨 등), 감미료(둘신, 사이클레메이트, 사카린, 나트륨 등), 향료(바닐린, 락톤류 등), 팽창제(명반, D-주석산수소칼륨 등), 강화제, 유화제, 증점제(호료), 피막제, 검기초제, 거품억제제, 용제, 개량제 등의 식품 첨가물(food additives)을 첨가할 수 있다. 상기 첨가물은 식품의 종류에 따라 선별되고 적절한 양으로 사용된다.
한편, 상기 이온화합물을 암 개선용 식품 조성물을 이용하여 암 개선용 기능성 식품을 제조할 수 있다.
구체적인 예로, 상기 식품 조성물을 이용하여 암을 개선시킬 수 있는 가공식품을 제조할 수 있는데, 예들 들어, 과자, 음료, 주류, 발효식품, 통조림, 우유가공식품, 육류가공식품 또는 국수가공식품의 형태인 건강기능성 식품으로 제조될 수 있다. 이때, 과자는 비스킷, 파이, 케익, 빵, 캔디, 젤리, 껌, 시리얼(곡물푸레이크 등의 식사대용품류 포함) 등을 포함한다. 음료는 음용수, 탄산음료, 기능성이온음료, 쥬스(예들 들어, 사과, 배, 포도, 알로에, 감귤, 복숭아, 당근, 토마토 쥬스 등), 식혜 등을 포함한다. 주류는 청주, 위스키, 소주, 맥주, 양주, 과실주 등을 포함한다. 발효식품은 간장, 된장, 고추장 등을 포함한다. 통조림은 수산물 통조림(예들 들어, 참치, 고등어, 꽁치, 소라 통조림 등), 축산물 통조림(쇠고기, 돼지고기, 닭고기, 칠면조 통조림 등), 농산물 통조림(옥수수, 복숭아, 파일애플 통조림 등)을 포함한다. 우유가공식품은 치즈, 버터, 요구르트 등을 포함한다. 육류가공식품은 돈까스, 비프까스, 치킨까스, 소세지. 탕수육, 너겟류, 너비아니 등을 포함한다. 국수가공식품은 건면, 소면, 라면, 우동면, 냉면, 밀봉포장생면 등을 포함한다. 이 외에도 상기 조성물은 레토르트식품, 스프류 등에 사용될 수 있다.
본 발명의 용어 "건강기능성 식품(functional food)"이란, 특정보건용 식품(food for special health use, FoSHU)와 동일한 용어로, 영양 공급 외에도 생체조절기능이 효율적으로 나타나도록 가공된 의학, 의료효과가 높은 식품을 의미하는데, 상기 식품은 암의 개선에 유용한 효과를 얻기 위하여 정제, 캡슐, 분말, 과립, 액상, 환 등의 다양한 형태로 제조될 수 있다.
이하에서 본 발명을 실시하기 위한 실시예에 대하여 상세히 설명하며, 하기의 실시예는 본 발명을 실시하기 위한 바람직한 예시에 해당하는 것으로 본 발명이 실시예에 의하여 한정되는 것은 아니다.
제조예 1-1. 다이클로로아세트산(Dichloroacetic acid)과 아스코빅산(Ascorbic acid)의 칼슘염(Calcium salt) 제조
129mg의 다이클로로아세트산을 125ml의 증류수에 용해하여 다이클로로아세트산 용액을 제조하였고, 176mg의 아스코빅산을 125ml의 증류수에 용해하여 아스코빅산 용액을 준비하였다. 다이클로로아세트산 용액에 아스코빅산 용액을 서서히 교반하면서 첨가하였다. 그 다음, 105mg의 탄산칼슘(CaCO3)을 천천히 첨가하며 상온에서 30분동안 교반한 후, 서서히 반응온도를 60 ℃까지 올려가며 CO2가 더 이상 발생하지 않을 때까지 반응시켰다. 회전증발농축기(Rotary evaporator)와 진공오븐으로 건조 및 디에틸에터(Diethyl ether)로 미반응 물질을 제거한 후, 여과, 건조 및 분쇄하여 분말상의 다이클로로아세트산과 아스코빅산 칼슘염을 수득하였다. 모든 반응은 질소 존재하에 실행하였다.
제조예 1-2. 아스코빅산(Ascorbic acid)과 락테이트(Lactate)의 칼슘염(Calcium salt) 제조
90mg의 락트산(L-lactic acid)을 125ml의 증류수에 용해하여 락트산 용액을 제조하였고, 176mg의 아스코빅산을 125ml의 증류수에 용해하여 아스코빅산 용액을 준비하였다. 락트산 용액에 아스코빅산 용액을 서서히 교반하면서 첨가하였다. 그 다음, 105mg의 탄산칼슘(CaCO3)을 천천히 첨가하며 상온에서 30분동안 교반한 후, 서서히 반응온도를 60 ℃까지 올려가며 CO2가 더 이상 발생하지 않을 때까지 반응시켰다. 회전증발농축기(Rotary evaporator)와 진공오븐으로 건조 및 디에틸에터(Diethyl ether)로 미반응 물질을 제거한 후, 여과, 건조 및 분쇄하여 분말상의 아스코빅산과 락테이트의 칼슘염을 수득하였다. 모든 반응은 질소 존재하에 실행하였다.
제조예 1-3. 다이클로로아세트산(Dichloroacetic acid)과 락테이트(Lactate)의 칼슘염(Calcium salt) 제조
640mg의 다이클로로아세트산과 450mg의 락트산(L-lactic acid)을 10ml의 증류수에 교반하면서 용해한 후, 500mg의 탄산칼슘(CaCO3)을 천천히 첨가하며 상온에서 30분동안 교반하였다. 회전증발농축기(Rotary evaporator)와 진공오븐으로 건조 및 디에틸에터(Diethyl ether)로 미반응 물질을 제거한 후, 여과, 건조 및 분쇄하여 분말상의 다이클로로아세트산과 락테이트의 칼슘염을 수득하였다.
실시예 1
상기 제조예 1-1에 따라 제조된 다이클로로아세트산과 아스코빅산이 칼슘이온과 결합된 칼슘염.
실시예 2
상기 제조예 1-2에 따라 제조된 아스코빅산과 락테이트가 칼슘이온과 결합된 칼슘염.
실시예 3
상기 제조예 1-3에 따라 제조된 다이클로로아세트산과 락테이트가 칼슘이온과 결합된 칼슘염.
실험예 1. 칼슘염의 암 세포 흡수(uptake)효과 및 암 세포 pH 변화
실시예 1 내지 3의 칼슘염을 각각 암 세포에 처리한 후, 세포내 칼슘의 농도변화, 락테이트의 농도변화, 아스코빅산의 농도변화 및 pH 변화를 분석하여 각각의 칼슘염의 유입수준을 예측하였다.
실험예 1-1: 칼슘 수준의 변화
암 세포 배양배지(10% FBS 및 1% 페니실린/스트렙토마이신을 포함하는 RPMI1640 배지)에서 37 ℃ 및 5% CO2 조건으로 배양된 5 x 106 세포수의 사람 대장암 세포주(HCT-116)에 실시예 1 내지 3의 칼슘염을 각각 1mM 처리하고, 24시간 동안 배양하였다. 상기 배양된 암 세포를 균질기(homogenizer)로 분쇄하고 원심분리하였으며, 상기 파쇄물에 포함된 칼슘의 농도를 칼슘 분석 키트(Biovision, SanFrancisco, CA)를 이용하여 측정하여 도 1a에 나타내었다. 이때, 대조군으로는 칼슘염을 처리하지 않은 암 세포를 사용하였다.
또한, 칼슘수준의 변화를 형광으로 이미징하여 관찰하기 위해 3 x 104 세포수의 사람 대장암 세포주(HCT-116)를 6웰 플레이트에 깔아 24시간 동안 배양한 후, 실시예 1 내지 3의 칼슘염을 각각 1mM 처리하고, 4시간 동안 배양한 후 DPBS로 두 번 세척하고, Fluo 4-AM을 40분 동안 배양하였다. 세포 내 칼슘농도를 평가하기 위해 FACSCantoTM Ⅱ flow cytometer(Becton-Dickinson, Franklin Lakes, Nj, USA), primary argon laser를 이용하여 세포 내에 칼슘농도 형광을 측정하여 도 1b에 나타내었다. 이때, 대조군으로는 칼슘염을 처리하지 않은 암 세포를 사용하였다.
상기 도 1a와 도 1b에 나타낸 바와 같이, 실시예 1 내지 3의 칼슘염을 처리한 암 세포 내에서 칼슘의 농도가 증가하였다. 이에 따라, 본 발명에 따른 금속이온에 결합된 이온화합물이 포함된 암 치료용 조성물은 암 세포 내로 침투할 수 있음을 확인하였다.
실험예 1-2: 락테이트 수준의 변화
암 세포 배양배지(10% FBS 및 1% 페니실린/스트렙토마이신을 포함하는 RPMI1640 배지)에서 37 ℃ 및 5% CO2 조건으로 배양된 5 x 106 세포수의 사람 대장암 세포주(HCT-116 및 HT-29)에 실시예 1 내지 3의 칼슘염을 각각 1mM 처리하고, 24시간 동안 배양하였다. 배양된 세포를 균질기(homogenizer)로 분쇄하고 원심분리하였으며, 상기 파쇄물에 포함된 락테이트 농도를 락테이트 분석 키트(Biovision, SanFrancisco, CA)를 이용하여 측정하여 도 2에 나타냈다. 이때, 대조군으로는 아무것도 처리하지 않은 암 세포를 사용하였다.
상기 도 2에 나타낸 바와 같이, 실시예 1 내지 3의 칼슘염을 처리한 암 세포 내에서 락테이트의 농도가 증가하였다. 이에 따라, 본 발명에 따른 금속이온에 결합된 이온화합물이 포함된 암 치료용 조성물은 암 세포 내로 침투하여 락테이트의 농도를 증가시킬 수 있음을 확인하였다.
실험예 1-3: 암 세포 방출 외부 락테이트 수준의 변화
암 세포 배양배지(10% FBS 및 1% 페니실린/스트렙토마이신을 포함하는 RPMI1640 배지)에서 37 ℃ 및 5% CO2 조건으로 배양된 5 x 105 세포수의 사람 대장암 세포주(HCT-116 및 HT-29)를 6웰 플레이트에 깔아 24시간 동안 배양한 후, 실시예 1 내지 3의 칼슘염을 각각 0.05 mM, 0.1 mM 및 0.3 mM의 농도로 처리한 다음, 20시간 동안 배양하였다. 배양 후, Phenol Red-free culture medium으로 교체하여 4시간 동안 추가 배양 후, culture medium에 존재하는, 4시간 동안 세포 외로 배출된 락테이트를 분석키트(Biovision, SanFrancisco, CA)를 이용하여 평가하였고, 그 결과를 도 3에 도시하였다. 이때, 대조군으로는 아무것도 처리하지 않은 암 세포를 사용하였다.
상기 도 3에 나타낸 바와 같이, 실시예 1 내지 3의 칼슘염을 처리한 암 세포 내에서 배출된 락테이트의 농도가 대체적으로 감소하는 것을 확인할 수 있다. 이에 따라 본 발명에 따른 금속이온에 결합된 이온화합물이 포함된 암 치료용 조성물은 암 세포에서 외부로 배출되는 락테이트의 농도를 감소시킬 수 있음을 확인하였다.
실험예 1-4: 아스코빅산 수준의 변화
암 세포 배양배지(10% FBS 및 1% 페니실린/스트렙토마이신을 포함하는 RPMI1640 배지)에서 37 ℃ 및 5% CO2 조건으로 배양된 5 x 106 세포수의 사람 대장암 세포주(HCT-116 및 HT-29)에 실시예 1 및 2의 칼슘염을 각각 1mM 처리하고, 24시간 동안 배양하였다. 배양이 종료된 암 세포를 균질기(homogenizer)로 분쇄하고 원심분리하였으며, 상기 파쇄물에 포함된 아스코빅산의 농도를 아스코빅산 분석 키트(Biovision, SanFrancisco, CA)를 이용하여 측정하여 도 4에 나타냈다. 이때, 대조군으로는 아무것도 처리하지 않은 암 세포를 사용하였으며, 비교예 1로는 아스코빅산(1mM)을 처리한 암 세포를 사용하였으며, 비교예 2로는 칼슘아스코베이트(1mM)를 처리한 암 세포를 사용하였다.
상기 도 4에 나타낸 바와 같이, 실시예 1 및 2를 처리한 암 세포 내에서 아스코빅산의 농도가 증가하였고, 한편 비교예 1 및 2를 처리한 암 세포는 실시예 1 및 2를 처리한 암 세포에 비하여, 증가된 아스코빅산의 농도가 낮았다. 이에 따라, 본 발명에 따른 금속이온에 결합된 이온화합물이 포함된 암 치료용 조성물은 암 세포 내로 침투가 용이한 것을 확인하였다.
실험예 1-5: 암 세포 내 pH의 변화
암 세포 배양배지(10% FBS 및 1% 페니실린/스트렙토마이신을 포함하는 RPMI1640 배지)에서 37 ℃ 및 5% CO2 조건으로 배양된 5 x 106 세포수의 사람 대장암 세포주(HCT-116 및 HT-29)에 실시예 1 내지 3의 칼슘염(1mM)을 각각 처리하고, 24시간 동안 배양하였다. 배양된 세포의 배지를 대상으로, pH 탐지 키트(life technologies, CA)를 이용하여 pH를 측정하여 도 5에 나타냈다. 이때, 대조군으로는 아무것도 처리하지 않은 암 세포를 사용하였다.
상기 도 5에 나타낸 바와 같이, 실시예 1 내지 3의 칼슘염을 처리한 경우 세포내 pH는 저하되어 산성을 나타냄을 확인하였다. 즉 칼슘염의 유입으로 인하여 암 세포 내 환경이 산성으로 변화되었음을 알 수 있었다. 이는 칼슘염이 자기사멸(Apoptosis)에 취약해졌음을 의미한다.
실험예 2: 암 세포내 대사과정에 미치는 칼슘염의 효과
실시예 1 내지 3의 칼슘염을 각각 암 세포에 처리하여 이로 인한 암 세포내 대사에 미치는 효과를 확인하고자 하였다.
실험예 2-1: 피루브산의 수준에 미치는 칼슘염의 효과
암 세포 배양배지(10% FBS 및 1% 페니실린/스트렙토마이신을 포함하는 RPMI1640 배지)에서 37 ℃ 및 5% CO2 조건으로 배양된 5 x 106 세포수의 사람 대장암 세포주(HCT-116 및 HT-29)에 실시예 1(1mM), 실시예 2(1mM) 및 실시예 3(1mM)의 칼슘염을 각각 처리하고, 24시간 동안 배양하였다. 배양된 세포를 균질기(homogenizer)로 분쇄하고 원심분리하였으며, 상기 파쇄물에 포함된 피루브산의 농도를 피루브산 분석 키트(Biovision, SanFrancisco, CA)를 이용하여 측정하여 도 6에 나타냈다. 이때, 대조군으로는 아무것도 처리하지 않은 암 세포를 사용하였다.
상기 도 6에 나타낸 바와 같이, 실시예 1 내지 3의 칼슘염을 처리한 암 세포 내에서 피루브산의 농도가 증가하였다. 이에 따라, 본 발명에 따른 금속이온에 결합된 이온화합물이 포함된 암 치료용 조성물은 암 세포 내로 침투하여 피루브산의 농도를 증가시킬 수 있음을 확인하였다.
실험예 2-2: 알파케토글루탐산(α-ketoglutarate; α-KG)의 수준에 미치는 칼슘염의 효과
암 세포 배양배지(10% FBS 및 1% 페니실린/스트렙토마이신을 포함하는 RPMI1640 배지)에서 37 ℃ 및 5% CO2 조건으로 배양된 5 x 106 세포수의 사람 대장암 세포주(HCT-116 및 HT-29)에 실시예 1(1mM), 실시예 2(1mM) 및 실시예 3(1mM)의 칼슘염을 각각 처리하고, 24시간 동안 배양하였다. 배양된 세포를 균질기(homogenizer)로 분쇄하고 원심분리하였으며, 상기 파쇄물에 포함된 알파케토글루탐산의 농도를 알파케토글루탐산 분석 키트(Biovision, SanFrancisco, CA)를 이용하여 측정하여 도 7에 나타냈다. 이때, 대조군으로는 아무것도 처리하지 않은 암 세포를 사용하였다.
상기 도 7에 나타낸 바와 같이, 실시예 1 내지 3의 칼슘염을 처리한 암 세포 내에서 알파케토글루탐산의 농도가 증가하였다. 이에 따라, 본 발명에 따른 금속이온에 결합된 이온화합물이 포함된 암 치료용 조성물은 암 세포 내로 침투하여 미토콘드리아의 산화적 인산화 과정을 유도함으로써 알파케토글루탐산의 농도를 증가시킬 수 있음을 확인하였다.
실험예 2-3: PARP-1, β-catenin, VEGF(Vascular endothelial growth factor) 및 β-actin 단백질의 발현 수준 변화
암 세포 배양배지(10% FBS 및 1% 페니실린/스트렙토마이신을 포함하는 RPMI1640 배지)에서 37 ℃ 및 5% CO2 조건으로 배양된 5 x 106 세포수의 사람 대장암 세포주(HCT-116)에 다양한 농도의 실시예 1, 실시예 2 및 실시예 3의 칼슘염을 각각 처리하고, 24시간 동안 배양하였다. 배양된 세포를 균질기(homogenizer)로 분쇄하고 원심분리하였으며, 상기 파쇄물에 포함된 poly(ADP-ribose) polymerase 1 (PARP-1), β-catenin, VEGF 및 β-actin 단백질의 발현 수준을 웨스턴 블랏을 이용하여 측정하여 도 8에 나타냈다.
상기 도 8에 나타낸 바와 같이, 실시예 1 내지 3의 칼슘염을 처리한 암 세포는 PARP-1의 발현 수준이 낮아졌다. 일반적으로 PARP-1은 세포가 programed cell death인 세포사멸(apoptosis)이 진행될 때 활성화되는 caspase-3에 의해서 cleavage가 일어나기 때문에 세포사멸 마커로 사용된다. 실시예 1은 0.18mg/ml 에서, 실시예 2는 0.34 mg/ml에서, 실시예 3은 0.3 mg/ml 에서 full length PAPR-1이 가장 크게 감소하였으므로, 농도 의존적으로 암세포의 사멸을 유도하는 것을 확인하였다. 이에 따라, 본 발명에 따른 금속이온에 결합된 이온화합물이 포함된 암 치료용 조성물은 full length PAPR-1의 발현을 감소시킬 수 있으므로 암 세포의 사멸을 유도할 수 있음을 확인했다.
또한, 상기 실시예 1 내지 3의 칼슘염을 처리한 암 세포는 β-catenin의 단백질 level을 농도 의존적으로 감소시키는 것을 확인했다. β-catenin은 대장암, 폐암, 유방암, 난소암과 같은 다양한 암종에서 mutation 또는 과발현되어 있는 transcription factor이며, c-myc, cyclin D1, MMP7, survivin과 같은 세포 성장, 암 전이, survival에 중요한 역할을 하는 단백질들의 발현을 조절하는 것으로 알려져 있다. 이에 따라, 본 발명에 따른 금속이온에 결합된 이온화합물이 포함된 암 치료용 조성물은 β-catenin의 단백질을 감소시켜 암 세포의 성장을 억제시킬 수 있음을 확인했다.
또한, 상기 실시예 1 내지 3의 칼슘염을 처리한 암 세포는 VEGF의 발현이 농도 의존적으로 감소시키는 것을 확인했다. 한편, VEGF 신호전달계는 하위의 MAPK 신호전달계와 PI3K/Akt 신호전달계를 조절하여 세포의 성장, invasion, metastasis에 중요한 역할을 수행한다. 특히 암 세포 전이에 필수적인 matrix metalloproteinases(MMPs)의 gene expression을 증가시켜, 암세포 전이를 촉진시킨다. 따라서, 본 발명에 따른 금속이온에 결합된 이온화합물이 포함된 암 치료용 조성물은 혈관신생을 유도하는 인자의 작용을 억제하여 암 세포의 전이를 억제하는 효과를 나타냄을 확인하였다.
실험예 2-4: 활성산소 발현 수준 변화
본 발명에 따른 금속이온에 결합된 이온화합물을 투여한 암세포 내 활성산소의 농도변화를 측정하기 위하여 형광 probe는 Dichlorofluorescin diacetate(DCF-DA; Sigma, USA)를 이용하였다. DCF-DA는 세포 내 hydrogen peroxide와 관련된 peroxides 존재 시 ROS에 의해 산화되어 형광의 DCF로 변환되어 녹색의 형광을 띄게 된다. 따라서 ROS의 측정을 DCF-DA를 통해 확인하였다. 먼저, 암 세포 배양배지(10% FBS 및 1% 페니실린/스트렙토마이신을 포함하는 RPMI1640 배지)에서 37 ℃ 및 5% CO2 조건으로 5 x 106 세포수의 사람 대장암 세포주(HCT-116)를 24시간 배양하였다. 배양 후 DPBS로 한 번 세척하고 DCF-DA 10 μM을 37 ℃에서 30분 동안 배양하였다. DPBS로 다시 세척하고, 다양한 농도의 실시예 1, 실시예 2 및 실시예 3의 칼슘염을 각각 6시간 동안 처리하여, 세포 내 ROS 형광을 측정하여 분석하여 도 9에 나타냈다.
상기 도 9에 나타낸 바와 같이, 아무것도 처리하지 않은 대조군보다 실시예 1 내지 3의 칼슘염을 처리한 암 세포는 세포사멸을 유도할 가능성을 시사하는 활성산소가 증가하였다.
실험예 2-5: 세포 사멸 수준 변화
본 발명에 따른 금속이온에 결합된 이온화합물을 투여한 암세포 내 활성산소의 농도변화를 측정하기 위하여 3 x 104 세포수의 사람 대장암 세포주(HCT-116)를 6웰 플레이트에 깔아 24시간 동안 배양한 후, 다양한 농도의 실시예 1(1mM), 실시예 2(1mM) 및 실시예 3(1mM)의 칼슘염을 24시간 동안 처리하고 DPBS로 두 번 세척하고, 트립신-EDTA (trypsin-EDTA)로 분리하고 Annexin-V/PI 프로토콜로 염색하여 FACSCantoTM Ⅱ flow cytometer(Becton-Dickinson, Franklin Lakes, Nj, USA), primary argon laser를 이용하여 세포 사멸을 측정하여 분석하여 도 10에 나타내었다.
정상적으로 살아있는 세포에서는 phosphatidyl serine(PS)이 세포막 내측에 위치하고 있다. 하지만 apoptosis 시기로 접어들면 PS는 세포막의 바깥쪽으로 노출되고, annexin V는 PS와 높은 친화력을 가지고 결합하여 형광을 낸다. propidium iodide(PI)는 세포 안으로 들어가 핵을 염색시키는데, 초기 단계의 apoptosis가 진행 중인 세포는 annexin-V에만 염색되고 PI로는 염색되지 않는 반면, 후기단계의 apoptosis가 진행 중인 세포 또는 necrosis가 진행 중인 세포들은 세포막의 integrity가 손상되어 annexin-V와 PI가 동시에 염색되며, 살아 있는 세포는 어느 것에도 염색되지 않는 양상을 나타낸다. 상기 도 10에 나타낸 바와 같이, 아무것도 처리하지 않은 대조군보다 실시예 1 내지 3의 칼슘염을 처리한 암 세포는 세포사멸을 유도할 가능성을 시사하였다.
실험예 3: 암 세포주의 증식능력에 미치는 효과 평가
실시예 1 내지 3의 칼슘염 처리여부에 따른 대장암, 유방암, 뇌암 세포주의 생존능력에 대한 억제 효과를 확인하고자 하였다.
실험예 3-1: 암 세포주의 증식능력(MTT assay)에 미치는 효과 평가
96웰 플레이트의 각 웰에 대장암 세포주(DLD-1), 유방암 세포주(MDA-MB-231), 뇌암 세포주(U87MG)를 각각 5 x 106 세포수로 분주하고, 실시예 1 내지 3의 칼슘염을 농도별(20mg/㎖, 4mg/㎖, 0.8mg/㎖, 0.16mg/㎖, 0.032mg/㎖, 0.0064mg/㎖, 0.00128mg/㎖, 0.000256mg/㎖)로 각 웰에 첨가하고, 상대 비교를 위하여 아스코빅산, 다이클로로아세트산도 동일한 방법으로 희석하여 웰에 첨가하였다. 37 ℃, 5% CO2 배양기(incubator)에서 72시간 동안 배양하고, 2㎎/㎖ MTT 시약을 50 ㎕가한 후 37 ℃ 배양기에서 4시간 동안 방치하였다. 원심분리기를 이용하여 상등액을 제거하고 DMSO 200 ㎕씩을 각 웰에 가해 MTT 염색침전물을 녹인 후 ELISA 판독기로 540 ㎚ 파장에서 OD540 값을 측정하였다. 50% 억제농도(IC50)는 생존율이 50%가 되도록 하는 약물의 농도로 정의하였으며, IC50 값을 항암효과의 지표로 사용하여 하기 표 1에 나타냈다.
구분 대장암 세포주의IC50(㎎/㎖) 유방암 세포주의IC50(㎎/㎖) 뇌암 세포주의 IC50(㎎/㎖)
실시예 1 0.07 0.04 0.5
실시예 2 0.07 0.05 0.6
실시예 3 0.86 0.05 0.8
다이클로로아세트산 1.21 0.43 3.71
아스코빅산 0.09 0.06 0.9
상기 표 1에 나타낸 바와 같이, 실시예 1 및 2의 칼슘염은 모두 대장암, 유방암, 뇌암 세포주에 대한 IC50 값이 아스코빅산, 다이클로로아세트산에 비해 낮은 값을 보이므로, 아스코빅산, 다이클로로아세트산에 비해 우수한 암 세포 사멸효과를 갖는 것을 확인했다.
실시예 3의 칼슘염은 대장암, 유방암, 뇌암 세포주에 대한 IC50 값이 다이클로로아세트산에 비해 낮은 값을 보이므로, 다이클로로아세트산에 비해 우수한 암 세포 사멸효과를 갖는 것을 확인했다.
한편, 실시예 3의 칼슘염은 대장암 세포주에 대한 IC50 값이 아스코빅산에 비해 높은 값을 나타내기는 하나, 유방암 및 뇌암 세포주에 대한 IC50 값이 아스코빅산에 비해 낮은 값을 보여, 아스코빅산에 비해 우수한 유방암 및 뇌암 세포 사멸효과를 갖는 것을 확인했다.
실험예 3-2: 암 세포주의 증식능력(MTT assay)에 미치는 효과 평가
대장암 세포주 2종을 포함한 7종 암세포주(대장암 세포주(HCT-116, HT-29), 폐암 세포주(A-549), 간암 세포주(HepG2), 췌장암 세포주(PANC-1), 위암 세포주(SNU-638) 및 난소암 세포주(A2780))에 대해 실시예 1과 실시예 2의 암세포 증식 억제능을 평가하였다.
7종의 세포주를 96웰 플레이트에 각 웰 당 5 x 103씩 분주하고, 24시간 배양 후, 실시예 1 및 실시예 2에 대하여, 농도별(5, 2.5, 1.25, 0.625, 0.313, 0.156, 0.078 mM)로 처리하였다. 상대 비교를 위하여 아스코빅산과 다이클로로아세트산에 대해서도 동일한 방법으로 처리하였다. 약물을 처리한 상태의 세포주를 37 ℃, 5% CO2 배양기(incubator)에서 48시간 동안 배양하고, 5㎎/㎖ 농도의 MTT 시약을 각 웰에 10 ㎕씩 첨가하였다. 4시간 추가 배양 후 배양액을 제거하고 각 웰당 100 ㎕씩 DMSO를 처리하여 MTT 염색침전물을 녹인 후 microplate reader기를 이용하여 540㎚ 파장에서 흡광도를 측정하였다. 50% 억제농도(IC50)는 생존율이 50%가 되도록 하는 약물의 농도로 정의하였으며, IC50 값을 항암효과의 지표로 사용하여 하기 표 2에 나타냈다.
구분 HCT-116 대장암 세포주의 IC50mM (㎎/㎖) HT-29 대장암 세포주의 IC50mM (㎎/㎖) A549 폐암 세포주의 IC50mM (㎎/㎖) HepG2 간암 세포주의 IC50mM (㎎/㎖) PANC-1 췌장암 세포주의 IC50mM(㎎/㎖) SNU-638 위암 세포주의 IC50mM (㎎/㎖) A2780 난소암 세포주의 IC50mM (㎎/㎖)
실시예 1 0.35(0.12) 0.83(0.29) 2.3(0.79) 2.1(0.72) 0.42(0.14) 1.40(0.48) 0.17(0.06)
실시예 2 0.33(0.11) 0.66(0.23) 3.1(1.06) 2.3(0.79) 0.40 (0.14) 1.44(0.49) 0.14(0.05)
아스코빅산 0.27(0.09) 0.93(0.32) >5(>1.7) 4.2(1.44) 0.37(0.13) 2.48(0.85) 0.15(0.05)
다이클로로아세트산 >5(>1.7) >5(>1.7) >5(>1.7) >5(>1.7) >5(>1.7) >5(>1.7) >5(>1.7)
상기 표 2에 나타낸 바와 같이, 실시예 1 및 2의 칼슘염은 대장암 외에도, 폐암, 간암, 췌장암, 위암 및 난소암에서도 항암효능을 나타내었다. 그리고, 다이클로로아세트산에 비해 낮은 IC50 값을 나타내는 것으로 보아 다이클로로아세트산에 비해 우수한 암 세포 사멸효과를 갖는 것을 확인했다.
실시예 1의 칼슘염은 대장암(HCT-116), 췌장암, 난소암 세포주에 대한 IC50 값이 아스코빅산에 비해 높은 값을 나타내기는 하나, 대장암(HT-29), 폐암, 간암, 위암 세포주에 대한 IC50 값이 아스코빅산에 비해 낮은 값을 보여, 아스코빅산에 비해 우수한 대장암(HT-29), 폐암, 간암, 위암 세포 사멸효과를 갖는 것을 확인했다.
실시예 2의 칼슘염은 대장암(HCT-116), 췌장암 세포주에 대한 IC50 값이 아스코빅산에 비해 높은 값을 나타내기는 하나, 대장암(HT-29), 폐암, 간암, 위암, 난소암 세포주에 대한 IC50 값이 아스코빅산에 비해 낮은 값을 보여, 아스코빅산에 비해 우수한 대장암(HT-29), 폐암, 간암, 위암, 난소암 세포 사멸효과를 갖는 것을 확인했다.
실험예 3-3: 암 세포주의 군집형성능에 미치는 효과 평가
사람 대장암 세포주(HCT-116) 및 각 아스코빅산(0 mM, 0.2 mM, 0.5 mM), 실시예 1 및 2의 칼슘염(0 mM, 0.2 mM, 0.5 mM), 다이클로로아세트산(0 mM, 2 mM, 5 mM), 실시예 3의 칼슘염(0 mM, 2 mM, 5 mM)을 포함하는 고체 배지에 접종하여 72시간 동안 배양하고, 배양이 종료된 후, 세포를 고정시킨 다음, 헤마톡실린으로 염색하여 군집이 형성된 암 세포를 관찰하여 도 11에 나타냈다.
상기 도 11에 나타낸 바와 같이, 실시예 1 내지 3의 칼슘염을 처리하지 않은 모든 대장암 세포주는 수백 개의 군집을 형성하였으나 각각 실시예 1 내지 3의 칼슘염을 처리농도가 증가함에 따라 군집의 수가 감소하였고 또한 아스코빅산, 다이클로로아세트산을 처리한 것보다 실시예 1 내지 3의 칼슘염이 대장암의 군집형성능을 억제하는 효과가 더욱 우수함을 관찰하였다. 상기 결과를 종합하면 실시예 1 내지 3의 칼슘염은 대장암의 군집형성능을 억제하는 효과를 나타냈음을 알 수 있었다.
따라서, 상기 실험예 3의 결과를 종합하면, 본 발명에 따른 금속이온이 결합된 이온화합물이 포함된 암 치료용 조성물은 대장암, 유방암, 뇌암 등의 암 세포의 생존율을 감소시킬 수 있음을 알 수 있었다.
실험예 4: 공지된 항암제와 실시예 1 내지 3의 칼슘염의 병용처리
공지된 항암제와 실시예 1 내지 3의 칼슘염을 병용처리하여 다양한 암 세포주에 미치는 치료효과를 검증하였다.
실험예 4-1: 5-FU(5-Fluorourasil)와 실시예의 병용처리 효과
대장암 세포주(HCT-116)를 RPMI1640 배지가 담긴 6웰 플레이트 각각에 1 X 103개의 세포를 분주하고 하루가 지난 후 배지를 새로 교체해준 뒤 실시예 1의 칼슘염(0.2 mM), 실시예 2의 칼슘염(0.2 mM), 실시예 3의 칼슘염(2 mM) 및 5 μM의 5-FU를 단독으로 각 웰에 처리하고, 5 μM 농도의 5-FU 및 실시예 1의 칼슘염(0.2 mM), 5 μM 농도의 5-FU 및 실시예 2의 칼슘염(0.2 mM), 5 μM 농도의 5-FU 및 실시예 3의 칼슘염(2 mM)과 같이 병용처리한 뒤 세포의 군집형성 능력을 비교하여 도 12에 나타냈다. 대조군으로는 아무 약물도 처리하지 않은 사람 대장암 세포주(HCT-116)를 활용하였다.
상기 도 12에 나타낸 바와 같이, 아무것도 처리하지 않은 대장암 세포주는 백여개의 군집을 형성하였으나, 5-FU와 실시예 1 내지 3의 칼슘염을 병용 처리한 것이 5-FU를 단독처리한 것보다 대장암의 군집형성능을 억제하는 효과가 더욱 우수하였음을 관찰하였다.
실험예 4-2: 대장암 세포에 대한 기존 항암제와 실시예의 병용처리 효과
96웰 플레이트 각각에 2 X 103개의 HCT-116 세포를 분주하고 24시간 동안 배양한 후, 다양한 농도의 실시예 또는 화학항암제(Fluorouracil(5-FU), SN-38, Paclitaxel(PTX))를 단독으로 처리하였다. 각 항암제의 48시간 단독처리 후, IC50 값을 표 3에 나타냈다.
구분 HCT-116 세포 HT-29 세포 DLD-1 세포
실시예 1 311 μM 1,326 μM 360 μM
실시예 2 430 μM 1,795 μM 340 μM
Fluorouracil(5-FU) 6 μM N.T. N.T.
SN-38 0.25 μM N.T. N.T.
Paclitaxel(PTX) 7.8 nM N.T. N.T.
N.T.(not tested)
96웰 플레이트 각각에 2 X 103개의 HCT-116 세포를 분주하고 24시간 동안 배양한 후, 다양한 농도의 실시예 1 또는 실시예 2와 화학항암제인 Fluorouracil(5-FU), SN-38, Paclitaxel(PTX)를 병용 처리한다. 48시간 노출 후, 병용 처리된 항암제 조합의 세포성장저해율(%)과 병용전달 효과를 combinational index(CI)를 이용해 효과를 평가하였다. 시너지(synergistic) 효과는 CI ≤ 0.85, 부가(additive) 효과는 0.85 < CI ≤ 1.15, 길항(대항, antagonistic) 효과는 CI > 1.15로 병용전달 효과를 나타내었다. 대부분의 농도에서 실시예 1 또는 실시예 2와 화학항암제인 Fluorouracil(5-FU), SN-38, Paclitaxel(PTX)을 병용 처리하였을 경우, 시너지(synergistic) 효과를 나타냈음을 확인하였다.
실험예 4-2-1: 실시예 1 또는 실시예 2와 Fluorouracil(5-FU)의 병용처리 효과
실시예 1과 5-FU, 또는 실시예 2와 5-FU을 HCT-116 세포에 48시간 병용 처리한 후, 세포성장저해율(%) 및 CI 값을 각각 표 4와 표 5에 나타냈으며, CI 값을 세분하여 시너지, 부가 또는 길항 효과를 각각 도 13과 도 14에 나타내었다.
실시예 1 또는 실시예 2와 5-FU이 실시예 1 또는 실시예 2의 IC50 값보다 같거나 낮은 농도에서 병용처리된 경우에는 일부 길항효과를 나타내었으나, 실시예 1 또는 2의 IC50보다 높은 1,000 μM이상의 농도에서 병용처리된 경우에는 다양한 농도 조건에서 대부분 시너지 효과가 나타났다.
5-FU(μM) 실시예 1(μM) Inhibition Effect(%) Combinational Index (CI) Combinational therapeutic effect
15 2100 93.577 0.4427 Synergistic
15 1050 85.3 0.6173 Synergistic
15 525 58.118 1.9302 Antagonistic
15 262.5 47.054 2.5103 Antagonistic
15 131.25 47.275 1.9424 Antagonistic
15 65.625 50.392 1.3341 Antagonistic
15 32.8125 52.792 1.0142 Additive
7.5 2100 94.005 0.4066 Synergistic
7.5 1050 85.172 0.6068 Synergistic
7.5 525 51.246 2.3129 Antagonistic
7.5 262.5 41.521 2.4865 Antagonistic
7.5 131.25 43.522 1.5783 Antagonistic
7.5 32.8125 44.392 1.0383 Additive
3.75 2100 94.164 0.3932 Synergistic
3.75 1050 78.44 0.9802 Additive
3.75 525 40.269 3.5082 Antagonistic
3.75 262.5 35.077 2.7914 Antagonistic
3.75 131.25 34.349 1.9729 Antagonistic
3.75 65.625 32.398 1.7429 Antagonistic
3.75 32.8125 36.111 1.0986 Additive
5-FU(μM) 실시예 2 (μM) Inhibition Effect(%) Combinational Index (CI) Combinational therapeutic effect
15 2100 91.559 0.0510 Synergistic
15 1050 78.756 0.2765 Synergistic
15 525 53.337 1.9886 Antagonistic
15 262.5 51.423 1.6698 Antagonistic
15 131.25 51.283 1.3570 Antagonistic
15 65.625 50.93 1.2254 Antagonistic
15 32.8125 52.97 0.9683 Additive
7.5 2100 91.863 0.0423 Synergistic
7.5 1050 72.226 0.4879 Synergistic
7.5 525 48.921 2.2351 Antagonistic
7.5 262.5 48.929 1.4258 Antagonistic
7.5 131.25 44.414 1.4760 Antagonistic
7.5 65.625 45.648 1.0689 Additive
7.5 32.8125 44.877 0.9954 Additive
3.75 2100 92.904 0.0294 Synergistic
3.75 1050 77.042 0.2624 Synergistic
3.75 525 47.495 2.1676 Antagonistic
3.75 262.5 39.686 2.4200 Antagonistic
3.75 131.25 41.142 1.3573 Antagonistic
3.75 65.625 38.763 1.1837 Antagonistic
3.75 32.8125 37.047 1.0919 Additive
실험예 4-2-2: 실시예 1 또는 실시예 2와 SN-38의 병용처리 효과
실시예 1과 SN-38 또는 실시예 2와 SN-38을 HCT-116 세포에 48시간 병용 처리한 후, 세포성장저해율(%) 및 CI 값을 각각 표 6과 표 7에 나타냈으며, CI 값을 세분하여 시너지, 부가 또는 길항 효과를 각각 도 15와 도 16에 나타내었다. 실시예 1의 IC50 값(311 μM)보다 높은 농도를 다양한 농도의 SN-38과 병용 처리한 경우 길항 효과를 보였으나, 실시예 1의 IC50 값 부근 또는 낮은 농도를 다양한 농도의 SN-38과 병용 처리하면 시너지 효과를 보였다. 실시예 2의 경우 대부분의 농도 조합에서 SN-38과의 시너지 효과가 관찰되었고, 특히 실시예 2의 IC50 값(430 μM)보다 낮은 농도와 SN-38의 IC50 값(0.25 μM)보다 낮은 농도의 조합에서도 시너지 효과가 관찰되었다.
SN-38 (μM) 실시예 1 (μM) Inhibition Effect (%) Combinational Index (CI) Combinational therapeutic effect
5 420 88.9229 0.1687 Synergistic
2.5 420 92.8722 0.0988 Synergistic
1.25 420 88.92 0.1570 Synergistic
0.625 420 79.8278 0.3557 Synergistic
0.3125 420 70.0759 0.6285 Synergistic
0.1563 420 62.0811 0.9237 Additive
0.0781 420 60.9107 0.9615 Additive
5 210 92.1143 0.0564 Synergistic
2.5 210 93.5517 0.0442 Synergistic
1.25 210 89.0431 0.0823 Synergistic
0.625 210 80.006 0.1782 Synergistic
0.3125 210 72.083 0.2873 Synergistic
0.1563 210 65.6346 0.3963 Synergistic
0.0781 210 64.1575 0.4177 Synergistic
0.2 2100 80.0428 1.7292 Antagonistic
0.2 1050 68.4032 1.6791 Antagonistic
0.2 525 67.5245 0.8846 Additive
0.2 262.5 66.2025 0.4816 Synergistic
0.2 131.25 65.0057 0.2670 Synergistic
0.2 65.625 65.2717 0.1420 Synergistic
0.2 32.8125 64.9823 0.0833 Synergistic
0.05 2100 69.6012 3.1419 Antagonistic
0.05 1050 49.7876 3.8746 Antagonistic
0.05 525 52.6036 1.7291 Antagonistic
0.05 262.5 50.4937 0.9707 Additive
0.05 131.25 52.4243 0.4599 Synergistic
0.05 65.625 50.3585 0.2763 Synergistic
0.05 32.8125 46.66 0.2076 Synergistic
SN38 (μM) 실시예 2 (μM) Inhibition Effect (%) Combinational Index (CI) Combinational therapeutic effect
5 420 91.9418 0.0018 Synergistic
2.5 420 93.77 0.0006 Synergistic
1.25 420 90.6416 0.0015 Synergistic
0.625 420 81.2855 0.0092 Synergistic
0.3125 420 75.304 0.0177 Synergistic
0.1563 420 70.6913 0.0256 Synergistic
0.0781 420 66.2695 0.0357 Synergistic
5 210 91.8629 0.0015 Synergistic
2.5 210 93.5454 0.0005 Synergistic
1.25 210 89.4457 0.0014 Synergistic
0.625 210 80.0402 0.0082 Synergistic
0.3125 210 71.5298 0.0207 Synergistic
0.1563 210 64.2447 0.0036 Synergistic
0.0781 210 62.6747 0.0320 Synergistic
0.2 2100 63.246 0.2178 Synergistic
0.2 1050 66.3675 0.0888 Synergistic
0.2 525 66.7414 0.0510 Synergistic
0.2 262.5 64.8357 0.0429 Synergistic
0.2 131.25 66.2566 0.0270 Synergistic
0.2 65.625 66.9537 0.0204 Synergistic
0.2 32.8125 65.6318 0.0222 Synergistic
0.05 2100 37.5149 1.9999 Antagonistic
0.05 1050 49.7181 0.3514 Synergistic
0.05 525 52.0429 0.1592 Synergistic
0.05 262.5 49.6147 0.1242 Synergistic
0.05 131.25 51.3344 0.0707 Synergistic
0.05 65.625 38.8751 0.2581 Synergistic
0.05 32.8125 42.255 0.1 Synergistic
실험예 4-2-3: 실시예 1 또는 실시예 2와 Paclitaxel의 병용처리 효과
실시예 1과 Paclitaxel 또는 실시예 2와 Paclitaxel을 HCT-116 세포에 48시간 병용 처리한 후, 세포성장저해율(%) 및 CI 값을 각각 표 8과 표 9에 나타냈으며, CI 값을 세분하여 시너지, 부가 또는 길항 효과를 각각 도 17과 도 18에 나타내었다. 실시예 1의 IC50 값(311 μM)보다 낮은 농도 또는 실시예 2의 IC50 값(430 μM)보다 낮은 농도와 0.1 μM (100 nM) 이하의 Paclitaxel을 병용 처리하면 대부분의 농도 조합에서 시너지 효과를 보였다. 실시예 1, 실시예 2의 IC50 값보다 낮은 농도와 Paclitaxel의 IC50 값(7.8 nM)보다 낮은 농도를 병용 처리한 경우 대부분의 농도 조합에서 시너지 효과가 관찰되었다.
PTX (μM) 실시예 1 (μM) Inhibition effect(%) Combinational Index (CI) Combinational therapeutic effect
2000 21 74.5377 4.8733 Antagonistic
1000 21 75.7045 1.9814 Antagonistic
500 21 76.1604 0.9214 Additive
250 21 75.5324 0.5284 Synergistic
125 21 74.1361 0.3504 Synergistic
62.5 21 72.2105 0.2551 Synergistic
31.25 21 73.5272 0.1162 Synergistic
2000 105 72.7134 6.8186 Antagonistic
1000 105 72.7584 3.4499 Antagonistic
500 105 73.298 1.6396 Antagonistic
250 105 70.7832 1.3048 Antagonistic
125 105 70.1536 0.7942 Synergistic
62.5 105 68.7768 0.5640 Synergistic
31.25 105 72.8483 0.2346 Synergistic
0.01 2100 74.538 4.8733 Antagonistic
0.01 1050 75.705 1.9814 Antagonistic
0.01 525 76.16 0.9214 Additive
0.01 262.5 75.532 0.5284 Synergistic
0.01 131.25 74.136 0.3504 Synergistic
0.01 65.625 72.211 0.2551 Synergistic
0.01 32.8125 73.527 0.1162 Synergistic
0.05 2100 72.758 3.4499 Antagonistic
0.05 1050 73.298 1.6396 Antagonistic
0.05 525 70.783 1.3048 Antagonistic
0.05 262.5 70.154 0.7942 Synergistic
0.05 131.25 68.777 0.5640 Synergistic
0.05 65.625 72.848 0.2346 Synergistic
0.1 2.1 63.569 0.4335 Synergistic
0.05 2.1 67.66 0.1804 Synergistic
0.025 2.1 66.42 0.1010 Synergistic
0.0125 2.1 67.57 0.0511 Synergistic
0.00625 2.1 65.797 0.0338 Synergistic
0.00313 2.1 68.827 0.0166 Synergistic
0.00156 2.1 68.866 0.0114 Synergistic
0.1 10.5 70.818 0.3181 Synergistic
0.05 10.5 70.508 0.1741 Synergistic
0.025 10.5 71.703 0.0903 Synergistic
0.0125 10.5 70.75 0.0603 Synergistic
0.00625 10.5 72.076 0.0359 Synergistic
0.00313 10.5 71.37 0.0299 Synergistic
0.00156 10.5 71.494 0.0250 Synergistic
0.005 210 66.813 0.8892 Additive
0.005 105 69.533 0.2995 Synergistic
0.005 52.5 66.54 0.2454 Synergistic
0.005 26.25 60.005 0.3220 Synergistic
0.005 13.125 46.752 0.9711 Additive
0.1 21 71.369 0.4485 Synergistic
0.05 21 66.478 0.4952 Synergistic
0.025 21 66.499 0.2651 Synergistic
0.0125 21 57.197 0.4975 Synergistic
0.00625 21 44.714 1.3230 Antagonistic
0.001 210 63.569 0.4335 Synergistic
0.001 105 67.6599 0.1804 Synergistic
0.001 52.5 66.4198 0.1010 Synergistic
0.001 26.25 67.5701 0.0511 Synergistic
0.001 13.125 65.7969 0.0338 Synergistic
0.001 6.5625 68.8272 0.0166 Synergistic
0.001 3.28125 68.8664 0.0114 Synergistic
0.005 210 70.8176 0.3181 Synergistic
0.005 105 70.5084 0.1741 Synergistic
0.005 52.5 71.7034 0.0903 Synergistic
0.005 26.25 70.7495 0.0603 Synergistic
0.005 13.125 72.0755 0.0359 Synergistic
0.005 6.5625 71.3732 0.0299 Synergistic
0.005 3.28125 71.4937 0.0250 Synergistic
0.1 10.5 66.8129 0.8892 Additive
0.05 10.5 69.5334 0.2995 Synergistic
0.025 10.5 66.5395 0.2454 Synergistic
0.0125 10.5 60.0051 0.3220 Synergistic
0.00625 10.5 46.7518 0.9711 Additive
PTX (μM) ASCA201 (μM) Inhibition effect(%) Combinational Index (CI) Combinational therapeutic effect
2000 21 67.4203 15.8618 Antagonistic
1000 21 70.5542 4.8706 Antagonistic
500 21 69.9203 2.6664 Antagonistic
250 21 68.756 1.6081 Antagonistic
125 21 66.3676 1.1675 Antagonistic
62.5 21 66.8142 0.5458 Synergistic
31.25 21 69.2026 0.1881 Synergistic
2000 105 74.696 4.7156 Antagonistic
1000 105 72.0231 3.7650 Antagonistic
500 105 71.9147 1.9194 Antagonistic
250 105 70.6184 1.1936 Antagonistic
125 105 69.9301 0.6703 Synergistic
62.5 105 69.7345 0.3485 Synergistic
31.25 105 68.4207 0.2177 Synergistic
0.1 10.5 65.418 1.0785 Additive
0.05 10.5 64.7243 0.5989 Synergistic
0.025 10.5 65.3698 0.2722 Synergistic
0.0125 10.5 59.8142 0.3069 Synergistic
0.00625 10.5 40.9398 2.0862 Antagonistic
0.003125 10.5 32.0304 3.9015 Antagonistic
0.1 21 68.0909 0.7153 Synergistic
0.05 21 66.5773 0.4656 Synergistic
0.025 21 63.4886 0.3611 Synergistic
0.0125 21 58.1434 0.3899 Synergistic
0.00625 21 43.5657 1.4500 Antagonistic
0.001 210 65.3911 0.0264 Synergistic
0.001 105 65.9839 0.0173 Synergistic
0.001 52.5 67.8681 0.0105 Synergistic
0.001 26.25 67.6829 0.0092 Synergistic
0.001 13.125 67.3283 0.0089 Synergistic
0.001 6.5625 66.7196 0.0093 Synergistic
0.001 3.28125 67.6246 0.0079 Synergistic
0.005 210 67.7855 0.0499 Synergistic
0.005 105 67.0877 0.0484 Synergistic
0.005 52.5 67.6759 0.0412 Synergistic
0.005 26.25 67.9123 0.0383 Synergistic
0.005 13.125 69.3483 0.0299 Synergistic
0.005 6.5625 69.5098 0.0288 Synergistic
0.005 3.28125 68.3333 0.0346 Synergistic
1 21 70.5542 4.8706 Antagonistic
0.5 21 69.9203 2.6664 Antagonistic
0.25 21 68.756 1.6081 Antagonistic
0.125 21 66.3676 1.1675 Antagonistic
0.0625 21 66.8142 0.5458 Synergistic
0.0313 21 69.2026 0.1881 Synergistic
2 105 74.696 4.7156 Antagonistic
1 105 72.0231 3.7650 Antagonistic
0.5 105 71.9147 1.9194 Antagonistic
0.25 105 70.6184 1.1936 Antagonistic
0.125 105 69.9301 0.6703 Synergistic
0.0625 105 69.7345 0.3485 Synergistic
0.0313 105 68.4207 0.2177 Synergistic
실험예 5: 동물모델을 통해 실시예의 칼슘염에 대한 항암효과 검증
실험예 5-1: 동물모델(orthotropic model)을 이용한 암종 형성 동물 모델 구축
이종동소 이식한 동물모델(orthotopic xenograft) 및 일반 동물모델(orthotopic xenograft)을 구축하기 위하여 A549/LUC 세포와 DLD-1 세포를 계대배양한 후, 마우스의 폐와 대장에 상기의 암 세포를 각각 주입하였다.
상기 모델은 마우스 장기에 직접 암 세포를 주입하였으므로, 마우스 외형 관찰로 암의 성장이 확인되지 않기 때문에, A549/LUC 세포를 주입한 동물모델의 경우 7일 간격으로 D-Luciferin을 복강으로 주사하여 발광 정도를 IVIS 스펙트럼 이미징 시스템(Xenogen) 장비를 이용한 luminescence 이미징 측정으로 암의 성장 포화도를 확인하였고, 한편 DLD-1세포를 주입한 동물모델의 경우 7일 후 실험 개체를 sacrifice하여 암의 성장 포화도를 확인하였다. A549/LUC세포를 주입한 동물모델의 경우 약 4주 후, 발광의 세기가 107 photons/s/cm2/sr 정도 확인되었을 때 실시예 1 내지 3의 칼슘염을 투여한 후, in vivo 이미징에 사용하였고, DLD-1세포를 주입한 동물모델의 경우 약 7주 후, 대장암의 발현이 말기에 해당하는 시기에 실시예 1의 칼슘염을 투여한 후 항암 효과를 관찰하였다.
즉, 대장에 일반 DLD-1세포를 이식하여 대장암 마우스 모델(DLD-1 orthotopic model)을 구축하였고, 폐에 이종동소를 이식하여 폐암 마우스 모델(A549/LUC orthotopic model)을 구축하였다. 그 다음, 각 마우스 모델에 하기 표 10과 같이 약물을 투여하였다.
동물실험모델 약물 농도 약물투여방법 개체수
마우스 모델(DLD-1 orthotopic model) 대조군 - 매일 1회(Qdx4), 정맥주사(IV), 1주 투여 4
마우스 모델(DLD-1 orthotopic model) 실시예 1 100mg/kg(Dissolved in saline) 매일 1회(Qdx4), 정맥주사(IV), 1주 투여 4
마우스 모델(A549/LUC orthotopic model) 대조군 - 매일 1회(Qdx4), 정맥주사(IV), 5주 투여 3
마우스 모델(A549/LUC orthotopic model) 실시예 1 100mg/kg(Dissolved in saline) 매일 1회(Qdx4), 정맥주사(IV), 5주 투여 3
마우스 모델(A549/LUC orthotopic model) 실시예 2 100mg/kg(Dissolved in saline) 매일 1회(Qdx4), 정맥주사(IV), 5주 투여 3
마우스 모델(A549/LUC orthotopic model) 실시예 3 100mg/kg(Dissolved in saline) 매일 1회(Qdx4), 정맥주사(IV), 5주 투여 3
실험예 5-2: 칼슘염을 주사한 동물모델에서 항암효과 및 암전이의 변화(1)
상기 실시예 1의 칼슘염을 상기 실험예 5-1에서 구축한 동일 마우스 모델(DLD-1 orthotopic model)에 투여하고 1주 후 절개하여 암 세포의 성장 상태를 관찰하여 도 19a에 나타내었고, 또한 암 조직 무게를 측정하여 생체 내에서 발명 물질의 항암 효능을 확인하여 도 19b에 나타냈다.
상기 도 19a 및 19b에 나타낸 바와 같이, 실시예 1의 칼슘염을 처리하지 않은 모든 마우스 모델(DLD-1 orthotopic model)에서는 급격한 암세포의 성장을 나타내었으나 실시예 1의 칼슘염을 모든 마우스 모델(DLD-1 orthotopic model)에서는 암세포의 성장이 유의적으로 억제되었다.
실험예 5-3: 칼슘염을 주사한 동물모델에서 항암효과 및 암전이의 변화(2)
상기 실시예 1 내지 3의 칼슘염을 상기 실험예 5-1에서 구축한 동일 마우스 모델(A549/LUC orthotopic model)에 각각 투여한 후 생체 내에서 발명 물질들의 조직분포, 전이도 및 항암 효능을 확인한 영상 사진을 도 20에 나타냈다. 또한 각각의 이미징 결과를 보다 정확하게 수치화하기 위하여, in vivo 이미지를 IVIS 스펙트럼(Xenogen)의 프로그램인 ROI(Region Of Interest)를 측정하여 확인한 결과를 도 21에 나타냈으며, 도 22에는 마우스 모델(A549/LUC orthotopic model)의 생존율을 측정하여 나타냈다.
상기 도 20, 21 및 22를 살펴보면, 실시예 1 내지 3의 칼슘염은 대조군과 비교하여 우수한 항암 효능, 전이 억제 능력 및 우수한 생존율을 가지는 것을 확인할 수 있었다. 특히 실시예 1에서는 약물 투여 기간은 물론 약물 투여를 중단 후에도 전혀 암 조직의 성장 및 전이를 나타내지 않았는데 이는 암 세포내의 미토콘드리아가 정상화(reforming)되었음을 짐작하게 한다.
따라서, 앞서 서술한 실험결과를 통해 본 발명에 따른 금속이온에 결합된 이온화합물은 암 세포에 대한 uptake을 증가시킬 수 있음을 확인하였고, 암 세포내의 pH를 낮추어 산성화시킬 수 있음을 확인하였으며, 1종 각각의 화합물(아스코빅산 또는 다이클로로아세트산)보다 2종의 화합물을 금속이온과 결합한 이온화합물이 더욱 암 세포의 사멸효과가 우수했음을 확인하였다.
또한, 상기 이온화합물은 피루브산 및 알파케토글루탐산을 증가시킴으로써, 암 세포의 해당작용을 억제할 수 있음을 확인하였으며, β-catenin, PARP, 및 VEGF의 발현양에 대한 변화를 통하여 암 세포 증식 및 전이를 감소시킬 수 있음을 확인했다. 더불어, 암 세포주의 증식능력 실험을 통해, 종래의 항암제와 병용 투여시 더 우수한 항암효과를 나타낼 수 있음을 확인하였다.

Claims (14)

  1. 아스코빅산(Ascorbic acid), 다이클로로아세트산(Dichloroacetic acid) 및 락테이트(Lactate) 중 선택된 2종의 화합물이 Ca, Zn, Mg 및 Fe로부터 선택되는 1종의 금속이온과 결합된 이온화합물을 유효성분으로 포함하는 암 치료용 약학 조성물.
  2. 제1항에 있어서,
    상기 금속이온은 Ca2+인 암 치료용 약학 조성물.
  3. 제1항에 있어서,
    상기 약학 조성물은 방사선 조사 또는 항암제와의 병용치료에 사용되는 것인 암 치료용 약학 조성물.
  4. 제3항에 있어서,
    상기 방사선은 1일 2 내지 10Gy의 조사량으로 암환자에게 조사하면서, 상기 약학 조성물과 병용처리되는 것인 암 치료용 약학 조성물.
  5. 제3항에 있어서,
    상기 항암제는 이매티닙(Imatinib), 5-FU(5-Florouracil), 이리노테칸(Irinotecan), 서니티닙(Sunitinib), 옥살리플라틴(Oxaliplatin), 파클리탁셀(Paclitaxel), 라파티닙(Lapatinib), 트라스트주맵(Trastuzumab, Herceptin), 제피티닙(Gefitinib), 에를로티닙(Erlotinib), 메토트렉세이트(Methotrexate), 카보플라틴(Carboplatin), 도세탁셀(Docetaxel), 에버롤리무스(Everolimus), 소라페닙(Sorafenib), 카르보닉 언하이드라제(carbonic anhydrase)의 억제제, 모노카르복실레이트 트랜스포터(monocarboxylate transporter)의 억제제, 펌브로 펨브롤리주맙(Pembrolizumab), 아테졸리주맙(Atezolizumab), PD-1계열 항암제, 니볼루맙(Nivolumab), PARP-1(Poly(ADP-ribose) polymerase 1)의 억제제, PARP-2(Poly(ADP-ribose) polymerase 2)의 억제제, 올라파립(Olaparib), 루카파립(Rucaparib), 니카파립(Niraparib), 베바시주맙(Bevacizumab) 및 VEGF 억제제로 구성된 군으로부터 선택되는 하나 이상의 항암제인 것인 암 치료용 약학 조성물.
  6. 제1항에 있어서,
    상기 암은 폐암, 유방암, 대장암, 위암, 뇌암, 췌장암, 갑상선암, 피부암, 골수암, 림프종, 자궁암, 자궁경부암, 신장암 및 흑색종으로 구성된 군으로부터 선택되는 암인 것인 암 치료용 약학 조성물.
  7. 제1항에 있어서,
    상기 약학 조성물은 약학적으로 허용되는 담체, 부형제 또는 희석제를 추가로 포함하는 것인 암 치료용 약학 조성물.
  8. 제1항에 있어서,
    상기 약학 조성물은 액제, 산제, 에어로졸, 주사제, 수액제(링겔), 패치, 캡슐제, 환제, 정제, 데포(depot) 또는 좌제의 형태로 제형화되는 것인 암 치료용 약학 조성물.
  9. 아스코빅산(Ascorbic acid), 다이클로로아세트산(Dichloroacetic acid) 및 락테이트(Lactate) 중 선택된 2종의 화합물이 Ca, Zn, Mg 및 Fe로부터 선택되는 1종의 금속이온과 결합된 이온화합물을 유효성분으로 포함하는 암 전이억제용 약학 조성물.
  10. 제9항에 있어서,
    상기 금속이온은 Ca2+인 암 전이억제용 약학 조성물.
  11. 제9항에 있어서,
    상기 암은 폐암, 유방암, 대장암, 위암, 뇌암, 췌장암, 갑상선암, 피부암, 골수암, 림프종, 자궁암, 자궁경부암, 신장암 및 흑색종으로 구성된 군으로부터 선택되는 암인 것인 암 전이억제용 약학 조성물.
  12. 아스코빅산(Ascorbic acid), 다이클로로아세트산(Dichloroacetic acid) 및 락테이트(Lactate) 중 선택된 2종의 화합물이 Ca, Zn, Mg 및 Fe로부터 선택되는 1종의 금속이온과 결합된 이온화합물을 유효성분으로 포함하는 암 관련 피로 예방 또는 개선용 약학 조성물.
  13. 아스코빅산(Ascorbic acid), 다이클로로아세트산(Dichloroacetic acid) 및 락테이트(Lactate) 중 선택된 2종의 화합물이 Ca, Zn, Mg 및 Fe로부터 선택되는 1종의 금속이온과 결합된 이온화합물을 유효성분으로 포함하는 암 개선용 식품 조성물.
  14. 제13항에 있어서,
    상기 식품 조성물은 과자, 음료, 주류, 발효식품, 통조림, 우유가공식품, 육류가공식품 또는 국수가공식품의 형태인 건강기능성 식품으로 제조되는 것인 식품 조성물.
PCT/KR2019/010485 2018-08-22 2019-08-19 금속이온에 결합된 이온화합물을 포함하는 암 치료용 약학 조성물 WO2020040502A1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2019324286A AU2019324286B2 (en) 2018-08-22 2019-08-19 Pharmaceutical composition for treating cancer comprising metal ion-bound ionic compound
US17/269,347 US20210244757A1 (en) 2018-08-22 2019-08-19 Pharmaceutical composition for treating cancer comprising metal ion-bound ionic compound
CN201980054305.1A CN112584830B (zh) 2018-08-22 2019-08-19 包含结合到金属离子中的离子化合物的肿瘤治疗用药学组合物
JP2021534100A JP7112791B2 (ja) 2018-08-22 2019-08-19 金属イオンに結合されたイオン化合物を含む癌治療用薬学組成物
EP19850999.4A EP3842042A4 (en) 2018-08-22 2019-08-19 PHARMACEUTICAL COMPOSITION WITH A METAL ION-BONDED IONIC COMPOUND FOR THE TREATMENT OF CANCER
BR112021003078-6A BR112021003078A2 (pt) 2018-08-22 2019-08-19 composições farmacêuticas que compreendem um composto iônico que tem um íon metálico ligado ao mesmo e composição alimentar para tratamento de câncer
MX2021002027A MX2021002027A (es) 2018-08-22 2019-08-19 Composicion farmaceutica para tratar un cancer que comprende un compuesto ionico que tiene un enlace de ion de metal para el mismo.
CA3109360A CA3109360C (en) 2018-08-22 2019-08-19 A pharmaceutical composition for treating cancer comprising an ionic compound having metal ion binding thereto

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180098145A KR101998246B1 (ko) 2018-08-22 2018-08-22 금속이온에 결합된 이온화합물을 포함하는 암 치료용 약학 조성물
KR10-2018-0098145 2018-08-22

Publications (1)

Publication Number Publication Date
WO2020040502A1 true WO2020040502A1 (ko) 2020-02-27

Family

ID=67254810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010485 WO2020040502A1 (ko) 2018-08-22 2019-08-19 금속이온에 결합된 이온화합물을 포함하는 암 치료용 약학 조성물

Country Status (10)

Country Link
US (1) US20210244757A1 (ko)
EP (1) EP3842042A4 (ko)
JP (1) JP7112791B2 (ko)
KR (1) KR101998246B1 (ko)
CN (1) CN112584830B (ko)
AU (1) AU2019324286B2 (ko)
BR (1) BR112021003078A2 (ko)
CA (1) CA3109360C (ko)
MX (1) MX2021002027A (ko)
WO (1) WO2020040502A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101998246B1 (ko) * 2018-08-22 2019-07-10 주식회사 메타파인즈 금속이온에 결합된 이온화합물을 포함하는 암 치료용 약학 조성물
WO2024010394A1 (ko) * 2022-07-07 2024-01-11 (주) 메티메디제약 칼슘 락테이트를 유효성분으로 함유하는 암성 악액질 개선 또는 치료용 조성물
WO2024071464A1 (ko) * 2022-09-27 2024-04-04 (주)바이오솔릭스 말레이트 금속염을 포함하는 항암용 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050043764A (ko) * 2001-11-06 2005-05-11 아마토 세이야쿠 가부시키가이샤 젖산 올리고머 혼합물을 포함하는 항종양제
KR20050058278A (ko) 2001-12-06 2005-06-16 파마시아 이탈리아 에스.피.에이. 백금 유도체를 포함하는 제약 제제
US20110117210A1 (en) 2009-11-17 2011-05-19 Andrey Ugolkov Therapeutic treatment of human cancers using simple salts of zinc
KR20120007848A (ko) * 2010-07-15 2012-01-25 주식회사 셀트리온화학연구소 엘로티닙 다이클로로아세트산염 및 이를 포함하는 항암제 조성물
KR20160082918A (ko) 2014-12-29 2016-07-11 가천대학교 산학협력단 락테이트 금속염을 포함하는 암 치료용 약학 조성물
KR101998246B1 (ko) * 2018-08-22 2019-07-10 주식회사 메타파인즈 금속이온에 결합된 이온화합물을 포함하는 암 치료용 약학 조성물

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468980B1 (en) * 2000-09-01 2002-10-22 Oxycal Laboratories, Inc. Methods and compositions for potentiating cancer chemotherapeutic agents
US20040156924A1 (en) * 2003-02-10 2004-08-12 Jonathan Selzer Vitamin C and calcium ascorbate based dietary supplement products
US20040253323A1 (en) * 2003-06-11 2004-12-16 Giles Brian C. Ionic cancer therapy and methods for using same in the treatment of tumors and metastasis
WO2006108276A1 (en) * 2005-04-11 2006-10-19 The Governors Of The University Of Alberta A method of treating cancer using dichloroacetate
WO2011146635A1 (en) * 2010-05-21 2011-11-24 North Texas Medical Associates Malignant neoplasm treatment protocol
CN102613470B (zh) * 2012-03-29 2013-05-08 常熟市珍门麦芽糖厂 一种补钙保健米糊
US20130273199A1 (en) * 2012-04-11 2013-10-17 George H. Clark Beverage and method for producing a sparkling beverage which is a nutritious alternative to milk with all the nutrition of milk plus antrhocyanins
KR20180062063A (ko) * 2016-11-30 2018-06-08 (주) 메티메디제약 서방형 항암용 약학 조성물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050043764A (ko) * 2001-11-06 2005-05-11 아마토 세이야쿠 가부시키가이샤 젖산 올리고머 혼합물을 포함하는 항종양제
KR20050058278A (ko) 2001-12-06 2005-06-16 파마시아 이탈리아 에스.피.에이. 백금 유도체를 포함하는 제약 제제
US20110117210A1 (en) 2009-11-17 2011-05-19 Andrey Ugolkov Therapeutic treatment of human cancers using simple salts of zinc
KR20120007848A (ko) * 2010-07-15 2012-01-25 주식회사 셀트리온화학연구소 엘로티닙 다이클로로아세트산염 및 이를 포함하는 항암제 조성물
KR20160082918A (ko) 2014-12-29 2016-07-11 가천대학교 산학협력단 락테이트 금속염을 포함하는 암 치료용 약학 조성물
KR101998246B1 (ko) * 2018-08-22 2019-07-10 주식회사 메타파인즈 금속이온에 결합된 이온화합물을 포함하는 암 치료용 약학 조성물

Also Published As

Publication number Publication date
JP2022508361A (ja) 2022-01-19
KR101998246B1 (ko) 2019-07-10
US20210244757A1 (en) 2021-08-12
AU2019324286A1 (en) 2021-02-25
CN112584830A (zh) 2021-03-30
CN112584830B (zh) 2023-09-08
BR112021003078A2 (pt) 2021-05-11
AU2019324286B2 (en) 2023-02-02
EP3842042A4 (en) 2022-08-17
CA3109360C (en) 2024-05-14
CA3109360A1 (en) 2020-02-27
MX2021002027A (es) 2021-04-28
JP7112791B2 (ja) 2022-08-04
EP3842042A1 (en) 2021-06-30

Similar Documents

Publication Publication Date Title
WO2020040502A1 (ko) 금속이온에 결합된 이온화합물을 포함하는 암 치료용 약학 조성물
Lin et al. Antioxidant, anti-semicarbazide-sensitive amine oxidase, and anti-hypertensive activities of geraniin isolated from Phyllanthus urinaria
WO2021060945A1 (ko) 암 치료를 위한 절대혐기성 인체 장내미생물 및 이의 용도
WO2010053314A2 (ko) 산삼 또는 인삼을 포함한 인삼류의 형성층 유래 식물줄기세포주를 유효성분으로 함유하는 암의 예방 또는 치료용 조성물
KR101561552B1 (ko) 리그난 화합물을 유효 성분으로 포함하는 암의 예방 또는 치료용 조성물
WO2010076937A1 (ko) 난담반을 포함하는 암 예방 및 치료용 조성물
WO2019221453A1 (ko) 관동화 추출물로부터 분리된 투실라곤 화합물을 함유하는 암 질환의 예방 및 치료용 조성물 및 이의 용도
WO2018106002A1 (ko) 플라보노이드 유도체 및 이리도이드 유도체로 구성된 화합물 조합을 유효성분으로 함유하는 남성 불임증 예방 및 치료용 조성물 및 이의 용도
WO2016190481A1 (ko) 파낙사디올류 진세노사이드 화합물을 포함하는 항암보조제
WO2019066469A1 (ko) 페북소스타트 또는 토피록소스타트의 암 전이의 예방 및 치료제로서의 용도
WO2022163971A1 (ko) 콜린에스터라제 억제제 및 항산화제를 포함하는 뇌질환 치료용 약학적 복합 조성물
WO2014007537A1 (ko) 백부근 추출물을 포함하는 염증성 장질환의 예방 또는 치료효과를 갖는 약학 조성물
WO2019225845A1 (ko) 살리드로사이드 또는 베툴린을 이용한 뇌수막종 개선용 조성물
RU2780016C1 (ru) Фармацевтическая композиция для лечения рака, содержащая ионное соединение, имеющее связь с ионом металла
KR101418164B1 (ko) 자외선을 처리한 벼 추출물을 유효성분으로 포함하는 대장암 예방 또는 치료용 약학적 조성물
KR101178500B1 (ko) 불등가사리 유래 화합물 및 이를 포함한 알츠하이머 질환 예방 및 치료용 조성물
KR102676617B1 (ko) 신규 화합물 및 이를 유효성분으로 함유하는 암의 예방 또는 치료용 조성물
KR102036355B1 (ko) 페북소스타트 또는 토피록소스타트의 암 전이의 예방 및 치료제로서의 용도
WO2020226450A1 (ko) 포스포리파아제 a2를 유효성분으로 포함하는 비만 예방 또는 치료용 조성물
WO2024029984A2 (ko) 암의 예방 또는 치료를 위한 혼합 생약 추출물 및 도세탁셀의 병용 요법
WO2021075818A1 (ko) 항염증 활성을 갖는 남극 지의류 움빌리카리아 안타티카 추출물 및 이를 함유하는 조성물
WO2022092461A1 (ko) 비만 또는 당뇨의 예방 또는 치료용 약학적 조성물 및 이의 제조 방법
WO2021040449A2 (ko) 당귀, 포부자, 및 건강 혼합 추출물을 유효성분으로 포함하는 암 예방 또는 치료용 조성물
KR102111706B1 (ko) 감잎 추출물을 포함하는 간암 전이 억제용 조성물
WO2018048008A1 (ko) 프리마퀸을 포함하는, 암 줄기세포 성장 억제용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850999

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3109360

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021534100

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019324286

Country of ref document: AU

Date of ref document: 20190819

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021003078

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2021103416

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2019850999

Country of ref document: EP

Effective date: 20210322

ENP Entry into the national phase

Ref document number: 112021003078

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210219