WO2020040257A1 - 改変ホスホリラーゼを利用したラクト-N-ビオースIまたはガラクト-N-ビオースのβグリコシドの酵素合成法 - Google Patents

改変ホスホリラーゼを利用したラクト-N-ビオースIまたはガラクト-N-ビオースのβグリコシドの酵素合成法 Download PDF

Info

Publication number
WO2020040257A1
WO2020040257A1 PCT/JP2019/032866 JP2019032866W WO2020040257A1 WO 2020040257 A1 WO2020040257 A1 WO 2020040257A1 JP 2019032866 W JP2019032866 W JP 2019032866W WO 2020040257 A1 WO2020040257 A1 WO 2020040257A1
Authority
WO
WIPO (PCT)
Prior art keywords
glnbp
modified
seq
amino acid
acid sequence
Prior art date
Application number
PCT/JP2019/032866
Other languages
English (en)
French (fr)
Inventor
高嶺 片山
加藤 紀彦
北岡 本光
Original Assignee
国立大学法人京都大学
国立研究開発法人農業・食品産業技術総合研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 国立研究開発法人農業・食品産業技術総合研究機構 filed Critical 国立大学法人京都大学
Priority to JP2020538465A priority Critical patent/JPWO2020040257A1/ja
Publication of WO2020040257A1 publication Critical patent/WO2020040257A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/26Preparation of nitrogen-containing carbohydrates
    • C12P19/28N-glycosides

Definitions

  • the present disclosure relates to a method for synthesizing ⁇ -glycoside of lacto-N-biose I or galacto-N-biose and a modified enzyme used therein.
  • Bifidobacteria-predominant flora is formed in the intestinal tract of breastfeeding infants, which involves the oligosaccharide components contained in human milk.
  • lacto-N-tetraose (Gal ⁇ 1-3GlcNAc ⁇ 1-3Gal ⁇ 1-4Glc) has been found to be a true bifidogenic factor.
  • intestinal flora formation during infancy has a significant effect on obesity and allergic development after adulthood.WHO recommends breastfeeding, but the rate of breastfeeding continues to decrease. Also, the weaning period has been advanced.
  • Non-Patent Document 1 a conventional lacto-N-tetraose synthesis method, a chemical synthesis method and a fermentation method using metabolic engineering (for example, Non-Patent Document 1) have been developed, but none of them has been put to practical use.
  • GLNBP ⁇ -1,3-galactosyl-N-acetylhexosamine phosphorylase
  • GLNBP lacto- N-biose I (Gal ⁇ 1-3GlcNAc) to galactose-1-phosphate (Gal-1-P) and N-acetylglucosamine (GlcNAc)
  • galacto-N-biose Gal ⁇ 1-3GalNAc
  • Non-Patent Document 2 has been suggested to have a helical structure. Also, many research results have been reported on its active center in a three-dimensional structure (for example, Non-Patent Document 3).
  • An object of the present application is to provide a novel method for producing ⁇ -glycoside of lacto-N-biose I or galacto-N-biose such as lacto-N-tetraose.
  • the present inventors have conducted intensive studies to solve the above problems, and found that a modified GLNBP in which an amino acid deletion / substitution / insertion was introduced into a predetermined region of GLNBP (SEQ ID NO: 1) of Bifidobacterium longum strain JCM1217, Reversibly catalyzes the synthesis of galactose-1-phosphate (Gal-1-P) and lacto-N-triose II (GlcNAc ⁇ 1-3Gal ⁇ 1-4Glc) to lacto-N-tetraose (Gal ⁇ 1-3GlcNAc ⁇ 1-3Gal ⁇ 1-4Glc)
  • Gal ⁇ 1-3GlcNAc ⁇ 1-3Gal ⁇ 1-4Glc lacto-N-tetraose
  • the modified GLNBP is capable of reacting with galactose-1-phosphate (Gal- It has been found that the formation of a ⁇ -1,3 bond with 1-P) is reversibly catalyzed, and the present invention has been accomplished.
  • embodiments of the present invention will be described in detail.
  • one or more amino acids are deleted, substituted and / or inserted in a loop region located three-dimensionally near the active center of the non-mutant GLNBP; Position, the N-acetylglucosamine residue ⁇ -linked to the non-reducing end or the N-acetylglucosamine residue in a sugar having one or more sugar residues having a ⁇ -linked N-acetylgalactosamine residue or A modified GLNBP protein having an enzymatic activity for ⁇ -1,3 binding to position 3 of an N-acetylgalactosamine residue.
  • the saccharide having a ⁇ -linked N-acetylglucosamine residue or a ⁇ -linked N-acetylgalactosamine residue and one or more sugar residues at the non-reducing end is lacto-N-triose II
  • [5] ⁇ circle around (1) ⁇ deletion of 1 to 16 amino acids, substitution of 1 to 16 amino acids with 1 to 16 amino acids in the loop region located three-dimensionally near the active center of the non-mutant GLNBP, and / or Or the modified GLNBP protein according to any one of [2] to [4], wherein 1 to 10 amino acids are inserted.
  • [7] A region corresponding to positions 452 to 467 (eg, positions 454 to 465, 457 to 463) in SEQ ID NO: 1 when the amino acid sequence of the non-mutant GLNBP is aligned with the amino acid sequence shown in SEQ ID NO: 1.
  • 3-10 consecutive amino acids eg, 4-8, 5-7, 5 (eg, regions corresponding to positions 458-462)
  • 3-10 consecutive amino acids are deleted, or 3-10 consecutive amino acids are deleted.
  • Ten (eg, 4-8, 5-7, 7 (eg, regions corresponding to positions 457-463)) amino acids are consecutive 2-10 (eg, 2-7) containing at least one glycine.
  • the modified GLNBP protein according to any one of [1] to [6], wherein the modified GLNBP protein is substituted with (3) amino acids.
  • 3 to 10 for example, 4 to 8, 5 to 7, and 7 (for example, regions corresponding to positions 457 to 463)) contiguous amino acids are X 1 X 2 G, X 1 GX 2 , X 1 GG, GX 1 G, or GGG (X 1 and X 2 represent the same or different amino acids other than glycine), and are substituted with three consecutive amino acids selected from [1] to [7].
  • the modified GLNBP protein according to any one of [1] to [10].
  • 3 to 10 are AGG, CGG, EGG, FGG, HGG, IGG, KGG, LGG, MGG, NGG, PGG, QGG, SGG, TGG, WGG, YGG, GPG, GGC, GGL, GGM, GGP, GGQ, GGS, GGY, MGL, MGS, LGL, and LGS
  • the modified GLNBP protein according to any one of [1] to [7], wherein the modified GLNBP protein is substituted by three selected consecutive amino acids.
  • the non-mutant GLNBP is (I) an amino acid sequence selected from SEQ ID NOs: 1 to 14 and 100; or (ii) an amino acid sequence selected from SEQ ID NOs: 1 to 14 and 100, which has 75% or more sequence identity, and has GLNBP activity Having;
  • the modified GLNBP protein according to any one of [1] to [11].
  • the modified GLNBP protein according to any one of [1] to [12], which has an amino acid sequence selected from the group consisting of: (I) an amino acid sequence selected from SEQ ID NOs: 15 to 48, 98 and 99; (Ii) an amino acid sequence having 80% or more sequence identity with an amino acid sequence selected from SEQ ID NOs: 15 to 48, 98, and 99.
  • N In the presence of the modified GLNBP protein according to any one of [1] to [14], an N-acetylglucosamine residue ⁇ -bonded to galactose-1-phosphate at the non-reducing end or ⁇ -linked.
  • a step of reacting a sugar having an N-acetylgalactosamine residue and having one or more sugar residues with the 1-position of the galactose-1-phosphate and the N-acetylglucosamine residue or N- A method in which the acetylgalactosamine residue at position 3 is ⁇ -1,3 bonded.
  • a saccharide having ⁇ -linked N-acetylglucosamine residue or ⁇ -linked N-acetylgalactosamine residue at the non-reducing end and one or more sugar residues is lacto-N-triose II , [19].
  • ⁇ lacto-N comprising a step of reacting galactose-1-phosphate with lacto-N-triose II in the presence of the modified GLNBP protein according to any one of [1] to [14].
  • the modified GLNBP protein of the present application has galactose-1-phosphate, a ⁇ -linked N-acetylglucosamine residue or a ⁇ -linked N-acetylgalactosamine residue at the non-reducing end, and one or more sugar residues. It has an enzymatic activity to make ⁇ -1,3 bond with the sugar.
  • the modified GLNBP protein of the present application can synthesize lacto-N-tetraose by using galactose-1-phosphate and lacto-N-triose II as substrates.
  • FIG. 1 shows the mutation sites of the GLNBP mutants (TP, ⁇ 2G, ⁇ 3G, ⁇ 4G, ⁇ 5G, ⁇ 6G, ⁇ 7G).
  • FIG. 2 shows a thin-layer chromatogram of a cell-free extract of a GLNBP mutant (TP, 2G, 3G, 4G, 5G, 6G, 7G). triose II: lacto-N-triose II.
  • FIG. 3 shows the results of SDS-polyacrylamide gel electrophoresis (Coomassie staining) showing the degree of purification of the GLNBP mutant (3G, ⁇ 4G, ⁇ 5G, ⁇ 6G, ⁇ 7G) proteins.
  • FIG. 1 shows the mutation sites of the GLNBP mutants (TP, ⁇ 2G, ⁇ 3G, ⁇ 4G, ⁇ 5G, ⁇ 6G, ⁇ 7G).
  • FIG. 2 shows a thin-layer chromatogram of a cell-free extract of
  • FIG. 4 shows a thin-layer chromatogram of the purified GLNBP-MGG in measuring the LNT (lacto-N-tetraose) synthesis activity.
  • LNT lacto-N-tetraose
  • FIG. 6 shows the results of HPAEC-PAD analysis of synthetic lacto-N-tetraose and lacto-N-tetraose standard.
  • FIG. 7 shows 1 H-NMR spectra of lacto-N-tetraose standard product and synthetic lacto-N-tetraose.
  • FIG. 8 shows a thin-layer chromatogram in the measurement of Gal.GlcNAc residue binding activity of purified GLNBP-MGG. Deployed twice with 75% propanol.
  • FIG. 9-1 shows the alignment result of the GLNBP homolog of the genus Bifidobacterium (following FIG. 9-2).
  • FIG. 9-2 shows the alignment results of the GLNBP homolog of the genus Bifidobacterium.
  • FIG. 11 corresponds to the 19th helix structure (positions 448 to 451), the loop region (positions 452 to 467), and the 20th helix structure (positions 468 to 478) of GLNBP (SEQ ID NO: 1) of the Bifidobacterium ⁇ longum ⁇ JCM1217 strain.
  • FIG. 12 shows the amino acid sequence identity of each Bifidobacterium genus GLNBP homolog to GLNBP (SEQ ID NO: 1) of Bifidobacterium ⁇ longum ⁇ JCM1217 strain.
  • FIG. 13-1 shows the alignment result of the GLNBP homolog (following FIG. 13-2).
  • FIG. 13-2 shows the alignment result of the GLNBP homolog.
  • FIG. 14 corresponds to the 19th helix structure (positions 448 to 451), the loop region (positions 452 to 467) and the 20th helix structure (positions 468 to 478) of GLNBP (SEQ ID NO: 1) of the Bifidobacterium longum JCM1217 strain.
  • FIG. FIG. 15 shows a model diagram in which LNT was incorporated into the active center of wild-type BlGLNBP.
  • the present application discloses that when the amino acid sequence of non-mutant GLNBP is aligned with the amino acid sequence shown in SEQ ID NO: 1, one or more amino acids are deleted in a region corresponding to positions 452 to 467 in SEQ ID NO: 1, Substituted and / or inserted; and having a 1-position of galactose-1-phosphate and a ⁇ -linked N-acetylglucosamine residue or a ⁇ -linked N-acetylgalactosamine residue at the non-reducing end and 1 or Provided is a modified GLNBP protein having an enzymatic activity of ⁇ -1,3 binding the N-acetylglucosamine residue or N-acetylgalactosamine residue at position 3 in a sugar having a plurality of sugar residues.
  • the present application further provides that one or more amino acids have been deleted, substituted and / or inserted in the loop region located three-dimensionally near the active center of the non-mutant GLNBP; N-acetylglucosamine residue in a sugar having 1-position and ⁇ -linked N-acetylglucosamine residue or ⁇ -linked N-acetylgalactosamine residue at the non-reducing end and one or more sugar residues
  • the present invention provides a modified GLNBP protein having an enzymatic activity of ⁇ -1,3 binding to position 3 of an N-acetylgalactosamine residue.
  • the present inventors have created a model diagram in which lacto-N-tetraose is incorporated into the active center of GLNBP of Bifidobacterium longum.
  • the secondary structure exists between the 19th helix structure and the 20th helix structure, and is located near the active center in the tertiary structure (forms a part of the + subsite of the active center) )
  • Loop region collides with lacto-N-tetraose.
  • the mutation in the loop region changes the structure of the loop region, collisions with sugars such as lacto-N-tetraose are eliminated, and the enzyme activity is exhibited. Is done. The guess of the mechanism does not limit the present invention at all.
  • the modified GLNBP protein means a protein produced based on the non-mutated GLNBP.
  • the modified GLNBP protein has a 1-position of galactose-1-phosphate and the N-acetylglucosamine residue of a sugar having an N-acetylglucosamine residue ⁇ -bonded to the non-reducing terminal and having one or more sugar residues.
  • Enzymatic activity to bind ⁇ -1,3 to the 3-position of the group (hereinafter sometimes abbreviated as Gal-GlcNAc residue-binding activity) and / or 1-position of galactose-1-phosphate and non-reducing terminal
  • Gal-GlcNAc residue-binding activity an enzyme having ⁇ -linked N-1,3-acetylgalactosamine and one or a plurality of sugar residues having ⁇ -linked N-acetylgalactosamine to form a ⁇ -1,3 bond with the third position of the N-acetylgalactosamine residue.
  • Gal / GalNAc residue binding activity An enzyme having ⁇ -linked N-1,3-acetylgalactosamine and one or a plurality of sugar residues having ⁇ -linked N-acetylgalactosamine to form a ⁇ -1,3 bond with the third position of the N-acetylgalactosamine residue. Gal / GalNAc residue binding activity).
  • the non-mutated GLNBP is an enzyme having a reversible GLNBP activity described below
  • the Gal.GlcNAc / Gal.GalNAc residue binding activity of the modified GLNBP protein is also reversible. Therefore, the activity of phosphorylating the ⁇ -1,3 bond can also be regarded as the Gal.GlcNAc / Gal.GalNAc residue binding activity of the modified GLNBP protein of the present application.
  • the method for assaying the binding activity of Gal.GlcNAc / Gal.GalNAc residue is not particularly limited, and can be performed by a method known to those skilled in the art, for example, by the method described in Examples of the present application.
  • the modified GLNBP protein may or may not have the GLNBP activity described below.
  • the modified GLNBP protein has a position 1 of galactose-1-phosphate, an N-acetylglucosamine residue ⁇ -linked to the non-reducing end, and one or more sugar residues. It has an enzymatic activity to make ⁇ -1,3 bond between the sugar and the 3-position of the N-acetylglucosamine residue.
  • non-mutated GLNBP has an enzyme activity that catalyzes the following reaction (hereinafter, may be abbreviated as “GLNBP enzyme activity”).
  • GLNBP enzyme activity Means no artificial mutation in the region corresponding to positions 452 to 467 in SEQ ID NO: 1 or in the loop region located three-dimensionally near the active center when aligned with the amino acid sequence shown in SEQ ID NO: 1. I do.
  • Non-mutated GLNBP may be wild-type GLNBP derived from an organism and containing no artificial mutation, or the amino acid sequence of non-mutated GLNBP may be the same as SEQ ID NO: 1 as long as it has GLNBP enzyme activity.
  • sequence is aligned with the amino acid sequence shown in SEQ ID NO: 1, an artificial mutation at a site other than the region corresponding to positions 452 to 467 in SEQ ID NO: 1 or at a site other than the loop region located three-dimensionally near the active center May be provided.
  • non-mutant GLNBP may be of any origin, for example, any enzyme derived from prokaryotes such as bacteria, eukaryotes such as yeasts, fungi, and animals, and may be a recombinant enzyme. You may. Such enzymes may be used commercially, or may be purified by a method known to those skilled in the art, for example, from nature, or obtained by a genetic recombination method.
  • Bifidobacterium sp For example, Bifidobacterium longum (eg, Bifidobacterium longum subsp. Infantis ATCC 15697 (eg, Blon_2174: SEQ ID NO: 2); Bifidobacterium longum subsp.
  • Bifidobacterium longum eg, Bifidobacterium longum subsp. Infantis ATCC 15697 (eg, Blon_2174: SEQ ID NO: 2
  • Bifidobacterium longum subsp for example, Bifidobacterium longum (eg, Bifidobacterium longum subsp. Infantis ATCC 15697 (eg, Blon_2174: SEQ ID NO: 2); Bifidobacterium longum subsp.
  • SEQ ID NOs: 1 to 14 and 100 shown below are the amino acid sequences of proteins already known as GLNBP homologs having or highly likely to have GLNBP activity, and these GLNBP homologs are examples of the “non-mutated GLNBP” of the present application. No.
  • non-mutated GLNBP examples include an amino acid sequence selected from SEQ ID NOS: 1 to 14 and 100 and 75% or more, for example, 80% or more, preferably 90% or more, more preferably 95% or more, for example, Those having 97% or more or 98% or more amino acid sequence identity and having GLNBP enzyme activity are included.
  • the method for assaying GLNBP enzyme activity is not particularly limited, and can be performed by a method known to those skilled in the art, for example, according to the method described in Examples of the present application.
  • non-mutant GLNBP has SEQ ID NO: 1; or 75% or more, such as 80% or more, preferably 90% or more, more preferably 95% or more, such as 97% with SEQ ID NO: 1. It has an amino acid sequence identity of at least 98% or more and has GLNBP enzyme activity.
  • the percentage (%) of “sequence identity” is determined by comparing sequences that are optimally aligned in a comparison window. For example, when an optimal alignment of two or more sequences is obtained, a gap may occur when a reference sequence (addition is included in other sequences, but the reference sequence here is not added or deleted for convenience).
  • the comparison window of the subject sequence may include additions or deletions (ie, gaps).
  • the number of positions where the “identical” character string is found in both the reference sequence and the comparison target sequence the number of the corresponding positions is determined, and the number is determined in the comparison window. And the resulting result multiplied by 100 to calculate the percentage of “sequence identity”.
  • sequence analysis software By utilizing sequence analysis software known in the art, measurement of sequence identity can be easily performed.
  • sequence analysis software known in the art, measurement of sequence identity can be easily performed.
  • a region corresponding to positions 452 to 467 in SEQ ID NO: 1 when the amino acid sequence of non-mutant GLNBP is aligned with the amino acid sequence shown in SEQ ID NO: 1 is based on SEQ ID NO: 1, Positions 452 to 467 in SEQ ID NO: 1 were obtained by performing alignment using a method known in the art (for example, using a program such as ClustalW (https://www.genome.jp/tools-bin/clustalw)). Means an area determined to be an area corresponding to.
  • alignment refers to comparing two or more sequence groups, and determining a character string (for example, a polypeptide sequence) that constitutes each sequence (for example, a polypeptide sequence). (A character string indicating the corresponding amino acid residue), and the result of comparing the sequences after the correspondence.
  • a character string for example, a polypeptide sequence
  • a character string indicating the corresponding amino acid residue
  • the appropriate correspondence is evaluated based on “identity”, “similarity”, and the like between the sequences to be compared.
  • Identity of a sequence (eg, the primary sequence of a protein) refers to the degree of identical character strings (eg, individual amino acids) of two or more comparable sequences to each other.
  • the “similarity” of a sequence refers to a degree of a character string in which two or more comparable sequences have the same or specific (even if not identical) property to each other.
  • the similarity of “amino acids” the nature of amino acids that make a so-called conservative substitution is evaluated as “common”.
  • a BLOSUM score matrix or the like is known, and those skilled in the art can appropriately select such an index according to a comparison target and perform similarity. It can be used for gender evaluation.
  • “aligning” may be performed by structural alignment using a method usually performed in the art.
  • “Structural alignment” considers not only (primary) sequence information between molecules to be compared (eg, proteins) but also structural information of the molecules (eg, information on the secondary structure, tertiary structure, etc. of the protein). This is a process of associating sequences constituting the molecule.
  • primary sequence information eg, proteins
  • structural information of the molecules eg, information on the secondary structure, tertiary structure, etc. of the protein.
  • the “loop region located three-dimensionally near the active center of non-mutant GLNBP” means a loop region forming a part of the + subsite of the active center of non-mutant GLNBP.
  • the loop region can be confirmed by analyzing the tertiary structure of the non-mutant GLNBP by a method generally used in the art. Such methods include, for example, X-ray crystal structure analysis, nuclear magnetic resonance, and electron microscopy as experimental techniques, and can be confirmed by predicting the three-dimensional structure of non-mutated GLNBP by a bioinformatics technique.
  • the loop region is located between the 19th helix structure (positions 448 to 451) and the 20th helix structure (positions 468 to 478) (452 to 467). Position).
  • the corresponding region has a tertiary structure. Above all, it is presumed to be present at the same position, and it can be presumed to have a similar effect on GLNBP activity.
  • the loop region located in the three-dimensional vicinity of the active center of non-mutant GLNBP refers to 452 to 452 in SEQ ID NO: 1 when the amino acid sequence of non-mutant GLNBP is aligned with the amino acid sequence shown in SEQ ID NO: 1. Although it may be a region corresponding to position 467, the region corresponding to positions 452 to 467 in SEQ ID NO: 1 in the non-mutant GLNBP may or may not form the loop region. Is also good.
  • modified GLNBP protein of the present application as an example of a site where amino acid deletion, substitution and / or insertion is introduced, when the amino acid sequence of non-mutated GLNBP is aligned with the amino acid sequence shown in SEQ ID NO: 1, SEQ ID NO: 1 In the positions corresponding to positions 452 to 467 in SEQ ID NO: 1, within the positions corresponding to positions 454 to 465 in SEQ ID NO: 1, and the positions corresponding to positions 457 to 463 in SEQ ID NO: 1. Within the range.
  • the total number of amino acids that can be deleted is not particularly limited as long as it is not less than 1 and not more than the number of amino acids in the amino acid sequence of the region into which the mutation can be introduced.
  • Examples of the range of the total number of amino acids that can be deleted include 1 to 16, 3 to 10, 4 to 8, 5 to 7, and 5 (eg, the region corresponding to positions 458 to 462). No.
  • Examples of the range of the total number of amino acids that can be deleted include a lower limit selected from 1, 2, 3, 4, and 5 and a range selected from 16, 13, 10, 9, 8, and 7 It can be indicated by a combination with the upper limit.
  • the total number of amino acids may be continuously deleted, or one and / or two or more consecutive amino acids may be discontinuously deleted.
  • the total number of amino acids that can be substituted is not particularly limited as long as it is 1 or more and is equal to or less than the number of amino acids in the amino acid sequence of the region where the mutation can be introduced.
  • Examples of the total number of amino acids that can be substituted include 1 to 16, 3 to 10, 4 to 8, 5 to 7, and 7 (eg, the region corresponding to positions 457 to 463).
  • Examples of the range of the total number of amino acids that can be substituted include a lower limit selected from 1, 2, 3, 4, and 5, and a range selected from 16, 13, 10, 9, 8, and 7 It can be indicated by a combination with the upper limit.
  • the total number of amino acids may be continuously substituted, or one and / or two or more consecutive amino acids may be discontinuously substituted.
  • an amino acid may be replaced by as many amino acids as the number of amino acids to be replaced, or by more / less amino acids than the number of amino acids to be replaced.
  • the total number of amino acids used for the substitution is 1 or more, and is not particularly limited. Examples include 1 to 16, 1 to 10, 2 to 7, and 3 amino acids. Examples of the range of the total number of amino acids used for the substitution include a lower limit selected from 1, 2, 3 and an upper limit selected from 16, 13, 10, 9, 8, 7, 5, 3 Can be indicated by a combination with
  • the amino acid used for the substitution may contain at least one glycine from the viewpoint of providing structural flexibility.
  • Examples of amino acids used for the substitution include 2 to 10 (eg, 2 to 7, 3) consecutive amino acids containing at least one glycine.
  • three consecutive groups selected from X 1 X 2 G, X 1 GX 2 , X 1 GG, GX 1 G or GGG (X 1 and X 2 represent the same or different amino acids other than glycine) Amino acids.
  • amino acids used in the substitution include GG, GGG, GGGG, GGGG, GGGGG, GGGGGG, AGG, CGG, EGG, FGG, HGG, IGG, KGG, LGG, MGG, NGG, PGG, QGG, SGG, TGG. , WGG, YGG, GPG, GGC, GGL, GGM, GGP, GGQ, GGS, GGY, MGL, MGS, LGL, and LGS. Further examples include FGG, LGG, and MGG.
  • the amino acid means the following 20 natural amino acids
  • the “amino acid other than glycine” specifically includes alanine, leucine, arginine, lysine, asparagine, methionine, aspartic acid, phenylalanine, and cysteine.
  • Proline glutamine, serine, glutamic acid, threonine, tryptophan, histidine, tyrosine, isoleucine, and valine.
  • the total number of amino acids that can be inserted is one or more and is not particularly limited.
  • Examples of the total number of amino acids that can be inserted include 1 to 10, and 2 to 7 amino acids.
  • Examples of the range of the total number of inserted amino acids include a lower limit selected from 1, 2, 3, 4, and 5, and a range selected from 10, 9, 8, 7, 6, and 5 It can be indicated by a combination with the upper limit.
  • the total number of amino acids may be inserted continuously, or one and / or two or more consecutive amino acids may be inserted discontinuously.
  • the amino acid that can be inserted may include at least one glycine from the viewpoint of providing structural flexibility.
  • One embodiment includes a modified GLNBP protein having an amino acid sequence selected from SEQ ID NOs: 15-48, 98 and 99 below.
  • modified GLNBP protein of the present application includes a modified GLNBP protein having an amino acid sequence selected from the group consisting of: (I) an amino acid sequence selected from SEQ ID NOs: 15 to 48, 98 and 99; (Ii) has a sequence identity of 80% or more, preferably 90% or more, more preferably 95% or more, for example, 97% or more, or 98% or more with an amino acid sequence selected from SEQ ID NOs: 15 to 48, 98 and 99. And has a 1-position of galactose-1-phosphate and a ⁇ -linked N-acetylglucosamine residue or a ⁇ -linked N-acetylgalactosamine residue at the non-reducing end, and one or more sugar residues.
  • the modified GLNBP protein of the present application can be produced by a general method known to those skilled in the art.
  • a polynucleotide encoding a modified GLNBP protein is obtained from a polynucleotide encoding a non-mutant GLNBP by a site-specific mutagenesis method such as a method combining Kunkel method and PCR method (for example, Inverse PCR, QuikChange method).
  • Kunkel method for example, Inverse PCR, QuikChange method
  • Is incorporated into a vector such as a plasmid, bacteriophage, cosmid, or the like by a conventional method a host cell is transformed with the vector, and the resulting culture is cultured and appropriately purified from the culture to obtain a modified GLNBP.
  • a sugar having a ⁇ -linked N-acetylglucosamine residue or a ⁇ -linked N-acetylgalactosamine residue and one or more sugar residues at the non-reducing end refers to a non-reducing end (sugar The N-acetylglucosamine residue or N-acetylgalactosamine residue at the leftmost position when the reducing end of the chain is on the right and one or more sugar residues, and the N-acetylglucosamine residue Alternatively, the N-acetylgalactosamine residue is not particularly limited as long as the 3-position hydroxy group is unmodified and its reducing end is ⁇ -linked.
  • the saccharide residue may be bonded linearly, branched, or cyclically.
  • the sugar is linearly linked.
  • the number of sugar residues is not particularly limited as long as it is one or more, and examples include 2 to 6, 2 to 4, and 2 to 3.
  • the type of the sugar residue is not particularly limited, and examples thereof include fucose, galactose, N-acetylgalactosamine, glucose, N-acetylglucosamine, and sialic acid, which are found in constituents of breast milk oligosaccharide and / or mucin-type sugar chains. .
  • a phosphate group, UDP, pNP (p-nitrophenyl group) or the like may be bonded to a hydroxy group other than position 3 of the saccharide residue at the non-reducing terminal.
  • the sugar include lacto-N-triose II (GlcNAc ⁇ 1-3Gal ⁇ 1-4Glc), N, N′-diacetylchitobiose (GlcNAc ⁇ 1-4GlcNAc), GlcNAc- ⁇ -pNP, and GalNAc- ⁇ -pNP.
  • the present application has, in the presence of the modified GLNBP protein of the present invention, N-acetylglucosamine residue ⁇ -linked or N-acetylgalactosamine ⁇ -linked to the non-reducing end with galactose-1-phosphate and one or more By reacting a sugar having two sugar residues with ⁇ -1,3 of the galactose-1-phosphate and the N-acetylglucosamine residue or the N-acetylgalactosamine residue at the third position.
  • a method for joining is provided.
  • Lacto-N-tetraose can be synthesized by using galactose-1-phosphate and lacto-N-triose II as substrates.
  • the modified GLNBP protein of the present application catalyzes the reaction reversibly, but biases the equilibrium toward the product by removing the product out of the system and / or by using one of the substrates in excess. obtain.
  • ⁇ Preparation of TP, 2G, 3G, 4G, 5G, 6G, 7G mutants of GLNBP (SEQ ID NO: 1) derived from Bifidobacterium longum JCM1217>
  • the mutant shown in FIG. 1 was prepared by inverse PCR using pET28a-GLNBP (Kitaoka et al. AEM 71: 3158-3162, 2005) as a template and the primers shown in Table 1.
  • the amplified fragment was phosphorylated using T4 polynucleotide kinase (Takara Bio), purified by agarose gel electrophoresis, and self-ligated using a DNA ligation kit (Takara Bio).
  • the mutation was confirmed by a sequence using the primers described in Table 2.
  • the cells were collected by centrifugation, suspended in 3 mL of Lysis Buffer (50 mM HEPES (pH 8.0), 300 mM NaCl, 10 mM imidazole) and disrupted by ultrasonication (Qsonica Q125 ). The supernatant obtained by centrifugation was used as a cell-free extract. Protein quantification was performed by the Bradford method (Bio-Rad), and bovine serum albumin was used as a standard.
  • Lysis Buffer 50 mM HEPES (pH 8.0), 300 mM NaCl, 10 mM imidazole
  • Qsonica Q125 The supernatant obtained by centrifugation was used as a cell-free extract. Protein quantification was performed by the Bradford method (Bio-Rad), and bovine serum albumin was used as a standard.
  • ⁇ Enzyme reaction (cell-free extract)> Add a cell-free extract at a final concentration of 0.1 mg / mL to a 20 mM sodium phosphate buffer (pH 7) containing 4 mM lacto-N-tetraose, and add 30 mL for lacto-N-biose I (LNB). After incubation at 10 ° C for 10 minutes and in the case of lacto-N-tetraose (LNT) overnight, it was subjected to TLC. Butanol: AcOH: water (2/1/1) was used as the developing solution, and the sugar was visualized according to the method of Anderson et al. (Anal Biochem. 287: 337-339, 2000). The results are shown in FIG.
  • the GLNBP mutants (TP, 2G, 3G, 4G, 5G, 6G, and G7G) showed the activity of degrading lacto-N-tetraose to lacto-N-triose II.
  • Test Example 2 Amino acid substitution (XGG, ⁇ GXG, ⁇ GGX) of GLNBP mutant (3G)
  • ⁇ LNT phosphorolytic activity thin-layer chromatography> A cell-free extract having a final concentration of 0.5 mg / mL was added to a 10 mM sodium phosphate buffer (pH 7) containing 4 mM lacto-N-tetraose, incubated overnight, and then subjected to TLC. Butanol: AcOH: water (2/1/1) was used as a developing solution for TLC, and sugar was visualized according to the method of Anderson et al. (Anal Biochem. 287: 337-339, 2000). TLC was visually determined and evaluated as high: (++); same: (+); low: (-); compared to the original 3G mutant ( ⁇ 457-463 :: GGG). nd indicates no detection, and NA indicates not applicable (because no mutant was obtained). The results are shown in the table below.
  • Test Example 3 LNT synthesis activity of purified GLNBP-3G, AGG, FGG, LGG, MGG, MGS, MGL, LGS, and LGL mutant
  • Test Example 4 Measurement of LNT synthesis activity of purified GLNBP-MGG
  • a reaction solution consisting of the following in a total volume of 1 mL: 40 mM Sucrose (Suc), 30 mM Gal-1-P, 20 mM Lacto-N-triose II (LNTri), 0.2 ⁇ M Glc1,6bisP (GlcBP), 2 mM MgCl 2 , 1 U / mL sucrose phosphorylase (oriental yeast) (SucP), 5 U / mL phosphoglucomutase (sigma) (PGM), and 0.06 U / mg GLNBP-MGG (0.5 mg / mL); Was incubated at 30 ° C., and samples (20 ⁇ L) collected at 0, 10, 30, 90, 270, and 810 minutes were analyzed by the HPAEC-PAD method and the TLC method. The remaining reaction was used for purification of LNT from other components.
  • FIG. 4 shows the results. As shown in FIG. 4, in the reaction solution after 810 minutes, consumption of Lacto-N-triose II and formation of lacto-N-tetraose and fructose were shown.
  • HPAEC-PAD method Each sugar was analyzed by HPAEC-PAD method (high performance anion exchange chromatography with pulsed amperometric detection) using a Dionex ICS 3000 system (with a CarboPac PA-1 column (Dionex, Sunnyvale, CA)). A constant flow rate (0.25 ml / min) was eluted with a linear gradient of 1-330 mM sodium acetate / 125 mM NaOH for 20 minutes (30 ° C.) followed by an additional 10 minutes. The results are shown in FIG.
  • Gal-1-P Lacto-N-triose II and Sucrose were consumed over time, and lacto-N-tetraose and fructose were produced.
  • the purified synthetic lacto-N-tetraose obtained above was analyzed by a nuclear magnetic resonance apparatus (Bruker Avance800) at 298 K and D 2 O using 2-methyl-2-propanol as an internal standard.
  • FIG. 7 shows the obtained spectrum.
  • FIG. 8 shows the results. As shown in FIG. 8, with the consumption of pNP-beta-GlcNAc or N, N′-diacetylchitobiose, a new spot was observed in a portion having a lower Rf value than pNP-beta-GlcNAc or N, N′-diacetylchitobiose.
  • Test Example 6 Alignment of Bifidobacterium GLNBP homolog Based on Bifidobacterium longum JCM1217 strain GLNBP (SEQ ID NO: 1), GLNBP homolog of Bifidobacterium belonging to Complete Genomes of KEGG (Kyoto Encyclopedia of Genes and Genomes) (Table 10) The alignment was performed. ClustalW (https://www.genome.jp/tools-bin/clustalw) and Boxshade (https://embnet.vital-it.ch/software/BOX_form.html) were used for the alignment. FIG. 9 shows the results. FIG.
  • FIG. 10 is a schematic diagram showing the secondary structure of GLNBP (SEQ ID NO: 1) of Bifidobacterium longum JCM1217 strain.
  • FIG. 11 the 19th helix structure (positions 448 to 451) and the loop region (positions 452 to 467) of GLNBP (SEQ ID NO: 1) of Bifidobacterium longum JCM1217 strain in each GLNBP homolog of the genus Bifidobacterium are shown from the above alignment results.
  • the figure which shows the location corresponding to the 20th helix structure (positions 468-478) is shown.
  • FIG. 12 shows a table showing the amino acid sequence identity of each Bifidobacterium genus GLNBP homolog to GLNBP (SEQ ID NO: 1) of Bifidobacterium longum strain JCM1217.
  • Test Example 7 Alignment of GLNBP homologue Based on GLNBP (SEQ ID NO: 1) of Bifidobacterium longum JCM1217 strain, the amino acid sequence of the GLNBP homologue in Table 11 in which the GLNBP activity was confirmed as a purified enzyme was aligned.
  • ClustalW https://www.genome.jp/tools-bin/clustalw
  • Boxshade https://embnet.vital-it.ch/software/BOX_form.html
  • Test Example 8 Model diagram in which LNT was incorporated in the active center of wild-type BlGLNBP GlcNAc in a complex structure of wild-type GLNBP and GlcNAc (PDB ID: Chain D subunit of 2ZUW) registered in PDB ID: 2Z8F
  • FIG. 15 shows a model obtained by superimposing the GlcNAc of the present LNT. It can be seen that the Lac structure (Gal ⁇ 1-4Glc) on the reducing end side of LNT collides with the loop existing between Helix-19 and Helix-20.
  • PDB ID: 2ZUW Hidaka et al. JBC 284: 7273-7283 (2009)
  • PDB ID: 2Z8F Suzuki et al. JBC 283: 13165-13173 (2008)
  • BbXGLNBP2-3G mutant A BbXGLNBP2-3G mutant (SEQ ID NO: 100) in which positions 457 to 463 of BbXGLNBP2 (SEQ ID NO: 100) derived from Bifidobacterium bifidum JCM1254 strain having an amino acid sequence that is 99% identical to BbGLNBP2 (SEQ ID NO: 6) of Bifidobacterium bifidum PRL2010 are substituted with GGG 99) with pTN027 (Nishimoto M and Kitaoka M.
  • ⁇ Enzyme reaction (cell-free extract)> 10 mM MOPS buffer (pH 7) the reaction solution was adjusted to containing 5 mM NaPO 4 and 2 mM lacto-N-biose I (LNB) or 5 mM NaPO 4 and 2 mM lacto-N-tetraose ( LNT) in After overnight incubation at 30 ° C. in the presence of a cell-free extract at a final concentration of 0.1 mg / mL, the cells were subjected to TLC. All were spotted at 1 ⁇ L. Butanol: AcOH: water (2/1/1) was used as the developing solution, and the sugar was visualized according to the method of Anderson et al. (Anal Biochem.
  • the present invention can be used for producing oligosaccharides, particularly for producing lacto-N-tetraose.

Abstract

本願は、非変異型GLNBPの所定領域に変異を導入した改変GLNBPタンパク質、およびそれを用いるガラクトース-1-リン酸の1位と、非還元末端にβ結合したN-アセチルグルコサミン残基またはβ結合したN-アセチルガラクトサミン残基を有しかつ1または複数個の糖残基を有する糖における該N-アセチルグルコサミン残基またはN-アセチルガラクトサミン残基の3位とをβ-1,3結合させる方法を提供する。

Description

改変ホスホリラーゼを利用したラクト-N-ビオースIまたはガラクト-N-ビオースのβグリコシドの酵素合成法
 本開示は、ラクト-N-ビオースIまたはガラクト-N-ビオースのβグリコシドの酵素合成法およびそれに使用する改変型酵素に関する。
 母乳栄養児の腸管ではビフィズス菌優勢な細菌叢が形成されるが、これには人乳に含まれるオリゴ糖成分が関与している。オリゴ糖成分の中でも、ラクト-N-テトラオース(Galβ1-3GlcNAcβ1-3Galβ1-4Glc)が真のビフィズス因子であることが分かっている。
 乳児期の腸内細菌叢の形成が、成人後の肥満やアレルギー発症に大きな影響を及ぼすことが知られており、WHOは母乳哺育を推奨しているが、母乳哺育率は減少の一途をたどり、また離乳時期も早まっている。また、帝王切開率も全世界で25%を超えており、該分娩児では腸内細菌叢が経膣分娩児のそれと大きく異なることが知られている。このようなことから、より人乳に近い調製乳を開発することが急務となっている。しかし、既存のラクト-N-テトラオース合成法としては化学合成法および代謝工学を利用した発酵法(例えば非特許文献1)が開発されているものの、いずれも実用化には至っていない。
 β-1,3-ガラクトシル-N-アセチルヘキソサミンホスホリラーゼ(EC 2.4.1.211;別名:ガラクト-N-ビオース/ラクト-N-ビオースIホスホリラーゼ)(以下、GLNBPと略称することがある)は、ラクト-N-ビオースI(Galβ1-3GlcNAc)をガラクトース-1-リン酸(Gal-1-P)とN-アセチルグルコサミン(GlcNAc)に、およびガラクト-N-ビオース(Galβ1-3GalNAc)をガラクトース-1-リン酸(Gal-1-P)とN-アセチルガラクトサミン(GalNAc)に、加リン酸分解する活性及びその逆反応触媒活性を有する酵素として知られ、その存在はビフィドバクテリウム属菌等の多くの菌で広く見出されている。しかしながら、GLNBPはラクト-N-テトラオースなどのラクト-N-ビオースIのβ-グリコシドに作用しないため、その逆反応を用いてこれらの化合物を調製することはできない。
 GLNBPの構造については多くの研究がなされている。例えばBifidobacterium longum subsp. longum (strain ATCC 15707 / DSM 20219 / JCM 1217 / NCTC 11818 / E194b)(以下、Bifidobacterium longum JCM1217株と略称することがある)における結果およびその保存性から、Bifidobacterium属においては27個のヘリックス構造を有することが示唆されている(非特許文献2)。また3次元構造におけるその活性中心についても多くの研究結果が報告されている(例えば非特許文献3)。
Baumgaertner, F. et al., (2014), Synthesis of the Human Milk Oligosaccharide Lacto‐N‐Tetraose in Metabolically Engineered, Plasmid‐Free E. coli. ChemBioChem, 15(13), 1896-1900. RCSB PDB ID 2ZUV, Crystal structure of Galacto-N-biose/Lacto-N-biose I phosphorylase in complex with GlcNAc, Ethylene glycol, and nitrate, Released: 2008-12-30[平成30年8月10日検索], URL:http://www.rcsb.org/pdb/explore/remediatedSequence.do?structureId=2ZUV Hidaka, M.,Nishimoto et al., The crystal structure of galacto-N-biose/lacto-N-biose I phosphorylase: A large deformation of a tim barrel scaffold, J.Biol.Chem., 284:7273-7283, 2009
 本明細書において引用する先行技術文献の開示は全て、参照することにより、本明細書に組み込まれる。
  本願の課題は、新規なラクト-N-テトラオースなどのラクト-N-ビオースIまたはガラクト-N-ビオースのβグリコシドの製法を提供することである。
 本発明者等は、上記課題を解決すべく鋭意検討を行ったところ、Bifidobacterium longum JCM1217株のGLNBP(配列番号1)の所定の領域にアミノ酸欠失/置換/挿入が導入された改変GLNBPは、ガラクトース-1-リン酸(Gal-1-P)とラクト-N-トリオースII(GlcNAcβ1-3Galβ1-4Glc)からラクト-N-テトラオース(Galβ1-3GlcNAcβ1-3Galβ1-4Glc)への合成を可逆的に触媒できることを見出し本願に至った。Bifidobacterium longum JCM1217株のGLNBP(配列番号1)の19番目のヘリックス構造(448~451位)と20番目のヘリックス構造(468~478位)の間には三次構造において活性中心近傍に位置するループ領域(452~467位)が存在し、当該変異が導入された領域はこのループ領域内に含まれている。さらに、当該改変GLNBPはラクト-N-トリオースIIの他にも、非還元末端にβ結合したN-アセチルグルコサミン(GlcNAc)残基を有する幅広い糖に対して、ガラクトース-1-リン酸(Gal-1-P)とのβ-1,3結合の生成を可逆的に触媒することを見出し本願発明に至った。
 以下に本願の発明の態様を詳説する。
 [1] 非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位に対応する位置の領域において、1または複数個のアミノ酸が欠失、置換および/または挿入されており;および
 ガラクトース-1-リン酸の1位と、非還元末端にβ結合したN-アセチルグルコサミン残基またはβ結合したN-アセチルガラクトサミン残基を有しかつ1または複数個の糖残基を有する糖における該N-アセチルグルコサミン残基またはN-アセチルガラクトサミン残基の3位とをβ-1,3結合させる酵素活性を有する、改変GLNBPタンパク質。
 [2] 非変異型GLNBPの活性中心の三次元的近傍に位置するループ領域において、1または複数個のアミノ酸が欠失、置換および/または挿入されており;および
 ガラクトース-1-リン酸の1位と、非還元末端にβ結合したN-アセチルグルコサミン残基またはβ結合したN-アセチルガラクトサミン残基を有しかつ1または複数個の糖残基を有する糖における該N-アセチルグルコサミン残基またはN-アセチルガラクトサミン残基の3位とをβ-1,3結合させる酵素活性を有する、改変GLNBPタンパク質。
 [3] 該非変異型GLNBPの活性中心の三次元的近傍に位置するループ領域が、該非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位に対応する位置の領域である、[2]に記載の改変GLNBPタンパク質。
 [4] 該非還元末端にβ結合したN-アセチルグルコサミン残基またはβ結合したN-アセチルガラクトサミン残基を有しかつ1または複数個の糖残基を有する糖がラクト-N-トリオースIIであり、ラクト-N-テトラオースを合成する酵素活性を有する、[1]~[3]のいずれか1項に記載の改変GLNBPタンパク質。
 [5] 該非変異型GLNBPの活性中心の三次元的近傍に位置するループ領域において、1~16個のアミノ酸が欠失、1~16個のアミノ酸が1~16個のアミノ酸により置換、および/または1~10個のアミノ酸が挿入されている、[2]~[4]のいずれか1項に記載の改変GLNBPタンパク質。
 [6] 該非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位に対応する位置の領域において、1~16個のアミノ酸が欠失、1~16個のアミノ酸が1~16個のアミノ酸により置換、および/または1~10個のアミノ酸が挿入されている、[1]~[5]のいずれか1項に記載の改変GLNBPタンパク質。
 [7] 該非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位(例えば454~465位、457~463位)に対応する位置の領域において、連続する3~10個(例えば4~8個、5~7個、5個(例えば458~462位に対応する位置の領域))のアミノ酸が欠失しているか、または連続する3~10個(例えば4~8個、5~7個、7個(例えば457~463位に対応する位置の領域))のアミノ酸が少なくとも1つのグリシンを含む連続する2~10個(例えば2~7個、3個)のアミノ酸により置換されている、[1]~[6]のいずれか1項に記載の改変GLNBPタンパク質。
 [8] 該非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位(例えば454~465位、例えば457~463位)に対応する位置の領域において、連続する3~10個(例えば4~8個、5~7個、7個(例えば457~463位に対応する位置の領域))のアミノ酸が連続する2~10個(例えば2~7個)のグリシンにより置換されている、[1]~[7]のいずれか1項に記載の改変GLNBPタンパク質。
 [9] 該非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位(例えば454~465位、457~463位)に対応する位置の領域において、連続する3~10個(例えば4~8個、5~7個、7個(例えば457~463位に対応する位置の領域))のアミノ酸が、XG、XGX、XGG、GXG、またはGGG(XおよびXは同一または異なるグリシン以外のアミノ酸を示す)から選択される連続する3個のアミノ酸により置換されている、[1]~[7]のいずれか1項に記載の改変GLNBPタンパク質。
 [10] 該非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位(例えば454~465位、457~463位)に対応する位置の領域において、連続する3~10個(例えば4~8個、5~7個、7個(例えば457~463位に対応する位置の領域))のアミノ酸が、AGG、CGG、EGG、FGG、HGG、IGG、KGG、LGG、MGG、NGG、PGG、QGG、SGG、TGG、WGG、YGG、GPG、GGC、GGL、GGM、GGP、GGQ、GGS、GGY、MGL、MGS、LGL、およびLGSからなる群から選択される連続する3個のアミノ酸により置換されている、[1]~[7]のいずれか1項に記載の改変GLNBPタンパク質。
 [11] 該非変異型GLNBPが、Bifidobacterium属、Anaerococcus属、Clostridium属、Cutibacterium属、Erysipelothrix属、Lachnoclostridium属、Streptobacillus属、またはVibrio属由来である、[1]~[10]のいずれか1項に記載の改変GLNBPタンパク質。
 [12] 該非変異型GLNBPが、
(i)配列番号1~14および100から選択されるアミノ酸配列;または
(ii)配列番号1~14および100から選択されるアミノ酸配列と75%以上の配列同一性を有し、かつ、GLNBP活性を有する;
[1]~[11]のいずれか1項に記載の改変GLNBPタンパク質。
 [13] 以下からなる群から選択されるアミノ酸配列を有する、[1]~[12]のいずれか1項に記載の改変GLNBPタンパク質:
(i)配列番号15~48、98および99から選択されるアミノ酸配列;
(ii)配列番号15~48、98および99から選択されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列。
 [14] ガラクトース-1-リン酸の1位と、非還元末端にβ結合したN-アセチルグルコサミン残基を有しかつ1または複数個の糖残基を有する糖における該N-アセチルグルコサミン残基の3位とをβ-1,3結合させる酵素活性を有する、[1]~[13]のいずれか1項に記載の改変GLNBPタンパク質。
 [15] [1]~[14]のいずれか1項に記載の改変GLNBPタンパク質をコードするポリヌクレオチド。
 [16] [15]記載のポリヌクレオチドを含むベクター。
 [17] [16]記載のベクターで形質転換された宿主細胞。
 [18] [17]記載の宿主細胞を培養し、該培養物から改変GLNBPタンパク質を回収することを含む、[1]~[14]のいずれか1項に記載の改変GLNBPタンパク質の製造方法。
 [19] [1]~[14]のいずれか1項に記載の改変GLNBPタンパク質の存在下に、ガラクトース-1-リン酸と非還元末端にβ結合したN-アセチルグルコサミン残基またはβ結合したN-アセチルガラクトサミン残基を有しかつ1または複数個の糖残基を有する糖とを反応させる工程を含む、該ガラクトース-1-リン酸の1位と該N-アセチルグルコサミン残基またはN-アセチルガラクトサミン残基の3位とをβ-1,3結合させる方法。
 [20] 該非還元末端にβ結合したN-アセチルグルコサミン残基またはβ結合したN-アセチルガラクトサミン残基を有しかつ1または複数個の糖残基を有する糖がラクト-N-トリオースIIである、[19]に記載の方法。
 [21] [1]~[14]のいずれか1項に記載の改変GLNBPタンパク質の存在下に、ガラクトース-1-リン酸とラクト-N-トリオースIIとを反応させる工程を含む、ラクト-N-テトラオースを合成する方法。
 本願の改変GLNBPタンパク質はガラクトース-1-リン酸と、非還元末端にβ結合したN-アセチルグルコサミン残基またはβ結合したN-アセチルガラクトサミン残基を有しかつ1または複数個の糖残基を有する糖とをβ-1,3結合させる酵素活性を有する。本願の改変GLNBPタンパク質は基質としてガラクトース-1-リン酸とラクト-N-トリオースIIを用いることでラクト-N-テトラオースを合成することができる。
図1はGLNBP変異体(TP, 2G, 3G, 4G, 5G, 6G, 7G)の変異箇所を示す。 図2はGLNBP変異体(TP, 2G, 3G, 4G, 5G, 6G, 7G)無細胞抽出液の薄層クロマトグラムを示す。triose II: ラクト-N-トリオースII。 図3はGLNBP変異体(3G, 4G, 5G, 6G, 7G)タンパク質の精製度を示すSDS-ポリアクリルアミドゲル電気泳動(クマシー染色)の結果を示す。 図4は精製GLNBP-MGGのLNT(ラクト-N-テトラオース)合成活性測定における薄層クロマトグラムを示す。BuOH:AcOH:H2O=2:1:1で2回展開。レーン1:1 mM Lacto-N-triose llレーン2:1 mM LNTレーン3:1 mM Sucroseレーン4:1 mM Fructoseレーン5:反応液(810 min)_20倍希釈 図5は精製GLNBP-MGGのLNT合成活性測定における、HPAEC-PAD法分析結果を示す。 図6は合成ラクト-N-テトラオースとラクト-N-テトラオース標準品のHPAEC-PAD法分析結果を示す。 図7はラクト-N-テトラオース標準品および合成ラクト-N-テトラオースの1H-NMRスペクトルを示す。 図8は精製GLNBP-MGGのGal・GlcNAc残基結合活性測定における薄層クロマトグラムを示す。75%プロパノールで2回展開。レーン1: 1 mM N,N’-diacetylchitobioseレーン2: 1 mM GlcNAc-β-pNPレーン3: 1 mM Gal-1-Pレーン4: 1 mM Sucroseレーン5: 1 mM Fructoseレーン6: GlcNAcβ1-4GlcNAc反応液 10倍希釈レーン7: GlcNAcβ1-4GlcNAc酵素無添加コントロール 10倍希釈レーン8: GlcNAc-β-pNP反応液 10倍希釈レーン9: GlcNAc-β-pNP酵素無添加コントロール 10倍希釈 図9-1はBifidobacterium属のGLNBPホモログのアライメント結果を示す(図9-2に続く)。 図9-2はBifidobacterium属のGLNBPホモログのアライメント結果を示す。 図10はRCSB PDB ID 2ZUV, Crystal structure of Galacto-N-biose/Lacto-N-biose I phosphorylase in complex with GlcNAc, Ethylene glycol, and nitrate, Released: 2008-12-30[平成30年8月10日検索], URL:http://www.rcsb.org/pdb/explore/remediatedSequence.do?structureId=2ZUVより引用した、Bifidobacterium longum subsp. longum (strain ATCC 15707 / DSM 20219 / JCM 1217 / NCTC 11818 / E194b)の2次構造を示す概略図を示す。 図11はBifidobacterium longum JCM1217株のGLNBP(配列番号1)の19番目のヘリックス構造(448~451位)とループ領域(452~467位)と20番目のヘリックス構造(468~478位)に対応する箇所を示す図を示す。 図12はBifidobacterium longum JCM1217株のGLNBP(配列番号1)に対する各Bifidobacterium属GLNBPホモログのアミノ酸配列同一性を示す。 図13-1はGLNBPホモログのアライメント結果を示す(図13-2に続く)。 図13-2はGLNBPホモログのアライメント結果を示す。 図14はBifidobacterium longum JCM1217株のGLNBP(配列番号1)の19番目のヘリックス構造(448~451位)とループ領域(452~467位)と20番目のヘリックス構造(468~478位)に対応する箇所を示す図を示す。 図15は野生型BlGLNBPの活性中心にLNTを組み込んだモデル図を示す。白: GLNBP全体、灰色: LNT、黒: ループ領域
 本願は、非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位に対応する位置の領域において、1または複数個のアミノ酸が欠失、置換および/または挿入されており;および
 ガラクトース-1-リン酸の1位と、非還元末端にβ結合したN-アセチルグルコサミン残基またはβ結合したN-アセチルガラクトサミン残基を有しかつ1または複数個の糖残基を有する糖における該N-アセチルグルコサミン残基またはN-アセチルガラクトサミン残基の3位とをβ-1,3結合させる酵素活性を有する、改変GLNBPタンパク質を提供する。
 さらに本願は、非変異型GLNBPの活性中心の三次元的近傍に位置するループ領域において、1または複数個のアミノ酸が欠失、置換および/または挿入されており;および
 ガラクトース-1-リン酸の1位と、非還元末端にβ結合したN-アセチルグルコサミン残基またはβ結合したN-アセチルガラクトサミン残基を有しかつ1または複数個の糖残基を有する糖における該N-アセチルグルコサミン残基またはN-アセチルガラクトサミン残基の3位とをβ-1,3結合させる酵素活性を有する、改変GLNBPタンパク質を提供する。
 図15に示すとおり、本願発明者らはBifidobacterium longumのGLNBPの活性中心にラクト-N-テトラオースをくみ込んだモデル図を作成した。この図によれば、2次構造において19番目のヘリックス構造と20番目のヘリックス構造の間に存在し、3次構造において活性中心近傍に位置する(活性中心の+サブサイトの一部を形成する)ループ領域が、ラクト-N-テトラオースと衝突している。本願の改変GLNBPタンパク質では当該ループ領域に変異が導入されたことで当該ループ領域の構造が変化し、ラクト-N-テトラオース等の糖との衝突が解消されて酵素活性が発揮されるものと推測される。なお、当該メカニズムの推測は本願発明を何ら制限するものではない。
 本願において、改変GLNBPタンパク質は、非変異型GLNBPに基づき作製されたタンパク質を意味する。改変GLNBPタンパク質はガラクトース-1-リン酸の1位と、非還元末端にβ結合したN-アセチルグルコサミン残基を有しかつ1または複数個の糖残基を有する糖の該N-アセチルグルコサミン残基の3位とをβ-1,3結合させる酵素活性(以下、Gal・GlcNAc残基結合活性と略称することがある)、および/またはガラクトース-1-リン酸の1位と、非還元末端にβ結合したN-アセチルガラクトサミン残基を有しかつ1または複数個の糖残基を有する糖の該N-アセチルガラクトサミン残基の3位とをβ-1,3結合させる酵素活性(以下、Gal・GalNAc残基結合活性と略称することがある)を有し得る。非変異型GLNBPは下記に説明する可逆的なGLNBP活性を有する酵素であるため、改変GLNBPタンパク質のGal・GlcNAc/Gal・GalNAc残基結合活性もまた可逆的である。従って、当該β-1,3結合を加リン酸分解する活性も本願の改変GLNBPタンパク質のGal・GlcNAc/Gal・GalNAc残基結合活性とみなすことができる。Gal・GlcNAc/Gal・GalNAc残基結合活性のアッセイ方法は特に限定されず、当業者に知られる方法により行われ得、例えば本願の実施例に記載の方法により行われ得る。改変GLNBPタンパク質は下記に説明するGLNBP活性を有していてもよく、有さなくてもよい。
 本願の1つの実施形態として、改変GLNBPタンパク質は、ガラクトース-1-リン酸の1位と、非還元末端にβ結合したN-アセチルグルコサミン残基を有しかつ1または複数個の糖残基を有する糖の該N-アセチルグルコサミン残基の3位とをβ-1,3結合させる酵素活性を有する。
 本願において、「非変異型GLNBP」とは以下の反応を触媒する酵素活性(以下、GLNBP酵素活性と略称することがある)を有するものであって、非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位に対応する位置の領域にまたは活性中心の三次元的近傍に位置するループ領域に人為的な変異を有さないものを意味する。
Figure JPOXMLDOC01-appb-I000001
 「非変異型GLNBP」は、生物由来のGLNBPであって人為的な変異を含まない野生型GLNBPであってよく、あるいは、GLNBP酵素活性を有する限り、非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位に対応する位置の領域以外の箇所、あるいは、活性中心の三次元的近傍に位置するループ領域以外の箇所に人為的な変異を有していてもよい。
 「非変異型GLNBP」は、任意の起源のものでよく、例えば細菌等の原核生物、酵母、菌類、動物等の真核生物由来のいずれの酵素であってもよく、また組換え酵素であってもよい。そのような酵素は市販のものを使用し得るか、または当業者に周知の方法、例えば天然から精製してもよいし、あるいは遺伝子組換え法によって取得し得る。
 「非変異型GLNBP」の例として、
 Bifidobacterium属:例えば、
Bifidobacterium longum(例えば、Bifidobacterium longum subsp. infantis ATCC 15697(例えばBlon_2174:配列番号2);Bifidobacterium longum subsp. longum JCM 1217(例えばBLLJ_1623:配列番号1));
Bifidobacterium breve(例えば、Bifidobacterium breve DSM 20213 = JCM 1192(例えばBBBR_1586:配列番号3));
Bifidobacterium scardovii(例えばBBSC_1789:配列番号4);
Bifidobacterium bifidum PRL2010(例えばBBPR_1055:配列番号5;BBPR_0233:配列番号6);
Bifidobacterium bifidum JCM1254(例えば配列番号100);
 Anaerococcus属:例えば、Anaerococcus prevotii(例えば配列番号7);
 Clostridium属:例えば、Clostridium perfringens(例えば配列番号8);
 Cutibacterium属:例えば、Cutibacterium acnes(例えば配列番号9);
 Erysipelothrix属:例えば、Erysipelothrix rhusiopathiae(例えば配列番号10);
 Lachnoclostridium属:例えば、Lachnoclostridium phytofermentans(例えば配列番号11、12);
 Streptobacillus属:例えば、Streptobacillus moniliformis(例えば配列番号13)または
 Vibrio属:例えばVibrio vulnificus(例えば配列番号14)
由来のGLNBPが挙げられる。
 1つの実施形態において、GLNBPはBifidobacterium属由来である。
 以下に示す配列番号1~14および100は、GLNBP活性を有するかその蓋然性が高いGLNBPホモログとして既に知られるタンパク質のアミノ酸配列であり、これらのGLNBPホモログは本願の「非変異型GLNBP」の例として挙げられる。
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
 さらに、「非変異型GLNBP」の例には、配列番号1~14および100から選択されるアミノ酸配列と75%以上、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、例えば97%以上又は98%以上のアミノ酸配列同一性を有し、かつ、GLNBP酵素活性を有するものが含まれる。GLNBP酵素活性のアッセイ方法は特に限定されず、当業者に知られる方法により行われ得、例えば本願の実施例に記載の方法に準じて行われ得る。
 1つの実施形態において、「非変異型GLNBP」は配列番号1を有するか;または
配列番号1と75%以上、例えば80%以上、好ましくは90%以上、より好ましくは95%以上、例えば97%以上又は98%以上のアミノ酸配列同一性を有し、かつ、GLNBP酵素活性を有する。
 本明細書において「配列同一性」のパーセンテージ(%)は、比較ウィンドウで最適な状態に並置された配列を比較することによって求められる。例えば、2以上配列の最適なアライメントを得た場合に、基準配列(他の配列に付加が含まれていればギャップが生じることもあるが、ここでの基準配列は、便宜上、付加も欠失もないものとする)と比較して、対象配列の比較ウィンドウ内の部分には、付加または欠失(すなわちギャップ)が含まれる場合がある。ここで、「同一」の文字列が基準配列と比較対象配列との双方に認められる位置の数を各々特定することによって、それらの対応づけられた位置の数を求め、その数を比較ウィンドウ内の総位置数で割り、得られた結果に100を乗じて「配列同一性」のパーセンテージを算出し得る。当該分野で公知の配列解析ソフトウエアを利用することによって、配列同一性の測定が容易に実施され得る。また、具体的な計算手順、判別基準、基準配列の取扱い方、その前提となるアライメント手法の選択などは、用いるソフトウエアによりバリエーションが認められるが、当業者は、その使用目的に応じて適宜選択し利用することが可能である。
 本願において、「非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位に対応する位置の領域」とは、配列番号1をベースに、アライメントを当該技術分野における通常の方法で(例えばClustalW (https://www.genome.jp/tools-bin/clustalw)等のプログラムを用いて)行ったときに、配列番号1における452~467位に対応する領域と決定された領域を意味する。
 本明細書中で使用される場合、「アライメント(する)」は、2以上の配列群を比較し、それぞれの配列(例えば、ポリペプチド配列)を構成する文字列(例えば、ポリペプチド配列を構成するアミノ酸残基を示す文字列)の適切な対応づけを行う処理をいい、また、その対応づけ後の配列の比較結果をいう。ここで、その適切な対応づけは、比較する配列間における「同一性」、「類似性」などを基準に評価される。配列(例えば、タンパク質の一次配列)の「同一性」とは、2以上の対比可能な配列の、互いに対する同一の文字列(例えば、個々のアミノ酸)の程度をいう。また、配列(例えば、アミノ酸配列)の「類似性」とは、2以上の対比可能な配列の、互いに対する同一又は(同一でなくとも)特定の性質が共通する文字列の程度をいう。一例として、「アミノ酸」の類似性の評価において、いわゆる保存的置換をなすアミノ酸同士の性質は「共通する」と評価される。そして、このような「類似性」を定量的に評価する例示的な指標としては、BLOSUMスコア行列などが公知であり、当業者は比較する対象に応じてそのような指標を適宜選択して類似性の評価に用いることができる。
 本願において、「アライメントする」は構造アライメントにより、当該技術分野で通常行われる方法を用いて行われてもよい。「構造アライメント」は、比較する分子(例えば、タンパク質)間の(一次)配列情報のみならず、当該分子の構造的情報(例えば、タンパク質の二次構造、三次構造などに関する情報)を考慮して、当該分子を構成する配列の対応づけを行う処理である。一般に、タンパク質の立体構造は進化的に保存性が高いため、構造アライメントを行うことで、一次配列上の類似性が乏しい場合(進化論的には、より遠縁の配列同士のである場合)であっても、基準配列の所定の領域の相当する領域を比較対象の分子(の配列)において特定することが可能である。
 本願において、「非変異型GLNBPの活性中心の三次元的近傍に位置するループ領域」とは、非変異型GLNBPの活性中心の+サブサイトの一部を形成するループ領域を意味する。当該ループ領域は非変異型GLNBPの三次構造を当該技術分野において通常行われる方法により解析することにより確認することができる。当該方法として、例えば実験的手法としてX線結晶構造解析法、核磁気共鳴法、電子顕微鏡法が挙げられ、またバイオインフォマティクス的手法により非変異型GLNBPの立体構造を予測することで確認されうる。
 当該ループ領域は、Bifidobacterium longum JCM1217株の野生型GLNBP(配列番号1)においては、19番目のヘリックス構造(448~451位)と20番目のヘリックス構造(468~478位)の間(452~467位)に位置する。既に三次構造が知られた酵素のアミノ酸配列をベースにホモログ間でアライメントした場合には、対応する領域(特に酵素活性に深く影響する活性中心およびその三次元的近傍に対応する領域)は三次構造中でも同位置に存在すると推定され、GLNBP活性に関して類似した効果を有することが推定できる。本願において「非変異型GLNBPの活性中心の三次元的近傍に位置するループ領域」は、非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位に対応する位置の領域であり得るが、当該非変異型GLNBPにおける該配列番号1における452~467位に対応する位置の領域は当該ループ領域を形成していてもよく、していなくてもよい。
 非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位に対応する位置の領域は、
 Blon_2174:配列番号2(Bifidobacterium longum subsp. infantis ATCC 15697)では452~467位;
 BBBR_1586:配列番号3(Bifidobacterium breve DSM 20213 = JCM 1192)では451~466位;
 BBSC_1789:配列番号4(Bifidobacterium scardovii)では452~467位;
 BBPR_1055:配列番号5(Bifidobacterium bifidum PRL2010)では452~467位;
 BBPR_0233:配列番号6(Bifidobacterium bifidum PRL2010)では452~467位;
 配列番号100(Bifidobacterium bifidum JCM1254)では452~467位;
 配列番号7(Anaerococcus prevotii)では454~469位;
 配列番号8(Clostridium perfringens)では454~469位;
 配列番号9(Cutibacterium acnes)では465~480位;
 配列番号10(Erysipelothrix rhusiopathiae)では455~470位;
 配列番号11(Lachnoclostridium phytofermentans)では455~470位;
 配列番号12(Lachnoclostridium phytofermentans)では456~471位;
 配列番号13(Streptobacillus moniliformis)では445~460位;
 配列番号14(Vibrio vulnificus)では456~477位;
である。
 本願の改変GLNBPタンパク質に関して、アミノ酸の欠失、置換および/または挿入が導入される箇所の例として、非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位に対応する位置の範囲内、配列番号1における454~465位に対応する位置の範囲内、456~464位に対応する位置の範囲内、および457~463位に対応する位置の範囲内が挙げられる。
 本願の改変GLNBPタンパク質において、該欠失されうるアミノ酸の総数は、1以上であって、当該変異が導入されうる領域のアミノ酸配列のアミノ酸数以下である限り、特に限定されない。欠失されうるアミノ酸の総数の範囲の例として、1~16個、3~10個、4~8個、5~7個、および5個(例えば458~462位に対応する位置の領域)が挙げられる。また、該欠失されうるアミノ酸の総数の範囲の例は、1、2、3、4、および5個から選択される下限値と、16、13、10、9、8、および7個から選択される上限値との組合せにより示されうる。総数のアミノ酸が連続して欠失していても、1個および/または連続する2個以上のアミノ酸が不連続に欠失していてもよい。
 本願の改変GLNBPタンパク質において、該置換されうるアミノ酸の総数は、1以上であって、当該変異が導入されうる領域のアミノ酸配列のアミノ酸数以下である限り、特に限定されない。置換されうるアミノ酸の総数の例として、1~16個、3~10個、4~8個、5~7個、および7個(例えば457~463位に対応する位置の領域)が挙げられる。また、該置換されうるアミノ酸の総数の範囲の例は、1、2、3、4、および5個から選択される下限値と、16、13、10、9、8、および7個から選択される上限値との組合せにより示されうる。総数のアミノ酸が連続して置換されていても、1個および/または連続する2個以上のアミノ酸が不連続に置換されていてもよい。
 アミノ酸が置換される場合、置換されるアミノ酸の数と同数のアミノ酸によって、または置換されるアミノ酸の数より多い/又は少ないアミノ酸によって置換されうる。当該置換に用いられるアミノ酸の総数は1以上であって、特に限定されないが、例として、1~16個、1~10個、2~7個、および3個が挙げられる。該置換に用いられるアミノ酸の総数の範囲の例は、1、2、3個から選択される下限値と、16、13、10、9、8、7、5、3個から選択される上限値との組合せにより示されうる。
 該置換に用いられるアミノ酸は、構造的なフレキシビリティーを与えうる観点から、少なくとも1つのグリシンを含んでいてもよい。該置換に用いられるアミノ酸の例として、少なくとも1つのグリシンを含む連続する2~10個(例えば、2~7個、3個)のアミノ酸が挙げられる。例として、XG、XGX、XGG、GXG、またはGGG(XおよびXは同一または異なるグリシン以外のアミノ酸を示す)から選択される、連続する3個のアミノ酸が挙げられる。当該置換に用いられるアミノ酸のさらなる例として、GG、GGG、GGGG、GGGGG、GGGGGG、GGGGGGG、AGG、CGG、EGG、FGG、HGG、IGG、KGG、LGG、MGG、NGG、PGG、QGG、SGG、TGG、WGG、YGG、GPG、GGC、GGL、GGM、GGP、GGQ、GGS、GGY、MGL、MGS、LGL、およびLGSが挙げられる。さらに例として、FGG、LGG、およびMGGが挙げられる。
 本願において、アミノ酸とは、下記の20個の天然アミノ酸を意味し、「グリシン以外のアミノ酸」とは、具体的には、アラニン、ロイシン、アルギニン、リシン、アスパラギン、メチオニン、アスパラギン酸、フェニルアラニン、システイン、プロリン、グルタミン、セリン、グルタミン酸、トレオニン、トリプトファン、ヒスチジン、チロシン、イソロイシン、およびバリンからなる群から選択される1つのアミノ酸を意味する。
Figure JPOXMLDOC01-appb-I000017
 本願の改変GLNBPタンパク質において、該挿入されうるアミノ酸の総数は、1以上であって、特に限定されない。挿入されうるアミノ酸の総数の例として1~10個、および2~7個が挙げられる。また、該挿入されたアミノ酸の総数の範囲の例は、1、2、3、4、および5個から選択される下限値と、10、9、8、7、6、および5個から選択される上限値との組合せにより示されうる。総数のアミノ酸が連続して挿入していても、1個および/または連続する2個以上のアミノ酸が不連続に挿入していてもよい。該挿入されうるアミノ酸は、構造的なフレキシビリティーを与えうる観点から、少なくとも1つのグリシンを含んでいてもよい。
 1つの実施態様として、以下の配列番号15~48、98および99から選択されるアミノ酸配列を有する、改変GLNBPタンパク質が挙げられる。
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000026
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000030
Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-I000032
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000034
Figure JPOXMLDOC01-appb-I000035
Figure JPOXMLDOC01-appb-I000036
Figure JPOXMLDOC01-appb-I000037
Figure JPOXMLDOC01-appb-I000038
Figure JPOXMLDOC01-appb-I000039
Figure JPOXMLDOC01-appb-I000040
Figure JPOXMLDOC01-appb-I000041
Figure JPOXMLDOC01-appb-I000042
Figure JPOXMLDOC01-appb-I000043
Figure JPOXMLDOC01-appb-I000044
Figure JPOXMLDOC01-appb-I000045
Figure JPOXMLDOC01-appb-I000046
Figure JPOXMLDOC01-appb-I000047
Figure JPOXMLDOC01-appb-I000048
Figure JPOXMLDOC01-appb-I000049
Figure JPOXMLDOC01-appb-I000050
Figure JPOXMLDOC01-appb-I000051
Figure JPOXMLDOC01-appb-I000052
Figure JPOXMLDOC01-appb-I000053
 本願の改変GLNBPタンパク質の1つの実施態様として、以下からなる群から選択されるアミノ酸配列を有する改変GLNBPタンパク質が挙げられる:
(i)配列番号15~48、98および99から選択されるアミノ酸配列;
(ii)配列番号15~48、98および99から選択されるアミノ酸配列と80%以上、好ましくは90%以上、より好ましくは95%以上、例えば97%以上又は98%以上の配列同一性を有し、ガラクトース-1-リン酸の1位と、非還元末端にβ結合したN-アセチルグルコサミン残基またはβ結合したN-アセチルガラクトサミン残基を有し、かつ1または複数個の糖残基を有する糖における該N-アセチルグルコサミン残基またはN-アセチルガラクトサミン残基の3位とをβ-1,3結合させる酵素活性を有するアミノ酸配列。
 本願の改変GLNBPタンパク質は、当業者に知られる一般的な方法を用いて製造することができる。例えば、Kunkel法やPCR法を組み合わせた方法(例えばInverse PCR、QuikChange法)等の部位特異的変異導入法により、非変異型GLNBPをコードするポリヌクレオチドから改変GLNBPタンパク質をコードするポリヌクレオチド得、これを常法によりプラスミド、バクテリオファージ、コスミド等のベクターに組み込み、当該ベクターで宿主細胞を形質転換し、これを培養して、培養物から適宜精製することで改変GLNBPを得ることができうる。
 本願において、「非還元末端にβ結合したN-アセチルグルコサミン残基またはβ結合したN-アセチルガラクトサミン残基を有しかつ1または複数個の糖残基を有する糖」は、非還元末端(糖鎖の還元末端を右にしたときの最左)にN-アセチルグルコサミン残基またはN-アセチルガラクトサミン残基を有しかつ1または複数個の糖残基を有し、該N-アセチルグルコサミン残基またはN-アセチルガラクトサミン残基はその3位のヒドロキシ基が非修飾であってかつその還元末端がβ結合しているものであれば、特に限定されない。当該糖は、糖残基が直鎖状に結合していても、分岐鎖状に結合していても、環状に結合していてもよい。1つの実施形態として、当該糖は直鎖状に結合している。糖残基の数は1つ以上であれば特に限定されず、例として2~6個、2~4個、2~3個が挙げられる。糖残基の種類は特に限定されないが、例えば母乳オリゴ糖および/またはムチン型糖鎖の構成成分に見られるフコース、ガラクトース、N-アセチルガラクトサミン、グルコース、N-アセチルグルコサミン、およびシアル酸が挙げられる。当該糖は非還元末端の糖残基の3位以外のヒドロキシ基にリン酸基、UDP、pNP(p-ニトロフェニル基)等が結合してもよい。
 当該糖の例として、ラクト-N-トリオースII(GlcNAcβ1-3Galβ1-4Glc)、N,N'-diacetylchitobiose(GlcNAcβ1-4GlcNAc)、GlcNAc-β-pNP、GalNAc-β-pNPが挙げられる。
 本願は、本願の改変GLNBPタンパク質の存在下に、ガラクトース-1-リン酸と非還元末端にβ結合したN-アセチルグルコサミン残基またはβ結合したN-アセチルガラクトサミン残基を有しかつ1または複数個の糖残基を有する糖とを反応させることで、該ガラクトース-1-リン酸の1位と該N-アセチルグルコサミン残基またはN-アセチルガラクトサミン残基の3位とをβ-1,3結合させる方法を提供する。基質としてガラクトース-1-リン酸とラクト-N-トリオースIIを用いることでラクト-N-テトラオースを合成することができる。本願の改変GLNBPタンパク質は可逆的に反応を触媒するが、生成物を系外に除去することにより、および/または基質のうちの一方を過剰に使用することで、平衡を生成物側に偏らせ得る。
 以下、本発明を試験例によりさらに詳しく説明するが、本発明はこれらの例に限定されない。
試験例1:グリシン置換変異体
<Bifidobacterium longum JCM1217株由来GLNBP(配列番号1)のTP, 2G, 3G, 4G, 5G, 6G, 7G変異体の作製>
 図1に示す変異体の作製は、pET28a-GLNBP (Kitaoka et al. AEM 71:3158-3162, 2005)を鋳型とし、表1に記載したプライマーを使用したInverse PCRによって行った。増幅した断片はT4 polynucleotide kinase (Takara Bio社)を使用してリン酸化した後にアガロースゲル電気泳動によって精製し、DNA ligation kit (Takara Bio)を用いてセルフライゲーションした。変異の確認は表2に記載したプライマーを用いたシーケンスによって行った。
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
<各変異体の発現と無細胞抽出液の調製>
 作製したプラスミドはBL21 (DE3) ΔlacZ / pRARE2株 (Yoshida et al. Glycobiol. 22:361-368, 2012)に導入し、得られた形質転換体を50 mL LB培地(30 mg/L Km, 15 mg/mL Cmを含む)に接種した。培養液のOD600が0.5 になった時点で0.1 mM IPTGを添加してタンパク質の発現を誘導し、18℃にて48時間培養した。その後、遠心分離にて菌体を回収、3 mL のLysis Buffer (50 mM HEPES (pH8.0), 300 mM NaCl, 10 mM imidazole)に懸濁し、超音波によって菌体を破砕した(Qsonica社 Q125)。遠心分離して得られた上清を無細胞抽出液とした。タンパク質定量はBradford法にて行い(Bio-Rad社)、牛血清アルブミンを標準品とした。
<酵素反応(無細胞抽出液)>
 4 mM lacto-N-tetraoseを含む20 mM sodium phosphate緩衝液(pH 7)中に終濃度0.1 mg/mLの無細胞抽出液を添加して、lacto-N-biose I(LNB)の場合は30℃10分、lacto-N-tetraose(LNT)の場合は一晩インキュベートした後、TLCに供した。展開液にはButanol:AcOH:water (2/1/1)を使用し、Anderson et al. (Anal Biochem. 287:337-339, 2000)の方法に従って糖を可視化した。
 結果を図2に示す。
 図2に示すとおり、GLNBP変異体(TP, 2G, 3G, 4G, 5G, 6G, 7G)はラクト-N-テトラオースのラクト-N-トリオースIIへの分解活性を示した。
<タンパク質精製>
 前述の通り調製した無細胞抽出液を、Ni-NTA Spin Columns (QIAGEN社)に供して変異体酵素を精製した。なお、精製はQIAGEN社のプロトコールに従ったが、リン酸緩衝液の代わりにHEPES緩衝液を使用した。活性画分を回収し、Amicon Ultra 50K (Millipore社)を用いて緩衝液を50 mM MOPS-NaOH (pH 7)に交換すると共にタンパク質を濃縮した。タンパク質の定量は、アミノ酸組成に基づく吸光係数によって算出した(https://web.expasy.org/protparam/)。精製度は図3に示すとおり、SDS-PAGEによって確認した。
<酵素活性(精製タンパク質)>
 加リン酸分解およびその逆反応(合成反応)の活性は、Nishimoto M and Kitaoka M (BBB 71:2101-2104, 2007)の方法に従って行った。加リン酸分解反応は、10 mM sodium phosphateの存在下で10 mM lacto-N-biose I(LNB)もしくは10 mM lacto-N-tetraose(LNT)を基質として行った。合成反応は1 mM galactose-1-phosphateと10 mM GlcNAcもしくは10 mM lacto-N-triose II(LNTri)を使用して行った。なお、加リン酸分解反応においては1分間に1 micromolのgalactose-1-phosphateを、合成反応においては1分間に1 micromolのリン酸を生じる酵素量を1 Uとした。
 結果を下表に示す。
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
試験例2:GLNBP変異体(3G)のアミノ酸置換体(XGG, GXG, GGX)
<GLNBP変異体(3G)の各アミノ酸置換体(XGG, GXG, GGX)の作製>
 下表に示す変異体の作製は、pET28a-GLNBP(3G)を鋳型とし、下表に記載したプライマーを用いて、QuikChange法あるいはInverse PCR法によって行った。変異の確認は表2と同様のプライマーを用いたシーケンスによって行った。
Figure JPOXMLDOC01-appb-T000058

Figure JPOXMLDOC01-appb-T000059
<各変異体の発現と無細胞抽出液の調製>
 前述の通り、行った。
<LNT加リン酸分解活性:薄層クロマトグラフィー>
 4 mM lacto-N-tetraoseを含む10 mM sodium phosphate緩衝液(pH 7)中に終濃度0.5 mg/mLの無細胞抽出液を添加して一晩インキュベートした後、TLCに供した。TLCの展開液にはButanol:AcOH:water (2/1/1)を使用し、Anderson et al. (Anal Biochem. 287:337-339, 2000)の方法に従って糖を可視化した。TLCを目視で判断し、オリジナルの3G変異体(Δ457-463::GGG)と比較して、高い:(++);同じ:(+);低い:(-);と評価した。ndは検出なしを示し、NAは該当なし(変異体入手なしのため)を示す。結果を下表に示す。
Figure JPOXMLDOC01-appb-T000060
試験例3:精製GLNBP-3G, AGG, FGG, LGG, MGG, MGS, MGL, LGS, LGL変異体のLNT合成活性
<変異体の発現と精製>
 前述のとおり得られた、GLNBP -3G, AGG, FGG, LGG, MGG変異体を精製してLNT合成活性を測定した。精製は、上述と同様Ni-NTA Spin Columns (QIAGEN社)を用いて行った。また、表7に示すMGS, MGL, LGS, LGL変異体も作製して活性測定に用いた。これらの変異体は、pET28a-GLNBP(MGG)およびpET28a-GLNBP(LGG)を鋳型としてQuikChange法にて行った。使用したプライマーは、表8の通りである。
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
<LNT合成活性測定(精製タンパク質)>
 活性は、Nishimoto M and Kitaoka M (BBB 71:2101-2104, 2007)の方法に従い、1 mM galactose-1-phosphateと10 mM lacto-N-triose IIを基質として使用して行った。なお、1分間に1 micromolのリン酸を生じる酵素量を1 Uとした。
 結果を下表に示す。
Figure JPOXMLDOC01-appb-T000063
試験例4:精製GLNBP-MGGのLNT合成活性測定
Figure JPOXMLDOC01-appb-I000064
(試験方法)
 総量1 mL中、以下からなる反応液:
40 mM Sucrose (Suc)、
30 mM Gal-1-P、
20 mM Lacto-N-triose II (LNTri)、
0.2 μM Glc1,6bisP (GlcBP)、
2 mM MgCl2
1 U/mL スクロースホスホリラーゼ(oriental yeast)(SucP)、
5 U/mL ホスホグルコムターゼ(sigma) (PGM)、および
0.06 U/mg  GLNBP-MGG (0.5 mg/mL);
を30℃でインキュベートし、0, 10, 30, 90, 270, 810分に採取した試料(20 μL)をHPAEC-PAD法およびTLC法により分析した。
 残りの反応液を他の成分からのLNTの精製のために使用した。
(TLC法)
 結果を図4に示す。
 図4に示されるとおり、810分後の反応液において、Lacto-N-triose IIの消費、およびlacto-N-tetraoseとフルクトースの生成が示された。
(HPAEC-PAD法)
 Dionex ICS 3000システム(CarboPac PA-1カラム(Dionex, Sunnyvale, CA)装着)を用いる、HPAEC-PAD法(high performance anion exchange chromatography with pulsed amperometric detection)により、各糖を分析した。一定流量(0.25 ml/min)を、1~330 mM酢酸ナトリウム/125mM NaOHのリニアグラジエントで20分間(30℃)溶出した後、さらに10分間溶出した。
 結果を図5に示す。
 図5に示されるとおり、Gal-1-P、Lacto-N-triose II、およびSucroseは経時的に消費され、lacto-N-tetraoseとフルクトースが生成された。
(LNTの精製)
 反応液をAmberlite MB-4で脱イオン化し、凍結乾燥して、Sugar-Dカラム(20 x 250 mm, Nacalai Tesque, Kyoto, Japan) 装着のHPLCに供した。一定流量(5.0 ml/min)の72%アセトニトリルを40℃で溶出し、屈折率検出器(RID-10A, Shimadzu, Kyoto, Japan)でモニタリングした。該当するピークの画分を集め、凍結乾燥し、さらにゲル濾過カラム Toyopearl HW-40C (20 mm X 500 mm)(TOSOH社製)を用いて、室温にて精製した。溶出は水で流量1.0 ml/minで行った。ついで上記と同様にHPAEC-PAD法により分析した。結果を図6に示す。
 さらに上記で得られた精製された合成ラクト-N-テトラオースを核磁気共鳴装置(Bruker Avance800)で内部標準として2-メチル-2-プロパノールを用いて、298K、D2Oにて分析した。得られたスペクトルを図7に示す。
 図6および7に示されるとおり、ラクト-N-テトラオース標準品との比較により、GLNBP-MGG変異体により、ラクト-N-テトラオースが合成されたことが確認された。
試験例5:精製GLNBP-MGGのGal・GlcNAc残基結合活性
 Lacto-N-triose IIの代わりに、GlcNAc-β-pNPまたはGlcNAcβ1-4GlcNAcを用いる以外は試験例4と同様の方法で反応液を調製し、30℃で終夜インキュベートし、採取した試料(20 μL)をTLC法により分析した。結果を図8に示す。
 図8に示されるとおり、pNP-beta-GlcNAcまたはN,N’-diacetylchitobioseの消費とともに、pNP-beta-GlcNAcまたはN,N’-diacetylchitobioseよりもRf値の低い部分に新しいスポットが確認された。
 試験例1~5および9で用いられた変異体のうち、下表の変異体はその配列表が上記に記載されている。
Figure JPOXMLDOC01-appb-I000065
試験例6:Bifidobacterium属のGLNBPホモログのアライメント
 Bifidobacterium longum JCM1217株のGLNBP(配列番号1)をベースに、KEGG (Kyoto Encyclopedia of Genes and Genomes)のComplete Genomesに登録されているBifidobacterium属のGLNBPホモログ(表10)のアライメントを行った。アライメントにはClustalW (https://www.genome.jp/tools-bin/clustalw)およびBoxshade ( https://embnet.vital-it.ch/software/BOX_form.html)を使用した。結果を図9に示す。
 図10に、Bifidobacterium longum JCM1217株のGLNBP(配列番号1)の2次構造を示す概略図を示す。
 図11に、上記のアライメント結果から、Bifidobacterium属の各GLNBPホモログにおけるBifidobacterium longum JCM1217株のGLNBP(配列番号1)の19番目のヘリックス構造(448~451位)とループ領域(452~467位)と20番目のヘリックス構造(468~478位)に対応する箇所を示す図を示す。
  図12に、Bifidobacterium longum JCM1217株のGLNBP(配列番号1)に対する各Bifidobacterium属GLNBPホモログのアミノ酸配列同一性を示す表を示す。
Figure JPOXMLDOC01-appb-T000066
試験例7:GLNBPホモログのアライメント
 Bifidobacterium longum JCM1217株のGLNBP(配列番号1)をベースに、これまでに精製酵素としてGLNBP活性が確認されている表11のGLNBPホモログのアミノ酸配列のアライメントを行った。アライメントにはClustalW (https://www.genome.jp/tools-bin/clustalw)およびBoxshade ( https://embnet.vital-it.ch/software/BOX_form.html)を使用した。結果を図13に示す。
 図14に、上記のアライメント結果から、各GLNBPホモログにおけるBifidobacterium longum JCM1217株のGLNBP(配列番号1)の19番目のヘリックス構造(448~451位)とループ領域(452~467位)と20番目のヘリックス構造(468~478位)に対応する箇所を示す図を示す。
Figure JPOXMLDOC01-appb-T000067
試験例8:野生型BlGLNBPの活性中心にLNTを組み込んだモデル図
 野生型GLNBPとGlcNAcの複合体構造(PDB ID:2ZUWのChain Dサブユニット)中にあるGlcNAcにPDB ID: 2Z8Fに登録されているLNTのGlcNAcを重ねた際のモデルを図15に示す。LNTの還元末端側のLac構造(Galβ1-4Glc)がHelix-19とHelix-20の間に存在するループと衝突していることがわかる。
PDB ID:2ZUW:Hidaka et al.JBC 284:7273-7283 (2009)
PDB ID: 2Z8F:Suzuki et al. JBC 283:13165-13173 (2008)
試験例9:BbXGLNBP2-3G変異体
<BbXGLNBP2-3G変異体の作製>
 Bifidobacterium bifidum PRL2010株のBbGLNBP2(配列番号6)と99%一致するアミノ酸配列を有するBifidobacterium bifidum JCM1254株由来BbXGLNBP2(配列番号100)の457位~463位をGGGで置換したBbXGLNBP2-3G変異体(配列番号99)をpTN027 (Nishimoto M and Kitaoka M. Identification of the putative proton donor residue of lacto-N-biose phosphorylase (EC 2.4.1.211). Bioscience, Biotechnology, and Biochemistry 71:1587-1591 (2007))を鋳型とし、表12に記載したプライマーを使用したInverse PCRによって行った。増幅した断片はT4 polynucleotide kinase (Takara Bio社)を使用してリン酸化した後にアガロースゲル電気泳動によって精製し、DNA ligation kit (Takara Bio)を用いてセルフライゲーションした。変異の確認は表13に記載したプライマーを用いたシーケンスによって行った。
Figure JPOXMLDOC01-appb-T000068

Figure JPOXMLDOC01-appb-T000069
<各変異体の発現と無細胞抽出液の調製>
 試験例1の通り、行った。
<酵素反応(無細胞抽出液)>
 10 mM MOPS緩衝液(pH 7)中に5 mM NaPO4と2 mM lacto-N-biose I(LNB)または5 mM NaPO4と2 mM lacto-N-tetraose(LNT)を含む反応液を調整し、終濃度0.1 mg/mLの無細胞抽出液の存在下において30℃で一晩インキュベートした後、TLCに供した。全て1 μLずつスポットした。展開液にはButanol:AcOH:water (2/1/1)を使用し、Anderson et al. (Anal Biochem. 287:337-339, 2000)の方法に従って糖を可視化した。
 その結果、ラクト-N-テトラオースを含有する反応液ではラクト-N-トリオースIIと同一のRf値を有するスポットが認められ、ラクト-N-テトラオースのラクト-N-トリオースIIへの分解活性が示された。
 本発明は、オリゴ糖の製造、特にラクト-N-テトラオースの製造に利用可能である。

Claims (21)

  1.  非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位に対応する位置の領域において、1または複数個のアミノ酸が欠失、置換および/または挿入されており;および
     ガラクトース-1-リン酸の1位と、非還元末端にβ結合したN-アセチルグルコサミン残基またはβ結合したN-アセチルガラクトサミン残基を有しかつ1または複数個の糖残基を有する糖における該N-アセチルグルコサミン残基またはN-アセチルガラクトサミン残基の3位とをβ-1,3結合させる酵素活性を有する、改変GLNBPタンパク質。
  2.  非変異型GLNBPの活性中心の三次元的近傍に位置するループ領域において、1または複数個のアミノ酸が欠失、置換および/または挿入されており;および
     ガラクトース-1-リン酸の1位と、非還元末端にβ結合したN-アセチルグルコサミン残基またはβ結合したN-アセチルガラクトサミン残基を有しかつ1または複数個の糖残基を有する糖における該N-アセチルグルコサミン残基またはN-アセチルガラクトサミン残基の3位とをβ-1,3結合させる酵素活性を有する、改変GLNBPタンパク質。
  3.  該非変異型GLNBPの活性中心の三次元的近傍に位置するループ領域が、該非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位に対応する位置の領域である、請求項2に記載の改変GLNBPタンパク質。
  4.  該非還元末端にβ結合したN-アセチルグルコサミン残基またはβ結合したN-アセチルガラクトサミン残基を有しかつ1または複数個の糖残基を有する糖がラクト-N-トリオースIIであり、ラクト-N-テトラオースを合成する酵素活性を有する、請求項1~3のいずれか1項に記載の改変GLNBPタンパク質。
  5.  該非変異型GLNBPの活性中心の三次元的近傍に位置するループ領域において、1~16個のアミノ酸が欠失、1~16個のアミノ酸が1~16個のアミノ酸により置換、および/または1~10個のアミノ酸が挿入されている、請求項2~4のいずれか1項に記載の改変GLNBPタンパク質。
  6.  該非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位に対応する位置の領域において、1~16個のアミノ酸が欠失、1~16個のアミノ酸が1~16個のアミノ酸により置換、および/または1~10個のアミノ酸が挿入されている、請求項1~5のいずれか1項に記載の改変GLNBPタンパク質。
  7.  該非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位に対応する位置の領域において、連続する3~10個のアミノ酸が欠失しているか、または連続する3~10個のアミノ酸が少なくとも1つのグリシンを含む連続する2~10個のアミノ酸により置換されている、請求項1~6のいずれか1項に記載の改変GLNBPタンパク質。
  8.  該非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位に対応する位置の領域において、連続する3~10個のアミノ酸が連続する2~10個のグリシンにより置換されている、請求項1~7のいずれか1項に記載の改変GLNBPタンパク質。
  9.  該非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位に対応する位置の領域において、連続する3~10個のアミノ酸が、XG、XGX、XGG、GXG、またはGGG(XおよびXは同一または異なるグリシン以外のアミノ酸を示す)から選択される連続する3個のアミノ酸により置換されている、請求項1~7のいずれか1項に記載の改変GLNBPタンパク質。
  10.  該非変異型GLNBPのアミノ酸配列を配列番号1に示すアミノ酸配列とアライメントしたときに、配列番号1における452~467位のアミノ酸が、AGG、CGG、EGG、FGG、HGG、IGG、KGG、LGG、MGG、NGG、PGG、QGG、SGG、TGG、WGG、YGG、GPG、GGC、GGL、GGM、GGP、GGQ、GGS、GGY、MGL、MGS、LGL、およびLGSからなる群から選択される連続する3個のアミノ酸により置換されている、請求項1~7のいずれか1項に記載の改変GLNBPタンパク質。
  11.  該非変異型GLNBPが、Bifidobacterium属、Anaerococcus属、Clostridium属、Cutibacterium属、Erysipelothrix属、Lachnoclostridium属、Streptobacillus属、またはVibrio属由来である、請求項1~10のいずれか1項に記載の改変GLNBPタンパク質。
  12.  該非変異型GLNBPが、
    (i)配列番号1~14および100から選択されるアミノ酸配列;または
    (ii)配列番号1~14および100から選択されるアミノ酸配列と75%以上の配列同一性を有し、かつ、GLNBP活性を有する;
    請求項1~11のいずれか1項に記載の改変GLNBPタンパク質。
  13.  以下からなる群から選択されるアミノ酸配列を有する、請求項1~12のいずれか1項に記載の改変GLNBPタンパク質:
    (i)配列番号15~48、98および99から選択されるアミノ酸配列;
    (ii)配列番号15~48、98および99から選択されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列。
  14.  ガラクトース-1-リン酸の1位と、非還元末端にβ結合したN-アセチルグルコサミン残基を有しかつ1または複数個の糖残基を有する糖における該N-アセチルグルコサミン残基の3位とをβ-1,3結合させる酵素活性を有する、請求項1~13のいずれか1項に記載の改変GLNBPタンパク質。
  15.  請求項1~14のいずれか1項に記載の改変GLNBPタンパク質をコードするポリヌクレオチド。
  16.  請求項15記載のポリヌクレオチドを含むベクター。
  17.  請求項16記載のベクターで形質転換された宿主細胞。
  18.  請求項17記載の宿主細胞を培養し、該培養物から改変GLNBPタンパク質を回収することを含む、請求項1~14のいずれか1項に記載の改変GLNBPタンパク質の製造方法。
  19.  請求項1~14のいずれか1項に記載の改変GLNBPタンパク質の存在下に、ガラクトース-1-リン酸と非還元末端にβ結合したN-アセチルグルコサミン残基またはβ結合したN-アセチルガラクトサミン残基を有しかつ1または複数個の糖残基を有する糖とを反応させる工程を含む、該ガラクトース-1-リン酸の1位と該N-アセチルグルコサミン残基またはN-アセチルガラクトサミン残基の3位とをβ-1,3結合させる方法。
  20.  該非還元末端にβ結合したN-アセチルグルコサミン残基またはβ結合したN-アセチルガラクトサミン残基を有しかつ1または複数個の糖残基を有する糖がラクト-N-トリオースIIである、請求項19に記載の方法。
  21.  請求項1~14のいずれか1項に記載の改変GLNBPタンパク質の存在下に、ガラクトース-1-リン酸とラクト-N-トリオースIIとを反応させる工程を含む、ラクト-N-テトラオースを合成する方法。
PCT/JP2019/032866 2018-08-24 2019-08-22 改変ホスホリラーゼを利用したラクト-N-ビオースIまたはガラクト-N-ビオースのβグリコシドの酵素合成法 WO2020040257A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020538465A JPWO2020040257A1 (ja) 2018-08-24 2019-08-22 改変ホスホリラーゼを利用したラクト−N−ビオースIまたはガラクト−N−ビオースのβグリコシドの酵素合成法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018157840 2018-08-24
JP2018-157840 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020040257A1 true WO2020040257A1 (ja) 2020-02-27

Family

ID=69592060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032866 WO2020040257A1 (ja) 2018-08-24 2019-08-22 改変ホスホリラーゼを利用したラクト-N-ビオースIまたはガラクト-N-ビオースのβグリコシドの酵素合成法

Country Status (2)

Country Link
JP (1) JPWO2020040257A1 (ja)
WO (1) WO2020040257A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023151476A1 (zh) * 2022-02-14 2023-08-17 山东恒鲁生物科技有限公司 糖苷水解酶及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253191A (ja) * 1998-03-13 1999-09-21 Meiji Milk Prod Co Ltd ラクト−n−テトラオースの合成法
JP2014168404A (ja) * 2013-03-01 2014-09-18 National Agriculture & Food Research Organization 耐熱性1,3−βガラクトシル−N−アセチルヘキソサミンホスホリラーゼ
JP2014187886A (ja) * 2013-03-26 2014-10-06 National Agriculture & Food Research Organization 1,3−βガラクトシル−N−アセチルヘキソサミンホスホリラーゼの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253191A (ja) * 1998-03-13 1999-09-21 Meiji Milk Prod Co Ltd ラクト−n−テトラオースの合成法
JP2014168404A (ja) * 2013-03-01 2014-09-18 National Agriculture & Food Research Organization 耐熱性1,3−βガラクトシル−N−アセチルヘキソサミンホスホリラーゼ
JP2014187886A (ja) * 2013-03-26 2014-10-06 National Agriculture & Food Research Organization 1,3−βガラクトシル−N−アセチルヘキソサミンホスホリラーゼの製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DERENSY-DRON D. ET AL.: "beta -1, 3-Galactosyl-N-acetylhexosamine phosphorylase from Bifidobacterium bifidum DSM 20082 : characterization, partial purification and relation to mucin degradation", BIOTECHNOL. APPL. BIOCHEM., vol. 29, 1999, pages 3 - 10 *
HUANG WEICHUN ET AL: "Synthesis of Lacto-N-tetraose by the chemical enzyme method", LECTURE PREPRINTS OF JOINT MEETING OF THE TOHOKU AREA CHEMISTRY SOCIETIES 2011, vol. 23, 17 September 2011 (2011-09-17), pages 116 *
KITAOKA MOTOMISHU: "Advanced utilization of carbohydrate-processing enzymes", BULLETIN OF APPLIED GLYCOSCIENCE, vol. 8, no. 1, February 2018 (2018-02-01), pages 20 - 32 *
NORIOKA TSUBASA ET AL: "Development of enzymatic synthesis of lacto-N-tetraose using mutation galacto-N-biose/lacto-N-biose I phosphorylase", LECTURE ABSTRACTS OF THE 2019 CONFERENCE OF JSBBA, 5 March 2019 (2019-03-05) *
SAIKI RYOHEI: "Micro-flow synthesis of Lacto-N­ tetraose", ABSTRACTS OF THE 34TH ANNUAL MEETING OF THE JAPANESE SOCIETY OF CARBOHYDRATE RESEARCH, 1 July 2015 (2015-07-01), pages 250 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023151476A1 (zh) * 2022-02-14 2023-08-17 山东恒鲁生物科技有限公司 糖苷水解酶及其制备方法和应用

Also Published As

Publication number Publication date
JPWO2020040257A1 (ja) 2021-08-10

Similar Documents

Publication Publication Date Title
JP6752203B2 (ja) 新規EndoS変異酵素
Sakurama et al. Lacto-N-biosidase encoded by a novel gene of Bifidobacterium longum subspecies longum shows unique substrate specificity and requires a designated chaperone for its active expression
KR20230104755A (ko) 시알일화 화합물의 인 비보 합성
KR20170010003A (ko) 박테로이드 기원의 푸코시다제 및 이의 사용 방법
US10415021B2 (en) Mutated fucosidase
JP4784224B2 (ja) 糖鎖転移方法および糖鎖転移酵素
WO2020040257A1 (ja) 改変ホスホリラーゼを利用したラクト-N-ビオースIまたはガラクト-N-ビオースのβグリコシドの酵素合成法
EP3307882B1 (en) Mutated photobacterium transsialidases
WO2010143713A1 (ja) 新規タンパク質およびそれをコードする遺伝子
US10281460B2 (en) Polyporus squamosus-derived recombinant lectin specific for sialic acid linkage
KR101768748B1 (ko) 변이된 수크로스이성화효소 및 이의 제조방법
Sumida et al. Genetic and functional diversity of beta-N-acetylgalactosamine residue-targeting glycosidases expanded by deep-sea metagenome
Nishizawa et al. Identification and characterization of a novel thermo-stable endo-β-N-acetylglucosaminidase from Rhizomucor pusillus
CN113088505B (zh) 多糖裂解酶编码基因04147在制备重组桃胶多糖水解酶中的应用
WO2021109022A1 (zh) 岩藻糖苷酶及其相关生物材料与应用
WO2012014980A1 (ja) 新規酵素タンパク質、当該酵素タンパク質の製造方法及び当該酵素タンパク質をコードする遺伝子
WO2006112253A1 (ja) 新規なβ-ガラクトシド-α2,3-シアル酸転移酵素、それをコードする遺伝子およびその製造方法
Subhash Selective Growth of Targeted Bacteria Using Enzymatically Synthesized Oligosaccharides
Kajiwara et al. A CMP-N-acetylneuraminic acid synthetase purified from a marine bacterium, Photobacterium leiognathi JT-SHIZ-145
Banana-Dube Investigation of a polyprenyl/dolichyl phosphate mannose synthase involved in bacterial protein mannosylation
Lim Synthesis of O-Linked glycopeptides using enzymatic catalysis.
KR101388457B1 (ko) 동애등에 장 내 미생물 유래의 신규 만노시다제
KR100266754B1 (ko) Udp-xylosepyrophosphorylase의유전자염기서열,그발현벡터와재조합uxpase의생산방법
Chen et al. Peter Rahfeld1, 3, Jacob F. Wardman3, 4, Kevin Mehr1, 3, Drew Huff1, 3, Connor Morgan-Lang2, 5
JP2021177713A (ja) デアミノノイラミン酸特異的シアリダーゼ活性を有するタンパク質をコードする核酸及びその利用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538465

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851145

Country of ref document: EP

Kind code of ref document: A1