WO2020039769A1 - 情報処理装置、プログラム及び情報処理方法 - Google Patents
情報処理装置、プログラム及び情報処理方法 Download PDFInfo
- Publication number
- WO2020039769A1 WO2020039769A1 PCT/JP2019/026755 JP2019026755W WO2020039769A1 WO 2020039769 A1 WO2020039769 A1 WO 2020039769A1 JP 2019026755 W JP2019026755 W JP 2019026755W WO 2020039769 A1 WO2020039769 A1 WO 2020039769A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- advice
- biometric data
- data
- unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
Definitions
- the present disclosure relates to an information processing device, a program, and an information processing method.
- Patent Literature 1 discloses a health management server that generates and provides a menu suitable for a health management target based on information on the health management target.
- an appropriate exercise menu is generated in consideration of the activity status of the health management target person and provided to the health management target person.
- the present disclosure has been made in view of such circumstances, and a purpose thereof is to provide an information processing apparatus and the like that can provide appropriate advice for biometric data of a user.
- An information processing apparatus may include a data acquisition unit that acquires biometric data of a user, and teacher data including biometric data of a plurality of users and advice information that has obtained an effect on each biometric data. Based on the biometric data, the advice information for the biometric data acquired by the data acquisition unit, using a learning model learned to identify advice information that has an effect on the biometric data when the biometric data is input. And an output unit that outputs the advice information specified by the specifying unit.
- FIG. 3 is a block diagram illustrating a configuration example of a server device and a user terminal. It is a schematic diagram which shows the example of a structure of an advice discriminator. It is a schematic diagram which shows the example of a structure of an advice DB.
- FIG. 4 is a block diagram illustrating functions realized by a control unit of the server device. It is a schematic diagram which shows an example of an input screen. It is a schematic diagram which shows the example of an advice screen. It is a block diagram showing an example of composition of a learning device.
- FIG. 3 is a block diagram illustrating functions realized by a control unit of the learning device.
- FIG. 14 is a block diagram illustrating functions realized by a control unit of a server device according to a fourth embodiment. It is a schematic diagram which shows the example of a structure of the information provision system of Embodiment 5.
- FIG. 14 is a block diagram illustrating a configuration example of a server device according to a fifth embodiment.
- FIG. 1 is a schematic diagram illustrating a configuration example of an information providing system.
- the information providing system of the present embodiment includes a server device 10 and a plurality of user terminals 20, and the server device 10 and each user terminal 20 can be connected to a network N such as the Internet.
- the user terminal 20 accepts input of various data related to the physical condition of the user according to an operation by the user, and transmits the obtained data to the server device 10.
- the server device 10 uses a learned classifier (learning model) to determine (specify) an advice to be provided for data related to the physical condition of the user.
- a plurality of server devices 10 may be provided, may be realized by a plurality of virtual machines provided in one device, or may be realized using a cloud server.
- the learning process of the discriminator may be performed by the server device 10 or may be performed by another learning device.
- FIG. 2 is a block diagram showing a configuration example of the server device 10 and the user terminal 20.
- the user terminal 20 is, for example, a smartphone, a tablet terminal, a personal computer, or the like.
- the user terminal 20 includes a control unit 21, a storage unit 22, a communication unit 23, a display unit 24, an input unit 25, and the like, and these units are mutually connected via a bus.
- the control unit 21 includes one or a plurality of processors such as a CPU (Central Processing Unit), an MPU (Micro Processing Unit) or a GPU (Graphics Processing Unit).
- the control unit 21 performs various information processing and control processing to be performed by the user terminal 20 by appropriately executing a control program stored in the storage unit 22.
- the storage unit 22 includes a random access memory (RAM), a flash memory, a hard disk, a solid state drive (SSD), and the like.
- the storage unit 22 stores in advance a control program to be executed by the control unit 21 and various data necessary for executing the control program.
- the storage unit 22 also temporarily stores data and the like generated when the control unit 21 executes the control program.
- the control program stored in the storage unit 22 includes an advice request application program (hereinafter, referred to as an advice request application) 22a.
- the advice request application 22a is acquired from an external device via the communication unit 23 and stored in the storage unit 22, for example.
- the advice request application 22a may be read from the portable storage medium and stored in the storage unit 22.
- the communication unit 23 is an interface for connecting to the network N by wireless communication, for example, and transmits and receives information to and from an external device via the network N.
- the communication unit 23 may be configured to connect to the network N by wired communication.
- the display unit 24 is, for example, a liquid crystal display, an organic EL display, or the like, and displays various types of information according to an instruction from the control unit 21.
- the input unit 25 is a touch sensor or a push-type button arranged on the display surface of the display unit 24, receives an operation input by the user, and sends a control signal corresponding to the operation content to the control unit 21.
- the input unit 25 serving as a touch sensor constitutes a touch panel integrally with the display unit 24.
- the user terminal 20 may be any device as long as it is an information device having a communication unit 23, a display unit 24, and an input unit 25.
- the server device 10 is an information processing device such as a personal computer and a server computer.
- the server device 10 includes a control unit 11, a storage unit 12, a communication unit 13, a reading unit 14, and the like, and these units are interconnected via a bus.
- the control unit 11 includes one or more processors such as a CPU, an MPU, and a GPU.
- the control unit 11 causes the server device 10 to perform various types of information processing and control processing to be performed by the information processing device of the present disclosure by appropriately executing the control program stored in the storage unit 12.
- the storage unit 12 includes a RAM, a flash memory, a hard disk, an SSD, and the like.
- the storage unit 12 stores in advance a control program executed by the control unit 11 and various data necessary for executing the control program.
- the storage unit 12 temporarily stores data and the like generated when the control unit 11 executes the control program.
- the control program stored in the storage unit 12 includes an advice providing program 12a which is a program of the present disclosure.
- the storage unit 12 stores an advice discriminator (learning model) 12b, which is a neural network constructed by, for example, a machine learning process.
- the advice discriminator 12b is a discriminator that specifies (determines) which of a plurality of pieces of advice information learned in advance the advice to be provided to the user is based on data relating to the physical condition of the user.
- the data stored in the storage unit 12 includes an advice database (hereinafter, referred to as an advice DB) 12c.
- the control program and data stored in the storage unit 12 are acquired from an external device via the network N via the communication unit 13 and stored in the storage unit 12, for example.
- the server device 10 includes the reading unit 14 that reads information stored in the portable storage medium 14a
- the control program and data stored in the storage unit 12 are read from the portable storage medium 14a by the reading unit 14.
- And may be stored in the storage unit 12.
- the advice DB 12c may be stored in an external storage device connected to the server device 10, or may be stored in a storage device that can communicate with the server device 10 via the network N.
- the communication unit 13 is an interface for connecting to the network N by, for example, wired communication, and transmits and receives information to and from an external device via the network N.
- the communication unit 13 may be configured to connect to the network N by wireless communication.
- the reading unit 14 reads information stored in a portable storage medium 14a including a CD (Compact Disc) -ROM, a DVD (Digital Versatile Disc) -ROM, and a USB (Universal Serial Bus) memory.
- the server device 10 may include a display unit that displays various information, an input unit that receives an operation input by a user, and the like, in addition to the above-described components.
- FIG. 3 is a schematic diagram showing a configuration example of the advice discriminator 12b.
- the advice discriminator 12b is a learning model that learns, when data related to the physical condition of the user is input, to specify an advice suitable for the user based on the input data.
- the advice discriminator 12b includes an input layer, a middle layer, and an output layer.
- the input layer has m (m ⁇ 2) input nodes, and data relating to the state of the user's body acquired from the user terminal 20 is input to each of the input nodes.
- the data related to the user's physical condition include, for example, attributes including the age and gender of the user, measurement data such as height, weight, abdominal circumference, blood pressure, heart rate, pulse, body temperature, intake calories, sleep time, and exercise time. Information about lifestyle such as type and time can be used. In addition, the type and amount of medicine being taken, the frequency and amount of smoking or drinking, the results of blood tests and urinalysis performed at medical institutions, radiographs (X-rays), echo tests (ultrasound tests), Image data, treatment contents, and operation contents taken by an imaging device such as CT (Computed Tomography), MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomography), etc. , Medical examination data relating to rehabilitation contents, various examination data obtained by a medical examination or a medical checkup, and information (genetic information) of the past history (medical history) of the user and his / her family can be used.
- CT Computerputed Tomography
- MRI Magnetic Resonance Imaging
- PET Pierositron
- the corresponding data is input to each input node of the input layer, and each data input to the input node is input to the intermediate layer.
- the intermediate layer has a plurality of (three in FIG. 3) fully connected layers, and the node of each layer calculates an output value based on input data using a weighting coefficient or function between the layers, and calculates the calculated output value. Enter the value into a later layer node.
- the intermediate layer finally supplies each output value to each output node of the output layer by sequentially inputting the output value of the node of each layer to the node of the subsequent layer.
- the number of intermediate layers is not limited to the example shown in FIG.
- the output layer has n (n ⁇ 2) output nodes, and each output node outputs a determination probability (probability for each piece of advice information) for each of the n types of advice.
- the output node 1 outputs the determination probability for the advice information with the advice ID of 01 stored in the advice DB 12c
- the output node 2 outputs the determination probability for the advice information with the advice ID of 02.
- the determination probability output from each output node indicates that the advice information associated with each output node is likely to be appropriate as advice for data input to the input layer.
- the output value of each output node of the output layer is, for example, a value of 0 to 1.0, and the total of the determination probabilities output from the n output nodes is 1.0.
- the advice discriminator 12b is not limited to a neural network (deep learning) in which the intermediate layer is configured as a multilayer as shown in FIG. 3, but may use a learning model constructed by various machine learning algorithms.
- the advice discriminator 12b may be constructed by, for example, a recurrent neural network.
- an advice discriminator 12b that can discriminate appropriate advice information based on time-series data of various test results obtained at a medical institution or at a medical examination can be used.
- FIG. 4 is a schematic diagram showing a configuration example of the advice DB 12c.
- the advice DB 12c for example, n pieces of advice information and an advice ID, which is identification information assigned to each piece of advice information, are registered in association with each other.
- the advice information is an advice message provided by the server device 10 to the user, and is a specific target advice specified (determined) by the advice determiner 12b based on the input data.
- the advice information includes, for example, advice on lifestyle such as diet, exercise, sleep, etc., advice on the use of supplements, over-the-counter medicines, over-the-counter medicines, advice on possible diagnostic contents and consultation with medical institutions, health examinations, second opinion. , And advice on medical institution applications.
- the advice information is not limited to the example illustrated in FIG. 4, and various advices including symptoms of the user's body and details of treatment to be performed can be used.
- FIG. 5 is a block diagram illustrating functions realized by the control unit 11 of the server device 10.
- the control unit 11 of the server device 10 executes the functions of the biometric data acquiring unit 101, the advice specifying unit 102, the provided information generating unit 103, and the output unit 104. Realize.
- each of these functions is realized by the control unit 11 executing the advice providing program 12a, but a part of them may be realized by a dedicated hardware circuit.
- the user uses the user terminal 20 to transmit data relating to his / her body condition to the server device 10.
- the user instructs the activation of the advice request application 22 a via the input unit 25 of the user terminal 20.
- the control unit 21 of the user terminal 20 starts the advice request application 22a stored in the storage unit 22.
- the control unit 21 displays an input screen for inputting data on the physical condition of the user on the display unit 24.
- the control unit 21 receives an input of data relating to the physical condition of the user via the input screen.
- FIG. 6 is a schematic diagram showing an example of an input screen.
- the input screen shown in FIG. 6 has input fields for inputting the user's age, gender, height, and weight.
- a pull-down menu is provided which allows selection of age groups such as teens, twenties, and thirties.
- the age input field may be configured to be input by the user via the input unit 25.
- Radio buttons are provided in the gender input field so that a male or female can be selected.
- Arbitrary numerical values can be input via the input unit 25 in the height and weight input fields.
- the input screen shown in FIG. 6 has input fields for the type (name) and amount of the medicine being taken.
- the input fields for the name and amount of the drug may be configured to be input by the user via the input unit 25, or may be configured to be input by a pull-down menu having a plurality of options.
- the input screen shown in FIG. 6 is configured so that test results of a blood test and a urine test can be input.
- the input screen shown in FIG. 6 is provided with an “input button” for inputting the test results of the blood test and the urine test.
- an input screen having an input field for an inspection result of the inspection item to be performed is displayed.
- the display returns to the input screen shown in FIG. 6, and the input screen shown in FIG. May be additionally displayed.
- the input screen shown in FIG. 6 is configured so that an image captured by an imaging device such as an X-ray, an echo examination, a CT, an MRI, and a PET can be attached.
- the input screen shown in FIG. 6 is provided with an input field provided with a pull-down menu having a plurality of options for the type of the captured image and the imaging site, and an “attach button” for attaching the captured image.
- an input screen for specifying an arbitrary image stored in the storage unit 22 of the user terminal 20 is displayed, and the image to be attached via the displayed input screen is displayed.
- the attached image may be an image stored in an external device with which the user terminal 20 can communicate via the network N, in addition to the image stored in the storage unit 22 of the user terminal 20.
- the user terminal 20 may acquire the specified image from the external device and store it in the storage unit 22.
- the image may be directly transmitted and received between the external device and the server device 10.
- the user inputs data that can be input into the respective input fields while scrolling down, for example, on the input screen shown in FIG.
- the input screen shown in FIG. 6 displays a “send button” for transmitting the input data to the server device 10 and a “cancel button” for canceling the transmission, and the “send button” is operated.
- the control unit 21 of the user terminal 20 transmits each data input via the input screen to the server device 10.
- the input screen may have an input column for measurement data such as blood pressure, heart rate, pulse, and body temperature in addition to the configuration shown in FIG.
- measurement data may be configured to be input by the user via the input unit 25, and is configured to be obtained from the measurement device when the user terminal 20 can connect to or communicate with the measurement device. May be done.
- the measuring device for example, a sphygmomanometer or a thermometer configured as a wearable device can be used.
- the input screen may have an input field for information on lifestyle such as calorie intake, sleep time, type and amount of exercise, frequency and amount of smoking or drinking in one day, and the like.
- Such information may be configured to be input by the user via the input unit 25, or may be configured to be input by a pull-down menu having a plurality of options. It should be noted that the content of the meal may be input instead of the calorie intake.
- the input screen includes data on the contents of the treatment currently being treated, the contents of the treated treatment, the contents of the treated surgery, the contents of the rehabilitation during the treatment, various examination data obtained by a physical examination or a medical checkup, the self and family members. May be configured to be able to input past medical history (medical history) information (genetic information).
- the input screen for inputting data relating to the physical condition of the user is not limited to the configuration shown in FIG.
- the user terminal 20 has a camera and an OCR (Optical Character Recognition), for example, at the time of medical examination, various data (user's biometric data) from a sheet on which test results of tests performed at a health checkup and a medical checkup are described. May be obtained.
- the user terminal 20 reads the inspection result by photographing the paper on which the inspection result is described with a camera and generating text data by OCR from the obtained captured image.
- the user terminal 20 can acquire the biometric data of the user by reading the test result described on the sheet by using the camera and the OCR and extracting various data from the read test result.
- the user terminal 20 can display the data thus obtained in a corresponding input field of the input screen shown in FIG.
- the control unit 11 of the server device 10 acquires data related to the physical condition of the user input via the input screen described above in the user terminal 20 from the user terminal 20 via the communication unit 13.
- biometric data data acquired via the input screen as described above is hereinafter collectively referred to as biometric data.
- a biometric data acquisition unit (data acquisition unit) 101 acquires biometric data transmitted from the user terminal 20.
- the biometric data acquisition unit 101 also functions as an attribute acquisition unit that acquires attributes including the age and gender of the user.
- the advice identifying unit (identifying unit) 102 uses the advice discriminator 12b to provide advice information appropriate for the state of the user's body indicated by the biometric data based on the biometric data acquired by the biometric data acquiring unit 101. Specify (determine). Specifically, the advice specifying unit 102 inputs each of the biometric data acquired by the biometric data acquisition unit 101 to each input node of the input layer of the advice discriminator 12b, and outputs each of the outputs of the output layer of the advice discriminator 12b. Get output value from node. In the input layer of the advice discriminator 12b, an input node to which each of the biometric data is to be input is determined in advance.
- the output value from each output node of the advice discriminator 12b is a discrimination probability for each piece of advice information registered in the advice DB 12c.
- the advice specifying unit (selection unit) 102 specifies (selects) advice information to be provided to the user based on the determination result (determination probability) by the advice determiner 12b.
- the advice specifying unit 102 specifies, for example, a predetermined number (for example, three, five, or the like) of pieces of advice information in the descending order of the determination probability output by the advice determiner 12b as the output target advice to be provided. Note that the advice specifying unit 102 acquires an advice ID corresponding to a predetermined number of output nodes having a large determination probability (output value).
- the provided information generating unit 103 generates provided information for providing the user with the advice specified by the advice specifying unit 102 using the user terminal 20. For example, the provided information generation unit 103 generates display information for displaying the specified advice. Specifically, the provided information generation unit 103 reads the advice information corresponding to the advice ID specified by the advice specifying unit 102 from the advice DB 12c. Then, the provided information generating unit 103 generates display information for displaying an advice screen that displays the read advice information in descending order of the determination probability.
- FIG. 7 is a schematic diagram showing an example of the advice screen. The advice screen shown in FIG. 7 displays the three advices specified by the advice specifying unit 102.
- the advice information displayed on the advice screen may be a simple advice message, or may include a link to a predetermined server as indicated by reference numeral 10a in FIG.
- a link to a predetermined server as indicated by reference numeral 10a in FIG.
- an introduction, advertisement, or advertisement of a product, a medicine, a medical institution, a doctor, or the like included in the advice information may be included.
- information including information on a medical institution related to the advice information specified by the advice specifying unit 102 and information on a company or a company such as a product or a drug may be displayed.
- the advice discriminator 12b may be configured to discriminate a medical institution and / or a doctor to be consulted based on the input biometric data.
- the advice specifying unit 102 specifies the recommended medical institution and / or doctor using the advice discriminator 12b
- the provided information generating unit 103 provides the advice information for introducing the specified medical institution and / or doctor. (Provided information) may be generated.
- the advice determiner 12b may be configured to determine a medical institution and / or a doctor to be consulted as a second opinion based on the input biometric data.
- the advice specifying unit 102 specifies the medical institution and / or doctor recommended as the second opinion using the advice discriminator 12b, and the provided information generating unit 103 introduces the specified medical institution and / or doctor. May be generated.
- the advice determiner 12b may be configured to determine a recommended medicine or supplement based on the input biometric data.
- the advice specifying unit 102 specifies the recommended medicine or supplement using the advice discriminator 12b, and the provided information generating unit 103 provides the advice information for introducing the specified medicine or supplement, or the specified medicine.
- advice information (provided information) including information on a company that manufactures or sells a supplement may be generated.
- the advice specifying unit 102 or the provided information generating unit 103 specifies a medical institution and / or a doctor in consideration of a user address or the like when specifying or generating advice information for introducing a medical institution and / or a doctor. Is also good.
- the server device 10 acquires the address or residence of the user by acquiring from the user terminal 20 the position information acquired by, for example, a GPS (Global Positioning System) provided in the user terminal 20.
- the user inputs location information such as the address or residence of the user or an area where the user can visit the hospital via the input unit 25 of the user terminal 20, and the server device 10 transmits such location information to the user terminal 20. 20.
- the advice discriminator 12b is configured so that not only the biometric data but also the local information is input, and the medical institution and / or doctor to be consulted are determined based on the input biometric data and the local information. Is also good. This makes it possible to specify advice information that introduces a medical institution and / or a physician in consideration of the user's address and the like, so that a medical institution to which the user can easily go to hospital can be introduced.
- the advice specifying unit 102 specifies the advice information that introduces a medical institution and / or a doctor in the descending order of the discrimination probability output by the advice discriminator 12b, and, based on the specified advice information, is closest to the address or the like of the user.
- Advice information that introduces a medical institution and / or a doctor may be specified as advice to be provided.
- the advice specifying unit 102 may rearrange the specified pieces of advice information in order of proximity to the user's address and the like.
- the provided information generating unit 103 specifies, from the advice information specified by the advice specifying unit 102, advice information that introduces a medical institution and / or doctor closest to the user's address or the like.
- a process of rearranging the pieces of advice information specified by the advice specifying unit 102 in the order of proximity to the address or the like of the user may be performed.
- the server device 10 may include the advice discriminator 12b for each area.
- the advice specifying unit 102 specifies the advice discriminator 12b corresponding to the user's area based on the position information such as the user's address acquired from the user terminal 20. Then, by inputting the user's biometric data to the specified advice discriminator 12b, the advice specifying unit 102 can specify advice information that introduces a medical institution and / or a doctor according to the user's area. As described above, by specifying or generating the advice information for introducing a medical institution and / or a doctor near the user's address or the like, a medical institution to which the user can easily go to hospital can be introduced, so that more effective advice can be provided. Whether to receive the advice in consideration of the user's area or the advice in which the user's area is not considered can be changed by setting by the user via the input unit 25 of the user terminal 20. .
- the advertisement information for displaying the advertisement 10b in the advice screen as shown in FIG. 7 may be included in the advice information stored in the advice DB 12c, or may be stored in another DB in association with the advice information. It may be.
- the advice specifying unit 102 specifies the advice information based on the biometric data of the user, and the provided information generating unit 103 outputs the advertisement information corresponding to the specified advice information to the advertisement.
- the information is read from the stored DB.
- the provided information generating unit 103 generates provided information for providing the advice information specified by the advice specifying unit 102 and the advertisement information corresponding to the advice information.
- the provided information generation unit 103 reads the advertisement information of the training gym or the sports club from the DB in which the advertisement information is stored. In this case, provided information including advice on exercise and advertisement information of a training gym or a sports club is generated. In addition, when the advice information regarding the medicine or the supplement is specified, the provided information generation unit 103 transmits the advertisement information of the medicine or the supplement, or the advertisement information of the pharmaceutical company or the supplement maker that manufactures or sells the medicine or the supplement, and outputs the advertisement information. Is read from the stored DB. In this case, provision information including advice on a medicine or a supplement and advertisement information on a medicine or a supplement or advertisement information on a pharmaceutical company or a supplement maker is generated.
- the advertisement information may be stored in another DB in association with the advice information and the attribute of the user. In this case, an advertisement that considers not only the advice information based on the biometric data but also the attributes of the user can be provided.
- the output unit 104 transmits the display information generated by the provided information generation unit 103 from the communication unit 13 to the user terminal 20.
- the control unit 21 of the user terminal 20 receives display information from the server device 10 via the communication unit 23, and displays an advice screen as shown in FIG. 7 based on the received display information. Thereby, advice can be provided to the user.
- the advice screen provided to the user terminal 20 is not limited to the example shown in FIG.
- the provided information generation unit 103 may generate display information for displaying the advice specified by the advice specification unit 102, or may generate audio information for outputting the specified advice as audio.
- the audio information generated by the provided information generation unit 103 is transmitted to the user terminal 20 by the output unit 104, and is output as audio by the user terminal 20.
- advice can be provided by voice.
- the device that performs the learning process of the advice discriminator 12b may be the server device 10, but is hereinafter referred to as a learning device.
- the learning device is a device for learning an advice discriminator using teacher data as described later, and the server device 10 acquires an advice discriminator that has been learned by the learning device from the learning device.
- the server device 10 acquires the learned advice discriminator from the learning device, for example, via the network N or using a portable storage medium such as a USB (Universal Serial Bus) memory or a CD-R (compact disc recordable). .
- USB Universal Serial Bus
- CD-R compact disc recordable
- FIG. 8 is a block diagram showing a configuration example of the learning device 30.
- the learning device 30 is an information processing device such as a personal computer or a server computer, and has the same configuration as the server device 10 and the user terminal 20. Therefore, a detailed description of the same configuration will be omitted.
- the learning device 30 includes a control unit 31, a storage unit 32, a display unit 33, an input unit 34, a communication unit 35, and the like, and these units are mutually connected via a bus.
- the storage unit 32 of the learning device 30 stores a learning program 32a for executing the learning process of the advice discriminator 32b, the advice discriminator 32b before learning or before re-learning, and teacher data for learning the advice discriminator 32b.
- the stored teacher data DB 32c and the like are stored. Note that the teacher data DB 32c may be stored in an external storage device connected to the learning device 30, or may be stored in a storage device that can communicate with the learning device 30 via the network N.
- the teacher data DB 32c stores advice information that has obtained an effect on each of the biometric data in association with the biometric data related to the physical state of a plurality of persons.
- a set of one (for one person) biometric data and advice information associated with the biometric data is referred to as teacher data.
- one piece of biometric data includes a plurality of pieces of information on the state of one person's body.
- biological data includes attributes including age and gender, measurement data such as height and blood pressure, information on lifestyle such as calorie intake and sleep time, types and amounts of medicines being taken, various test results, and imaging devices.
- the information includes data on images taken by the user, treatment contents, operation contents, rehabilitation contents, etc., and information on the history of the patient and his / her family.
- the learning device 30 makes the advice discriminator 32b learn based on such teacher data.
- FIG. 9 is a block diagram illustrating functions realized by the control unit 31 of the learning device 30.
- the control unit 31 of the learning device 30 implements the functions of the teacher data acquisition unit 301 and the learning unit 302. Some of these functions may be realized by a dedicated hardware circuit.
- the teacher data acquisition unit 301 sequentially acquires the teacher data stored in the teacher data DB 32c.
- the teacher data includes biometric data and advice information.
- the learning unit 302 makes the advice discriminator 32b learn based on the biometric data and the advice information acquired by the teacher data acquisition unit 301 from the teacher data DB 32c. Specifically, the learning unit 302 inputs the biometric data of the teacher data to each input node of the input layer of the advice discriminator 32b, and outputs the output value of the output node corresponding to the advice information of the teacher data in the output layer.
- the advice discriminator 32b is made to learn such that the output values of the other output nodes approach 1.0 while the output values of the other output nodes approach 0.
- the learning unit 302 optimizes, for example, a weighting coefficient and a function connecting the nodes of each layer of the intermediate layer by a learning algorithm, and makes the advice discriminator 32b learn.
- the learning section 302 learns the advice discriminator 32b using all the teacher data stored in the teacher data DB 32c, thereby generating a learned or re-learned advice discriminator 32b.
- FIG. 10 is a flowchart illustrating a procedure of a learning process performed by the learning device 30.
- the following processing is executed by the control unit 31 according to a control program including a learning program 32a stored in the storage unit 32 of the learning device 30.
- the control unit 31 of the learning device 30 acquires one teacher data from the teacher data DB 32c (S11).
- the teacher data includes biometric data and advice information.
- the control unit 31 causes the advice discriminator 32b to learn using the biometric data and the advice information included in the teacher data (S12).
- the control unit 31 inputs each data included in the biometric data to each of the input nodes in the input layer of the advice discriminator 32b, and outputs, in the output layer, the output value of the output node corresponding to the advice information of the teacher data. Approaches 1.0 and the output values of the other output nodes approach 0.
- the control unit 31 determines whether the processing based on all the teacher data stored in the teacher data DB 32c has been completed (S13). If it is determined that the processing based on all the teacher data has not been completed (S13: NO), the control unit 31 returns to the processing of step S11 and acquires one unprocessed teacher data from the teacher data DB 32c (S11). ). The control unit 31 repeats the learning of the advice discriminator 32b based on the sequentially acquired teacher data (S12). When it is determined that the processing based on all the teacher data has been completed (S13: YES), the control unit 31 ends the learning processing of the advice discriminator 32b. Thereby, the advice discriminator 32b can be learned, and the learned advice discriminator 32b is obtained. The already learned advice discriminator 32b can be re-learned by the above-described processing, and the advice discriminator 32b with higher discrimination accuracy can be obtained.
- the advice discriminator 12b receives the local information in addition to the biometric data, and, based on the input biometric data and the local information, advises a medical institution and / or a doctor to be consulted. Is configured to discriminate the information, the advice discriminator 12b is learned using teacher data including biometric data, regional information (position information), and advice information. Specifically, each data and position information included in the biometric data are input to each of the input nodes in the input layer of the advice discriminator 32b, and the output value of the output node corresponding to the advice information of the teacher data is output in the output layer. Approaches 1.0 and the output values of the other output nodes approach 0. Thus, the advice discriminator 12b that can specify the advice information in consideration of not only the biometric data but also the regional information is obtained.
- FIG. 11 is a flowchart illustrating the procedure of the advice providing process in the information providing system. 11, the process performed by the control unit 21 of the user terminal 20 is shown on the left side, and the process performed by the control unit 11 of the server device 10 is shown on the right side.
- the storage unit 12 of the server device 10 stores an advice discriminator 12b that has been learned by the learning device 30.
- the user when the user wants to receive the advice provided by the server device 10, the user instructs the user terminal 20 to start the advice requesting application 22a.
- the control unit 21 of the user terminal 20 activates the advice request application 22a stored in the storage unit 22, and displays an input screen as shown in FIG. 6 on the display unit 24 (S21).
- the input screen is a screen for accepting input of various data relating to the physical condition of the user, and the control unit 21 accepts biometric data including various data via the input screen (S22).
- the control unit 21 transmits the received biometric data to the server device 10 via the input screen (S23).
- the destination information of the server device 10 is incorporated in, for example, the advice requesting application 22a.
- the control unit 21 of the user terminal 20 When transmitting the acquired biometric data to the server device 10, the control unit 21 of the user terminal 20 temporarily displays the obtained biometric data on the display unit 24 and transmits the acquired biometric data to the server device 10 after receiving a transmission instruction from a user who has confirmed the biometric data. May be.
- the control unit 11 of the server device 10 acquires the biometric data transmitted by the user terminal 20 via the communication unit 13 (S24).
- the control unit 11 specifies, using the advice discriminator 12b, an advice suitable for the user's body condition indicated by the biometric data, based on the obtained biometric data (S25).
- the advice determiner 12b outputs a determination probability for each of the n pieces of advice information.
- the control unit 11 generates provision information for providing the user with the advice based on the identification result (determination result) by the advice discriminator 12b (S26).
- the control unit 11 specifies a predetermined number of pieces of advice information in descending order of the probability of discrimination based on the discrimination probabilities corresponding to the pieces of advice information output by the advice discriminator 12b, and reads out the specified advice information from the advice DB 12c. Then, as shown in FIG. 7, the control unit 11 generates display information for displaying the read advice information in the descending order of the determination probability. Note that the control unit 11 may generate display information for displaying only the advice information having the maximum determination probability output by the advice determiner 12b. Further, the control unit 11 reads out the advertisement information stored in the DB corresponding to the specified advice information (advice ID), and generates display information including the read advertisement information and the specified advice information. Good.
- the control unit 11 transmits the generated provision information to the user terminal 20 (S27).
- the control unit 21 of the user terminal 20 receives the provided information transmitted by the server device 10 via the communication unit 23 (S28), and outputs the received provided information (S29).
- the control unit 21 displays a screen based on the provided information on the display unit 24. Thereby, for example, an advice screen as shown in FIG. 7 is displayed on the display unit 24, and the advice specified by the server device 10 is notified to the user.
- the control unit 21 outputs a voice based on the provided information from a voice output unit (not shown).
- advice suitable for the biometric data of the user can be provided using AI (Artificial Intelligence).
- AI Artificial Intelligence
- the server device 10 can specify the optimal advice that is determined by the advice discriminator 12b based on a plurality of pieces of biometric data input by the user.
- the user can obtain advice suitable for his / her physical condition, manage his / her health with reference to the provided advice, and try to improve lifestyle such as diet and exercise. it can.
- advice is provided to recommend a medical institution or health checkup
- the user can consider consulting a medical institution or health checkup, and early consultation increases the likelihood of finding a disease or injury early. .
- a user who is not thinking of consulting a medical institution or a user who feels troublesome to consult a medical institution can judge whether consultation of a medical institution is necessary based on advice provided from the server device 10. .
- a user who does not know the medical institution or department to be consulted receives medical institution or department in accordance with the advice provided from the server device 10, so that the user can be moved between medical institutions or receive a medical examination.
- Institutions can be prevented from circling between medical departments.
- a user who needs to consult a medical institution is advised to recommend a medical institution, and a user who does not need to consult a medical institution is advised other than consulting a medical institution.
- the server device 10 By including, in the advice information registered in the advice DB 12c, advice information on diet by a dietitian or a dietitian, advice information on exercise by a sports trainer, advice information on diagnosis of a disease or injury by a doctor, and the like, It is possible to provide more effective advice. Since the server device 10 specifies advice to be provided by using a large number of biometric data in one user, the server device 10 can effectively use a large number of biometric data, and can make a comprehensive judgment based on a large number of biometric data. Become.
- the biometric data includes attributes such as the age and gender of the user, but only information other than the attributes may be used for the biometric data. That is, the server device 10 may be configured to specify and provide the advice information for the biometric data based on the biometric data of the user that does not include the attribute.
- the user terminal 20 of the present embodiment When the user terminal 20 of the present embodiment is displaying an advice screen as shown in FIG. 7 based on the display information acquired from the server device 10, the user terminal 20 receives a selection for the link 10a or the advertisement 10b in the advice screen. It is configured.
- the control unit 21 of the user terminal 20 receives the selection of the link 10a or the advertisement 10b in the advice screen via the input unit 25, the control unit 21 notifies the server device 10 of the selected link 10a or the advertisement 10b.
- the control unit (accepting unit) 11 of the server device 10 accepts a selection for the link 10a or the advertisement 10b included in the provided information (advice screen) transmitted to the user terminal 20.
- the control unit 11 When receiving the selection of the link 10a or the advertisement 10b, the control unit 11 further transmits information corresponding to the selected link 10a or the advertisement 10b and related information related to the link 10a or the advertisement 10b to the user terminal 20.
- the server device 10 transmits a website corresponding to the selected link 10a to the user terminal 20.
- the link 10a is a link to an external server different from the server device 10
- the user terminal 20 may directly access the external server based on the link 10a and acquire a website corresponding to the link 10a.
- the advertisement 10b in the advice screen is selected, the server device 10 transmits information related to the selected advertisement 10b to the user terminal 20.
- the information related to the advertisement 10b includes, for example, a website that describes in detail the product or the like promoted by the advertisement 10b, a purchase site for the product or the like promoted by the advertisement 10b, and the like.
- the user terminal 20 can not only receive the provision of the advice from the server device 10 but also perform an action according to the provided advice. For example, a product recommended by the advice can be purchased.
- the server device 10 of the present embodiment stores a user information database (hereinafter, referred to as a user information DB) in which user information of a user who has registered as a user to use the information providing system is stored in the storage unit 12. .
- a user information database hereinafter, referred to as a user information DB
- FIG. 12 is a schematic diagram showing a configuration example of the user information DB.
- the user information DB the user ID of the registered user, a password for user authentication, personal information such as the user's name, address, telephone number, and mail address, biometric data on the user's physical condition.
- the advice history provided by the server device 10 is stored in association with the advice history.
- the user ID is identification information assigned to each user in advance, and the password and personal information are information specified by the user at the time of user registration.
- the biometric data is biometric data acquired from the user terminal 20 by the server device 10 after the user registration.
- the biometric data stored in the user information DB is the latest data, and the server device 10 updates the biometric data stored in the user information DB to the received biometric data each time the biometric data is received from the user terminal 20. I do.
- the advice history includes, for the advice information provided by the server device 10 to the user terminal 20, the provided date and time and the advice ID. Instead of storing the history of the provided advice information, only the date and time and the advice ID of the most recently provided advice information may be stored.
- the user information DB may be stored in an external storage device or the like connected to the server device 10, or may be stored in another storage device connected to the server device 10 via the network N.
- FIG. 13 is a flowchart illustrating a part of the procedure of the advice providing process in the information providing system.
- the processing shown in FIG. 13 is obtained by adding the processing of steps S41 to S52 to the processing of the first embodiment shown in FIG. 11 before the processing of step S21. 13, illustration of steps S23 to S29 in FIG. 11 is omitted.
- the control unit 21 of the user terminal 20 displays a login screen for using the information providing system by the server device 10. It is displayed on the display unit 24 (S41).
- the login screen has input fields for a user ID and a password, and the user inputs the user ID and the password to the login screen via the input unit 25.
- the control unit 21 receives the user ID and the password via the input unit 25, and transmits the received user ID and password to the server device 10 (S42). As a result, the user terminal 20 requests permission to use the information providing system by the server device 10.
- the control unit 11 of the server device 10 receives the user ID and the password transmitted from the user terminal 20, and performs authentication based on the received user ID and password (S43).
- the control unit 11 determines whether or not the received user ID and password are stored in the user information DB. If the user ID and password are stored, the control unit 11 determines that the user ID and the password have been authenticated and permits the use of the information providing system. If not, the user is not authenticated and the use of the information providing system is not permitted.
- the control unit 11 determines whether or not the authentication has been successful (S44), and if it is determined that the authentication is not possible (S44: NO), transmits error information indicating that the information providing system cannot be used to the user terminal 20 (S45). ).
- the control unit 21 of the user terminal 20 receives the error information transmitted by the server device 10, and displays the received error information on the display unit 24 (S46). As a result, use by a user who is not permitted to use the information providing system can be avoided.
- the control unit 11 If it is determined that the authentication has been successful (S44: YES), the control unit 11 generates an evaluation screen for accepting the evaluation of the advice information provided to the user terminal 20 (user) last time and transmits the evaluation screen to the user terminal 20 (S47). ). Specifically, the control unit 11 reads out the advice ID corresponding to the latest date and time from the advice history stored in the user information DB in association with the user ID of the authenticated user. Then, the control unit 11 reads the advice information corresponding to the read advice ID from the advice DB 12c, displays the read advice information, and generates an evaluation screen for receiving an evaluation as to whether the displayed advice information is useful information. I do.
- FIG. 14 is a schematic diagram showing an example of the evaluation screen. The evaluation screen shown in FIG. 14 displays the advice information provided by the server device 10 to the user terminal 20, and is provided with a radio button for selecting one piece of advice information that has been referred to among the displayed pieces of advice information.
- the control unit 21 of the user terminal 20 receives the evaluation screen transmitted by the server device 10 and displays an evaluation screen as shown in FIG. 14 on the display unit 24 (S48).
- the user of the user terminal 20 uses the radio buttons to select, from among the pieces of advice information displayed on the evaluation screen, pieces of advice information that are helpful, useful, and effective.
- the control unit 21 receives an evaluation of the advice information provided last time via the evaluation screen, and transmits the received evaluation to the server device 10 (S49). Specifically, the control unit 21 receives a selection of advice information considered to be helpful to the user by a radio button provided on the evaluation screen, and displays an evaluation indicating that the selected advice information is valid information.
- the information is transmitted to the server device 10. Thereby, the advice information that is optimal for the user is selected from the plurality of pieces of advice information provided from the server device 10 last time, and is notified to the server device 10.
- the control unit (evaluation acquisition unit) 11 of the server device 10 acquires the evaluation information transmitted by the user terminal 20, and re-learns the advice discriminator 12b based on the acquired evaluation information (S50). Specifically, the control unit (re-learning unit) 11 reads the biometric data of the user from the user information DB, and indicates that the biometric data is valid information based on the read biometric data and the evaluation information received from the user terminal 20. The advice discriminator 12b is re-learned based on the obtained advice information. The control unit 11 inputs each data included in the read biometric data to each of the input nodes in the input layer of the advice discriminator 12b, and outputs the data corresponding to the advice information determined to be valid in the output layer. The advice discriminator 12b is trained so that the output value of the node approaches 1.0 and the output values of the other output nodes approach 0.
- the server device 10 accumulates the evaluation information sequentially transmitted from the plurality of user terminals 20 together with the biometric data, and re-starts the advice discriminator 12b at a predetermined timing based on the accumulated biometric data and the evaluation information.
- a configuration for performing learning may be used.
- the stored biometric data and evaluation information may be transmitted to the learning device 30 and the learning device 30 may re-learn the advice discriminator.
- the control unit 11 of the server device 10 reads the biometric data of the user from the user information DB and transmits the biometric data to the user terminal 20 (S51). That is, the biometric data transmitted from the user terminal 20 to the server device 10 in the previous advice providing process is transmitted to the user terminal 20.
- the control unit 21 of the user terminal 20 receives the previous biometric data transmitted by the server device 10 (S52), and receives input of various data relating to the physical condition of the user as in step S21 in FIG.
- the screen is displayed on the display unit 24 (S21).
- the control unit 21 displays each information included in the biometric data received from the server device 10 on the display unit 24 in a state where the information is displayed in a corresponding input column on the input screen.
- control part 21 performs the process after step S22 in FIG.
- the input of the previously input biometric data can be omitted, and the burden of the input operation of the user can be reduced.
- the input screen is configured so that information that has been input can be updated via the input unit 25, and data that has been changed from the previous time can be changed via the input unit 25. Therefore, in step S22, the control unit 21 receives the biometric data including the newly input data and the updated data via the input screen.
- the server device 10 may specify the advice information to be provided to the user in consideration of not only the biometric data acquired from the user terminal 20 but also the advice information provided in the past. Further, in the present embodiment, when the user terminal 20 requests the server device 10 to provide advice, it is possible to receive the user's evaluation on the advice information provided by the server device 10 last time. Therefore, the advice discriminator 12b can be re-learned based on the evaluation of whether the advice information specified using the advice discriminator 12b is valid. By using such an advice discriminator 12b, more appropriate advice information can be specified.
- the evaluation of the biometric data and the advice information can be provided to a medical institution, a pharmaceutical company, a supplement maker, a medical device maker, and the like.
- the advice information provided to the user includes information on over-the-counter medicines
- the advice information, the biometric data of the user, and the evaluation of the advice information are provided to a pharmaceutical company that manufactures or sells the over-the-counter medicine. (Feedback).
- the information can be used to improve treatment contents, medication contents, supplement intake contents, and medical devices.
- the personal information of the user stored in the user information DB may include, for example, information of a medical institution and / or a doctor.
- the server device 10 provides the user (the user terminal 20) with the advice information and notifies the user of the medical institution and / or the doctor.
- the user may be notified that there is a high possibility that a medical institution is required to be consulted.
- notification may be made to the medical institution and / or doctor.
- the medical institution and / or the doctor can contact the user, inquire about the state of the user, and recommend the user to consult the medical institution. Therefore, even if the user is reluctant to consult a medical institution, the possibility of consulting a medical institution increases.
- the advice information is provided from the server device 10 to the user terminal 20 to the user who has not been registered as a user in the same process as in the first embodiment.
- advice information to be provided may be different between a user who has registered as a user and a user who has not registered as a user. For example, only one piece of advice information specified by the advice discriminator 12b is provided to a user who is not registered, and a plurality of pieces of advice information specified by the advice discriminator 12b are provided to a user who is registered. May be provided.
- the user who has registered as a user may be provided with advertisement information related to the advice information added to the advice information.
- the exercise-related advice is provided only to the user who has registered the user, for example, the user who has registered the provision target, the user who has not registered the user, or both users, according to the content of the advice. It may be different.
- Each device of the information providing system of the present embodiment has the same configuration as each device of the first embodiment.
- the server device 10 according to the first and second embodiments specifies the advice information corresponding to the biometric data acquired from the user terminal 20 using one advice discriminator 12b. That is, the server devices 10 of the first and second embodiments input all the biometric data acquired from the user terminal 20 to one advice discriminator 12b, and specify the advice information corresponding to a plurality of pieces of information included in the biometric data.
- the server devices 10 of the first and second embodiments input all the biometric data acquired from the user terminal 20 to one advice discriminator 12b, and specify the advice information corresponding to a plurality of pieces of information included in the biometric data.
- the server device 10 of the present embodiment extracts the attributes (age and gender) of the user from the biometric data acquired from the user terminal 20, and uses the advice discriminator 12b corresponding to the extracted attributes to extract the attributes included in the biometric data. Specify advice information corresponding to information other than. That is, the server device 10 of the present embodiment inputs information other than the attribute to the advice discriminator 12b corresponding to the attribute of the user, and specifies the advice information corresponding to the information other than the attribute. Therefore, the storage unit 12 of the server device 10 of the present embodiment stores a plurality of advice discriminators 12b according to the attributes (age and gender) of the user.
- the advice providing process in the information providing system of the present embodiment is the same as the process shown in FIG. Note that, in the information providing system of the present embodiment, in step S25 in FIG. Using the advice discriminator 12b, advice information corresponding to information other than the attributes included in the biometric data is specified. Other processes are the same as the processes described in the first embodiment.
- the same effects as those of the first and second embodiments can be obtained. Further, in the present embodiment, since a different advice discriminator 12b is used for each attribute of the user, the advice discriminator 12b can be learned for each attribute. Therefore, the advice discriminator 12b corresponding to each attribute can be generated, and the advice discriminator 12b suitable for the attribute can be used.
- Embodiment 4 An information providing system that specifies advice using a plurality of advice discriminators 12b according to information included in the biometric data of the user or the type of information will be described.
- Each device of the information providing system according to the present embodiment has the same configuration as each device according to the first embodiment, and a detailed description of the same configuration will be omitted.
- the server device 10 of the present embodiment specifies the advice information by using a plurality of pieces of advice discriminators 12b corresponding to the information or the type of information included in the biometric data acquired from the user terminal 20. Therefore, in the storage unit 12 of the server device 10 of the present embodiment, a plurality of advice discriminators 12b (the first advice discriminator 12ba and the second advice discriminator 12ba in FIG.
- the advice discriminator 12bb is stored.
- the storage unit 12 stores a plurality of advice DBs 12c (in FIG. 15, a first advice DB 12ca and a second advice DB 12cb) in which pieces of advice information that can be determined by the respective advice determiners 12b are registered.
- FIG. 15 is a block diagram illustrating functions realized by the control unit 11 of the server device 10 according to the fourth embodiment.
- the control unit 11 of the server device 10 When executing the advice providing program 12 a stored in the storage unit 12, the control unit 11 of the server device 10 according to the present embodiment, the biometric data obtaining unit 101, the advice specifying unit 102, the provided information generating unit 103, the output unit 104 Implement each function. Some of these functions may be realized by a dedicated hardware circuit.
- the biometric data acquisition unit 101 and the output unit 104 perform the same processing as each function of the first embodiment illustrated in FIG.
- the advice specifying unit 102 of the present embodiment includes a first advice specifying unit 102a and a second advice specifying unit 102b.
- the advice specifying unit 102 according to the present embodiment classifies information included in the biometric data acquired by the biometric data acquiring unit 101 into image data (captured image) captured by an imaging device such as an X-ray, and other information.
- the advice information is specified using a different advice discriminator 12b for each piece of information.
- the first advice discriminator 12ba is the advice discriminator 12b according to the first embodiment illustrated in FIG. 3, and the first advice specifying unit 102a is different from the captured image included in the biometric data acquired by the biometric data acquisition unit 101.
- the advice information corresponding to this information is specified by the first advice discriminator 12ba based on the above information.
- the second advice discriminator 12bb is, for example, a convolutional neural network model (CNN) constructed by a deep learning process. It is specified (determined) which of the pieces of advice information is.
- the second advice discriminator 12bb includes an input layer, an intermediate layer, and an output layer, and the intermediate layer includes a convolution layer, a pooling layer, and a fully connected layer.
- an image feature amount is extracted by a filtering process or the like in the convolutional layer, a feature map is generated, and the feature map is compressed by the pooling layer to reduce the information amount.
- the convolutional layer and the pooling layer are repeatedly provided in a plurality of layers, and the feature map generated by the plurality of convolutional layers and the pooling layer is input to the fully connected layer.
- a plurality of fully connected layers are provided, and based on the input feature map, the output values of the nodes of each layer are calculated using weighting coefficients and functions between the layers, and the calculated output values are sequentially calculated for the subsequent layers. Fill in the node.
- the fully connected layer finally supplies each output value to each output node of the output layer by sequentially inputting the output value of the node of each layer to the node of the subsequent layer.
- An output value from each output node of the output layer indicates a determination probability for each of a plurality of types of advice.
- the second advice specifying unit 102b specifies the advice information corresponding to the captured image by the second advice discriminator 12bb based on the captured image included in the biological data acquired by the biological data acquiring unit 101.
- the advice specifying unit 102 should provide, for example, the advice information output from the first advice discriminator 12ba with the largest discrimination probability and the advice information output from the second advice discriminator 12bb with the largest discrimination probability. Identify the advice.
- the provision information generation unit 103 of the present embodiment provides the user with the advice information specified by using the first advice discriminator 12ba and the advice information specified by using the second advice discriminator 12bb. Generate information. For example, the provided information generation unit 103 generates display information for displaying the specified advice information.
- the provided information generation unit 103 converts the advice information specified by using the first advice discriminator 12ba and the advice information specified by using the second advice discriminator 12bb into the first advice discriminator 12ba and the first advice discriminator 12ba. Provided information that is provided in the descending order of the probability of discrimination output from the two advice discriminator 12bb may be generated.
- the control unit 11 of the server device 10 converts the information included in the biometric data acquired from the user terminal 20 into a captured image (image data) Classify into other information. Then, the control unit 11 specifies the advice information corresponding to information other than the captured image using the first advice discriminator 12ba, and specifies the advice information corresponding to the captured image using the second advice discriminator 12bb. Therefore, the control unit 11 specifies the advice information to be provided to the user based on the advice information specified using the first advice discriminator 12ba and the advice information specified using the second advice discriminator 12bb. .
- Other processes are the same as the processes described in the first embodiment.
- the same effects as those of the first to third embodiments can be obtained.
- the advice discriminators 12ba and 12bb since different advice discriminators 12ba and 12bb are used according to information included in the biometric data of the user, the advice discriminators 12ba and 12bb can be learned for each type of information. Therefore, it is possible to generate the advice discriminators 12ba and 12bb corresponding to each information, and to use the advice discriminators 12ba and 12bb suitable for each information.
- the advice specifying unit 102 is not limited to the configuration in which the advice information is specified using the two advice discriminators 12ba and 12bb, but may be a configuration in which three or more advice discriminators are used.
- the second advice discriminator 12bb is not limited to the convolutional neural network model, and can use a learning model constructed by another machine learning algorithm. The configuration of this embodiment can be applied to the second and third embodiments, and the same effects can be obtained even when applied to the second and third embodiments.
- the teacher data used for the learning process of the advice discriminators 32b and 12b may be teacher data including human biometric data and advice information appropriate for each biometric data.
- the learning device 30 or the server device 10 stores such teacher data in, for example, a server device (medical institution terminal) managed by a medical institution, a server device managed by a pharmaceutical company or a pharmaceutical manufacturer, a server device managed by the Ministry of Health, Labor and Welfare, etc. May be obtained from. Therefore, for example, the control unit 31 of the learning device 30 may acquire teacher data from a server device such as a medical institution and perform the learning process of the advice discriminator 32b based on the acquired teacher data.
- control unit 11 of the server device 10 may acquire teacher data from a server device such as a medical institution, and perform learning processing of the advice discriminator 12b based on the acquired teacher data.
- teacher data can be generated by acquiring various data from a database of academic papers, research papers, and the like.
- FIG. 16 is a schematic diagram illustrating a configuration example of the information providing system according to the fifth embodiment.
- the information providing system of the present embodiment includes a medical institution server 40 managed by a medical institution, in addition to the server device 10 and the user terminal 20, and the medical institution server 40 can be connected to the network N. Since the server device 10 and the user terminal 20 have the same configuration as each device of the first embodiment, detailed description of the same configuration will be omitted.
- the medical institution server 40 may be provided for each medical institution, and a plurality of medical institution servers 40 in each medical institution may be provided, or a plurality of virtual machines provided in one device. And may be realized using a cloud server.
- FIG. 17 is a block diagram illustrating a configuration example of the server device 10 according to the fifth embodiment.
- the storage unit 12 of the server device 10 of the present embodiment stores a medical institution discriminating model 12d, a medical institution DB 12e, a treatment discriminating model 12f, and a treatment DB 12g instead of the advice discriminator 12b and the advice DB 12c.
- the medical institution discrimination model 12d and the treatment discrimination model 12f have the same configuration as the advice discriminator 12b as shown in FIG. 3, and are, for example, deep learning (deep learning) models trained using a deep learning algorithm. is there.
- the medical institution discriminating model (first learning model) 12d specifies a medical institution to propose a consultation to the user based on the input data when data related to the physical condition of the user is input. This is a learned model that has been learned.
- Each output node of the medical institution discrimination model 12d outputs the discrimination probability for each medical institution stored in the medical institution DB 12e.
- the medical institution determined by the medical institution determination model 12d may include a medical helicopter (doctor helicopter).
- the medical institution discrimination model 12d includes, for example, teacher data (first data) in which a set of biometric data related to the state of a human body and information (correct answer label) of a medical institution that is appropriate for each biometric data is set. Learning using teacher data). Note that one piece of biometric data includes various types of information regarding the state of one person's body.
- the medical institution determination model 12d approaches the output value from the output node corresponding to the medical institution indicated by the correct answer label included in the teacher data to 1.0, and the other values. Learning is performed so that the output value from the output node approaches 0.
- the medical institution discrimination model 12d optimizes, for example, data such as weighting coefficients and functions for connecting nodes of each layer of the intermediate layer by a learning algorithm. As a result, a medical institution discrimination model 12d that has been learned to output optimal medical institution information to the user based on the user's biometric data is obtained.
- the learning (re-learning) process of the medical institution determination model 12d may be performed by the server device 10, the learning device 30 described in the first embodiment, or another device.
- the treatment discrimination model (second learning model) 12f learns, when data relating to the physical condition of the user is input, based on the input data, to specify a treatment considered necessary for the user. This is a learned model. Each output node of the treatment discrimination model 12f outputs the discrimination probability for each treatment stored in the treatment DB 12g.
- the treatment determination model 12f is sent to the medical institution server 40 and used in the medical institution as described later. Therefore, the treatment specified by the treatment discrimination model 12f is proposed as a necessary treatment for the user, for example, to the attending physician of the user.
- the treatment discrimination model 12f includes, for example, teacher data (second teacher data) in which a set of biometric data related to the state of the human body and information (correct label) of treatment appropriate for each biometric data is set. ) To learn. Note that one piece of biometric data includes various types of information regarding the state of one person's body.
- the treatment discrimination model 12f approaches the output value from the output node corresponding to the treatment indicated by the correct answer label included in the teacher data to 1.0, and the other output nodes Is learned so that the output value from becomes closer to 0.
- the treatment determination model 12f optimizes, for example, data such as a weighting coefficient and a function for connecting nodes of each layer of the intermediate layer by a learning algorithm.
- a treatment discrimination model 12f that is learned to output information on a treatment optimal for the user based on the user's biological data is obtained.
- the learning (re-learning) process of the treatment determination model 12f may be performed by the server device 10, may be performed by the learning device 30 described in the first embodiment, or may be performed by another device.
- FIG. 18A is a schematic diagram showing a configuration example of the medical institution DB 12e
- FIG. 18B is a schematic diagram showing a configuration example of the treatment DB 12g.
- the medical institution DB 12e information on the same number of medical institutions as the number of output nodes of the medical institution identification model 12d is registered in association with the medical institution ID, which is identification information assigned to the information on each medical institution.
- the information on the medical institution is information on the medical institution specified by the medical institution discrimination model 12d based on the input data, and includes a medical institution name, a medical department name, a doctor name, and the like.
- the treatment information is treatment information specified by the treatment discrimination model 12f based on the input data, and includes a diagnosis result based on the biological data, examination contents to be performed, medication contents, operation contents, and examination contents to be performed at another medical institution. And information on various treatments such as the contents of surgery to be performed in another medical institution, the contents of genome analysis, and the contents of treatment using iPS cells.
- FIG. 19 is a block diagram illustrating functions realized by the control unit 11 of the server device 10 according to the fifth embodiment.
- the control unit 11 of the server device 10 of the present embodiment realizes the functions of the biometric data acquisition unit 101, the medical institution identification unit 105, the provided information generation unit 103, and the output unit 104. That is, the server device 10 of the present embodiment realizes the function of the medical institution specifying unit 105 instead of the advice specifying unit 102 in each function realized by the server device 10 of the first embodiment illustrated in FIG. Note that the biometric data acquisition unit 101 and the output unit 104 perform the same processing as in the first embodiment.
- the medical institution identification unit (first identification unit) 105 Based on the biometric data acquired by the biometric data acquisition unit 101, the medical institution identification unit (first identification unit) 105 identifies a medical institution appropriate for the state of the user's body indicated by the biometric data. It is specified (determined) using 12d. Specifically, the medical institution identification unit 105 inputs each of the biometric data acquired by the biometric data acquisition unit 101 to each input node of the input layer of the medical institution identification model 12d, and outputs the input layer of the medical institution identification model 12d. Get the output value from each output node. The output value from each output node of the medical institution determination model 12d is the determination probability for each of the medical institution information registered in the medical institution DB 12e.
- the medical institution specifying unit 105 specifies information on the medical institution to be provided to the user based on the determination result (determination probability) by the medical institution determination model 12d.
- the medical institution specifying unit 105 specifies, for example, the medical institution having the highest determination probability output from the medical institution determination model 12d as the output target medical institution to be provided.
- the medical institution identification unit 105 acquires the medical institution ID corresponding to the output node having the highest determination probability (output value).
- the provided information generating unit 103 generates provided information for providing the user with the information on the medical institution identified by the medical institution identifying unit 105 through the user terminal 20. Specifically, the provided information generation unit 103 reads information of the medical institution corresponding to the medical institution ID specified by the medical institution identification unit 105 from the medical institution DB 12e, and display information for displaying the read information of the medical institution. Generate FIG. 20 is a schematic diagram illustrating an example of a screen. The advice screen shown in FIG. 20 displays information on the medical institution specified by the medical institution specifying unit 105.
- the advice screen displays the name of a recommended medical institution, the name of a medical department, the name of a doctor in charge, and the like, and may provide, for example, a link to the displayed homepage of the medical institution.
- the advice screen may display a map of the area around the recommended medical institution, an outpatient medical table of the doctor in charge, or the like.
- the medical institution identification unit 105 may obtain medical institution IDs corresponding to a plurality of output nodes in descending order of the output value from the medical institution determination model 12d.
- the provided information generation unit 103 Display information for displaying information of a medical institution may be generated.
- the output unit 104 transmits the display information generated by the provided information generation unit 103 from the communication unit 13 to the user terminal 20, and the user terminal 20 displays a screen as shown in FIG. 20 based on the received display information. Thereby, the medical institution to be consulted can be proposed to the user according to the physical condition of the user.
- the medical institution determination model 12d is configured such that not only the biometric data but also the regional information is input, and based on the input biometric data and the regional information, information indicating the medical institution to be examined is output. You may. In this case, it is possible to specify a medical institution in consideration of not only the symptoms based on the user's biometric data but also the address of the user and the like, so that a medical institution to which the user can easily go to hospital can be introduced.
- a medical institution identification model 12d may be provided for each region or each region.
- the medical institution identifying unit 105 identifies the medical institution identification model 12d corresponding to the user's regional information acquired from the user terminal 20, for example, and inputs the user's biometric data to the identified medical institution identification model 12d.
- the medical institution corresponding to the user's area can be specified.
- the medical institution identified by the medical institution identification model 12d is configured to include a medical helicopter
- the medical helicopter is provided as a medical institution to be provided to the user according to the user's symptoms and the area where the user lives. It can be specified and provided to the user. This makes it possible to propose a medical examination by a medical helicopter even when the user's symptoms require urgency or when there is no medical institution near the user.
- the server device 10 may be configured to make a request to dispatch a medical helicopter according to a request from a user.
- the server device 10 provides the treatment discrimination model 12f and the treatment DB 12g to the medical institution server 40 as needed.
- the providing method may be, for example, via the network N, or may be a method using a portable storage medium such as a USB memory or a CD-R.
- the server device 10 may provide the treatment discrimination model 12f and the treatment DB 12g to the medical institution server 40 of the medical institution (first medical institution) that has proposed the consultation to the user by specifying the medical institution specifying unit 105, for example.
- a treatment determination model 12f and the treatment DB 12g may be provided to the medical institution server 40 of the second medical institution.
- the treatment determination model 12f and the treatment DB 12g may be provided from the server device 10 to the medical institution server 40 of the second medical institution, or may be provided from the medical institution server 40 of the first medical institution to the medical institution of the second medical institution. It may be provided to the server 40.
- the control unit 11 of the server device 10 functions as a model output unit that outputs the treatment determination model 12f to the medical institution server 40 of the second medical institution.
- the treatment determination model 12f is provided for a fee
- the period during which the medical institution server 40 can use the treatment determination model 42b may be limited, and after the use period has elapsed, the treatment determination model 42b is stored in the storage unit 42. 42b and the treatment DB 42c may be automatically deleted. Further, the number of times the medical institution server 40 of the second medical institution can use the treatment determination model 42b may be limited.
- FIG. 21 is a block diagram showing a configuration example of the medical institution server 40.
- the medical institution server 40 has the same configuration as the server device 10, and further includes a display unit 44 and an input unit 45. The detailed description of the same configuration is omitted.
- the storage unit 42 of the medical institution server 40 stores an advice providing program 42a, a treatment determination model 42b, and a treatment DB 42c.
- the advice providing program 42a, the treatment determining model 42b, and the treatment DB 42c are the same as the advice providing program 12a, the treatment determining model 12f, and the treatment DB 12g stored in the storage unit 12 of the server device 10.
- the advice providing program 42a stored in the medical institution server 40 may be a program for executing a process of providing a treatment specified using the treatment determination model 42b.
- the display unit 44 is, for example, a liquid crystal display, an organic EL display, or the like, and displays various types of information according to an instruction from the control unit 41.
- the input unit 45 receives an operation input by the user and sends a control signal corresponding to the operation content to the control unit 41.
- the display unit 44 and the input unit 45 may be an integrated touch panel.
- FIG. 22 is a block diagram showing functions realized by the control unit 41 of the medical institution server 40.
- the control unit 41 of the medical institution server 40 realizes the functions of the biometric data acquiring unit 401, the treatment specifying unit 402, the provided information generating unit 403, and the output unit 404.
- the biometric data acquisition unit 401 displays an input screen for inputting biometric data relating to the state of the body of the user (patient) on the display unit 44 as shown in FIG. To acquire the user's biometric data input by the user.
- the biometric data acquisition unit 401 may acquire various types of biometric data from an electronic medical record used in a medical institution.
- the treatment identification unit (second identification unit) 402 Based on the biometric data acquired by the biometric data acquisition unit 401, the treatment identification unit (second identification unit) 402 performs an appropriate treatment for the physical condition of the user (patient) indicated by the biometric data, It is specified (determined) by using 42b. Specifically, the treatment specifying unit 402 inputs each of the biometric data acquired by the biometric data acquiring unit 401 to each of the input nodes of the input layer of the treatment discriminating model 42b, and outputs the data from each of the output nodes of the treatment discriminating model 42b. Get output value. The output value from each output node of the treatment discrimination model 42b is a discrimination probability for each of the treatment information registered in the treatment DB 42c.
- the treatment specifying unit 402 specifies information of a treatment to be provided to a user (here, a doctor or the like) based on a determination result (discrimination probability) by the treatment determination model 42b.
- the treatment specifying unit 402 specifies, for example, the treatment with the largest discrimination probability output by the treatment discrimination model 42b as the treatment to be provided as the output target. Note that the treatment specifying unit 402 acquires the treatment ID corresponding to the output node having the largest determination probability (output value).
- the provided information generating unit 403 generates provided information for displaying and providing information on the treatment specified by the treatment specifying unit 402 on the display unit 44. Specifically, the provided information generation unit 403 reads out the information of the treatment corresponding to the treatment ID specified by the treatment specifying unit 402 from the treatment DB 42c, and generates display information for displaying the read information of the treatment.
- the output unit 404 displays a screen as shown in FIG. 23 on the display unit 44 based on the display information generated by the provided information generation unit 403.
- FIG. 23 is a schematic diagram illustrating an example of a screen. The advice screen shown in FIG.
- the advice screen has an input field for inputting a treatment content that is considered appropriate when a doctor or the like judges that it is not appropriate, and a transmission button for transmitting the input information to, for example, the server device 10. .
- a treatment to be performed according to the physical condition of the user (patient) can be proposed to a doctor or the like using the medical institution server 40.
- the treatment specifying unit 402 may acquire the treatment IDs corresponding to the plurality of output nodes in descending order of the output value from the treatment discrimination model 42b.
- the provided information generation unit 403 May be generated.
- the advice screen based on the display information may have a selection button for selecting an optimal treatment from the displayed treatments.
- the medical institution server 40 determines the biometric data of the patient acquired by the biometric data acquisition unit 401 and the treatment identification unit 402 Collectively transmits the information of the specified treatment and the information indicating that this treatment is appropriate to the server device 10.
- the server device 10 converts the biometric data of the patient, the information of the treatment specified by the medical institution server 40 using the treatment discrimination model 42b based on the biometric data, and the evaluation information indicating whether or not the treatment is appropriate. It functions as a teacher data acquisition unit for acquiring teacher data including the teacher data.
- the medical institution server 40 transmits the biometric data of the patient acquired by the biometric data acquisition unit 401. Then, the information of the treatment specified by the treatment specifying unit 402, the information indicating that the treatment is not appropriate, and the information of the treatment input in the input box are collectively transmitted to the server device 10.
- the control unit (information acquisition unit) 11 of the server device 10 specifies the information on the treatment performed at the medical institution (first medical institution) that has identified and proposed a user to the user by using, for example, the medical institution discrimination model 12d. Can be acquired together with the patient's biological data.
- the medical institution server 40 may transmit various information to the server device 10 only when an “inappropriate” button is operated.
- the evaluation of the advice (treatment) suggested by the advice screen may be performed after the patient has been followed up for a predetermined period.
- the server device 10 When the server device 10 acquires the above-described teacher data and information on the treatment performed at the first medical institution from the medical institution server 40, the server device 10 re-learns the treatment discrimination model 12f based on the acquired information. be able to.
- the control unit 11 of the server device 10 may include, when the evaluation information included in the teacher data is information indicating that the treatment is appropriate, the biometric data of the patient and the biometric data Based on the information on the treatment specified by the medical institution server 40, the treatment discrimination model 12f is re-learned.
- control unit 11 inputs each data included in the biological data to the input node of the treatment determination model 12f, and the output value of the output node corresponding to the treatment specified by the medical institution server 40 is output in the output layer.
- the treatment discriminating model 12f is trained such that the output values of the other output nodes approach 1.0 and the output values of the other output nodes approach 0. Further, when the information regarding the treatment performed at the first medical institution is acquired from the medical institution server 40, the control unit 11 of the server device 10 is configured based on the acquired information regarding the treatment and the biological data of the patient at this time.
- the treatment determination model 12f is re-learned.
- control unit 11 inputs each data included in the biometric data to the input node of the treatment determination model 12f, and the output value of the output node corresponding to the treatment performed in the first medical institution is output in the output layer.
- the treatment discriminating model 12f is trained such that the output values of the other output nodes approach 1.0 and the output values of the other output nodes approach 0.
- the server device 10 accumulates the evaluation information sequentially transmitted from the plurality of medical institution servers 40 together with the biological data, and at a predetermined timing, based on the accumulated biological data and the evaluation information, stores the evaluation information of the treatment determination model 12f.
- Re-learning may be used. Re-learning of the treatment determination model 12f may be performed by the server device 10, the learning device 30 described in the first embodiment, or another learning device.
- FIG. 24 is a flowchart illustrating a procedure of the advice providing process performed by the server device 10.
- the processing shown in FIG. 24 is obtained by adding step S61 instead of step S25 to the processing shown in FIG. Therefore, the description of the same steps as those in FIG. 11 will be omitted.
- the control unit 11 of the server device 10 When acquiring the biometric data from the user terminal 20 (S24), the control unit 11 of the server device 10 according to the present embodiment, based on the acquired biometric data, determines a medical institution suitable for the physical condition of the user indicated by the biometric data. The identification is performed using the medical institution identification model 12d (S61). And the control part 11 produces
- the server device 10 of the present embodiment can provide the user terminal 20 with an advice screen as shown in FIG. be able to. Therefore, the user can receive an appropriate medical institution at an early stage, can detect a disease or an injury at an early stage, and can be moved between medical institutions or between medical departments at the medical institution where the medical examination has been performed. Can be suppressed.
- FIG. 25 is a flowchart illustrating a procedure of the advice providing process by the medical institution server 40. 25, processing performed by the control unit 41 of the medical institution server 40 is shown on the left side, and processing performed by the control unit 11 of the server device 10 is shown on the right side.
- the medical institution server 40 when the medical institution server 40 wants to provide advice regarding the treatment content, a user in a medical institution such as a doctor instructs the medical institution server 40 to start the advice providing program 42a. .
- the control unit 41 of the medical institution server 40 starts the advice providing program 42a stored in the storage unit 42, and displays an input screen as shown in FIG. 6 on the display unit 44 (S71).
- the input screen is a screen for accepting input of various data relating to the physical condition of the user, and the control unit 41 accepts biometric data including various data via the input screen (S72).
- the control unit 41 specifies a treatment suitable for the state of the user's body indicated by the biological data based on the biological data received via the input screen, using the treatment determination model 42b (S73).
- the control unit 41 generates provision information for providing advice on the treatment to the user of the medical institution based on the specified result (determination result) by the treatment determination model 42b (S74).
- the control unit 41 displays an advice screen as shown in FIG. 23 on the display unit 44 based on the generated provision information (S75).
- advice on the treatment specified based on the patient's biological data is notified to the doctor or the like.
- the control unit 41 receives an evaluation for the advice content (treatment content) on the displayed advice screen, and inputs evaluation information indicating whether the advice content is appropriate. It is received via the unit 45 (S76).
- the control unit 41 transmits the received evaluation information to the server device 10 via the network N together with the biological data received in step S72 and the information on the treatment specified in step S73 (S77). If the control unit 41 receives an evaluation that the advice content is not appropriate, the control unit 41 also transmits the treatment content input in the input field of the advice screen to the server device 10.
- the control unit 11 of the server device 10 receives the evaluation information transmitted from the medical institution server 40 (S78).
- the control unit 11 receives the patient's biological data and information on the treatment specified based on the biological data, together with the evaluation information. Then, the control unit 11 re-learns the treatment determination model 12f using the received information (S79).
- the control unit 11 includes a teacher including biometric data of a patient, information on a treatment specified by the medical institution server 40 using the treatment discrimination model 42b based on the biometric data, and evaluation information indicating whether or not the treatment is appropriate. Re-learning of the treatment determination model 12f can be performed based on the data.
- control unit 11 performs a treatment based on the information on the treatment performed at the medical institution (first medical institution) that has specified the consultation to the user by using the medical institution discrimination model 12d and the biological data of the patient. Re-learning of the discrimination model 12f can also be performed.
- an optimal medical institution can be proposed by comprehensively judging the user's biological data, and an optimal treatment content can be proposed. Therefore, a medical institution to be consulted can be proposed to the user of the user terminal 20, and specific treatment contents can be proposed to a user such as a doctor of the medical institution.
- the user of the user terminal 20 can receive an appropriate medical institution, and can reduce the burden on the user, and can reduce unnecessary medical consultation because unnecessary medical institution is suppressed.
- a doctor at a medical institution can consider the proposed treatment content when diagnosing a patient's symptoms, can assist the doctor to make a diagnosis, can expect to suppress diagnosis errors, and can provide unnecessary treatment. Can be suppressed.
- the treatment discrimination model 12f specifies the treatment using all the biometric data of the patient, so that the biometric data can be used effectively and the more optimal Specific results are obtained.
- the server device 10 when the server device 10 specifies a medical institution to be provided to the user using the medical institution discrimination model 12d, it is determined whether the treatment desired by the user is a treatment within the scope of the health insurance. You may comprise so that it may specify considering medical treatment.
- the medical institution discrimination model 12d is requested not only for the user's biometric data but also for information indicating whether the user desires treatment within the scope of the health insurance or including self-paid medical treatment, and also includes self-funded medical treatment. Amount information including the upper limit amount and the budget amount of medical expenses in the case is input, and information indicating a medical institution to be provided to the user is output based on the input biometric data and the amount information. Good.
- a medical institution can be specified and introduced to the user in consideration of not only the symptoms based on the user's biometric data but also the range of treatment (budget of medical expenses) desired by the user.
- the medical institution identification model 12d may be provided for each treatment within the scope of the health insurance, treatment including self-paid medical treatment, and information on the amount of money (charge rank) such as the upper limit of the medical expenses and the budget amount.
- the medical institution identifying unit 105 identifies the medical institution identification model 12d corresponding to the user's amount information (budget desired by the user) acquired from the user terminal 20, for example, and adds the user to the identified medical institution identification model 12d.
- a medical institution within the treatment range (budget range) desired by the user can be specified and introduced to the user.
- the treatment discrimination model 42b can be used in the second medical institution, so that a doctor at the second medical institution can propose an optimal treatment for the patient's biometric data, and can assist the doctor in making a diagnosis.
- a difference in medical level between medical institutions can be suppressed.
- the treatment discrimination models 12f and 42b can reflect the latest examination method, diagnosis method, treatment method, medication method, and the like based on the judgment of the on-site doctor.
- the treatment discriminating model 42b and the treatment DB 42c are not limited to the configuration in which the medical institution server 40 of the second medical institution provides the treatment discriminating model 42b so that the doctor or the like of the second medical institution can use the treatment discriminating model 42b.
- a doctor at the second medical institution can use the treatment determination model 12f of the server device 10 via the network N using the medical institution server 40 of the second medical institution or its own user terminal (not shown). You may comprise. That is, the doctor at the second medical institution can transmit the patient's biometric data to the server device 10 via the network N, and can obtain optimal treatment advice from the server device 10 for the patient's biometric data.
- the server device 10 may be configured by a cloud server.
- the period or the number of times that the doctor or the like of the second medical institution can use the treatment determination model 12f of the server device 10 may be limited.
- the server device 10 may be configured to prohibit the use of the treatment determination model 12f by a doctor or the like of the second medical institution when the use period has elapsed or when the number of use times has been reached.
- the configuration of the present embodiment can be applied to the second to fourth embodiments, and the same effects can be obtained even when applied to the second to fourth embodiments.
- FIG. 26 is a block diagram illustrating a configuration example of a determination device.
- the determination device 50 is managed by a third-party verification team or a third-party verification organization that verifies the suitability of the evaluation information fed back from the medical institution server 40 to the server device 10.
- the determination device 50 is a personal computer, a server computer, or the like, and includes a control unit 51, a storage unit 52, a communication unit 53, a display unit 54, and an input unit 55. Note that the control unit 51, the storage unit 52, the communication unit 53, the display unit 54, and the input unit 55 perform the same processing as each unit of the medical institution server 40, and thus the details are omitted.
- FIG. 27 is a flowchart showing the procedure of the advice providing process in the information providing system of the sixth embodiment.
- the processing shown in FIG. 27 is obtained by adding steps S81 to S83 between steps S77 and S78 in the processing shown in FIG. Therefore, description of the same steps as those in FIG. 25 will be omitted.
- steps S71 to S76 in FIG. 25 are omitted.
- the medical institution server 40 transmits evaluation information for the advice content (treatment content) received via the advice screen to the determination device 50 via the network N together with the biological data and the treatment information. It is transmitted (S77).
- the medical institution server 40 receives the evaluation information indicating that the advice content is not appropriate, the medical institution server 40 also transmits the treatment content input to the input field of the advice screen to the determination device 50. It is assumed that the destination information of the determination device 50 is stored in the storage unit 42 in advance.
- the control unit 51 of the determination device 50 receives the evaluation information transmitted from the medical institution server 40 together with the biological data and the information on the treatment and the treatment content input in the input field of the advice screen in the medical institution server 40 (S81). ). The control unit 51 determines whether the received evaluation information is appropriate (S82). Here, when the control unit 51 receives the evaluation information indicating that the advice content is not appropriate, the control unit 51 inputs the evaluation information based on the biometric data and the treatment content input in the input field of the advice screen in the medical institution server 40. It is determined whether or not the treatment content is appropriate.
- the determination as to whether or not the treatment content input in the medical institution server 40 is appropriate is performed by, for example, a third-party verification team or a member of a third-party verification institution, and the control unit 51 determines via the input unit 55 Get the result. Further, the control unit 51 obtains, for example, the treatment discrimination model 12f from the server device 10, specifies a plurality of treatment candidates corresponding to the biological data using the treatment discrimination model 12f, and assigns the plurality of specified candidates to the medical institution server. When the treatment content input in 40 is included, it may be determined that the input treatment content is appropriate. When receiving the evaluation information indicating that the advice content is appropriate, the control unit 51 may determine that the received evaluation information is appropriate.
- control unit 51 determines that the evaluation information received from the medical institution server 40 is not appropriate (S82: NO)
- the control unit 51 ends the process without performing any operation.
- the controller 51 determines that the received evaluation information is appropriate (S82: YES)
- the controller 51 inputs the received evaluation information into the input field of the advice screen in the medical institution server 40 together with the information on the biological data and the treatment.
- the contents are transmitted to the server device 10 via the network N together with the details of the treatment (S83).
- the control unit (verification result acquisition unit) 11 of the server device 10 receives the evaluation information transmitted from the determination device 50 (S78).
- the control unit 11 receives, along with the evaluation information, the patient's biometric data, information on the treatment specified based on the biometric data, and the treatment content input in the input field of the advice screen in the medical institution server 40. . Then, the control unit 11 re-learns the treatment determination model 12f using the received information (S79).
- the medical institution server 40 feeds back evaluation information indicating whether or not the specified result (specified treatment) by the treatment determination model 42b is appropriate to the treatment determination model 12f of the server device 10, It is verified whether the evaluation information is appropriate. Then, when it is determined that the evaluation information is appropriate, the evaluation information obtained by the medical institution server 40 is fed back to the treatment determination model 12f of the server device 10. Therefore, it is possible to verify whether or not the judgment of the doctor at the medical institution is appropriate. If the judgment is not appropriate, the accuracy of the treatment judgment model 12f can be prevented from lowering by not feeding it back to the treatment judgment model 12f.
- the determination device 50 transmits the received evaluation information to the server device 10 only when it is determined that the evaluation information received from the medical institution server 40 is appropriate.
- the result information indicating the result of verifying whether or not the evaluation information received from the medical institution is appropriate may be transmitted to the server device 10 together with the evaluation information received from the medical institution server 40.
- the server device 10 receives the result information from the medical institution server 40 via the determination device 50. It is possible to adopt a configuration in which re-learning of the treatment determination model 12f is performed using information.
- the treatment discrimination model 42b and the treatment DB 42c are provided to the medical institution server 40 of the second medical institution.
- the configuration may be such that a doctor or the like of the second medical institution can use the treatment determination model 12f of the server device 10 via the network N.
- the doctor at the second medical institution can receive advice on optimal treatment for the patient's biometric data by the treatment discrimination model 12f, and can support medical treatment by the doctor.
- the period or the number of times that the doctor of the second medical institution can use the treatment determination model 12f of the server device 10 may be limited.
- the server device 10 may be configured to prohibit the use of the treatment determination model 12f by the doctor of the second medical institution when the use period has elapsed or when the number of usable times has been reached.
- the server device 10 performs a comprehensive diagnosis based on various test results performed in a medical institution or the like using the advice discriminators 12b, 12ba, 12bb or the treatment discrimination model 12f, and It may be configured to output the result.
- a configuration may be adopted in which a diagnosis result by the server device 10 is output and displayed on a terminal used by a doctor of a medical institution, and the doctor can confirm the diagnosis result on a display screen.
- the display screen may be configured so that a doctor or the like can add a comment to the diagnosis result, or may be configured to be able to attach an examination history at a hospital visit, a medical checkup, or the like.
- the biometric data and the test result of each user can be centrally managed. Such data can be printed out as necessary, for example, by being sent from a doctor's terminal to a printer.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Finance (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Development Economics (AREA)
- Strategic Management (AREA)
- Pathology (AREA)
- Game Theory and Decision Science (AREA)
- Entrepreneurship & Innovation (AREA)
- Economics (AREA)
- Marketing (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
ユーザの負担を増大させずに、ユーザの生体データに対する適切なアドバイスを提供することが可能な情報処理装置等を提供する。情報処理装置は、ユーザの生体データを、例えばユーザ端末から取得する。情報処理装置は、複数人分の生体データ及びそれぞれの生体データに対して効果が得られたアドバイス情報を含む教師データに基づいて学習した学習モデルを用いて、取得したユーザの生体データに対するアドバイス情報を特定し、特定したアドバイス情報を出力する。
Description
本開示は、情報処理装置、プログラム及び情報処理方法に関する。
インターネットの普及に伴い、インターネットを介して各種の情報が提供されている。特許文献1では、健康管理対象者の情報に基づいて、健康管理対象者に適したメニューを生成して提供する健康管理サーバが開示されている。特許文献1に開示された健康管理サーバでは、例えば健康管理対象者の活動状況を考慮した上で適切な運動メニューが生成されて健康管理対象者に提供される。
インターネットを介して各種情報の提供を受ける場合、所望の情報を提供するサーバにアクセスする必要があり、適切なサーバを探す必要がある。そこで、ユーザの負担を増大させずに、ユーザに適した情報を提供するシステムが求められている。
本開示は、このような事情に鑑みてなされたものであり、その目的とするところは、ユーザの生体データに対する適切なアドバイスを提供することが可能な情報処理装置等を提供することにある。
本開示の一態様に係る情報処理装置は、ユーザの生体データを取得するデータ取得部と、複数人分の生体データ及びそれぞれの生体データに対して効果が得られたアドバイス情報を含む教師データに基づいて、前記生体データが入力された場合に前記生体データに対して効果が得られるアドバイス情報を特定するように学習した学習モデルを用いて、前記データ取得部が取得した前記生体データに対するアドバイス情報を特定する特定部と、前記特定部が特定したアドバイス情報を出力する出力部とを備える。
本開示にあっては、ユーザの負担を増大させずに、ユーザの生体データに対する適切なアドバイスを提供することができる。
以下に、本開示の情報処理装置、プログラム及び情報処理方法について、その実施形態を示す図面に基づいて詳述する。
(実施形態1)
図1は情報提供システムの構成例を示す模式図である。本実施形態では、ユーザの身体の状態に関連するデータに基づいて、このユーザに対する適切なアドバイスを特定して提供するシステムについて説明する。本実施形態の情報提供システムは、サーバ装置10と複数のユーザ端末20とを含み、サーバ装置10及び各ユーザ端末20は、インターネット等のネットワークNに接続可能である。ユーザ端末20は、ユーザによる操作に従って、ユーザの身体の状態に関連する各種のデータの入力を受け付け、得られたデータをサーバ装置10へ送信する。サーバ装置10は、学習済みの判別器(学習モデル)を用いて、ユーザの身体の状態に関連するデータに対して提供すべきアドバイスを判別(特定)する。サーバ装置10は、複数台設けられてもよいし、1台の装置内に設けられた複数の仮想マシンによって実現されてもよいし、クラウドサーバを用いて実現されてもよい。判別器の学習処理は、サーバ装置10が行ってもよいし、他の学習装置が行ってもよい。
図1は情報提供システムの構成例を示す模式図である。本実施形態では、ユーザの身体の状態に関連するデータに基づいて、このユーザに対する適切なアドバイスを特定して提供するシステムについて説明する。本実施形態の情報提供システムは、サーバ装置10と複数のユーザ端末20とを含み、サーバ装置10及び各ユーザ端末20は、インターネット等のネットワークNに接続可能である。ユーザ端末20は、ユーザによる操作に従って、ユーザの身体の状態に関連する各種のデータの入力を受け付け、得られたデータをサーバ装置10へ送信する。サーバ装置10は、学習済みの判別器(学習モデル)を用いて、ユーザの身体の状態に関連するデータに対して提供すべきアドバイスを判別(特定)する。サーバ装置10は、複数台設けられてもよいし、1台の装置内に設けられた複数の仮想マシンによって実現されてもよいし、クラウドサーバを用いて実現されてもよい。判別器の学習処理は、サーバ装置10が行ってもよいし、他の学習装置が行ってもよい。
図2は、サーバ装置10及びユーザ端末20の構成例を示すブロック図である。ユーザ端末20は、例えばスマートフォン、タブレット端末、パーソナルコンピュータ等である。ユーザ端末20は、制御部21、記憶部22、通信部23、表示部24、入力部25等を含み、これらの各部はバスを介して相互に接続されている。制御部21は、CPU(Central Processing Unit)、MPU(Micro-Processing Unit)又はGPU(Graphics Processing Unit)等の1又は複数のプロセッサを含む。制御部21は、記憶部22に記憶してある制御プログラムを適宜実行することにより、ユーザ端末20が行うべき種々の情報処理、制御処理等を行う。
記憶部22は、RAM(Random Access Memory)、フラッシュメモリ、ハードディスク、SSD(Solid State Drive)等を含む。記憶部22は、制御部21が実行する制御プログラム及び制御プログラムの実行に必要な各種のデータ等を予め記憶している。また記憶部22は、制御部21が制御プログラムを実行する際に発生するデータ等を一時的に記憶する。記憶部22に記憶される制御プログラムには、アドバイス要求アプリケーションプログラム(以下、アドバイス要求アプリという)22aが含まれる。アドバイス要求アプリ22aは、例えば通信部23を介して外部装置から取得されて記憶部22に記憶される。なお、ユーザ端末20が可搬型記憶媒体に記憶された情報を読み取る読取部等を備える場合、アドバイス要求アプリ22aは可搬型記憶媒体から読み出されて記憶部22に記憶されてもよい。
通信部23は、例えば無線通信によってネットワークNに接続するためのインタフェースであり、ネットワークNを介して外部装置との間で情報の送受信を行う。なお、通信部23は、有線通信によってネットワークNに接続する構成でもよい。表示部24は、例えば液晶ディスプレイ、有機ELディスプレイ等であり、制御部21からの指示に従って各種の情報を表示する。入力部25は、表示部24の表示面に配置されたタッチセンサ又は押下式のボタンであり、ユーザによる操作入力を受け付け、操作内容に対応した制御信号を制御部21へ送出する。なお、タッチセンサである入力部25は、表示部24と一体としてタッチパネルを構成する。ユーザ端末20は、通信部23、表示部24及び入力部25を有する情報機器であれば、どのような機器でもよい。
サーバ装置10は、パーソナルコンピュータ、サーバコンピュータ等の情報処理装置である。サーバ装置10は、制御部11、記憶部12、通信部13、読取部14等を含み、これらの各部はバスを介して相互に接続されている。制御部11は、CPU、MPU又はGPU等の1又は複数のプロセッサを含む。制御部11は、記憶部12に記憶してある制御プログラムを適宜実行することにより、本開示の情報処理装置が行うべき種々の情報処理、制御処理等をサーバ装置10に行わせる。
記憶部12は、RAM、フラッシュメモリ、ハードディスク、SSD等を含む。記憶部12は、制御部11が実行する制御プログラム及び制御プログラムの実行に必要な各種のデータ等を予め記憶している。また記憶部12は、制御部11が制御プログラムを実行する際に発生するデータ等を一時的に記憶する。記憶部12に記憶される制御プログラムには、本開示のプログラムであるアドバイス提供プログラム12aが含まれる。また記憶部12は、例えば機械学習処理によって構築されたニューラルネットワークであるアドバイス判別器(学習モデル)12bを記憶している。アドバイス判別器12bは、ユーザの身体の状態に関連するデータに基づいて、ユーザに提供すべきアドバイスが、予め学習した複数のアドバイス情報のいずれであるかを特定(判別)する判別器である。更に、記憶部12に記憶されるデータには、アドバイスデータベース(以下、アドバイスDBという)12cが含まれる。
記憶部12に記憶される制御プログラム及びデータは、例えば通信部13を介してネットワークN経由で外部装置から取得されて記憶部12に記憶される。また、サーバ装置10が可搬型記憶媒体14aに記憶された情報を読み取る読取部14を備える場合、記憶部12に記憶される制御プログラム及びデータは、読取部14によって可搬型記憶媒体14aから読み出されて記憶部12に記憶されてもよい。アドバイスDB12cは、サーバ装置10に接続された外部の記憶装置に記憶されてもよく、ネットワークNを介してサーバ装置10と通信可能な記憶装置に記憶されてもよい。
通信部13は、例えば有線通信によってネットワークNに接続するためのインタフェースであり、ネットワークNを介して外部装置との間で情報の送受信を行う。なお、通信部13は、無線通信によってネットワークNに接続する構成でもよい。読取部14は、CD(Compact Disc)-ROM、DVD(Digital Versatile Disc)-ROM及びUSB(Universal Serial Bus)メモリを含む可搬型記憶媒体14aに記憶された情報を読み取る。サーバ装置10は、上述した各構成部のほかに、各種の情報を表示する表示部、ユーザによる操作入力を受け付ける入力部等を備えていてもよい。
図3は、アドバイス判別器12bの構成例を示す模式図である。アドバイス判別器12bは、ユーザの身体の状態に関連するデータが入力された場合に、入力されたデータに基づいて、ユーザに適したアドバイスを特定するように学習した学習モデルである。図3に示すように、アドバイス判別器12bは、入力層、中間層及び出力層から構成されている。入力層は、m個(m≧2)の入力ノードを有し、それぞれの入力ノードには、ユーザ端末20から取得したユーザの身体の状態に関連するデータが入力される。ユーザの身体の状態に関連するデータには、例えば、ユーザの年齢及び性別を含む属性、身長,体重,腹囲,血圧,心拍数,脈拍,体温等の計測データ、摂取カロリー,睡眠時間,運動の種類及び時間等の生活習慣に関する情報を用いることができる。また、服用中の薬の種類及び量、喫煙又は飲酒の頻度及び量、医療機関等で行った血液検査,尿検査等の検査結果、レントゲン(X線撮影),エコー検査(超音波検査),CT(Computed Tomography:コンピュータ断層撮影法),MRI(Magnetic Resonance Imaging:磁気共鳴画像法),PET(Positron Emission Tomography:陽電子放出断層撮影法)等の撮影装置で撮影した画像データ、治療内容,手術内容,リハビリ内容等に関する診察データ、健康診断又は人間ドック等で得られた各種の検査データ、ユーザ自身や家族の既往歴(病歴)の情報(遺伝情報)等を用いることができる。
入力層のそれぞれの入力ノードには対応するデータが入力され、入力ノードに入力された各データは中間層に入力される。中間層は複数(図3では3層)の全結合層を有し、各層のノードは、各層間の重み付け係数や関数を用いて、入力されたデータに基づく出力値を算出し、算出した出力値を後の層のノードに入力する。中間層は、各層のノードの出力値を順次後の層のノードに入力することにより、最終的に出力層の各出力ノードにそれぞれの出力値を与える。中間層の層数は図3に示す例に限定されない。出力層は、n個(n≧2)の出力ノードを有し、それぞれの出力ノードは、n種類のアドバイスのそれぞれに対する判別確率(アドバイス情報毎の確率)を出力する。例えば、出力ノード1は、アドバイスDB12cに記憶してあるアドバイスIDが01のアドバイス情報に対する判別確率を出力し、出力ノード2は、アドバイスIDが02のアドバイス情報に対する判別確率を出力する。それぞれの出力ノードが出力する判別確率は、それぞれの出力ノードに対応付けられたアドバイス情報が、入力層に入力されたデータに対するアドバイスとして適切である可能性を示す。出力層の各出力ノードの出力値は例えば0~1.0の値であり、n個の出力ノードから出力される判別確率の合計が1.0となる。
アドバイス判別器12bは、図3に示すように中間層が多層に構成されたニューラルネットワーク(深層学習)に限定されず、種々の機械学習のアルゴリズムによって構築された学習モデルを用いることができる。また、上述したようなデータを時系列で収集した時系列データをアドバイス判別器12bに入力する場合、例えばリカレントニューラルネットワークによってアドバイス判別器12bを構築してもよい。この場合、例えば医療機関の受診時や健康診断等で得られる各種の検査結果の時系列データに基づいて適切なアドバイス情報を判別できるアドバイス判別器12bを用いることができる。
図4は、アドバイスDB12cの構成例を示す模式図である。アドバイスDB12cには、例えばn個のアドバイス情報と、各アドバイス情報に割り当てられた識別情報であるアドバイスIDとが対応付けて登録されている。アドバイス情報は、サーバ装置10がユーザに提供するアドバイスメッセージであり、アドバイス判別器12bが入力データに基づいて特定(判別)する特定対象のアドバイスである。アドバイス情報には、例えば食事,運動,睡眠等の生活習慣に関するアドバイス、サプリメント,市販薬,一般用医薬品の使用に関するアドバイス、可能性のある診断内容及び医療機関の受診に関するアドバイス、健康診断,セカンドオピニオン,医療機関の申込に関するアドバイス等がある。なお、アドバイス情報は図4に示す例に限定されず、ユーザの身体の症状や行うべき処置内容を含む種々のアドバイスを用いることができる。
次に、サーバ装置10において制御部11がアドバイス提供プログラム12aを実行することによって実現される機能について説明する。図5は、サーバ装置10の制御部11によって実現される機能を示すブロック図である。サーバ装置10の制御部11は、記憶部12に記憶してあるアドバイス提供プログラム12aを実行した場合、生体データ取得部101、アドバイス特定部102、提供情報生成部103、出力部104の各機能を実現する。なお、本実施形態では、これらの各機能を制御部11がアドバイス提供プログラム12aを実行することにより実現するが、これらの一部を専用のハードウェア回路で実現してもよい。
本実施形態の情報提供システムでは、ユーザはユーザ端末20を用いて自身の身体の状態に関連するデータをサーバ装置10へ送信する。なお、ユーザは、サーバ装置10からアドバイスの提供を受けたい場合、ユーザ端末20の入力部25を介してアドバイス要求アプリ22aの起動を指示する。ユーザ端末20の制御部21は、アドバイス要求アプリ22aの起動指示を受け付けた場合、記憶部22に記憶してあるアドバイス要求アプリ22aを起動する。アドバイス要求アプリ22aを起動した場合、制御部21は、ユーザの身体の状態に関するデータを入力するための入力画面を表示部24に表示する。制御部21は、入力画面を介してユーザの身体の状態に関するデータの入力を受け付ける。
図6は、入力画面例を示す模式図である。図6に示す入力画面は、ユーザの年齢、性別、身長、体重を入力する入力欄を有する。年齢の入力欄には、10代、20代、30代等の年齢層の選択が可能なプルダウンメニューが設けられている。なお、年齢の入力欄は、入力部25を介してユーザが入力するように構成されてもよい。性別の入力欄には、男性又は女性の選択が可能なラジオボタンが設けられている。身長及び体重の入力欄には、入力部25を介して任意の数値が入力可能である。また、図6に示す入力画面は、服用中の薬の種類(名称)及び量の入力欄を有する。薬の名称及び量の入力欄は、入力部25を介してユーザが入力するように構成されてもよく、複数の選択肢を有するプルダウンメニューによって入力するように構成されてもよい。
また図6に示す入力画面は、血液検査及び尿検査の検査結果の入力が可能に構成されている。図6に示す入力画面では、血液検査及び尿検査の検査結果を入力するための「入力するボタン」が設けられており、「入力するボタン」が操作された場合、選択された検査について一般的に行われる検査項目の検査結果の入力欄を有する入力画面が表示される。このような入力画面を介して各検査の検査結果が入力された場合、図6に示す入力画面の表示に戻り、図6に示す入力画面では、「入力するボタン」の横に「入力済み」のメッセージが追加表示されてもよい。更に図6に示す入力画面は、レントゲン、エコー検査、CT、MRI、PET等の撮影装置で撮影した画像の添付が可能に構成されている。図6に示す入力画面では、撮影画像の種類及び撮影部位について複数の選択肢を有するプルダウンメニューが設けられた入力欄と、撮影画像を添付するための「添付するボタン」とが設けられている。「添付するボタン」が操作された場合、例えばユーザ端末20の記憶部22に記憶してある任意の画像を指定するための入力画面が表示され、表示された入力画面を介して添付すべき画像が指定される。なお、添付する画像は、ユーザ端末20の記憶部22に記憶してある画像のほかに、ユーザ端末20がネットワークNを介して通信可能な外部装置に記憶されている画像でもよい。外部装置に記憶してある画像が指定された場合、ユーザ端末20は、外部装置から、指定された画像を取得して記憶部22に記憶しておいてもよい。また、医療機関等が管理する外部装置に記憶してある画像を用いる場合、外部装置とサーバ装置10との間で直接画像を送受信してもよい。ユーザは、図6に示すような入力画面において、例えば下方向にスクロールしながら、入力可能な各データをそれぞれの入力欄に入力する。図6に示す入力画面は、入力された各データをサーバ装置10へ送信するための「送信ボタン」と、送信を中止する「キャンセルボタン」とを表示しており、「送信ボタン」が操作された場合、ユーザ端末20の制御部21は、入力画面を介して入力された各データをサーバ装置10へ送信する。
入力画面は、図6に示す構成のほかに、血圧、心拍数、脈拍、体温等の計測データの入力欄を有してもよい。このような計測データは、入力部25を介してユーザが入力するように構成されてもよく、ユーザ端末20が計測器との接続又は通信が可能である場合、計測器から取得するように構成されてもよい。計測器は、例えばウェアラブルデバイスとして構成された血圧計や体温計等を用いることができる。また入力画面は、例えば1日における摂取カロリー、睡眠時間、運動の種類及び量、喫煙又は飲酒の頻度及び量等の生活習慣に関する情報の入力欄を有してもよい。このような情報は、入力部25を介してユーザが入力するように構成されてもよく、複数の選択肢を有するプルダウンメニューによって入力するように構成されてもよい。なお、摂取カロリーの代わりに食事の内容を入力するように構成されていてもよい。更に入力画面は、現在治療中の治療内容、治療済みの治療内容、施術済みの手術内容、施術中のリハビリ内容等に関するデータ、健康診断又は人間ドック等で得られた各種の検査データ、自身や家族の既往歴(病歴)の情報(遺伝情報)を入力できるように構成されていてもよい。
ユーザの身体の状態に関するデータを入力するための入力画面は、図6に示す構成に限定されない。ユーザ端末20がカメラ及びOCR(Optical Character Recognition)を有する場合、例えば医療機関の受診時、健康診断、人間ドック等で行った検査の検査結果が記載された用紙から各種のデータ(ユーザの生体データ)を取得してもよい。この場合、ユーザ端末20は、検査結果が記載された用紙をカメラで撮影し、得られた撮影画像からOCRにてテキストデータを生成することによって検査結果を読み取る。ユーザ端末20は、カメラ及びOCRによって、用紙に記載された検査結果を読み取り、読み取った検査結果から各種のデータを抽出することにより、ユーザの生体データを取得することができる。ユーザ端末20は、このように取得したデータを、図6に示す入力画面の対応する入力欄に表示することができる。
サーバ装置10の制御部11は、ユーザ端末20において上述したような入力画面を介して入力されたユーザの身体の状態に関連するデータを、通信部13を介してユーザ端末20から取得する。なお、上述したような入力画面を介して入力されたデータを、以下ではまとめて生体データという。サーバ装置10において、生体データ取得部(データ取得部)101は、ユーザ端末20から送信された生体データを取得する。なお、生体データ取得部101は、ユーザの年齢及び性別を含む属性を取得する属性取得部としても機能する。
アドバイス特定部(特定部)102は、生体データ取得部101が取得した生体データに基づいて、この生体データが示すユーザの身体の状態に対して適切なアドバイス情報を、アドバイス判別器12bを用いて特定(判別)する。具体的には、アドバイス特定部102は、生体データ取得部101が取得した生体データのそれぞれを、アドバイス判別器12bの入力層の各入力ノードに入力し、アドバイス判別器12bの出力層の各出力ノードからの出力値を取得する。なお、アドバイス判別器12bの入力層において、生体データのそれぞれを入力すべき入力ノードは予め決定されている。アドバイス判別器12bの各出力ノードからの出力値は、アドバイスDB12cに登録されているアドバイス情報のそれぞれに対する判別確率である。アドバイス特定部(選択部)102は、アドバイス判別器12bによる判別結果(判別確率)に基づいて、ユーザに提供すべきアドバイス情報を特定(選択)する。アドバイス特定部102は、例えばアドバイス判別器12bが出力した判別確率が大きい順に所定数(例えば3つ、5つ等)のアドバイス情報を、提供すべき出力対象のアドバイスに特定する。なお、アドバイス特定部102は、判別確率(出力値)が大きい所定数の出力ノードに対応するアドバイスIDを取得する。
提供情報生成部103は、アドバイス特定部102が特定したアドバイスをユーザ端末20によりユーザに提供するための提供情報を生成する。例えば、提供情報生成部103は、特定されたアドバイスを表示するための表示情報を生成する。具体的には、提供情報生成部103は、アドバイス特定部102が特定したアドバイスIDに対応するアドバイス情報をアドバイスDB12cから読み出す。そして、提供情報生成部103は、読み出したアドバイス情報を、判別確率が大きい順に表示するアドバイス画面を表示するための表示情報を生成する。図7は、アドバイス画面例を示す模式図である。図7に示すアドバイス画面は、アドバイス特定部102が特定した3つのアドバイスを表示する。アドバイス画面に表示されるアドバイス情報は、単なるアドバイスメッセージであってもよいし、図7中の符号10aに示すように、所定のサーバへのリンクを含んでいてもよい。また、図7中の符号10bに示すように、アドバイス情報に含まれる商品、医薬品、医療機関、医師等の紹介、宣伝、広告が含まれていてもよい。このように、アドバイス特定部102が特定したアドバイス情報に関連する医療機関の情報や、商品又は医薬品等の会社又は企業の情報を含めて表示してもよい。
なお、アドバイス判別器12bは、入力された生体データに基づいて、受診すべき医療機関及び/又は医師を判別するように構成されていてもよい。この場合、アドバイス特定部102は、アドバイス判別器12bを用いてお勧めの医療機関及び/又は医師を特定し、提供情報生成部103は、特定された医療機関及び/又は医師を紹介するアドバイス情報(提供情報)を生成してもよい。アドバイス判別器12bは、入力された生体データに基づいて、セカンドオピニオンとして受診すべき医療機関及び/又は医師を判別するように構成されていてもよい。この場合、アドバイス特定部102は、アドバイス判別器12bを用いてセカンドオピニオンとしてお勧めの医療機関及び/又は医師を特定し、提供情報生成部103は、特定された医療機関及び/又は医師を紹介するアドバイス情報(提供情報)を生成してもよい。また、アドバイス判別器12bは、入力された生体データに基づいて、お勧めの医薬品又はサプリメントを判別するように構成されていてもよい。この場合、アドバイス特定部102は、アドバイス判別器12bを用いてお勧めの医薬品又はサプリメントを特定し、提供情報生成部103は、特定された医薬品又はサプリメントを紹介するアドバイス情報、又は特定された医薬品又はサプリメントの製造又は販売を行う企業に関する情報を含むアドバイス情報(提供情報)を生成してもよい。
更に、アドバイス特定部102又は提供情報生成部103は、医療機関及び/又は医師を紹介するアドバイス情報を特定又は生成する際に、ユーザの住所等を考慮した医療機関及び/又は医師を特定してもよい。サーバ装置10は、例えばユーザ端末20に設けられたGPS(Global Positioning System)によって取得された位置情報をユーザ端末20から取得することによってユーザの住所又は居所を取得する。また、ユーザが、ユーザ端末20の入力部25を介して、ユーザの住所又は居所、或いはユーザが通院可能な地域等の位置情報を入力し、サーバ装置10は、このような位置情報をユーザ端末20から取得してもよい。そして、アドバイス判別器12bを、生体データだけでなく地域の情報が入力され、入力された生体データ及び地域の情報に基づいて、受診すべき医療機関及び/又は医師を判別するように構成してもよい。これにより、ユーザの住所等を考慮した医療機関及び/又は医師を紹介するアドバイス情報を特定できるので、ユーザが通院し易い医療機関を紹介できる。
また、例えばアドバイス特定部102は、アドバイス判別器12bが出力した判別確率が高い順に、医療機関及び/又は医師を紹介するアドバイス情報を特定し、特定したアドバイス情報から、ユーザの住所等に最も近い医療機関及び/又は医師を紹介するアドバイス情報を、提供すべきアドバイスに特定してもよい。また、アドバイス特定部102は、特定したアドバイス情報を、ユーザの住所等に近い順に並び替えてもよい。なお、アドバイス特定部102の代わりに提供情報生成部103が、アドバイス特定部102が特定したアドバイス情報から、ユーザの住所等に最も近い医療機関及び/又は医師を紹介するアドバイス情報を特定する処理、又は、アドバイス特定部102が特定したアドバイス情報を、ユーザの住所等に近い順に並び替える処理を行ってもよい。
また、サーバ装置10において、地域毎にアドバイス判別器12bを備えてもよい。この場合、アドバイス特定部102は、ユーザ端末20から取得したユーザの住所等の位置情報に基づくユーザの地域に対応するアドバイス判別器12bを特定する。そして、アドバイス特定部102は、特定したアドバイス判別器12bに、ユーザの生体データを入力することにより、ユーザの地域に応じた医療機関及び/又は医師を紹介するアドバイス情報を特定できる。このように、ユーザの住所等に近い医療機関及び/又は医師を紹介するアドバイス情報を特定又は生成することにより、ユーザが通院し易い医療機関を紹介できるので、より効果的なアドバイスを提供できる。また、ユーザの地域を考慮したアドバイスの提供を受けるか、ユーザの地域を考慮しないアドバイスの提供を受けるかは、ユーザ端末20の入力部25を介したユーザによる設定によって変更可能とすることができる。
また、図7に示すようなアドバイス画面中の広告10bを表示するための広告情報は、アドバイスDB12cに記憶されているアドバイス情報に含めてもよいし、アドバイス情報に対応付けて別のDBに記憶されていてもよい。別のDBに記憶されている場合、例えばアドバイス特定部102が、ユーザの生体データに基づいてアドバイス情報を特定し、提供情報生成部103が、特定されたアドバイス情報に対応する広告情報を、広告情報が記憶されたDBから読み出す。そして、提供情報生成部103は、アドバイス特定部102が特定したアドバイス情報と、アドバイス情報に対応する広告情報とを提供するための提供情報を生成する。例えば、運動に関するアドバイス情報が特定された場合に、提供情報生成部103は、トレーニングジムやスポーツクラブの広告情報を、広告情報が記憶されたDBから読み出す。この場合、運動に関するアドバイスと、トレーニングジムやスポーツクラブの広告情報とを含む提供情報が生成される。また、医薬品やサプリメントに関するアドバイス情報が特定された場合に、提供情報生成部103は、医薬品やサプリメントの広告情報、又は医薬品やサプリメントを製造又は販売する製薬会社、サプリメントメーカの広告情報を、広告情報が記憶されたDBから読み出す。この場合、医薬品やサプリメントに関するアドバイスと、医薬品又はサプリメントの広告情報、又は製薬会社やサプリメントメーカの広告情報とを含む提供情報が生成される。広告情報は、アドバイス情報及びユーザの属性に対応付けて別のDBに記憶されていてもよい。この場合、生体データに基づくアドバイス情報だけでなくユーザの属性も考慮した広告を提供できる。
出力部104は、提供情報生成部103が生成した表示情報を通信部13からユーザ端末20へ送信する。ユーザ端末20の制御部21は、通信部23を介してサーバ装置10から表示情報を受信し、受信した表示情報に基づいて図7に示すようなアドバイス画面を表示する。これにより、ユーザにアドバイスを提供できる。ユーザ端末20に提供されるアドバイス画面は、図7に示す例に限定されない。また、提供情報生成部103は、アドバイス特定部102が特定したアドバイスを表示するための表示情報を生成するほかに、特定したアドバイスを音声出力するための音声情報を生成してもよい。この場合、提供情報生成部103が生成した音声情報が、出力部104によってユーザ端末20へ送信され、ユーザ端末20で音声出力される。この場合、アドバイスを音声にて提供できる。
以下に、上述したようにサーバ装置10がユーザに提供すべきアドバイスを特定する際に用いるアドバイス判別器12bの学習処理を行う装置について説明する。アドバイス判別器12bの学習処理を行う装置は、サーバ装置10であってもよいが、以下では学習装置とする。なお、学習装置は、後述するように教師データを用いてアドバイス判別器を学習させる装置であり、サーバ装置10は、学習装置にて学習済みのアドバイス判別器を学習装置から取得する。サーバ装置10は、学習済みのアドバイス判別器を、例えばネットワークN経由、又は、USB(Universal Serial Bus)メモリ、CD-R(compact disc recordable )等の可搬型記憶媒体を用いて学習装置から取得する。
図8は、学習装置30の構成例を示すブロック図である。学習装置30は、パーソナルコンピュータ、サーバコンピュータ等の情報処理装置であり、サーバ装置10及びユーザ端末20と同様の構成を有するので、同様の構成についての詳細な説明は省略する。学習装置30は、制御部31、記憶部32、表示部33、入力部34、通信部35等を含み、これらの各部はバスを介して相互に接続されている。学習装置30の記憶部32には、アドバイス判別器32bの学習処理を実行するための学習プログラム32a、学習前又は再学習前のアドバイス判別器32b、アドバイス判別器32bを学習させるための教師データが蓄積された教師データDB32c等が記憶されている。なお、教師データDB32cは、学習装置30に接続された外部の記憶装置に記憶されてもよく、ネットワークNを介して学習装置30と通信可能な記憶装置に記憶されてもよい。
教師データDB32cには、複数人分の人の身体の状態に関連する生体データに対応付けて、それぞれの生体データに対して効果が得られたアドバイス情報が蓄積されている。なお、1つ(1人分)の生体データと、この生体データに対応付けられたアドバイス情報とのセットを教師データという。なお、1つの生体データには、1人の人の身体の状態に関する複数の情報が含まれている。例えば、生体データには、年齢及び性別を含む属性、身長,血圧等の計測データ、摂取カロリー,睡眠時間等の生活習慣に関する情報、服用中の薬の種類及び量、各種の検査結果、撮影装置による撮影画像、治療内容,手術内容,リハビリ内容等に関するデータ、自身や家族の既往歴の情報等が含まれる。学習装置30は、このような教師データに基づいてアドバイス判別器32bを学習させる。
次に、学習装置30において制御部31が学習プログラム32aを実行することによって実現される機能について説明する。図9は、学習装置30の制御部31によって実現される機能を示すブロック図である。学習装置30の制御部31は、記憶部32に記憶してある学習プログラム32aを実行した場合、教師データ取得部301、学習部302の各機能を実現する。なお、これらの各機能の一部を専用のハードウェア回路で実現してもよい。
教師データ取得部301は、教師データDB32cに記憶されている教師データを順次取得する。教師データには生体データとアドバイス情報とが含まれる。学習部302は、教師データ取得部301が教師データDB32cから取得した生体データとアドバイス情報とに基づいて、アドバイス判別器32bを学習させる。具体的には、学習部302は、教師データの生体データを、アドバイス判別器32bの入力層の各入力ノードに入力し、出力層において、教師データのアドバイス情報に対応する出力ノードの出力値が1.0に近づき、その他の出力ノードの出力値が0に近づくように、アドバイス判別器32bを学習させる。学習部302は、例えば中間層の各層のノードを結合する重み付け係数及び関数を学習アルゴリズムによって最適化してアドバイス判別器32bを学習させる。学習部302は、教師データDB32cに記憶してある全ての教師データを用いてアドバイス判別器32bを学習させることにより、学習済み又は再学習済みのアドバイス判別器32bが生成される。
次に、情報提供システムにおいて学習装置30による学習処理についてフローチャートに基づいて説明する。図10は学習装置30による学習処理の手順を示すフローチャートである。以下の処理は、学習装置30の記憶部32に記憶してある学習プログラム32aを含む制御プログラムに従って制御部31によって実行される。
学習装置30の制御部31は、教師データDB32cから教師データを1つ取得する(S11)。教師データには生体データ及びアドバイス情報が含まれる。制御部31は、教師データに含まれる生体データ及びアドバイス情報を用いて、アドバイス判別器32bを学習させる(S12)。ここでは、制御部31は、生体データに含まれる各データを、アドバイス判別器32bの入力層における入力ノードのそれぞれに入力し、出力層において、教師データのアドバイス情報に対応する出力ノードの出力値が1.0に近づき、その他の出力ノードの出力値が0に近づくようにアドバイス判別器32bを学習させる。
制御部31は、教師データDB32cに記憶してある全ての教師データに基づく処理を終了したか否かを判断する(S13)。全ての教師データに基づく処理を終了していないと判断した場合(S13:NO)、制御部31は、ステップS11の処理に戻り、未処理の教師データを1つ教師データDB32cから取得する(S11)。制御部31は、順次取得する教師データに基づいてアドバイス判別器32bの学習を繰り返す(S12)。全ての教師データに基づく処理を終了したと判断した場合(S13:YES)、制御部31は、アドバイス判別器32bの学習処理を終了する。これにより、アドバイス判別器32bを学習させることができ、学習済みのアドバイス判別器32bが得られる。なお、既に学習済みのアドバイス判別器32bについても、上述した処理によって再学習させることができ、判別精度がより高いアドバイス判別器32bを得ることができる。
本実施形態において、アドバイス判別器12bが、生体データに加えて地域の情報が入力され、入力された生体データ及び地域の情報に基づいて、受診すべき医療機関及び/又は医師を紹介するアドバイス情報を判別するように構成されている場合、生体データ、地域の情報(位置情報)及びアドバイス情報を含む教師データを用いて、アドバイス判別器12bを学習させる。具体的には、生体データに含まれる各データ及び位置情報を、アドバイス判別器32bの入力層における入力ノードのそれぞれに入力し、出力層において、教師データのアドバイス情報に対応する出力ノードの出力値が1.0に近づき、その他の出力ノードの出力値が0に近づくようにアドバイス判別器32bを学習させる。これにより、生体データだけでなく地域の情報を考慮したアドバイス情報を特定できるアドバイス判別器12bが得られる。
次に、情報提供システムにおいてサーバ装置10によるアドバイス提供処理についてフローチャートに基づいて説明する。図11は、情報提供システムにおけるアドバイス提供処理の手順を示すフローチャートである。図11において左側にはユーザ端末20の制御部21が行う処理を示し、右側にはサーバ装置10の制御部11が行う処理を示す。サーバ装置10の記憶部12には、学習装置30によって学習済みのアドバイス判別器12bが記憶されている。
情報提供システムにおいて、サーバ装置10によるアドバイスの提供を受けたい場合、ユーザは、ユーザ端末20に対してアドバイス要求アプリ22aの起動を指示する。ユーザ端末20の制御部21は、記憶部22に記憶してあるアドバイス要求アプリ22aを起動し、図6に示すような入力画面を表示部24に表示する(S21)。入力画面は、ユーザの身体の状態に関する各種のデータの入力を受け付けるための画面であり、制御部21は、入力画面を介して各種のデータを含む生体データを受け付ける(S22)。制御部21は、入力画面を介して受け付けた生体データをサーバ装置10へ送信する(S23)。なお、サーバ装置10の宛先情報は、例えばアドバイス要求アプリ22aに組み込まれている。ユーザ端末20の制御部21は、取得した生体データをサーバ装置10へ送信する際に、一旦表示部24に表示し、生体データを確認したユーザからの送信指示を受け付けた後にサーバ装置10へ送信してもよい。
サーバ装置10の制御部11は、ユーザ端末20が送信した生体データを、通信部13を介して取得する(S24)。制御部11は、取得した生体データに基づいて、生体データが示すユーザの身体の状態に適したアドバイスを、アドバイス判別器12bを用いて特定する(S25)。なお、アドバイス判別器12bは、n個のアドバイス情報のそれぞれに対する判別確率を出力する。制御部11は、アドバイス判別器12bによる特定結果(判別結果)に基づいて、ユーザにアドバイスを提供するための提供情報を生成する(S26)。例えば制御部11は、アドバイス判別器12bが出力したそれぞれのアドバイス情報に対応する判別確率に基づいて、判別確率が大きい順に所定数のアドバイス情報を特定し、特定したアドバイス情報をアドバイスDB12cから読み出す。そして、制御部11は、図7に示すように、読み出したアドバイス情報を、判別確率が大きい順に表示するための表示情報を生成する。なお、制御部11は、アドバイス判別器12bが出力した判別確率が最大のアドバイス情報のみを表示するための表示情報を生成してもよい。また、制御部11は、特定したアドバイス情報(アドバイスID)に対応してDBに記憶してある広告情報を読み出し、読み出した広告情報と、特定したアドバイス情報とを含む表示情報を生成してもよい。
制御部11は、生成した提供情報をユーザ端末20へ送信する(S27)。ユーザ端末20の制御部21は、サーバ装置10が送信した提供情報を、通信部23を介して受信し(S28)、受信した提供情報を出力する(S29)。なお、提供情報が、アドバイス情報を表示するための表示情報である場合、制御部21は、提供情報に基づく画面を表示部24に表示する。これにより、例えば図7に示すようなアドバイス画面が表示部24に表示され、サーバ装置10によって特定されたアドバイスがユーザに通知される。なお、提供情報が、アドバイス情報を音声出力するための音声情報である場合、制御部21は、提供情報に基づく音声を音声出力部(図示せず)から出力する。
本実施形態では、ユーザの生体データに適したアドバイスをAI(Artificial Intelligence:人工知能)を用いて提供することができる。具体的には、サーバ装置10は、アドバイス判別器12bにて、ユーザが入力した複数の生体データを総合的に判断した最適なアドバイスを特定できる。ユーザは、自身の身体の状態に適したアドバイスを得ることができ、提供されたアドバイスを参考にして自身の健康管理を行うことができ、また食事、運動等の生活習慣の改善を試みることができる。また、医療機関や健康診断の受診を勧めるアドバイスが提供された場合、ユーザは医療機関や健康診断の受診を検討することができ、早期の受診によって病気やケガを早期に発見できる可能性が高まる。例えば、医療機関の受診を考えていないユーザ又は医療機関の受診を面倒に感じているユーザは、サーバ装置10から提供されるアドバイスに基づいて医療機関の受診が必要であるか否かを判断できる。また、受診すべき医療機関や診療科が分からないユーザは、サーバ装置10から提供されるアドバイスに従った医療機関や診療科を受診することにより、医療機関間でたらい回しされたり、受診した医療機関において診療科間でたらい回しされることを抑制できる。このように医療機関の受診が必要であるユーザには医療機関の受診を勧めるアドバイスを行い、医療機関の受診が不要であるユーザには医療機関の受診以外のアドバイスを行う。これにより、医療機関を受診するユーザの負担を軽減できると共に、不要な医療機関の受診が抑制されるので、医療機関の受診に係る医療費の削減が可能である。このように、AIを活用して各ユーザの生体データを一元管理することができ、各ユーザの生体データに基づくアドバイスを行うことにより、より最適で総合的な医療や健康管理等を提供するサービスを実現できる。
アドバイスDB12cに登録されるアドバイス情報に、栄養士や管理栄養士による食事に関するアドバイス情報、スポーツトレーナによる運動に関するアドバイス情報、医師による病気やケガの診断に関するアドバイス情報等、専門家によるアドバイス情報を含めることにより、より効果が期待できるアドバイスの提供が可能となる。サーバ装置10は、1人のユーザにおいて多数の生体データを用いて、提供すべきアドバイスを特定するので、多数の生体データを有効に利用でき、多数の生体データに基づく総合的な判断が可能となる。本実施形態では、生体データは、ユーザの年齢及び性別等の属性を含んでいたが、属性以外の情報のみを生体データに用いてもよい。即ち、サーバ装置10は、属性を含まないユーザの生体データに基づいて、生体データに対するアドバイス情報を特定して提供する構成でもよい。
本実施形態のユーザ端末20は、サーバ装置10から取得した表示情報に基づいて図7に示すようなアドバイス画面を表示している場合、アドバイス画面中のリンク10aや広告10bに対する選択を受け付けるように構成されている。ユーザ端末20の制御部21は、アドバイス画面中のリンク10aや広告10bに対する選択を入力部25を介して受け付けた場合、選択されたリンク10a又は広告10bをサーバ装置10に通知する。サーバ装置10の制御部(受付部)11は、ユーザ端末20に送信した提供情報(アドバイス画面)に含まれるリンク10a又は広告10bに対する選択を受け付ける。制御部11は、リンク10a又は広告10bに対する選択を受け付けた場合、選択されたリンク10a又は広告10bに応じた情報、リンク10a又は広告10bに関連する関連情報を更にユーザ端末20に送信する。例えばアドバイス画面中のリンク10aが選択された場合、サーバ装置10は、選択されたリンク10aに対応するウェブサイトをユーザ端末20に送信する。なお、リンク10aがサーバ装置10とは異なる外部サーバへのリンクである場合、ユーザ端末20は、リンク10aに基づいて外部サーバに直接アクセスし、リンク10aに対応するウェブサイトを取得してもよい。また、アドバイス画面中の広告10bが選択された場合、サーバ装置10は、選択された広告10bに関連する情報をユーザ端末20に送信する。広告10bに関連する情報には、例えば広告10bによって宣伝される商品等を詳細に説明するウェブサイト、広告10bによって宣伝される商品等の購入サイト等が含まれる。このような構成とした場合、ユーザ端末20は、サーバ装置10からアドバイスの提供を受けるだけでなく、提供されたアドバイスに沿った行動を行うことができる。例えばアドバイスによって勧められた商品を購入することができる。
(実施形態2)
予めユーザ登録しているユーザによって利用される情報提供システムについて説明する。本実施形態の情報提供システムの各装置は、実施形態1の各装置と同様の構成を有するので、同様の構成については詳細な説明を省略する。本実施形態のサーバ装置10は、情報提供システムを利用するためにユーザ登録したユーザのユーザ情報が登録してあるユーザ情報データベース(以下では、ユーザ情報DBという)を記憶部12に記憶している。
予めユーザ登録しているユーザによって利用される情報提供システムについて説明する。本実施形態の情報提供システムの各装置は、実施形態1の各装置と同様の構成を有するので、同様の構成については詳細な説明を省略する。本実施形態のサーバ装置10は、情報提供システムを利用するためにユーザ登録したユーザのユーザ情報が登録してあるユーザ情報データベース(以下では、ユーザ情報DBという)を記憶部12に記憶している。
図12は、ユーザ情報DBの構成例を示す模式図である。ユーザ情報DBには、ユーザ登録したユーザのユーザID、ユーザ認証用のパスワード、ユーザの氏名、住所、電話番号、メールアドレス等の個人情報、ユーザの身体の状態に関する生体データ、ユーザの生体データに基づいてサーバ装置10が提供したアドバイス履歴が対応付けて記憶してある。ユーザIDは各ユーザに予め割り当てられた識別情報であり、パスワード及び個人情報はユーザ登録の際にユーザによって指定された情報である。生体データは、ユーザ登録が行われた後にサーバ装置10がユーザ端末20から取得した生体データである。ユーザ情報DBに記憶してある生体データは最新のデータであり、サーバ装置10はユーザ端末20から生体データを受信する都度、ユーザ情報DBに記憶してある生体データを、受信した生体データに更新する。アドバイス履歴は、サーバ装置10がユーザ端末20に提供したアドバイス情報について、提供した日時とアドバイスIDとを含む。なお、提供済みのアドバイス情報についての履歴を記憶する代わりに、直近に提供したアドバイス情報の日時及びアドバイスIDのみを記憶してもよい。ユーザ情報DBは、サーバ装置10に接続された外部の記憶装置等に記憶されてもよく、ネットワークNを介してサーバ装置10に接続された別の記憶装置に記憶されてもよい。
次に、本実施形態の情報提供システムにおけるアドバイス提供処理について説明する。図13は、情報提供システムにおけるアドバイス提供処理の手順の一部を示すフローチャートである。図13に示す処理は、図11に示した実施形態1の処理において、ステップS21の処理の前にステップS41~S52の処理を追加したものである。図13では図11中のステップS23~S29の図示を省略する。
本実施形態の情報提供システムにおいて、ユーザ端末20の制御部21は、記憶部22に記憶してあるアドバイス要求アプリ22aを起動した場合、サーバ装置10による情報提供システムを利用するためのログイン画面を表示部24に表示する(S41)。ログイン画面は、ユーザID及びパスワードの入力欄を有し、ユーザは、入力部25を介してログイン画面に対してユーザID及びパスワードを入力する。制御部21は、入力部25を介してユーザID及びパスワードを受け付け、受け付けたユーザID及びパスワードをサーバ装置10へ送信する(S42)。これにより、ユーザ端末20は、サーバ装置10による情報提供システムの利用の許可を要求する。
サーバ装置10の制御部11は、ユーザ端末20が送信したユーザID及びパスワードを受信し、受信したユーザID及びパスワードに基づいて認証を行う(S43)。ここでは、制御部11は、受信したユーザID及びパスワードがユーザ情報DBに記憶してあるか否かを判断し、記憶してある場合、認証できたとして情報提供システムの利用を許可し、記憶していない場合、認証できないとして情報提供システムの利用を許可しない。制御部11は、認証できたか否かを判断し(S44)、認証できないと判断した場合(S44:NO)、情報提供システムの利用ができないことを示すエラー情報をユーザ端末20に送信する(S45)。ユーザ端末20の制御部21は、サーバ装置10が送信したエラー情報を受信し、受信したエラー情報を表示部24に表示する(S46)。これにより、情報提供システムの利用が許可されていないユーザによる利用を回避できる。
認証できたと判断した場合(S44:YES)、制御部11は、前回このユーザ端末20(ユーザ)に提供したアドバイス情報に対する評価を受け付けるための評価画面を生成してユーザ端末20へ送信する(S47)。具体的には、制御部11は、認証できたユーザのユーザIDに対応付けてユーザ情報DBに記憶してあるアドバイス履歴のうちで直近の日時に対応するアドバイスIDを読み出す。そして、制御部11は、読み出したアドバイスIDに対応するアドバイス情報をアドバイスDB12cから読み出し、読み出したアドバイス情報を表示すると共に、表示したアドバイス情報が役に立つ情報であったか否かの評価を受け付ける評価画面を生成する。図14は、評価画面例を示す模式図である。図14に示す評価画面は、サーバ装置10がユーザ端末20に提供したアドバイス情報を表示し、表示したアドバイス情報のうちで参考になったアドバイス情報を1つ選択できるラジオボタンが設けられている。
ユーザ端末20の制御部21は、サーバ装置10が送信した評価画面を受信し、図14に示すような評価画面を表示部24に表示する(S48)。ユーザ端末20のユーザは、評価画面に表示されたアドバイス情報のうちで、参考になった、役に立った、効果が得られた等と思うアドバイス情報をラジオボタンによって選択する。制御部21は、評価画面を介して、前回提供されたアドバイス情報に対する評価を受け付け、受け付けた評価をサーバ装置10へ送信する(S49)。具体的には、制御部21は、評価画面に設けられたラジオボタンによって、ユーザが参考になったと考えるアドバイス情報の選択を受け付け、選択されたアドバイス情報が有効な情報であったことを示す評価情報をサーバ装置10へ送信する。これにより、前回サーバ装置10から提供された複数のアドバイス情報のうちで、ユーザにとって最適であったアドバイス情報が選択されてサーバ装置10に通知される。
サーバ装置10の制御部(評価取得部)11は、ユーザ端末20が送信した評価情報を取得し、取得した評価情報に基づいて、アドバイス判別器12bの再学習を行う(S50)。具体的には、制御部(再学習部)11は、このユーザの生体データをユーザ情報DBから読み出し、読み出した生体データと、ユーザ端末20から受信した評価情報によって有効な情報であると示されたアドバイス情報とに基づいて、アドバイス判別器12bを再学習させる。なお、制御部11は、読み出した生体データに含まれる各データを、アドバイス判別器12bの入力層における入力ノードのそれぞれに入力し、出力層において、有効であるとされたアドバイス情報に対応する出力ノードの出力値が1.0に近づき、その他の出力ノードの出力値が0に近づくようにアドバイス判別器12bを学習させる。
これにより、アドバイス判別器12bによる処理によってユーザ端末20に提供されたアドバイス情報が有効であったか否かの評価をユーザが行うことができる。また、ユーザによる評価に基づいてアドバイス判別器12bを再学習させることにより、ユーザの評価が反映され、より適切なアドバイス情報の判別が可能なアドバイス判別器12bが得られる。なお、サーバ装置10は、複数のユーザ端末20から逐次送信されてくる評価情報を生体データと共に蓄積しておき、所定のタイミングで、蓄積した生体データ及び評価情報に基づいてアドバイス判別器12bの再学習を行う構成でもよい。また、蓄積した生体データ及び評価情報を学習装置30へ送信し、学習装置30にてアドバイス判別器の再学習を行う構成でもよい。
その後、サーバ装置10の制御部11は、このユーザの生体データをユーザ情報DBから読み出し、ユーザ端末20へ送信する(S51)。即ち、前回のアドバイス提供処理においてユーザ端末20からサーバ装置10へ送信されていた生体データをユーザ端末20へ送信する。ユーザ端末20の制御部21は、サーバ装置10が送信した前回の生体データを受信し(S52)、図11中のステップS21と同様に、ユーザの身体の状態に関する各種のデータの入力を受け付ける入力画面を表示部24に表示する(S21)。ここでは、制御部21は、サーバ装置10から受信した生体データに含まれる各情報を、入力画面中の対応する入力欄に表示した状態で表示部24に表示する。そして、制御部21は、図11中のステップS22以降の処理を行う。これにより、2回目以降の処理において、前回入力した生体データの入力を省略することができ、ユーザの入力操作の負担を軽減できる。入力画面は、入力済みの情報に対して入力部25を介して更新できるように構成してあり、前回から変更があったデータに対して入力部25を介して変更できる。よって、ステップS22において、制御部21は、入力画面を介して、新たに入力されたデータ及び更新されたデータを含む生体データを受け付ける。
本実施形態では、上述した実施形態1と同様の効果が得られる。また本実施形態では、ユーザ登録しておくことにより、サーバ装置10がユーザ(ユーザ端末20)に提供したアドバイス情報の履歴を蓄積することができる。よって、サーバ装置10は、ユーザ端末20から取得した生体データだけでなく、過去に提供したアドバイス情報も考慮して、ユーザに提供すべきアドバイス情報を特定してもよい。また、本実施形態では、ユーザ端末20がサーバ装置10にアドバイスの提供を要求した場合に、前回サーバ装置10が提供したアドバイス情報に対するユーザの評価を受け付けることができる。よって、アドバイス判別器12bを用いて特定したアドバイス情報が有効であったか否かの評価に基づいて、アドバイス判別器12bを再学習させることができる。このようなアドバイス判別器12bを用いることによって、より適切なアドバイス情報の特定が可能となる。
また、サーバ装置10が提供したアドバイス情報に対するユーザの評価を受け付けることにより、生体データ及びアドバイス情報に対する評価を、医療機関、製薬会社、サプリメントメーカ、医療機器メーカ等に提供することができる。例えば、ユーザに提供したアドバイス情報に市販薬の情報が含まれる場合、この市販薬を製造又は販売している製薬会社に、このアドバイス情報と、ユーザの生体データと、アドバイス情報に対する評価とを提供(フィードバック)することができる。医療機関、製薬会社、サプリメントメーカ、医療機器メーカ等では、これらの情報を取得することにより、治療内容、投薬内容、サプリメントの摂取内容、医療機器等の改善に利用できる。
本実施形態において、ユーザ情報DBに記憶してあるユーザの個人情報に、例えばかかりつけの医療機関及び/又は医師の情報を含めてもよい。そして、サーバ装置10は、特定したアドバイス情報が、例えば医療機関の受診に関する情報であった場合、アドバイス情報をユーザ(ユーザ端末20)に提供すると共に、かかりつけの医療機関及び/又は医師に、このユーザが医療機関の受診を要する可能性が高いことを通知してもよい。また、このとき、ユーザからの許可が得られた場合に、かかりつけの医療機関及び/又は医師に通知するようにしてもよい。このように医療機関及び/又は医師に通知することにより、医療機関及び/又は医師側からユーザに連絡を取り、ユーザの状態を問い合わせ、ユーザに医療機関の受診を勧めることができる。よって、医療機関の受診に消極的なユーザであっても医療機関を受診する可能性が高まる。
本実施形態において、ユーザ登録しているユーザだけでなく、ユーザ登録していないユーザも情報提供システムを利用できるように構成してもよい。この場合、ユーザ登録していないユーザに対しては、実施形態1と同様の処理により、サーバ装置10からユーザ端末20にアドバイス情報が提供される。また、ユーザ登録しているユーザと、ユーザ登録していないユーザとにおいて、提供するアドバイス情報を異ならせてもよい。例えば、ユーザ登録していないユーザに対しては、アドバイス判別器12bによって特定された1つのアドバイス情報のみを提供し、ユーザ登録しているユーザに対しては、アドバイス判別器12bによって特定された複数のアドバイス情報を提供してもよい。また、ユーザ登録しているユーザに対しては、アドバイス情報に、アドバイス情報に関連する広告情報を付加して提供してもよい。更に、例えば運動に関するアドバイスはユーザ登録しているユーザに対してのみ提供される等、アドバイスの内容に応じて、提供対象をユーザ登録しているユーザ、ユーザ登録していないユーザ又は両方のユーザと異ならせてもよい。
(実施形態3)
ユーザの属性毎に異なるアドバイス判別器12bを用いてアドバイスの特定を行う情報提供システムについて説明する。本実施形態の情報提供システムの各装置は、実施形態1の各装置と同様の構成を有する。上述した実施形態1,2のサーバ装置10は、1つのアドバイス判別器12bを用いて、ユーザ端末20から取得した生体データに対応するアドバイス情報を特定していた。即ち、実施形態1,2のサーバ装置10は、ユーザ端末20から取得した生体データを全て1つのアドバイス判別器12bに入力し、生体データに含まれる複数の情報に対応するアドバイス情報を特定していた。本実施形態のサーバ装置10は、ユーザ端末20から取得した生体データからユーザの属性(年齢及び性別)を抽出し、抽出した属性に対応するアドバイス判別器12bを用いて、生体データに含まれる属性以外の情報に対応するアドバイス情報を特定する。即ち、本実施形態のサーバ装置10は、ユーザの属性に対応するアドバイス判別器12bに、属性以外の情報を入力し、属性以外の情報に対応するアドバイス情報を特定する。よって、本実施形態のサーバ装置10の記憶部12には、ユーザの属性(年齢及び性別)に応じた複数のアドバイス判別器12bが記憶されている。
ユーザの属性毎に異なるアドバイス判別器12bを用いてアドバイスの特定を行う情報提供システムについて説明する。本実施形態の情報提供システムの各装置は、実施形態1の各装置と同様の構成を有する。上述した実施形態1,2のサーバ装置10は、1つのアドバイス判別器12bを用いて、ユーザ端末20から取得した生体データに対応するアドバイス情報を特定していた。即ち、実施形態1,2のサーバ装置10は、ユーザ端末20から取得した生体データを全て1つのアドバイス判別器12bに入力し、生体データに含まれる複数の情報に対応するアドバイス情報を特定していた。本実施形態のサーバ装置10は、ユーザ端末20から取得した生体データからユーザの属性(年齢及び性別)を抽出し、抽出した属性に対応するアドバイス判別器12bを用いて、生体データに含まれる属性以外の情報に対応するアドバイス情報を特定する。即ち、本実施形態のサーバ装置10は、ユーザの属性に対応するアドバイス判別器12bに、属性以外の情報を入力し、属性以外の情報に対応するアドバイス情報を特定する。よって、本実施形態のサーバ装置10の記憶部12には、ユーザの属性(年齢及び性別)に応じた複数のアドバイス判別器12bが記憶されている。
本実施形態の情報提供システムにおけるアドバイス提供処理は、図11に示す処理と同様である。なお、本実施形態の情報提供システムでは、図11中のステップS25において、サーバ装置10の制御部11は、ユーザ端末20から取得した生体データからユーザの属性を抽出し、抽出した属性に対応したアドバイス判別器12bを用いて、生体データに含まれる属性以外の情報に対応するアドバイス情報を特定する。その他の処理は実施形態1で説明した処理と同様である。
本実施形態では、上述した実施形態1,2と同様の効果が得られる。また本実施形態では、ユーザの属性毎に異なるアドバイス判別器12bを用いるので、属性毎にアドバイス判別器12bを学習させることができる。よって、それぞれの属性に応じたアドバイス判別器12bを生成でき、属性に適したアドバイス判別器12bを用いることができる。
(実施形態4)
ユーザの生体データに含まれる情報又は情報の種類に応じて複数のアドバイス判別器12bを用いてアドバイスの特定を行う情報提供システムについて説明する。本実施形態の情報提供システムの各装置は、実施形態1の各装置と同様の構成を有するので、同様の構成については詳細な説明を省略する。本実施形態のサーバ装置10は、ユーザ端末20から取得した生体データに含まれる情報又は情報の種類に応じた複数のアドバイス判別器12bを用いてアドバイス情報を特定する。よって、本実施形態のサーバ装置10の記憶部12には、生体データに含まれる情報又は情報の種類等に応じた複数のアドバイス判別器12b(図15では、第1アドバイス判別器12ba及び第2アドバイス判別器12bb)が記憶されている。また、記憶部12には、それぞれのアドバイス判別器12bで判別可能なアドバイス情報が登録された複数のアドバイスDB12c(図15では、第1アドバイスDB12ca及び第2アドバイスDB12cb)が記憶されている。
ユーザの生体データに含まれる情報又は情報の種類に応じて複数のアドバイス判別器12bを用いてアドバイスの特定を行う情報提供システムについて説明する。本実施形態の情報提供システムの各装置は、実施形態1の各装置と同様の構成を有するので、同様の構成については詳細な説明を省略する。本実施形態のサーバ装置10は、ユーザ端末20から取得した生体データに含まれる情報又は情報の種類に応じた複数のアドバイス判別器12bを用いてアドバイス情報を特定する。よって、本実施形態のサーバ装置10の記憶部12には、生体データに含まれる情報又は情報の種類等に応じた複数のアドバイス判別器12b(図15では、第1アドバイス判別器12ba及び第2アドバイス判別器12bb)が記憶されている。また、記憶部12には、それぞれのアドバイス判別器12bで判別可能なアドバイス情報が登録された複数のアドバイスDB12c(図15では、第1アドバイスDB12ca及び第2アドバイスDB12cb)が記憶されている。
図15は、実施形態4のサーバ装置10の制御部11によって実現される機能を示すブロック図である。本実施形態のサーバ装置10の制御部11は、記憶部12に記憶してあるアドバイス提供プログラム12aを実行した場合、生体データ取得部101、アドバイス特定部102、提供情報生成部103、出力部104の各機能を実現する。なお、これらの各機能の一部を専用のハードウェア回路で実現してもよい。生体データ取得部101及び出力部104は、図5に示した実施形態1の各機能と同様の処理を行う。
本実施形態のアドバイス特定部102は第1アドバイス特定部102a及び第2アドバイス特定部102bを有する。本実施形態のアドバイス特定部102は、生体データ取得部101が取得した生体データに含まれる情報を、レントゲン等の撮影装置で撮影した画像データ(撮影画像)と、それ以外の情報とに分類し、それぞれの情報に対して異なるアドバイス判別器12bを用いてアドバイス情報を特定する。例えば、第1アドバイス判別器12baは、図3に示した実施形態1のアドバイス判別器12bであり、第1アドバイス特定部102aは、生体データ取得部101が取得した生体データに含まれる撮影画像以外の情報に基づいて、この情報に対応するアドバイス情報を第1アドバイス判別器12baによって特定する。
第2アドバイス判別器12bbは、例えば深層学習処理によって構築された畳み込みニューラルネットワークモデル(CNN)であり、生体データに含まれる撮影画像に基づいて、ユーザに提供すべきアドバイスが、予め学習した複数のアドバイス情報のいずれであるかを特定(判別)する。図示は省略するが、第2アドバイス判別器12bbは、入力層、中間層及び出力層から構成され、中間層は畳み込み層、プーリング層及び全結合層を含む。生体データに含まれる撮影画像は、学習済みの第2アドバイス判別器12bbの入力層に与えられた場合、入力層の各入力ノードを介して中間層に入力される。中間層に入力された撮影画像は、畳み込み層におけるフィルタ処理等によって画像特徴量が抽出されて特徴マップが生成され、プーリング層で圧縮されて情報量が削減される。畳み込み層及びプーリング層は複数層繰り返し設けられており、複数の畳み込み層及びプーリング層によって生成された特徴マップは、全結合層に入力される。全結合層は複数層設けられており、入力された特徴マップに基づいて、各層間の重み付け係数や関数を用いて各層のノードの出力値を算出し、算出した出力値を順次後の層のノードに入力する。全結合層は、各層のノードの出力値を順次後の層のノードに入力することにより、最終的に出力層の各出力ノードにそれぞれの出力値を与える。出力層の各出力ノードからの出力値は、複数種類のアドバイスのそれぞれに対する判別確率を示す。第2アドバイス特定部102bは、生体データ取得部101が取得した生体データに含まれる撮影画像に基づいて、この撮影画像に対応するアドバイス情報を第2アドバイス判別器12bbによって特定する。
本実施形態のアドバイス特定部102は、例えば第1アドバイス判別器12baが出力した判別確率が最大のアドバイス情報と、第2アドバイス判別器12bbが出力した判別確率が最大のアドバイス情報とを提供すべきアドバイスに特定する。本実施形態の提供情報生成部103は、第1アドバイス判別器12baを用いて特定されたアドバイス情報と、第2アドバイス判別器12bbを用いて特定されたアドバイス情報とをユーザに提供するための提供情報を生成する。例えば、提供情報生成部103は、特定されたアドバイス情報を表示するための表示情報を生成する。なお、提供情報生成部103は、第1アドバイス判別器12baを用いて特定されたアドバイス情報と、第2アドバイス判別器12bbを用いて特定されたアドバイス情報とを、第1アドバイス判別器12ba及び第2アドバイス判別器12bbから出力された判別確率が高い順に提供する提供情報を生成してもよい。
本実施形態の情報提供システムにおけるアドバイス提供処理は、図11に示す処理と同様である。なお、本実施形態の情報提供システムでは、図11中のステップS25において、サーバ装置10の制御部11は、ユーザ端末20から取得した生体データに含まれる情報を、撮影画像(画像データ)と、それ以外の情報とに分類する。そして、制御部11は、第1アドバイス判別器12baを用いて撮影画像以外の情報に対応するアドバイス情報を特定し、第2アドバイス判別器12bbを用いて撮影画像に対応するアドバイス情報を特定する。よって、制御部11は、第1アドバイス判別器12baを用いて特定したアドバイス情報と、第2アドバイス判別器12bbを用いて特定したアドバイス情報とに基づいて、ユーザに提供すべきアドバイス情報を特定する。その他の処理は実施形態1で説明した処理と同様である。
本実施形態では、上述した実施形態1~3と同様の効果が得られる。また本実施形態では、ユーザの生体データに含まれる情報に応じて異なるアドバイス判別器12ba,12bbを用いるので、情報の種類毎にアドバイス判別器12ba,12bbを学習させることができる。よって、それぞれの情報に応じたアドバイス判別器12ba,12bbを生成でき、それぞれの情報に適したアドバイス判別器12ba,12bbを用いることができる。
本実施形態において、アドバイス特定部102は、2つのアドバイス判別器12ba,12bbを用いてアドバイス情報を特定する構成に限らず、3つ以上のアドバイス判別器を用いる構成であってもよい。また、第2アドバイス判別器12bbは、畳み込みニューラルネットワークモデルに限定されず、他の機械学習のアルゴリズムによって構築された学習モデルを用いることができる。本実施形態の構成は実施形態2,3にも適用可能であり、実施形態2,3に適用した場合であっても同様の効果が得られる。
上述した各実施形態において、アドバイス判別器32b,12bの学習処理に用いる教師データは、人間の生体データと、それぞれの生体データに対して適切なアドバイス情報とを含む教師データであればよい。学習装置30又はサーバ装置10は、このような教師データを、例えば、医療機関が管理するサーバ装置(医療機関端末)、製薬会社や医薬品メーカが管理するサーバ装置、厚生労働省が管理するサーバ装置等から取得してもよい。よって、例えば学習装置30の制御部31は、医療機関等のサーバ装置から教師データを取得し、取得した教師データに基づいてアドバイス判別器32bの学習処理を行ってもよい。また、サーバ装置10の制御部11は、医療機関等のサーバ装置から教師データを取得し、取得した教師データに基づいてアドバイス判別器12bの学習処理を行ってもよい。更に、教師データは、学術論文や研究論文等のデータベースから各種のデータを取得して生成することもできる。
(実施形態5)
ユーザの生体データに基づいて医療機関に関するアドバイスを特定する医療機関判別モデルと、ユーザの生体データに基づいて治療や投薬等の処置に関するアドバイスを特定する処置判別モデルとを用いる情報提供システムについて説明する。図16は実施形態5の情報提供システムの構成例を示す模式図である。本実施形態の情報提供システムは、サーバ装置10及びユーザ端末20のほかに、医療機関で管理される医療機関サーバ40を含み、医療機関サーバ40はネットワークNに接続可能である。サーバ装置10及びユーザ端末20は、実施形態1の各装置と同様の構成を有するので、同様の構成については詳細な説明を省略する。医療機関サーバ40は、医療機関毎に設けられていてもよく、それぞれの医療機関における医療機関サーバ40は、複数台設けられてもよいし、1台の装置内に設けられた複数の仮想マシンによって実現されてもよいし、クラウドサーバを用いて実現されてもよい。
ユーザの生体データに基づいて医療機関に関するアドバイスを特定する医療機関判別モデルと、ユーザの生体データに基づいて治療や投薬等の処置に関するアドバイスを特定する処置判別モデルとを用いる情報提供システムについて説明する。図16は実施形態5の情報提供システムの構成例を示す模式図である。本実施形態の情報提供システムは、サーバ装置10及びユーザ端末20のほかに、医療機関で管理される医療機関サーバ40を含み、医療機関サーバ40はネットワークNに接続可能である。サーバ装置10及びユーザ端末20は、実施形態1の各装置と同様の構成を有するので、同様の構成については詳細な説明を省略する。医療機関サーバ40は、医療機関毎に設けられていてもよく、それぞれの医療機関における医療機関サーバ40は、複数台設けられてもよいし、1台の装置内に設けられた複数の仮想マシンによって実現されてもよいし、クラウドサーバを用いて実現されてもよい。
図17は、実施形態5のサーバ装置10の構成例を示すブロック図である。本実施形態のサーバ装置10の記憶部12は、アドバイス判別器12b及びアドバイスDB12cの代わりに、医療機関判別モデル12d、医療機関DB12e、処置判別モデル12f及び処置DB12gを記憶している。医療機関判別モデル12d及び処置判別モデル12fは、図3に示すようなアドバイス判別器12bと同様の構成を有しており、例えば深層学習アルゴリズムを用いて学習させた深層学習(ディープラーニング)モデルである。医療機関判別モデル(第1学習モデル)12dは、ユーザの身体の状態に関連するデータが入力された場合に、入力されたデータに基づいてユーザに受診を提案すべき医療機関を特定するように学習した学習済モデルである。医療機関判別モデル12dのそれぞれの出力ノードは、医療機関DB12eに記憶してあるそれぞれの医療機関に対する判別確率を出力する。なお、医療機関判別モデル12dによって判別される医療機関には、医療用ヘリコプタ(ドクターヘリ)が含まれていてもよい。
医療機関判別モデル12dは例えば、人の身体の状態に関連する生体データと、それぞれの生体データに対して適切であった医療機関の情報(正解ラベル)とを1セットとした教師データ(第1教師データ)を用いて学習する。なお、1つの生体データには、1人の人の身体の状態に関する各種の情報が含まれる。医療機関判別モデル12dは、教師データに含まれる生体データが入力された場合に、教師データに含まれる正解ラベルが示す医療機関に対応する出力ノードからの出力値が1.0に近づき、その他の出力ノードからの出力値が0に近づくように学習する。なお、医療機関判別モデル12dは、例えば中間層の各層のノードを結合する重み付け係数及び関数等のデータを学習アルゴリズムによって最適化する。これにより、ユーザの生体データに基づいてユーザに最適な医療機関の情報を出力するように学習された医療機関判別モデル12dが得られる。医療機関判別モデル12dの学習(再学習)処理は、サーバ装置10が行ってもよいし、実施形態1で説明した学習装置30が行ってもよいし、他の装置が行ってもよい。
処置判別モデル(第2学習モデル)12fは、ユーザの身体の状態に関連するデータが入力された場合に、入力されたデータに基づいて、このユーザに必要と考えられる処置を特定するように学習した学習済モデルである。処置判別モデル12fのそれぞれの出力ノードは、処置DB12gに記憶してあるそれぞれの処置に対する判別確率を出力する。なお、処置判別モデル12fは、後述するように医療機関サーバ40へ送出されて医療機関で用いられる。よって、処置判別モデル12fが特定する処置は、例えばユーザの主治医に、ユーザに必要な処置として提案される。
処置判別モデル12fは例えば、人の身体の状態に関連する生体データと、それぞれの生体データに対して適切であった処置の情報(正解ラベル)とを1セットとした教師データ(第2教師データ)を用いて学習する。なお、1つの生体データには、1人の人の身体の状態に関する各種の情報が含まれる。処置判別モデル12fは、教師データに含まれる生体データが入力された場合に、教師データに含まれる正解ラベルが示す処置に対応する出力ノードからの出力値が1.0に近づき、その他の出力ノードからの出力値が0に近づくように学習する。なお、処置判別モデル12fは、例えば中間層の各層のノードを結合する重み付け係数及び関数等のデータを学習アルゴリズムによって最適化する。これにより、ユーザの生体データに基づいてユーザに最適な処置の情報を出力するように学習された処置判別モデル12fが得られる。処置判別モデル12fの学習(再学習)処理は、サーバ装置10が行ってもよいし、実施形態1で説明した学習装置30が行ってもよいし、他の装置が行ってもよい。
図18Aは、医療機関DB12eの構成例を示す模式図、図18Bは、処置DB12gの構成例を示す模式図である。医療機関DB12eには、医療機関判別モデル12dの出力ノードの数と同数の医療機関の情報が、それぞれの医療機関の情報に割り当てられた識別情報である医療機関IDに対応付けて登録されている。医療機関の情報は、医療機関判別モデル12dが入力データに基づいて特定する医療機関の情報であり、医療機関名、診療科名及び医師名等を含む。処置DB12gには、処置判別モデル12fの出力ノードの数と同数の処置の情報が、それぞれの処置の情報に割り当てられた識別情報である処置IDに対応付けて登録されている。処置の情報は、処置判別モデル12fが入力データに基づいて特定する処置の情報であり、生体データに基づく診断結果、行うべき検査内容、投薬内容、手術内容、他の医療機関で行うべき検査内容、他の医療機関で行うべき手術内容、ゲノム解析やiPS細胞を用いた治療内容等の種々の処置の情報を含む。
次に、本実施形態のサーバ装置10において制御部11が実現する機能について説明する。図19は、実施形態5のサーバ装置10の制御部11によって実現される機能を示すブロック図である。本実施形態のサーバ装置10の制御部11は、アドバイス提供プログラム12aを実行した場合、生体データ取得部101、医療機関特定部105、提供情報生成部103、出力部104の各機能を実現する。即ち、本実施形態のサーバ装置10は、図5に示す実施形態1のサーバ装置10が実現する各機能において、アドバイス特定部102の代わりに、医療機関特定部105の機能を実現する。なお、生体データ取得部101及び出力部104は、実施形態1と同様の処理を行う。
医療機関特定部(第1特定部)105は、生体データ取得部101が取得した生体データに基づいて、この生体データが示すユーザの身体の状態に対して適切な医療機関を、医療機関判別モデル12dを用いて特定(判別)する。具体的には、医療機関特定部105は、生体データ取得部101が取得した生体データのそれぞれを、医療機関判別モデル12dの入力層の各入力ノードに入力し、医療機関判別モデル12dの出力層の各出力ノードからの出力値を取得する。医療機関判別モデル12dの各出力ノードからの出力値は、医療機関DB12eに登録されている医療機関情報のそれぞれに対する判別確率である。医療機関特定部105は、医療機関判別モデル12dによる判別結果(判別確率)に基づいて、ユーザに提供すべき医療機関の情報を特定する。医療機関特定部105は、例えば医療機関判別モデル12dが出力した判別確率が最大の医療機関を、提供すべき出力対象の医療機関に特定する。なお、医療機関特定部105は、判別確率(出力値)が最大の出力ノードに対応する医療機関IDを取得する。
提供情報生成部103は、医療機関特定部105が特定した医療機関の情報をユーザ端末20によりユーザに提供するための提供情報を生成する。具体的には、提供情報生成部103は、医療機関特定部105が特定した医療機関IDに対応する医療機関の情報を医療機関DB12eから読み出し、読み出した医療機関の情報を表示するための表示情報を生成する。図20は、画面例を示す模式図である。図20に示すアドバイス画面は、医療機関特定部105が特定した医療機関の情報を表示する。なお、アドバイス画面は、お勧めの医療機関の名称、診療科名、担当医師名等を表示し、例えば表示された医療機関のホームページへのリンクを設けてもよい。またアドバイス画面には、お勧めの医療機関の周辺地図や担当医師の外来診療表等を表示してもよい。
なお、医療機関特定部105は、医療機関判別モデル12dからの出力値が大きい順に複数の出力ノードに対応する医療機関IDを取得してもよく、この場合、提供情報生成部103は、複数の医療機関の情報を表示する表示情報を生成してもよい。出力部104は、提供情報生成部103が生成した表示情報を通信部13からユーザ端末20へ送信し、ユーザ端末20は、受信した表示情報に基づいて図20に示すような画面を表示する。これにより、ユーザの身体の状態に応じて受診すべき医療機関をユーザに提案できる。
本実施形態において、医療機関判別モデル12dを、ユーザの生体データだけでなくユーザの住所又は居所や通院可能な地域等の地域情報(位置情報)が入力され、入力された生体データ及び地域情報に基づいて、ユーザに提供すべき医療機関を判別するように構成してもよい。具体的には、医療機関判別モデル12dを、生体データだけでなく地域情報が入力され、入力された生体データ及び地域情報に基づいて、受診すべき医療機関を示す情報を出力するように構成してもよい。この場合、ユーザの生体データに基づく症状だけでなく、ユーザの住所等も考慮した医療機関を特定できるので、ユーザが通院し易い医療機関を紹介できる。また、地域や地方毎に医療機関判別モデル12dを設けてもよい。この場合、医療機関特定部105は、例えばユーザ端末20から取得したユーザの地域情報に対応する医療機関判別モデル12dを特定し、特定した医療機関判別モデル12dに、ユーザの生体データを入力することにより、ユーザの地域に応じた医療機関を特定できる。また、医療機関判別モデル12dが判別する医療機関に医療用ヘリコプタが含まれるように構成した場合、ユーザの症状とユーザが住む地域とに応じて、ユーザに提供すべき医療機関として医療用ヘリコプタが特定されてユーザに提供できる。これにより、ユーザの症状が緊急を要する場合やユーザの近くに医療機関がない場合等であっても、医療用ヘリコプタによる受診を提案できる。なお、サーバ装置10は、ユーザからの希望に応じて医療用ヘリコプタの出動要請を行うように構成されていてもよい。
本実施形態の情報提供システムでは、サーバ装置10は、処置判別モデル12f及び処置DB12gを必要に応じて医療機関サーバ40へ提供する。なお、提供の方法は、例えばネットワークN経由でもよく、USBメモリ、CD-R等の可搬型記憶媒体を用いる方法でもよい。サーバ装置10は、例えば医療機関特定部105によって特定してユーザに受診を提案した医療機関(第1医療機関)の医療機関サーバ40に処置判別モデル12f及び処置DB12gを提供してもよい。また、ユーザが第1医療機関を受診して第1医療機関の医師から、例えばユーザの自宅近傍の通院し易い医療機関(第2医療機関)への紹介状を取得した場合に、処置判別モデル12f及び処置DB12gが第2医療機関の医療機関サーバ40に提供されてもよい。このとき、処置判別モデル12f及び処置DB12gは、サーバ装置10から第2医療機関の医療機関サーバ40に提供されてもよいし、第1医療機関の医療機関サーバ40から第2医療機関の医療機関サーバ40に提供されてもよい。なお、サーバ装置10が処置判別モデル12f及び処置DB12gを提供する場合、サーバ装置10の制御部11は、第2医療機関の医療機関サーバ40に処置判別モデル12fを出力するモデル出力部として機能する。また、例えば処置判別モデル12fを有料で提供する場合、医療機関サーバ40が処置判別モデル42bを使用できる期間を制限してもよく、また、使用期間が経過した後に、記憶部42から処置判別モデル42b及び処置DB42cが自動的に削除されるように構成してもよい。また、第2医療機関の医療機関サーバ40が処置判別モデル42bを使用できる回数を制限してもよい。
図21は、医療機関サーバ40の構成例を示すブロック図である。医療機関サーバ40は、サーバ装置10と同様の構成を有し、更に表示部44及び入力部45を有する。なお、同様の構成については詳細な説明を省略する。医療機関サーバ40の記憶部42は、アドバイス提供プログラム42a、処置判別モデル42b及び処置DB42cを記憶している。アドバイス提供プログラム42a、処置判別モデル42b及び処置DB42cは、サーバ装置10の記憶部12に記憶してあるアドバイス提供プログラム12a、処置判別モデル12f及び処置DB12gと同じものである。なお、医療機関サーバ40に記憶されるアドバイス提供プログラム42aは、処置判別モデル42bを用いて特定された処置を提供する処理を実行するためのプログラムであってもよい。
表示部44は、例えば液晶ディスプレイ、有機ELディスプレイ等であり、制御部41からの指示に従って各種の情報を表示する。入力部45は、ユーザによる操作入力を受け付け、操作内容に対応した制御信号を制御部41へ送出する。なお、表示部44及び入力部45は一体として構成されたタッチパネルであってもよい。
図22は、医療機関サーバ40の制御部41によって実現される機能を示すブロック図である。医療機関サーバ40の制御部41は、アドバイス提供プログラム42aを実行した場合、生体データ取得部401、処置特定部402、提供情報生成部403、出力部404の各機能を実現する。生体データ取得部401は、例えば図6に示すようなユーザ(患者)の身体の状態に関する生体データを入力するための入力画面を表示部44に表示し、入力画面に対して入力部45を介して入力されたユーザの生体データを取得する。なお、生体データ取得部401は、医療機関で用いられている電子カルテから各種の生体データを取得してもよい。
処置特定部(第2特定部)402は、生体データ取得部401が取得した生体データに基づいて、この生体データが示すユーザ(患者)の身体の状態に対して適切な処置を、処置判別モデル42bを用いて特定(判別)する。具体的には、処置特定部402は、生体データ取得部401が取得した生体データのそれぞれを、処置判別モデル42bの入力層の各入力ノードに入力し、処置判別モデル42bの各出力ノードからの出力値を取得する。処置判別モデル42bの各出力ノードからの出力値は、処置DB42cに登録されている処置情報のそれぞれに対する判別確率である。処置特定部402は、処置判別モデル42bによる判別結果(判別確率)に基づいて、ユーザ(ここでは医師等)に提供すべき処置の情報を特定する。処置特定部402は、例えば処置判別モデル42bが出力した判別確率が最大の処置を、提供すべき出力対象の処置に特定する。なお、処置特定部402は、判別確率(出力値)が最大の出力ノードに対応する処置IDを取得する。
提供情報生成部403は、処置特定部402が特定した処置の情報を表示部44に表示して提供するための提供情報を生成する。具体的には、提供情報生成部403は、処置特定部402が特定した処置IDに対応する処置の情報を処置DB42cから読み出し、読み出した処置の情報を表示するための表示情報を生成する。出力部404は、提供情報生成部403が生成した表示情報に基づいて、図23に示すような画面を表示部44に表示する。図23は、画面例を示す模式図である。図23に示すアドバイス画面は、処置特定部402が特定した処置の情報を表示し、提案する処置(アドバイス)が妥当(適切)であるか否かを評価するための「妥当である」ボタン及び「妥当でない」ボタンを有する。またアドバイス画面は、医師等が妥当でないと判断した場合に適切であると考える処置内容を入力するための入力欄と、入力された情報を例えばサーバ装置10へ送信するための送信ボタンとを有する。このような画面により、医療機関サーバ40を用いる医師等に、ユーザ(患者)の身体の状態に応じて行うべき処置を提案できる。
なお、処置特定部402は、処置判別モデル42bからの出力値が大きい順に複数の出力ノードに対応する処置IDを取得してもよく、この場合、提供情報生成部403は、複数の処置の情報を表示する表示情報を生成してもよい。この場合、表示情報に基づくアドバイス画面は、表示した処置の中から最適な処置を選択する選択ボタンを有してもよい。図23に示すアドバイス画面において、「妥当である」ボタンが操作されて送信ボタンが操作された場合、医療機関サーバ40は、生体データ取得部401が取得した患者の生体データと、処置特定部402が特定した処置の情報と、この処置が妥当であることを示す情報とをまとめてサーバ装置10へ送信する。これにより、サーバ装置10は、患者の生体データと、この生体データに基づいて医療機関サーバ40で処置判別モデル42bを用いて特定された処置の情報と、この処置に対する適否を示す評価情報とを含む教師データを取得する教師データ取得部として機能する。
また、アドバイス画面において、「妥当でない」ボタンが操作されて入力欄への入力が行われて送信ボタンが操作された場合、医療機関サーバ40は、生体データ取得部401が取得した患者の生体データと、処置特定部402が特定した処置の情報と、この処置が妥当でないことを示す情報と、入力欄に入力された処置の情報とをまとめてサーバ装置10へ送信する。これにより、サーバ装置10の制御部(情報取得部)11は、例えば医療機関判別モデル12dを用いて特定してユーザに受診を提案した医療機関(第1医療機関)で行われた処置に関する情報を患者の生体データと共に取得できる。なお、「妥当でない」ボタンが操作された場合にのみ、医療機関サーバ40がサーバ装置10へ各種の情報を送信する構成としてもよい。また、アドバイス画面によって提案されるアドバイス(処置)に対する評価は、所定期間患者を経過観察した後に行ってもよい。
サーバ装置10は、上述したような教師データや、第1医療機関で行われた処置に関する情報を医療機関サーバ40から取得した場合、取得した情報に基づいて、処置判別モデル12fの再学習を行うことができる。サーバ装置10の制御部11は、上述した教師データを取得した場合、教師データに含まれる評価情報が、処置が適切であることを示す情報であれば、患者の生体データと、この生体データに基づいて医療機関サーバ40で特定された処置の情報とに基づいて、処置判別モデル12fを再学習させる。なお、制御部11は、生体データに含まれる各データを、処置判別モデル12fの入力ノードにそれぞれ入力し、出力層において、医療機関サーバ40で特定された処置に対応する出力ノードの出力値が1.0に近づき、その他の出力ノードの出力値が0に近づくように処置判別モデル12fを学習させる。また、サーバ装置10の制御部11は、第1医療機関で行われた処置に関する情報を医療機関サーバ40から取得した場合、取得した処置に関する情報と、この時の患者の生体データとに基づいて処置判別モデル12fを再学習させる。ここでは、制御部11は、生体データに含まれる各データを、処置判別モデル12fの入力ノードに入力し、出力層において、第1医療機関で行われた処置に対応する出力ノードの出力値が1.0に近づき、その他の出力ノードの出力値が0に近づくように処置判別モデル12fを学習させる。
これにより、医療機関サーバ40において処置判別モデル42bによる処理によって提供された処置に関するアドバイス情報が有効であったか否かの評価を、医師等の医療機関におけるユーザが行うことができる。また、アドバイス情報に対する評価に基づいて処置判別モデル12fを再学習させることにより、医師等の評価が反映され、より適切なアドバイス情報の判別が可能な処置判別モデル12fが得られる。なお、サーバ装置10は、複数の医療機関サーバ40から逐次送信されてくる評価情報を生体データと共に蓄積しておき、所定のタイミングで、蓄積した生体データ及び評価情報に基づいて処置判別モデル12fの再学習を行う構成でもよい。また、処置判別モデル12fの再学習は、サーバ装置10で行ってもよいし、実施形態1で説明した学習装置30で行ってもよいし、他の学習装置で行ってもよい。
次に、本実施形態の情報提供システムにおいてサーバ装置10による医療機関に関するアドバイス提供処理について説明する。図24は、サーバ装置10によるアドバイス提供処理の手順を示すフローチャートである。図24に示す処理は、図11に示す処理において、ステップS25の代わりにステップS61を追加したものである。よって、図11と同様のステップについては説明を省略する。本実施形態のサーバ装置10の制御部11は、ユーザ端末20から生体データを取得した場合(S24)、取得した生体データに基づいて、生体データが示すユーザの身体の状態に適した医療機関を、医療機関判別モデル12dを用いて特定する(S61)。そして、制御部11は、医療機関判別モデル12dによる特定結果(判別結果)に基づいて、ユーザに医療機関の受診を提案するアドバイスを提供するための提供情報を生成する(S26)。
上述した処理により、本実施形態のサーバ装置10は、図20に示すようなアドバイス画面をユーザ端末20に提供でき、ユーザ端末20のユーザの生体データに対して最適な医療機関の受診を提案することができる。よって、ユーザは、適切な医療機関を早期に受診することができ、病気やケガを早期に発見できると共に、医療機関間でたらい回しされたり、受診した医療機関において診療科間でたらい回しされることを抑制できる。
次に、本実施形態の情報提供システムにおいて医療機関サーバ40による処置に関するアドバイス提供処理について説明する。図25は、医療機関サーバ40によるアドバイス提供処理の手順を示すフローチャートである。図25において左側には医療機関サーバ40の制御部41が行う処理を示し、右側にはサーバ装置10の制御部11が行う処理を示す。
本実施形態の情報提供システムにおいて、医療機関サーバ40によって処置内容に関するアドバイスの提供を受けたい場合、医師等の医療機関におけるユーザは、医療機関サーバ40に対してアドバイス提供プログラム42aの起動を指示する。医療機関サーバ40の制御部41は、記憶部42に記憶してあるアドバイス提供プログラム42aを起動し、例えば図6に示すような入力画面を表示部44に表示する(S71)。入力画面は、ユーザの身体の状態に関する各種のデータの入力を受け付けるための画面であり、制御部41は、入力画面を介して各種のデータを含む生体データを受け付ける(S72)。制御部41は、入力画面を介して受け付けた生体データに基づいて、生体データが示すユーザの身体の状態に適した処置を、処置判別モデル42bを用いて特定する(S73)。制御部41は、処置判別モデル42bによる特定結果(判別結果)に基づいて、処置に関するアドバイスを医療機関のユーザに提供するための提供情報を生成する(S74)。制御部41は、生成した提供情報に基づいて、図23に示すようなアドバイス画面を表示部44に表示する(S75)。これにより、患者の生体データに基づいて特定された処置に関するアドバイスが医師等に通知される。
本実施形態の医療機関サーバ40では、制御部41は、表示されたアドバイス画面において、アドバイス内容(処置内容)に対する評価を受け付けており、アドバイス内容が妥当であるか否かを示す評価情報を入力部45を介して受け付ける(S76)。制御部41は、受け付けた評価情報を、ステップS72で受け付けた生体データと、ステップS73で特定した処置の情報と共に、ネットワークNを介してサーバ装置10へ送信する(S77)。なお、制御部41は、アドバイス内容が妥当でないとの評価を受け付けた場合、アドバイス画面の入力欄に入力された処置内容も併せてサーバ装置10へ送信する。
サーバ装置10の制御部11は、医療機関サーバ40から送信された評価情報を受信する(S78)。なお、制御部11は、評価情報と共に、患者の生体データ及びこの生体データに基づいて特定された処置の情報を受信する。そして、制御部11は、受信した情報を用いて処置判別モデル12fの再学習を行う(S79)。例えば制御部11は、患者の生体データと、この生体データに基づいて医療機関サーバ40で処置判別モデル42bを用いて特定された処置の情報と、この処置に対する適否を示す評価情報とを含む教師データに基づいて処置判別モデル12fの再学習を行うことができる。また制御部11は、医療機関判別モデル12dを用いて特定してユーザに受診を提案した医療機関(第1医療機関)で行われた処置に関する情報と、患者の生体データとに基づいて、処置判別モデル12fの再学習を行うこともできる。
本実施形態では、ユーザの生体データを総合的に判断して最適な医療機関を提案でき、また最適な処置内容を提案できる。よって、ユーザ端末20のユーザに対しては、受診すべき医療機関を提案でき、医療機関の医師等のユーザに対しては、具体的な処置内容を提案できる。これにより、ユーザ端末20のユーザは、適切な医療機関を受診することができ、ユーザの負担を軽減できると共に、不要な医療機関の受診が抑制されるので医療費の削減が期待できる。また、医療機関の医師は、患者の症状を診断する際に、提案された処置内容を考慮することができ、医師による診断を支援でき、診断ミスの抑制が期待できると共に、不要な治療が行われることを抑制できる。医師が患者のあらゆる生体データを確認することは困難であるが、処置判別モデル12fでは患者のあらゆる生体データを用いて処置の特定が行われるので、生体データを有効に利用できると共に、より最適な特定結果が得られる。
本実施形態において、サーバ装置10が、医療機関判別モデル12dを用いてユーザに提供すべき医療機関を特定する際に、ユーザが希望する治療が、健康保険の適用範囲内の治療であるのか自費診療も含むのかを考慮して特定するように構成してもよい。例えば医療機関判別モデル12dを、ユーザの生体データだけでなく、ユーザが健康保険の適用範囲内の治療を希望するのか自費診療も含めて希望するのかを示す情報や、自費診療も含めて希望する場合の医療費の上限額や予算額等を含む金額情報が入力され、入力された生体データ及び金額情報に基づいて、ユーザに提供すべき医療機関を示す情報を出力するように構成してもよい。この場合、ユーザの生体データに基づく症状だけでなく、ユーザが希望する治療の範囲(医療費の予算)も考慮した医療機関を特定してユーザに紹介できる。また、健康保険の適用範囲内の治療、自費診療も含む治療、医療費の上限額や予算額等の金額情報(料金ランク)毎に医療機関判別モデル12dを設けてもよい。この場合、医療機関特定部105は、例えばユーザ端末20から取得したユーザの金額情報(ユーザが希望する予算)に対応する医療機関判別モデル12dを特定し、特定した医療機関判別モデル12dに、ユーザの生体データを入力することにより、ユーザが希望する治療範囲内(予算の範囲内)の医療機関を特定できユーザに紹介できる。
本実施形態では、例えばユーザ端末20のユーザが、サーバ装置10から受診をアドバイスされた第1医療機関を受診した際に、第1医療機関の医師から別の第2医療機関への紹介状を取得した場合に、第2医療機関の医療機関サーバ40に処置判別モデル42b及び処置DB42cが提供される。これにより、第2医療機関において処置判別モデル42bを用いることができるので、第2医療機関の医師に、患者の生体データに対して最適な処置を提案でき、医師による診断を支援できる。よって、医療機関間において生じる医療レベルの差を抑制できる。なお、処置判別モデル42bを用いた医療機関の医療機関サーバ40において、処置判別モデル42bによる特定結果(特定された処置)が適切であるか否かの評価が行われてサーバ装置10にフィードバックされる。よって、処置判別モデル12f,42bは、現場の医師の判断に基づいて最新の検査方法、診断方法、治療方法、投薬方法等を反映させることができる。このような最新の処置判別モデル42bを第2医療機関の医療機関サーバ40に提供することにより、第2医療機関においても第1医療機関と同様の処置の選択が可能となり、医療機関間における治療レベルの偏りを抑制できる。
本実施形態において、第2医療機関の医師等が処置判別モデル42bを使用できるように第2医療機関の医療機関サーバ40に処置判別モデル42b及び処置DB42cが提供される構成に限らない。例えば第2医療機関の医師等が、第2医療機関の医療機関サーバ40又は自身のユーザ端末(図示せず)を用いて、ネットワークN経由でサーバ装置10の処置判別モデル12fを使用できるように構成してもよい。即ち、第2医療機関の医師は、患者の生体データをネットワークN経由でサーバ装置10へ送信し、サーバ装置10から、患者の生体データに対して最適な処置のアドバイスを取得することができる。なお、このような構成において、サーバ装置10をクラウドサーバで構成してもよい。また、このような構成において、第2医療機関の医師等がサーバ装置10の処置判別モデル12fを使用できる期間又は回数を制限してもよい。例えば、使用期間が経過した場合、又は使用可能な回数に到達した場合に、第2医療機関の医師等による処置判別モデル12fの使用が禁止されるようにサーバ装置10を構成すればよい。本実施形態の構成は実施形態2~4にも適用可能であり、実施形態2~4に適用した場合であっても同様の効果が得られる。
(実施形態6)
実施形態5の情報提供システムにおいて、医療機関サーバ40からの評価情報の適否を判定する判定装置を備える情報提供システムについて説明する。本実施形態の情報提供システムは、サーバ装置10、ユーザ端末20及び医療機関サーバ40のほかに判定装置を含み、判定装置はネットワークNに接続可能である。サーバ装置10、ユーザ端末20及び医療機関サーバ40は、実施形態5の各装置と同様であるので説明を省略する。図26は、判定装置の構成例を示すブロック図である。判定装置50は、医療機関サーバ40からサーバ装置10にフィードバックされる評価情報の適否を検証する第三者検証チーム又は第三者検証機関等によって管理される。判定装置50は、パーソナルコンピュータ又はサーバコンピュータ等であり、制御部51、記憶部52、通信部53、表示部54、入力部55を有する。なお、制御部51、記憶部52、通信部53、表示部54及び入力部55のそれぞれは、医療機関サーバ40の各部と同様の処理を行うので、詳細については省略する。
実施形態5の情報提供システムにおいて、医療機関サーバ40からの評価情報の適否を判定する判定装置を備える情報提供システムについて説明する。本実施形態の情報提供システムは、サーバ装置10、ユーザ端末20及び医療機関サーバ40のほかに判定装置を含み、判定装置はネットワークNに接続可能である。サーバ装置10、ユーザ端末20及び医療機関サーバ40は、実施形態5の各装置と同様であるので説明を省略する。図26は、判定装置の構成例を示すブロック図である。判定装置50は、医療機関サーバ40からサーバ装置10にフィードバックされる評価情報の適否を検証する第三者検証チーム又は第三者検証機関等によって管理される。判定装置50は、パーソナルコンピュータ又はサーバコンピュータ等であり、制御部51、記憶部52、通信部53、表示部54、入力部55を有する。なお、制御部51、記憶部52、通信部53、表示部54及び入力部55のそれぞれは、医療機関サーバ40の各部と同様の処理を行うので、詳細については省略する。
図27は、実施形態6の情報提供システムにおけるアドバイス提供処理の手順を示すフローチャートである。図27に示す処理は、図25に示す処理において、ステップS77及びステップS78の間にステップS81~S83を追加したものである。よって、図25と同様のステップについては説明を省略する。なお、図27では、図25中のステップS71~S76の図示を省略している。本実施形態の情報提供システムでは、医療機関サーバ40は、アドバイス画面を介して受け付けたアドバイス内容(処置内容)に対する評価情報を、生体データ及び処置の情報と共に、ネットワークNを介して判定装置50へ送信する(S77)。なお、医療機関サーバ40は、アドバイス内容が妥当でないとの評価情報を受け付けた場合、アドバイス画面の入力欄に入力された処置内容も併せて判定装置50へ送信する。判定装置50の宛先情報は、予め記憶部42に記憶してあるものとする。
判定装置50の制御部51は、医療機関サーバ40から送信された評価情報を、生体データ及び処置の情報と、医療機関サーバ40においてアドバイス画面の入力欄に入力された処置内容と共に受信する(S81)。制御部51は、受信した評価情報が適切であるか否かを判定する(S82)。ここでは、制御部51は、アドバイス内容が妥当でないとの評価情報を受信した場合、生体データと、医療機関サーバ40においてアドバイス画面の入力欄に入力された処置内容とに基づいて、入力された処置内容が適切であるか否かを判定する。医療機関サーバ40において入力された処置内容が適切であるか否かの判定は、例えば第三者検証チーム又は第三者検証機関のメンバによって行われ、制御部51は入力部55を介して判定結果を取得する。また、制御部51は、例えば処置判別モデル12fをサーバ装置10から取得し、処置判別モデル12fを用いて生体データに対応する処置の候補を複数特定し、特定した複数の候補に、医療機関サーバ40において入力された処置内容が含まれる場合、入力された処置内容が適切であると判定してもよい。また制御部51は、アドバイス内容が妥当であるとの評価情報を受信した場合、受信した評価情報は適切であると判定してもよい。
制御部51は、医療機関サーバ40から受信した評価情報が適切でないと判定した場合(S82:NO)、何も行わずに処理を終了する。制御部51は、受信した評価情報が適切であると判定した場合(S82:YES)、受信した評価情報を、生体データ及び処置の情報と、医療機関サーバ40においてアドバイス画面の入力欄に入力された処置内容と共にネットワークN経由でサーバ装置10へ送信する(S83)。サーバ装置10の制御部(検証結果取得部)11は、判定装置50から送信された評価情報を受信する(S78)。なお、制御部11は、評価情報と共に、患者の生体データ及びこの生体データに基づいて特定された処置の情報と、医療機関サーバ40においてアドバイス画面の入力欄に入力された処置内容とを受信する。そして、制御部11は、受信した情報を用いて処置判別モデル12fの再学習を行う(S79)。
本実施形態では、医療機関サーバ40が、処置判別モデル42bによる特定結果(特定された処置)が適切であるか否かを示す評価情報をサーバ装置10の処置判別モデル12fにフィードバックする際に、この評価情報が適切であるか否かが検証される。そして、評価情報が適切であると判定された場合に、医療機関サーバ40が取得した評価情報がサーバ装置10の処置判別モデル12fにフィードバックされる。よって、医療機関における医師の判断が適切であるか否かを検証でき、適切でない場合には、処置判別モデル12fにフィードバックさせないことにより、処置判別モデル12fにおける精度の低下を回避できる。
本実施形態において、判定装置50は、医療機関サーバ40から受信した評価情報が適切であると判定した場合にのみ、受信した評価情報をサーバ装置10へ送信する構成のほかに、医療機関サーバ40から受信した評価情報が適切であるか否かを検証した結果を示す結果情報を、医療機関サーバ40から受信した評価情報と共にサーバ装置10へ送信してもよい。この場合、サーバ装置10は、評価情報と共に判定装置50から受信した結果情報が、評価情報が適切であることを示す情報である場合に、判定装置50を経由して医療機関サーバ40から受信した情報を用いて処置判別モデル12fの再学習を行う構成とすることができる。
本実施形態において、ユーザが第1医療機関の医師から第2医療機関を紹介された場合に、処置判別モデル42b及び処置DB42cが第2医療機関の医療機関サーバ40に提供される構成のほかに、第2医療機関の医師等がネットワークN経由でサーバ装置10の処置判別モデル12fを使用できるように構成してもよい。このような構成においても、第2医療機関の医師は、処置判別モデル12fによって患者の生体データに対して最適な処置のアドバイスを受けることができ、医師による医療行為を支援できる。また、第2医療機関の医師がサーバ装置10の処置判別モデル12fを使用できる期間又は回数を制限してもよい。例えば、使用期間が経過した場合、又は使用可能な回数に到達した場合に、第2医療機関の医師による処置判別モデル12fの使用が禁止されるようにサーバ装置10を構成すればよい。
上述した各実施形態において、サーバ装置10は、アドバイス判別器12b,12ba,12bb又は処置判別モデル12fを用いて、医療機関等で行った各種の検査結果に基づいて総合的な診断を行い、診断結果を出力するように構成されていてもよい。例えば、医療機関の医師が用いる端末に、サーバ装置10による診断結果が出力されて表示され、表示画面において医師が診断結果を確認できるように構成してもよい。また、表示画面において、診断結果に医師等がコメントを追加できるように構成してもよく、通院や人間ドック等での検査履歴を添付できるように構成してもよい。このような構成とすることにより、各ユーザの生体データ及び検査結果を一元管理することができる。また、このようなデータは、例えば医師の端末からプリンタへ送出されることにより、必要に応じてプリントアウトすることもできる。
今回開示された実施の形態はすべての点で例示であって、制限的なものでは無いと考えられるべきである。本開示の範囲は、上記した意味では無く、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
10 サーバ装置
11 制御部
12 記憶部
20 ユーザ端末
30 学習装置
101 生体データ取得部
102 アドバイス特定部
104 出力部
301 教師データ取得部
302 学習部
12b,32b アドバイス判別器
32c 教師データDB
11 制御部
12 記憶部
20 ユーザ端末
30 学習装置
101 生体データ取得部
102 アドバイス特定部
104 出力部
301 教師データ取得部
302 学習部
12b,32b アドバイス判別器
32c 教師データDB
Claims (19)
- ユーザの生体データを取得するデータ取得部と、
複数人分の生体データ及びそれぞれの生体データに対して効果が得られたアドバイス情報を含む教師データに基づいて、前記生体データが入力された場合に前記生体データに対して効果が得られるアドバイス情報を特定するように学習した学習モデルを用いて、前記データ取得部が取得した前記生体データに対するアドバイス情報を特定する特定部と、
前記特定部が特定したアドバイス情報を出力する出力部と
を備える情報処理装置。 - ユーザの属性を取得する属性取得部を更に備え、
前記特定部は、前記データ取得部が取得した前記生体データ及び前記属性取得部が取得した前記属性に対するアドバイス情報を特定する
請求項1に記載の情報処理装置。 - 前記アドバイス情報は、前記ユーザの症状及び処置内容を含む
請求項1又は2に記載の情報処理装置。 - 前記データ取得部は、前記ユーザの健康診断の検査結果が記載された用紙から読み取られた前記検査結果に基づく前記生体データを取得し、
前記特定部は、前記データ取得部が取得した前記生体データに基づいて、受診すべき医療機関を特定し、特定した医療機関の情報を含むアドバイス情報を特定する
請求項1から3までのいずれかひとつに記載の情報処理装置。 - 前記特定部は、前記データ取得部が取得した前記生体データに基づいて、医薬品又はサプリメントを特定し、特定した医薬品又はサプリメントに係る企業の情報を含むアドバイス情報を特定する
請求項1から4までのいずれかひとつに記載の情報処理装置。 - 前記出力部が出力したアドバイス情報に含まれる医療機関の情報又は企業の情報に対する選択を受け付ける受付部を更に備え、
前記出力部は、選択された前記情報に関連する関連情報を出力する
請求項4又は5に記載の情報処理装置。 - ユーザの生体データ及び該生体データに対して前記特定部が特定したアドバイス情報を対応付けて記憶する記憶部と、
前記出力部が出力した前記アドバイス情報に対する評価を示す評価情報を取得する評価取得部と、
前記記憶部に記憶してある前記生体データ及びアドバイス情報、並びに前記評価取得部が取得した評価情報を用いて前記学習モデルを再学習させる再学習部と
を備える請求項1から6までのいずれかひとつに記載の情報処理装置。 - 前記特定部は、前記データ取得部が取得した前記生体データに対して、特定対象のアドバイス情報毎に前記アドバイス情報が適切である可能性を示す確率を算出し、
前記特定部が算出した前記アドバイス情報毎の確率に基づいて、出力対象のアドバイス情報を選択する選択部を更に備え、
前記出力部は、前記選択部が選択したアドバイス情報を出力する
請求項1から7までのいずれかひとつに記載の情報処理装置。 - 前記特定部は、
複数人分の生体データ及びそれぞれの生体データに適した医療機関の情報を含む第1教師データに基づいて、前記生体データが入力された場合に前記生体データに適した医療機関の情報を出力するように学習した第1学習モデルを用いて、前記データ取得部が取得した前記生体データに対する医療機関の情報を特定する第1特定部と、
複数人分の生体データ及びそれぞれの生体データに適した処置に係る情報を含む第2教師データに基づいて、前記生体データが入力された場合に前記生体データに適した処置に係る情報を出力するように学習した第2学習モデルを用いて、前記データ取得部が取得した前記生体データに対する処置に係る情報を特定する第2特定部とを有し、
前記出力部は、前記第1特定部が特定した医療機関の情報、又は前記第2特定部が特定した処置に係る情報を含むアドバイス情報を出力する
請求項1に記載の情報処理装置。 - 前記第1特定部が特定した医療機関での処置に関する情報を取得する情報取得部を更に備え、
取得した前記処置に関する情報及び前記生体データに基づいて、前記第2学習モデルを再学習させる
請求項9に記載の情報処理装置。 - 前記第1特定部が特定した第1医療機関からの紹介を受けた第2医療機関の端末に前記第2学習モデルを出力するモデル出力部
を更に備える請求項9又は10に記載の情報処理装置。 - 前記第2医療機関の端末から、前記第2学習モデルを用いて特定した前記処置に関する情報及び前記処置に対する適否を示す情報と、前記生体データとを含む教師データを取得する教師データ取得部を更に備え、
取得した前記教師データに基づいて前記第2学習モデルを再学習させる
請求項11に記載の情報処理装置。 - 前記教師データ取得部が取得した教師データに含まれる前記適否を示す情報が適切であるか否かを第三者検証機関が検証した結果を示す結果情報を取得する検証結果取得部を更に備え、
取得した前記結果情報が前記適否を示す情報が適切であることを示す情報である場合、取得した前記教師データに基づいて前記第2学習モデルを再学習させる
請求項12に記載の情報処理装置。 - 複数人分の生体データ及びそれぞれの生体データに対して効果が得られたアドバイス情報を含む教師データを取得する教師データ取得部と、
生体データが入力された場合に前記生体データに対して効果が得られるアドバイス情報を特定する学習モデルを、前記教師データ取得部が取得した前記教師データに基づいて学習させる学習部と
を備える情報処理装置。 - 前記教師データ取得部は、前記生体データ及び属性と、該生体データ及び属性に対するアドバイス情報を含む教師データを取得し、
前記学習部は、前記生体データ及び属性に対するアドバイス情報を特定する学習モデルを、前記教師データ取得部が取得した前記教師データに基づいて学習させる
請求項14に記載の情報処理装置。 - 生体データ及び該生体データに対して効果が得られたアドバイス情報を含む教師データを医療機関端末から取得する取得部と、
前記取得部が取得した教師データに基づいて前記学習モデルを再学習させる再学習部と
を備える請求項14又は15に記載の情報処理装置。 - コンピュータに、
ユーザの生体データを取得し、
複数人分の生体データ及びそれぞれの生体データに対して効果が得られたアドバイス情報を含む教師データに基づいて、前記生体データが入力された場合に前記生体データに対して効果が得られるアドバイス情報を特定するように学習した学習モデルを用いて、取得した前記生体データに対するアドバイス情報を特定し、
特定した前記アドバイス情報を出力する
処理を実行させるプログラム。 - コンピュータが、
ユーザの生体データを取得し、
複数人分の生体データ及びそれぞれの生体データに対して効果が得られたアドバイス情報を含む教師データに基づいて、前記生体データが入力された場合に前記生体データに対して効果が得られるアドバイス情報を特定するように学習した学習モデルを用いて、取得した前記生体データに対するアドバイス情報を特定し、
特定した前記アドバイス情報を出力する
処理を実行する情報処理方法。 - 前記コンピュータが、
複数人分の生体データ及びそれぞれの生体データに適した医療機関の情報を含む第1教師データに基づいて、前記生体データが入力された場合に前記生体データに適した医療機関の情報を出力するように学習した第1学習モデルを用いて、取得した前記生体データに対する医療機関の情報を特定し、
複数人分の生体データ及びそれぞれの生体データに適した処置に係る情報を含む第2教師データに基づいて、前記生体データが入力された場合に前記生体データに適した処置に係る情報を出力するように学習した第2学習モデルを用いて、取得した前記生体データに対する処置に係る情報を特定し、
特定した前記医療機関の情報、又は特定した前記処置に係る情報を含むアドバイス情報を出力する
処理を実行することを特徴とする請求項18に記載の情報処理方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018157472 | 2018-08-24 | ||
JP2018-157472 | 2018-08-24 | ||
JP2018-230319 | 2018-12-07 | ||
JP2018230319A JP6566409B1 (ja) | 2018-08-24 | 2018-12-07 | 情報処理装置、プログラム及び情報処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020039769A1 true WO2020039769A1 (ja) | 2020-02-27 |
Family
ID=67766627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/026755 WO2020039769A1 (ja) | 2018-08-24 | 2019-07-05 | 情報処理装置、プログラム及び情報処理方法 |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP6566409B1 (ja) |
WO (1) | WO2020039769A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6913810B1 (ja) * | 2020-11-18 | 2021-08-04 | 株式会社オプティム | プログラム、方法、情報処理装置、及びシステム |
JP7001797B1 (ja) | 2020-07-07 | 2022-02-10 | ユニ・チャーム株式会社 | 情報処理装置、情報処理方法、情報処理プログラム及び端末装置 |
WO2022054664A1 (ja) * | 2020-09-08 | 2022-03-17 | 京セラ株式会社 | 情報処理装置、対象者端末、情報処理システム、情報処理システムの制御方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7250279B2 (ja) * | 2019-09-24 | 2023-04-03 | 国立大学法人広島大学 | 情報処理システム |
US20220375607A1 (en) * | 2019-10-15 | 2022-11-24 | Sony Group Corporation | Information processing apparatus, information processing method, and program |
WO2021140670A1 (ja) * | 2020-01-10 | 2021-07-15 | オリンパス株式会社 | 情報伝達装置および情報伝達方法 |
JP6968456B2 (ja) * | 2020-04-08 | 2021-11-17 | コガソフトウェア株式会社 | 健康管理システム |
JP6945908B1 (ja) * | 2020-06-01 | 2021-10-06 | 株式会社Arblet | 情報処理システム、サーバ、情報処理方法及びプログラム |
KR102258899B1 (ko) * | 2020-11-24 | 2021-06-01 | 주식회사 엔젠바이오 | 통합적 건강 정보를 이용한 식단 및 운동 추천 방법 및 서비스 시스템 |
KR102333428B1 (ko) * | 2021-01-25 | 2021-12-02 | 주식회사 시리오 | 인공지능 모델을 이용한 어군 탐지 방법, 장치 및 컴퓨터프로그램 |
JP7548848B2 (ja) | 2021-03-04 | 2024-09-10 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | 情報処理装置、情報処理方法、およびプログラム |
JPWO2023157596A1 (ja) * | 2022-02-15 | 2023-08-24 | ||
JP7273350B1 (ja) | 2022-05-06 | 2023-05-15 | キヤノンマーケティングジャパン株式会社 | 情報処理装置並びにその処理方法とプログラム、システムとその処理方法 |
WO2024157335A1 (ja) * | 2023-01-23 | 2024-08-02 | 日本電気株式会社 | 情報処理装置 |
JP7485423B1 (ja) | 2023-06-05 | 2024-05-16 | 株式会社Kort Valuta | 指輪型端末及び該指輪型端末を用いた情報処理システム |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006155411A (ja) * | 2004-11-30 | 2006-06-15 | Houken Corp | 治療予測モデル構築システム、治療予測モデル構築方法、治療予測モデル構築用プログラム、治療内容検証・提案システム、治療内容検証・提案方法、治療内容検証・提案用プログラム、健康管理データダウンロード方法、着脱可能な記憶メディア |
JP2006271789A (ja) * | 2005-03-30 | 2006-10-12 | Seiko Epson Corp | 医療診断システム、サーバ装置、映像表示装置、リモートコントローラ及び認証処理システム |
JP2007286947A (ja) * | 2006-04-18 | 2007-11-01 | Network Support:Kk | 健康維持管理システム |
US20100324932A1 (en) * | 2009-06-19 | 2010-12-23 | Roche Diagnostics Operations, Inc. | Methods and systems for advising people with diabetes |
JP2012190125A (ja) * | 2011-03-09 | 2012-10-04 | Kddi Corp | 無線タグを利用したサービス情報提供システム |
JP2014089582A (ja) * | 2012-10-30 | 2014-05-15 | Fujifilm Corp | 医療補助システム |
JP2014174583A (ja) * | 2013-03-06 | 2014-09-22 | Mitsubishi Denki Information Technology Corp | 健康管理支援システム及び健康管理支援方法及びプログラム |
JP2014215727A (ja) * | 2013-04-24 | 2014-11-17 | 平蔵 徳高 | 人間ドック総合保健指導支援システム |
JP2016110181A (ja) * | 2014-12-02 | 2016-06-20 | 株式会社Nttドコモ | データ管理システム及びデータ管理方法 |
JP2018041207A (ja) * | 2016-09-06 | 2018-03-15 | 株式会社FiNC | 健康管理サーバおよび健康管理サーバ制御方法並びに健康管理プログラム |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09172506A (ja) * | 1995-12-20 | 1997-06-30 | Casio Comput Co Ltd | データ転送システム及びデータ転送装置 |
JP2007186947A (ja) * | 2006-01-16 | 2007-07-26 | Sekisui Jushi Co Ltd | 桁裏面への作業足場の形成方法及び桁裏面の作業足場 |
JP6631072B2 (ja) * | 2015-07-31 | 2020-01-15 | 富士通株式会社 | 生体シミュレーションシステムおよび生体シミュレーション方法 |
-
2018
- 2018-12-07 JP JP2018230319A patent/JP6566409B1/ja active Active
-
2019
- 2019-07-05 WO PCT/JP2019/026755 patent/WO2020039769A1/ja active Application Filing
- 2019-07-22 JP JP2019134864A patent/JP6647583B1/ja not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006155411A (ja) * | 2004-11-30 | 2006-06-15 | Houken Corp | 治療予測モデル構築システム、治療予測モデル構築方法、治療予測モデル構築用プログラム、治療内容検証・提案システム、治療内容検証・提案方法、治療内容検証・提案用プログラム、健康管理データダウンロード方法、着脱可能な記憶メディア |
JP2006271789A (ja) * | 2005-03-30 | 2006-10-12 | Seiko Epson Corp | 医療診断システム、サーバ装置、映像表示装置、リモートコントローラ及び認証処理システム |
JP2007286947A (ja) * | 2006-04-18 | 2007-11-01 | Network Support:Kk | 健康維持管理システム |
US20100324932A1 (en) * | 2009-06-19 | 2010-12-23 | Roche Diagnostics Operations, Inc. | Methods and systems for advising people with diabetes |
JP2012190125A (ja) * | 2011-03-09 | 2012-10-04 | Kddi Corp | 無線タグを利用したサービス情報提供システム |
JP2014089582A (ja) * | 2012-10-30 | 2014-05-15 | Fujifilm Corp | 医療補助システム |
JP2014174583A (ja) * | 2013-03-06 | 2014-09-22 | Mitsubishi Denki Information Technology Corp | 健康管理支援システム及び健康管理支援方法及びプログラム |
JP2014215727A (ja) * | 2013-04-24 | 2014-11-17 | 平蔵 徳高 | 人間ドック総合保健指導支援システム |
JP2016110181A (ja) * | 2014-12-02 | 2016-06-20 | 株式会社Nttドコモ | データ管理システム及びデータ管理方法 |
JP2018041207A (ja) * | 2016-09-06 | 2018-03-15 | 株式会社FiNC | 健康管理サーバおよび健康管理サーバ制御方法並びに健康管理プログラム |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7001797B1 (ja) | 2020-07-07 | 2022-02-10 | ユニ・チャーム株式会社 | 情報処理装置、情報処理方法、情報処理プログラム及び端末装置 |
JP2022031603A (ja) * | 2020-07-07 | 2022-02-21 | ユニ・チャーム株式会社 | 情報処理装置、情報処理方法、情報処理プログラム及び端末装置 |
WO2022054664A1 (ja) * | 2020-09-08 | 2022-03-17 | 京セラ株式会社 | 情報処理装置、対象者端末、情報処理システム、情報処理システムの制御方法 |
JP6913810B1 (ja) * | 2020-11-18 | 2021-08-04 | 株式会社オプティム | プログラム、方法、情報処理装置、及びシステム |
WO2022107750A1 (ja) * | 2020-11-18 | 2022-05-27 | 株式会社オプティム | プログラム、方法、情報処理装置、及びシステム |
JP2022080572A (ja) * | 2020-11-18 | 2022-05-30 | 株式会社オプティム | プログラム、方法、情報処理装置、及びシステム |
Also Published As
Publication number | Publication date |
---|---|
JP2020035411A (ja) | 2020-03-05 |
JP6566409B1 (ja) | 2019-08-28 |
JP2020035432A (ja) | 2020-03-05 |
JP6647583B1 (ja) | 2020-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6647583B1 (ja) | 情報処理装置、プログラム及び情報処理方法 | |
US20230092134A1 (en) | Apparatus and method for providing healthcare services remotely or virtually with or using an electronic healthcare record and/or a communication network | |
US20210319895A1 (en) | Apparatus and method for providing healthcare services remotely or virtually with or using an electronic healthcare record and/or a communication network | |
US20160342744A1 (en) | Apparatus and method for processing and/or providing healthcare information and/or healthcare-related information with or using an electronic healthcare record or electronic healthcare records | |
CN109310317A (zh) | 用于自动医学诊断的系统和方法 | |
US20150331997A1 (en) | Apparatus and method for processing and/or providing healthcare information and/or healthcare-related information with or using an electronic healthcare record or electronic healthcare records | |
JP6912840B1 (ja) | 情報処理方法、診断支援装置及びコンピュータプログラム | |
WO2005122033A1 (ja) | 医療総合情報装置及び医療総合情報システム | |
JP7259224B2 (ja) | 問診票作成支援装置、方法およびプログラム | |
US11145395B1 (en) | Health history access | |
US20230223142A1 (en) | Apparatus and method for providing healthcare services remotely or virtually with or using an electronic healthcare record and/or a communication network | |
JP6969831B1 (ja) | 情報処理方法、情報処理装置及びコンピュータプログラム | |
CN109741812A (zh) | 发送医学图像的方法以及执行所述方法的医学成像设备 | |
TW201232464A (en) | Online integrating system for anamnesis | |
WO2021140731A1 (ja) | 情報伝達装置および情報伝達方法 | |
JP2004258978A (ja) | バーチャルペーシェントシステム、情報提供システム及び医療情報提供方法 | |
US20230326615A1 (en) | Apparatus and method for providing healthcare services remotely or virtually with or using an electronic healthcare record and/or a communication network | |
US20230238152A1 (en) | Apparatus and method for providing healthcare services remotely or virtually with or using an electronic healthcare record and/or a communication network | |
JP2003310585A (ja) | 体調維持補助システム | |
US11715567B2 (en) | Storage medium, information processing apparatus, information processing system, and information processing method | |
US20200294682A1 (en) | Medical interview apparatus | |
JP2007058824A (ja) | アックス・ペット病院システム | |
EP3867916A1 (en) | Apparatus and methods for generation of a medical summary | |
US20220336064A1 (en) | Medical information processing apparatus | |
JP7199135B1 (ja) | プログラム、方法、情報処理装置、システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19853113 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19853113 Country of ref document: EP Kind code of ref document: A1 |