WO2020039716A1 - 医療用制御装置及び医療用観察装置 - Google Patents

医療用制御装置及び医療用観察装置 Download PDF

Info

Publication number
WO2020039716A1
WO2020039716A1 PCT/JP2019/023765 JP2019023765W WO2020039716A1 WO 2020039716 A1 WO2020039716 A1 WO 2020039716A1 JP 2019023765 W JP2019023765 W JP 2019023765W WO 2020039716 A1 WO2020039716 A1 WO 2020039716A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical
brightness
display device
control unit
display
Prior art date
Application number
PCT/JP2019/023765
Other languages
English (en)
French (fr)
Inventor
泰平 道畑
浩資 妙見
敏 三井
Original Assignee
ソニー・オリンパスメディカルソリューションズ株式会社
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー・オリンパスメディカルソリューションズ株式会社, ソニー株式会社 filed Critical ソニー・オリンパスメディカルソリューションズ株式会社
Priority to CN201980053855.1A priority Critical patent/CN112566539A/zh
Priority to JP2020538197A priority patent/JP7315560B2/ja
Priority to US17/269,666 priority patent/US20210338040A1/en
Priority to EP19852342.5A priority patent/EP3841956A4/en
Publication of WO2020039716A1 publication Critical patent/WO2020039716A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000096Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope using artificial intelligence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0271Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping
    • G09G2320/0276Adjustment of the gradation levels within the range of the gradation scale, e.g. by redistribution or clipping for the purpose of adaptation to the characteristics of a display device, i.e. gamma correction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0673Adjustment of display parameters for control of gamma adjustment, e.g. selecting another gamma curve
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/06Colour space transformation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications
    • G09G2380/08Biomedical applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source

Definitions

  • the present disclosure relates to a medical control device and a medical observation device.
  • the imaging device when imaging an observation target such as a patient's body, the imaging device may include forceps, gauze, and the like other than the observation target in the subject.
  • the brightness of the captured image displayed on the display device may match the brightness of the forceps or gauze, and the brightness of the image displayed on the display device may be increased as a whole.
  • whiteout occurs in the displayed image, and information and color of a part that the operator wants to observe may be lost.
  • the dynamic range of the image sensor in order to reduce overexposure.
  • the dynamic range of the image sensor can be expanded. Accordingly, an image corresponding to a wide dynamic range can be captured, and thus, overexposure when the image is displayed on the display device can be reduced.
  • HDR High Dynamic Dynamic Range
  • Patent Literature 1 discloses a technique for optimizing luminance at an arbitrary position in an image based on a user operation when converting a wide dynamic range image into a narrow dynamic range image.
  • the present disclosure proposes a new and improved medical control device and medical observation device capable of reducing overexposure of a medical captured image.
  • a display device that displays an image
  • a display control unit that displays a medical captured image generated from an imaging signal generated by an imaging device that receives light from an observation target
  • the display control unit A brightness control unit that controls the brightness of the imaging signal so as to display the medical captured image having a predetermined brightness
  • the brightness control unit has a dynamic range of the display device that is a first dynamic range.
  • a light source that emits light, an imaging device that captures an image of an observation target, and a display device that displays an image are generated from an imaging signal generated by an imaging device that receives light from the observation target.
  • a display control unit configured to display a medical captured image, and a brightness control unit configured to control the brightness of the imaging signal so that the display control unit displays the medical captured image having a predetermined brightness.
  • the brightness control unit is configured to, when the dynamic range of the display device is a second value larger than a first value, and when the dynamic range is the first value, the medical captured image is
  • a medical observation apparatus is provided which performs control to make the brightness of the imaging signal darker than the brightness of the imaging signal for displaying at a predetermined brightness.
  • FIG. 1 is an explanatory diagram illustrating an outline according to an embodiment of the present disclosure. It is an explanatory view showing the example of composition of the medical observation system concerning a 1st embodiment. It is a block diagram showing the example of functional composition of the medical observation device concerning the embodiment. It is explanatory drawing which shows the example of the input-output relationship in the medical observation apparatus which concerns on the embodiment.
  • FIG. 3 is an explanatory diagram illustrating an example of an input / output relationship in the display device according to the embodiment. It is explanatory drawing which shows the example of a display of the medical imaging image which concerns on the embodiment. It is a sequence diagram showing the flow of operation of the medical observation system concerning the embodiment. It is a flow chart which shows a flow of processing in judgment processing concerning the embodiment.
  • FIG. 4 is an explanatory diagram illustrating an example of gamma correction for a plurality of display devices according to the embodiment. It is a sequence diagram showing the flow of operation of the medical observation system concerning the embodiment. It is a flow chart which shows a flow of processing in correction processing concerning the embodiment. It is an explanatory view showing a judgment processing concerning a modification.
  • FIG. 1 is an explanatory diagram illustrating an outline according to an embodiment of the present disclosure.
  • the medical control device according to an embodiment of the present disclosure is applied to an endoscope system used at a medical site.
  • the target to which the medical control device is applied is not limited to the endoscope system.
  • the medical control device may be applied to a medical observation system that externally images an observation target such as a patient using an imaging device.
  • the imaging device when the imaging apparatus captures an image of an observation target such as a patient's body, the imaging device may include a forceps, gauze, or the like other than the observation target in the subject.
  • the brightness of the captured image displayed on the display device may match the brightness of the forceps or gauze, and the brightness of the image displayed on the display device may be increased as a whole.
  • whiteout occurs in the displayed image, and information and color of a part that the operator wants to observe may be lost.
  • the dynamic range of the image sensor in order to reduce overexposure.
  • the dynamic range of the image sensor can be expanded. Accordingly, an image corresponding to a wide dynamic range can be captured, and thus, overexposure when the image is displayed on the display device can be reduced.
  • HDR High Dynamic Dynamic Range
  • a technique capable of reducing the whiteout of a medical captured image is proposed.
  • a medical control device that controls the brightness of an imaging signal generated by an imaging device that receives light from an observation target and displays a medical imaging image generated from the imaging signal on a display device that displays an image is proposed. I do.
  • the medical control device controls the brightness of the imaging signal so that the higher the dynamic range of the display device 20, the darker the imaging signal becomes. This is because a display device having a higher dynamic range can display the brightness of a medical captured image brighter, and the higher the brightness, the higher the possibility of occurrence of overexposure in the displayed medical captured image. .
  • the medical control device performs imaging by reducing the brightness at the time of imaging the observation target. It is possible to reduce overexposure that occurs when display is performed by increasing the brightness.
  • a display device having a high dynamic range is a display device having a high dynamic range (HDR: High Dynamic Range).
  • the HDR display device is a display device in which the maximum luminance of an image that can be displayed is 1000 nit or more.
  • a display device having a low dynamic range is a display device having a standard dynamic range (SDR: Standard @ Dynamic @ Range).
  • SDR Standard @ Dynamic @ Range
  • the SDR display device is a display device in which the maximum luminance of an image that can be displayed is less than 1000 nit.
  • the type of display device based on the dynamic range is not limited to the HDR display device and the SDR display device described above, and may be a display device based on another dynamic range.
  • an example will be described in which a display device on which a medical captured image is displayed is one of an HDR display device and an SDR display device.
  • the one-dot chain line graph shown in FIG. 1 shows the input / output relationship in the SDR display device, and the two-dot chain line graph shows the input / output relationship in the HDR display device.
  • the imaging signal according to an embodiment of the present disclosure is subjected to gamma correction and inverse gamma correction, and is output as a final imaging signal.
  • the display device that displays the medical image is an HDR display device
  • the observation target is imaged with reduced brightness, and as shown in the graph of the imaging signal at the time of imaging in FIG. Is smaller than the output of the SDR display device.
  • the gamma correction and the inverse gamma correction are performed on the imaging signal in the case of the HDR display device, so that the HDR display device is the SDR display device as shown in the graph of the corrected imaging signal in FIG. Can be output larger than the output of
  • FIG. 2 is an explanatory diagram illustrating a configuration example of the medical observation system 1 according to the first embodiment.
  • the medical observation system 1 includes, for example, a medical observation device 10 and a display device 20.
  • the surgeon refers to the medical image captured by the medical observation device 10 and displayed on the display screen of the display device 20 while referring to the medical image.
  • the operative site Observe the operative site and perform various treatments on the operative site such as a procedure according to the operative procedure.
  • the assistant who assists the surgeon also assists various procedures performed by the surgeon while referring to the medical image displayed on the display screen of the display device 20.
  • persons involved in the operation such as an operator and an assistant, are also generally referred to as users.
  • the medical observation system 1 according to the first embodiment is not limited to the example illustrated in FIG.
  • the medical observation system 1 according to the first embodiment may further include a medical control device (not shown) that controls various operations in the medical observation device 10.
  • the medical observation device 10 includes a control unit (described later), and the medical observation device 10 functions as a medical control device (not illustrated). Is shown.
  • Examples of the medical control device include a “medical controller” and a “computer such as a server”. Further, the medical control device (not shown) may be, for example, an IC (Integrated Circuit) that can be incorporated in the above-described device.
  • a “medical controller” and a “computer such as a server”.
  • the medical control device may be, for example, an IC (Integrated Circuit) that can be incorporated in the above-described device.
  • the medical observation system 1 according to the first embodiment may have a configuration in which one or both of the medical observation device 10 and the display device 20 are provided. When a plurality of medical observation devices 10 are provided, a display control process described later is performed in each medical observation device 10.
  • the medical observation system 1 according to the first embodiment has a configuration including a plurality of the medical observation devices 10 and the display devices 20, the medical observation devices 10 and the display devices 20 are associated one-to-one. Or a plurality of medical observation devices 10 may be associated with one display device 20.
  • the display device 20 performs a switching operation, for example, to perform a medical imaging image captured by any of the medical observation devices 10. Is displayed on the display screen.
  • the medical observation device 10 illustrated in FIG. 2 includes, for example, an insertion member 130, a light source unit 132, a light guide 134, a camera head 136, a cable 138, and a control unit 140.
  • the medical observation apparatus 10 includes one or more processors (not shown) including an arithmetic circuit such as an MPU (Micro Processing Unit), and a ROM (Read). Only Memory (not shown), a RAM (Random Access Memory) (not shown), a recording medium (not shown), and a communication device (not shown) may be provided.
  • the medical observation device 10 is driven by, for example, electric power supplied from an internal power supply such as a battery included in the medical observation device 10 or electric power supplied from a connected external power supply.
  • the processor functions as a control unit (described later) in the medical observation device 10.
  • the ROM (not shown) stores control data such as programs and calculation parameters used by the processor (not shown).
  • the RAM (not shown) temporarily stores a program executed by a processor (not shown) and the like.
  • the recording medium (not shown) functions as a storage unit (not shown) in the medical observation apparatus 10.
  • the recording medium (not shown) stores various data such as data related to the display control method according to the present embodiment and various applications.
  • examples of the recording medium (not shown) include a magnetic recording medium such as a hard disk, and a nonvolatile memory such as a flash memory. Further, the recording medium (not shown) may be detachable from the medical observation device 10.
  • the communication device is a communication unit included in the medical observation device 10 and has a role of performing wireless or wired communication with an external device such as the display device 20.
  • a communication device for example, an IEEE 802.15.1 port and a transmission / reception circuit (wireless communication), an IEEE 802.11 port and a transmission / reception circuit (wireless communication), a communication antenna and an RF circuit (wireless communication) ) Or a LAN terminal and a transmission / reception circuit (wired communication).
  • Insertion member 130 The insertion member 130 has an elongated shape and includes an optical system for condensing incident light therein.
  • the distal end of the insertion member 130 is inserted, for example, into a body cavity of a patient.
  • the rear end of the insertion member 130 is detachably connected to the front end of the camera head 136.
  • the insertion member 130 is connected to a light source unit 132 via a light guide 134, and light is supplied from the light source unit 132.
  • the insertion member 130 may be formed of, for example, a material having no flexibility, or may be formed of a material having flexibility. Depending on the material forming the insertion member 130, the medical observation device 10 may be called a rigid endoscope or a flexible endoscope.
  • Light source unit 132 The light source unit 132 is connected to the insertion member 130 via the light guide 134. The light source unit 132 supplies light to the insertion member 130 via the light guide 134.
  • the light source unit 132 has, for example, a plurality of light sources that emit light having different wavelengths.
  • Examples of the plurality of light sources included in the light source unit 132 include a light source that emits red light, a light source that emits green light, and a light source that emits blue light.
  • a light source that emits red light for example, one or more red light emitting diodes can be given.
  • Examples of the light source that emits green light include one or more green light emitting diodes.
  • As a light source that emits blue light for example, one or more blue light emitting diodes can be given.
  • the plurality of light sources included in the light source unit 132 is not limited to the example described above.
  • the light source unit 132 has, for example, a plurality of light sources in a single chip or a plurality of light sources in a plurality of chips.
  • the light source unit 132 is connected to the control unit 140 by wire or wirelessly, and the light emission in the light source unit 132 is controlled by the control unit 140.
  • the light supplied to the insertion member 130 is emitted from the distal end of the insertion member 130 and is irradiated on an observation target such as a tissue in a body cavity of a patient. Then, the reflected light from the observation target is collected by the optical system in the insertion member 130.
  • the camera head 136 has a function of imaging an observation target.
  • the camera head 136 is connected to the control unit 140 via a cable 138 that is a signal transmission member.
  • the camera head 136 has an image sensor, captures an image of the observation target by photoelectrically converting reflected light from the observation target condensed by the insertion member 130, and generates an imaging signal (a signal indicating a medical imaging image). I do. Then, the camera head 136 outputs the generated imaging signal to the control unit 140 via the cable 138.
  • an image sensor included in the camera head 136 for example, an image sensor using a plurality of imaging elements such as a CMOS (Complementary Metal Oxide Semiconductor) and a CCD (Charge Coupled Device) is exemplified.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • the insertion member 130, the light source unit 132, and the camera head 136 function as an "imaging device that is inserted into a patient's body to image the inside of the patient".
  • the medical observation device 10 functioning as an endoscope device may have, for example, a configuration including a plurality of imaging devices functioning as a so-called stereo camera.
  • the optical system may be a Galilean optical system, or a Greenwich-type optical system, like the medical observation device 10 that configures the medical observation system according to the first example. It may be an optical system.
  • Control unit 140 controls the imaging device. More specifically, the control unit 140 controls each of the light source unit 132 and the camera head 136.
  • the control unit 140 also includes a communication device (not shown), and transmits the imaging signal output from the camera head 136 to the display device 20 by any wireless communication or any wired communication.
  • the control unit 140 may transmit the imaging signal and the display control signal to the display device 20.
  • the communication device (not shown) included in the control unit 140 includes, for example, an IEEE 802.15.1 port and a transmission / reception circuit (wireless communication), an IEEE 802.11 port and a transmission / reception circuit (wireless communication), a communication antenna and an RF circuit ( Wireless communication), an optical communication device (wired communication or wireless communication), or a LAN terminal and a transmission / reception circuit (wired communication).
  • the communication device (not shown) may be configured to be able to communicate with one or more external devices by a plurality of communication methods.
  • the control unit 140 may perform a predetermined process on the image signal output from the camera head 136, and transmit the image signal on which the predetermined process has been performed to the display device 20.
  • Examples of the predetermined processing for the imaging signal include adjustment of white balance, enlargement or reduction of an image related to the electronic zoom function, correction between pixels, and the like.
  • the control unit 140 may store a medical image based on the image signal.
  • the control unit 140 includes, for example, a CCU (Camera Control Unit).
  • the medical observation device 10 that functions as an endoscope device has, for example, the hardware configuration illustrated with reference to FIG.
  • the insertion member 130, the light source unit 132, and the camera head 136 serve as an imaging device, and the control unit 140 controls imaging by the imaging device.
  • the display device 20 is a display unit in the medical observation system 1 according to the first embodiment, and corresponds to an external display device as viewed from the medical observation device 10.
  • the display device 20 displays various images such as a medical image captured by the medical observation device 10 and an image related to a UI (User Interface) on a display screen.
  • the display device 20 generates a medical image based on the image signal transmitted from the control unit 140, and displays the generated medical image on a display screen.
  • the display device 20 may have a configuration capable of performing 3D display by an arbitrary method.
  • the display on the display device 20 is controlled by, for example, the medical observation device 10 or a medical control device (not shown).
  • the display device 20 is installed in an arbitrary place that can be visually recognized by a user in the operating room, such as a wall surface, a ceiling, and a floor surface of the operating room.
  • the display device 20 includes, for example, a liquid crystal display, an organic EL (Electro-Luminescence) display, a CRT (Cathode Ray Tube) display, and the like.
  • a liquid crystal display an organic EL (Electro-Luminescence) display, a CRT (Cathode Ray Tube) display, and the like.
  • the display device 20 is not limited to the example shown above.
  • the display device 20 may be any wearable device used by a user or the like worn on the body, such as a head-mounted display or an eyewear type device.
  • the display device 20 is driven by, for example, power supplied from an internal power supply such as a battery included in the display device 20 or power supplied from a connected external power supply.
  • FIG. 3 is a block diagram illustrating a functional configuration example of the medical observation device 10 according to the first embodiment.
  • the medical observation device 10 according to the first embodiment includes, for example, an imaging unit 100, a control unit 110, and a communication unit 120.
  • Imaging unit 100 The imaging unit 100 images the observation target.
  • the imaging unit 100 includes, for example, the insertion member 130, the light source unit 132, and the camera head 136 illustrated in FIG.
  • the imaging by the imaging unit 100 is controlled by, for example, the control unit 110.
  • Control unit 110 includes, for example, the above-described processor (not shown), and plays a role of controlling the entire medical observation apparatus 10. In addition, the control unit 110 plays a leading role in performing an imaging control process and a display control process described later. Note that the imaging control process and the display control process in the control unit 110 may be performed in a distributed manner by a plurality of processing circuits (for example, a plurality of processors).
  • control unit 110 has a brightness control unit 112 and a display control unit 114 as shown in FIG.
  • the brightness control unit 112 controls an imaging device included in the imaging unit 100.
  • the brightness control unit 112 performs an imaging control process for controlling the brightness when the imaging device images the observation target.
  • the brightness control unit 112 specifies the dynamic range of the display device 20 based on the determination information for determining the display device 20.
  • the brightness control unit 112 determines a target brightness value corresponding to the specified dynamic range of the display device 20. More specifically, in the imaging control processing, the following determination information acquisition processing, determination processing, and determination processing of a brightness target value are performed.
  • the brightness control unit 112 first obtains determination information for determining the display device 20 connected to the medical observation device 10.
  • the determination information may include operation information and dynamic range information.
  • the operation information is information relating to an operation input by a predetermined operation by the user. For example, the user performs a selection operation of selecting the display device 20 that displays a medical image.
  • the brightness control unit 112 acquires information on the display device 20 selected by the user as operation information (judgment information).
  • Dynamic range information is information indicating the dynamic range of the display device 20.
  • the brightness control unit 112 acquires dynamic range information from the display device 20 connected to the medical observation device 10, for example.
  • the brightness control unit 112 may acquire identification information from the display device 20 connected to the medical observation device 10 and acquire dynamic range information of the display device 20 based on the identification information.
  • the brightness control unit 112 refers to the dynamic range information of the display device 20 registered in advance in the storage unit of the medical observation device 10 based on the acquired identification information, thereby obtaining the dynamic range information of the display device 20. To get.
  • the brightness control unit 112 cannot acquire dynamic information or identification information from the display device 20. Get operation information of.
  • the brightness control unit 112 acquires the above-described dynamic range information or identification information from the display device 20.
  • a cable that allows only one-way communication is, for example, an SDI (Serial Digital Interface) cable.
  • the cable capable of bidirectional communication is, for example, an HDMI (High-Definition Multimedia Interface) cable, a Display Port cable, or the like.
  • the medical observation device 10 When the medical observation device 10 and the display device 20 are connected by an SDI cable, the medical observation device 10 transmits a user ID to the display device 20, and the display device 20 performs inverse gamma correction and Adjustment of brightness may be performed. In this case, it is assumed that the user ID is associated with the display device 20 used by the user.
  • the brightness control unit 112 specifies the dynamic range of the display device 20 based on the acquired determination information. For example, the brightness control unit 112 specifies the dynamic range of the display device 20 based on a predetermined selection operation. Specifically, the brightness control unit 112 confirms the display device 20 selected by the user through the selection operation from the operation information acquired as the determination information. Then, the brightness control unit 112 specifies the dynamic range of the display device 20 selected by the user as the dynamic range of the display device 20 connected to the medical observation device 10. Further, the brightness control unit 112 specifies the dynamic range of the display device 20 based on the dynamic range information acquired as the determination information. Specifically, the brightness control unit 112 specifies the dynamic range indicated by the dynamic range information acquired as the determination information as the dynamic range of the display device 20 connected to the medical observation device 10.
  • the brightness control unit 112 determines how the imaging unit 100 images the observation target based on the dynamic range of the display device 20 specified in the determination processing. For example, when the dynamic range of the display device 20 is HDR, the display device 20 displays a medical captured image with high luminance. Therefore, the brightness control unit 112 determines that the imaging unit 100 should reduce the brightness to image the observation target. On the other hand, when the dynamic range of the display device 20 is the SDR, the display device 20 displays the medical image without increasing the luminance. Therefore, the brightness control unit 112 determines that the imaging unit 100 should image the observation target without reducing the brightness.
  • the brightness control unit 112 determines a target value of brightness when capturing an image of the observation target according to the result of the determination processing. For example, if it is determined that the imaging unit 100 should darken the brightness to image the observation target, the brightness control unit 112 compares the dynamic range of the display device 20 with a predetermined dynamic range, and determines the result of the comparison. The brightness target value is determined based on the brightness. Specifically, the brightness control unit 112 extracts a difference between the maximum value of the dynamic range of the display device 20 and the maximum value of the predetermined dynamic range, and determines a target value of brightness based on the difference.
  • the brightness control unit 112 sets the target value of the brightness of the display device 20 to: 1 / n times the target value corresponding to the predetermined dynamic range.
  • the dynamic range of the display device 20 connected to the medical observation device 10 is HDR
  • the maximum value of the dynamic range of the HDR display device 20 is twice the maximum value of the dynamic range of the SDR display device 20.
  • the brightness control unit 112 sets the target value of the brightness of the display device 20 of the HDR to ⁇ times the target value of the brightness of the display device 20 of the SDR.
  • the target value of the brightness may be determined so that the brightness when the imaging device captures an image of the observation target becomes bright. Further, the magnification for multiplying the target value corresponding to the predetermined dynamic range when calculating the target value of the brightness in the display device 20 is not limited to 1 / n, but may be set to an arbitrary magnification.
  • the brightness control unit 112 adjusts the brightness when the imaging unit 100 images the observation target, for example, by controlling the amount of light emitted by the light source unit 132. Specifically, when it is desired to increase the brightness at the time of imaging, the brightness control unit 112 increases the amount of light emitted by the light source unit 132. Thereby, the amount of light projected on the observation target increases, so that the brightness at the time of imaging becomes bright and the brightness of the imaging signal also becomes bright. On the other hand, when it is desired to reduce the brightness at the time of imaging, the brightness control unit 112 reduces the amount of light emitted by the light source unit 132. Accordingly, the amount of light projected on the observation target decreases, so that the brightness at the time of imaging becomes dark, and the brightness of the imaging signal also becomes dark.
  • the brightness control unit 112 includes, for example, one or two or more functions provided in a general electronic imaging microscope unit such as a control of an AF function including a zoom function (optical zoom function and electronic zoom function). Control may be performed.
  • the display control unit 114 controls the display of the medical image on the display device 20.
  • the display control unit 114 performs a display control process, and controls the brightness when the medical captured image is displayed on the display device 20.
  • FIG. 4 is an explanatory diagram illustrating an example of an input / output relationship in the medical observation device 10 according to the first embodiment.
  • the horizontal axis of the graph shown in FIG. 4 indicates data input to the medical observation device 10, and the vertical axis indicates data output from the medical observation device 10.
  • the gamma value indicating the input / output relationship in the display device needs to be set to 1.0.
  • the gamma value of the display device 20 is set to 2.2 instead of 1.0, and the RGB value of the input image signal is reduced to reduce the medical image corresponding to the image signal.
  • a process called inverse gamma correction for darkening is performed. Therefore, if the imaging signal is input to the display device 20 in the state at the time of imaging, the medical imaging image is displayed dark by inverse gamma correction in the display device 20. Therefore, by increasing the RGB values before the imaging signal is input to the display device, it is possible to prevent the medical imaging image from being displayed dark on the display device 20. As described above, the process of increasing the RGB values in advance is called gamma correction.
  • the input / output relationship when the gamma value is 1.0 is as shown by the broken line in FIG.
  • the input / output relationship when the gamma value is 2.2 is as shown by a dashed line in FIG. 4, and the relationship corresponds to the input / output relationship in the display device 20 of the SDR.
  • the input / output relationship of the HDR display device 20 is as shown by a two-dot chain line in FIG.
  • the two-dot chain line indicates an input / output relationship based on the HLG (Hybrid Log Gamma) method.
  • the input / output relationship of the HDR display device 20 may be an input / output relationship based on a PQ (Perceptual @ Quantization) method.
  • the display control unit 114 performs gamma correction on the image signal based on the gamma value of the display device 20, and is generated from the image signal on which the gamma correction has been performed.
  • the medical image is displayed on the display device 20.
  • the display control unit 114 performs gamma correction on the imaging signal so that the intermediate luminance value of the medical imaging image displayed on the display device 20 and the display device 20 having a predetermined gamma value are the same.
  • the display control unit 114 displays the medical image displayed on the HDR display device 20 and the SDR display device 20 with a gamma value of 2.2.
  • the gamma correction is performed so that the middle luminance value of the captured image becomes the same.
  • the display device 20 displays the medical image on each display device 20 such that the visibility of the medical image on both the HDR display device 20 and the SDR display device 20 is the same. Can be.
  • the communication unit 120 is a communication unit included in the medical observation device 10 and plays a role of performing wireless or wired communication with an external device such as the display device 20.
  • the communication unit 120 includes, for example, the above-described communication device (not shown). Communication in the communication unit 120 is controlled by the control unit 110, for example.
  • FIG. 5 is an explanatory diagram illustrating an example of an input / output relationship in the display device 20 according to the first embodiment.
  • the horizontal axis of the graph shown in FIG. 5 indicates data input to the display device 20, and the vertical axis indicates data output from the display device 20.
  • the display device 20 includes at least a control unit (not shown).
  • the control unit performs inverse gamma correction on an image pickup signal whose RGB values have been increased in advance by gamma correction. Thereby, the control unit displays the imaging signal as a medical imaging image by reducing the RGB values of the imaging signal so as to approach the ideal input / output relationship indicated by the broken line in FIG. It is displayed on the device 20.
  • the control unit When the medical image is displayed on the display device 20 of the SDR, the control unit performs the inverse gamma correction based on the input / output relationship indicated by the one-dot chain line in FIG.
  • the input / output relationship indicated by the dashed line indicates the input / output relationship when the gamma value is 2.2.
  • the control unit When a medical image is displayed on an HDR image, the control unit performs inverse gamma correction based on the input / output relationship indicated by the two-dot chain line in FIG.
  • the input / output relationship indicated by the two-dot chain line indicates an input / output relationship based on the HLG (Hybrid Log Gamma) method.
  • the input / output relationship of the HDR display device 20 may be an input / output relationship based on a PQ (Perceptual @ Quantization) method.
  • FIG. 6 is an explanatory diagram illustrating a display example of a medical captured image according to the first embodiment.
  • the upper part of FIG. 6 shows a medical image displayed on the SDR display device 20, and the lower part shows a medical image displayed on the HDR display device 20.
  • 6 shows a medical image at the time of imaging, and the right figure shows a medical image after correction.
  • the medical image on the upper left side is displayed on the display device of the SDR, the image is captured with normal brightness without reducing the brightness, and the observation target 50 has an overexposure.
  • the brightness of the upper right medical image obtained by correcting the upper left medical image is higher than the brightness of the upper left medical image due to the correction, and whiteout occurs in the observation target 50. It is still standing.
  • the lower left medical image Since the lower left medical image is displayed on the display device of the HDR, the lower left medical image is captured with a brightness lower than the brightness of the upper left medical image, and the observation target 50 does not have whiteout. .
  • the brightness of the lower right medical image obtained by correcting the lower left medical image is higher than that of the lower left medical image due to the correction. Has not occurred.
  • FIG. 7 is a sequence diagram showing a flow of the operation of the medical observation system 1 according to the first embodiment.
  • control unit 110 acquires determination information (step S1000).
  • the control unit 110 performs a determination process of determining the dynamic range of the display device 20 connected to the medical observation device 10 based on the acquired determination information (step S1002). The details of the determination process will be described later.
  • the control unit 110 determines a target value of brightness based on the result of the determination process (step S1004).
  • the control unit 110 outputs an imaging instruction to the imaging unit 100 to capture a medical imaging image having the brightness of the determined target value (step S1006).
  • the imaging unit 100 that has received the imaging instruction from the control unit 110 captures an image of the observation target in accordance with the imaging instruction (step S1008), and outputs an imaging signal obtained by imaging to the control unit 110 (step S1010).
  • the control unit 110 which has received the imaging signal from the imaging unit 100, performs a correction process on the imaging signal according to the display device 20 to which the imaging signal is transmitted (step S1012). The detailed processing of the correction processing will be described later. After the correction processing, the control unit 110 transmits the corrected image signal to the display device 20 via the communication unit 120 (step S1014).
  • the display device 20 that has received the imaging signal performs display processing for displaying the imaging signal as a medical imaging image (step S1016).
  • the detailed processing of the display processing will be described later.
  • the medical observation system 1 ends the operation when the medical captured image is displayed on the display device 20 in the display processing.
  • FIG. 8 is a flowchart illustrating a flow of a process in the determination process according to the first embodiment.
  • the control unit 110 specifies the dynamic range of the display device 20 connected to the medical observation device 10 from the acquired determination information (step S1200).
  • the control unit 110 checks whether or not the specified dynamic range is HDR (step S1202).
  • the control unit 110 determines that the brightness should be reduced to cause the imaging unit 100 to image the observation target (step S1204).
  • the control unit 110 determines that the imaging unit 100 should image the observation target without reducing the brightness (step S1206). Then, control unit 110 ends the determination processing.
  • FIG. 9 is a flowchart illustrating a flow of processing in the correction processing according to the first embodiment.
  • the control unit 110 adjusts the white balance of the input imaging signal (step S1400).
  • the control unit 110 performs gamma correction according to the dynamic range of the display device 20 (step S1402). For example, when the dynamic range is HDR, the control unit 110 performs gamma correction on the imaging signal using a gamma value corresponding to HDR.
  • the control unit 110 performs gamma correction on the imaging signal using a gamma value corresponding to SDR.
  • the control unit 110 converts the image signal after gamma correction from RGB to YCbCr (step S1404), and ends the correction processing.
  • FIG. 10 is a flowchart illustrating a processing flow in the display processing according to the first embodiment.
  • the display device 20 converts the received image signal from YCbCr to RGB (step S1600).
  • the display device 20 performs inverse gamma correction on the converted imaging signal according to the dynamic range of the display device 20 (step S1602).
  • the display device 20 performs inverse gamma correction on the imaging signal using a gamma value corresponding to HDR.
  • the display device 20 performs inverse gamma correction on the imaging signal using a gamma value corresponding to SDR.
  • the display device 20 generates a medical image corresponding to the corrected image signal, displays the generated medical image (step S1604), and ends the display process.
  • Second Embodiment >> Hereinafter, the second embodiment will be described with reference to FIGS.
  • first embodiment an example in which only one display device 20 is connected to the medical observation device 10 has been described.
  • second embodiment an example in which a plurality of display devices 20 are connected to the medical observation device 10 will be described.
  • first embodiment only the differences from the first embodiment will be described, and the description of the same points as those in the first embodiment will be omitted.
  • FIG. 11 is an explanatory diagram illustrating a configuration example of the medical observation system 2 according to the second embodiment.
  • the medical observation system 2 according to the second embodiment includes, for example, a medical observation device 10, a display device 20A, and a display device 20B.
  • the system configuration of the medical observation system 2 according to the second embodiment other than the point that a plurality of display devices 20 are connected to the medical observation apparatus 10 is the same as the medical observation system according to the above-described first embodiment. This is the same as the system configuration of the system 1. Therefore, in this section, a detailed description of the system configuration of the medical observation system 2 is omitted.
  • Control unit 110 The functional configuration of the control unit 110 according to the second embodiment is the same as the functional configuration of the control unit 110 according to the first embodiment. However, processing in each component is partially different.
  • the brightness control unit 112 is different from the first embodiment in that a display device 20 serving as a reference when determining a brightness target value is selected from a plurality of display devices 20. It is different from the brightness control unit 112.
  • the brightness control unit 112 controls the imaging device so that the imaging signal has a brightness corresponding to the dynamic range of the display device 20 selected from the plurality of display devices 20. Control.
  • the display device 20 selected from the plurality of display devices 20 is, for example, the display device 20 associated with a predetermined user. Specifically, the display device 20 associated with the main operator may be selected as the display device 20 associated with the predetermined user. Further, the display device 20 associated with the assistant of the main operator may be selected as the display device 20 associated with the predetermined user.
  • the display device 20 selected from the plurality of display devices 20 may be, for example, a display device 20 having a high dynamic range of the display device 20 among the plurality of display devices 20. Specifically, the HDR display device 20 may be selected as the display device 20 having a high dynamic range.
  • the brightness control unit 112 determines a brightness target value in the same manner as in the first embodiment.
  • Display control unit 114 The display control unit 114 according to the second embodiment generates a plurality of imaging signals in accordance with the characteristics of each display device 20 in order to display a medical image on each of the plurality of display devices 20. This is different from the display control unit 114 according to the first embodiment.
  • FIG. 12 is an explanatory diagram illustrating an example of gamma correction for a plurality of display devices 20 according to the second embodiment. 12 illustrates an example of gamma correction for the HDR display device 20, and the right diagram illustrates an example of gamma correction for the SDR display device 20.
  • the display control unit 114 generates an image signal for the HDR display device 20 among the plurality of display devices 20 by performing gamma correction shown in the left graph of FIG. 12 on the image signal.
  • the display control unit 114 generates an image signal for the SDR display device 20 among the plurality of display devices 20 by performing gamma correction shown in the graph on the right side of FIG.
  • the display control unit 114 performs the gamma correction using all of the input imaging signals in the gamma correction illustrated in the left graph of FIG. 12, whereas the display control unit 114 receives the gamma correction in the gamma correction illustrated in the right graph.
  • Gamma correction is performed using only the low-level portion of the imaging signal. Accordingly, the display control unit 114 can saturate the high-brightness portion of the medical captured image to be displayed on the SDR display device 20.
  • the display control unit 114 causes the SDR display device 20 to display a medical captured image having a brightness corresponding to the target value of the brightness according to the HDR display device 20 determined by the brightness control unit 112. May be multiplied by a gain for the entire captured image. Specifically, a coefficient based on the ratio between the target value of the brightness according to the display device 20 of the HDR determined by the brightness control unit 112 and the target value of the brightness according to the display device 20 of the SDR is set as a gain.
  • the medical imaging image may be multiplied.
  • FIG. 13 is a sequence diagram showing a flow of the operation of the medical observation system 2 according to the second embodiment.
  • the control unit 110 acquires the determination information (step S2000).
  • the control unit 110 performs a determination process of determining a dynamic range of each of the display device 20A and the display device 20B connected to the medical observation device 10 based on the acquired determination information (step S2002). Note that the detailed processing of the determination processing is the same as the determination processing described in the first embodiment, and thus description in this section is omitted.
  • the control unit 110 determines a target value of brightness based on the result of the determination process (step S2004). Then, the control unit 110 outputs an imaging instruction to the imaging unit 100 so as to capture a medical imaging image having the brightness of the determined target value (step S2006).
  • the imaging unit 100 that has received the imaging instruction from the control unit 110 captures an image of the observation target according to the imaging instruction (step S2008), and outputs an imaging signal obtained by the imaging to the control unit 110 (step S2010).
  • the control unit 110 which has received the imaging signal from the imaging unit 100, performs a correction process on the imaging signal according to each of the display device 20A and the display device 20B to which the imaging signal is transmitted (step S2012). The details of the correction process will be described later. After the correction processing, the control unit 110 transmits the corrected imaging signal to each of the display device 20A and the display device 20B via the communication unit 120 (step S2014 and step S2016).
  • the display device 20A and the display device 20B that have received the imaging signal perform display processing for displaying the imaging signal as a medical imaging image, respectively (step S2018 and step S2020). Note that the detailed processing of the display processing is the same as the display processing described in the first embodiment, and a description in this section will be omitted.
  • the medical observation system 2 ends the operation.
  • FIG. 14 is a flowchart illustrating a flow of a correction process according to the second embodiment.
  • the control unit 110 adjusts the white balance of the input image signal (step S2200).
  • the control unit 110 performs gamma correction according to each dynamic range of the plurality of display devices 20 to generate a plurality of imaging signals (step S2202). For example, when the dynamic range of the display device 20A is HDR, the control unit 110 performs gamma correction on the imaging signal using a gamma value corresponding to HDR, and outputs the imaging signal for transmission to the display device 20A. Generate.
  • the control unit 110 when the dynamic range of the display device 20B is SDR, the control unit 110 performs gamma correction on the imaging signal using a gamma value corresponding to SDR, and performs imaging for transmitting to the display device 20B. Generate a signal. Then, the control unit 110 converts the image signal after the gamma correction from RGB to YCbCr (step S2204), and ends the correction processing.
  • control unit 110 determines the target brightness value based on the dynamic range.
  • control unit 110 further determines a target value of brightness based on the display mode of the display device 20.
  • Examples of display modes include a 3D mode for displaying a medical image in 3D and a 2D mode for displaying a medical image in 2D.
  • the display device 20 for example, 3D glasses
  • the control unit 110 determines the brightness target value in consideration of the fact that the medical captured image is displayed darker than in the case of the 2D mode.
  • the control unit 110 adjusts the brightness in consideration of the fact that the imaging device brightens the brightness and captures an image of the observation target, and the 3D glasses as the display device 20 display the medical captured image with the brightness reduced. Determine the target value.
  • the control unit 110 may determine the target value of the brightness in the same manner as in the above-described embodiment.
  • control unit 110 can display the medical image with the optimal brightness on the display device 20 by determining the brightness target value in consideration of the display mode of the display device 20 as well.
  • the visibility when the user visually recognizes the medical image can be improved.
  • FIG. 15 is an explanatory diagram illustrating a determination process according to a modification.
  • control unit 110 determines the target brightness value based on the dynamic range, and an example in which the control unit 110 determines the target brightness value based on the display mode of the display device 20.
  • control unit 110 further determines a target value of brightness based on the type of the imaging device.
  • the example of the imaging apparatus that irradiates the observation target with visible light (for example, white light) when imaging the observation target has been described.
  • an imaging device that illuminates the observation target with special light when imaging the observation target may be used as the imaging device.
  • a medical image captured using special light is captured without overexposure. Therefore, when the imaging device is an imaging device that captures an image of the observation target using the special light, the control unit 110 captures an image of the observation target without the imaging device decreasing the brightness, and the display device 20 increases the brightness.
  • the target value of the brightness is determined in consideration of displaying the medical image without performing the process.
  • the imaging device may be an imaging device that switches between visible light and special light at predetermined time intervals to image the observation target.
  • a plurality of medical images captured by switching between visible light and special light at predetermined time intervals are displayed on the display device 20 after being superimposed.
  • the medical image captured using visible light is captured such that the brightness is reduced as described above. For this reason, when displaying the superimposed medical captured image, if the display device 20 does not particularly perform processing on the superimposed medical captured image, the superimposed medical captured image is displayed dark. Therefore, when the imaging device is an imaging device that switches between visible light and special light to capture an image of an observation target, the control unit 110 causes the display device 20 to display a superimposed medical captured image with increased brightness.
  • the brightness target value is determined in consideration of the above.
  • the control unit 110 causes the imaging device to darken the brightness and image the observation target.
  • the control unit 110 causes the imaging device to image the observation target without reducing the brightness.
  • the control unit 110 checks the type of light that the imaging device shines on the observation target (step S3200).
  • the control unit 110 checks whether or not the light applied to the observation target is visible light (step S3202). If the light applied to the observation target is visible light (step S3202 / YES), the control unit 110 determines that the brightness should be reduced and the imaging unit 100 should image the observation target (step S3204).
  • control unit 110 determines that the imaging unit 100 should image the observation target without reducing the brightness (step S3206). Then, control unit 110 ends the determination processing.
  • control unit 110 can display the medical imaging image with the optimal brightness on the display device 20. Can improve the visibility when viewing the medical image.
  • the display control unit 114 adjusts the luminance of characters displayed on the display device 20 according to the luminance of the medical captured image when the medical captured image is displayed on the display device 20.
  • the display control unit 114 may display information (hereinafter referred to as OSD information) displayed by OSD (On Screen Display) according to the brightness of the medical captured image when the medical captured image is displayed on the display device 20. ) May be reduced.
  • OSD information displayed by OSD (On Screen Display)
  • OSD On Screen Display
  • the display device 20 increases the brightness of the display device 20 when displaying a dark medical image.
  • the OSD information is also displayed brightly, and the visibility of the OSD information may be reduced.
  • the display control unit 114 causes the display device 20 to display the OSD information by lowering the luminance when displaying the OSD information at the same ratio as the ratio of decreasing the brightness by the imaging device when imaging the observation target. Accordingly, the display control unit 114 can cause the display device 20 to display the OSD information darker than the medical captured image.
  • the display control unit 114 causes the display device 20 to display the OSD information by lowering the luminance of the OSD information to be lower than the luminance of the medical captured image, so that the visibility when the user visually recognizes the OSD information is displayed. Can be improved.
  • the imaging device When the dynamic range of the display device 20 is the HDR, the imaging device according to the above-described embodiment captures an image of an observation target with reduced brightness, and thus the digital gain increases by an amount corresponding to the darker captured image. As the digital gain increases, the S / N ratio (Signal-NoiseiRatio) deteriorates, and noise in a medical image increases. Therefore, when the dynamic range of the display device 20 is HDR, the control unit 110 may perform a noise reduction process on the imaging signal. For example, the control unit 110 performs a noise reduction process in the correction process. Note that the control unit 110 may also perform the noise reduction process when the dynamic range of the display device 20 is SDR.
  • the control unit 110 preferably performs the noise reduction process with a higher noise reduction process strength than when the dynamic range is the SDR.
  • the display control unit 114 performs noise reduction processing on the image pickup signal, thereby reducing noise included in the image pickup signal and improving the visibility when the user visually recognizes the medical image. be able to.
  • control unit 110 controls the amount of light projected from the light source unit 132 to adjust the brightness at the time of imaging.
  • the brightness at the time of imaging may be adjusted by controlling the aperture of an image sensor included in the camera head 136 of the imaging device.
  • the control unit 110 reduces the light amount projected from the light source unit 132 to reduce the brightness at the time of imaging, but reduces the aperture of the image sensor to reduce the amount of light passing through the lens. And the brightness at the time of imaging may be reduced.
  • the depth of field becomes deeper. Accordingly, the range in which the observation target is focused when approaching or moving away from the imaging device is widened, so that the user can more easily observe the observation target.
  • the medical control device controls the brightness of an imaging signal generated by an imaging device that receives light from an observation target.
  • the medical control device causes the display device 20 that displays an image to display a medical captured image generated from the image signal.
  • the medical control device controls the brightness of the imaging signal such that the higher the dynamic range of the display device 20, the darker the brightness of the imaging signal becomes. Accordingly, the medical control device can restore and display the saturated portion in the medical captured image displayed on the SDR display device 20 on the HDR display device 20.
  • each device described in this specification may be realized as a single device, or some or all of the devices may be realized as separate devices.
  • the medical observation device 10, the display device 20, and the medical control device may be realized as a single device.
  • the medical control device may be realized as a server device connected to the medical observation device 10 and the display device 20 via a network or the like.
  • the medical observation device 10 described in this specification may be configured as a system in which some or all of the components are realized as separate devices.
  • the medical observation device 10 may include a light source and an imaging device, and the control unit may be a system realized by an external device.
  • a series of processes by each device described in this specification may be realized using any of software, hardware, and a combination of software and hardware.
  • the program constituting the software is stored in advance in a recording medium (non-transitory medium: non-transitory @ media) provided inside or outside each device, for example.
  • a recording medium non-transitory medium: non-transitory @ media
  • Each program is read into the RAM at the time of execution by a computer, for example, and executed by a processor such as a CPU.
  • a brightness control unit that controls the brightness of an imaging signal generated by an imaging device that receives light from an observation target
  • a display control unit that displays a medical image generated from the image signal on a display device that displays an image
  • the brightness control unit controls the brightness of the imaging signal so that the brightness of the imaging signal is lower as the dynamic range of the display device is higher.
  • the brightness control unit specifies a dynamic range of the display device, and determines a target value of brightness corresponding to the specified dynamic range of the display device.
  • the brightness control unit specifies a dynamic range of the display device based on a predetermined selection operation.
  • the medical control device determines the target value based on a difference between a maximum value of a dynamic range of the display device and a maximum value of the predetermined dynamic range. . (9) When the maximum value of the dynamic range of the display device is n times (n is a real number) the maximum value of the predetermined dynamic range, the brightness control unit sets the target value in the display device to the predetermined value.
  • the target value is 1 / n times the target value corresponding to the dynamic range.
  • the brightness control unit controls imaging by the imaging device such that the imaging signal has a brightness corresponding to a dynamic range of the display device selected from a plurality of the display devices;
  • the medical control device according to any one of (9) to (9).
  • (11) The medical control device according to (10), wherein the display device selected from the plurality of display devices is the display device associated with a predetermined user.
  • (12) The medical device according to (10) or (11), wherein the display device selected from the plurality of display devices is the display device having a high dynamic range of the display device among the plurality of display devices. Control device.
  • the display control unit performs gamma correction on the imaging signal based on a gamma value of the display device, and displays the medical imaging image generated from the imaging signal on which the gamma correction has been performed to the display device.
  • the medical control device according to any one of (1) to (12), which is displayed.
  • the display control unit performs the gamma correction on the imaging signal so that an intermediate luminance value of the medical imaging image displayed on the display device and a display device having a predetermined gamma value is the same.
  • the medical control device according to the above (13), which performs the control.
  • the display control unit displays the medical captured image generated from the imaging signal on which the gamma correction has been performed based on the gamma value of each of the plurality of display devices on each of the plurality of display devices.
  • (1) the display control unit adjusts luminance of characters displayed on the display device according to luminance of the medical captured image when the medical captured image is displayed on the display device.
  • the medical control device according to any one of (17) to (17).
  • a light source that emits light, An imaging device for imaging an observation target;
  • a control unit that controls the brightness of an imaging signal generated by the imaging device that receives reflected light from the observation target irradiated with the light, and displays a medical imaging image generated from the imaging signal on a display device.
  • the control unit controls the brightness of the imaging signal so that the brightness of the imaging signal is lower as the dynamic range of the display device is higher.
  • Medical observation system 10 Medical observation device 20
  • Medical observation device 20
  • Imaging unit 110
  • Control unit 112
  • Brightness control unit 114
  • Display control unit 120
  • Communication unit 130
  • Insertion member 132
  • Light source unit 134
  • Light guide 136
  • Camera head 138
  • Cable 140 Control unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Computer Hardware Design (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Endoscopes (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Studio Devices (AREA)

Abstract

画像を表示する表示装置に、観察対象からの光を受光する撮像装置が生成する撮像信号から生成される医療用撮像画像を表示させる表示制御部と、前記表示制御部に所定の明るさの前記医療用撮像画像を表示させるように前記撮像信号の明るさを制御する明るさ制御部と、を備え、前記明るさ制御部は、前記表示装置のダイナミックレンジが第1の値よりも大きな第2の値である場合、前記ダイナミックレンジが前記第1の値である場合に前記医療用撮像画像を前記所定の明るさで表示するための前記撮像信号の明るさよりも、前記撮像信号の明るさを暗くする制御を行う、医療用制御装置。

Description

医療用制御装置及び医療用観察装置
 本開示は、医療用制御装置及び医療用観察装置に関する。
 医療現場において、撮像装置は、患者の体内等の観察対象を撮像する際に、観察対象以外の鉗子やガーゼ等を被写体に含んで撮像してしまう場合が有り得る。この場合、表示装置に表示される撮像画像の明るさが鉗子やガーゼの明るさに合ってしまい、表示装置に表示される画像の明るさが全体的に明るくなることがある。これにより、表示される画像に白飛びが生じ、術者が観察したい部分の情報や色が欠けてしまうことがある。
 一般的に、白飛びを低減するために、イメージセンサのダイナミックレンジを拡大することが有効である。例えば、セルサイズが大きく大判のイメージセンサを用いることで、イメージセンサのダイナミックレンジを拡大することができる。これにより、広いダイナミックレンジに対応した画像を撮像することができるため、当該画像が表示装置に表示された際の白飛びを低減することができる。また、白飛びを低減するために、撮像時のシャッタースピードの変更により時間的に異なって撮像された複数枚の明暗画像が合成されるHDR(High Dynamic Range)撮影を行うことも有効である。これにより、広いダイナミックレンジに対応した画像を生成することができるため、当該画像が表示された際の白飛びを低減することができる。
 参考までに、下記特許文献1には、広ダイナミックレンジ画像を狭ダイナミックレンジ画像に変換する際に、ユーザの操作に基づき画像中の任意の位置の輝度を最適化する技術が開示されている。
特開2002-135589号公報
 しかしながら、内視鏡システムでは、カメラヘッドの小型化が求められるため、大判のイメージセンサを用いることが難しい。また、長蓄積露光画像と短蓄積露光画像の2枚を合成してHDR画像を生成する撮影方法は、被写体又は撮像装置が動くことにより画像にブレが生じてしまうため、撮像装置を移動させながら体内の様子を観察する内視鏡システムにこのような撮影方法を用いることは望ましくない。そこで、内視鏡システムでは、大判のイメージセンサを用いず、かつ上記撮影方法を用いずに白飛びを低減することが求められていた。
 そこで、本開示では、医療用撮像画像の白飛びを低減することが可能な、新規かつ改良された医療用制御装置及び医療用観察装置を提案する。
 本開示によれば、画像を表示する表示装置に、観察対象からの光を受光する撮像装置が生成する撮像信号から生成される医療用撮像画像を表示させる表示制御部と、前記表示制御部に所定の明るさの前記医療用撮像画像を表示させるように前記撮像信号の明るさを制御する明るさ制御部と、を備え、前記明るさ制御部は、前記表示装置のダイナミックレンジが第1の値よりも大きな第2の値である場合、前記ダイナミックレンジが前記第1の値である場合に前記医療用撮像画像を前記所定の明るさで表示するための前記撮像信号の明るさよりも、前記撮像信号の明るさを暗くする制御を行う、医療用制御装置が提供される。
 また、本開示によれば、光を発光する光源と、観察対象を撮像する撮像装置と、画像を表示する表示装置に、観察対象からの光を受光する撮像装置が生成する撮像信号から生成される医療用撮像画像を表示させる表示制御部と、前記表示制御部に所定の明るさの前記医療用撮像画像を表示させるように前記撮像信号の明るさを制御する明るさ制御部と、を備え、前記明るさ制御部は、前記表示装置のダイナミックレンジが第1の値よりも大きな第2の値である場合、前記ダイナミックレンジが前記第1の値である場合に前記医療用撮像画像を前記所定の明るさで表示するための前記撮像信号の明るさよりも、前記撮像信号の明るさを暗くする制御を行う、医療用観察装置が提供される。
 以上説明したように本開示によれば、医療用撮像画像の白飛びを低減することが可能である。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の一実施形態に係る概要を示す説明図である。 第1の実施形態に係る医療用観察システムの構成例を示す説明図である。 同実施形態に係る医療用観察装置の機能構成例を示すブロック図である。 同実施形態に係る医療用観察装置における入出力関係の例を示す説明図である。 同実施形態に係る表示装置における入出力関係の例を示す説明図である。 同実施形態に係る医療用撮像画像の表示例を示す説明図である。 同実施形態に係る医療用観察システムの動作の流れを示すシーケンス図である。 同実施形態に係る判定処理における処理の流れを示すフローチャートである。 同実施形態に係る補正処理における処理の流れを示すフローチャートである。 同実施形態に係る表示処理における処理の流れを示すフローチャートである。 第2の実施形態に係る医療用観察システムの構成例を示す説明図である。 同実施形態に係る複数の表示装置向けのガンマ補正の例を示す説明図である。 同実施形態に係る医療用観察システムの動作の流れを示すシーケンス図である。 同実施形態に係る補正処理における処理の流れを示すフローチャートである。 変形例に係る判定処理を示す説明図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.概要
 2.第1の実施形態
  2.1.システム構成例
  2.2.機能構成例
  2.3.動作例
 3.第2の実施形態
  3.1.システム構成例
  3.2.機能構成例
  3.3.動作例
 4.変形例
 5.まとめ
 <<1.概要>>
 以下では、図1を参照しながら、本開示の一実施形態に係る概要について説明する。図1は、本開示の一実施形態に係る概要を示す説明図である。なお、以下では、本開示の一実施形態に係る医療用制御装置が、医療現場で用いられる内視鏡システムに適用された例について説明する。ただし、当該医療用制御装置が適用される対象は内視鏡システムに限定されない。例えば、当該医療用制御装置は、撮像装置を用いて外部から患者等の観察対象を撮像する医療用観察システムに適用されてもよい。
 内視鏡システムにおいて、撮像装置は、患者の体内等の観察対象を撮像する際に、観察対象以外の鉗子やガーゼ等を被写体に含んで撮像してしまう場合が有り得る。この場合、表示装置に表示される撮像画像の明るさが鉗子やガーゼの明るさに合ってしまい、表示装置に表示される画像の明るさが全体的に明るくなることがある。これにより、表示される画像に白飛びが生じ、術者が観察したい部分の情報や色が欠けてしまうことがある。
 一般的に、白飛びを低減するために、イメージセンサのダイナミックレンジを拡大することが有効である。例えば、セルサイズが大きく大判のイメージセンサを用いることで、イメージセンサのダイナミックレンジを拡大することができる。これにより、広いダイナミックレンジに対応した画像を撮像することができるため、当該画像が表示装置に表示された際の白飛びを低減することができる。また、白飛びを低減するために、撮像時のシャッタースピードの変更により時間的に異なって撮像された複数枚の明暗画像が合成されるHDR(High Dynamic Range)撮影を行うことも有効である。これにより、広いダイナミックレンジに対応した画像を生成することができるため、当該画像が表示された際の白飛びを低減することができる。
 しかしながら、内視鏡システムでは、カメラヘッドの小型化が求められるため、大判のイメージセンサを用いることが難しい。また、長蓄積露光画像と短蓄積露光画像の2枚を合成してHDR画像を生成する撮影方法は、被写体又は撮像装置が動くことにより画像にブレが生じてしまうため、撮像装置を移動させながら体内の様子を観察する内視鏡システムにこのような撮影方法を用いることは望ましくない。そこで、内視鏡システムでは、大判のイメージセンサを用いず、かつ上記撮影方法を用いずに白飛びを低減することが求められていた。
 本開示の実施形態では、上記の点に着目して発想されたものであり、医療用撮像画像の白飛びを低減することが可能な技術を提案する。例えば、観察対象からの光を受光する撮像装置が生成する撮像信号の明るさを制御し、画像を表示する表示装置に撮像信号から生成される医療用撮像画像を表示させる医療用制御装置を提案する。
 具体的に、医療用制御装置は、表示装置20のダイナミックレンジが高い程、撮像信号の明るさがより暗くなるように撮像信号の明るさを制御する。これは、ダイナミックレンジが高い範囲の表示装置ほど、医療用撮像画像の明るさを明るく表示でき、明るさを明るくするほど表示される医療用撮像画像に白飛びが生じる可能性が高いからである。医療用制御装置は、表示装置に表示される医療用撮像画像の明るさに応じて、観察対象を撮像する際の明るさを暗くして撮像することで、表示装置にて医療用撮像画像の明るさを明るくして表示した際に生じる白飛びを低減することができる。
 本開示の一実施形態では、ダイナミックレンジが高い範囲を示す表示装置は、ダイナミックレンジがハイダイナミックレンジ(HDR:High Dynamic Range)の表示装置である。ここで、HDRの表示装置とは、表示できる画像の最大輝度が1000nit以上である表示装置である。一方、ダイナミックレンジが低い範囲を示す表示装置は、ダイナミックレンジがスタンダードダイナミックレンジ(SDR:Standard Dynamic Range)の表示装置である。ここで、SDRの表示装置とは、表示できる画像の最大輝度が1000nit未満である表示装置である。なお、ダイナミックレンジに基づく表示装置の種類は、上述のHDRの表示装置とSDRの表示装置に限定されず、他のダイナミックレンジに基づく表示装置であってもよい。以下では、医療用撮像画像が表示される表示装置は、HDRの表示装置又はSDRの表示装置のいずれか一方である例について説明する。
 図1に示す1点鎖線のグラフは、SDRの表示装置における入出力関係を示しており、2点鎖線のグラフは、HDRの表示装置における入出力関係を示している。本開示の一実施形態に係る撮像信号は、図1に示すように、ガンマ補正及び逆ガンマ補正が行われた上で、最終的な撮像信号として出力される。
 例えば、医療用撮像画像を表示する表示装置がHDRの表示装置である場合、明るさを暗くして観察対象が撮像されるため、図1の撮像時の撮像信号のグラフが示すように、HDRの表示装置の出力はSDRの表示装置の出力よりも小さい。しかしながら、HDRの表示装置の場合の撮像信号に対してガンマ補正と逆ガンマ補正が行われることで、図1の補正後の撮像信号のグラフが示すように、HDRの表示装置はSDRの表示装置の出力よりも大きく出力をすることができる。
 以上、図1を参照しながら、本開示の一実施形態に係る概要について説明した。続いて、第1の実施形態について説明する。
 <<2.第1の実施形態>>
 以下では、図2~図10を参照しながら、第1の実施形態について説明する。
 <2.1.システム構成例>
 以下では、図2を参照しながら、本開示の実施形態に係る医療用観察システムの構成例について説明する。図2は、第1の実施形態に係る医療用観察システム1の構成例を示す説明図である。
 図2に示すように、第1の実施形態に係る医療用観察システム1は、例えば、医療用観察装置10と、表示装置20とを有する。例えば、図2に示す医療用観察装置10が手術時に用いられる場合、術者は、医療用観察装置10により撮像されて、表示装置20の表示画面に表示された医療用撮像画像を参照しながら術部を観察し、当該術部に対して、術式に応じた手技などの各種処置を行う。また、術者を補助する補助者も同様に、表示装置20の表示画面に表示された医療用撮像画像を参照しながら術者が行う各種処置の補助を行う。なお、以下では、術者及び補助者等の手術に関わる者は、総称してユーザとも称される。
 なお、第1の実施形態に係る医療用観察システム1は、図2に示す例に限られない。例えば、第1の実施形態に係る医療用観察システム1は、医療用観察装置10における各種動作を制御する医療用制御装置(図示せず)を、さらに有していてもよい。図2に示す医療用観察システム1では、後述するように、医療用観察装置10が制御部(後述する)を備えることにより、医療用観察装置10が医療用制御装置(図示せず)の機能を有している例を示している。
 医療用制御装置(図示せず)としては、例えば、“メディカルコントローラ”や、“サーバなどのコンピュータ”などが、挙げられる。また、医療用制御装置(図示せず)は、例えば、上記のような機器に組み込むことが可能な、IC(Integrated Circuit)であってもよい。
 また、第1の実施形態に係る医療用観察システム1は、医療用観察装置10と表示装置20との一方または双方を複数有する構成であってもよい。医療用観察装置10を複数有する場合、各々の医療用観察装置10において、後述する表示制御処理が行われる。また、第1の実施形態に係る医療用観察システム1が医療用観察装置10と表示装置20とを複数有する構成である場合、医療用観察装置10と表示装置20とが一対一に対応付けられていてもよいし、複数の医療用観察装置10が1つの表示装置20に対応付けられていてもよい。複数の医療用観察装置10が1つの表示装置20に対応付けられている場合、表示装置20では、例えば切り替え操作などが行われることによって、どの医療用観察装置10において撮像された医療用撮像画像を表示画面に表示させるのかが、切り替えられる。
 以下、図2に示す第1の実施形態に係る医療用観察システム1を構成する各装置について説明する。
 (1)医療用観察装置10
 図2に示す医療用観察装置10は、例えば、挿入部材130と、光源ユニット132と、ライトガイド134と、カメラヘッド136と、ケーブル138と、制御ユニット140とを備える。
 また、図2では示していないが、医療用観察装置10は、例えば、MPU(Micro Processing Unit)などの演算回路で構成される、1または2以上のプロセッサ(図示せず)と、ROM(Read Only Memory。図示せず)と、RAM(Random Access Memory。図示せず)と、記録媒体(図示せず)と、通信デバイス(図示せず)とを、備えていてもよい。医療用観察装置10は、例えば、医療用観察装置10が備えているバッテリなどの内部電源から供給される電力、または、接続されている外部電源から供給される電力などによって、駆動する。
 プロセッサ(図示せず)は、医療用観察装置10における制御部(後述する)として機能する。ROM(図示せず)は、プロセッサ(図示せず)が使用するプログラムや演算パラメータなどの制御用データを記憶する。RAM(図示せず)は、プロセッサ(図示せず)により実行されるプログラムなどを一時的に記憶する。
 記録媒体(図示せず)は、医療用観察装置10における記憶部(図示せず)として機能する。記録媒体(図示せず)には、例えば、本実施形態に係る表示制御方法に係るデータや、各種アプリケーションなどの、様々なデータが記憶される。ここで、記録媒体(図示せず)としては、例えば、ハードディスクなどの磁気記録媒体や、フラッシュメモリなどの不揮発性メモリなどが挙げられる。また、記録媒体(図示せず)は、医療用観察装置10から着脱可能であってもよい。
 通信デバイス(図示せず)は、医療用観察装置10が備える通信手段であり、表示装置20などの外部装置と、無線または有線で通信を行う役目を果たす。ここで、通信デバイス(図示せず)としては、例えば、IEEE802.15.1ポートおよび送受信回路(無線通信)や、IEEE802.11ポートおよび送受信回路(無線通信)、通信アンテナおよびRF回路(無線通信)、あるいはLAN端子および送受信回路(有線通信)などが挙げられる。
 (1-1)挿入部材130
 挿入部材130は、細長形状を有し、入射光を集光する光学系を内部に備える。挿入部材130の先端は、例えば、患者の体腔内に挿入される。挿入部材130の後端はカメラヘッド136の先端と着脱可能に接続される。また、挿入部材130は、ライトガイド134を介して光源ユニット132と接続され、光源ユニット132から光が供給される。
 挿入部材130は、例えば、可撓性を有さない素材で形成されてもよいし、可撓性を有する素材で形成されてもよい。挿入部材130を形成する素材によって、医療用観察装置10は、硬性鏡または軟性鏡と呼ばれうる。
 (1-2)光源ユニット132
 光源ユニット132は、ライトガイド134を介して挿入部材130と接続される。光源ユニット132は、ライトガイド134を介して挿入部材130に光を供給する。
 光源ユニット132は、例えば、波長が異なる光を発光する複数の光源を有する。光源ユニット132が有する複数の光源としては、例えば、赤色の光を発光する光源、緑色の光を発光する光源、および青色の光を発光する光源が挙げられる。赤色の光を発光する光源としては、例えば、1または2以上の赤色発光ダイオードが挙げられる。緑色の光を発光する光源としては、例えば、1または2以上の緑色発光ダイオードが挙げられる。青色の光を発光する光源としては、例えば、1または2以上の青色発光ダイオードが挙げられる。なお、光源ユニット132が有する複数の光源が、上記に示す例に限られないことは、言うまでもない。光源ユニット132は、例えば、複数の光源を単一チップで有し、または、複数の光源を複数のチップで有する。
 光源ユニット132は、制御ユニット140と有線または無線で接続され、光源ユニット132における発光は、制御ユニット140により制御される。
 挿入部材130に供給された光は、挿入部材130の先端から出射され、患者の体腔内組織などの観察対象に照射される。そして、観察対象からの反射光は、挿入部材130内の光学系によって集光される。
 (1-3)カメラヘッド136
 カメラヘッド136は、観察対象を撮像する機能を有する。カメラヘッド136は、信号伝送部材であるケーブル138を介して制御ユニット140と接続される。
 カメラヘッド136は、イメージセンサを有し、挿入部材130によって集光された観察対象からの反射光を光電変換することにより観察対象を撮像し、撮像信号(医療用撮像画像を示す信号)を生成する。そして、カメラヘッド136は、生成した撮像信号を制御ユニット140へケーブル138を介して出力する。カメラヘッド136が有するイメージセンサとしては、例えば、CMOS(Complementary Metal Oxide Semiconductor)やCCD(Charge Coupled Device)などの撮像素子を複数用いたイメージセンサが、挙げられる。
 内視鏡装置として機能する医療用観察装置10では、例えば、挿入部材130、光源ユニット132、およびカメラヘッド136が、“患者の体内に挿入されて、体内を撮像する撮像装置”の役目を果たす。
 なお、内視鏡装置として機能する医療用観察装置10は、例えば、いわゆるステレオカメラとして機能する複数の撮像装置を備える構成であってもよい。ステレオカメラとして機能する撮像装置の構成において、光学系は、第1の例に係る医療用観察システムを構成する医療用観察装置10と同様に、ガリレオ式光学系であってもよいし、グリノー式光学系であってもよい。
 (1-4)制御ユニット140
 制御ユニット140は、撮像装置を制御する。より具体的には、制御ユニット140は、光源ユニット132およびカメラヘッド136それぞれを制御する。
 また、制御ユニット140は、通信デバイス(図示せず)を含み、カメラヘッド136から出力された撮像信号を任意の無線通信または任意の有線通信で、表示装置20へ送信する。制御ユニット140は、撮像信号と表示制御信号とを表示装置20へ送信してもよい。
 制御ユニット140が含む通信デバイス(図示せず)としては、例えば、IEEE802.15.1ポートおよび送受信回路(無線通信)や、IEEE802.11ポートおよび送受信回路(無線通信)、通信アンテナおよびRF回路(無線通信)、光通信用デバイス(有線通信または無線通信)、あるいはLAN端子および送受信回路(有線通信)などが挙げられる。通信デバイス(図示せず)は、複数の通信方式によって、1または2以上の外部装置と通信を行うことが可能な構成であってもよい。
 また、制御ユニット140は、カメラヘッド136から出力された撮像信号に対して所定の処理を行い、所定の処理が行われた撮像信号を表示装置20へ送信してもよい。撮像信号に対する所定の処理としては、例えば、ホワイトバランスの調整や、電子ズーム機能に係る画像の拡大または縮小、画素間補正などが、挙げられる。
 なお、制御ユニット140は、撮像信号に基づく医療用撮像画像を記憶してもよい。制御ユニット140としては、例えばCCU(Camera Control Unit)が挙げられる。
 内視鏡装置として機能する医療用観察装置10は、例えば図2を参照して示したハードウェア構成を有する。内視鏡装置として機能する医療用観察装置10では、例えば、挿入部材130、光源ユニット132、およびカメラヘッド136が、撮像装置の役目を果たし、制御ユニット140により撮像装置における撮像が制御される。
 (2)表示装置20
 表示装置20は、第1の実施形態に係る医療用観察システム1における表示手段であり、医療用観察装置10からみて外部の表示デバイスに該当する。表示装置20は、例えば、医療用観察装置10において撮像された医療用撮像画像や、UI(User Interface)に係る画像などの、様々な画像を表示画面に表示する。具体的に、表示装置20は、制御ユニット140から送信される撮像信号に基づき医療用撮像画像を生成し、生成した医療用撮像画像を表示画面に表示する。
 また、表示装置20は、任意の方式により3D表示が可能な構成を有していてもよい。表示装置20における表示は、例えば、医療用観察装置10、または、医療用制御装置(図示せず)によって制御される。
 医療用観察システム1において表示装置20は、手術室の壁面や天井、床面などの、手術室内においてユーザにより視認されうる任意の場所に設置される。
 表示装置20としては、例えば、液晶ディスプレイや有機EL(Electro-Luminescence)ディスプレイ、CRT(Cathode Ray Tube)ディスプレイなどが挙げられる。
 なお、表示装置20は、上記に示す例に限られない。例えば、表示装置20は、ヘッドマウントディスプレイやアイウェア型の装置などのような、ユーザなどが身体に装着して用いる任意のウェアラブル装置であってもよい。
 表示装置20は、例えば、表示装置20が備えているバッテリなどの内部電源から供給される電力、または、接続されている外部電源から供給される電力などによって、駆動する。
 <2.2.機能構成例>
 続いて、図3~図7を参照しながら、医療用観察システム1の機能構成例について説明する。
 <2.2.1.医療用観察装置10の機能構成例>
 以下では、図3及び図4を参照しながら、第1の実施形態に係る医療用観察装置10の機能構成例について説明する。図3は、第1の実施形態に係る医療用観察装置10の機能構成例を示すブロック図である。図3に示すように、第1の実施形態に係る医療用観察装置10は、例えば、撮像部100、制御部110、及び通信部120を備える。
 (1)撮像部100
 撮像部100は、観察対象を撮像する。撮像部100は、例えば、図2にて示した挿入部材130、光源ユニット132、およびカメラヘッド136で構成される。撮像部100における撮像は、例えば制御部110によって制御される。
 (2)制御部110
 制御部110は、例えば上述したプロセッサ(図示せず)で構成され、医療用観察装置10全体を制御する役目を果たす。また、制御部110は、後述する撮像制御処理及び表示制御処理を主導的に行う役目を果たす。なお、制御部110における撮像制御処理及び表示制御処理は、複数の処理回路(例えば、複数のプロセッサなど)で分散して行われてもよい。
 より具体的に、制御部110は、図3に示すように、明るさ制御部112、及び表示制御部114を有する。
 (2-1)明るさ制御部112
 明るさ制御部112は、撮像部100を構成する撮像装置を制御する。例えば、明るさ制御部112は、撮像装置が観察対象を撮像する際の明るさを制御するための撮像制御処理を行う。具体的に、明るさ制御部112は、表示装置20を判定するための判定情報に基づき、表示装置20のダイナミックレンジを特定する。次いで、明るさ制御部112は、特定された表示装置20のダイナミックレンジに対応する明るさの目標値を決定する。より具体的に、撮像制御処理では、以下に示す判定情報取得処理、判定処理、及び明るさの目標値の決定処理が行われる。
 (判定情報取得処理)
 明るさ制御部112は、まず、医療用観察装置10に接続されている表示装置20を判定するための判定情報を取得する。当該判定情報は、操作情報とダイナミックレンジ情報とを含み得る。
 操作情報とは、ユーザによる所定の操作により入力される操作に関する情報である。例えば、ユーザは、医療用撮像画像を表示する表示装置20を選択する選択操作を行う。明るさ制御部112は、ユーザが選択した表示装置20に関する情報を操作情報(判定情報)として取得する。
 ダイナミックレンジ情報とは、表示装置20のダイナミックレンジを示す情報である。明るさ制御部112は、例えば、医療用観察装置10に接続されている表示装置20からダイナミックレンジ情報を取得する。また、明るさ制御部112は、医療用観察装置10に接続されている表示装置20から識別情報を取得し、当該識別情報に基づき、表示装置20のダイナミックレンジ情報を取得してもよい。例えば、明るさ制御部112は、取得した識別情報に基づき、医療用観察装置10の記憶部に予め登録されている表示装置20のダイナミックレンジ情報を参照することで、表示装置20のダイナミックレンジ情報を取得する。
 なお、明るさ制御部112は、医療用観察装置10と表示装置20とが片方向通信のみ可能なケーブル等で接続されている場合、表示装置20からダイナミック情報又は識別情報を取得できないため、上述の操作情報を取得する。一方、明るさ制御部112は、医療用観察装置10と表示装置20とが双方向通信可能なケーブル等で接続されている場合、上述のダイナミックレンジ情報又は識別情報を表示装置20から取得する。片方向通信のみ可能なケーブルは、例えば、SDI(Serial Digital Interface)ケーブル等である。また、双方向通信可能なケーブルは、例えば、HDMI(High-Difintiion Multimedia Interface)ケーブル又はDisplay Portケーブル等である。なお、SDIケーブルにより医療用観察装置10と表示装置20が接続される場合、医療用観察装置10は表示装置20へユーザIDを送信し、表示装置20は当該ユーザIDに応じて逆ガンマ補正及び明るさの調整を行ってもよい。この場合、ユーザIDは、ユーザが使用する表示装置20と対応付けられているものとする。
 (判定処理)
 明るさ制御部112は、取得した判定情報に基づき、表示装置20のダイナミックレンジを特定する。例えば、明るさ制御部112は、所定の選択操作に基づき、表示装置20のダイナミックレンジを特定する。具体的に、明るさ制御部112は、判定情報として取得した操作情報より、ユーザが選択操作により選択した表示装置20を確認する。そして、明るさ制御部112は、ユーザに選択された表示装置20のダイナミックレンジを、医療用観察装置10に接続された表示装置20のダイナミックレンジとして特定する。また、明るさ制御部112は、判定情報として取得したダイナミックレンジ情報に基づき、表示装置20のダイナミックレンジを特定する。具体的に、明るさ制御部112は、判定情報として取得したダイナミックレンジ情報が示すダイナミックレンジを、医療用観察装置10に接続された表示装置20のダイナミックレンジとして特定する。
 明るさ制御部112は、判定処理にて特定した表示装置20のダイナミックレンジに基づき、撮像部100にどのように観察対象を撮像させるかを決定する。例えば、表示装置20のダイナミックレンジがHDRである場合、表示装置20は、輝度を高くして医療用撮像画像を表示する。そのため、明るさ制御部112は、撮像部100に明るさを暗くして観察対象を撮像させると決定する。一方、表示装置20のダイナミックレンジがSDRである場合、表示装置20は、輝度を高くすることなく医療用撮像画像を表示する。そのため、明るさ制御部112は、撮像部100に明るさを暗くせずに観察対象を撮像させると決定する。
 (明るさ目標値の決定処理)
 明るさ制御部112は、判定処理の結果に応じて、観察対象を撮像する際の明るさの目標値を決定する。例えば、撮像部100に明るさを暗くして観察対象を撮像させると決定した場合、明るさ制御部112は、表示装置20のダイナミックレンジと、所定のダイナミックレンジとを比較し、比較の結果に基づき明るさの目標値を決定する。具体的に、明るさ制御部112は、表示装置20のダイナミックレンジの最大値と、所定のダイナミックレンジの最大値との差分を抽出し、当該差分に基づき、明るさの目標値を決定する。
 例えば、明るさ制御部112は、表示装置20のダイナミックレンジの最大値が、所定のダイナミックレンジの最大値のn倍(nは実数)である場合、表示装置20における明るさの目標値を、所定のダイナミックレンジに対応する目標値の1/n倍とする。具体的に、医療用観察装置10に接続された表示装置20のダイナミックレンジがHDRであり、HDRの表示装置20のダイナミックレンジの最大値がSDRの表示装置20のダイナミックレンジの最大値の2倍であったとする。この場合、明るさ制御部112は、HDRの表示装置20における明るさの目標値をSDRの表示装置20の明るさ目標値の1/2倍とする。
 なお、明るさの目標値は、撮像装置が観察対象を撮像する際の明るさが明るくなるように決定されてもよい。また、表示装置20における明るさの目標値を算出する際の所定のダイナミックレンジに対応する目標値に乗算する倍率は、1/n倍に限定されず、任意の倍率が設定されてもよい。
 (明るさの制御処理)
 明るさ制御部112は、例えば、光源ユニット132が発光する光の光量を制御することで、撮像部100が観察対象を撮像する際の明るさを調整する。具体的に、撮像時の明るさを明るくしたい場合、明るさ制御部112は、光源ユニット132が発光する光の光量を多くする。これにより、観察対象に投射される光量が多くなるため、撮像時の明るさが明るくなり、撮像信号の明るさも明るくなる。一方、撮像時の明るさを暗くしたい場合、明るさ制御部112は、光源ユニット132が発光する光の光量を少なくする。これにより、観察対象に投射される光量が少なくなるため、撮像時の明るさが暗くなり、撮像信号の明るさも暗くなる。
 (その他の制御処理)
 また、明るさ制御部112は、例えば、ズーム機能(光学ズーム機能および電子ズーム機能)を含む、AF機能の制御などの一般的に電子撮像式の顕微鏡部に備えられる1または2以上の機能の制御を行ってもよい。
 (2-2)表示制御部114
 表示制御部114は、表示装置20における医療用撮像画像の表示を制御する。医療用撮像画像の表示の制御としては、例えば、表示制御部114は、表示制御処理を行い、医療用撮像画像が表示装置20に表示される際の明るさの制御を行う。
 ここで、図4を参照しながら、ガンマ補正について説明する。図4は、第1の実施形態に係る医療用観察装置10における入出力関係の例を示す説明図である。図4に示すグラフの横軸は、医療用観察装置10に入力されるデータを示し、縦軸は、医療用観察装置10から出力されるデータを示す。
 通常、表示装置20には、入力された撮像信号に対応する画像がそのまま出力されることが理想である。当該理想のように画像が出力されるには、表示装置における入出力関係を示すガンマ値が1.0に設定されている必要がある。しかしながら、一般的には、表示装置20におけるガンマ値は1.0ではなく2.2に設定されており、入力された撮像信号のRGBの値を小さくして撮像信号に対応する医療用撮像画像を暗くする逆ガンマ補正という処理が行われている。そのため、表示装置20に対して撮像信号を撮像時の状態のまま入力すると、表示装置20における逆ガンマ補正により医療用撮像画像が暗く表示される。そのため、撮像信号が表示装置に入力される前に予めRGBの値を大きくしておくことで、表示装置20にて医療用撮像画像が暗く表示されることを防ぐことができる。上述のように、RGBの値を予め大きくする処理は、ガンマ補正と称される。
 なお、ガンマ値が1.0である場合の入出力関係は、図4に示す破線のようになる。また、ガンマ値が2.2の場合の入出力関係は、図4に示す1点鎖線のようになり、当該関係はSDRの表示装置20における入出力関係に相当する。なお、HDRの表示装置20における入出力関係は、図4に示す二点鎖線のようになる。当該二点鎖線は、HLG(Hybrid Log Gamma)方式に基づく入出力関係を示している。なお、HDRの表示装置20における入出力関係は、PQ(Perceptual Quantization)方式に基づく入出力関係であってもよい。
 第1の実施形態に係る医療用観察装置10では、表示制御部114が撮像信号に対して表示装置20が有するガンマ値に基づきガンマ補正を行い、ガンマ補正が行われた撮像信号から生成される医療用撮像画像を表示装置20に表示させる。例えば、表示制御部114は、表示装置20と所定のガンマ値を有する表示装置20とに表示される医療用撮像画像の中間の輝度値が同一となるように、撮像信号に対してガンマ補正を行う。具体的に、表示制御部114は、医療用撮像画像がHDRの表示装置20に表示される場合、HDRの表示装置20とガンマ値が2.2のSDRの表示装置20とに表示される医療用撮像画像の中間の輝度値が同一となるようにガンマ補正を行う。これにより、表示装置20は、HDRの表示装置20とSDRの表示装置20の両方における医療用撮像画像の視認性が同一となるように、各々の表示装置20に医療用撮像画像を表示することができる。
 (3)通信部120
 通信部120は、医療用観察装置10が備える通信手段であり、表示装置20などの外部装置と無線または有線で通信を行う役目を果たす。通信部120は、例えば上述した通信デバイス(図示せず)で構成される。通信部120における通信は、例えば制御部110によって制御される。
 <2.2.2.表示装置20の機能構成例>
 以下では、図5及び図6を参照しながら、第1の実施形態に係る表示装置20の機能構成例について説明する。図5は、第1の実施形態に係る表示装置20における入出力関係の例を示す説明図である。図5に示すグラフの横軸は、表示装置20に入力されるデータを示し、縦軸は、表示装置20から出力されるデータを示す。
 表示装置20は、少なくとも制御部(図示しない)を備える。当該制御部は、ガンマ補正によりRGBの値が予め大きくされた撮像信号に対して、逆ガンマ補正を行う。これにより、当該制御部は、撮像信号のRGBの値を小さくすることで、図5に破線で示されている理想的な入出力関係により近づけた上で、撮像信号を医療用撮像画像として表示装置20に表示させる。
 医療用撮像画像がSDRの表示装置20に表示される場合、当該制御部は、図5の1点鎖線が示す入出力関係に基づき、逆ガンマ補正を行う。なお、一点鎖線が示す入出力関係は、ガンマ値が2.2の場合の入出力関係を示している。また、医療用撮像画像がHDRの撮像画像に表示される場合、当該制御部は、図5に示す二点鎖線が示す入出力関係に基づき、逆ガンマ補正を行う。なお、二点鎖線が示す入出力関係は、HLG(Hybrid Log Gamma)方式に基づく入出力関係を示している。なお、HDRの表示装置20における入出力関係は、PQ(Perceptual Quantization)方式に基づく入出力関係であってもよい。
 ここで、図6を参照しながら、表示装置20が表示する医療用撮像画像について説明する。図6は、第1の実施形態に係る医療用撮像画像の表示例を示す説明図である。図6の上部の図は、SDRの表示装置20に表示された医療用撮像画像、下部の図は、HDRの表示装置20に表示された医療用撮像画像を示している。また、図6の左側の図は、撮像時の医療用撮像画像、右側の図は、補正後の医療用撮像画像を示している。
 上部左側の医療用撮像画像は、SDRの表示装置に表示されるため、明るさを暗くせず、普通の明るさで撮像されており、観察対象50には白飛びが生じている。上部左側の医療用撮像画像が補正された上部右側の医療用撮像画像の明るさは、補正により上部左側の医療用撮像画像の明るさよりも明るくなっており、観察対象50には白飛びが生じたままとなっている。
 下部左側の医療用撮像画像は、HDRの表示装置に表示されるため、上部左側の医療用撮像画像の明るさよりも暗い明るさで撮像されており、観察対象50には白飛びが生じていない。下部左側の医療用撮像画像が補正された下部右側の医療用撮像画像の明るさは、補正により下部左側の医療用撮像画像の明るさよりも明るくなっているが、観察対象50には白飛びが生じていない。
 <2.3.動作例>
 以下では、図7~図10を参照しながら、第1の実施形態に係る医療用観察システム1の動作例について説明する。
 (1)医療用観察システム1全体の動作例
 まず、医療用観察システム1が表示装置20に医療用撮像画像を表示するまでの一連の動作例について説明する。図7は、第1の実施形態に係る医療用観察システム1の動作の流れを示すシーケンス図である。
 図7に示すように、まず、制御部110は、判定情報を取得する(ステップS1000)。次いで、制御部110は、取得した判定情報に基づき、医療用観察装置10に接続されている表示装置20のダイナミックレンジを判定する判定処理を行う(ステップS1002)。なお、判定処理の詳細処理については、後述される。次いで、制御部110は、判定処理の結果に基づき、明るさの目標値を決定する(ステップS1004)。そして、制御部110は、決定した目標値の明るさとなる医療用撮像画像を撮像するように、撮像部100へ撮像指示を出力する(ステップS1006)。
 制御部110から撮像指示を入力された撮像部100は、撮像指示に従い観察対象を撮像し(ステップS1008)、撮像によって得られた撮像信号を制御部110へ出力する(ステップS1010)。
 撮像部100から撮像信号を入力された制御部110は、撮像信号に対して、撮像信号が送信される表示装置20に応じた補正処理を行う(ステップS1012)。なお、補正処理の詳細処理については後述される。補正処理後、制御部110は、通信部120を介して補正した撮像信号を表示装置20へ送信する(ステップS1014)。
 撮像信号を受信した表示装置20は、撮像信号を医療用撮像画像として表示するための表示処理を行う(ステップS1016)。なお、表示処理の詳細処理については、後述される。医療用観察システム1は、当該表示処理にて表示装置20に医療用撮像画像が表示されると動作を終了する。
 (2)判定処理
 次いで、第1の実施形態に係る制御部110における、判定処理の詳細処理について説明する。図8は、第1の実施形態に係る判定処理における処理の流れを示すフローチャートである。
 図8に示すように、まず、制御部110は、取得した判定情報より、医療用観察装置10に接続されている表示装置20のダイナミックレンジを特定する(ステップS1200)。次いで、制御部110は、特定したダイナミックレンジがHDRであるか否かを確認する(ステップS1202)。特定したダイナミックレンジがHDRである場合(ステップS1202/YES)、制御部110は、明るさを暗くして撮像部100に観察対象を撮像させると決定する(ステップS1204)。一方、特定したダイナミックレンジがHDRでない場合(ステップS1202/NO)、制御部110は、明るさを暗くせずに撮像部100に観察対象を撮像させると決定する(ステップS1206)。そして、制御部110は、判定処理を終了する。
 (3)補正処理
 次いで、第1の実施形態に係る制御部110における、補正処理の詳細処理について説明する。図9は、第1の実施形態に係る補正処理における処理の流れを示すフローチャートである。
 図9に示すように、まず、制御部110は、入力された撮像信号のホワイトバランスを調整する(ステップS1400)。次いで、制御部110は、表示装置20のダイナミックレンジに応じたガンマ補正を行う(ステップS1402)。例えば、ダイナミックレンジがHDRである場合、制御部110は、HDRに対応するガンマ値を用いて、撮像信号に対してガンマ補正を行う。また、ダイナミックレンジがSDRである場合、制御部110は、SDRに対応するガンマ値を用いて、撮像信号に対してガンマ補正を行う。そして、制御部110は、ガンマ補正後の撮像信号をRGBからYCbCrへ変換し(ステップS1404)、補正処理を終了する。
 (4)表示処理
 次いで、第1の実施形態に係る表示装置20における、表示処理の詳細処理について説明する。図10は、第1の実施形態に係る表示処理における処理の流れを示すフローチャートである。
 図10に示すように、まず、表示装置20は、受信した撮像信号をYCbCrからRGBへ変換する(ステップS1600)。次いで、表示装置20は、変換した撮像信号に対して、表示装置20のダイナミックレンジに応じた逆ガンマ補正を行う(ステップS1602)。例えば、ダイナミックレンジがHDRである場合、表示装置20は、HDRに対応するガンマ値を用いて、撮像信号に対して逆ガンマ補正を行う。また、ダイナミックレンジがSDRである場合、表示装置20は、SDRに対応するガンマ値を用いて、撮像信号に対して逆ガンマ補正を行う。そして、表示装置20は、補正された撮像信号に対応する医療用撮像画像を生成し、生成した医療用撮像画像を表示し(ステップS1604)、表示処理を終了する。
 以上、図2~図10を参照しながら、第1の実施形態について説明した。続いて、第2の実施形態について説明する。
 <<3.第2の実施形態>>
 以下では、図11~図14を参照しながら、第2の実施形態について説明する。上述の第1の実施形態では、医療用観察装置10に1台の表示装置20のみが接続される例について説明した。第2の実施形態では、医療用観察装置10に複数台の表示装置20が接続される例について説明する。なお、以下では、第1の実施形態と相違する点のみを説明し、第1の実施形態と重複する点の説明を省略する。
 <3.1.システム構成例>
 以下では、図11を参照しながら、第2の実施形態に係る医療用観察システム2の構成例について説明する。図11は、第2の実施形態に係る医療用観察システム2の構成例を示す説明図である。図11に示すように、第2の実施形態に係る医療用観察システム2は、例えば、医療用観察装置10と、表示装置20Aと、表示装置20Bとを有する。
 なお、医療用観察装置10に複数台の表示装置20が接続される点以外の第2の実施形態に係る医療用観察システム2のシステム構成は、上述した第1の実施形態に係る医療用観察システム1のシステム構成と同一である。したがって、本節では、医療用観察システム2のシステム構成に関する詳細な説明を省略する。
 <3.2.機能構成例>
 以下では、第2の実施形態に係る医療用観察装置10の機能構成例について説明する。なお、第2の実施形態に係る医療用観察装置10の機能構成は、第1の実施形態に係る医療用観察装置10の機能構成と同一である。ただし、制御部110における一部処理が異なる。したがって、本節では、制御部110における当該一部処理についてのみ説明する。
 (1)制御部110
 第2の実施形態に係る制御部110の機能構成は、第1の実施形態に係る制御部110の機能構成と同一である。ただし、各々の構成要素における処理が一部異なる。
 (1-1)明るさ制御部112
 第2の実施形態に係る明るさ制御部112は、明るさ目標値を決定する際の基準となる表示装置20を、複数の表示装置20の中から選択する点が第1の実施形態に係る明るさ制御部112と異なる。複数の表示装置20が存在する場合、明るさ制御部112は、撮像信号が複数の表示装置20の中から選択される表示装置20のダイナミックレンジに対応する明るさとなるように、撮像装置における撮像を制御する。
 複数の表示装置20の中から選択される表示装置20は、例えば、所定のユーザに対応付けられている表示装置20である。具体的に、所定のユーザに対応付けられている表示装置20として、メインの術者に対応付けられた表示装置20が選択され得る。さらに、所定のユーザに対応付けられている表示装置20として、メインの術者の補助者に対応付けられた表示装置20が選択され得る。また、複数の表示装置20の中から選択される表示装置20は、例えば、複数の表示装置20の中で表示装置20のダイナミックレンジが高い表示装置20であってもよい。具体的に、ダイナミックレンジが高い表示装置20として、HDRの表示装置20が選択され得る。複数の表示装置20の中から特定の表示装置20を選択すると、明るさ制御部112は、第1の実施形態と同様にして、明るさの目標値を決定する。
 (1-2)表示制御部114
 第2の実施形態に係る表示制御部114は、複数の表示装置20の各々に医療用撮像画像を表示させるために、各々の表示装置20の特性に合わせた複数の撮像信号を生成する点が第1の実施形態に係る表示制御部114と異なる。
 複数の表示装置20が存在する場合、表示制御部114は、複数の表示装置20の各々が有するガンマ値に基づきガンマ補正が行われた撮像信号から生成される医療用撮像画像を、複数の表示装置20の各々に表示させる。ここで、図12を参照しながら、第2の実施形態に係るガンマ補正の例について説明する。図12は、第2の実施形態に係る複数の表示装置20向けのガンマ補正の例を示す説明図である。図12の左側の図は、HDRの表示装置20向けのガンマ補正の例を示し、右側の図は、SDRの表示装置20向けのガンマ補正の例を示している。
 例えば、表示制御部114は、撮像信号に対して図12の左側のグラフに示すガンマ補正を行うことで、複数の表示装置20の中のHDRの表示装置20向けの撮像信号を生成する。また、表示制御部114は、撮像信号に対して図12の右側のグラフに示すガンマ補正を行うことで、複数の表示装置20の中のSDRの表示装置20向けの撮像信号を生成する。なお、表示制御部114は、図12の左側のグラフに示すガンマ補正では、入力される撮像信号の全てを使ってガンマ補正を行うのに対し、右側のグラフに示すガンマ補正では、入力される撮像信号の低レベルの部分だけを使ってガンマ補正を行う。これにより、表示制御部114は、SDRの表示装置20に表示させる医療用撮像画像の高輝度部分を飽和させることができる。
 また、表示制御部114は、明るさ制御部112によって決定されたHDRの表示装置20に応じた明るさの目標値に対応する明るさとなる医療用撮像画像をSDRの表示装置20に表示させるために、撮像画像全体に対してゲインを乗じてもいい。具体的には、明るさ制御部112によって決定されたHDRの表示装置20に応じた明るさの目標値とSDRの表示装置20に応じた明るさの目標値との比に基づく係数をゲインとして医療用撮像画像に乗じてもいい。これによりHDRの表示装置20に応じた明るさとなる医療用撮像画像をSDRの表示装置20に表示する際に、SDIの表示装置20においても良好な明るさで撮像画像を表示可能である。
 <3.3.動作例>
 以下では、図13及び図14を参照しながら、第2の実施形態に係る医療用観察システム2の動作例について説明する。
 (1)医療用観察システム2全体の動作例
 まず、医療用観察システム2が複数の表示装置20に医療用撮像画像を表示するまでの一連の動作例について説明する。図13は、第2の実施形態に係る医療用観察システム2の動作の流れを示すシーケンス図である。
 図13に示すように、まず、制御部110は、判定情報を取得する(ステップS2000)。次いで、制御部110は、取得した判定情報に基づき、医療用観察装置10に接続されている表示装置20A、及び表示装置20Bの各々のダイナミックレンジを判定する判定処理を行う(ステップS2002)。なお、判定処理の詳細処理は、第1の実施形態にて説明した判定処理と同一であるため、本節における説明は省略される。次いで、制御部110は、判定処理の結果に基づき、明るさの目標値を決定する(ステップS2004)。そして、制御部110は、決定した目標値の明るさとなる医療用撮像画像を撮像するように、撮像部100へ撮像指示を出力する(ステップS2006)。
 制御部110から撮像指示を入力された撮像部100は、撮像指示に従い観察対象を撮像し(ステップS2008)、撮像によって得られた撮像信号を制御部110へ出力する(ステップS2010)。
 撮像部100から撮像信号を入力された制御部110は、撮像信号に対して、撮像信号が送信される表示装置20A及び表示装置20Bの各々に応じた補正処理を行う(ステップS2012)。なお、補正処理の詳細処理については、後述される。補正処理後、制御部110は、通信部120を介して補正した撮像信号を表示装置20A及び表示装置20Bの各々へ送信する(ステップS2014及びステップS2016)。
 撮像信号を受信した表示装置20A及び表示装置20Bは、撮像信号を医療用撮像画像として表示するための表示処理をそれぞれ行う(ステップS2018及びステップS2020)。なお、表示処理の詳細処理は、第1の実施形態にて説明した表示処理と同一であるため、本節における説明は省略される。医療用観察システム2は、当該表示処理にて表示装置20A及び表示装置20Bに医療用撮像画像が表示されると動作を終了する。
 (2)補正処理
 次いで、第2の実施形態に係る制御部110における、補正処理の詳細処理について説明する。図14は、第2の実施形態に係る補正処理における処理の流れを示すフローチャートである。
 図14に示すように、まず、制御部110は、入力された撮像信号のホワイトバランスを調整する(ステップS2200)。次いで、制御部110は、複数の表示装置20の各々のダイナミックレンジに応じたガンマ補正を行い、複数の撮像信号を生成する(ステップS2202)。例えば、表示装置20AのダイナミックレンジがHDRである場合、制御部110は、HDRに対応するガンマ値を用いて、撮像信号に対してガンマ補正を行い、表示装置20Aに送信するための撮像信号を生成する。また、例えば、表示装置20BのダイナミックレンジがSDRである場合、制御部110は、SDRに対応するガンマ値を用いて、撮像信号に対してガンマ補正を行い、表示装置20Bに送信するための撮像信号を生成する。そして、制御部110は、ガンマ補正後の撮像信号をRGBからYCbCrへ変換し(ステップS2204)、補正処理を終了する。
 以上、図11~図14を参照しながら、第2の実施形態について説明した。続いて、本開示の実施形態の変形例について説明する。
 <<4.変形例>>
 以下では、本開示の実施形態の変形例を説明する。なお、以下に説明する変形例は、単独で本開示の実施形態に適用されてもよいし、組み合わせで本開示の実施形態に適用されてもよい。また、変形例は、本開示の実施形態で説明した構成に代えて適用されてもよいし、本開示の実施形態で説明した構成に対して追加的に適用されてもよい。
 <4.1.第1の変形例>
 以下では、本開示の実施形態に係る第1の変形例について説明する。
 上述の実施形態では、制御部110がダイナミックレンジに基づき明るさの目標値を決定する例について説明した。第1の変形例では、制御部110がさらに表示装置20の表示モードに基づき、明るさの目標値を決定する例について説明する。
 表示モードの例として、医療用撮像画像を3Dで表示する3Dモードと、医療用撮像画像を2Dで表示する2Dモードとが挙げられる。一般的に、医療用撮像画像を3Dモードで表示可能な表示装置20(例えば3Dメガネ)では、医療用撮像画像を2Dモードで表示する表示装置20の場合と比べ、明るさが暗く表示される。そこで、3Dモードの場合、制御部110は、医療用撮像画像が2Dモードの場合よりも暗く表示されることを考慮した上で明るさの目標値を決定する。例えば、制御部110は、撮像装置が明るさを明るくして観察対象を撮像し、表示装置20である3Dメガネが明るさを暗くして医療用撮像画像を表示することを考慮した明るさの目標値を決定する。なお、2Dモードの場合、制御部110は、上述した実施形態と同様にして明るさの目標値を決定してよい。
 上述のように、制御部110は、表示装置20の表示モードも考慮して明るさの目標値を決定することで、表示装置20により最適な明るさの医療用撮像画像を表示することができ、ユーザが医療用撮像画像を視認する際の視認性を向上することができる。
 <4.2.第2の変形例>
 以下では、図15を参照しながら、本開示の実施形態に係る第2の変形例について説明する。図15は、変形例に係る判定処理を示す説明図である。
 上述の実施形態では、制御部110がダイナミックレンジに基づき明るさの目標値を決定する例、及び制御部110が表示装置20の表示モードに基づき明るさの目標値を決定する例について説明した。第2の変形例では、制御部110がさらに撮像装置の種類に基づき、明るさの目標値を決定する例について説明する。
 上述の実施形態では、観察対象の撮像時に観察対象に対して可視光(例えば白色光)を当てる撮像装置の例を説明した。撮像装置には、例えば、観察対象の撮像時に観察対象に対して特殊光を当てる撮像装置が用いられてもよい。特殊光を用いて撮像される医療用撮像画像は、白飛びせずに撮像される。したがって、撮像装置が特殊光を用いて観察対象を撮像する撮像装置である場合、制御部110は、撮像装置が明るさを暗くせずに観察対象を撮像し、表示装置20が明るさを明るくせずに医療用撮像画像を表示することを考慮した明るさの目標値を決定する。
 また、撮像装置には、所定の時間ごとに可視光と特殊光とを切り替えて観察対象を撮像する撮像装置が用いられてもよい。なお、所定の時間ごとに可視光と特殊光とを切り替えて撮像された複数の医療用撮像画像は、重畳された上で表示装置20に表示される。可視光を用いて撮像された医療用撮像画像は、上述のように明るさが暗くなるように撮像されている。そのため、重畳された医療用撮像画像の表示時、重畳された医療用撮像画像に対して表示装置20が特に処理を行わない場合、重畳された医療用撮像画像は暗く表示されてしまう。そのため、制御部110は、撮像装置が可視光と特殊光とを切り替えて観察対象を撮像する撮像装置である場合、表示装置20が明るさを明るくして重畳された医療用撮像画像を表示することを考慮した明るさの目標値を決定する。
 なお、撮像装置が可視光を用いて観察対象を撮像する場合、制御部110は、撮像装置に明るさを暗くして観察対象を撮像させる。一方、撮像装置が特殊光を用いて観察対象を撮像する場合、制御部110は、撮像装置に明るさを暗くせずに観察対象を撮像させる。
 なお、所定の時間ごとに可視光と特殊光とを切り替えて観察対象を撮像する撮像装置が用いられる場合、上述の実施形態にて説明した判定処理のフローが異なるため、当該判定処理について図15を参照しながら説明する。図15に示すように、まず、制御部110は、撮像装置が観察対象に当てる光の種類を確認する(ステップS3200)。次いで、制御部110は、観察対象に当てる光が可視光であるか否かを確認する(ステップS3202)。観察対象に当てる光が可視光である場合(ステップS3202/YES)、制御部110は、明るさを暗くして撮像部100に観察対象を撮像させると決定する(ステップS3204)。一方、観察対象に当てる光が可視光でない場合(ステップS3202/NO)、制御部110は、明るさを暗くせずに撮像部100に観察対象を撮像させると決定する(ステップS3206)。そして、制御部110は、判定処理を終了する。
 上述のように、制御部110は、撮像装置の種類も考慮して明るさの目標値を決定することで、表示装置20により最適な明るさの医療用撮像画像を表示することができ、ユーザが医療用撮像画像を視認する際の視認性を向上することができる。
 <4.3.第3の変形例>
 以下では、本開示の実施形態に係る第3の変形例について説明する。
 表示制御部114は、医療用撮像画像が表示装置20に表示される際の医療用撮像画像の輝度に応じて、表示装置20に表示される文字の輝度を調整する。例えば、表示制御部114は、医療用撮像画像が表示装置20に表示される際の医療用撮像画像の輝度に応じて、OSD(On Screen Display)により表示される情報(以下では、OSD情報とも称される)の輝度を下げてもよい。表示装置20のダイナミックレンジがHDRである場合、表示装置20は、暗く撮像された医療用撮像画像を表示する際に表示装置20の輝度を高くする。これにより、OSD情報も明るく表示されるため、OSD情報の視認性が低下し得る。そこで、表示制御部114は、観察対象の撮像時に撮像装置が明るさを暗くした比率と同じ比率でOSD情報を表示する際の輝度を下げて、表示装置20にOSD情報を表示させる。これにより、表示制御部114は、表示装置20に医療用撮像画像よりもOSD情報を暗く表示させることができる。
 上述のように、表示制御部114は、表示装置20にOSD情報の輝度を医療用撮像画像の輝度よりも下げて、OSD情報を表示させることで、ユーザがOSD情報を視認する際の視認性を向上することができる。
 <4.4.第4の変形例>
 以下では、本開示の実施形態に係る第4の変形例について説明する。
 表示装置20のダイナミックレンジがHDRである場合、上述の実施形態に係る撮像装置は、明るさを暗くして観察対象を撮像するため、暗く撮像した分だけデジタルゲインが大きくなる。デジタルゲインが大きくなることにより、SN比(Signal-Noise Ratio)が悪化し、医療用撮像画像中のノイズが増加する。そこで、制御部110は、表示装置20のダイナミックレンジがHDRである場合、撮像信号に対してノイズリダクション処理を行ってもよい。例えば、制御部110は、補正処理にてノイズリダクション処理を行う。なお、制御部110は、表示装置20のダイナミックレンジがSDRである場合もノイズリダクション処理を行ってもよい。なお、表示装置20のダイナミックレンジがSDRである場合よりもHDRである場合の方が医療用撮像画像に含まれるノイズは多い。そのため、制御部110は、表示装置20のダイナミックレンジがHDRである場合、SDRである場合よりもノイズリダクション処理の強度を強くし、ノイズリダクション処理を行うことが望ましい。
 上述のように、表示制御部114は、撮像信号に対してノイズリダクション処理を行うことで、撮像信号に含まれるノイズを低減し、ユーザが医療用撮像画像を視認する際の視認性を向上することができる。
 <4.5.第5の変形例>
 以下では、本開示の実施形態に係る第5の変形例について説明する。
 上述の実施形態では、制御部110が光源ユニット132から投射される光量を制御することで、撮像時の明るさを調整する例について説明した。撮像時の明るさは、撮像装置のカメラヘッド136が有するイメージセンサの絞りを制御することで調整されてもよい。例えば、上述の実施形態では、制御部110は、光源ユニット132から投射される光量を少なくすることで、撮像時の明るさを暗くしたが、イメージセンサの絞りを小さくすることでレンズを通る光量を少なくし、撮像時の明るさを暗くしてもよい。
 イメージセンサの絞りが小さくなることに伴い、被写界深度がより深くなる。これにより、観察対象が撮像装置に対して近づいたり遠ざかったりした際に焦点が合う範囲が広くなるため、ユーザは、観察対象をより観察しやすくなる。
 <<5.まとめ>>
 以上説明したように、本開示の実施形態に係る医療用制御装置は、観察対象からの光を受光する撮像装置が生成する撮像信号の明るさを制御する。また、医療用制御装置は、画像を表示する表示装置20に、撮像信号から生成される医療用撮像画像を表示させる。さらに、医療用制御装置は、表示装置20のダイナミックレンジが高い程、撮像信号の明るさがより暗くなるように撮像信号の明るさを制御する。これにより、医療用制御装置は、SDRの表示装置20に表示された医療用撮像画像では飽和していた部分を、HDRの表示装置20では復元して表示することができる。
 よって、医療用撮像画像の白飛びを低減することが可能な、新規かつ改良された医療用制御装置及び医療用観察装置を提供することが可能である。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 例えば、本明細書において説明した各装置は、単独の装置として実現されてもよく、一部または全部が別々の装置として実現されても良い。例えば、医療用観察装置10、表示装置20及び医療用制御装置は、単独の装置として実現されてもよい。また、例えば、医療用制御装置が、医療用観察装置10及び表示装置20とネットワーク等で接続されたサーバ装置として実現されてもよい。
 また、本明細書において説明した医療用観察装置10は、各構成要素の一部または全部が別々の装置として実現されることでシステムとして構成されてもよい。例えば、医療用観察装置10は光源及び撮像装置を備え、制御部は外部装置により実現されるシステムであってもよい。
 また、本明細書において説明した各装置による一連の処理は、ソフトウェア、ハードウェア、及びソフトウェアとハードウェアとの組合せのいずれを用いて実現されてもよい。ソフトウェアを構成するプログラムは、例えば、各装置の内部又は外部に設けられる記録媒体(非一時的な媒体:non-transitory media)に予め格納される。そして、各プログラムは、例えば、コンピュータによる実行時にRAMに読み込まれ、CPUなどのプロセッサにより実行される。
 また、本明細書においてフローチャート及びシーケンス図を用いて説明した処理は、必ずしも図示された順序で実行されなくてもよい。いくつかの処理ステップは、並列的に実行されてもよい。また、追加的な処理ステップが採用されてもよく、一部の処理ステップが省略されてもよい。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 観察対象からの光を受光する撮像装置が生成する撮像信号の明るさを制御する明るさ制御部と、
 画像を表示する表示装置に、前記撮像信号から生成される医療用撮像画像を表示させる表示制御部と、
 を備え、
 前記明るさ制御部は、前記表示装置のダイナミックレンジが高い程、前記撮像信号の明るさがより暗くなるように前記撮像信号の明るさを制御する、医療用制御装置。
(2)
 前記明るさ制御部は、前記表示装置のダイナミックレンジを特定し、特定された前記表示装置のダイナミックレンジに対応する明るさの目標値を決定する、前記(1)に記載の医療用制御装置。
(3)
 前記明るさ制御部は、所定の選択操作に基づき、前記表示装置のダイナミックレンジを特定する、前記(2)に記載の医療用制御装置。
(4)
 前記明るさ制御部は、前記表示装置のダイナミックレンジを示すダイナミックレンジ情報に基づき、前記表示装置のダイナミックレンジを特定する、前記(2)に記載の医療用制御装置。
(5)
 前記ダイナミックレンジ情報は、前記表示装置から取得される、前記(4)に記載の医療用制御装置。
(6)
 前記ダイナミックレンジ情報は、前記表示装置から取得される識別情報に基づき取得される、前記(4)に記載の医療用制御装置。
(7)
 前記明るさ制御部は、前記表示装置のダイナミックレンジと、所定のダイナミックレンジとを比較し、比較の結果に基づき前記目標値を決定する、前記(2)~(6)のいずれか一項に記載の医療用制御装置。
(8)
 前記明るさ制御部は、前記表示装置のダイナミックレンジの最大値と、前記所定のダイナミックレンジの最大値との差分に基づき、前記目標値を決定する、前記(7)に記載の医療用制御装置。
(9)
 前記明るさ制御部は、前記表示装置のダイナミックレンジの最大値が、前記所定のダイナミックレンジの最大値のn倍(nは実数)である場合、前記表示装置における前記目標値を、前記所定のダイナミックレンジに対応する目標値の1/n倍とする、前記(8)に記載の医療用制御装置。
(10)
 複数の前記表示装置が存在する場合、
 前記明るさ制御部は、前記撮像信号が複数の前記表示装置の中から選択される前記表示装置のダイナミックレンジに対応する明るさとなるように、前記撮像装置における撮像を制御する、前記(1)~(9)のいずれか一項に記載の医療用制御装置。
(11)
 複数の前記表示装置の中から選択される前記表示装置は、所定のユーザに対応付けられている前記表示装置である、前記(10)に記載の医療用制御装置。
(12)
 複数の前記表示装置の中から選択される前記表示装置は、複数の前記表示装置の中で前記表示装置のダイナミックレンジが高い前記表示装置である、前記(10)又は(11)に記載の医療用制御装置。
(13)
 前記表示制御部は、前記撮像信号に対して前記表示装置が有するガンマ値に基づきガンマ補正を行い、前記ガンマ補正が行われた前記撮像信号から生成される前記医療用撮像画像を前記表示装置に表示させる、前記(1)~(12)のいずれか一項に記載の医療用制御装置。
(14)
 前記表示制御部は、前記表示装置と所定のガンマ値を有する表示装置とに表示される前記医療用撮像画像の中間の輝度値が同一となるように、前記撮像信号に対して前記ガンマ補正を行う、前記(13)に記載の医療用制御装置。
(15)
 複数の前記表示装置が存在する場合、
 前記表示制御部は、複数の前記表示装置の各々が有する前記ガンマ値に基づき前記ガンマ補正が行われた前記撮像信号から生成される前記医療用撮像画像を、複数の前記表示装置の各々に表示させる、前記(13)又は(14)に記載の医療用制御装置。
(16)
 前記明るさ制御部は、さらに、前記表示装置の表示モードに基づき、前記目標値を決定する、前記(2)に記載の医療用制御装置。
(17)
 前記明るさ制御部は、さらに、前記撮像装置の種類に基づき、前記目標値を決定する、前記(2)又は(16)に記載の医療用制御装置。
(18)
 前記表示制御部は、前記医療用撮像画像が前記表示装置に表示される際の前記医療用撮像画像の輝度に応じて、前記表示装置に表示される文字の輝度を調整する、前記(1)~(17)のいずれか一項に記載の医療用制御装置。
(19)
 光を発光する光源と、
 観察対象を撮像する撮像装置と、
 前記光を照射された前記観察対象からの反射光を受光する前記撮像装置が生成する撮像信号の明るさを制御し、前記撮像信号から生成される医療用撮像画像を表示装置に表示させる制御部と、
 を備え、
 前記制御部は、前記表示装置のダイナミックレンジが高い程、前記撮像信号の明るさがより暗くなるように前記撮像信号の明るさを制御する、医療用観察装置。
 1、2 医療用観察システム
 10  医療用観察装置
 20  表示装置
 100 撮像部
 110 制御部
 112 明るさ制御部
 114 表示制御部
 120 通信部
 130 挿入部材
 132 光源ユニット
 134 ライトガイド
 136 カメラヘッド
 138 ケーブル
 140 制御ユニット

Claims (20)

  1.  画像を表示する表示装置に、観察対象からの光を受光する撮像装置が生成する撮像信号から生成される医療用撮像画像を表示させる表示制御部と、
     前記表示制御部に所定の明るさの前記医療用撮像画像を表示させるように前記撮像信号の明るさを制御する明るさ制御部と、
     を備え、
     前記明るさ制御部は、前記表示装置のダイナミックレンジが第1の値よりも大きな第2の値である場合、前記ダイナミックレンジが前記第1の値である場合に前記医療用撮像画像を前記所定の明るさで表示するための前記撮像信号の明るさよりも、前記撮像信号の明るさを暗くする制御を行う
    医療用制御装置。
  2.  前記明るさ制御部は、前記表示装置のダイナミックレンジを特定し、特定された前記表示装置のダイナミックレンジに対応する前記撮像信号の明るさの目標値を決定する、請求項1に記載の医療用制御装置。
  3.  さらに、前記明るさ制御部は、前記ダイナミックレンジが前記第1の値である第1の表示装置に前記医療用撮像画像を表示する場合は、前記撮像信号の明るさを、前記医療用撮像画像を前記所定の明るさで表示するための第1の明るさにする制御を行い、さらに前記ダイナミックレンジが前記第2の値である第2の表示装置に前記医療用撮像画像を表示する場合は、前記撮像信号の明るさを前記第1の明るさよりも暗い第2の明るさにする制御を行う
     請求項1に記載の医療用制御装置。
  4.  前記明るさ制御部は、前記表示装置のダイナミックレンジを示すダイナミックレンジ情報に基づき、前記表示装置のダイナミックレンジを特定する、請求項2に記載の医療用制御装置。
  5.  前記ダイナミックレンジ情報は、前記表示装置から取得される、請求項4に記載の医療用制御装置。
  6.  前記ダイナミックレンジ情報は、前記表示装置から取得される識別情報に基づき取得される、請求項4に記載の医療用制御装置。
  7.  前記明るさ制御部は、前記表示装置のダイナミックレンジと、所定のダイナミックレンジとを比較し、比較の結果に基づき前記目標値を決定する、請求項2に記載の医療用制御装置。
  8.  前記明るさ制御部は、前記表示装置のダイナミックレンジの最大値と、前記所定のダイナミックレンジの最大値との差分に基づき、前記目標値を決定する、請求項7に記載の医療用制御装置。
  9.  前記明るさ制御部は、前記表示装置のダイナミックレンジの最大値が、前記所定のダイナミックレンジの最大値のn倍(nは実数)である場合、前記表示装置における前記目標値を、前記所定のダイナミックレンジに対応する目標値の1/n倍とする、請求項8に記載の医療用制御装置。
  10.  複数の前記表示装置が存在する場合、
     前記明るさ制御部は、前記撮像信号が複数の前記表示装置の中から選択される前記表示装置のダイナミックレンジに対応する明るさとなるように、前記撮像装置における撮像を制御する、請求項1に記載の医療用制御装置。
  11.  複数の前記表示装置の中から選択される前記表示装置は、所定のユーザに対応付けられている前記表示装置である、請求項10に記載の医療用制御装置。
  12.  複数の前記表示装置の中から選択される前記表示装置は、複数の前記表示装置の中で前記表示装置のダイナミックレンジが高い前記表示装置である、請求項10に記載の医療用制御装置。
  13.  前記表示制御部は、前記撮像信号に対して前記表示装置が有するガンマ値に基づきガンマ補正を行い、前記ガンマ補正が行われた前記撮像信号から生成される前記医療用撮像画像を前記表示装置に表示させる、請求項1に記載の医療用制御装置。
  14.  前記表示制御部は、前記表示装置と所定のガンマ値を有する表示装置とに表示される前記医療用撮像画像の中間の輝度値が同一となるように、前記撮像信号に対して前記ガンマ補正を行う、請求項13に記載の医療用制御装置。
  15.  複数の前記表示装置が存在する場合、
     前記表示制御部は、複数の前記表示装置の各々が有する前記ガンマ値に基づき前記ガンマ補正が行われた前記撮像信号から生成される前記医療用撮像画像を、複数の前記表示装置の各々に表示させる、請求項13に記載の医療用制御装置。
  16.  前記明るさ制御部は、さらに、前記表示装置の表示モードに基づき、前記目標値を決定する、請求項2に記載の医療用制御装置。
  17.  前記明るさ制御部は、さらに、前記撮像装置の種類に基づき、前記目標値を決定する、請求項2に記載の医療用制御装置。
  18.  前記表示制御部は、前記医療用撮像画像が前記表示装置に表示される際の前記医療用撮像画像の輝度に応じて、前記表示装置に表示される文字の輝度を調整する、請求項1に記載の医療用制御装置。
  19.  前記明るさ制御部は、前記観察対象に照射される光の光量、または、前記撮像装置に入射する光の光量を制御することで前記撮像信号の明るさを制御する
    請求項1に記載の医療用制御装置。
  20.  光を発光する光源と、
     観察対象を撮像する撮像装置と、
     画像を表示する表示装置に、観察対象からの光を受光する撮像装置が生成する撮像信号から生成される医療用撮像画像を表示させる表示制御部と、
     前記表示制御部に所定の明るさの前記医療用撮像画像を表示させるように前記撮像信号の明るさを制御する明るさ制御部と、
     を備え、
     前記明るさ制御部は、前記表示装置のダイナミックレンジが第1の値よりも大きな第2の値である場合、前記ダイナミックレンジが前記第1の値である場合に前記医療用撮像画像を前記所定の明るさで表示するための前記撮像信号の明るさよりも、前記撮像信号の明るさを暗くする制御を行う
    医療用観察装置。
PCT/JP2019/023765 2018-08-21 2019-06-14 医療用制御装置及び医療用観察装置 WO2020039716A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980053855.1A CN112566539A (zh) 2018-08-21 2019-06-14 医学控制装置和医学观察装置
JP2020538197A JP7315560B2 (ja) 2018-08-21 2019-06-14 医療用制御装置及び医療用観察装置
US17/269,666 US20210338040A1 (en) 2018-08-21 2019-06-14 Medical control device and medical observation device
EP19852342.5A EP3841956A4 (en) 2018-08-21 2019-06-14 MEDICAL TESTING DEVICE AND MEDICAL OBSERVATION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-154787 2018-08-21
JP2018154787 2018-08-21

Publications (1)

Publication Number Publication Date
WO2020039716A1 true WO2020039716A1 (ja) 2020-02-27

Family

ID=69592616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023765 WO2020039716A1 (ja) 2018-08-21 2019-06-14 医療用制御装置及び医療用観察装置

Country Status (5)

Country Link
US (1) US20210338040A1 (ja)
EP (1) EP3841956A4 (ja)
JP (1) JP7315560B2 (ja)
CN (1) CN112566539A (ja)
WO (1) WO2020039716A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021137205A (ja) * 2020-03-03 2021-09-16 ソニー・オリンパスメディカルソリューションズ株式会社 医療用制御装置及び医療用制御装置の制御方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12089802B2 (en) * 2020-03-17 2024-09-17 Sony Olympus Medical Solutions Inc. Medical image processing apparatus and medical observation system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002135589A (ja) 2000-10-27 2002-05-10 Sony Corp 画像処理装置および方法、並びに記録媒体
JP2003339634A (ja) * 2002-05-28 2003-12-02 Olympus Optical Co Ltd 電子内視鏡システムの信号処理装置
WO2016104386A1 (ja) * 2014-12-26 2016-06-30 オリンパス株式会社 調光装置、撮像システム、調光装置の作動方法および調光装置の作動プログラム
JP2016195378A (ja) * 2016-01-05 2016-11-17 ソニー株式会社 撮像システム、撮像方法およびプログラム
WO2018042717A1 (ja) * 2016-09-01 2018-03-08 オリンパス株式会社 電子内視鏡、及び内視鏡システム
JP2018074199A (ja) * 2016-10-24 2018-05-10 キヤノン株式会社 画像処理装置及び画像処理方法、プログラム、並びに記憶媒体
WO2018230066A1 (ja) * 2017-06-12 2018-12-20 ソニー株式会社 医療用システム、医療用装置および制御方法
JP2019057794A (ja) * 2017-09-20 2019-04-11 キヤノン株式会社 撮像装置およびその制御方法、プログラムならびに記録媒体
JP2019121815A (ja) * 2017-12-28 2019-07-22 キヤノン株式会社 撮像装置、撮像装置の制御方法、および、プログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148333A (ja) * 1984-08-13 1986-03-10 オリンパス光学工業株式会社 内視鏡撮像装置
JP3731814B2 (ja) * 2001-05-07 2006-01-05 富士写真フイルム株式会社 蛍光画像表示装置
JP3583124B2 (ja) * 2001-11-02 2004-10-27 シャープ株式会社 液晶表示装置及び表示制御方法
JP2007260019A (ja) * 2006-03-28 2007-10-11 Olympus Corp 内視鏡装置
WO2010132237A1 (en) * 2009-05-11 2010-11-18 Dolby Laboratories Licensing Corporation Light detection, color appearance models, and modifying dynamic range for image display
JP6071805B2 (ja) * 2013-08-27 2017-02-01 富士フイルム株式会社 画像領域指定装置および方法、並びに放射線画像処理装置および方法
WO2015042939A1 (en) * 2013-09-30 2015-04-02 Carestream Health, Inc. Method and system for intra-oral imaging using hdr imagine and highlight removal
JP6820507B2 (ja) * 2015-09-14 2021-01-27 パナソニックIpマネジメント株式会社 映像受信方法、映像送信方法、映像受信装置及び映像送信装置
WO2019172100A1 (ja) * 2018-03-08 2019-09-12 キヤノン株式会社 映像表示装置
US10609424B2 (en) * 2018-03-09 2020-03-31 Dolby Laboratories Licensing Corporation Single-layer progressive coding for supporting multi-capability HDR composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002135589A (ja) 2000-10-27 2002-05-10 Sony Corp 画像処理装置および方法、並びに記録媒体
JP2003339634A (ja) * 2002-05-28 2003-12-02 Olympus Optical Co Ltd 電子内視鏡システムの信号処理装置
WO2016104386A1 (ja) * 2014-12-26 2016-06-30 オリンパス株式会社 調光装置、撮像システム、調光装置の作動方法および調光装置の作動プログラム
JP2016195378A (ja) * 2016-01-05 2016-11-17 ソニー株式会社 撮像システム、撮像方法およびプログラム
WO2018042717A1 (ja) * 2016-09-01 2018-03-08 オリンパス株式会社 電子内視鏡、及び内視鏡システム
JP2018074199A (ja) * 2016-10-24 2018-05-10 キヤノン株式会社 画像処理装置及び画像処理方法、プログラム、並びに記憶媒体
WO2018230066A1 (ja) * 2017-06-12 2018-12-20 ソニー株式会社 医療用システム、医療用装置および制御方法
JP2019057794A (ja) * 2017-09-20 2019-04-11 キヤノン株式会社 撮像装置およびその制御方法、プログラムならびに記録媒体
JP2019121815A (ja) * 2017-12-28 2019-07-22 キヤノン株式会社 撮像装置、撮像装置の制御方法、および、プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3841956A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021137205A (ja) * 2020-03-03 2021-09-16 ソニー・オリンパスメディカルソリューションズ株式会社 医療用制御装置及び医療用制御装置の制御方法
JP7454409B2 (ja) 2020-03-03 2024-03-22 ソニー・オリンパスメディカルソリューションズ株式会社 医療用制御装置及び医療用制御装置の制御方法
US11980348B2 (en) 2020-03-03 2024-05-14 Sony Olympus Medical Solutions Inc. Medical control apparatus and method of controlling medical control apparatus

Also Published As

Publication number Publication date
EP3841956A1 (en) 2021-06-30
JPWO2020039716A1 (ja) 2021-09-24
US20210338040A1 (en) 2021-11-04
JP7315560B2 (ja) 2023-07-26
EP3841956A4 (en) 2021-10-27
CN112566539A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
CN102551642B (zh) 内窥镜装置
JP5814698B2 (ja) 自動露光制御装置、制御装置、内視鏡装置及び内視鏡装置の作動方法
CN110168605B (zh) 用于动态范围压缩的视频信号处理装置、视频信号处理方法和计算机可读介质
JP6109456B1 (ja) 画像処理装置および撮像システム
JPWO2012033200A1 (ja) 撮像装置
US10548465B2 (en) Medical imaging apparatus and medical observation system
WO2017141544A1 (ja) 画像処理装置、画像処理方法及びプログラム
JP7265823B2 (ja) 撮像装置及びプログラム
JP7315560B2 (ja) 医療用制御装置及び医療用観察装置
US20180049632A1 (en) Endoscope apparatus
WO2016104386A1 (ja) 調光装置、撮像システム、調光装置の作動方法および調光装置の作動プログラム
CN111726506A (zh) 内窥镜的图像处理方法、装置、存储介质
JP2009240531A (ja) 撮影装置
CN110381806B (zh) 电子内窥镜系统
WO2018150627A1 (ja) 画像処理装置、画像処理方法および画像処理プログラム
US11523065B2 (en) Imaging device and gain setting method
JP7023643B2 (ja) 医療用観察装置、および医療用観察システム
CN116437221B (zh) 一种内窥镜视频图像的截取方法及系统
WO2022172574A1 (ja) 内視鏡システム、及び内視鏡システムの作動方法
JP2019162165A (ja) 内視鏡システム
US11375167B2 (en) Image processing apparatus and observation system
JPWO2016072172A1 (ja) 内視鏡システム
WO2019130834A1 (ja) 画像処理装置および画像処理方法
JP2005020619A (ja) X線画像表示装置
JP2015216415A (ja) 情報処理装置、電子機器、および制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852342

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538197

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019852342

Country of ref document: EP

Effective date: 20210322