WO2020039594A1 - Power transmission device - Google Patents

Power transmission device Download PDF

Info

Publication number
WO2020039594A1
WO2020039594A1 PCT/JP2018/031440 JP2018031440W WO2020039594A1 WO 2020039594 A1 WO2020039594 A1 WO 2020039594A1 JP 2018031440 W JP2018031440 W JP 2018031440W WO 2020039594 A1 WO2020039594 A1 WO 2020039594A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
circuit
capacitor
coil
Prior art date
Application number
PCT/JP2018/031440
Other languages
French (fr)
Japanese (ja)
Inventor
弘 櫻庭
洋 山田
哲也 間形
Original Assignee
トヨタ自動車東日本株式会社
弘 櫻庭
洋 山田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車東日本株式会社, 弘 櫻庭, 洋 山田 filed Critical トヨタ自動車東日本株式会社
Priority to PCT/JP2018/031440 priority Critical patent/WO2020039594A1/en
Priority to JP2020538004A priority patent/JP7116288B2/en
Publication of WO2020039594A1 publication Critical patent/WO2020039594A1/en
Priority to JP2022068151A priority patent/JP7314355B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • the present invention relates to a power transmission device, and particularly to a new circuit design of a wireless power transmission device.
  • Patent Documents 1, 2, and 3 Since 2005, a proposal by Karalis et al. Of the Massachusetts Institute of Technology (MIT), research on wireless power transmission has been active (see Patent Documents 1, 2, and 3).
  • the inventions described in Patent Documents 1, 2, and 3 are power transmission technologies using a power supply as an AC power supply.
  • power is supplied. It is said that it is necessary to match the resonance frequency 2 ⁇ LC of the side resonance circuit (LC circuit) with the resonance frequency 2 ⁇ LC of the power receiving side resonance circuit (LC circuit).
  • the power-supply-side resonance circuit and the power-receiving-side resonance circuit interact with each other, thereby generating a new resonance. It has been common technical knowledge that it is better not to cause resonance (double resonance) between the power supply side resonance circuit and the power reception side resonance circuit including this new resonance.
  • the power supply side resonance circuit and the power reception side resonance circuit are coupled by a magnetic field component (magnetic field coupling), and a mutual inductance M is formed between the power supply coil and the power reception coil.
  • Mutual inductance M a new resonance circuit formed by the power supply side resonance circuit and the receiving resonance circuit, has a different resonant frequency fr 2 is a resonance frequency fr 1, heavy resonance occurs. If it is intended to follow the drive frequency fo of the AC power supplied to the power supply side resonance circuit in the resonance frequency fr 1, follow towards the drive frequency fo is the resonance frequency fr 1 rather than the resonance frequency fr 2 which is the original target
  • the resonance frequency fr 2 is an undesired resonance point, and it is considered desirable to remove the resonance frequency fr 2. In the conventional AC theory, heavy resonance has been avoided.
  • Patent Document 1 reports experimental data in a frequency band around 10 MHz.
  • a power supply circuit (zero-order circuit) in a frequency band as described in Patent Documents 1 to 3 generates an accurate direct current by using an expensive switching power supply from a commercial power supply and then complicates a large number of power semiconductor elements.
  • the conventional wireless power transmission device based on the AC theory has a problem that the device is complicated, the overall power transmission efficiency is low, the device is fragile, has low reliability, and is expensive. For these reasons, the conventional technology cannot realize wireless power transmission for efficiently transmitting power required in the future to a distant place. That is, the circuit design of the power transmission device based on the AC theory itself has to be studied.
  • the first aspect of the present invention is as follows: (a) a power transmission side capacitor, the static energy connected in parallel to the power transmission side capacitor and sent from the power transmission side capacitor is stored as magnetic energy, and the magnetic energy is returned to the power transmission side capacitor.
  • a primary side circuit having a power transmission side coil, (b) a DC power supply constituting a circuit connecting between one terminal and the other terminal of the power transmission side capacitor, and (c) one terminal of the power transmission side capacitor and a DC power supply
  • a primary-side drive switch that is connected between the power-transmitting-side capacitor and a step-input DC voltage to the power-transmitting-side capacitor; and (d) a power-receiving-side coil facing the power-transmitting-side coil and receiving magnetic energy from the power-transmitting-side coil;
  • a secondary-side circuit having a power-receiving-side capacitor connected in parallel with the coil and storing magnetic energy stored in the power-receiving-side coil as electrostatic energy; and (e) a
  • a circuit that connects between one terminal of the sensor and the other terminal is configured, a load element that receives electrostatic energy from the receiving capacitor, (f) the anode is on one side of the receiving capacitor, and the cathode is
  • the gist is to provide a power transmission device including a load-side diode connected to a load element.
  • electric energy can be transmitted from the primary circuit to the secondary circuit in a non-contact manner.
  • a power transmission side capacitor electrostatic energy connected in parallel to the power transmission side capacitor and sent from the power transmission side capacitor is stored as magnetic energy, and the magnetic energy is returned to the power transmission side capacitor.
  • a primary side circuit having a power transmission side coil, (b) a DC power supply constituting a circuit connecting between one terminal and the other terminal of the power transmission side coil, and (c) one terminal of the power transmission side coil and a DC power supply
  • the primary drive switch is connected between the power transmission side coil and the intermittent DC voltage, and (d) one electrode is connected to one node connecting the power transmission side capacitor and the power transmission side coil in parallel.
  • E a second interconnection capacitor having one electrode connected to the other node connecting the power transmission side capacitor and the power transmission side coil in parallel, and (f) a first interconnection coupling capacitor.
  • One electrode is connected to the other electrode of the capacitor, the other electrode is connected to the other electrode of the second mutual coupling capacitor, and the receiving side capacitor that receives electrostatic energy from the primary side circuit, is connected in parallel to the receiving side capacitor
  • a secondary circuit having a power receiving coil that stores the electrostatic energy stored in the power receiving capacitor as magnetic energy, and (g) a circuit that connects between one terminal and the other terminal of the power receiving coil.
  • a load element that receives magnetic energy from the power-receiving coil and (h) a power transmission device including a load-side diode having an anode on one terminal side of the power-receiving-side coil and a cathode connected to the load element.
  • a power transmission device including a load-side diode having an anode on one terminal side of the power-receiving-side coil and a cathode connected to the load element.
  • FIG. 1A is a circuit diagram schematically illustrating an example of a power transmission device according to a first embodiment of the present invention
  • FIG. 1B is a terminal of a power transmission side capacitor of the circuit illustrated in FIG. It is a waveform diagram of an inter-voltage
  • FIG. 2A is a waveform diagram of the voltage between the terminals of the power transmitting side capacitor and the power receiving side capacitor of the power transmission device according to the first embodiment
  • FIG. 2B is a continuation of the waveform of FIG. It is a detailed waveform diagram.
  • FIG. 4 is a diagram illustrating a transient response when a step is input to an LC parallel circuit.
  • FIG. 2 is a circuit diagram illustrating a mounting circuit of the power transmission device according to the first embodiment.
  • FIG. 2 is a diagram illustrating a large-signal equivalent circuit of a MOSFET used in the power transmission device according to the first embodiment.
  • FIG. 6A is a schematic diagram illustrating the importance of the surface spacing between the coils of the power transmission device according to the first embodiment
  • FIG. 6B is a diagram illustrating charging of a battery of an electric vehicle (EV).
  • FIG. 13 is a bird's-eye view illustrating a magnetic coupling degree control mechanism that adjusts a surface interval between coils when applied.
  • FIG. 7A is a bird's-eye view illustrating a mechanism for adjusting the coil magnetic coupling of the power transmission device according to the first embodiment.
  • FIG. 7A illustrates a case where the surface interval between coils is controlled using a spacer.
  • FIG. 7C show an example of a magnetic coupling degree control mechanism for adjusting the magnetic coupling of the coils using a magnetic plate.
  • FIG. 8A is a block diagram illustrating an example of a hardware configuration of a magnetic coupling control mechanism of the power transmission device according to the first embodiment, and FIG. 8B illustrates another example. It is a block diagram.
  • FIG. 3 is a schematic diagram for explaining the operation of the power transmission device according to the first embodiment separately for each timing in a time series.
  • FIG. 10A is a circuit diagram schematically illustrating an example of a power transmission device according to a second embodiment of the present invention.
  • FIG. 10B is a circuit diagram illustrating a specific implementation circuit of the circuit in FIG. FIG. FIG.
  • FIG. 9 is a timing chart illustrating a power supply method of the power transmission device according to the second embodiment. It is a schematic diagram explaining the power supply method of the power transmission device according to the second embodiment, (a) at the time of charging, (b) at the time of characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3, ( c) At the time of transfer, and (d) at the time of characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3.
  • FIG. 13A is a circuit diagram schematically illustrating an example of a power transmission device according to the third embodiment of the present invention
  • FIG. 13B is a specific implementation of the circuit illustrated in FIG. It is a circuit diagram showing a circuit.
  • FIG. 9 is a flowchart illustrating a power supply method of a power transmission device according to a third embodiment.
  • FIG. 13 is a timing chart illustrating a power supply method of the power transmission device according to the third embodiment.
  • FIG. 16A is a circuit diagram schematically illustrating an example of a power transmission device according to a fourth embodiment of the present invention, and FIG. 16B is a specific implementation of the circuit illustrated in FIG. It is a circuit diagram showing a circuit.
  • FIG. 17A is a waveform diagram obtained by simulating the voltage between the terminals of the power transmitting side capacitor and the power receiving side capacitor in the power transmission device according to the fourth embodiment, and
  • FIG. 9 is a waveform diagram obtained by a mounting circuit of a voltage between terminals of a power receiving side capacitor.
  • 13 is a graph illustrating a change in transmission efficiency with respect to a capacitance of a capacitor of the power transmission device according to the fourth embodiment. 13 is a graph illustrating the efficiency of the power transmission device according to the fourth embodiment. 13 is a flowchart illustrating a first power supply method of the power transmission device according to the fourth embodiment.
  • FIG. 24A is a timing chart illustrating a first power supply method of the power transmission device according to the fourth embodiment
  • FIG. 24B is a timing chart illustrating a second power supply method
  • 13 is a flowchart illustrating a second power supply method of the power transmission device according to the fourth embodiment.
  • It is a circuit diagram showing an outline of an example of a power transmission device according to a fifth embodiment of the present invention.
  • FIG. 27A is a waveform diagram of a current flowing through the power transmission side coil and the power receiving side coil of the power transmission device according to the fifth embodiment
  • FIG. 27B is a diagram of the power transmission device according to the fifth embodiment. It is a waveform diagram of each terminal voltage of a power transmission side capacitor and a power receiving side capacitor.
  • FIG. 2 is a circuit diagram used for an approximate simulation for explaining a sawtooth wave with a bump in the power transmission device according to the first embodiment of the present invention.
  • FIG. 29 is a diagram illustrating a transient response characteristic of a sawtooth wave with a bump obtained by an approximate simulation of the circuit of FIG. 28.
  • FIG. 29 is a diagram illustrating how a sawtooth bump obtained by an approximate simulation using the circuit of FIG. 28 changes with a repetition period.
  • FIG. 29 is a simplified circuit diagram in which a parasitic capacitance, a parasitic resistance, and the like are omitted from the circuit of FIG. 28.
  • FIG. 32 is a diagram illustrating that a W-type transient response characteristic is obtained by an approximate simulation of the simplified circuit of FIG. 31.
  • FIG. 9 is a circuit diagram used for performing an approximate simulation of the transient response characteristics of the power transmission device according to the second embodiment of the present invention while changing the power supply voltage and the load voltage.
  • FIG. 34 is a diagram illustrating the transfer of electric energy with transient response characteristics obtained by an approximate simulation for the three circuits in FIG. 33.
  • FIG. 2 is a schematic diagram illustrating a W-type transient response characteristic of the power transmission device according to the first embodiment of the present invention.
  • the first to fifth embodiments described below exemplify an apparatus and a method for embodying the technical idea of the present invention.
  • the shape, structure, arrangement and the like are not specified as follows.
  • the technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims.
  • the directions of “left and right” and “up and down” in the following description are simply definitions for convenience of description, and do not limit the technical idea of the present invention.
  • the paper is rotated 90 degrees
  • “left and right” and “up and down” are read interchangeably, and if the paper is rotated 180 degrees, “left” becomes “right” and “right” becomes “left”.
  • the direction of the spiral of the spiral as shown in FIGS. 6 (a) to 7 (c) is also merely a choice for convenience of description, and the right-handed is turned to the left-handed and the left-handed is wound according to the actual design circumstances. It is also possible to select right-handed.
  • the power transmission device includes a primary circuit 2 and a secondary circuit 3 as shown in FIG.
  • the primary side circuit 2 accumulates the electrostatic energy which is connected in parallel to the power transmission side capacitor C 1 and the power transmission side capacitor C 1 and which is transmitted from the power transmission side capacitor C 1 as magnetic energy. and at the same time circulating the transmission side capacitor C 1, magnetically coupled to the power receiving side coil L 2 of the secondary side circuit 3, an LC resonant circuit having a transmitting coil L 1 for transmitting and receiving magnetic energy.
  • DC power source 5 supplies a DC voltage to the power transmission side capacitor C 1.
  • the “primary drive switch SW1” is a circuit element that limits free vibration of the primary circuit 2. By limiting the free vibration, the primary-side drive switch SW1 realizes a transient current-voltage change in the primary-side circuit 2.
  • the DC power supply 5 may be a pseudo constant voltage source, and may be a DC power supply having a simple structure that is simply rectified and may be a power supply containing a large ripple component. Therefore, the control circuit and peripheral circuits are simple, are not easily broken, and the circuit design is easy. Moreover, an inexpensive DC power supply 5 can be employed.
  • a load element 6 Connected in series with the load-side diode D2 and a load element 6 is connected in parallel to the receiving side capacitor C 2 to each other.
  • a rechargeable battery such as a lithium (Li) ion battery mounted on an electric vehicle (EV) can be used.
  • FIG. 1A for example, an equivalent circuit of a lithium ion battery is schematically illustrated by a series-parallel circuit of a resistor and a capacitor.
  • Lithium-ion batteries include the resistance of current collectors and electrolytes, and electrical double-layer capacitors and resistors formed at the interface within the battery.
  • Load side diode D2 has an anode recipient resonator 2 side, a cathode connected to face the load element 6 side to limit the direction of flow of the charging current I C in one direction.
  • Figure 1 E a terminal voltage of the DC power source 5 and the equivalent internal resistance r 1 at the transmitting side VC 1 the terminal voltage of the capacitor C 1, the terminal voltage of the power receiving side capacitor C 2 VC 2, the load element the charging voltage measured between sixth terminal VC S, the current flowing through the load-side equivalent stray resistance r L and the charge current I C.
  • the equivalent internal resistance r 1 approximately indicates the internal impedance of the DC power supply 5 by a resistance value.
  • the value in the initial state of the charge voltage VC S load elements 6 (closer to the full charge) near the charge completion voltage, assumed to be a high value.
  • the terminal voltage E of the DC power supply 5 is step-input.
  • the charging current to the capacitor C1 flows at first, and its value is E / r1.
  • the coil L1 since the coil L1 generates a back electromotive force so as to block the flowing current, the current to L1 is zero. As shown in FIG.
  • the power transmission side capacitor C 1 is charged with a time constant ⁇ 1 determined by the equivalent internal resistance r 1 , the capacity C 1 of the power transmission side capacitor, the inductance L 1 of the power transmission side coil, and the mutual inductance M. , terminal voltage VC 1 is increased.
  • the time constant ⁇ 1 is a value mainly dependent on a parameter related to a product C 1 ⁇ r 1 of the capacitance C 1 of the transmission-side capacitor C 1 and the resistance value C 1 of the equivalent internal resistance r 1 .
  • the magnetic field generated around the power receiving side coil L 2 by a current flowing in the power receiving side coil L 2 is an electromotive force generated in L1.
  • This electromotive force to the original voltage, the voltage of the power transmission coil L 1 is as sawtooth wave deviates from a sine wave is not a wave in the normal exchange.
  • a sawtooth wave characteristic with a bump that rises while rising like a bump just a little past the lowest voltage portion of the sawtooth voltage.
  • Constant tau 2 time until swelling occurs as the aneurysm is mainly capacitance C 1 of the transmitting-side capacitor C 1
  • the parasitic resistance of the inductance L 1 and the power transmission coil L 1 of the power transmission coil L 1 R str (L 1 ) is a value that depends on a parameter represented by a relationship similar to Expression (4) described below.
  • the voltage of the primary-side capacitor again reaches the maximum peak, and at this time, the voltage of the secondary-side capacitor has a value close to the minimum.
  • the terminal voltage E of the DC power supply 5 is step-inputted again.
  • the magnetic field generated around the power receiving side coil L 2 by a current flowing in the power receiving side coil L 2 is an electromotive force generated in L1.
  • This electromotive force to the original voltage, the voltage of the power transmission coil L 1 is as sawtooth wave deviates from a sine wave is not a wave in the normal exchange.
  • a sawtooth wave characteristic with a bump that rises while rising like a bump just a little past the lowest voltage portion of the sawtooth voltage.
  • the terminal voltage VC 1 of the power transmission capacitor C 1 decreases, a negative value again.
  • the electric energy stored in the power transmission coil L 1 starts refluxed to the power transmission side capacitor C 1, as shown at the right end shown in FIG. 1 (b) the terminal voltage VC 1 of the power transmission capacitor C 1 starts to increase by circulating electric current, a positive value, further increases.
  • the time up to this point is determined by a time constant ⁇ 2 determined by the capacitance C 1 of the power transmission side capacitor, the inductance L 1 of the power transmission side coil, and the mutual inductance M.
  • the change of terminal voltage VC 1 is not a sine wave of the waveform at the normal AC Theory 4 shows a transient response of a repetitive waveform having rising and falling characteristics in which a sawtooth wave with a bump is blunted.
  • the blockade and step input terminal voltage E of the DC power source 5 by the primary-side drive switch SW1 the voltage between the terminals VC 1 is sawtooth wave is rounded with aneurysm 9 shows a repetitive transient response waveform of rising and falling characteristics.
  • the state i indicates that the primary-side drive switch SW1 is turned on.
  • the characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3 between the primary side circuit 2 and the secondary side circuit 3 causes power receiving side capacitor C 2 of the secondary side circuit 3 is charged, after the terminal voltage of the power receiving side capacitor C 2 VC 2 has reached the peak value, the power-receiving-side capacitor C 2 starts to discharge, the terminal voltage VC 2 has started to decrease.
  • the step input t t i, as shown near the center left of FIG. 2 (a), the equivalent internal resistance r 1, the capacitance C 1 of the power transmission capacitor, the power-transmitting-side coil inductance L 1, determined by the mutual inductance M It is charged transmission side capacitor C 1 at constant tau 1 primary circuit 2 when the inter-terminal voltage VC 1 is increased. As shown in FIG. 2 (a), the inter-terminal voltage VC 1 of the primary-side circuit 2 after reaching the peak value, starts decreasing.
  • the electric energy stored in the power transmission side coil L 1 is transferred to the secondary circuit 3 by the characteristic harmonic transmission between the primary circuit 2 and the secondary circuit 3 between the primary circuit 2 and the secondary circuit 3. It is wirelessly transmitted to the power receiving coil L 2.
  • the electric energy wirelessly transmitted to the power receiving coil L 2 of the secondary circuit 3 is stored in the power receiving capacitor C 2 of the secondary circuit 3.
  • the value in the initial state of the charge voltage VC S load elements 6 near the charge completion voltage, high because the value, the terminal voltage of the power-receiving-side capacitor C 2 since VC 2 exceeds the charge voltage VC S load element 6 around which peaked value, a current flows through the load element 6, electric energy stored in the power receiving side capacitor C2 is moved to the load device 6, a load element The rechargeable battery No. 6 is charged.
  • the terminal voltage VC 1 is after reaching the peak value E 0, starts decreasing again.
  • the electric energy stored in the power transmission side coil L 1 is transferred to the secondary circuit 3 by the characteristic harmonic transmission between the primary circuit 2 and the secondary circuit 3 between the primary circuit 2 and the secondary circuit 3. It is wirelessly transmitted to the power receiving coil L 2.
  • the electric energy wirelessly transmitted to the power receiving coil L 2 of the secondary circuit 3 is stored in the power receiving capacitor C 2 of the secondary circuit 3.
  • FIG. 2 (a) by interrupting the step input terminal voltage E by the primary-side drive switch SW1, a sinusoidal waveform change in the voltage VC 1 between the primary circuit second terminal is in the normal AC theory In other words, it shows a transient response of a repetitive waveform having rising and falling characteristics in which a sawtooth wave with a bump is blunted.
  • the change of terminal voltage VC 2 of the secondary side circuit 3 shows the transient response of the repetitive waveform such as a triangular wave decimated, not a sinusoidal waveform at regular AC theory.
  • the “thinned-out triangular wave” can be interpreted as a waveform in which the polarity of the trapezoidal wave is reversed.
  • the vibration waveform of the primary circuit 2 and the vibration waveform of the secondary circuit 3 are not symmetrical vibration waveforms.
  • the terminal voltage VC 2 is reduced, the electric energy stored in the power receiving side capacitor C 2 flows to the load device 6 as the charging current I C as shown by the dashed line on the right side of FIG. 2 (b), the load element 6 Charged.
  • the equivalent internal resistance r 1 of the DC power source 5 is small, when the primary-side drive switch SW1 in the ON state, the voltage between the terminals E of the DC power source 5 shown in thick line in FIG. 2 (b) terminal the change to be superimposed between the voltage VC 1.
  • terminal voltage VC 2 of the power receiving side capacitor C 2 as shown by the broken line on the left side of FIG. 2 (b), after reaching the peak value, starts decreasing .
  • the terminal voltage VC 2 exceeds Vcs continue to increase, electric energy stored in the power receiving side capacitor C 2 is the load element 6 as the charging current I C indicated by one-dot chain line on the left side shown in FIG. 2 (b) Then, the load element 6 is charged.
  • the voltage between the terminals VC S load element 6 shown by a dotted line on the left side shown in FIG.
  • Figure 2 central terminal voltage VC 1 of the power transmission capacitor C 1 as shown by the solid line is a negative (b) Start decreasing towards the value.
  • the electric energy stored in the power transmission side coil L 1 is regenerated by the characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3 between the primary side circuit 2 and the secondary side circuit 3. is wirelessly transmitted to the power receiving coil L 2 follows side circuit 3.
  • the electric energy wirelessly transmitted to the power receiving coil L 2 of the secondary circuit 3 is stored in the power receiving capacitor C 2 of the secondary circuit 3.
  • FIG. 3A is a circuit diagram illustrating a step response of the primary circuit 2 as a single circuit in a state where there is no electromagnetic coupling between the primary circuit 2 and the secondary circuit 3.
  • E terminal voltage of the DC power source the voltage between the terminals of the transmitting-side capacitor C 1 VC 1, the current flowing through the power transmission coil L 1 to the power transmission coil current I L1.
  • the time constant determined by the capacitance C 1 of the power transmission side capacitor and the inductance L 1 of the power transmission side coil is such that the power transmission side capacitor C 1 has a rising waveform V rise of charging. It defines a terminal voltage VC 1 increases at a rising waveform V rise.
  • the power transmission side coil current IL1 also starts increasing as shown in FIG.
  • free oscillation occurs in the shaded area on the right side of FIG.
  • the primary-side drive switch SW1 drives a forcible step response that repeats on / off periodically, the area of free vibration indicated by the oblique lines in FIG. Are out of the scope of the power transmission device according to the first embodiment.
  • For forced step response as shown in FIG.
  • the inter-terminal voltage VC 1 of the primary-side circuit 2 repeats the rise and fall characteristics sawtooth wave with aneurysm dull 3 shows a transient response of a waveform. Further, the voltage between the terminals VC 2 of the secondary side circuit 3 shows the transient response of the repetitive waveform such as a triangular wave thinned out.
  • the power transmission device not the resonance based on the sine wave in the ordinary AC theory, but the time constant inherent in the circuit characteristics of the primary circuit 2 and the circuit of the secondary circuit 3 When the time constant inherent in the characteristic is harmonized, the electric energy of the primary circuit 2 is efficiently transmitted to the secondary circuit 3 by characteristic harmonic transmission between the primary circuit 2 and the secondary circuit 3. .
  • the product of the power transmitting side capacitor C1 and the power transmitting side coil L1, and the power receiving side capacitor should be the same, and the respective time constants considering the parasitic resistance and the stray capacitance of the power transmitting side and the power receiving side must be matched or harmonized with each other by an integral multiple.
  • the power transmission side capacitor C1 a capacitance of the power receiving side capacitor C2, and equally, including the parasitic resistance of the capacitor, the inductance of the power transmission coil L 1 and the power receiving side coil L 2 including the parasitic resistance of the coil It is to make them equal. It should be noted that, when a parasitic resistance exists in the coil and the capacitor, the transmission efficiency becomes maximum when the inductance L of the coil and the capacitance C of the capacitor satisfy Expression (19), as described later. is there.
  • a power semiconductor switching element capable of higher-speed switching is used.
  • thyristors such as a gate turn-off thyristor (GTO) and an electrostatic induction thyristor (SI thyristor) in addition to a field effect transistor (FET), an electrostatic induction transistor (SIT), and a bipolar transistor (BJT) are available. It is suitable.
  • MOSFET MOS field effect transistor
  • a large current flows to generate large Joule heat, which generates heat of several hundred watts or more. It becomes a heating device (heater).
  • the power semiconductor switching element since only one power semiconductor switching element is used as the primary-side drive switch SW1, the power semiconductor switching element is covered with a heat sink such as a copper block to increase thermal conductivity, and the element is destroyed by heat generation. Can be designed easily, and the occurrence of stray resistance, stray capacitance, and stray inductance can be minimized. Stray resistance of the power transmission coil L 1 and the receiver coil L 2 (parasitic resistance) heating is large due to the power transmission coil L 1 and the power receiving coil L 2 air, measures such as water cooling is preferred.
  • One way to suppress the generation of Joule heat in the high power power transmission device such as for automotive the EV increases the voltage of the primary-side circuit 2, the two in transmitting coil L 1 and the turns ratio of the power receiving coil L 2 That is, the voltage of the secondary circuit 3 is set to the optimum voltage of the load element 6.
  • a power semiconductor switching element is used as the primary side drive switch SW1
  • only a simple control for turning on / off the power semiconductor switching element is required, so that a circuit design for increasing the voltage of the primary side circuit 2 is easy. is there.
  • the power transmission device of the first embodiment since the primary drive switch SW1 has a simple design of only one, the voltage of the primary circuit 2 is increased and the joule on the primary circuit 2 side is increased. It is easy to design to minimize power loss due to heat generation. Since the energy loss due to the generation of Joule heat can be reduced, the power transmission device according to the first embodiment includes the loss of the power supply circuit (zero-order circuit) in the case of high-power power transmission such as for EVs mounted on vehicles. The overall power transmission efficiency is increased, which can contribute to solving the energy problem of humanity.
  • the power-transmitting-side first reflux diode considering circulating electric current from the coil L 1 (freewheeling diode) FWD 1 is the source of the MOSFET as a first semiconductor switching element Q1 -It is connected in parallel as a protection element between the drains. Further, since the circulating electric current from the power transmission coil L 1 is prevented from refluxing to the DC power supply 5, the power supply side diode D1 is connected in series between a DC power source 5 and the first semiconductor switching element Q1.
  • the equivalent impedance X Leq of the load element 6 is expressed by approximating the charging capacity C s .
  • the power transmission device is a transmission technology of a transient response that does not depend on the sine wave AC theory
  • the expression of the equivalent circuit in FIG. It is only a schematic diagram in. Maxwell's equation with time changes can be solved analytically if the time change relies on a sine wave.
  • the mutual inductance M used in the AC theory is a time-dependent parameter expressed by a function M (t) where t is time, and is expressed by the equivalent circuit shown in FIG. Need attention.
  • FIG. 5 shows a large-signal equivalent circuit of an nMOSFET used as an example of the first semiconductor switching element Q1 in the mounting circuit shown in FIG. 4A.
  • an n + -type source region 72 and an n + -type drain region 73 are opposed to a p-type substrate 71 with a surface of the p-type substrate 71 serving as a channel region interposed therebetween.
  • a gate electrode 84 is provided on the channel region of the source region 72 and the drain region 73 via a gate oxide film 81 having a thickness T OX .
  • a source electrode 82 is in ohmic contact with the source region 72, and a drain electrode 83 is in ohmic contact with the drain region 73.
  • a gate-source capacitance C GS is provided between the gate electrode 84 and the source region 72, and a gate-drain connection is provided between the gate electrode 84 and the drain region 73.
  • a capacitance C GD exists between the gate electrode 84 and the substrate 71 and a gate-substrate capacitance C GB exists.
  • a source-substrate capacitance C BS exists between the source region 72 and the substrate 71
  • a drain-substrate capacitance C BD exists between the drain region 73 and the substrate 71.
  • the drain resistance R D connected in series between the drain electrode and the channel region and the source resistance R S connected in series between the source electrode and the channel region are connected to the channel region.
  • 2 shows a configuration connected in series to a constant current source of a current I DS provided in the first embodiment.
  • the drain resistance RD and the source resistance RS of the MOSFET shown in FIG. 5, which are the ON resistance of the first semiconductor switching element Q1, are important. It is necessary to select an element having a small on-resistance as the first semiconductor switching element Q1. Therefore, in the mounting circuit shown in FIG. 4A, the equivalent internal resistance r 1 of the DC power supply 5 includes the ON resistance of the first semiconductor switching element Q 1, and the time constant inherent in the circuit characteristics of the primary circuit 2. Need to decide.
  • the primary circuit 2 becomes RLC series circuit.
  • the parasitic resistance of the power transmission side coil L 1 is R str (L 1 )
  • the circuit can be regarded as an RLC series circuit.
  • the load element 6 such as a load-side diode D2
  • the parasitic resistance of the power receiving coil L 2 as R str (L 2)
  • ⁇ 2 (R str (L 2 ) / 2) (C 2 / L 2 ) 1/2 (5)
  • M M (t) shown in Figure 4 (b).
  • Transmitting coil L 1 and the power receiving coil L 2 of the power transmission device according to the first embodiment was as shown FIG. 6 (a) ⁇ FIG 7 (c), it is a spiral planar coil it can.
  • the “equivalent coupling coefficient K” is a pseudo coupling coefficient in an unsteady state defined at the time of a transient response, which is equivalent to the coupling coefficient K AC derived from AC theory, and is strictly a time-dependent parameter.
  • FIG 6 (a) ⁇ FIG. 7 (c) is a schematic view showing an embodiment the power transmission coil L 1 the structure of the power receiving coil L 2 in FIG. 4 (a).
  • the power transmission device according to the first embodiment for example, nine windings of a wiring cable having a conductor cross-sectional area of 16 mm 2 are formed into a spiral planar coil having a diameter of about 30 Cm.
  • the two spiral planar coils having a diameter of about 30 Cm are arranged in parallel with each other in a non-contact manner with a gap of a distance d.
  • the efficiency of the characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3 from the primary side circuit 2 to the secondary side circuit 3 depends on the magnetic coupling degree similar to the coupling coefficient K AC defined by AC theory. Depends on the value.
  • the degree of magnetic coupling depends on the distance d between the two spiral planar coils, and it is necessary to control the distance d between the two spiral planar coils.
  • the degree of magnetic coupling is to mechanically adjust the positional relationship between the two spiral planar coils, insert a magnetic material between the two spiral planar coils, or place a magnetic material around the two spiral planar coils. It can be adjusted by attaching to a pre-formed coupling utilizing the attraction or repulsion acting between the two spiral planar coils to be arranged.
  • the distance d is 10 Cm. It is about.
  • the power transmission coil L 1 and the power receiving coil L 2 exaggerated (enlarged) and, as shown schematically in FIG. 6 (b), the load element 6 is a rechargeable battery for vehicle of EV first embodiment the power transmission device according to the used for charging controls the spacing d of the power transmission coil L 1 and the power receiving side coil L 2 with a bollard 33 of the rear wheel as a magnetic coupling degree control mechanism to approximately 10 cm, Efficient non-contact power supply can be performed.
  • the power transmission coil L 1 corresponding to the value of the critical magnetic coupling of the efficiency characteristic harmonic transmissions between the primary-side circuit 2 and the secondary-side circuit 3 from the primary circuit 2 to the secondary-side circuit 3 interrelation of the power receiving coil L 2, it is possible to configure the magnetic coupling of the control mechanism by the power transmission coil L 1 and the power receiving side parameters other than distance d of the coil L 2.
  • the magnetic coupling degree control mechanism between the power transmission coil L 1 and the power receiving side coil L 2 by inserting the magnetic material plate 31C of the ferrite permeability mu r as shown in FIG. 7 (b) Is also good. Insertion position in the vertical direction of the magnetic plates 31C, or by the insertion area of the magnetic material plate 31C, the value of the magnetic coupling degree between the power transmission coil L 1 and the power receiving coil L 2 can be controlled. Magnetic plate 31C is not between the power transmission coil L 1 and the power receiving side coil L 2, as shown in FIG. 7 (c), may be inserted magnetic plate 31b on the back side of the power transmission coil L 1 Absent.
  • the value can be controlled.
  • similarly be inserted magnetic plate on the back of the power receiving coil L 2 it can be controlled value of magnetic coupling degree between the power transmission coil L 1 and the power receiving coil L 2 Is, of course.
  • the power transmission coil L 1 may be provided in the power feeding device side is provided.
  • the distance measuring unit 41 may be provided with a magnetic coupling degree control mechanism including a light emitting unit 411 and a light receiving unit 412. If the light receiving section 412 is an optical time-of-flight (TOF type) distance measuring element d, the light emitting section 411 emits pulse light. For pulse emission, for example, a near-infrared LD (laser diode) or near-infrared LED is used.
  • TOF type optical time-of-flight
  • Pulsed light reflected from the rear of the power receiving coil L 2 and EV is irradiated to the light receiving portion 412, such as through a lens and a BPF (band-pass filter).
  • the distance measuring unit 41 may be configured as a laser interferometer or the like.
  • the light receiving section 412 of the distance measuring unit 41 is connected to the distance calculating section 421 of the logical operation control section 42 shown in FIG.
  • the output of the light receiving unit 412 via the output buffer or interface, not shown, are input to the distance calculator 421 constituting the magnetic coupling of the control mechanism, the distance calculator 421, the power transmission coil L 1 and the power receiving side arithmetic processing necessary for distance measurement between the coil L 2 is performed.
  • the logical operation control unit 42 includes a magnetic plate necessary for realizing data necessary for a logical operation such as calculation of a magnetic coupling degree value in the logical operation control unit 42 and a desired equivalent coupling coefficient (pseudo-coupling coefficient).
  • the logical operation control unit 42 may be connected to a program storage device or the like that stores a program for instructing the operation of the logical operation control unit 42.
  • the coupling coefficient calculation unit 422 calculates the current magnetic force between the power transmission coil L 1 and the power reception coil L 2 from the data on the distance between the power transmission coil L 1 and the power reception coil L 2 calculated by the distance calculation unit 421. Find the value of the degree of static coupling.
  • the coupling coefficient calculation unit 422 further calculates the moving distance of the magnetic plate from the data of the insertion position in the vertical direction of the magnetic plate necessary to realize the desired equivalent coupling coefficient, stored in the data storage device 45. Then, the output is outputted to the coupling coefficient adjustment driving device 43.
  • the coupling coefficient adjustment driving device 43 of the magnetic coupling degree control mechanism shown in FIG. 8A uses the magnetic plate moving distance data transmitted from the coupling coefficient calculation unit 422 as shown in FIG.
  • the drive control is performed such that the vertical insertion position of the body plate 31C and the vertical insertion position of the magnetic plate 31b shown in FIG.
  • a well-known position control mechanism such as a step motor can be adopted as the coupling coefficient adjustment driving device 43. In this way, from the output of the distance measuring unit 41, it is possible to perform feedback control so that the insertion positions of the magnetic plate 31C and the magnetic plate 31b in the vertical direction become desired positions.
  • the data storage device 45 is a group including a plurality of registers, a plurality of cache memories, a main storage device, and an auxiliary storage device. It is also possible to use an arbitrary combination appropriately selected from the above. Further, the cache memory may be a combination of a primary cache memory and a secondary cache memory, and may have a hierarchy including a tertiary cache memory.
  • the logical operation control unit 42 shown in FIG. 8A can configure a computer system using a microprocessor (MPU) or the like mounted as a microchip.
  • MPU microprocessor
  • a logical operation control unit 42 constituting a computer system of the magnetic coupling degree control mechanism
  • DSP digital signal processor
  • a microcontroller microcomputer
  • the main CPU of the current general-purpose computer may be used for the logical operation control unit 42.
  • FIG. 9 is a diagram showing the operation of the mounting circuit shown in FIG.
  • FIG. 9 (a) at the timing of the first semiconductor switching element Q1 as a primary-side drive switch SW1 to the ON state, charges are stored first in the transmission side capacitor C 1.
  • FIG. 9A the internal resistance r on1 of the first semiconductor switching element Q1 at this time is shown.
  • the inter-terminal voltage VC 1 of the power transmission capacitor C 1 begins to increase, a portion of the stored electrical energy to the power transmission side capacitor C 1 is the transmission side as the power transmission coil current I L1 moves to the coil L 1, is accumulated in the power transmission coil L 1.
  • the electric energy of the power transmission side coil L 1 is transmitted to the power reception side coil L 2 of the secondary circuit 3, though it is small. Electrical energy transmitted to the power receiving coil L 2 of the secondary side circuit 3 is consumed for charging the power receiving side capacitor C 2 of the power receiving coil current I L2 as the secondary-side circuit 3.
  • the inter-terminal voltage VC 2 of the power receiving side capacitor C 2 is a timing shown in FIG. 9 (a) is a negative value.
  • Terminal voltage VC 2 of the power receiving side capacitor C 2 is a timing shown in FIG. 9 (b) is a positive value. Terminal voltage VC 2 of the power receiving side capacitor C 2 after reaching the peak value, starts decreasing.
  • the power transmission coil L 1 transmitting-coil current was circulated to I L1, electrical energy stored in the power transmission coil L 1 starts refluxed to the power transmission side capacitor C 1, the transmission terminal voltage VC 1 side capacitor C 1 starts to increase by circulating electric current.
  • an ammeter 461 for measuring the power transmission coil current I L1 which circulated in the power transmission coil L 1, and a voltmeter 462 for measuring the terminal voltage VC 1, the primary side If provided in the circuit 2, the magnitude of the electric energy circulated from the secondary circuit 3 can be measured. That is, the current is transmitted from the primary circuit 2 to the secondary circuit 3 by the characteristic metering transmission between the primary circuit 2 and the secondary circuit 3 by the ammeter 461 and the voltmeter 462 provided in the primary circuit 2. The efficiency of wireless transmission can be measured.
  • a magnetic coupling degree control mechanism for controlling the vertical insertion position of the magnetic plate 31C shown in FIG. 7B and the vertical insertion position of the magnetic plate 31b shown in FIG. to configure the transmission efficiency measuring unit 46 as shown in FIG. 8 (b), the power transmission coil L 1 may be provided in the power feeding device side is provided.
  • the transmission efficiency measuring unit 46 is an ammeter 461 and a voltmeter 462 provided in the primary circuit 2 as shown in FIG.
  • the transmission meter 461 of the logical operation controller 47 constituting the magnetic coupling degree control mechanism shown in FIG. 8B is connected to the ammeter 461 and the voltmeter 462 shown in FIG. 9C. .
  • the output of the ammeter 461 and the voltmeter 462 is inputted to the transmission efficiency calculating unit 471 via the output buffer or interface, not shown, in the transmission efficiency calculating section 471, of the power transmission coil L 1 and the power receiving coil L 2 Arithmetic processing required for transmission efficiency measurement between the two is performed.
  • the logical operation control unit 47 stores data necessary for logical operation such as transmission efficiency operation in the logical operation control unit 47 and data of an insertion position in a vertical direction of the magnetic plate required to realize a desired transmission efficiency. Connected data storage device 45 is connected. Although not shown, the logical operation control unit 47 may be connected to a program storage device or the like that stores a program for instructing the operation of the logical operation control unit 47.
  • Data transmission efficiency between the transmission efficiency calculation unit 471 has calculated the power transmission coil L 1 receiver coil L 2 is transmitted to the coupling coefficient calculation unit 472 of the logical operation control unit 47 constituting the magnetic coupling of the control mechanism Is done.
  • Coupling coefficient calculation unit 472 the transmission efficiency of data between the transmission efficiency calculation unit 471 and the power transmitting coil L 1 calculated power receiving coil L 2, between the power receiving side coil L 2 and the current of the power transmission coil L 1 Of the degree of magnetic coupling of
  • the coupling coefficient calculation unit 472 further calculates the moving distance of the magnetic plate from the data of the insertion position in the vertical direction of the magnetic plate necessary to achieve the desired transmission efficiency, stored in the data storage device 45. Are output to the coupling coefficient adjustment driving device 43.
  • the coupling coefficient adjustment driving device 43 uses the data of the change in the transmission efficiency due to the movement of the magnetic plate sent from the coupling coefficient calculation unit 472 to determine the insertion position in the vertical direction of the magnetic plate 31C shown in FIG.
  • the drive control is performed such that the vertical insertion position of the magnetic plate 31b shown in FIG.
  • a well-known position control mechanism such as a step motor can be adopted as the coupling coefficient adjustment driving device 43.
  • the magnetic coupling degree control mechanism shown in FIG. 8B sets the insertion position of the magnetic plate 31C or the magnetic plate 31b in the vertical direction from the output of the transmission efficiency measurement unit 46 to the desired position. Feedback control.
  • the data storage device 45 forming a part of the magnetic coupling control mechanism illustrated in FIG. 8B includes a plurality of registers, a plurality of cache memories, a main storage device, It is also possible to use an arbitrary combination appropriately selected from a group including the auxiliary storage device.
  • the logical operation control unit 47 shown in FIG. 8B can configure a computer system using an MPU or the like mounted as a microchip. Further, as the logical operation control unit 47 constituting the computer system, a DSP which has an enhanced arithmetic operation function and is specialized in signal processing, or a microcomputer which is equipped with a memory or a peripheral circuit and controls embedded devices may be used. . Alternatively, the main CPU of the current general-purpose computer may be used for the logical operation control unit 47.
  • the conventionally known “resonance” means that the sine wave vibration of the primary circuit 2 is transmitted to the freely vibrating secondary circuit 3, and the secondary circuit 3 has the same frequency as the primary circuit 2. This is a vibrating concept.
  • the power transmission device according to the first embodiment of the present invention includes a primary-side drive switch SW1 that limits free oscillation of the primary-side circuit 2 and realizes a transient current-voltage change in the primary-side circuit 2. Therefore, it is possible to transmit the non-sinusoidal sawtooth-like transient response characteristic to the secondary circuit 3 by the concept of “characteristic harmonic transmission” first proposed by the present inventors.
  • a sawtooth-like transient response characteristic that is a non-sinusoidal wave
  • a complicated and expensive AC power supply circuit that generates a sinusoidal vibration on the primary circuit 2 side as in the related art becomes unnecessary.
  • the time constant inherent in the primary circuit 2 and the time constant inherent in the secondary circuit 3 are harmonized and the electric energy of the primary circuit 2 is adjusted. Is transmitted to the secondary circuit 3.
  • Characteristics harmony transmission between the primary-side circuit 2 and the secondary-side circuit 3 for example, the capacity of the power transmission capacitor C 1 and the power receiving side capacitor C 2, and equal, including the parasitic resistance of the capacitor, the power transmission coil L 1 and inductance of the power receiving coil L 2 and may be equal, including the parasitic resistance of the coil.
  • the capacitances of the power transmission side capacitor C 1 and the power reception side capacitor C 2 are made equal to each other within a range of, for example, 400 ⁇ F to 600 ⁇ F.
  • the inductance of the power transmitting side coil L 1 and the power receiving side coil L 2 may be the same, for example, in the range of 5 ⁇ H to 20 ⁇ H.
  • the resonance frequency f o1 of the RLC series circuit given by the equation (6) is 2.25 kHz
  • the resonance frequency f o2 of the RLC series circuit given by the equation (7) is 2.25 kHz.
  • the corresponding repetition period is 444 ⁇ s.
  • Time to turn off the primary-side drive switch SW1 is ideal that the sum of the electrostatic energy (1/2) CV 2 and magnetic energy (1/2) LI 2 is set to be maximized but, with the current I to the power transmission coil L 1 flows, the primary side driving switch SW1 is turned off so that counter electromotive force is generated in the power transmission coil L 1.
  • Voltage of the counter electromotive force generated in the power transmission coil L 1 is, care must be taken so as not to exceed the withstand voltage of the first semiconductor switching element Q1 to be used for primary drive switch SW1 shown in FIG.
  • the repetition cycle of ON / OFF of the primary-side drive switch SW1 is set slightly earlier than the timing at which the voltage VC1 of the power transmission capacitor C1 reaches the peak in consideration of the time until the voltage VC1 rises again and reaches the peak.
  • FIG. 29 It indicates an approximate simulation change of the voltage of the power transmission capacitor C 1 as a result of the Figure 29.
  • aneurysm sawtooth illustrates that occur to the current of the power receiving coil L 2 primary circuit 2 by the magnetic flux due to current induced in is reduced.
  • the voltage of the secondary side circuit 3 is the same as in the case of the mode using four switches of the primary side drive switch SW1, the power transmission side switch SW2, the power reception side switch SW3 and the load control switch SW4 as described later in the fourth embodiment.
  • FIG. 34 is a simplified circuit diagram in which the parasitic capacitance and the parasitic resistance and the like are omitted from the circuit of FIG. 28 shows that the shape of the W as shown in FIG. 32 is obtained.
  • a transient response waveform in which the voltage of the valley on the right side of FIG. The middle peaks of the W-shaped transient response waveforms respectively surrounded by the dashed circles A 1 and A 2 in FIG. 32 are shown in FIGS. 1B and 2 due to the influence of parasitic capacitance and parasitic resistance. It can be seen that such a saw wave appears as a bump.
  • FIGS. 30A to 30D In the case of the mode of the first embodiment in which only the primary-side drive switch SW1 is used, as shown in FIGS. 30A to 30D, if the repetition cycle of ON / OFF of the primary-side drive switch SW1 is increased, a transient response waveform is obtained.
  • the aneurysm becomes small, and gradually approaches the response waveform of the sawtooth wave as shown in FIGS.
  • FIG. 29 is an enlarged view of the transient response waveform in the case of the repetition period of 575 ⁇ s shown in FIG. 30C, which corresponds to the transient response waveforms shown in FIG. 1B and FIG. .
  • the waveform is a W-shaped transient response waveform surrounded by a dashed circle Aa in FIG. Since the repetition period obtained from the resonance frequency of the RLC series circuit defined by the expressions (6) and (7) is 444 ⁇ s, the repetition period in FIG. However, it is longer than the repetition period required by AC theory. That is, in the power transmission device according to the first embodiment, it can be seen that the power transmission device oscillates at a repetition cycle different from the resonance frequency of the RLC series circuit obtained by the AC theory.
  • the amplitude is reduced by transmitting electric energy from the primary circuit 2 to the secondary circuit 3 by characteristic harmonic transmission.
  • the repetition period in the case of repetition period 570 ⁇ s in Figure 30 was slightly longer (b), as shown enclosed by the dashed circle A b, the voltage of the right valley of the shape of W showing a transient response waveform Lift. Further, as shown in FIG. 1B and FIG. 2, swelling starts to occur on the upper side of the sawtooth wave.
  • the amplitude is further reduced. If the repetition period was longer and the repetition period 575 ⁇ s in FIG. 30 (c), the one in the shape of W as shown enclosed by the dashed circle A c, the voltage of the right valley further raised nodular It becomes a shoulder, and the shape of W disappears from the transient response waveform. Then, as shown in FIG. 1B and FIG. 2, a bump appears on the upper side of the sawtooth wave.
  • the amplitude is further reduced, and the repetition period is further increased to 580 ⁇ s in FIG. 30 (d).
  • the bulge-shaped shoulder showing the transient response waveform further rises.
  • the bump on the upper side of the sawtooth wave is also remarkable, and a two-stage bump is shown.
  • the amplitude gradually decreases, and when the repetition period is lengthened, the voltage of the right valley does not gradually decrease, the right valley of the W shape rises, and the two-stage bump , A sawtooth-like transient response waveform having
  • the voltage at the right valley of the W shape rises because the electric energy received by the secondary-side circuit 3 has moved to the load element 6 to be charged. It is conceivable that.
  • the maximum value of the current when the primary-side drive switch SW1 is turned on and the maximum value of the current flowing through the load element 6 are different from the parasitic inductance of the electric wire constituting the actual circuit of the power transmission device according to the first embodiment.
  • Dependent From the analysis of the waveform measured in the actual circuit, it is estimated that the parasitic inductance is about 1 mH to 3 ⁇ H. That is, the sawtooth-like transient response waveform having a plurality of bumps shown in FIGS. 1B and 2 is generated by a time constant peculiar to a circuit relying on parasitic resistance, parasitic capacitance, and parasitic inductance. I understand.
  • the damping function f2 corresponds to a function that decays by a constant ⁇ time due to the parasitic resistance and the capacitor of the maximum value of the voltage VC1 across the primary-side capacitor C 1.
  • V1, V2, V3 described may be all corresponding to the voltage VC1 at both ends of the capacitor C 1 of the primary side.
  • V1 is initially the voltage charged in the capacitor C 1 of the primary side
  • V2 is, can correspond to the remaining voltage in the capacitor C 1 of the primary side of the after being transferred to the electrical energy to the secondary side circuit 3.
  • V3 shown in FIG. 35 corresponds to those differences.
  • Energy transfer function f1 is a function of the voltage VC1 across the capacitor C 1 of the primary side is made with the intention that falls V2 from V1.
  • the coupling coefficient K of the power transmission device according to the first embodiment is a time-dependent parameter, and is strictly different from the coupling coefficient K AC of AC theory. Thin broken line in FIG.
  • 35 is a waveform before supplying a current to the load circuit 6, corresponding to the waveform of the voltage VC1 across the primary-side capacitor C 1.
  • the thin broken line after the transfer timing of 2 ⁇ / ⁇ 1 second can be considered as a waveform when the energy of the primary side capacitor C1 is not transferred to the secondary side.
  • V2 / 2) ⁇ (k ) is a thin dashed curve up to the transfer timing 2 [pi / .omega.1 seconds in FIG. 35, the voltage across the capacitor C 1 after a current is supplied to the load circuit 6 VC1 It is a waveform of. This corresponds to a waveform when it is considered that the energy of the primary side capacitor C1 has moved to the secondary side from the beginning by the amount transferred to the secondary side.
  • Function shown by the solid line f1 ⁇ f2 ⁇ ⁇ (k) is the voltage VC1 across the capacitor C 1, it is seen that the W-type.
  • the amplitude is reduced by transmitting the electric energy to the secondary circuit 3 by the characteristic harmonic transmission. That is, as shown in FIG. 32, the valley on the right side of the W-type transient response waveform becomes smaller, gradually rises upward, and does not become hollow. As a result, the RC time constant becomes a sawtooth wave and is attenuated by the dissipation of electric energy by the parasitic resistance.
  • the approximate simulation by the AC theory for the circuit shown in FIG. 28 is only an approximation to the last, and there is a limit of the AC theory, but it should be able to understand a sawtooth-like transient response waveform having approximately two steps of bumps. . Actually, only the experimental data shown in FIGS. 1B and 2 can explain the effect of the power transmission device according to the first embodiment.
  • the power transmission side capacitor C 1 and the power receiving side capacitor C 2 to employ the same capacitor, by employing a power transmitting coil L 1 and the power receiving side the same coil to the inductance of the coil L 2, a parasitic resistance in coil and capacitor
  • the time constant inherent in the primary circuit 2 and the time constant inherent in the secondary circuit 3 can be harmonized.
  • the power transmission device is a technology that does not rely on an AC theory using a novel concept of characteristic harmonic transmission, so that an inexpensive DC power supply 5 can be used. it can. Therefore, the power transmission device according to the first embodiment does not require an expensive switching power supply, simplifies the circuit configuration, and minimizes power loss on the control circuit side.
  • a power semiconductor switching element is used as the primary-side drive switch SW1
  • only simple control for turning on / off the power semiconductor switching element is required, so that power loss on the control circuit side is reduced, and the power supply circuit is reduced.
  • the overall power transmission efficiency including the (zero-order circuit) loss can be improved.
  • the limit power of the power transmission can be increased to a value exceeding the limit power in the conventional AC theory.
  • the limit power of power transmission can be pushed up to infinity in principle, the limit distance of power transmission can also be extended to infinity in principle.
  • the overall configuration of the power transmission device is simplified, the power loss on the control circuit side is suppressed to a minimum, and a reduction in weight, size, and efficiency is achieved.
  • This makes it possible to manufacture a wireless power transmission device with improved overall power transmission efficiency due to power saving at low cost.
  • the characteristic harmonic transmission can be realized with a repetition period longer than the repetition period obtained by the conventional AC theory, the frequency may be lower than the case of the heavy resonance in the conventional AC theory. Since a low-frequency circuit design is sufficient, the voltage on the primary circuit 2 side can be easily increased, and the energy loss due to the generation of Joule heat can be reduced, so that the power transmission device according to the first embodiment has a comprehensive power transmission.
  • a power transmission device with high efficiency can be manufactured at low cost. By lowering the parasitic resistance, it is possible in principle to manufacture a power transmission device whose power transmission efficiency exceeds 99% and is increased to a value close to 100%.
  • the power transmission device according to the second embodiment of the present invention adds a power transmission side switch SW2 to the circuit configuration of the power transmission device according to the first embodiment shown in FIG.
  • the configuration is as follows.
  • the “power transmission switch SW2” is a circuit element that limits free oscillation of the primary circuit 2 and realizes a transient current-voltage change in the primary circuit 2.
  • thyristors such as a GTO thyristor and an SI thyristor other than the same FET, SIT, and BJT as the power transmission device according to the first embodiment are used.
  • a power semiconductor switching element is used.
  • a voltage-driven switching element such as a MISFET, a MISIT, an IGBT, or a MOS-controlled SI thyristor is used, power consumption is reduced. Therefore, it is suitable for the primary drive switch SW1 and the power transmission switch SW2. From the availability on the market and the evaluation of the internal resistance of the power semiconductor switching element, it is currently possible to employ MOSFETs as the primary side drive switch SW1 and the power transmission side switch SW2 of the circuit shown in FIG. It is possible.
  • Joule heat is generated in a large power transmission device in which a rechargeable battery for EV is used as the load element 6.
  • the cooling structure for preventing destruction of the elements due to heat generation can be simplified. It can be designed and the generation of stray resistance, stray capacitance and stray inductance can be minimized.
  • the design of increasing the voltage of the primary-side circuit 2 and suppressing the generation of Joule heat can be simplified.
  • the wireless power transmission method according to the first embodiment will be described with reference to the timing chart of FIG. 11 and the time-series schematic diagrams shown in FIGS. 12 (a) to 12 (d).
  • the power-transmitting-side switch SW2 turned off, and the primary-side drive switch SW1 in the ON state, storing electric charge by applying an initial voltage to the power transmission side capacitor C 1.
  • FIG. 12 (a) the power-transmitting-side switch SW2 turned off, and the primary-side drive switch SW1 in the ON state, storing electric charge by applying an initial voltage to the power transmission side capacitor C 1.
  • the inter-terminal voltage VC 1 of the power transmission capacitor C 1 is charged at a constant voltage while ringing.
  • terminal voltage VC 2 of the power receiving side capacitor C at this timing is shown in FIG. 12 (a) as a negative value.
  • FIG. 12 (b) the primary-side drive switch SW1 in the OFF state, after a certain time, when the power-transmission-side switch SW2 is turned on, electricity stored in the transmission-side capacitor C 1 energy via a power transmission coil current I L1, stored in the power transmission coil L 1, further characteristic harmonic transmissions between the primary-side circuit 2 and the secondary-side circuit 3 occurs.
  • the ON state of the power transmission switch SW2 is indicated by the on-resistance r on2 of the second semiconductor switching element Q2.
  • Primary circuit 2 by the power-transmission-side switch SW2 to the ON state is formed, the DC power source 5, the equivalent internal resistance r 1, a first semiconductor switching element Q1 first freewheeling diode (reflux diode) parallel FWD 1 power feeding side circuit 1 consisting of circuit and transmission-side capacitor C 1 is eliminated.
  • the characteristic harmonic transmission from the primary side circuit 2 to the secondary-side circuit 3, the electrical energy transmitted to the power receiving coil L 2 charges the power receiving side capacitor C 2 by the receiver coil current I L2.
  • the terminal voltage VC 2 of the power receiving side capacitor C as shown by the thick broken line in FIG. 11, after taking a negative maximum value, in FIG. 12 (c) It becomes a positive value as shown.
  • Terminal voltage VC 1 takes the maximum value when it becomes 0V.
  • the inter-terminal voltage VC 2 is that after taking the negative maximum value, a positive value
  • the inter-terminal voltage VC 1 shown in thin broken line becomes 0V To take the maximum value.
  • “resonance” is a concept applied to a system that is freely vibrating.
  • the power transmission side switch that limits the free oscillation of the primary side circuit 2 and realizes the transient current-voltage change in the primary side circuit 2 SW1 and a primary-side drive switch SW1 are provided.
  • This is a circuit in which the charging voltage Vcs of the rechargeable battery adopted as 36 is set to 100 V and the current is not set to flow through the load circuit 36.
  • 5 is a circuit of the power transmission device according to the second embodiment when the charging voltage
  • FIG. 34 shows a change in the voltage of the power transmission side capacitor C1 as an approximate simulation result.
  • the change in the voltage of the power transmitting side capacitor C1 is the same as that of the W type shown in FIG. 3.
  • 3 shows a transient response waveform.
  • the solid line in FIG. 34 is the result of the approximate simulation for the circuit shown in FIG. 33A
  • the broken line in FIG. 34 is the result of the approximate simulation for the circuit shown in FIG. 33B
  • the dashed line in FIG. 33 is a result of an approximate simulation of the circuit shown in FIG.
  • the control circuit and peripheral circuits use the inexpensive DC power supply 5. This eliminates the need for an expensive switching power supply.
  • the circuit configuration of the power transmission device according to the second embodiment is simplified, the power loss on the control circuit side is minimized and hardly broken, and the circuit design becomes easy.
  • the overall configuration of the power transmission device is simplified, the weight and size of the power transmission device can be reduced, and the efficiency can be improved.
  • the transmission device can be manufactured at low cost.
  • the power limit of power transmission is pushed up to a value exceeding the limit power in the conventional AC theory, and in principle, it is pushed up to infinity. Can in principle be extended to infinity. Further, it is possible in principle to increase the power transmission efficiency to a value close to 100%.
  • the power transmission device according to the third embodiment of the present invention has a configuration in which a power receiving switch SW3 is added to the power transmission device according to the second embodiment.
  • the "power receiving switch SW3" also limits the free oscillation of the secondary circuit 3 and realizes a transient current-voltage change in the secondary circuit 3. Circuit element.
  • GTO A power semiconductor switching element including a thyristor such as a thyristor or an SI thyristor is used.
  • the large power transmission device generates a large amount of Joule heat.
  • the elements are prevented from being damaged due to heat generation.
  • the cooling structure can be easily designed, and the generation of stray resistance, stray capacitance, and stray inductance can be minimized. Further, since only simple control for turning on / off the primary-side drive switch SW1 and the power transmission-side switch SW2 is required, the design of increasing the voltage of the primary-side circuit 2 and suppressing the generation of Joule heat can be simplified.
  • the first reflux diode FWD 1 is between MOSFET source and drain of the first semiconductor switching element Q1
  • a second reflux diode FWD 2 is the second semiconductor switching between the source and drain of the MOSFET as an element Q2
  • the third wheeling diode FWD 3 of between the source and the drain of the MOSFET as a third semiconductor switching element Q3 are connected in parallel as respective protective elements.
  • step S31 of the flowchart in FIG. 14 the power transmission switch SW2 and the power reception switch SW3 are turned off, and only the primary drive switch SW1 is turned on.
  • the inter-terminal voltage VC 1 of the power transmission capacitor C 1 is charged at a constant voltage while ringing.
  • terminal voltage VC 2 of the power receiving side capacitor C is at this timing is a negative value.
  • the charging voltage VC S at this point is assumed to high.
  • step S32 the power transmission switch SW2 and the power reception switch SW3 are simultaneously turned on.
  • the power-transmitting-side switch SW2 is turned on, electric energy stored in the power-transmitting-side capacitor C 1 via the transmitting-coil current are accumulated in the power transmission coil L 1, further primary circuit 2 and the secondary circuit A characteristic harmonic transmission between three occurs.
  • the terminal voltage VC 2 of the power receiving side capacitor C begins to increase from a negative maximum value, central left of Figure 15 It becomes a positive value as shown in the position indicated by the arrow.
  • the inter-terminal voltage VC 2 has a negative value
  • the charging current ICS does not flow.
  • the charging current ICS is as shown by a dashed line in the center of FIG. I CS begins to rise.
  • step S33 the power transmission switch SW2 and the power reception switch SW3 are turned off.
  • the voltage between the terminals VC 2 is maximized as shown by a thick broken line in FIG. 15, and terminal voltage VC 1 shown by a thin broken line is a point which becomes 0V.
  • the charging current I CS indicated by a dashed line in the center of FIG. 15 increases even after the power transmitting switch SW2 and the power receiving switch SW3 are turned off, reaches a peak value, and then decreases, and reaches zero in step S34. Become.
  • the thick maximum value between the indicated terminal voltage VC 2 is a broken line
  • the charge current I C begins to decrease
  • the step becomes constant at value slightly lower ( Shoulder) shaped waveform.
  • the value of terminal voltage VC 2 shown by thick broken lines in FIG. 15 maintains a value lower than the maximum value of the off of the power transmission switch SW2.
  • the maximum value of the inter-terminal voltage VC 2 is reduced, if a higher charge voltage VC S at the time of step S31, the charging current I C between by terminal voltage VC 2 Is small, and the influence on the characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3 is small.
  • step S35 in after the charging current I C becomes 0A, the power-transmission-side switch SW2 and the power receiving side switch SW3 at the same time, when the ON state again, the characteristics between the primary-side circuit 2 and the secondary-side circuit 3 again conditioner transmission Occurs.
  • the on state of the power transmission switch SW2 and the power receiving side switch SW3 at step S35 the inter-terminal voltage VC 2 indicated by thick broken line on the right side of FIG. 15 starts to decrease, then taking the negative maximum value, it becomes 0V .
  • the inter-terminal voltage VC 1 shown in thin broken lines on the right side of Figure 15 also starts to decrease, then taking the negative maximum value, increasing a positive value.
  • step S36 the inter-terminal voltage VC 1 is maximized, the terminal voltage VC 2 to turn off the power-transmission-side switch SW2 and the power receiving side switch SW3 at the time becomes 0V.
  • Figure 15 terminal voltage VC 1 shown in thin broken lines in step S36 the time as shown in is the same value as the terminal voltage VC 2 shown by a thick broken line at step S34, the power-transmission-side switch SW2 and the power receiving side It is maintained at a constant value after the switch SW3 is turned off.
  • the voltage between the terminals of the terminal voltage VC 1 and the load device 6 at step S36 the time are the same value. Therefore, in the same manner as described in FIG.
  • “Resonance” is a concept used in an AC circuit that is freely vibrating.
  • the free vibration of the primary circuit 2 and the secondary circuit 3 is limited, A primary side drive switch SW1, a power transmission side switch SW2, and a power reception side switch SW3 for realizing a transient current-voltage change in the primary side circuit 2 and the secondary side circuit 3 are provided.
  • the transient response characteristic of the primary circuit 2 can be transmitted to the secondary circuit 3 by a new concept “characteristic harmony transmission”. is there.
  • control circuit can transmit electric energy using the non-sinusoidal transient response characteristic based on the inexpensive DC power supply 5 having a simple configuration, the sine wave higher than the commercial frequency is applied to the primary circuit 2. An expensive AC power supply circuit for generating vibration is not required.
  • the inexpensive DC power supply 5 whose control circuit and peripheral circuits are simple is used. Since it can be used, an expensive switching power supply is not required, the circuit configuration is simplified, and power loss on the control circuit side is also minimized. As a result, according to the power transmission device according to the third embodiment, the overall configuration of the power transmission device is simplified, and the power transmission device can be reduced in weight, size, and efficiency, and the loss of the power supply circuit (zero-order circuit) can be reduced. Thus, a wireless power transmission device with improved overall power transmission efficiency including the above can be manufactured at low cost.
  • the circuit configuration is simplified, so that the circuit is not easily broken and the circuit design becomes easy.
  • the power transmission device according to the fourth embodiment of the present invention has a configuration in which a load control switch SW4 is added to the power transmission device according to the third embodiment.
  • the “load control switch SW4” is a circuit element that limits the free oscillation of the secondary circuit 3 and realizes a transient current-voltage change in the secondary circuit 3, similarly to the power receiving switch SW3.
  • the primary drive switch SW1 As the primary drive switch SW1, the power transmission switch SW2, the power reception switch SW3, and the load control switch SW4 shown in FIG. 16A, similarly to the power transmission devices according to the first to third embodiments, FET, SIT , BJT, and a power semiconductor switching element including a thyristor such as a GTO thyristor and an SI thyristor can be used.
  • the MOSFET is connected to the primary drive switch SW1, the power transmission switch SW2, the power reception switch SW3, and the load of the mounting circuit shown in FIG. It is preferable to adopt each as the control switch SW4.
  • the Joule heat Since only four power semiconductor switching elements are required to be used as the primary drive switch SW1, the power transmission switch SW2, the power reception switch SW3, and the load control switch SW4, the Joule heat
  • the cooling structure that prevents the generation of stray light can be easily designed, and the occurrence of stray resistance, stray capacitance, and stray inductance can be minimized.
  • the design for increasing the voltage of the primary-side circuit 2 to suppress the generation of Joule heat can be simplified.
  • the first reflux diode FWD 1 is between the source and drain of the MOSFET as a first semiconductor switching element Q1
  • a second reflux diode FWD 2 is the second semiconductor switching between MOSFET source and drain of the elements Q2
  • a fourth freewheeling diode FWD 4 of the fourth semiconductor switching Each element is connected in parallel as a protection element between the source and the drain of the MOSFET as the element Q4.
  • the third return diode FWD 3 is provided in the direction in which the circulating current flows from the power receiving side coil L 2 , so that the second return diode FWD 2 faces in the opposite direction.
  • This is provided in the same manner as in FIG. FIG. 4 (a), the like the circuit shown in FIG. 10 (b) and 13 (b), since the circulating electric current from the power transmission coil L 1 is prevented from refluxing to the DC power supply 5, the power supply side diode D1 Are connected in series between the DC power supply 5 and the first semiconductor switching element Q1.
  • the equivalent impedance X Leq of the load element 6 is expressed by approximating the charging capacity C s .
  • the primary drive switch SW1 and the load control At the timing when the switch SW4 is turned off and the power transmission switch SW2 and the power receiving switch SW3 are turned on, the circuit on the DC power supply 5 side and the circuit on the load element 6 side are connected to the primary circuit 2 and the secondary circuit 3 respectively. Since they are separated, the primary circuit 2 and the secondary circuit 3 can freely vibrate. That is, since the LC resonance circuit of the primary circuit 2 and the LC resonance circuit of the secondary circuit 3 can be treated as a circuit coupled by mutual inductance M, the concept of heavy resonance in AC theory can be adopted.
  • the power transmission device according to the fourth embodiment of the present invention is required. Not all can be interpreted by conventional AC theory. That is, in the free vibration region as already shown by the diagonal line in FIG. 3B, the conventional sine wave AC theory can be used, but the primary side drive switch SW1, the power transmission side switch SW2, the power reception side switch SW3, and the load. In the operating environment of the power transmission device according to the fourth embodiment in which the boundary condition of the circuit is changed every moment using the four switches of the control switch SW4, a sawtooth rising as illustrated in FIG. It is necessary to analyze including the transient response such as characteristics.
  • the power transmission side switch SW2, the power-receiving-side switch SW3 and the load control switch SW4 are turned off, and the primary-side drive switch SW1 in the ON state, by applying an initial voltage of 20V to the power transmission side capacitor C 1 transmission side capacitor C 1 To store electric charge.
  • the primary drive switch SW1 is turned off and the power transmission switch SW2 and the power reception switch SW3 are turned on, it can be expected that characteristic harmony transmission between the primary circuit 2 and the secondary circuit 3 will occur.
  • the resulting terminal voltage VC 1 and terminal voltage VC 2 of the waveform by simulation shown in FIG. 17 (a).
  • a waveform as either sinusoidal sine wave with small amplitude greater amplitude is the synthesis of terminal voltage VC 1 of the waveform and the voltage between the terminals VC 2 waveforms, different from the sine wave in a normal AC Theory .
  • the power transmission switch SW2 and the power reception switch SW3 are turned on in 0.2 ms. In 0.45 ms, the inter-terminal voltage VC 1 is to 0V, and the voltage between the terminals VC 2 becomes 20V. This indicates that all the energy on the power transmission side is transmitted to the power reception side. If the power transmission side switch SW2 and the power reception side switch SW3 are turned off in 0.45 ms, the power by the characteristic harmony transmission is efficiently increased. Transmission can take place.
  • the waveform of the characteristic harmonic transmission between the primary circuit 2 and the secondary circuit 3 is measured by the mounting circuit having the configuration illustrated in FIG. Primary circuit 1 and the secondary side equivalent coupling coefficient K 0.6 of the circuit 2, the power-transmitting-side capacitor C 1 and both of the capacity of the power receiving side capacitor C 2 65MyuF, of the power transmission coil L 1 and the power receiving coil L 2 any inductance 60MyuH, the initial voltage 20V applied to the power transmission side capacitor C 1.
  • Each terminal voltage VC 1 and terminal voltage VC 2 waveforms the power transmitting side capacitor C 1, obtained by measuring the power receiving side capacitor C 2 is shown in FIG. 17 (b), the waveform of the terminal voltage VC 1 it can be seen there is no symmetry between the terminal voltage VC 2 waveforms.
  • the waveform is attenuated with time, unlike the result of the simulation based on the normal AC theory in FIG. 17B, transmission starts at 0.2 ms, and the terminal voltage VC 2 reaches a maximum of 15 V at 0.45 ms. At this time, the inter-terminal voltage VC 1 is ⁇ 3 V, and not all of the energy on the power transmission side is transmitted to the power reception side, and part of the energy remains on the power transmission side. It can be confirmed that it is transmitted to the side.
  • the change in the waveform of the characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3 when the coupling coefficient K AC according to the normal AC theory is changed is compared with the normal change. Determined by simulation based on AC theory. Both the capacity of the power transmission capacitor C 1 and the power receiving side capacitor C 2 500 ⁇ F, both the inductance of the power transmission coil L 1 and the power receiving coil L 2 10 .mu.H, and 25V the initial voltage applied to the power transmission side capacitor C 1 .
  • the coupling coefficient K AC according to the AC theory is approximated to be equal to the equivalent coupling coefficient, and the equivalent coupling coefficient K is set to 0.00, 0.1, 0.6, 0.8, and 0.88, respectively.
  • FIG. 18A A simulation based on AC theory was performed.
  • the normal AC theoretical simulation results obtained terminal voltage VC 1 and terminal voltage VC 2 waveforms, illustrated in FIG. 19 (c) from Fig. 18 (a).
  • the coupling coefficient K is 0.00 according to the ordinary AC theory, the primary circuit 1 and the secondary circuit do not interact with each other, and the primary circuit 2 and the secondary circuit do not interact with each other. No characteristic transmission between the three occurs.
  • (1 + k) (1/2) / (1-k) (1/2) 4
  • the equivalent coupling coefficient K is decreased. Therefore, if the parasitic resistances r L and r C are sufficiently low, it can be said that the signal can be transmitted over a long distance.
  • the terminal voltage VC 1 becomes 0 V
  • the terminal voltage VC 2 becomes the same value as the initial voltage VC 0 between the terminals of the power transmission side capacitor C 1
  • the currents I 1 and I 2 become 0 A. ing.
  • the power transmission switch SW2 and the power reception switch SW3 are turned off in 0.28 ms, power transmission can be performed with maximum efficiency.
  • the currents I 1 and I 2 are 0 A, and the power transmission coil L 1 back electromotive force generated in the power receiving side coil L 2 and from becoming zero, it is possible to prevent the destruction of the power transmission switch SW2 and the power receiving side switch SW3.
  • the transmission efficiency is highest when the energy stored on the power transmission side is transmitted to the power receiving side by the characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3.
  • the combination of the inductance L of the coil and the capacitance C of the capacitor is determined by the following procedure.
  • the transmission efficiency P is defined as P on Ce -tr , the energy to be transmitted at one time, and P on Ce -loss , the energy lost at one time due to the parasitic resistance r L of the coil and the parasitic resistance r C of the capacitor. if the time required in time and ⁇ on C e, it is represented by the formula (14).
  • FIG. 21 shows the change in the transmission efficiency with respect to the capacitance of the capacitor when the inductance of the coil is 1, 2, 5, 10, 20, and 50 ⁇ H, obtained as a result of the simulation based on the ordinary AC theory. As shown in FIG.
  • the combination of the inductance L of the coil and the capacitance C of the capacitor that maximizes the transmission efficiency is as follows. 5000, 2500, 1000, 500, 250, and 100 ⁇ F, satisfying the expression (19).
  • the first wireless power transmission method according to the fourth embodiment when the voltage between terminals of the load element 6 as a rechargeable battery is low is described with reference to the flowchart shown in FIG. 23 and the timing chart shown in FIG. Will be explained.
  • the maximum value of the inter-terminal voltage VC 2 is the same value as the initial voltage VC 0 between terminals of the power transmission capacitor C 1, then the terminal voltage VC 1 is so to 0V, and the equivalent coefficient K is adjusted It is assumed that
  • step S11 the power transmission switch SW2, the power reception switch SW3, and the load control switch SW4 are turned off, and the primary drive switch SW1 is turned on. After an electric charge is charged by applying an initial voltage to the power transmission side capacitor C 1, to turn off the primary-side drive switch SW1. At this point, the voltage between the terminals of the load element 6 is assumed to be sufficiently low.
  • step S12 when the power transmission switch SW2 and the power reception switch SW3 are turned on, characteristic harmony transmission between the primary circuit 2 and the secondary circuit 3 occurs.
  • step S13 the power transmission side when the absolute value of terminal voltage VC 2 by characteristic harmonic transmissions between the primary-side circuit 2 and the secondary-side circuit 3 is maximized, the terminal voltage VC 1 is 0V
  • the switch SW2 and the power receiving side switch SW3 are turned off.
  • step S14 when the load control switch SW4 in the ON state, and the charging current I CS is generated, terminal voltage VC 2 is reduced.
  • step S15 when the charging current ICS becomes 0, the load control switch SW4 is turned off. Terminal voltage VC 2 and terminal voltage of the load device 6 at this time is the same value. If at the time of step S11 the load element 6 terminal voltage is sufficiently low, the voltage between the terminals VC 2 of the power receiving side capacitor at the time of step S15 to 0V, or sufficiently low extent can be regarded as 0V, discharging the power receiving side capacitor C 2 It is possible to return to step S11 without performing.
  • Steps S21 to S24 are the same as steps S11 to S14.
  • step S25 when the charging current ICS becomes 0, the load control switch SW4 is turned off. Terminal voltage VC 2 at this time is equal to the charge voltage VC S.
  • step S26 the power receiving side capacitor is discharged.
  • step S26 when the power transmission side switch SW2 and the power reception side switch SW3 are turned on, characteristic harmony transmission between the primary side circuit 2 and the secondary side circuit 3 occurs again.
  • step S27 the maximum absolute value of terminal voltage VC 1 by characteristic harmonic transmissions between the primary-side circuit 2 and the secondary-side circuit 3, the power-transmission-side switch SW2 and at the time when the terminal voltage VC 2 becomes 0V The power receiving side switch SW3 is turned off. Since the terminal voltage VC 1 at step S27 the time is equal to the terminal voltage VC 2 at the time step S25, the charging voltage VC S and terminal voltage VC 1 at step S27 the time are the same value. Therefore, in this case, in the inter-terminal voltage VC 1, it is possible to monitor the charging voltage VC S.
  • the control circuit and the peripheral circuits are simple and inexpensive. Since the DC power supply 5 can be used, an expensive switching power supply is unnecessary, the circuit configuration is simplified, the power loss on the control circuit side is minimized, the circuit is hardly broken, and the circuit design becomes easy. As a result, according to the power transmission device according to the fourth embodiment, the entire configuration of the power transmission device is simplified, and the power transmission device can be reduced in weight, size, and efficiency, and the loss of the power supply circuit (zero-order circuit) can be reduced. Increasing the total power transmission efficiency, including theoretically, to a value close to 100% in principle, pushing the limit power of power transmission to infinity in principle, and extending the limit distance of power transmission to infinity in principle The wireless power transmission device can be manufactured at low cost.
  • a primary circuit 2C and the secondary side circuit 3C comprises a first mutual coupling capacitor C 23 and a second mutual coupling capacitor is bound electrostatically at C 24, the power transmission device according to the first embodiment, the coil to the capacitor, has a configuration obtained by rearranging the capacitor to the coil. From the law of electromagnetic induction and Maxwell's equation, it is possible to exchange such a coil and a capacitor. That is, as shown in FIG. 26, the power transmission device according to the fifth embodiment is similar to the power transmission device according to the first embodiment shown in FIG.
  • the electrostatic energy transmitted from the power transmitting side is connected in parallel to the capacitor C 21 power-transmitting-side capacitor C 21 accumulates as a magnetic energy, a power transmission coil L 21 to reflux the magnetic energy to the power transmission side capacitor C 21 A primary circuit 2 is provided.
  • the power transmission device as shown in FIG. 26, first the transmission side capacitor C 21 and the power transmission coil L 21 is connected to one electrode on one of the nodes to be connected in parallel mutual coupling capacitor C 23, the power-transmitting-side second interconnection further comprises a point capacitor C 24 of the capacitor C 21 and the power transmission coil L 21 is connected to one electrode to the other nodes connected in parallel, in Figure 1 This is different from the power transmission device according to the first embodiment shown.
  • the power transmission device is connected to one electrode to the other electrode of the first mutual coupling capacitor C 23, the other electrode to the other electrode of the second cross coupling capacitor C 24 connect the power receiving side capacitor C 22 to receive electrostatic energy from the primary side circuit 2, the power receiving side coil accumulates accumulated in the parallel-connected power reception capacitor C 22 to the power receiving side capacitor C 22 electrostatic energy as magnetic energy L It further comprises a secondary circuit 3 having 22 .
  • a DC power source 5 to a circuit for connecting the one terminal and the other terminal of the power transmission coil L 21, the power transmission coil one terminal of L 21 and are connected in series between the DC power source 5 comprises a primary drive switch SW1 for inputting step intermittent DC voltage to the power transmission coil L 21.
  • a primary drive switch SW1 for inputting step intermittent DC voltage to the power transmission coil L 21.
  • the anode is one of the power receiving coil L 22
  • a load-side diode D2 having a cathode connected to the load element 6 is provided. Even with the electrostatic coupling as shown in FIG.
  • the power transmission device can transmit electric energy from the primary circuit 2 to the secondary circuit 3 in a non-contact manner. . Seek waveform of the current flowing through the simulation using conventional AC theoretical power transmission coil L 21 to the power receiving coil L 22, to confirm the characteristics harmonize transmission waveform between the primary-side circuit 2 and the secondary-side circuit 3.
  • the DC power supply 5 is a constant voltage source as in the case of the first embodiment.
  • the currents flowing through the power transmitting coil L 21 and the power receiving coil L 22 are 30 A and 0 A, respectively.
  • the currents flowing through the power transmitting coil L 21 and the power receiving coil L 22 are 30 A and 0 A, respectively.
  • Characteristic harmonic transmission occurs between the primary circuit 2 and the secondary circuit 3.
  • the power transmission device has a magnetic coupling.
  • the control circuit and the peripheral circuits can use the DC power supply 5 which is simple and inexpensive, so that an expensive switching power supply is unnecessary.
  • the circuit configuration is simplified and hardly broken as in the power transmission devices according to the first to fourth embodiments, the circuit design is facilitated, and the power loss on the control circuit side is reduced. Is also minimized.
  • the overall configuration of the power transmission apparatus is simplified, and the power transmission apparatus can be reduced in weight, size, and efficiency, and a power supply circuit (zero-order circuit)
  • the total power transmission efficiency, including the power loss, has been increased to a value close to 100%, the limit power for power transmission has been pushed up to infinity in principle, and the limit distance for power transmission has been extended to infinity in principle.
  • a wireless power transmission device can be manufactured at low cost.
  • the primary side drive switch SW1, the power transmission side switch SW2, and the power reception side A configuration including the switch SW3 is possible.
  • the configuration may be the same as that of the power transmission device according to the fourth embodiment of the present invention, including the primary drive switch SW1, the power transmission switch SW2, the power reception switch SW3, and the load control switch SW4.
  • the power transmission device is configured by combining the technical ideas of the respective embodiments as shown in FIGS. 1 (a), 10 (a), 13 (a), 16 (a) and 26 with each other. You can also. Further, in the power transmission device according to the first embodiment of the present invention, the magnetic coupling degree control mechanism described with reference to FIGS. 6A to 8B according to the second to fourth embodiments will be described. It may be applied to a power transmission device.
  • the present invention includes various embodiments and the like that are not described in the present specification and the drawings, and the technical scope of the present invention is defined by the invention-specifying matters according to the appropriate claims from the above description. It is only determined.
  • SYMBOLS 1 Power supply side circuit, 2, 2C ... Primary side circuit, 3, 3C ... Secondary side circuit, 5 ... DC power supply, 6 ... Load element, 32 ... Spacer, 33 ... Car stop, 41 ... Distance measuring unit, 411 ...
  • Light emission Unit 412: light receiving unit, 42, 47: logical operation control unit, 421: distance operation unit, 422, 472: coupling coefficient calculation unit, 43: coupling coefficient adjustment driving device, 45: data storage device, 46: transmission efficiency measurement Unit, 461: Ammeter, 462: Voltmeter, 471: Transmission efficiency calculation unit, 71: Substrate, 72: Source region, 73: Drain region, 81: Gate oxide film, 82: Source electrode, 83: Drain electrode, 84 ... Gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided is a power transmission device that has a simple circuit configuration and can be inexpensively manufactured. The device comprises: a primary side circuit (2) comprising a transmitting-side capacitor (C1) and a transmitting-side coil (L1); a DC power source (5) connected to the transmitting-side capacitor (C1); a primary side drive switch (SW1) connected between the transmitting-side capacitor (C1) and the DC power source (5); a secondary-side circuit (3) comprising a receiving-side coil (L2) facing the transmitting side coil (L1) and a receiving-side capacitor (C2); a load element (6) that receives static energy from the receiving-side capacitor (C2); and a load-side diode (D2), an anode of which is connected to the receiving-side capacitor (C2) and a cathode of which is connected to the load element (6).

Description

電力伝送装置Power transmission device
 本発明は、電力伝送装置に関し、特にワイヤレス電力伝送装置の新たな回路設計に関する。 The present invention relates to a power transmission device, and particularly to a new circuit design of a wireless power transmission device.
 マサチューセッツ工科大学(MIT)のカラリス(Karalis)らの2005年の提案以来、ワイヤレス電力伝送の研究が盛んになっている(特許文献1、2及び3参照)。特許文献1、2及び3に記載された発明は、電源を交流電源とする電力伝送技術であるが、特許文献2等に記載のように、交流理論に依拠したワイヤレス電力伝送方式においては、給電側共振回路(LC回路)の共振周波数2π√LCと受電側共振回路(LC回路)の共振周波数2π√LCを一致させることが必要であるとされている。しかし、実際には、給電側共振回路と受電側共振回路は相互に作用し、それによって新たな共振が生じる。この新たな共振を含む、給電側共振回路と受電側共振回路の共振(重共振)はしない方がよいというのが技術的常識であった。 Since 2005, a proposal by Karalis et al. Of the Massachusetts Institute of Technology (MIT), research on wireless power transmission has been active (see Patent Documents 1, 2, and 3). The inventions described in Patent Documents 1, 2, and 3 are power transmission technologies using a power supply as an AC power supply. However, as described in Patent Document 2 and the like, in a wireless power transmission method based on AC theory, power is supplied. It is said that it is necessary to match the resonance frequency 2π√LC of the side resonance circuit (LC circuit) with the resonance frequency 2π√LC of the power receiving side resonance circuit (LC circuit). However, in practice, the power-supply-side resonance circuit and the power-receiving-side resonance circuit interact with each other, thereby generating a new resonance. It has been common technical knowledge that it is better not to cause resonance (double resonance) between the power supply side resonance circuit and the power reception side resonance circuit including this new resonance.
 特許文献2によれば、給電側共振回路と受電側共振回路が磁場成分による結合(磁場結合)し、給電コイルと受電コイルの間に相互インダクタンスMが形成される。相互インダクタンスM、給電側共振回路及び受電側共振回路により形成される新たな共振回路が、共振周波数fr1とは異なる共振周波数fr2を持ち、重共振が発生する。給電側共振回路に供給される交流電力の駆動周波数foを共振周波数fr1に追随させようとする場合、駆動周波数foが本来のターゲットである共振周波数fr1ではなく共振周波数fr2の方に追随してしまう可能性があり、共振周波数fr2は望まざる共振点であり、除去することが望ましいとされ、従来の交流理論では重共振が避けられてきた。 According to Patent Literature 2, the power supply side resonance circuit and the power reception side resonance circuit are coupled by a magnetic field component (magnetic field coupling), and a mutual inductance M is formed between the power supply coil and the power reception coil. Mutual inductance M, a new resonance circuit formed by the power supply side resonance circuit and the receiving resonance circuit, has a different resonant frequency fr 2 is a resonance frequency fr 1, heavy resonance occurs. If it is intended to follow the drive frequency fo of the AC power supplied to the power supply side resonance circuit in the resonance frequency fr 1, follow towards the drive frequency fo is the resonance frequency fr 1 rather than the resonance frequency fr 2 which is the original target The resonance frequency fr 2 is an undesired resonance point, and it is considered desirable to remove the resonance frequency fr 2. In the conventional AC theory, heavy resonance has been avoided.
 しかも、特許文献1に記載された発明では10kHz~50GHzの交流電源が、特許文献2に記載された発明では駆動周波数fo=100kHz程度の交流電源が、特許文献3に記載された発明では数百kHz~数MHzの交流電源が必要である。特に、特許文献1では10MHz前後の周波数帯における実験データを報告している。特許文献1~3に記載されたような周波数帯の電源回路(0次回路)は商用電源からわざわざ高価なスイッチング電源を用いて精度の良い直流を作り出した後、多数の電力用半導体素子を複雑かつ精密にスイッチングして、矩形波上に切り出された直流のパルスをPWM(Pulse Width Modulation)などにより擬似的もしくは等価的に交流にすることによって作り出される。この際に、電力用半導体素子に生じる抵抗損失や、周波数の増加によって急激に増えるスイッチング損失等の電力損失が発生する。また、コイルに生じる誘導逆起電力によるスイッチング素子の破壊や、共振による過度な電圧上昇によるスイッチング素子の破壊が生じやすく、周波数が高いほど、電力が大きいほど回路設計に困難を極める。一方で、遠くまで電力を送ろうとすると、周波数を上げなければならない。このように、交流理論に依拠した従来のワイヤレス電力伝送装置では、装置が複雑となり総合的な電力伝送効率が低く、壊れやすく信頼性が低くしかも高価になるという問題がある。これらの理由により従来の技術では、今後必要とされる電力を効率よく遠くまで伝送するワイヤレス電力伝送を実現することはできない。つまり、交流理論に依拠した電力伝送装置の回路設計そのものに検討が求められている。 Moreover, in the invention described in Patent Document 1, an AC power supply of 10 kHz to 50 GHz is used, in the invention described in Patent Document 2, an AC power supply with a driving frequency fo = about 100 kHz is used, and in the invention described in Patent Document 3, several hundreds are used. An alternating current power supply of kHz to several MHz is required. In particular, Patent Document 1 reports experimental data in a frequency band around 10 MHz. A power supply circuit (zero-order circuit) in a frequency band as described in Patent Documents 1 to 3 generates an accurate direct current by using an expensive switching power supply from a commercial power supply and then complicates a large number of power semiconductor elements. In addition, it is created by performing switching accurately and making a DC pulse cut out on a square wave into a pseudo or equivalent alternating current by PWM (Pulse Width Modulation) or the like. At this time, a power loss such as a resistance loss generated in the power semiconductor element and a switching loss that increases rapidly with an increase in frequency occurs. In addition, the switching element is likely to be destroyed due to the induced back electromotive force generated in the coil, and the switching element is likely to be destroyed due to an excessive voltage rise due to resonance. On the other hand, in order to transmit power far away, the frequency must be increased. As described above, the conventional wireless power transmission device based on the AC theory has a problem that the device is complicated, the overall power transmission efficiency is low, the device is fragile, has low reliability, and is expensive. For these reasons, the conventional technology cannot realize wireless power transmission for efficiently transmitting power required in the future to a distant place. That is, the circuit design of the power transmission device based on the AC theory itself has to be studied.
米国特許出願公開第2008/0278264号明細書US Patent Application Publication No. 2008/0278264 特許第5549745号公報Japanese Patent No. 5549745 特許第5462953号公報Japanese Patent No. 5462953
 上記問題点を鑑み、本発明は、従来の交流理論ではない過渡応答に着目し、回路構成を単純化し電力伝送効率を高め、しかも安価な電力伝送装置を提供することを目的とする。 In view of the above problems, it is an object of the present invention to provide a low-cost power transmission device that focuses on a transient response that is not a conventional AC theory, simplifies a circuit configuration, increases power transmission efficiency, and is inexpensive.
 本発明の第1の態様は、(a)送電側コンデンサ、送電側コンデンサに並列接続され送電側コンデンサから送られた静電エネルギーを磁気エネルギーとして蓄積し、この磁気エネルギーを送電側コンデンサに環流する送電側コイルを有する一次側回路と、(b)送電側コンデンサの一方の端子と他方の端子の間を接続する回路を構成する直流電源と、(c)送電側コンデンサの一方の端子と直流電源との間に接続され、送電側コンデンサに断続的な直流電圧をステップ入力する一次側駆動スイッチと、(d)送電側コイルに対向し、送電側コイルから磁気エネルギーを受け取る受電側コイル、受電側コイルに並列接続され受電側コイルに蓄積された磁気エネルギーを静電エネルギーとして蓄積する受電側コンデンサを有する二次側回路と、(e)受電側コンデンサの一方の端子と他方の端子の間を接続する回路を構成し、受電側コンデンサから静電エネルギーを受け取る負荷素子と、(f)アノードが受電側コンデンサの一方の端子の側に、カソードが負荷素子に接続された負荷側ダイオードを備える電力伝送装置であることを要旨とする。第1の態様に係る電力伝送装置では、一次側回路から二次側回路に非接触で電気エネルギーを伝送することができる。 The first aspect of the present invention is as follows: (a) a power transmission side capacitor, the static energy connected in parallel to the power transmission side capacitor and sent from the power transmission side capacitor is stored as magnetic energy, and the magnetic energy is returned to the power transmission side capacitor. A primary side circuit having a power transmission side coil, (b) a DC power supply constituting a circuit connecting between one terminal and the other terminal of the power transmission side capacitor, and (c) one terminal of the power transmission side capacitor and a DC power supply A primary-side drive switch that is connected between the power-transmitting-side capacitor and a step-input DC voltage to the power-transmitting-side capacitor; and (d) a power-receiving-side coil facing the power-transmitting-side coil and receiving magnetic energy from the power-transmitting-side coil; A secondary-side circuit having a power-receiving-side capacitor connected in parallel with the coil and storing magnetic energy stored in the power-receiving-side coil as electrostatic energy; and (e) a power-receiving-side capacitor. A circuit that connects between one terminal of the sensor and the other terminal is configured, a load element that receives electrostatic energy from the receiving capacitor, (f) the anode is on one side of the receiving capacitor, and the cathode is The gist is to provide a power transmission device including a load-side diode connected to a load element. In the power transmission device according to the first aspect, electric energy can be transmitted from the primary circuit to the secondary circuit in a non-contact manner.
 本発明の第2の態様は、(a)送電側コンデンサ、送電側コンデンサに並列接続され送電側コンデンサから送られた静電エネルギーを磁気エネルギーとして蓄積し、この磁気エネルギーを送電側コンデンサに環流する送電側コイルを有する一次側回路と、(b)送電側コイルの一方の端子と他方の端子の間を接続する回路を構成する直流電源と、(c)送電側コイルの一方の端子と直流電源との間に接続され、送電側コイルに断続的な直流電圧をステップ入力する一次側駆動スイッチと、(d)送電側コンデンサと送電側コイルを並列に接続する一方のノードに一方の電極を接続した第1の相互結合コンデンサと、(e)送電側コンデンサと送電側コイルを並列に接続する他方のノードに一方の電極を接続した第2の相互結合コンデンサと、(f)第1の相互結合コンデンサの他方の電極に一方の電極を接続し、第2の相互結合コンデンサの他方の電極に他方の電極を接続し、一次側回路から静電エネルギーを受け取る受電側コンデンサ、受電側コンデンサに並列接続され受電側コンデンサに蓄積された静電エネルギーを磁気エネルギーとして蓄積する受電側コイルを有する二次側回路と、(g)受電側コイルの一方の端子と他方の端子の間を接続する回路を構成し、受電側コイルから磁気エネルギーを受け取る負荷素子と、(h)アノードが受電側コイルの一方の端子の側に、カソードが負荷素子に接続された負荷側ダイオードを備える電力伝送装置であることを要旨とする。第2の態様に係る電力伝送装置も、第1の態様に係る電力伝送装置と同様に、一次側回路から二次側回路に非接触で電気エネルギーを伝送することができる。 According to a second aspect of the present invention, (a) a power transmission side capacitor, electrostatic energy connected in parallel to the power transmission side capacitor and sent from the power transmission side capacitor is stored as magnetic energy, and the magnetic energy is returned to the power transmission side capacitor. A primary side circuit having a power transmission side coil, (b) a DC power supply constituting a circuit connecting between one terminal and the other terminal of the power transmission side coil, and (c) one terminal of the power transmission side coil and a DC power supply The primary drive switch is connected between the power transmission side coil and the intermittent DC voltage, and (d) one electrode is connected to one node connecting the power transmission side capacitor and the power transmission side coil in parallel. (E) a second interconnection capacitor having one electrode connected to the other node connecting the power transmission side capacitor and the power transmission side coil in parallel, and (f) a first interconnection coupling capacitor. One electrode is connected to the other electrode of the capacitor, the other electrode is connected to the other electrode of the second mutual coupling capacitor, and the receiving side capacitor that receives electrostatic energy from the primary side circuit, is connected in parallel to the receiving side capacitor A secondary circuit having a power receiving coil that stores the electrostatic energy stored in the power receiving capacitor as magnetic energy, and (g) a circuit that connects between one terminal and the other terminal of the power receiving coil. A load element that receives magnetic energy from the power-receiving coil; and (h) a power transmission device including a load-side diode having an anode on one terminal side of the power-receiving-side coil and a cathode connected to the load element. Make a summary. Similarly to the power transmission device according to the first embodiment, the power transmission device according to the second embodiment can transmit electric energy from the primary circuit to the secondary circuit in a non-contact manner.
 従来の交流理論を脱却した回路設計による本発明によれば、過渡応答時の現象である特性調和伝送を用いることにより回路構成を単純化し電力伝送効率を高め、しかも安価な電力伝送装置が提供できる。 ADVANTAGE OF THE INVENTION According to this invention by the circuit design which deviated from the conventional AC theory, by using the characteristic harmonic transmission which is a phenomenon at the time of transient response, the circuit configuration can be simplified, the power transmission efficiency can be increased, and an inexpensive power transmission device can be provided. .
図1(a)は本発明の第1の実施形態に係る電力伝送装置の一例の概略を示す回路図で、図1(b)は図1(a)に示した回路の送電側コンデンサの端子間電圧の波形図である。FIG. 1A is a circuit diagram schematically illustrating an example of a power transmission device according to a first embodiment of the present invention, and FIG. 1B is a terminal of a power transmission side capacitor of the circuit illustrated in FIG. It is a waveform diagram of an inter-voltage. 図2(a)は第1の実施形態に係る電力伝送装置の送電側コンデンサ及び受電側コンデンサのそれぞれの端子間電圧の波形図で、図2(b)は図2(a)の波形に続く詳細な波形図である。FIG. 2A is a waveform diagram of the voltage between the terminals of the power transmitting side capacitor and the power receiving side capacitor of the power transmission device according to the first embodiment, and FIG. 2B is a continuation of the waveform of FIG. It is a detailed waveform diagram. LC並列回路にステップ入力した場合の過渡応答を説明する図である。FIG. 4 is a diagram illustrating a transient response when a step is input to an LC parallel circuit. 第1の実施形態に係る電力伝送装置の実装回路を示す回路図である。FIG. 2 is a circuit diagram illustrating a mounting circuit of the power transmission device according to the first embodiment. 第1の実施形態に係る電力伝送装置に用いるMOSFETの大信号等価回路を説明する図である。FIG. 2 is a diagram illustrating a large-signal equivalent circuit of a MOSFET used in the power transmission device according to the first embodiment. 図6(a)は、第1の実施形態に係る電力伝送装置のコイル間の面間隔の重要性を説明する模式図で,図6(b)は、電気自動車(EV)の電池の充電に適用した場合において、コイル間の面間隔を調整する磁気的結合度制御機構を説明する鳥瞰図である。FIG. 6A is a schematic diagram illustrating the importance of the surface spacing between the coils of the power transmission device according to the first embodiment, and FIG. 6B is a diagram illustrating charging of a battery of an electric vehicle (EV). FIG. 13 is a bird's-eye view illustrating a magnetic coupling degree control mechanism that adjusts a surface interval between coils when applied. 第1の実施形態に係る電力伝送装置のコイル磁気的結合を調整する機構を説明する鳥瞰図で、図7(a)はコイル間の面間隔がスペーサを用いて制御される場合で、図7(b)及び図7(c)は磁性体板を用いてコイルの磁気的結合を調整する磁気的結合度制御機構の一例を示す。FIG. 7A is a bird's-eye view illustrating a mechanism for adjusting the coil magnetic coupling of the power transmission device according to the first embodiment. FIG. 7A illustrates a case where the surface interval between coils is controlled using a spacer. FIG. 7B and FIG. 7C show an example of a magnetic coupling degree control mechanism for adjusting the magnetic coupling of the coils using a magnetic plate. 図8(a)は、第1の実施形態に係る電力伝送装置の磁気的結合度制御機構のハードウェアの構成の一例を説明するブロック図で、図8(b)は他の一例を説明するブロック図である。FIG. 8A is a block diagram illustrating an example of a hardware configuration of a magnetic coupling control mechanism of the power transmission device according to the first embodiment, and FIG. 8B illustrates another example. It is a block diagram. 第1の実施形態に係る電力伝送装置の動作を時系列に沿ったタイミング毎に分けて説明する概略図である。FIG. 3 is a schematic diagram for explaining the operation of the power transmission device according to the first embodiment separately for each timing in a time series. 図10(a)は本発明の第2の実施形態に係る電力伝送装置の一例の概略を示す回路図で、図10(b)は、図10(a)の回路の具体的な実装回路を示す回路図である。FIG. 10A is a circuit diagram schematically illustrating an example of a power transmission device according to a second embodiment of the present invention. FIG. 10B is a circuit diagram illustrating a specific implementation circuit of the circuit in FIG. FIG. 第2の実施形態に係る電力伝送装置の電力供給方法を説明するタイミング図である。FIG. 9 is a timing chart illustrating a power supply method of the power transmission device according to the second embodiment. 第2の実施形態に係る電力伝送装置の電力供給方法を説明する概略図であり、(a)充電時、(b)一次側回路2と二次側回路3の間の特性調和伝送時、(c)転送時、(d)一次側回路2と二次側回路3の間の特性調和伝送時である。It is a schematic diagram explaining the power supply method of the power transmission device according to the second embodiment, (a) at the time of charging, (b) at the time of characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3, ( c) At the time of transfer, and (d) at the time of characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3. 図13(a)は、本発明の第3の実施形態に係る電力伝送装置の一例の概略を示す回路図で、図13(b)は図13(a)に示した回路の具体的な実装回路を示す回路図である。FIG. 13A is a circuit diagram schematically illustrating an example of a power transmission device according to the third embodiment of the present invention, and FIG. 13B is a specific implementation of the circuit illustrated in FIG. It is a circuit diagram showing a circuit. 第3の実施形態に係る電力伝送装置の電力供給方法を説明するフローチャートである。9 is a flowchart illustrating a power supply method of a power transmission device according to a third embodiment. 第3の実施形態に係る電力伝送装置の電力供給方法を説明するタイミング図である。FIG. 13 is a timing chart illustrating a power supply method of the power transmission device according to the third embodiment. 図16(a)は、本発明の第4の実施形態に係る電力伝送装置の一例の概略を示す回路図で、図16(b)は図16(a)に示した回路の具体的な実装回路を示す回路図である。FIG. 16A is a circuit diagram schematically illustrating an example of a power transmission device according to a fourth embodiment of the present invention, and FIG. 16B is a specific implementation of the circuit illustrated in FIG. It is a circuit diagram showing a circuit. 図17(a)は、第4の実施形態に係る電力伝送装置における送電側コンデンサと受電側コンデンサの端子間電圧のシミュレーションによって得られた波形図で、図17(b)は、送電側コンデンサと受電側コンデンサの端子間電圧の実装回路によって得られた波形図である。FIG. 17A is a waveform diagram obtained by simulating the voltage between the terminals of the power transmitting side capacitor and the power receiving side capacitor in the power transmission device according to the fourth embodiment, and FIG. FIG. 9 is a waveform diagram obtained by a mounting circuit of a voltage between terminals of a power receiving side capacitor. 図18(a)は第4の実施形態に係る電力伝送装置における送電側コンデンサと受電側コンデンサの端子間電圧の等価結合係数K=0.00のときの波形図で、図18(b)は等価結合係数K=0.1のときの波形図である。FIG. 18A is a waveform diagram when the equivalent coupling coefficient K of the voltage between the terminals of the power transmission side capacitor and the power receiving side capacitor in the power transmission device according to the fourth embodiment is K = 0.00, and FIG. FIG. 9 is a waveform chart when an equivalent coupling coefficient K = 0.1. 図19(a)は第4の実施形態に係る電力伝送装置における送電側コンデンサと受電側コンデンサの端子間電圧の等価結合係数K=0.6のときの波形図で、図19(b)は等価結合係数K=0.8のときの波形図で、図19(c)は等価結合係数K=0.88のときの波形図である。FIG. 19A is a waveform diagram when the equivalent coupling coefficient K of the voltage between the terminals of the power transmission side capacitor and the power receiving side capacitor in the power transmission device according to the fourth embodiment is K = 0.6, and FIG. FIG. 19C is a waveform diagram when the equivalent coupling coefficient K = 0.88, and FIG. 19C is a waveform diagram when the equivalent coupling coefficient K = 0.88. 図20(a)は第4の実施形態に係る電力伝送装置における送電側コンデンサと受電側コンデンサの端子間電圧の等価結合係数K=0.6のときの波形図で、図20(b)は送電側コイルと受電側コイルに流れる電流の等価結合係数K=0.6のときの波形図である。FIG. 20A is a waveform diagram when the equivalent coupling coefficient K of the voltage between the terminals of the power transmission side capacitor and the power reception side capacitor in the power transmission device according to the fourth embodiment is K = 0.6, and FIG. It is a waveform diagram at the time of the equivalent coupling coefficient K of the electric current which flows into a power transmission side coil and a power receiving side coil = 0.6. 第4の実施形態に係る電力伝送装置のキャパシタの容量に対する伝送効率の変化を示すグラフである。13 is a graph illustrating a change in transmission efficiency with respect to a capacitance of a capacitor of the power transmission device according to the fourth embodiment. 第4の実施形態に係る電力伝送装置の効率を示すグラフである。13 is a graph illustrating the efficiency of the power transmission device according to the fourth embodiment. 第4の実施形態に係る電力伝送装置の第1の電力供給方法を説明するフローチャートである。13 is a flowchart illustrating a first power supply method of the power transmission device according to the fourth embodiment. 図24(a)は第4の実施形態に係る電力伝送装置の第1の電力供給方法を説明するタイミング図で、図24(b)は第2の電力供給方法を説明するタイミング図である。FIG. 24A is a timing chart illustrating a first power supply method of the power transmission device according to the fourth embodiment, and FIG. 24B is a timing chart illustrating a second power supply method. 第4の実施形態に電力伝送装置の第2の電力供給方法を説明するフローチャートである。13 is a flowchart illustrating a second power supply method of the power transmission device according to the fourth embodiment. 本発明の第5の実施形態に係る電力伝送装置の一例の概略を示す回路図である。It is a circuit diagram showing an outline of an example of a power transmission device according to a fifth embodiment of the present invention. 図27(a)は、第5の実施形態に係る電力伝送装置の送電側コイルと受電側コイルに流れる電流の波形図で、図27(b)は第5の実施形態に係る電力伝送装置の送電側コンデンサと受電側コンデンサのそれぞれの端子間電圧の波形図である。FIG. 27A is a waveform diagram of a current flowing through the power transmission side coil and the power receiving side coil of the power transmission device according to the fifth embodiment, and FIG. 27B is a diagram of the power transmission device according to the fifth embodiment. It is a waveform diagram of each terminal voltage of a power transmission side capacitor and a power receiving side capacitor. 本発明の第1の実施形態に係る電力伝送装置の瘤付の鋸波を説明するための近似的シミュレーションに用いた回路図である。FIG. 2 is a circuit diagram used for an approximate simulation for explaining a sawtooth wave with a bump in the power transmission device according to the first embodiment of the present invention. 図28の回路に対する近似的シミュレーションにより得られた瘤付の鋸波の過渡応答特性を示す図である。FIG. 29 is a diagram illustrating a transient response characteristic of a sawtooth wave with a bump obtained by an approximate simulation of the circuit of FIG. 28. 図28の回路を用いた近似的シミュレーションにより得られた鋸波の瘤が繰り返し周期で変化する様子を説明する図である。FIG. 29 is a diagram illustrating how a sawtooth bump obtained by an approximate simulation using the circuit of FIG. 28 changes with a repetition period. 図28の回路から寄生容量や寄生抵抗等を省略し簡略化した回路図である。FIG. 29 is a simplified circuit diagram in which a parasitic capacitance, a parasitic resistance, and the like are omitted from the circuit of FIG. 28. 図31の簡略化された回路に対する近似的シミュレーションで、W型の過渡応答特性が得られることを説明する図である。FIG. 32 is a diagram illustrating that a W-type transient response characteristic is obtained by an approximate simulation of the simplified circuit of FIG. 31. 本発明の第2の実施形態に係る電力伝送装置の過渡応答特性を、電源電圧及び負荷電圧を変えて近似的なシミュレーションをする場合に用いた回路図である。FIG. 9 is a circuit diagram used for performing an approximate simulation of the transient response characteristics of the power transmission device according to the second embodiment of the present invention while changing the power supply voltage and the load voltage. 図33の3つの回路に対する近似的シミュレーションで得られる過渡応答特性で電気エネルギーの転送を説明する図である。FIG. 34 is a diagram illustrating the transfer of electric energy with transient response characteristics obtained by an approximate simulation for the three circuits in FIG. 33. 本発明の第1の実施形態に係る電力伝送装置のW型の過渡応答特性を説明する模式図である。FIG. 2 is a schematic diagram illustrating a W-type transient response characteristic of the power transmission device according to the first embodiment of the present invention.
 次に、図面を参照して、本発明の第1~第5の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各部材の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Next, first to fifth embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimension, the ratio of the thickness of each member, and the like are different from actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. In addition, it is needless to say that dimensional relationships and ratios are different between drawings.
 又、以下に示す第1~第5の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。更に、以下の説明における「左右」や「上下」の方向は、単に説明の便宜上の定義であって、本発明の技術的思想を限定するものではない。よって、例えば、紙面を90度回転すれば「左右」と「上下」とは交換して読まれ、紙面を180度回転すれば「左」が「右」に、「右」が「左」になることは勿論である。図6(a)~図7(c)に示したような、渦巻きの螺旋の向きも同様に説明の便宜上における単なる選択に過ぎず、実際の設計事情に応じて右巻きを左巻きに、左巻きを右巻きに選択することも可能である。 The first to fifth embodiments described below exemplify an apparatus and a method for embodying the technical idea of the present invention. The shape, structure, arrangement and the like are not specified as follows. The technical idea of the present invention can be variously modified within the technical scope defined by the claims described in the claims. Further, the directions of “left and right” and “up and down” in the following description are simply definitions for convenience of description, and do not limit the technical idea of the present invention. Thus, for example, if the paper is rotated 90 degrees, "left and right" and "up and down" are read interchangeably, and if the paper is rotated 180 degrees, "left" becomes "right" and "right" becomes "left". Of course. Similarly, the direction of the spiral of the spiral as shown in FIGS. 6 (a) to 7 (c) is also merely a choice for convenience of description, and the right-handed is turned to the left-handed and the left-handed is wound according to the actual design circumstances. It is also possible to select right-handed.
(第1の実施形態)
 本発明の第1の実施形態に係る電力伝送装置は、図1(a)に示すように、一次側回路2と二次側回路3とを備える。一次側回路2は、静電エネルギーを蓄積する送電側コンデンサC、送電側コンデンサCに並列接続され送電側コンデンサCから送られた静電エネルギーを磁気エネルギーとして蓄積し、この磁気エネルギーを送電側コンデンサCに環流すると同時に、二次側回路3の受電側コイルLに磁気的に結合し、磁気エネルギーを送受する送電側コイルL1を有するLC共振回路である。互いに直列に接続された直流電源5と一次側駆動スイッチSW1とが、送信側コンデンサCに並列接続されている。直流電源5は送電側コンデンサCに直流電圧を供給する。
(First embodiment)
The power transmission device according to the first embodiment of the present invention includes a primary circuit 2 and a secondary circuit 3 as shown in FIG. The primary side circuit 2 accumulates the electrostatic energy which is connected in parallel to the power transmission side capacitor C 1 and the power transmission side capacitor C 1 and which is transmitted from the power transmission side capacitor C 1 as magnetic energy. and at the same time circulating the transmission side capacitor C 1, magnetically coupled to the power receiving side coil L 2 of the secondary side circuit 3, an LC resonant circuit having a transmitting coil L 1 for transmitting and receiving magnetic energy. Together with the DC power source 5 connected in series with the primary-side drive switch SW1 is connected in parallel to the transmitting capacitor C 1. DC power source 5 supplies a DC voltage to the power transmission side capacitor C 1.
 後述するように「一次側駆動スイッチSW1」は一次側回路2の自由振動を制限する回路素子である。自由振動を制限することにより、一次側駆動スイッチSW1は一次側回路2における過渡的な電流-電圧の変化を実現させる。直流電源5は、擬似的な定電圧源でよく、単に整流したのみの簡単な構造の直流電源で大きなリップル成分を含む電源でもよいので制御回路や周辺回路が単純で壊れにくく回路設計が容易でしかも安価な直流電源5が採用できる。二次側回路3は、送電側コイルL1に対向して離間し、送電側コイルL1から磁気エネルギーを受け取る受電側コイルL2、受電側コイルL2に並列接続され受電側コイルL2に蓄積された磁気エネルギーを静電エネルギーとして蓄積する受電側コンデンサCを有するLC共振回路である。 As will be described later, the “primary drive switch SW1” is a circuit element that limits free vibration of the primary circuit 2. By limiting the free vibration, the primary-side drive switch SW1 realizes a transient current-voltage change in the primary-side circuit 2. The DC power supply 5 may be a pseudo constant voltage source, and may be a DC power supply having a simple structure that is simply rectified and may be a power supply containing a large ripple component. Therefore, the control circuit and peripheral circuits are simple, are not easily broken, and the circuit design is easy. Moreover, an inexpensive DC power supply 5 can be employed. Secondary circuit 3, spaced in opposition to the power transmission coil L 1, the power transmission side receiving coil L 2 for receiving magnetic energy from the coil L 1, connected in parallel to the power receiving side coil L 2 to the power receiving coil L 2 an LC resonant circuit having a power receiving side capacitor C 2 for storing the stored magnetic energy as electrostatic energy.
 互いに直列に接続された負荷側ダイオードD2と負荷素子6とが受信側コンデンサCに並列接続されている。負荷素子6は、例えば電気自動車(EV)の車載用のリチウム(Li)イオン電池等の充電式電池が採用可能である。図1(a)では、例示的にリチウムイオン電池の等価回路を抵抗とコンデンサの直並列回路で模式的に示している。リチウムイオン電池には集電体や電界液の抵抗、電池内の界面にできる電気的2重層のコンデンサや抵抗が含まれる。負荷側ダイオードD2は、アノードが受信側共振器2側、カソードが負荷素子6側を向くように接続され、充電電流Iの流れる方向を一方向に限定している。 Connected in series with the load-side diode D2 and a load element 6 is connected in parallel to the receiving side capacitor C 2 to each other. As the load element 6, for example, a rechargeable battery such as a lithium (Li) ion battery mounted on an electric vehicle (EV) can be used. In FIG. 1A, for example, an equivalent circuit of a lithium ion battery is schematically illustrated by a series-parallel circuit of a resistor and a capacitor. Lithium-ion batteries include the resistance of current collectors and electrolytes, and electrical double-layer capacitors and resistors formed at the interface within the battery. Load side diode D2 has an anode recipient resonator 2 side, a cathode connected to face the load element 6 side to limit the direction of flow of the charging current I C in one direction.
 図1(a)において直流電源5と等価内部抵抗rの端子間電圧をE、送信側コンデンサCの端子間電圧をVC、受電側コンデンサCの端子間電圧をVC、負荷素子6の端子間で測られる充電電圧をVC、負荷側等価浮遊抵抗rを流れる電流を充電電流Iとする。等価内部抵抗rは、直流電源5の内部インピーダンスを近似的に抵抗値で示している。そして、一次側駆動スイッチSW1をオン・オフ駆動した場合の実測によって得られた端子間電圧VCの過渡応答波形を図1(b)に示す。 Figure 1 (a) E a terminal voltage of the DC power source 5 and the equivalent internal resistance r 1 at the transmitting side VC 1 the terminal voltage of the capacitor C 1, the terminal voltage of the power receiving side capacitor C 2 VC 2, the load element the charging voltage measured between sixth terminal VC S, the current flowing through the load-side equivalent stray resistance r L and the charge current I C. The equivalent internal resistance r 1 approximately indicates the internal impedance of the DC power supply 5 by a resistance value. We show transient response waveform of terminal voltage VC 1 obtained by the actual measurement in the case where the on-off driving the primary-side drive switch SW1 in FIG. 1 (b).
 第1の実施形態では、負荷素子6の充電電圧VCの初期状態における値は、充電完了電圧に近い(満充電に近い)、高い値であるものとする。時間t=0の時点で、送電側コンデンサCは充電されておらず端子間電圧VC=0である。t=0で一次側駆動スイッチSW1をオン状態にすると、直流電源5の端子間電圧Eがステップ入力される。t=0のステップ入力により、最初はコンデンサC1への充電電流が流れ、その値はE/r1である。この時にコイルL1は流入する電流を阻止するよう逆起電力を発生するので、L1への電流はゼロである。図1(b)に示すように、等価内部抵抗r、送電側コンデンサの容量C、送電側コイルのインダクタンスL1、相互インダクタンスMで決まる時定数τ1で送電側コンデンサCが充電され、端子間電圧VCは増加する。時定数τ1は、主に送信側コンデンサCの容量Cと等価内部抵抗rの抵抗値Cの積C・rに関係したパラメータに依存する値となる。 In the first embodiment, the value in the initial state of the charge voltage VC S load elements 6 (closer to the full charge) near the charge completion voltage, assumed to be a high value. At time t = 0, the power-transmitting-side capacitor C 1 is the voltage VC 1 = 0 between not been charging terminal. When the primary-side drive switch SW1 is turned on at t = 0, the terminal voltage E of the DC power supply 5 is step-input. By the step input at t = 0, the charging current to the capacitor C1 flows at first, and its value is E / r1. At this time, since the coil L1 generates a back electromotive force so as to block the flowing current, the current to L1 is zero. As shown in FIG. 1B, the power transmission side capacitor C 1 is charged with a time constant τ 1 determined by the equivalent internal resistance r 1 , the capacity C 1 of the power transmission side capacitor, the inductance L 1 of the power transmission side coil, and the mutual inductance M. , terminal voltage VC 1 is increased. The time constant τ 1 is a value mainly dependent on a parameter related to a product C 1 · r 1 of the capacitance C 1 of the transmission-side capacitor C 1 and the resistance value C 1 of the equivalent internal resistance r 1 .
 次第にC1の電圧が上昇し、電流が小さくなるにしたがってL1の逆起電力は小さくなりL1への電流が流れ始める。それによってC1の両端の電圧は少し下がる。この時点で SW1を閉じる(t=t1)。このスイッチを閉じる時間t1は、コイルに電流が流れ始めた時点で、かつそれを切ることによって生じる逆起電力によって生じるSW1に加えられる電圧によってSW1が破壊しないような時間とする。t=t1で一次側駆動スイッチSWをオフにすると、送電側コンデンサCから送電コイルL1に電流が流れるようになり本格的な放電を開始する。送電側コンデンサCに蓄えられた電気エネルギーは送電側コイルL1に移動しようとする。この時に送電側コイルLに流れる電流によってL1の周囲に発生した磁界により、相互インダクタンスMで結合した受電側コイルL2に起電力が生じ電流が流れる。後に述べるように、この時に一次側回路2と二次側回路3の特性が調和していれば、この伝送された電力によって最も効率よく受電側コンデンサCが充電される。すなわち一次側回路2から二次側回路3へ電力が最も効率よく伝送される。この受電側コイルLに流れる電流によって受電側コイルLの周囲に生じた磁界によってL1に起電力が生じる。もともとの電圧とこの起電力によって、送電側コイルLの電圧は通常の交流の波形ではない正弦波から逸脱した鋸波のようになる。この鋸波の電圧の最も電圧の低い部分を少し過ぎたあたりで瘤のように盛り上がりつつ上昇する瘤付き鋸波特性となる。 The voltage of C1 gradually increases, and as the current decreases, the back electromotive force of L1 decreases and the current starts flowing to L1. This causes the voltage across C1 to drop slightly. At this point, SW1 is closed (t = t1). The time t1 at which the switch is closed is a time when the current starts to flow through the coil and such that SW1 is not destroyed by the voltage applied to SW1 generated by the back electromotive force generated by turning off the coil. When t = t 1 at turning off the primary-side drive switch SW 1, to initiate a full-scale discharge is as current flows through the transmitting coil L 1 from the power transmission side capacitor C 1. Electrical energy stored in the power transmitting side capacitor C 1 tries to move to the power transmission coil L 1. The magnetic field generated around the L 1 by the current flowing to the power transmission coil L 1 at this time, electromotive force current to flow occurs in the power receiving side coil L 2 bound in mutual inductance M. As described later, if it was characteristic of when the primary-side circuit 2 the secondary side circuit 3 is harmonious, most efficiently receiving side capacitor C 2 is charged by the transmitted power. That is, power is transmitted from the primary circuit 2 to the secondary circuit 3 most efficiently. The magnetic field generated around the power receiving side coil L 2 by a current flowing in the power receiving side coil L 2 is an electromotive force generated in L1. This electromotive force to the original voltage, the voltage of the power transmission coil L 1 is as sawtooth wave deviates from a sine wave is not a wave in the normal exchange. A sawtooth wave characteristic with a bump that rises while rising like a bump just a little past the lowest voltage portion of the sawtooth voltage.
 この瘤のように盛り上がりが発生するまでの時定数τ2は、主に送信側コンデンサCの容量C、送電側コイルL1のインダクタンスL1及び送電側コイルL1の寄生抵抗をRstr(L1)に、後述する式(4)に類似な関係で示されるパラメータに依存する値となる。ただし、送電側コイルL1のインダクタンスは、時間tに依存する値である受電側コイルL2のとの相互インダクタンスM=M(t)を考慮する必要がある。 Constant tau 2 time until swelling occurs as the aneurysm is mainly capacitance C 1 of the transmitting-side capacitor C 1, the parasitic resistance of the inductance L 1 and the power transmission coil L 1 of the power transmission coil L 1 R str (L 1 ) is a value that depends on a parameter represented by a relationship similar to Expression (4) described below. However, the inductance of the power transmission coil L 1, it is necessary to consider the mutual inductance M = M of the power receiving coil L 2 Noto is a value that depends on the time t (t).
 t=t2で一次側コンデンサの電圧は再び極大ピークとなり、この時に二次側のコンデンサの電圧は極小に近い値となる。このピークに合わせて一次側駆動スイッチSW1を再度オン状態にすると、再度、直流電源5の端子間電圧Eがステップ入力される。先ほどと同様に、最初はコンデンサCへの充電電流が流れ、その値は直流電源5の端子間電圧Eからt=tおけるコンデンサCの電圧を引いたものをr1で除した値である。この時にコイルL1は流入する電流を阻止するよう逆起電力を発生するので、L1への電流はゼロである。次第にC1の電圧が上昇し、電流が小さくなるにしたがってL1の逆起電力は小さくなりL1への電流が流れ始める。それによってCの両端の電圧は少し下がる。この時点で SW1を閉じる(t=t3)。このスイッチを閉じる時間t3は、コイルに電流が流れ始めた時点で、かつそれを切ることによって送電コイルL1生じる逆起電力によってSW1に加えられる電圧によってSW1が破壊しないような時間とする。t=t3で一次側駆動スイッチSW1をオフした後は送電側コンデンサCから送電コイルL1に電流が流れるようになり本格的な放電を開始する。送電側コンデンサCに蓄えられた電気エネルギーは送電側コイルL1に移動しようとする。この時に送電側コイルLに流れる電流によってL1の周囲に発生した磁界により、相互インダクタンスMで結合した受電側コイルL2に起電力が生じ電流が流れる。後に述べるように、この時に一次側回路2と二次側回路3の特性が調和していれば、この伝送された電力によって最も効率よく受電側コンデンサCが充電される。すなわち一次側回路2から二次側回路3へ電力が最も効率よく伝送される。この受電側コイルLに流れる電流によって受電側コイルLの周囲に生じた磁界によってL1に起電力が生じる。もともとの電圧とこの起電力によって、送電側コイルLの電圧は通常の交流の波形ではない正弦波から逸脱した鋸波のようになる。この鋸波の電圧の最も電圧の低い部分を少し過ぎたあたりで瘤のように盛り上がりつつ上昇する瘤付き鋸波特性となる。 At t = t 2 , the voltage of the primary-side capacitor again reaches the maximum peak, and at this time, the voltage of the secondary-side capacitor has a value close to the minimum. When the primary-side drive switch SW1 is turned on again in accordance with this peak, the terminal voltage E of the DC power supply 5 is step-inputted again. As before, initially flows the charging current to the capacitor C 1, the value that value to the minus the voltage of the capacitor C 1 from the terminal voltage E definitive t = t 2 of the DC power source 5 is divided by r 1 It is. Since generating a counter electromotive force to block the current flowing the coil L 1 when this, the current to the L 1 is zero. The voltage of C1 gradually increases, and as the current decreases, the back electromotive force of L1 decreases and the current starts flowing to L1. Whereby the voltage across C 1 is decreased slightly. At this point close the SW1 (t = t 3). Time t 3 when closing the switch, when current to the coil starts to flow, and SW1 is a time so as not to destroy the voltage applied to the SW 1 by back electromotive force generated transmission coil L 1 by cutting it . t = t 3 after turning off the primary-side drive switch SW1 initiates the full-scale discharge is as current flows from the power transmission side capacitor C 1 to the power transmission coil L 1. Electrical energy stored in the power transmitting side capacitor C 1 tries to move to the power transmission coil L 1. The magnetic field generated around the L 1 by the current flowing to the power transmission coil L 1 at this time, electromotive force current to flow occurs in the power receiving side coil L 2 bound in mutual inductance M. As described later, if it was characteristic of when the primary-side circuit 2 the secondary side circuit 3 is harmonious, most efficiently receiving side capacitor C 2 is charged by the transmitted power. That is, power is transmitted from the primary circuit 2 to the secondary circuit 3 most efficiently. The magnetic field generated around the power receiving side coil L 2 by a current flowing in the power receiving side coil L 2 is an electromotive force generated in L1. This electromotive force to the original voltage, the voltage of the power transmission coil L 1 is as sawtooth wave deviates from a sine wave is not a wave in the normal exchange. A sawtooth wave characteristic with a bump that rises while rising like a bump just a little past the lowest voltage portion of the sawtooth voltage.
 この結果、t=t3以降は、図1(b)の右側に示すように、送電側コンデンサCの端子間電圧VCは減少し、再度負の値になる。送電側コンデンサCの端子間電圧VCが負の値になると、送電側コイルL1に蓄えられた電気エネルギーは送電側コンデンサCに環流し始め、図1(b)の右端に示すように、送電側コンデンサCの端子間電圧VCは環流電流により増大を開始し、正の値になり、更に増大する。ここまでの時間は、送電側コンデンサの容量C、送電側コイルのインダクタンスL1、相互インダクタンスMで決まる時定数τ2で決められる。図1(b)に示すように、一次側駆動スイッチSW1による直流電源5の端子間電圧Eのステップ入力と遮断により、端子間電圧VCの変化は通常の交流理論における正弦波の波形ではなく、瘤付鋸波がなまった立ち上がり・立ち下がり特性の繰り返し波形の過渡応答を示す。 As a result, t = t 3 or later, as shown on the right side of FIG. 1 (b), the terminal voltage VC 1 of the power transmission capacitor C 1 decreases, a negative value again. When the terminal voltage VC 1 of the power transmission capacitor C 1 becomes a negative value, the electric energy stored in the power transmission coil L 1 starts refluxed to the power transmission side capacitor C 1, as shown at the right end shown in FIG. 1 (b) the terminal voltage VC 1 of the power transmission capacitor C 1 starts to increase by circulating electric current, a positive value, further increases. The time up to this point is determined by a time constant τ 2 determined by the capacitance C 1 of the power transmission side capacitor, the inductance L 1 of the power transmission side coil, and the mutual inductance M. As shown in FIG. 1 (b), by blocking a step input terminal voltage E of the DC power source 5 by the primary-side drive switch SW1, the change of terminal voltage VC 1 is not a sine wave of the waveform at the normal AC Theory 4 shows a transient response of a repetitive waveform having rising and falling characteristics in which a sawtooth wave with a bump is blunted.
 一次側回路2の回路特性に内在する時定数と二次側回路3の回路特性に内在する時定数とが調和したとき、一次側回路2の電気エネルギーが二次側回路3に最も効率よく伝送され、一次側回路2と二次側回路3の間の特性調和伝送が生じる。この一次側回路2と二次側回路3の間の特性調和伝送が生じる際の一次側回路2の端子間電圧VCと、二次側回路3の端子間電圧VCの過渡応答波形を図2(a)に示す。図2(a)では、図1(b)と同様に、一次側駆動スイッチSW1による直流電源5の端子間電圧Eのステップ入力と遮断により、端子間電圧VCが瘤付鋸波がなまった立ち上がり・立ち下がり特性の繰り返し過渡応答波形を示している。図2(a)に実線で示した過渡応答波形は、送電側コンデンサCの端子間電圧VCが負の値から増大を開始し、正の値になり、更に増大して、t=tiで一次側駆動スイッチSW1がオン状態に至る様子である。 When the time constant inherent in the circuit characteristics of the primary circuit 2 and the time constant inherent in the circuit characteristics of the secondary circuit 3 are in harmony, the electric energy of the primary circuit 2 is transmitted to the secondary circuit 3 most efficiently. As a result, characteristic harmonic transmission occurs between the primary circuit 2 and the secondary circuit 3. Figure a terminal voltage VC 1 of the primary-side circuit 2, the transient response waveform of terminal voltage VC 2 of the secondary side circuit 3 when the characteristic harmonic transmissions between the primary-side circuit 2 and the secondary-side circuit 3 occurs This is shown in FIG. In FIG. 2 (a), similarly to FIG. 1 (b), the blockade and step input terminal voltage E of the DC power source 5 by the primary-side drive switch SW1, the voltage between the terminals VC 1 is sawtooth wave is rounded with aneurysm 9 shows a repetitive transient response waveform of rising and falling characteristics. The transient response waveform shown by the solid line in FIG. 2 (a), the terminal voltage VC 1 of the power transmission capacitor C 1 starts to increase from a negative value, a positive value, and further increases, t = t The state i indicates that the primary-side drive switch SW1 is turned on.
 このとき、図2(a)の左側に破線で示したように、一次側回路2と二次側回路3との間の一次側回路2と二次側回路3の間の特性調和伝送によって、二次側回路3の受電側コンデンサCが充電され、受電側コンデンサCの端子間電圧をVCがピーク値に到達した後、受電側コンデンサCが放電を開始し、端子間電圧をVCが減少を開始している。t=tiで一次側駆動スイッチSW1をオン状態にすると、直流電源5の端子間電圧Eがステップ入力される。二次側回路3の受電側コンデンサCの端子間電圧VCはt=tiでは負の値にまで減少している。 At this time, as shown by the broken line on the left side of FIG. 2A, the characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3 between the primary side circuit 2 and the secondary side circuit 3 causes power receiving side capacitor C 2 of the secondary side circuit 3 is charged, after the terminal voltage of the power receiving side capacitor C 2 VC 2 has reached the peak value, the power-receiving-side capacitor C 2 starts to discharge, the terminal voltage VC 2 has started to decrease. When the primary-side drive switch SW1 is turned on at t = t i , the terminal voltage E of the DC power supply 5 is step-input. Terminal voltage VC 2 of the power receiving side capacitor C 2 of the secondary side circuit 3 is reduced to a negative value at t = t i.
 t=tiのステップ入力により、図2(a)の中央左側付近に示すように、等価内部抵抗r、送電側コンデンサの容量C、送電側コイルのインダクタンスL1、相互インダクタンスMで決まる時定数τ1で一次側回路2の送電側コンデンサCが充電され、端子間電圧VCは増加する。図2(a)に示すように、一次側回路2の端子間電圧VCはピーク値に到達した後、減少を開始する。t=ti+1で一次側駆動スイッチSW1をオフ状態にすると、一次側回路2の送電側コンデンサCは本格的な放電を開始し、送電側コンデンサCに蓄えられた電気エネルギーは送電側コイルL1に移動する。二次側回路3の受電側コンデンサCの端子間電圧VCは破線で示したようにt=tiからt=ti+1での間では負の値である。 The step input t = t i, as shown near the center left of FIG. 2 (a), the equivalent internal resistance r 1, the capacitance C 1 of the power transmission capacitor, the power-transmitting-side coil inductance L 1, determined by the mutual inductance M It is charged transmission side capacitor C 1 at constant tau 1 primary circuit 2 when the inter-terminal voltage VC 1 is increased. As shown in FIG. 2 (a), the inter-terminal voltage VC 1 of the primary-side circuit 2 after reaching the peak value, starts decreasing. When the t = t i + 1 on the primary side driving switch SW1 is turned off, the power-transmitting-side capacitor C 1 of the primary-side circuit 2 starts a full-scale discharge, electric energy stored in the power transmitting side capacitor C 1 is transmission to move to the side coil L 1. Terminal voltage VC 2 of the power receiving side capacitor C 2 of the secondary side circuit 3 is a negative value between at t = t i + 1 from t = t i as indicated by a broken line.
 t=ti+1以降は、図2(a)の中央付近に実線で示すように、送電側コンデンサの容量C、送電側コイルのインダクタンスL1、相互インダクタンスMで決まる時定数τ2で送電側コンデンサCの端子間電圧VCは減少し負の値になり、送電側コンデンサCに蓄積された電気エネルギーは送電側コイルL1に移る。送電側コイルL1に蓄積された電気エネルギーは、一次側回路2と二次側回路3との間の一次側回路2と二次側回路3の間の特性調和伝送によって二次側回路3の受電側コイルL2にワイヤレス伝送される。二次側回路3の受電側コイルL2にワイヤレス伝送された電気エネルギーは、二次側回路3の受電側コンデンサCに蓄積される。 t = t i + 1 and later, as indicated by a solid line in the vicinity of the center of FIG. 2 (a), the capacitance C 1 of the power transmission capacitor, the inductance L 1 of the power transmission coil, constant tau 2 when determined by the mutual inductance M terminal voltage VC 1 of the power transmission capacitor C 1 becomes reduced to a negative value, the electric energy stored in the power transmitting side capacitor C 1 transfers to the power transmission coil L 1. The electric energy stored in the power transmission side coil L 1 is transferred to the secondary circuit 3 by the characteristic harmonic transmission between the primary circuit 2 and the secondary circuit 3 between the primary circuit 2 and the secondary circuit 3. It is wirelessly transmitted to the power receiving coil L 2. The electric energy wirelessly transmitted to the power receiving coil L 2 of the secondary circuit 3 is stored in the power receiving capacitor C 2 of the secondary circuit 3.
 この結果、t=ti+1以降において、図2(a)の中央付近に破線で示すように、二次側回路3の受電側コンデンサCの端子間電圧VCは増大を開始する。二次側回路3の受電側コンデンサCの端子間電圧VCはピーク値に到達した後、減少を開始し、図2(a)の右側に破線で示すように負の値となる。本実施形態での条件として、負荷素子6の充電電圧VCの初期状態における値は、充電完了電圧に近い(満充電に近い)、高い値であるため、受電側コンデンサCの端子間電圧VCがピーク値になった付近で負荷素子6の充電電圧VCを超えるため、負荷素子6に電流が流れ、受電側コンデンサC2に蓄積された電気エネルギーは負荷素子6に移動し、負荷素子6である充電式電池が充電される。 As a result, in t = t i + 1 and later, as indicated by a broken line in the vicinity of the center of FIG. 2 (a), the terminal voltage VC 2 of the power receiving side capacitor C 2 of the secondary side circuit 3 starts to increase. After terminal voltage VC 2 of the power receiving side capacitor C 2 of the secondary side circuit 3 having reached the peak value, it starts decreasing, a negative value as shown by a broken line on the right side of FIG. 2 (a). As a condition of the present embodiment, the value in the initial state of the charge voltage VC S load elements 6 (closer to the full charge) near the charge completion voltage, high because the value, the terminal voltage of the power-receiving-side capacitor C 2 since VC 2 exceeds the charge voltage VC S load element 6 around which peaked value, a current flows through the load element 6, electric energy stored in the power receiving side capacitor C2 is moved to the load device 6, a load element The rechargeable battery No. 6 is charged.
 t=ti+1以降は、図2(a)の中央の実線に示すように送電側コンデンサCの端子間電圧VCが負の値の最小値に到達すると、送電側コイルL1に蓄えられた電気エネルギーは送電側コンデンサCに環流し始め、送電側コンデンサCの端子間電圧VCは環流電流により増大を開始し、正の値になり、更に増大する。図2(a)の右側に破線で示すように、端子間電圧VCが正の値になると、受電側コンデンサCの端子間電圧VCは負の値になる。 t = t i + 1 and later, when the terminal voltage VC 1 of the power transmission capacitor C 1 as shown by the solid line in the middle in FIG. 2 (a) reaches a minimum value of the negative value, the power transmission coil L 1 the stored electric energy is started refluxed to the power transmission side capacitor C 1, the inter-terminal voltage VC 1 of the power transmission capacitor C 1 starts to increase by circulating electric current, a positive value, further increases. Right side as shown by the broken line in FIG. 2 (a), the inter-terminal voltage VC 1 is a positive value, the voltage between the terminals VC 2 of the power receiving side capacitor C 2 is a negative value.
 送電側コンデンサCの端子間電圧VCが正の値で増大し、t=ti+2で一次側駆動スイッチSW1を再度オン状態にすると、直流電源5の端子間電圧Eがステップ入力される。t=ti+2のステップ入力により、図2(a)の右側の実線に示すように送電側コンデンサCが充電され、端子間電圧VCは増加する。図2(a)の実線に示すように、端子間電圧VCはピーク値E0に到達した後、再度減少を開始する。t=ti+3で一次側駆動スイッチSW1をオフ状態にすると、送電側コンデンサCは再度放電を開始し、送電側コンデンサCに蓄えられた電気エネルギーは送電側コイルL1に移動する。二次側回路3の受電側コンデンサCの端子間電圧VCは破線で示したようにt=ti+2からt=ti+3での間では負の値である。 Terminal voltage VC 1 of the power transmission capacitor C 1 is increased in a positive value, when t = t i + 2 in which again turns on the primary side driving switch SW1, the voltage between the terminals E of the DC power source 5 is step input You. By the step input of t = t i + 2 , the power transmission side capacitor C 1 is charged as shown by the solid line on the right side of FIG. 2A, and the terminal voltage VC 1 increases. As shown in solid line in FIG. 2 (a), the terminal voltage VC 1 is after reaching the peak value E 0, starts decreasing again. t = t i + 3 in the turning off state of the primary-side drive switch SW1, the power-transmitting-side capacitor C 1 starts discharging again, electrical energy stored in the power transmitting side capacitor C 1 is moved to the power transmission coil L 1 . Terminal voltage VC 2 of the power receiving side capacitor C 2 of the secondary side circuit 3 is a negative value between at t = t i + 3 from t = t i + 2 as indicated by a broken line.
 送電側コイルL1に蓄積された電気エネルギーは、一次側回路2と二次側回路3との間の一次側回路2と二次側回路3の間の特性調和伝送によって二次側回路3の受電側コイルL2にワイヤレス伝送される。二次側回路3の受電側コイルL2にワイヤレス伝送された電気エネルギーは、二次側回路3の受電側コンデンサCに蓄積される。図2(a)に示すように、一次側駆動スイッチSW1による端子間電圧Eのステップ入力と遮断により、一次側回路2の端子間電圧VCの変化は通常の交流理論における正弦波の波形ではなく、瘤付鋸波がなまった立ち上がり・立ち下がり特性の繰り返し波形の過渡応答を示す。一方、二次側回路3の端子間電圧VCの変化は、間引かれた三角波のような繰り返し波形の過渡応答を示すが、通常の交流理論における正弦波の波形ではない。図2(a)から分かるように「間引かれた三角波」とは、台形波の極性を逆にした波形とも解釈できる。いずれにせよ、一次側回路2の振動波形と二次側回路3の振動波形とは互いに対称性のある振動波形ではない。 The electric energy stored in the power transmission side coil L 1 is transferred to the secondary circuit 3 by the characteristic harmonic transmission between the primary circuit 2 and the secondary circuit 3 between the primary circuit 2 and the secondary circuit 3. It is wirelessly transmitted to the power receiving coil L 2. The electric energy wirelessly transmitted to the power receiving coil L 2 of the secondary circuit 3 is stored in the power receiving capacitor C 2 of the secondary circuit 3. As shown in FIG. 2 (a), by interrupting the step input terminal voltage E by the primary-side drive switch SW1, a sinusoidal waveform change in the voltage VC 1 between the primary circuit second terminal is in the normal AC theory In other words, it shows a transient response of a repetitive waveform having rising and falling characteristics in which a sawtooth wave with a bump is blunted. On the other hand, the change of terminal voltage VC 2 of the secondary side circuit 3 shows the transient response of the repetitive waveform such as a triangular wave decimated, not a sinusoidal waveform at regular AC theory. As can be seen from FIG. 2A, the “thinned-out triangular wave” can be interpreted as a waveform in which the polarity of the trapezoidal wave is reversed. In any case, the vibration waveform of the primary circuit 2 and the vibration waveform of the secondary circuit 3 are not symmetrical vibration waveforms.
 図2(b)は図2(a)に示した端子間電圧VC及び端子間電圧VCの過渡応答波形に更に直流電源5の端子間電圧E、負荷素子6の端子間電圧VC及び負荷素子6である充電式電池への充電電流Iを加えた過渡応答の実測波形である。t=tで一次側駆動スイッチSW1をオン状態にして送電側コンデンサCに電荷を蓄えたのち、t=ti+1で一次側駆動スイッチSW1をオフ状態にすると、一次側回路2から二次側回路3への一次側回路2と二次側回路3の間の特性調和伝送が生じる。一次側駆動スイッチSW1をオン状態にすると、直流電源5の等価内部抵抗rが小さいので、図2(b)において太い実線で示した直流電源5の端子間電圧Eが一次側回路2の端子間電圧VCに重畳する変化を示している。 2 (b) is 2 terminal voltage E of the further DC power supply 5 to the terminal voltage VC 1 and transient response waveform of terminal voltage VC 2 shown in (a), the inter-terminal voltage VC S and load element 6 load element is a 6 plus charge current I C to rechargeable battery is a measured waveform of the transient response. After stored the to charge to the power transmission side capacitor C 1 of the primary-side drive switch SW1 to the ON state at t = t i, the t = t i + 1 on the primary side driving switch SW1 when the OFF state, the primary circuit 2 Harmonic transmission between the primary circuit 2 and the secondary circuit 3 to the secondary circuit 3 occurs. When the primary-side drive switch SW1 in the ON state, the equivalent internal resistance r 1 of the DC power source 5 is low, the voltage between the terminals E of the DC power source 5 shown by a thick solid line in FIG. 2 (b) is a primary-side circuit 2 terminal shows the change to be superimposed between the voltage VC 1.
 図2(b)のt=ti+1以降の過渡応答に着目して説明する。図2(b)の中央付近に実線で示すように、送電側コンデンサCの端子間電圧VCは、t=ti+1以降において減少し負の値になる。送電側コンデンサCに蓄積された電気エネルギーは送電側コイルL1に移り、送電側コイルL1に蓄積される。送電側コイルL1に蓄積された電気エネルギーは、一次側回路2と二次側回路3との間の一次側回路2と二次側回路3の間の特性調和伝送によって二次側回路3の受電側コイルL2に伝送される。二次側回路3の受電側コイルL2に伝送された電気エネルギーは、二次側回路3の受電側コンデンサCに蓄積されるため、受電側コンデンサCの端子間電圧VCは、図2(b)の中央付近に破線で示すように、t=ti+1以降において負の値から増大を始める。 A description will be given focusing on the transient response after t = t i + 1 in FIG. Near the center, as shown by the solid line in FIG. 2 (b), the terminal voltage VC 1 of the power transmission capacitor C 1 decreases at t = t i + 1 after a negative value. Electrical energy stored in the power transmitting side capacitor C 1 is transferred to the power transmission coil L 1, it is accumulated in the power transmission coil L 1. The electric energy stored in the power transmission side coil L 1 is transferred to the secondary circuit 3 by the characteristic harmonic transmission between the primary circuit 2 and the secondary circuit 3 between the primary circuit 2 and the secondary circuit 3. It is transmitted to the power receiving coil L 2. Electrical energy transmitted to the power receiving coil L 2 of the secondary side circuit 3 to be accumulated in the power receiving side capacitor C 2 of the secondary side circuit 3, the voltage between the terminals VC 2 of the power receiving side capacitor C 2, as shown in FIG. As shown by the broken line near the center of 2 (b), the increase starts from a negative value after t = t i + 1 .
 二次側回路3の受電側コンデンサCの端子間電圧VCは、中央の左側よりの破線で示したようにt=tiからt=ti+1での間では負の値である。受電側コンデンサCの端子間電圧VCは、t=ti+1の負の値から増大し、正の値になり更に増大し、ピーク値に到達した後、図2(b)の右側に破線で示すように、減少を開始する。端子間電圧VCが減少すると、受電側コンデンサCに蓄積された電気エネルギーは、図2(b)の右側に一点鎖線で示した充電電流Iとして負荷素子6に流れ、負荷素子6が充電される。一点鎖線で示した充電電流Iの増大とほぼ同期して、図2(b)の右側に点線で示した負荷素子6の端子間電圧VCも僅かに増大し、ピーク値を経た後に、充電電流Iの減少に同期して減少する過渡応答を示す。充電電流Iが減少してゼロになると、負荷素子6の端子間電圧VCの減少は停止し、増大に転じ、負荷素子6の端子間電圧が定常値になる。Icに応じたVcsの変化は図1(a)に例示的に等価回路を示したような抵抗とコンデンサの直並列回路が存在するために生じる。 Terminal voltage VC 2 of the power receiving side capacitor C 2 of the secondary side circuit 3, a negative value is between t = t i in t = t i + 1 as indicated by broken lines of the center of the left . Terminal voltage VC 2 of the power receiving side capacitor C 2 is increased from a negative value of t = t i + 1, increased positive addition to the value, after reaching the peak value, the right shown in FIG. 2 (b) As shown by the broken line in FIG. When the terminal voltage VC 2 is reduced, the electric energy stored in the power receiving side capacitor C 2 flows to the load device 6 as the charging current I C as shown by the dashed line on the right side of FIG. 2 (b), the load element 6 Charged. And substantially synchronized with the increase of the charging current I C indicated by one-dot chain line, also the voltage between the terminals VC S load element 6 shown by a dotted line on the right side shown in FIG. 2 (b) slightly increases, after being subjected to a peak value, shows a transient response which decreases in synchronization with decreasing of the charging current I C. When the charging current I C is reduced to zero, a decrease in inter-terminal voltage VC S load element 6 stops and turns to an increase, the voltage between the terminals of the load element 6 becomes a steady value. The change in Vcs according to Ic is caused by the existence of a series-parallel circuit of a resistor and a capacitor as shown in FIG.
 t=ti+1以降において、図2(b)の中央の実線に示すように送電側コンデンサCの端子間電圧VCが負の値の最小値に到達すると、送電側コイルL1に蓄えられた電気エネルギーは送電側コンデンサCに環流し始め、送電側コンデンサCの端子間電圧VCは環流電流により増大を開始し、正の値になり、更に増大する。図2(b)の右側に破線で示すように、端子間電圧VCが正の値になると、受電側コンデンサCの端子間電圧VCは負の値になる。 In t = t i + 1 and later, when the terminal voltage VC 1 of the power transmission capacitor C 1 as shown by the solid line in the middle of FIG. 2 (b) reaches a minimum value of the negative value, the power transmission coil L 1 the stored electric energy is started refluxed to the power transmission side capacitor C 1, the inter-terminal voltage VC 1 of the power transmission capacitor C 1 starts to increase by circulating electric current, a positive value, further increases. Right side as shown by the broken line in FIG. 2 (b), when the inter-terminal voltage VC 1 is a positive value, the voltage between the terminals VC 2 of the power receiving side capacitor C 2 is a negative value.
 送電側コンデンサCの端子間電圧VCが正の値で増大し、t=ti+2で一次側駆動スイッチSW1を再度オン状態にすると、直流電源5の端子間電圧Eがステップ入力される。t=ti+2のステップ入力により、図2(b)の右側の実線に示すように送電側コンデンサCが充電され、端子間電圧VCは増加する。前述したように、直流電源5の等価内部抵抗rが小さいので、一次側駆動スイッチSW1をオン状態にすると、図2(b)の太い実線で示した直流電源5の端子間電圧Eは端子間電圧VCに重畳する変化をする。図2(b)の右端の端子間電圧Eに重畳された実線に示されるように、端子間電圧VCはピーク値に到達した後、再度減少を開始する。t=ti+3で一次側駆動スイッチSW1をオフ状態にすると、送電側コンデンサCは再度放電を開始し、送電側コンデンサCに蓄えられた電気エネルギーは送電側コイルL1に移動する。二次側回路3の受電側コンデンサCの端子間電圧VCは破線で示したようにt=ti+2からt=ti+3での間では負の値である。 Terminal voltage VC 1 of the power transmission capacitor C 1 is increased in a positive value, when t = t i + 2 in which again turns on the primary side driving switch SW1, the voltage between the terminals E of the DC power source 5 is step input You. By the step input of t = t i + 2 , the power transmission side capacitor C 1 is charged as shown by the solid line on the right side of FIG. 2B, and the terminal voltage VC 1 increases. As described above, the equivalent internal resistance r 1 of the DC power source 5 is small, when the primary-side drive switch SW1 in the ON state, the voltage between the terminals E of the DC power source 5 shown in thick line in FIG. 2 (b) terminal the change to be superimposed between the voltage VC 1. As shown by the solid line superimposed on the voltage E between the right end of the terminal in FIG. 2 (b), the terminal voltage VC 1 after reaching the peak value, starts decreasing again. t = t i + 3 in the turning off state of the primary-side drive switch SW1, the power-transmitting-side capacitor C 1 starts discharging again, electrical energy stored in the power transmitting side capacitor C 1 is moved to the power transmission coil L 1 . Terminal voltage VC 2 of the power receiving side capacitor C 2 of the secondary side circuit 3 is a negative value between at t = t i + 3 from t = t i + 2 as indicated by a broken line.
 t=ti以前の振る舞いも同様であり、受電側コンデンサCの端子間電圧VCは、図2(b)の左側に破線で示すように、ピーク値に到達した後、減少を開始する。端子間電圧VCが増加していきVcsを上回ると、受電側コンデンサCに蓄積された電気エネルギーは、図2(b)の左側に一点鎖線で示した充電電流Iとして負荷素子6に流れ、負荷素子6が充電される。一点鎖線で示した充電電流Iの増大とほぼ同期して、図2(b)の左側に点線で示した負荷素子6の端子間電圧VCも僅かに増大し、ピーク値を経た後に、充電電流Iの減少に同期して減少する過渡応答を示す。充電電流Iが減少してゼロになると、負荷素子6の端子間電圧VCの減少は停止し、増大に転じ、負荷素子6の端子間電圧が定常値になる。Icに応じたVcsの変化は図1(a)に例示的に等価回路を示したような抵抗とコンデンサの直並列回路が存在するために生じる。 t = t i previous behavior is also similar, terminal voltage VC 2 of the power receiving side capacitor C 2, as shown by the broken line on the left side of FIG. 2 (b), after reaching the peak value, starts decreasing . When the terminal voltage VC 2 exceeds Vcs continue to increase, electric energy stored in the power receiving side capacitor C 2 is the load element 6 as the charging current I C indicated by one-dot chain line on the left side shown in FIG. 2 (b) Then, the load element 6 is charged. And substantially synchronized with the increase of the charging current I C indicated by one-dot chain line, also the voltage between the terminals VC S load element 6 shown by a dotted line on the left side shown in FIG. 2 (b) slightly increases, after being subjected to a peak value, shows a transient response which decreases in synchronization with decreasing of the charging current I C. When the charging current I C is reduced to zero, a decrease in inter-terminal voltage VC S load element 6 stops and turns to an increase, the voltage between the terminals of the load element 6 becomes a steady value. The change in Vcs according to Ic is caused by the existence of a series-parallel circuit of a resistor and a capacitor as shown in FIG.
 そして、既に説明したt=ti+1で一次側駆動スイッチSW1をオフ状態にすると、図2(b)の中央の実線に示すように送電側コンデンサCの端子間電圧VCが負の値に向かって減少を開始する。このようにして、送電側コイルL1に蓄積された電気エネルギーは、一次側回路2と二次側回路3との間の一次側回路2と二次側回路3の間の特性調和伝送によって二次側回路3の受電側コイルL2にワイヤレス伝送される。二次側回路3の受電側コイルL2にワイヤレス伝送された電気エネルギーは、二次側回路3の受電側コンデンサCに蓄積される。図2(b)に示すように、一次側駆動スイッチSW1による端子間電圧Eのステップ入力と遮断により、一次側回路2の端子間電圧VCの変化は通常の交流理論における正弦波の波形ではなく、瘤付鋸波がなまった立ち上がり・立ち下がり特性の繰り返し過渡応答波形を示し、二次側回路3の端子間電圧VCは間引かれた三角波のような繰り返し波形の過渡応答を示す。 Then, already when the the t = t i + 1 on the primary side drives the switch SW1 in the OFF state description, Figure 2 central terminal voltage VC 1 of the power transmission capacitor C 1 as shown by the solid line is a negative (b) Start decreasing towards the value. In this manner, the electric energy stored in the power transmission side coil L 1 is regenerated by the characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3 between the primary side circuit 2 and the secondary side circuit 3. is wirelessly transmitted to the power receiving coil L 2 follows side circuit 3. The electric energy wirelessly transmitted to the power receiving coil L 2 of the secondary circuit 3 is stored in the power receiving capacitor C 2 of the secondary circuit 3. As shown in FIG. 2 (b), by blocking a step input terminal voltage E by the primary-side drive switch SW1, a sinusoidal waveform change in the voltage VC 1 between the primary circuit second terminal is in the normal AC theory without represents a repeating transient response waveform rise and fall characteristics with aneurysms sawtooth wave is rounded, inter-terminal voltage VC 2 of the secondary side circuit 3 shows the transient response of the repetitive waveform such as a triangular wave thinned out.
 図3(a)は一次側回路2と二次側回路3との電磁的結合がない状態での、一次側回路2の単独回路としてのステップ応答を説明する回路図である。図3(a)において、直流電源の端子間電圧をE、送信側コンデンサCの端子間電圧をVC、送電側コイルL1を流れる電流を送電側コイル電流IL1とする。t=0msで一次側駆動スイッチSW1をオン状態にすると、直流電源5の端子間電圧Eがステップ入力される。t=0msのステップ入力により、図3(b)に示すように、送電側コンデンサの容量C、送電側コイルのインダクタンスL1で決まる時定数が送電側コンデンサCが充電の立ち上がり波形Vriseを規定し、端子間電圧VCは立ち上がり波形Vriseで増加する。同時に送電側コイル電流IL1も、図3(b)に示すように増加を開始する。 FIG. 3A is a circuit diagram illustrating a step response of the primary circuit 2 as a single circuit in a state where there is no electromagnetic coupling between the primary circuit 2 and the secondary circuit 3. In FIG. 3 (a), E terminal voltage of the DC power source, the voltage between the terminals of the transmitting-side capacitor C 1 VC 1, the current flowing through the power transmission coil L 1 to the power transmission coil current I L1. When the primary-side drive switch SW1 is turned on at t = 0 ms, the terminal voltage E of the DC power supply 5 is step-input. By the step input of t = 0 ms, as shown in FIG. 3B, the time constant determined by the capacitance C 1 of the power transmission side capacitor and the inductance L 1 of the power transmission side coil is such that the power transmission side capacitor C 1 has a rising waveform V rise of charging. It defines a terminal voltage VC 1 increases at a rising waveform V rise. At the same time, the power transmission side coil current IL1 also starts increasing as shown in FIG.
 図3(b)に示すように、端子間電圧VCは立ち上がり波形Vriseで増加してt=0.075msでピーク値に到達した後、減少を開始する。端子間電圧VCが減少を開始した後も、送電側コイル電流IL1が増加を継続し、送電側コンデンサCの電気エネルギーが送電側コイルL1に移動し続けていることが分かる。t=0.15msで一次側駆動スイッチSW1をオフ状態にすると、送電側コンデンサCは本格的な放電を開始し、立ち下がり波形Vfallで急激に減少する。このとき送電側コイル電流IL1は増加を継続しており、t=0.17msで送電側コイル電流IL1のピーク値に到達するまで、送電側コンデンサCに蓄えられた電気エネルギーは送電側コイルL1に移動する。 As shown in FIG. 3 (b), the inter-terminal voltage VC 1 is after reaching the peak value at t = 0.075ms increased by rising waveform V rise, starts decreasing. Even after the terminal voltage VC 1 starts to decrease, the power transmission coil current I L1 continues to increase, it can be seen that electrical energy of the power transmission capacitor C 1 continues to move to the power transmission coil L 1. When the primary-side drive switch SW1 is turned off at t = 0.15 ms, the power-transmitting-side capacitor C 1 begins a full-scale discharge, rapidly decreases with falling waveform V fall. In this case the power transmission coil current I L1 is continuing to increase, until it reaches the peak value of the power transmission coil current I L1 at t = 0.17ms, electrical energy stored in the power-transmitting-side capacitor C 1 is the transmission side to move to the coil L 1.
 この結果、t=0.15ms以降は、図3(b)に示すように、送電側コンデンサの容量C、送電側コイルのインダクタンスL1で決まる時定数で送電側コンデンサCの端子間電圧VCは減少し、t=0.17msで送電側コイル電流IL1のピーク値に到達したとき、端子間電圧VCはゼロになる。そして、t=0.17ms以降は、送電側コンデンサCの端子間電圧VCは負の値になる。送電側コンデンサCの端子間電圧VCが負の値になると、送電側コイル電流IL1の値が減少し始め、送電側コイルL1に蓄えられた電気エネルギーは送電側コンデンサCに環流し始める。そして、図3(b)に示すように、送電側コイル電流IL1の値がt=0.29msでゼロになったとき、送電側コンデンサCの端子間電圧VCは環流電流により増大を開始する。送電側コイル電流IL1の値が、t=0.4msでゼ負の値の最小値になったとき、端子間電圧VCはゼロになり、この後、端子間電圧VCは正の値になり、更に増大する。 As a result, t = 0.15 ms later, as shown in FIG. 3 (b), the capacitance C 1 of the power transmission capacitor, the power transmission coil of the inductance L constant at the transmission side capacitor C 1 of the terminal voltage when determined by 1 VC 1 decreases, when it reaches the peak value of the power transmission coil current I L1 at t = 0.17ms, terminal voltage VC 1 is zero. Then, t = 0.17ms later, the inter-terminal voltage VC 1 of the power transmission capacitor C 1 becomes a negative value. When the terminal voltage VC 1 of the power transmission capacitor C 1 becomes a negative value, the value of the power transmission coil current I L1 begins to decrease, the electrical energy stored in the power transmission coil L 1 is circulating to the power transmission side capacitor C 1 Begin to. Then, as shown in FIG. 3 (b), when the value of the power transmission coil current I L1 becomes zero at t = 0.29ms, terminal voltage VC 1 of the power transmission capacitor C 1 is increased by circulating electric current Start. The value of the power transmission coil current I L1 is, t = time became minimum value of zero negative value in 0.4 ms, the inter-terminal voltage VC 1 is zero, after which the inter-terminal voltage VC 1 is a positive value And further increase.
 図3(a)に示す回路は、t=0.15msで一次側駆動スイッチSW1をオフ状態にした後、一次側駆動スイッチSW1を再度オン状態にすることはない。つまり、図3(a)に示す回路の場合は、図3(b)の右側に斜線で示した領域において自由振動をするので、通常の正弦波の交流理論で処理できる。しかしながら、図1(a)に示す回路では一次側駆動スイッチSW1が周期的にオン/オフを繰り返す強制的なステップ応答の駆動をするので、図3(b)の斜線で示した自由振動の領域は、第1の実施形態に係る電力伝送装置の対象外である。強制的なステップ応答の場合、図1(b)~図2(b)に示したように、一次側回路2の端子間電圧VCは瘤付鋸波がなまった立ち上がり・立ち下がり特性の繰り返し波形の過渡応答を示す。又、二次側回路3の端子間電圧VCは間引かれた三角波のような繰り返し波形の過渡応答を示す。 The circuit shown in FIG. 3A does not turn the primary-side drive switch SW1 on again after the primary-side drive switch SW1 is turned off at t = 0.15 ms. In other words, in the case of the circuit shown in FIG. 3A, free oscillation occurs in the shaded area on the right side of FIG. However, in the circuit shown in FIG. 1A, since the primary-side drive switch SW1 drives a forcible step response that repeats on / off periodically, the area of free vibration indicated by the oblique lines in FIG. Are out of the scope of the power transmission device according to the first embodiment. For forced step response, as shown in FIG. 1 (b) ~ FIG 2 (b), the inter-terminal voltage VC 1 of the primary-side circuit 2 repeats the rise and fall characteristics sawtooth wave with aneurysm dull 3 shows a transient response of a waveform. Further, the voltage between the terminals VC 2 of the secondary side circuit 3 shows the transient response of the repetitive waveform such as a triangular wave thinned out.
 即ち、第1の実施形態に係る電力伝送装置においては、通常の交流理論での正弦波に依拠した共振ではなく、一次側回路2の回路特性に内在する時定数と二次側回路3の回路特性に内在する時定数とが調和したとき、一次側回路2と二次側回路3の間の特性調和伝送によって、一次側回路2の電気エネルギーが、効率よく二次側回路3に伝送される。一次側回路2の回路特性に内在する時定数と二次側回路3の回路特性に内在する時定数とを調和させるためには、送電側コンデンサC1と送電側コイルL1の積、と受電側コンデンサC2と受電側コイルL2の積を同じにすることを基本とし、送電側、受電側の寄生抵抗、浮遊容量などを加味したそれぞれの時定数を一致もしくは整数倍にして調和させなければならない。最も簡単な方法は、送電側コンデンサC1と受電側コンデンサC2の容量を、コンデンサの寄生抵抗を含めて等しくし、送電側コイルL1と受電側コイルL2のインダクタンスをコイルの寄生抵抗を含めて等しくすることである。なお、コイル及びコンデンサに寄生抵抗が存在する場合は、後述するように、コイルのインダクタンスLとコンデンサの容量Cが式(19)を満たすとき、伝送効率が最大となることにも留意すべきである。 That is, in the power transmission device according to the first embodiment, not the resonance based on the sine wave in the ordinary AC theory, but the time constant inherent in the circuit characteristics of the primary circuit 2 and the circuit of the secondary circuit 3 When the time constant inherent in the characteristic is harmonized, the electric energy of the primary circuit 2 is efficiently transmitted to the secondary circuit 3 by characteristic harmonic transmission between the primary circuit 2 and the secondary circuit 3. . In order to harmonize the time constant inherent in the circuit characteristics of the primary side circuit 2 and the time constant inherent in the circuit characteristics of the secondary side circuit 3, the product of the power transmitting side capacitor C1 and the power transmitting side coil L1, and the power receiving side capacitor Basically, the product of C2 and the power receiving side coil L2 should be the same, and the respective time constants considering the parasitic resistance and the stray capacitance of the power transmitting side and the power receiving side must be matched or harmonized with each other by an integral multiple. The simplest way, the power transmission side capacitor C1 a capacitance of the power receiving side capacitor C2, and equally, including the parasitic resistance of the capacitor, the inductance of the power transmission coil L 1 and the power receiving side coil L 2 including the parasitic resistance of the coil It is to make them equal. It should be noted that, when a parasitic resistance exists in the coil and the capacitor, the transmission efficiency becomes maximum when the inductance L of the coil and the capacitance C of the capacitor satisfy Expression (19), as described later. is there.
 図1(a)に示した一次側駆動スイッチSW1として、電磁接触器等の機械的なスイッチング素子の他、より好ましい態様として、より高速スイッチングが可能な電力用半導体スイッチング素子が用いられる。電力用半導体スイッチング素子としては、電界効果トランジスタ(FET)、静電誘導トランジスタ(SIT)、バイポーラトランジスタ(BJT)の他、ゲートターンオフサイリスタ(GTO)、静電誘導サイリスタ(SIサイリスタ)等のサイリスタが好適である。特に、絶縁ゲート型電界効果トランジスタ(MISFET)、絶縁ゲート型静電誘導トランジスタ(MISSIT)、絶縁ゲートバイポーラトランジスタ(IGBT)、MOS制御SIサイリスタ等の電圧駆動型のスイッチング素子は、消費電力が小さくなり好適である。市場での入手可能性と電力用半導体スイッチング素子の内部抵抗の評価からは、現状においては、MISFETの類型であるMOS型電界効果トランジスタ(MOSFET)を図4(a)に示す回路のように採用することが可能である。 と し て As the primary-side drive switch SW1 shown in FIG. 1A, in addition to a mechanical switching element such as an electromagnetic contactor, as a more preferable embodiment, a power semiconductor switching element capable of higher-speed switching is used. As the power semiconductor switching element, thyristors such as a gate turn-off thyristor (GTO) and an electrostatic induction thyristor (SI thyristor) in addition to a field effect transistor (FET), an electrostatic induction transistor (SIT), and a bipolar transistor (BJT) are available. It is suitable. In particular, voltage-driven switching elements such as an insulated gate field effect transistor (MISFET), an insulated gate electrostatic induction transistor (MISSIT), an insulated gate bipolar transistor (IGBT), and a MOS control SI thyristor consume less power. It is suitable. Based on the availability on the market and the evaluation of the internal resistance of the power semiconductor switching element, at present, a MOS field effect transistor (MOSFET), which is a type of MISFET, is employed as shown in the circuit of FIG. It is possible to
 EVの車載用の充電式電池を負荷素子6とするような電力伝送装置においては大電流が流れることによるジュール熱の発生が大きく、数百ワット以上の発熱が伴うことになり、電力伝送装置が暖房装置(ヒーター)になってしまう。第1の実施形態に係る電力伝送装置では一次側駆動スイッチSW1として用いる電力用半導体スイッチング素子は1個のみで良いので、銅のブロック等のヒートシンクで覆い熱伝導性を上げ、発熱による素子の破壊を防ぐ構造が簡単に設計でき、しかも浮遊抵抗、浮遊容量、浮遊インダクタンスの発生も最小化できる。送電側コイルL1及び受電側コイルL2の浮遊抵抗(寄生抵抗)による発熱も大きいので、送電側コイルL1及び受電側コイルL2を空冷、水冷する等の対策が好ましい。 In a power transmission device in which a rechargeable battery mounted on an EV is used as the load element 6, a large current flows to generate large Joule heat, which generates heat of several hundred watts or more. It becomes a heating device (heater). In the power transmission device according to the first embodiment, since only one power semiconductor switching element is used as the primary-side drive switch SW1, the power semiconductor switching element is covered with a heat sink such as a copper block to increase thermal conductivity, and the element is destroyed by heat generation. Can be designed easily, and the occurrence of stray resistance, stray capacitance, and stray inductance can be minimized. Stray resistance of the power transmission coil L 1 and the receiver coil L 2 (parasitic resistance) heating is large due to the power transmission coil L 1 and the power receiving coil L 2 air, measures such as water cooling is preferred.
 EVの車載用等の大電力用電力伝送装置におけるジュール熱の発生を押さえる一つの方法は、一次側回路2の電圧を高め、送電側コイルL1と受電側コイルL2の巻線比で二次側回路3の電圧を負荷素子6の最適電圧に設定することである。一次側駆動スイッチSW1として電力用半導体スイッチング素子を採用する場合には、電力用半導体スイッチング素子をオン/オフ制御する単純な制御だけでよいので、一次側回路2の電圧を高める回路設計は容易である。 One way to suppress the generation of Joule heat in the high power power transmission device such as for automotive the EV increases the voltage of the primary-side circuit 2, the two in transmitting coil L 1 and the turns ratio of the power receiving coil L 2 That is, the voltage of the secondary circuit 3 is set to the optimum voltage of the load element 6. When a power semiconductor switching element is used as the primary side drive switch SW1, only a simple control for turning on / off the power semiconductor switching element is required, so that a circuit design for increasing the voltage of the primary side circuit 2 is easy. is there.
 このように、第1の実施形態に係る電力伝送装置によれば、一次側駆動スイッチSW1が1個のみの単純設計であるので、一次側回路2の電圧を高めて一次側回路2側のジュール熱の発生による電力損失を最小限に抑制する設計が容易である。ジュール熱発生によるエネルギー損失も少なくできるので第1の実施形態に係る電力伝送装置によれば、EVの車載用等の大電力用電力伝送の場合における電源回路(0次回路)の損失を含めた総合的な電力伝送効率が高くなり、人類のエネルギー問題の解消に寄与できる。 As described above, according to the power transmission device of the first embodiment, since the primary drive switch SW1 has a simple design of only one, the voltage of the primary circuit 2 is increased and the joule on the primary circuit 2 side is increased. It is easy to design to minimize power loss due to heat generation. Since the energy loss due to the generation of Joule heat can be reduced, the power transmission device according to the first embodiment includes the loss of the power supply circuit (zero-order circuit) in the case of high-power power transmission such as for EVs mounted on vehicles. The overall power transmission efficiency is increased, which can contribute to solving the energy problem of humanity.
 図4(a)に示す実装回路においては、送電側コイルL1からの環流電流を考慮し第1の還流ダイオード(フリーホイルダイオード)FWD1が、第1の半導体スイッチング素子Q1としてのMOSFETのソース・ドレイン間に、保護素子として並列接続されている。又、送電側コイルL1からの環流電流が直流電源5に環流するのを防ぐため、電源側ダイオードD1が直流電源5と第1の半導体スイッチング素子Q1の間に直列接続されている。図4(a)に示す実装回路では負荷素子6の等価インピーダンスXLeqを充電容量Csで近似して表現している。 4 in the mounting circuit shown in (a), the power-transmitting-side first reflux diode considering circulating electric current from the coil L 1 (freewheeling diode) FWD 1 is the source of the MOSFET as a first semiconductor switching element Q1 -It is connected in parallel as a protection element between the drains. Further, since the circulating electric current from the power transmission coil L 1 is prevented from refluxing to the DC power supply 5, the power supply side diode D1 is connected in series between a DC power source 5 and the first semiconductor switching element Q1. In the mounting circuit shown in FIG. 4A, the equivalent impedance X Leq of the load element 6 is expressed by approximating the charging capacity C s .
 通常の定常状態の正弦波に依拠した交流理論では、送電側コイルL1と受電側コイルL2の間の相互インダクタンスMは、結合係数KACを用いて:
 
    M=KAC(L1・L21/2  ……(1)
 
と示すことができる。そして送電側コンデンサCと送電側コイルL1との直列回路と、受電側コンデンサCと受電側コイルL2の直列回路との相互誘導は、相互インダクタンスMを用いると、以下の結合方程式
 
1di/dt+(1/C)∫idt+Mdi/dt=0  …(2)
2di/dt+(1/C)∫idt+Mdi/dt=0  …(3)
 
によって表される。式(2)及び(3)において、∫は積分記号である。即ち、図4(a)に示す実装回路は、通常の定常状態の正弦波に依拠した交流理論によれば、相互インダクタンスMのコイルを用いて図4(b)のように表現できる。
The AC theory relies on a sine wave of the normal steady state, the mutual inductance M between the power transmission coil L 1 and the power receiving coil L 2, using the coupling coefficient K AC:

M = K AC (L 1 · L 2 ) 1/2 (1)

It can be shown. And the power transmission side capacitor C 1 and the series circuit of the power transmission coil L 1, the mutual induction between the power receiver side capacitor C 2 and series circuit of the power receiving coil L 2 is the use of mutual inductance M, the following binding equation
L 1 di 1 / dt + (1 / C 1 ) ∫i 1 dt + Mdi 2 / dt = 0 (2)
L 2 di 1 / dt + ( 1 / C 2) ∫i 2 dt + Mdi 1 / dt = 0 ... (3)

Represented by In the equations (2) and (3), ∫ is an integral symbol. That is, the mounting circuit shown in FIG. 4A can be expressed as shown in FIG. 4B using a coil having a mutual inductance M according to an AC theory based on a normal sine wave in a steady state.
 ただし、第1の実施形態に係る電力伝送装置は、正弦波の交流理論に依拠しない過渡応答の伝送技術であるので、図4(b)の等価回路の表現は近似的な物理モデルを考える上での模式図に過ぎない。時間変化のある場合のマックスウェルの方程式は、時間変化が正弦波に依拠する場合は解析的に解くことが可能である。しかし、図1(b)~図2(b)に示したように鋸波状の時間変化がある場合は、マックスウェルの方程式を解析的に解くことは極めて難しい。よって、交流理論で用いられる相互インダクタンスMは、本発明においては、tを時間とする関数M(t)で表現される時間依存性のあるパラメータであり、図4(b)の等価回路の表現には注意が必要である。 However, since the power transmission device according to the first embodiment is a transmission technology of a transient response that does not depend on the sine wave AC theory, the expression of the equivalent circuit in FIG. It is only a schematic diagram in. Maxwell's equation with time changes can be solved analytically if the time change relies on a sine wave. However, when there is a sawtooth-like temporal change as shown in FIGS. 1B and 2B, it is extremely difficult to analytically solve Maxwell's equations. Therefore, in the present invention, the mutual inductance M used in the AC theory is a time-dependent parameter expressed by a function M (t) where t is time, and is expressed by the equivalent circuit shown in FIG. Need attention.
 図5は、図4(a)に示す実装回路に第1の半導体スイッチング素子Q1の一例として用いているnMOSFETの大信号用等価回路を示す。図5(a)に示すように、一般的なnMOSFETはp型基板71にn型のソース領域72とn型のドレイン領域73をチャネル領域となるp型基板71の表面を挟んで対向させている。ソース領域72とドレイン領域73のチャネル領域の上には厚さTOXのゲート酸化膜81を介してゲート電極84が設けられている。ソース領域72の上にはソース電極82が、ドレイン領域73の上にはドレイン電極83がそれぞれオーミック接触している。 FIG. 5 shows a large-signal equivalent circuit of an nMOSFET used as an example of the first semiconductor switching element Q1 in the mounting circuit shown in FIG. 4A. As shown in FIG. 5A, in a general nMOSFET, an n + -type source region 72 and an n + -type drain region 73 are opposed to a p-type substrate 71 with a surface of the p-type substrate 71 serving as a channel region interposed therebetween. Let me. A gate electrode 84 is provided on the channel region of the source region 72 and the drain region 73 via a gate oxide film 81 having a thickness T OX . A source electrode 82 is in ohmic contact with the source region 72, and a drain electrode 83 is in ohmic contact with the drain region 73.
 図5(a)に示すように、一般的なnMOSFETではゲート電極84とソース領域72の間にはゲート・ソース間容量CGSが、ゲート電極84とドレイン領域73の間にはゲート・ドレイン間容量CGDが、ゲート電極84と基板71の間にはゲート・基板間容量CGBが存在する。更に、ソース領域72と基板71の間にはソース・基板間容量CBSが、ドレイン領域73と基板71の間にはドレイン・基板間容量CBDが存在する。図5(b)に示す等価回路では、ドレイン電極とチャネル領域の間に直列接続されるドレイン抵抗RDと、ソース電極とチャネル領域の間に直列接続されるソース抵抗RSとが、チャネル領域に設けられた電流IDSの定電流源に直列接続された構成が示されている。 As shown in FIG. 5A, in a general nMOSFET, a gate-source capacitance C GS is provided between the gate electrode 84 and the source region 72, and a gate-drain connection is provided between the gate electrode 84 and the drain region 73. A capacitance C GD exists between the gate electrode 84 and the substrate 71 and a gate-substrate capacitance C GB exists. Further, a source-substrate capacitance C BS exists between the source region 72 and the substrate 71, and a drain-substrate capacitance C BD exists between the drain region 73 and the substrate 71. In the equivalent circuit shown in FIG. 5B, the drain resistance R D connected in series between the drain electrode and the channel region and the source resistance R S connected in series between the source electrode and the channel region are connected to the channel region. 2 shows a configuration connected in series to a constant current source of a current I DS provided in the first embodiment.
 図4に示した第1の実施形態に係る電力伝送装置においては、第1の半導体スイッチング素子Q1のオン抵抗となる図5に示したMOSFETのドレイン抵抗RDとソース抵抗RSが重要な意味を持ち、第1の半導体スイッチング素子Q1にはオン抵抗の小さな素子を選ぶ必要がある。したがって、図4(a)に示す実装回路において、直流電源5の等価内部抵抗rに第1の半導体スイッチング素子Q1のオン抵抗を含ませて、一次側回路2の回路特性に内在する時定数を決定する必要がある。 In the power transmission device according to the first embodiment shown in FIG. 4, the drain resistance RD and the source resistance RS of the MOSFET shown in FIG. 5, which are the ON resistance of the first semiconductor switching element Q1, are important. It is necessary to select an element having a small on-resistance as the first semiconductor switching element Q1. Therefore, in the mounting circuit shown in FIG. 4A, the equivalent internal resistance r 1 of the DC power supply 5 includes the ON resistance of the first semiconductor switching element Q 1, and the time constant inherent in the circuit characteristics of the primary circuit 2. Need to decide.
 図1(b)のt=t1で一次側駆動スイッチSW1をオフ状態にした場合、一次側回路2はRLC直列回路になる。交流理論によれば、送電側コイルL1の寄生抵抗をRstr(L1)とすると、RLC直列回路の減衰係数ζ1は、
 
       ζ1=(Rstr(L1)/2)(C/L11/2   ……(4)
 
と表される。しかし、送電側コイルL1のインダクタンスは、実際には図4(b)に示した相互インダクタンスM=M(t)を考慮する必要があるが、相互インダクタンスM=M(t)を解析的に説明するのは困難である。
When the primary-side drive switch SW1 in the OFF state in FIG. 1 t = t 1 of (b), the primary circuit 2 becomes RLC series circuit. According to the AC theory, assuming that the parasitic resistance of the power transmission side coil L 1 is R str (L 1 ), the attenuation coefficient ζ 1 of the RLC series circuit is

ζ 1 = (R str (L 1 ) / 2) (C 1 / L 1 ) 1/2 (4)

It is expressed as However, the inductance of the power transmission coil L 1 is actually it is necessary to consider the mutual inductance M = M (t) shown in FIG. 4 (b), the mutual inductance M = M (t) of analytically It is difficult to explain.
 このときの二次側回路3の負荷側の負荷側ダイオードD2と負荷素子6等を無視すれば、RLC直列回路と見なすことができる。負荷側ダイオードD2と負荷素子6等を無視して交流理論を採用すれば、受電側コイルL2の寄生抵抗をRstr(L2)として、二次側回路3の減衰係数ζ2は、
 
       ζ2=(Rstr(L2)/2)(C/L21/2   ……(5)
 
と表される。(5)式においても、受電側コイルL2のインダクタンスは、図4(b)に示した相互インダクタンスM=M(t)を考慮する必要がある。
If the load-side diode D2 on the load side of the secondary circuit 3 and the load element 6 at this time are ignored, the circuit can be regarded as an RLC series circuit. By employing the alternating current theories ignore the load element 6 such as a load-side diode D2, the parasitic resistance of the power receiving coil L 2 as R str (L 2), the damping coefficient zeta 2 of the secondary side circuit 3,

ζ 2 = (R str (L 2 ) / 2) (C 2 / L 2 ) 1/2 (5)

It is expressed as Also in equation (5), the inductance of the power receiving coil L 2, it is necessary to consider the mutual inductance M = M (t) shown in Figure 4 (b).
 図1(b)のt=t1で一次側駆動スイッチSW1をオフ状態で構成されるRLC直列回路の共振周波数は、交流理論によれば、
 
       fo1=(1/2π)(C・L1)-1/2 ……(6)
 
と近似できる。上述したとおり、(6)式において、実際には、受電側コイルL1のインダクタンスとして、図4(b)に示した相互インダクタンスM=M(t)を考慮する必要があることに留意が必要である。同様に、二次側回路3の負荷側の負荷側ダイオードD2と負荷素子6等を無視した場合のRLC直列回路の共振周波数は、交流理論によれば、
 
       fo2=(1/2π)(C・L2)-1/2 ……(7)
 
と近似できる。(7)式においても、受電側コイルL2のインダクタンスは、図4(b)に示した相互インダクタンスM=M(t)を考慮する必要がある。
According to the AC theory, the resonance frequency of the RLC series circuit in which the primary side drive switch SW1 is turned off at t = t 1 in FIG.

f o1 = (1 / 2π) (C 1 · L 1 ) − 1/2 (6)

Can be approximated. As described above, in (6), in fact, as the inductance of the power receiving coil L 1, must have noted that it is necessary to take into account the mutual inductance M = M (t) that shown in FIG. 4 (b) It is. Similarly, the resonance frequency of the RLC series circuit when the load-side diode D2 on the load side of the secondary circuit 3 and the load element 6 and the like are ignored, according to the AC theory,

f o2 = (1 / 2π) (C 2 · L 2) - 1/2 ...... (7)

Can be approximated. (7) Also in formula, the inductance of the power receiving coil L 2, it is necessary to consider the mutual inductance M = M (t) shown in Figure 4 (b).
 第1の実施形態に係る電力伝送装置の送電側コイルL1と受電側コイルL2は、例えば図6(a)~図7(c)に示したような、渦巻き状平面コイルとすることができる。一次側回路2と二次側回路3は、交流理論が成立する定常状態では、図4(b)に示したように、送電側コイルL1と受電側コイルL2の間が等価結合係数K、相互インダクタンスMで磁気的に結合された回路で近似することが可能である。ここで「等価結合係数K」は、交流理論から導かれる結合係数KACと等価な、過渡応答時に定義される非定常状態における擬結合係数であり、厳密には時間に依存するパラメータである。よって、一次側回路2の回路特性に内在する時定数と二次側回路3の回路特性に内在する時定数との一次側回路2と二次側回路3の間の特性調和伝送においても、交流理論の結合係数KACと同様な「磁気的結合度」で評価することができる。 Transmitting coil L 1 and the power receiving coil L 2 of the power transmission device according to the first embodiment, for example, was as shown FIG. 6 (a) ~ FIG 7 (c), it is a spiral planar coil it can. Primary circuit 2 and the secondary-side circuit 3, in a steady state AC theory holds, as shown in FIG. 4 (b), the equivalent coefficient K between the power transmission coil L 1 and the power receiving coil L 2 , Can be approximated by a circuit magnetically coupled with the mutual inductance M. Here, the “equivalent coupling coefficient K” is a pseudo coupling coefficient in an unsteady state defined at the time of a transient response, which is equivalent to the coupling coefficient K AC derived from AC theory, and is strictly a time-dependent parameter. Therefore, even in the characteristic harmonic transmission between the primary circuit 2 and the secondary circuit 3 between the time constant inherent in the circuit characteristic of the primary circuit 2 and the time constant inherent in the circuit characteristic of the secondary circuit 3, It can be evaluated by the “magnetic coupling degree” similar to the theoretical coupling coefficient K AC .
 図6(a)~図7(c)は、図4(a)の送電側コイルL1と受電側コイルL2の構造を具体化して示した模式図である。第1の実施形態に係る電力伝送装置では、例えば、導体断面積16mm2の配線用ケーブルをそれぞれ9巻して直径約30Cm程度の渦巻き状平面コイルとしている。この直径約30Cm程度の2つの渦巻き状平面コイルを、間隔dのギャップを設けて、非接触で互いに平行に対抗させて配置する。一次側回路2から二次側回路3への一次側回路2と二次側回路3の間の特性調和伝送の効率は、交流理論で定義される結合係数KACと同様な磁気的結合度の値に依存する。磁気的結合度は、2つの渦巻き状平面コイルの間隔dによって異なり、2つの渦巻き状平面コイの間隔dを制御する必要がある。 FIG 6 (a) ~ FIG. 7 (c) is a schematic view showing an embodiment the power transmission coil L 1 the structure of the power receiving coil L 2 in FIG. 4 (a). In the power transmission device according to the first embodiment, for example, nine windings of a wiring cable having a conductor cross-sectional area of 16 mm 2 are formed into a spiral planar coil having a diameter of about 30 Cm. The two spiral planar coils having a diameter of about 30 Cm are arranged in parallel with each other in a non-contact manner with a gap of a distance d. The efficiency of the characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3 from the primary side circuit 2 to the secondary side circuit 3 depends on the magnetic coupling degree similar to the coupling coefficient K AC defined by AC theory. Depends on the value. The degree of magnetic coupling depends on the distance d between the two spiral planar coils, and it is necessary to control the distance d between the two spiral planar coils.
 磁気的結合度は、2つの渦巻き状平面コイルの位置関係を機械的に調整する、2つの渦巻き状平面コイルの間に磁性体を挿入する、若しくは2つの渦巻き状平面コイルの周辺に磁性体を配置する、2つの渦巻き状平面コイルの間に働く吸引力若しくは反発力を利用してあらかじめ形作られたカップリングにアタッチする等によって調整することができる。 The degree of magnetic coupling is to mechanically adjust the positional relationship between the two spiral planar coils, insert a magnetic material between the two spiral planar coils, or place a magnetic material around the two spiral planar coils. It can be adjusted by attaching to a pre-formed coupling utilizing the attraction or repulsion acting between the two spiral planar coils to be arranged.
 第4の実施形態等で説明するが、交流理論の結合係数KAC=0.6にほぼ近似できる等価結合係数Kとなる送電側コイルL1と受電側コイルL2の相互関係のときが、一次側回路2と二次側回路3の間の特性調和伝送には好適である。導体断面積16mm2の配線用ケーブルをそれぞれ9巻した渦巻き状平面コイルの場合、等価結合係数K=0.6を実現するためには、間隔dは、0Cm~2.0Cm程度が必要になる。一方、交流理論の結合係数KAC=0.1にほぼ近似できる等価結合係数Kとなる条件の送電側コイルL1と受電側コイルL2の相互関係を実現するためには、間隔dは10Cm程度である。図6(b)に送電側コイルL1と受電側コイルL2を誇張(拡大)して模式的に示すように、EVの車載用の充電式電池である負荷素子6を第1の実施形態に係る電力伝送装置を用いて充電するためには、後輪の車止め33を磁気的結合度制御機構として用いて送電側コイルL1と受電側コイルL2の間隔dを10Cm程度に制御し、効率のよい無接触給電をすることができる。 Described in the fourth embodiment and the like, but when the correlation between the power transmission coil L 1 of the equivalent coefficient K which can be substantially approximated to the coupling coefficient K AC = 0.6 AC theory receiver coil L 2, It is suitable for characteristic harmonic transmission between the primary circuit 2 and the secondary circuit 3. In the case of a spiral flat coil in which nine wiring cables each having a conductor cross-sectional area of 16 mm 2 are wound, in order to realize an equivalent coupling coefficient K = 0.6, the interval d needs to be about 0 Cm to 2.0 Cm. . On the other hand, in order to realize the mutual relationship between the power transmitting coil L 1 and the power receiving coil L 2 under the condition that the equivalent coupling coefficient K can be approximately approximated to the coupling coefficient K AC = 0.1 of the AC theory, the distance d is 10 Cm. It is about. The power transmission coil L 1 and the power receiving coil L 2 exaggerated (enlarged) and, as shown schematically in FIG. 6 (b), the load element 6 is a rechargeable battery for vehicle of EV first embodiment the power transmission device according to the used for charging controls the spacing d of the power transmission coil L 1 and the power receiving side coil L 2 with a bollard 33 of the rear wheel as a magnetic coupling degree control mechanism to approximately 10 cm, Efficient non-contact power supply can be performed.
 送電側コイルL1と受電側コイルL2の間隔dを制御する磁気的結合度制御機構として、図7(a)に示すように、送電側コイルL1と受電側コイルL2の間に厚さd0のスペーサ32を挟めば、送電側コイルL1と受電側コイルL2の間隔d=d0に制御できる。なお、一次側回路2から二次側回路3への一次側回路2と二次側回路3の間の特性調和伝送の効率に重要な磁気的結合度の値に対応する送電側コイルL1と受電側コイルL2の相互関係は、送電側コイルL1と受電側コイルL2の間隔d以外のパラメータによっても磁気的結合度制御機構を構成することが可能である。 As magnetic coupling degree control mechanism for controlling the distance d of the power transmission coil L 1 and the power receiving side coil L 2, as shown in FIG. 7 (a), the thickness between the power transmission coil L 1 and the power receiving coil L 2 By sandwiching the spacer 32 of d 0 , the distance d = d 0 between the power transmitting coil L 1 and the power receiving coil L 2 can be controlled. Incidentally, the power transmission coil L 1 corresponding to the value of the critical magnetic coupling of the efficiency characteristic harmonic transmissions between the primary-side circuit 2 and the secondary-side circuit 3 from the primary circuit 2 to the secondary-side circuit 3 interrelation of the power receiving coil L 2, it is possible to configure the magnetic coupling of the control mechanism by the power transmission coil L 1 and the power receiving side parameters other than distance d of the coil L 2.
 例えば、図7(b)に示すように送電側コイルL1と受電側コイルL2の間に透磁率μrのフェライト等の磁性体板31Cを挿入して磁気的結合度制御機構を構成しもよい。磁性体板31Cの上下方向における挿入位置、若しくは磁性体板31Cの挿入面積によって、送電側コイルL1と受電側コイルL2の間の磁気的結合度の値は制御できる。磁性体板31Cは、送電側コイルL1と受電側コイルL2の間ではなく、図7(c)に示すように、磁性体板31bを送電側コイルL1の裏側に挿入しても構わない。磁性体板31bの上下方向における挿入位置、若しくは送電側コイルL1の面積に対する磁性体板31bの挿入面積の比によって、送電側コイルL1と受電側コイルL2の間の磁気的結合度の値は制御できる。図示を省略しているが、磁性体板を受電側コイルL2の裏側に挿入しても同様に、送電側コイルL1と受電側コイルL2の間の磁気的結合度の値を制御できることは、勿論である。 For example, to configure the magnetic coupling degree control mechanism between the power transmission coil L 1 and the power receiving side coil L 2 by inserting the magnetic material plate 31C of the ferrite permeability mu r as shown in FIG. 7 (b) Is also good. Insertion position in the vertical direction of the magnetic plates 31C, or by the insertion area of the magnetic material plate 31C, the value of the magnetic coupling degree between the power transmission coil L 1 and the power receiving coil L 2 can be controlled. Magnetic plate 31C is not between the power transmission coil L 1 and the power receiving side coil L 2, as shown in FIG. 7 (c), may be inserted magnetic plate 31b on the back side of the power transmission coil L 1 Absent. Insertion position in the vertical direction of the magnetic plate 31b, or by the ratio of the insertion area of the magnetic plate 31b to the area of the power transmission coil L 1, a magnetic coupling degree between the power transmission coil L 1 and the power receiving coil L 2 The value can be controlled. Although not shown, similarly be inserted magnetic plate on the back of the power receiving coil L 2, it can be controlled value of magnetic coupling degree between the power transmission coil L 1 and the power receiving coil L 2 Is, of course.
 具体的に図7(b)に示した磁性体板31Cの上下方向における挿入位置や図7(c)に示した磁性体板31bの上下方向における挿入位置を制御するには、図8(a)に示すような光学的な測距ユニット41を、送電側コイルL1が設けられている給電装置側に設けてもよい。測距ユニット41は発光部411と受光部412を備えた磁気的結合度制御機構を用意すればよい。受光部412が光飛行時間型(TOF型)の測距素子dであれば、発光部411から、パルス発光がなされる。パルス発光は、例えば、近赤外LD(レーザダイオード)や近赤外LEDが用いられる。受電側コイルL2やEVの後部から反射したパルス光が、レンズやBPF(バンドパスフィルタ)などを通して受光部412に照射される。測距ユニット41はレーザ干渉計等の構成でも構わない。 To control the vertical insertion position of the magnetic plate 31C shown in FIG. 7B and the vertical insertion position of the magnetic plate 31b shown in FIG. an optical ranging unit 41 as shown in), the power transmission coil L 1 may be provided in the power feeding device side is provided. The distance measuring unit 41 may be provided with a magnetic coupling degree control mechanism including a light emitting unit 411 and a light receiving unit 412. If the light receiving section 412 is an optical time-of-flight (TOF type) distance measuring element d, the light emitting section 411 emits pulse light. For pulse emission, for example, a near-infrared LD (laser diode) or near-infrared LED is used. Pulsed light reflected from the rear of the power receiving coil L 2 and EV is irradiated to the light receiving portion 412, such as through a lens and a BPF (band-pass filter). The distance measuring unit 41 may be configured as a laser interferometer or the like.
 測距ユニット41の受光部412は、図8(a)に示した論理演算制御部42の距離演算部421が接続されている。受光部412の出力は、図示を省略した出力バッファやインターフェイスを介して、磁気的結合度制御機構を構成する距離演算部421に入力され、距離演算部421において、送電側コイルL1と受電側コイルL2の間の距離測定に必要な演算処理が実施される。論理演算制御部42には論理演算制御部42における磁気的結合度の値の計算等の論理演算に必要なデータや所望の等価結合係数(擬結合係数)を実現するために必要な磁性体板の上下方向における挿入位置のデータが格納されたデータ記憶装置45が接続されている。なお、図示を省略しているが、論理演算制御部42には論理演算制御部42の動作を命令するプログラムを記憶したプログラム記憶装置等が接続されていてもよい。 The light receiving section 412 of the distance measuring unit 41 is connected to the distance calculating section 421 of the logical operation control section 42 shown in FIG. The output of the light receiving unit 412 via the output buffer or interface, not shown, are input to the distance calculator 421 constituting the magnetic coupling of the control mechanism, the distance calculator 421, the power transmission coil L 1 and the power receiving side arithmetic processing necessary for distance measurement between the coil L 2 is performed. The logical operation control unit 42 includes a magnetic plate necessary for realizing data necessary for a logical operation such as calculation of a magnetic coupling degree value in the logical operation control unit 42 and a desired equivalent coupling coefficient (pseudo-coupling coefficient). Is connected to a data storage device 45 in which data of the insertion position in the vertical direction is stored. Although not shown, the logical operation control unit 42 may be connected to a program storage device or the like that stores a program for instructing the operation of the logical operation control unit 42.
 距離演算部421が計算した送電側コイルL1と受電側コイルL2の間の距離のデータは、論理演算制御部42の結合係数計算部422に送信される。結合係数計算部422は、距離演算部421が計算した送電側コイルL1と受電側コイルL2の間の距離のデータから、現在の送電側コイルL1と受電側コイルL2の間の磁気的結合度の値を求める。結合係数計算部422は更に、データ記憶装置45に格納された、所望の等価結合係数を実現するために必要な磁性体板の上下方向における挿入位置のデータから、磁性体板の移動距離を算出し、結合係数調整駆動装置43に出力する。図8(a)に示した磁気的結合度制御機構の結合係数調整駆動装置43は結合係数計算部422から送られた磁性体板の移動距離のデータから、図7(b)に示した磁性体板31Cの上下方向における挿入位置や図7(c)に示した磁性体板31bの上下方向における挿入位置を所望の位置になるように駆動制御する。結合係数調整駆動装置43にはステップモータ等、周知の位置制御機構を採用可能である。このようにして、測距ユニット41の出力から、磁性体板31Cや磁性体板31bの上下方向における挿入位置を所望の位置になるようにフィードバック制御することができる。 Data of the distance between the distance calculation unit 421 has calculated the power transmission coil L 1 receiver coil L 2 is transmitted to the coupling coefficient calculation unit 422 of the logical operation control unit 42. The coupling coefficient calculation unit 422 calculates the current magnetic force between the power transmission coil L 1 and the power reception coil L 2 from the data on the distance between the power transmission coil L 1 and the power reception coil L 2 calculated by the distance calculation unit 421. Find the value of the degree of static coupling. The coupling coefficient calculation unit 422 further calculates the moving distance of the magnetic plate from the data of the insertion position in the vertical direction of the magnetic plate necessary to realize the desired equivalent coupling coefficient, stored in the data storage device 45. Then, the output is outputted to the coupling coefficient adjustment driving device 43. The coupling coefficient adjustment driving device 43 of the magnetic coupling degree control mechanism shown in FIG. 8A uses the magnetic plate moving distance data transmitted from the coupling coefficient calculation unit 422 as shown in FIG. The drive control is performed such that the vertical insertion position of the body plate 31C and the vertical insertion position of the magnetic plate 31b shown in FIG. A well-known position control mechanism such as a step motor can be adopted as the coupling coefficient adjustment driving device 43. In this way, from the output of the distance measuring unit 41, it is possible to perform feedback control so that the insertion positions of the magnetic plate 31C and the magnetic plate 31b in the vertical direction become desired positions.
 図8(a)に示す論理演算制御部42を含む磁気的結合度制御機構のコンピュータシステムにおいて、データ記憶装置45は、複数のレジスタ、複数のキャッシュメモリ、主記憶装置、補助記憶装置を含む一群の内から適宜選択された任意の組み合わせとすることも可能である。又、キャッシュメモリは1次キャッシュメモリと2次キャッシュメモリの組み合わせとしてもよく、更に3次キャッシュメモリを備えるヒエラルキーを有しても構わない。図8(a)に示した論理演算制御部42は、マイクロチップとして実装されたマイクロプロセッサ(MPU)等を使用してコンピュータシステムを構成することが可能である。又、磁気的結合度制御機構のコンピュータシステムを構成する論理演算制御部42として、算術演算機能を強化し信号処理に特化したデジタルシグナルプロセッサ(DSP)や、メモリや周辺回路を搭載し組込み機器制御を目的としたマイクロコントローラ(マイコン)等を用いてもよい。或いは、現在の汎用コンピュータのメインCPUを論理演算制御部42に用いてもよい。 In the computer system of the magnetic coupling degree control mechanism including the logical operation control unit 42 illustrated in FIG. 8A, the data storage device 45 is a group including a plurality of registers, a plurality of cache memories, a main storage device, and an auxiliary storage device. It is also possible to use an arbitrary combination appropriately selected from the above. Further, the cache memory may be a combination of a primary cache memory and a secondary cache memory, and may have a hierarchy including a tertiary cache memory. The logical operation control unit 42 shown in FIG. 8A can configure a computer system using a microprocessor (MPU) or the like mounted as a microchip. Also, as a logical operation control unit 42 constituting a computer system of the magnetic coupling degree control mechanism, a digital signal processor (DSP) specializing in signal processing with an enhanced arithmetic operation function and a memory or a peripheral circuit are mounted on an embedded device. A microcontroller (microcomputer) for control may be used. Alternatively, the main CPU of the current general-purpose computer may be used for the logical operation control unit 42.
 図9は、図4(a)に示した実装回路の動作をタイミング毎に分けて時系列で示す図である。図9(a)に示すように、一次側駆動スイッチSW1としての第1の半導体スイッチング素子Q1をオン状態にしたタイミングでは、先ず送電側コンデンサCに電荷が蓄えられる。図9(a)に示すように、このときの第1の半導体スイッチング素子Q1の内部抵抗ron1である。図9(a)のタイミングにおいて、送電側コンデンサCの端子間電圧VCが増大し始めると、送電側コンデンサCに蓄積された電気エネルギーの一部は送電側コイル電流IL1として送電側コイルL1に移り、送電側コイルL1に蓄積される。送電側コイルL1の電気エネルギーは、僅かであるが、二次側回路3の受電側コイルL2に伝送される。二次側回路3の受電側コイルL2に伝送された電気エネルギーは、受電側コイル電流IL2として二次側回路3の受電側コンデンサCの充電に費やされる。しかし、図9(a)のタイミングでは受電側コンデンサCの端子間電圧VCは負の値である。 FIG. 9 is a diagram showing the operation of the mounting circuit shown in FIG. As shown in FIG. 9 (a), at the timing of the first semiconductor switching element Q1 as a primary-side drive switch SW1 to the ON state, charges are stored first in the transmission side capacitor C 1. As shown in FIG. 9A, the internal resistance r on1 of the first semiconductor switching element Q1 at this time is shown. In the timing of FIG. 9 (a), the inter-terminal voltage VC 1 of the power transmission capacitor C 1 begins to increase, a portion of the stored electrical energy to the power transmission side capacitor C 1 is the transmission side as the power transmission coil current I L1 moves to the coil L 1, is accumulated in the power transmission coil L 1. The electric energy of the power transmission side coil L 1 is transmitted to the power reception side coil L 2 of the secondary circuit 3, though it is small. Electrical energy transmitted to the power receiving coil L 2 of the secondary side circuit 3 is consumed for charging the power receiving side capacitor C 2 of the power receiving coil current I L2 as the secondary-side circuit 3. However, the inter-terminal voltage VC 2 of the power receiving side capacitor C 2 is a timing shown in FIG. 9 (a) is a negative value.
 次に、図9(b)に示すタイミングで、一次側駆動スイッチSW1としての第1の半導体スイッチング素子Q1を遮断状態(オフ状態)にすると、送電側コンデンサCの端子間電圧VCが減少し始め、送電側コンデンサCに蓄積された電気エネルギーは送電側コイル電流IL1として送電側コイルL1に移り、送電側コイルL1に蓄積される。送電側コイルL1に蓄積された電気エネルギーは、一次側回路2と二次側回路3との間の一次側回路2と二次側回路3の間の特性調和伝送によって二次側回路3の受電側コイルL2にワイヤレス伝送される。二次側回路3の受電側コイルL2に伝送された電気エネルギーは、受電側コイル電流IL2として二次側回路3の受電側コンデンサCに蓄積される。図9(b)のタイミングでは受電側コンデンサCの端子間電圧VCは正の値になる。受電側コンデンサCの端子間電圧VCはピーク値に到達した後、減少を開始する。 Then, at the timing shown in FIG. 9 (b), when the first semiconductor switching element Q1 as a primary-side drive switch SW1 to cut off state (OFF state), the voltage between the terminals VC 1 of the power transmission capacitor C 1 decreases was started, electric energy stored in the power transmitting side capacitor C 1 is transferred to the power transmission coil L 1 as the power transmission coil current I L1, it is accumulated in the power transmission coil L 1. The electric energy stored in the power transmission side coil L 1 is transferred to the secondary circuit 3 by the characteristic harmonic transmission between the primary circuit 2 and the secondary circuit 3 between the primary circuit 2 and the secondary circuit 3. It is wirelessly transmitted to the power receiving coil L 2. Electrical energy transmitted to the power receiving coil L 2 of the secondary side circuit 3 is stored in the power receiving side capacitor C 2 of the secondary side circuit 3 as the power receiving coil current I L2. Terminal voltage VC 2 of the power receiving side capacitor C 2 is a timing shown in FIG. 9 (b) is a positive value. Terminal voltage VC 2 of the power receiving side capacitor C 2 after reaching the peak value, starts decreasing.
 端子間電圧VCが減少すると、受電側コンデンサCに蓄積された電気エネルギーは、図9(b)に示すように、充電電流ICSとして負荷素子6に流れ、負荷素子6が充電される。しかしながら、端子間電圧VCの減少に伴い、受電側コンデンサCに蓄積された電気エネルギーの一部は、図9(b)に示すように、受電側コイルL2に受電側コイル電流IL2として環流し、受電側コイルL2にも電気的エネルギーが蓄積される。受電側コイルL2に蓄積された電気エネルギーは、図9(c)に示すように、二次側回路3と一次側回路2との間の一次側回路2と二次側回路3の間の特性調和伝送によって一次側回路2の送電側コイルL1に環流される。 When the terminal voltage VC 2 is reduced, the electric energy stored in the power receiving side capacitor C 2, as shown in FIG. 9 (b), into the load element 6 as the charging current I CS, the load device 6 is charged . However, with the decrease of the terminal voltage VC 2, a portion of the accumulated in the power receiving side capacitor C 2 electrical energy, as shown in FIG. 9 (b), the power receiving side coil current to the power receiving side coil L 2 I L2 refluxed as electrical energy is stored in the power receiving coil L 2. Electrical energy stored in the power receiving side coil L 2, as shown in FIG. 9 (c), between the primary-side circuit 2 and the secondary-side circuit 3 between the secondary-side circuit 3 and the primary-side circuit 2 ring flows to the power transmission coil L 1 of the primary-side circuit 2 by characteristic harmonic transmission.
 図9(c)に示すように、送電側コイルL1に環流された送電側コイル電流IL1によって、送電側コイルL1に蓄えられた電気エネルギーは送電側コンデンサCに環流し始め、送電側コンデンサCの端子間電圧VCは環流電流により増大を開始する。したがって、図9(c)に示すように、送電側コイルL1に環流された送電側コイル電流IL1を測定する電流計461、及び端子間電圧VCを測定する電圧計462を、一次側回路2に設けておけば、二次側回路3から環流した電気エネルギーの大きさが測定できる。即ち、一次側回路2に設けた電流計461と電圧計462によって、一次側回路2と二次側回路3の間の特性調和伝送によって、一次側回路2から二次側回路3に伝送されるワイヤレス伝送の効率が測定できる。 As shown in FIG. 9 (c), the power transmission coil L 1 transmitting-coil current was circulated to I L1, electrical energy stored in the power transmission coil L 1 starts refluxed to the power transmission side capacitor C 1, the transmission terminal voltage VC 1 side capacitor C 1 starts to increase by circulating electric current. Accordingly, as shown in FIG. 9 (c), an ammeter 461 for measuring the power transmission coil current I L1 which circulated in the power transmission coil L 1, and a voltmeter 462 for measuring the terminal voltage VC 1, the primary side If provided in the circuit 2, the magnitude of the electric energy circulated from the secondary circuit 3 can be measured. That is, the current is transmitted from the primary circuit 2 to the secondary circuit 3 by the characteristic metering transmission between the primary circuit 2 and the secondary circuit 3 by the ammeter 461 and the voltmeter 462 provided in the primary circuit 2. The efficiency of wireless transmission can be measured.
 このため、図7(b)に示した磁性体板31Cの上下方向における挿入位置や図7(c)に示した磁性体板31bの上下方向における挿入位置を制御する磁気的結合度制御機構を構成するには、図8(b)に示すような伝送効率測定ユニット46を、送電側コイルL1が設けられている給電装置側に設けてもよい。伝送効率測定ユニット46は、図9(c)に示したように、一次側回路2に設けた電流計461と電圧計462である。 For this reason, a magnetic coupling degree control mechanism for controlling the vertical insertion position of the magnetic plate 31C shown in FIG. 7B and the vertical insertion position of the magnetic plate 31b shown in FIG. to configure the transmission efficiency measuring unit 46 as shown in FIG. 8 (b), the power transmission coil L 1 may be provided in the power feeding device side is provided. The transmission efficiency measuring unit 46 is an ammeter 461 and a voltmeter 462 provided in the primary circuit 2 as shown in FIG.
 図9(c)に示した電流計461と電圧計462は、図8(b)に示した磁気的結合度制御機構を構成する論理演算制御部47の伝送効率演算部471が接続されている。電流計461と電圧計462の出力は、図示を省略した出力バッファやインターフェイスを介して伝送効率演算部471に入力され、伝送効率演算部471において、送電側コイルL1と受電側コイルL2の間の伝送効率測定に必要な演算処理が実施される。論理演算制御部47には論理演算制御部47における伝送効率の演算等の論理演算に必要なデータや所望の伝送効率を実現するために必要な磁性体板の上下方向における挿入位置のデータが格納されたデータ記憶装置45が接続されている。なお、図示を省略しているが、論理演算制御部47には論理演算制御部47の動作を命令するプログラムを記憶したプログラム記憶装置等が接続されていてもよい。 The transmission meter 461 of the logical operation controller 47 constituting the magnetic coupling degree control mechanism shown in FIG. 8B is connected to the ammeter 461 and the voltmeter 462 shown in FIG. 9C. . The output of the ammeter 461 and the voltmeter 462 is inputted to the transmission efficiency calculating unit 471 via the output buffer or interface, not shown, in the transmission efficiency calculating section 471, of the power transmission coil L 1 and the power receiving coil L 2 Arithmetic processing required for transmission efficiency measurement between the two is performed. The logical operation control unit 47 stores data necessary for logical operation such as transmission efficiency operation in the logical operation control unit 47 and data of an insertion position in a vertical direction of the magnetic plate required to realize a desired transmission efficiency. Connected data storage device 45 is connected. Although not shown, the logical operation control unit 47 may be connected to a program storage device or the like that stores a program for instructing the operation of the logical operation control unit 47.
 伝送効率演算部471が計算した送電側コイルL1と受電側コイルL2の間の伝送効率のデータは、磁気的結合度制御機構を構成する論理演算制御部47の結合係数計算部472に送信される。結合係数計算部472は、伝送効率演算部471が計算した送電側コイルL1と受電側コイルL2の間の伝送効率のデータから、現在の送電側コイルL1と受電側コイルL2の間の磁気的結合度の値を求める。結合係数計算部472は更に、データ記憶装置45に格納された、所望の伝送効率を実現するために必要な磁性体板の上下方向における挿入位置のデータから、磁性体板の移動距離を算出し、結合係数調整駆動装置43に出力する。結合係数調整駆動装置43は結合係数計算部472から送られた磁性体板の移動による伝送効率の変化のデータから、図7(b)に示した磁性体板31Cの上下方向における挿入位置や図7(c)に示した磁性体板31bの上下方向における挿入位置を所望の位置になるように駆動制御する。結合係数調整駆動装置43にはステップモータ等、周知の位置制御機構を採用可能である。このようにして、図8(b)に示した磁気的結合度制御機構は伝送効率測定ユニット46の出力から、磁性体板31Cや磁性体板31bの上下方向における挿入位置を所望の位置になるようにフィードバック制御することができる。 Data transmission efficiency between the transmission efficiency calculation unit 471 has calculated the power transmission coil L 1 receiver coil L 2 is transmitted to the coupling coefficient calculation unit 472 of the logical operation control unit 47 constituting the magnetic coupling of the control mechanism Is done. Coupling coefficient calculation unit 472, the transmission efficiency of data between the transmission efficiency calculation unit 471 and the power transmitting coil L 1 calculated power receiving coil L 2, between the power receiving side coil L 2 and the current of the power transmission coil L 1 Of the degree of magnetic coupling of The coupling coefficient calculation unit 472 further calculates the moving distance of the magnetic plate from the data of the insertion position in the vertical direction of the magnetic plate necessary to achieve the desired transmission efficiency, stored in the data storage device 45. Are output to the coupling coefficient adjustment driving device 43. The coupling coefficient adjustment driving device 43 uses the data of the change in the transmission efficiency due to the movement of the magnetic plate sent from the coupling coefficient calculation unit 472 to determine the insertion position in the vertical direction of the magnetic plate 31C shown in FIG. The drive control is performed such that the vertical insertion position of the magnetic plate 31b shown in FIG. A well-known position control mechanism such as a step motor can be adopted as the coupling coefficient adjustment driving device 43. In this way, the magnetic coupling degree control mechanism shown in FIG. 8B sets the insertion position of the magnetic plate 31C or the magnetic plate 31b in the vertical direction from the output of the transmission efficiency measurement unit 46 to the desired position. Feedback control.
 図8(a)で説明したのと同様に、図8(b)に示す磁気的結合度制御機構の一部をなすデータ記憶装置45は、複数のレジスタ、複数のキャッシュメモリ、主記憶装置、補助記憶装置を含む一群の内から適宜選択された任意の組み合わせとすることも可能である。図8(b)に示した論理演算制御部47は、マイクロチップとして実装されたMPU等を使用してコンピュータシステムを構成することが可能である。又、コンピュータシステムを構成する論理演算制御部47として、算術演算機能を強化し信号処理に特化したDSPや、メモリや周辺回路を搭載し組込み機器制御を目的としたマイコン等を用いてもよい。或いは、現在の汎用コンピュータのメインCPUを論理演算制御部47に用いてもよい。 As described with reference to FIG. 8A, the data storage device 45 forming a part of the magnetic coupling control mechanism illustrated in FIG. 8B includes a plurality of registers, a plurality of cache memories, a main storage device, It is also possible to use an arbitrary combination appropriately selected from a group including the auxiliary storage device. The logical operation control unit 47 shown in FIG. 8B can configure a computer system using an MPU or the like mounted as a microchip. Further, as the logical operation control unit 47 constituting the computer system, a DSP which has an enhanced arithmetic operation function and is specialized in signal processing, or a microcomputer which is equipped with a memory or a peripheral circuit and controls embedded devices may be used. . Alternatively, the main CPU of the current general-purpose computer may be used for the logical operation control unit 47.
 従来知られている「共振」とは、一次側回路2の正弦波の振動が、自由振動している二次側回路3に伝達され、二次側回路3が一次側回路2と同じ周波数で振動する概念である。本発明の第1の実施形態に係る電力伝送装置においては、一次側回路2の自由振動を制限し、一次側回路2における過渡的な電流-電圧の変化を実現させる一次側駆動スイッチSW1を備えているので、非正弦波である鋸波状の過渡応答特性を、本発明者らが初めて提案した「特性調和伝送」という概念によって、二次側回路3に伝達することが可能である。非正弦波である鋸波状の過渡応答特性を用いることにより、従来のように一次側回路2の側に正弦波の振動を生成する複雑で高価な交流電源回路が不要となる。 The conventionally known “resonance” means that the sine wave vibration of the primary circuit 2 is transmitted to the freely vibrating secondary circuit 3, and the secondary circuit 3 has the same frequency as the primary circuit 2. This is a vibrating concept. The power transmission device according to the first embodiment of the present invention includes a primary-side drive switch SW1 that limits free oscillation of the primary-side circuit 2 and realizes a transient current-voltage change in the primary-side circuit 2. Therefore, it is possible to transmit the non-sinusoidal sawtooth-like transient response characteristic to the secondary circuit 3 by the concept of “characteristic harmonic transmission” first proposed by the present inventors. By using a sawtooth-like transient response characteristic that is a non-sinusoidal wave, a complicated and expensive AC power supply circuit that generates a sinusoidal vibration on the primary circuit 2 side as in the related art becomes unnecessary.
 既に述べたとおり、第1の実施形態に係る電力伝送装置においては、一次側回路2に内在する時定数と二次側回路3に内在する時定数とを調和させて一次側回路2の電気エネルギーを二次側回路3に伝送する。この一次側回路2と二次側回路3の間の特性調和伝送は、例えば、送電側コンデンサC1と受電側コンデンサC2の容量を、コンデンサの寄生抵抗を含めて等しくし、送電側コイルL1と受電側コイルL2のインダクタンスをコイルの寄生抵抗を含めて等しくすればよい。よって、例えば一次側駆動スイッチSW1のオン/オフの繰り返し周期を500~600μsとするのであれば、送電側コンデンサC1と受電側コンデンサC2の容量を、例えば400μF~600μFの範囲で互いに同一とし、送電側コイルL1と受電側コイルL2のインダクタンスを、例えば5μH~20μHの範囲で互いに同一とすればよい。 As described above, in the power transmission device according to the first embodiment, the time constant inherent in the primary circuit 2 and the time constant inherent in the secondary circuit 3 are harmonized and the electric energy of the primary circuit 2 is adjusted. Is transmitted to the secondary circuit 3. Characteristics harmony transmission between the primary-side circuit 2 and the secondary-side circuit 3, for example, the capacity of the power transmission capacitor C 1 and the power receiving side capacitor C 2, and equal, including the parasitic resistance of the capacitor, the power transmission coil L 1 and inductance of the power receiving coil L 2 and may be equal, including the parasitic resistance of the coil. Therefore, for example, if the repetition cycle of ON / OFF of the primary side drive switch SW1 is set to 500 to 600 μs, the capacitances of the power transmission side capacitor C 1 and the power reception side capacitor C 2 are made equal to each other within a range of, for example, 400 μF to 600 μF. The inductance of the power transmitting side coil L 1 and the power receiving side coil L 2 may be the same, for example, in the range of 5 μH to 20 μH.
 図1(b)及び図2に示したような鋸波状の過渡応答波形には複数の瘤が1周期に含まれている。第1の実施形態に係る電力伝送装置の過渡応答波形を解析的に解くのは極めて難しい。そこで、近似的ではあるが、図28に示した回路について、交流理論によりシミュレーションをしてみる。図28において、一次側回路2と二次側回路3のコンデンサの容量とコイルのインダクタンスは同じ値にする。即ちC=C2=500μF、L1=L2=10μHとして近似的なシミュレーションする。このとき(6)式で与えられるRLC直列回路の共振周波数fo1=2.25kHz,(7)式で与えられるRLC直列回路の共振周波数fo2=2.25kHzである。対応する繰り返し周期は444μsとなる。 A plurality of bumps are included in one cycle in the sawtooth-like transient response waveform as shown in FIG. 1B and FIG. It is extremely difficult to analytically solve the transient response waveform of the power transmission device according to the first embodiment. Therefore, although approximate, the circuit shown in FIG. 28 is simulated by AC theory. In FIG. 28, the capacitance of the capacitor of the primary circuit 2 and the inductance of the coil of the secondary circuit 3 are set to the same value. That is, an approximate simulation is performed with C 1 = C 2 = 500 μF and L 1 = L 2 = 10 μH. At this time, the resonance frequency f o1 of the RLC series circuit given by the equation (6) is 2.25 kHz, and the resonance frequency f o2 of the RLC series circuit given by the equation (7) is 2.25 kHz. The corresponding repetition period is 444 μs.
 一次側駆動スイッチSW1をオンにして、ステップ入力があった場合、電流は、最初に送電側コンデンサCに流れる。送電側コイルL1は、もともと急激な電流の流入を妨げる性質がある。徐々に送電側コンデンサCの電圧が上昇し、徐々に送電側コイルL1にも電流が流れ始める。そのうちに、送電側コンデンサCに溜まった電荷も送電側コイルL1側に流れ出すようになる。こうなると、送電側コンデンサC1の電圧は降下する。一次側駆動スイッチSW1をオフするまでの時間は、静電的エネルギー(1/2)CVと磁気的エネルギー(1/2)LIの和が最大になるように設定するのが理想であるが、送電側コイルL1に電流Iが流れた状態で、一次側駆動スイッチSW1がオフするので、送電側コイルL1に逆起電力が発生する。 Turn on the primary side driving switch SW1, when there is a step input, current initially flows to the power transmission side capacitor C 1. Transmitting coil L 1 has a property that prevents the inflow of originally rapid current. Gradually the voltage of the power transmission side capacitor C 1 is increased, current starts flowing gradually to the power transmission coil L 1. In time, the charge is also to flow out to the power transmission coil L 1 side that has accumulated in the power transmission side capacitor C 1. When this happens, the voltage of the power transmission side capacitor C1 drops. Time to turn off the primary-side drive switch SW1 is ideal that the sum of the electrostatic energy (1/2) CV 2 and magnetic energy (1/2) LI 2 is set to be maximized but, with the current I to the power transmission coil L 1 flows, the primary side driving switch SW1 is turned off so that counter electromotive force is generated in the power transmission coil L 1.
 送電側コイルL1に発生する逆起電力の電圧が、図4に示した一次側駆動スイッチSW1に用いる第1の半導体スイッチング素子Q1の耐圧を越えないように注意が必要である。一次側駆動スイッチSW1のオン/オフの繰り返し周期は、送電側コンデンサC1の端子間電圧VC1が、再び上昇してピークとなるまでの時間を考慮して、ピークに達するタイミングより少し早めにする。 Voltage of the counter electromotive force generated in the power transmission coil L 1 is, care must be taken so as not to exceed the withstand voltage of the first semiconductor switching element Q1 to be used for primary drive switch SW1 shown in FIG. The repetition cycle of ON / OFF of the primary-side drive switch SW1 is set slightly earlier than the timing at which the voltage VC1 of the power transmission capacitor C1 reaches the peak in consideration of the time until the voltage VC1 rises again and reaches the peak.
 図29に近似的なシミュレーション結果としての送電側コンデンサCの電圧の変化を示す。図29には図1(b)及び図2に示したように、送電側コンデンサCの電圧の変化に鋸波状の過渡応答波形が得られる。図30を用いて、鋸波の瘤は、受電側コイルL2に誘導される電流による磁束によって一次側回路2の電流が減少させられる為に生じることを説明する。第4の実施形態で後述するような一次側駆動スイッチSW1、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4の4つのスイッチを用いるモードの場合と同様に、二次側回路3の電圧が最大となる時に、一次側回路2の電圧がゼロになる現象に対応し、図34に示すW型の過渡応答波形の真ん中の山が鋸波の瘤になる。 It indicates an approximate simulation change of the voltage of the power transmission capacitor C 1 as a result of the Figure 29. The Figure 29 as shown in FIG. 1 (b) and 2, the transient response waveform sawtooth obtain the change of the voltage of the power transmission capacitor C 1. With reference to FIG. 30, aneurysm sawtooth illustrates that occur to the current of the power receiving coil L 2 primary circuit 2 by the magnetic flux due to current induced in is reduced. The voltage of the secondary side circuit 3 is the same as in the case of the mode using four switches of the primary side drive switch SW1, the power transmission side switch SW2, the power reception side switch SW3 and the load control switch SW4 as described later in the fourth embodiment. Corresponds to the phenomenon that the voltage of the primary side circuit 2 becomes zero when the maximum value becomes maximum, and the middle peak of the W-shaped transient response waveform shown in FIG.
 図34に示すW型の過渡応答波形については図35を用いて後述する。図28の回路から寄生容量や寄生抵抗等を省略し簡略化した回路図である図31に示した回路を用い、近似的なシミュレーションをしてみると、図32に示したようなWの形状の右側の谷の電圧が持ち上がった過渡応答波形が得られる。図32の破線の円A1及びA2でそれぞれ囲んで示したW型の過渡応答波形の真ん中の山が、寄生容量や寄生抵抗等の影響で、図1(b)及び図2に示したような鋸波に瘤として現れていることが分かる。 The W-type transient response waveform shown in FIG. 34 will be described later with reference to FIG. An approximate simulation using the circuit shown in FIG. 31 which is a simplified circuit diagram in which the parasitic capacitance and the parasitic resistance and the like are omitted from the circuit of FIG. 28 shows that the shape of the W as shown in FIG. 32 is obtained. A transient response waveform in which the voltage of the valley on the right side of FIG. The middle peaks of the W-shaped transient response waveforms respectively surrounded by the dashed circles A 1 and A 2 in FIG. 32 are shown in FIGS. 1B and 2 due to the influence of parasitic capacitance and parasitic resistance. It can be seen that such a saw wave appears as a bump.
 第1の実施形態における一次側駆動スイッチSW1のみのモードの場合、図30(a)~(d)に示すように、一次側駆動スイッチSW1のオン/オフの繰り返し周期を長くすると、過渡応答波形の瘤が小さくなり、次第に図1(b)及び図2に示したような鋸波の応答波形に近づいていく。図29は、図30(c)に示した繰り返し周期575μsの場合の過渡応答波形を拡大して示す図であるが、図1(b)及び図2に示した過渡応答波形に対応している。 In the case of the mode of the first embodiment in which only the primary-side drive switch SW1 is used, as shown in FIGS. 30A to 30D, if the repetition cycle of ON / OFF of the primary-side drive switch SW1 is increased, a transient response waveform is obtained. The aneurysm becomes small, and gradually approaches the response waveform of the sawtooth wave as shown in FIGS. FIG. 29 is an enlarged view of the transient response waveform in the case of the repetition period of 575 μs shown in FIG. 30C, which corresponds to the transient response waveforms shown in FIG. 1B and FIG. .
 一次側駆動スイッチSW1のオン/オフの繰り返し周期565μsの場合は、図30(a)の破線の円Aaで囲んで示すようなW型の過渡応答波形である。(6)式及び(7)式が規定するRLC直列回路の共振周波数から求められる繰り返し周期は444μsであるので、図30(a)の繰り返し周期は、SW1をONしている時間100μsを考慮しても交流理論で求められる繰り返し周期よりも長い。即ち第1の実施形態に係る電力伝送装置においては、交流理論で求められるRLC直列回路の共振周波数とは異なる繰り返し周期で振動していることが分かる。 In the case where the ON / OFF repetition cycle of the primary-side drive switch SW1 is 565 μs, the waveform is a W-shaped transient response waveform surrounded by a dashed circle Aa in FIG. Since the repetition period obtained from the resonance frequency of the RLC series circuit defined by the expressions (6) and (7) is 444 μs, the repetition period in FIG. However, it is longer than the repetition period required by AC theory. That is, in the power transmission device according to the first embodiment, it can be seen that the power transmission device oscillates at a repetition cycle different from the resonance frequency of the RLC series circuit obtained by the AC theory.
 第1の実施形態に係る電力伝送装置において、二次側回路3に一次側回路2から電気エネルギーを特性調和伝送によって伝送することにより振幅が小さくなる。繰り返し周期を、少し長くして図30(b)の繰り返し周期570μsの場合は、破線の円Abで囲んで示したように、過渡応答波形を示すWの形状のうち右側の谷の電圧が持ち上がる。更に、図1(b)及び図2に示したのと同様に、鋸波の上側にも膨らみが生じはじめる。 In the power transmission device according to the first embodiment, the amplitude is reduced by transmitting electric energy from the primary circuit 2 to the secondary circuit 3 by characteristic harmonic transmission. The repetition period, in the case of repetition period 570μs in Figure 30 was slightly longer (b), as shown enclosed by the dashed circle A b, the voltage of the right valley of the shape of W showing a transient response waveform Lift. Further, as shown in FIG. 1B and FIG. 2, swelling starts to occur on the upper side of the sawtooth wave.
 特性調和伝送によって一次側回路2から二次側回路3に電気エネルギーを更に伝送することにより、更に振幅が小さくなる。繰り返し周期を更に長くして図30(c)の繰り返し周期575μsとした場合は、破線の円Acで囲んで示したようにWの形状のうち、右側の谷の電圧が更に持ち上がり瘤状の肩部となり、過渡応答波形からWの形状が消える。そして、図1(b)及び図2に示したのと同様に、鋸波の上側にも瘤が現れてくる。 By further transmitting electric energy from the primary side circuit 2 to the secondary side circuit 3 by characteristic harmonic transmission, the amplitude is further reduced. If the repetition period was longer and the repetition period 575μs in FIG. 30 (c), the one in the shape of W as shown enclosed by the dashed circle A c, the voltage of the right valley further raised nodular It becomes a shoulder, and the shape of W disappears from the transient response waveform. Then, as shown in FIG. 1B and FIG. 2, a bump appears on the upper side of the sawtooth wave.
 特性調和伝送によって、二次側回路3に電気エネルギーを更に伝送することにより更に振幅が小さくなり、繰り返し周期を更に長くして図30(d)の繰り返し周期580μsとした場合は、破線の円Adで囲んで示したように、過渡応答波形を示す瘤状の肩部が更に持ち上がる。そして、図1(b)及び図2に示したのと同様に、鋸波の上側の瘤も顕著になって、2段の瘤が示されるようになる。このように、過渡応答波形を示すWの形状のうち、振幅がだんだん小さくなり、繰り返し周期を長くすると右側の谷の電圧がだんだん下がらなくなり、Wの形状の右側の谷が持ち上がり、2段の瘤を有する鋸波状の過渡応答波形になっていく。 In the case where the electric energy is further transmitted to the secondary circuit 3 by the characteristic harmonic transmission, the amplitude is further reduced, and the repetition period is further increased to 580 μs in FIG. 30 (d). As indicated by d , the bulge-shaped shoulder showing the transient response waveform further rises. Then, as shown in FIGS. 1B and 2, the bump on the upper side of the sawtooth wave is also remarkable, and a two-stage bump is shown. As described above, in the shape of W showing the transient response waveform, the amplitude gradually decreases, and when the repetition period is lengthened, the voltage of the right valley does not gradually decrease, the right valley of the W shape rises, and the two-stage bump , A sawtooth-like transient response waveform having
 一次側駆動スイッチSW1のオン/オフの繰り返し周期を長くするとWの形状の右側の谷の電圧が持ち上がるのは、二次側回路3で受け取った電気エネルギーが充電対象である負荷素子6に移動したためと考えられる。一次側駆動スイッチSW1を入れた際の電流の最大値と、負荷素子6に流れる電流の最大値は、第1の実施形態に係る電力伝送装置の実回路を構成している電線の寄生インダクタンスに依存する。実回路で測定された波形の解析から寄生インダクタンスは、1mH~3μH程度あるものと推定される。即ち、図1(b)及び図2に示した複数の瘤を有する鋸波状の過渡応答波形は、寄生抵抗、寄生容量、寄生インダクタンスに依拠した回路に固有の時定数によって、発生していることがわかる。 When the ON / OFF repetition cycle of the primary-side drive switch SW1 is lengthened, the voltage at the right valley of the W shape rises because the electric energy received by the secondary-side circuit 3 has moved to the load element 6 to be charged. it is conceivable that. The maximum value of the current when the primary-side drive switch SW1 is turned on and the maximum value of the current flowing through the load element 6 are different from the parasitic inductance of the electric wire constituting the actual circuit of the power transmission device according to the first embodiment. Dependent. From the analysis of the waveform measured in the actual circuit, it is estimated that the parasitic inductance is about 1 mH to 3 μH. That is, the sawtooth-like transient response waveform having a plurality of bumps shown in FIGS. 1B and 2 is generated by a time constant peculiar to a circuit relying on parasitic resistance, parasitic capacitance, and parasitic inductance. I understand.
 次に、従来の交流理論である(6)式が与えるRLC直列回路の共振周波数fo1を用い、ω0=2πfo1、ω1=ω0 /(1-k)1/2とし、図35に示すように、エネルギー転送関数f1として、転送タイミングである2π/ω1秒後にステップ状に減衰するシグモイド関数:
 
  f1=V3/[1+exp{106(t-2π/ω1)}]+V2     ……(8) 
 
を考える。ここで、ω1=ω0 /(1-k)1/2を定義するkは、式(1)の定義に用いた交流理論の結合係数KACである(k=KAC)。
Next, using the resonance frequency f o1 of the RLC series circuit given by Expression (6), which is a conventional AC theory, ω 0 = 2πf o1 and ω1 = ω 0 / (1-k) 1/2, and FIG. As shown, as an energy transfer function f1, a sigmoid function that attenuates stepwise after 2π / ω1 second which is a transfer timing:

f1 = V3 / [1 + exp {10 6 (t−2π / ω1)}] + V2 (8)

think of. Here, k that defines ω1 = ω 0 / (1−k) 1/2 is a coupling coefficient K AC of the AC theory used for the definition of Equation (1) (k = K AC ).
 更に、任意の減衰関数f2として、適当な減衰定数τで減数をする関数:
 
  f2=exp(-τt)                                   ……(9) 
 
を考える。例えば、第1の実施形態に係る電力伝送装置においては、減衰関数f2は、一次側コンデンサC1の両端の電圧VC1の最大値の寄生抵抗とコンデンサによる時定数τによる減衰する関数に対応する。
Further, as an arbitrary attenuation function f2, a function for reducing the number with an appropriate attenuation constant τ:

f2 = exp (-τt) (9)

think of. For example, in a power transmission device according to the first embodiment, the damping function f2 corresponds to a function that decays by a constant τ time due to the parasitic resistance and the capacitor of the maximum value of the voltage VC1 across the primary-side capacitor C 1.
 図35に記載したV1,V2,V3は、すべて一次側のコンデンサC1の両端の電圧VC1に対応させることができる。V1は、最初に、一次側のコンデンサC1にチャージされた電圧、V2が、二次側回路3に電気エネルギーに転送されたのちの一次側のコンデンサC1に残った電圧に対応出来る。図35に記載したV3は、それらの差分に対応する。エネルギー転送関数f1は一次側のコンデンサC1の両端の電圧VC1がV1からV2に下がることを意図して作った関数である。 Figure 35 V1, V2, V3 described may be all corresponding to the voltage VC1 at both ends of the capacitor C 1 of the primary side. V1 is initially the voltage charged in the capacitor C 1 of the primary side, V2 is, can correspond to the remaining voltage in the capacitor C 1 of the primary side of the after being transferred to the electrical energy to the secondary side circuit 3. V3 shown in FIG. 35 corresponds to those differences. Energy transfer function f1 is a function of the voltage VC1 across the capacitor C 1 of the primary side is made with the intention that falls V2 from V1.
 上述のω0=2πfo1を用いω2=ω0 /(1+k)1/2とし相互誘導関数φ(k)を、
 
φ(k)=cos(ω1t)+cos(ω2t)           ……(10) 
 
と定義すれば、関数(V1/2)φ(k)は図35の転送タイミング2π/ω1 秒後の細い破線の曲線で示すような変化を示す。ただし、第1の実施形態に係る電力伝送装置の結合係数Kは時間に依存するパラメータであり、交流理論の結合係数KACとは、厳密には異なることに留意が必要である。図35の細い破線は、負荷回路6に電流を供給する前の波形であり、一次側コンデンサC1の両端の電圧VC1の波形に対応する。転送タイミング2π/ω1秒後の細い破線は一次側コンデンサC1のエネルギーが、二次側に転送されない時の波形と考えることができる。
Using the above ω 0 = 2πf o1 and ω 2 = ω 0 / (1 + k) 1/2 , the mutual induction function φ (k) is

φ (k) = cos (ω1t) + cos (ω2t) (10)

35, the function (V1 / 2) φ (k) shows a change as shown by a thin broken line curve after the transfer timing of 2π / ω1 seconds in FIG. However, it should be noted that the coupling coefficient K of the power transmission device according to the first embodiment is a time-dependent parameter, and is strictly different from the coupling coefficient K AC of AC theory. Thin broken line in FIG. 35 is a waveform before supplying a current to the load circuit 6, corresponding to the waveform of the voltage VC1 across the primary-side capacitor C 1. The thin broken line after the transfer timing of 2π / ω1 second can be considered as a waveform when the energy of the primary side capacitor C1 is not transferred to the secondary side.
 関数(V2/2)φ(k)は、図35の転送タイミング2π/ω1 秒に至るまでの細い破線の曲線であり、負荷回路6に電流を供給した後のコンデンサC1の両端の電圧VC1の波形である。一次側コンデンサC1のエネルギーが、二次側に転送される分だけ、初めから二次側に移動していたと考えた時の波形に相当する。実線で示した関数f1・f2・φ(k)がコンデンサC1の両端の電圧VC1になり、W型を示すことが分かる。 Function (V2 / 2) φ (k ) is a thin dashed curve up to the transfer timing 2 [pi / .omega.1 seconds in FIG. 35, the voltage across the capacitor C 1 after a current is supplied to the load circuit 6 VC1 It is a waveform of. This corresponds to a waveform when it is considered that the energy of the primary side capacitor C1 has moved to the secondary side from the beginning by the amount transferred to the secondary side. Function shown by the solid line f1 · f2 · φ (k) is the voltage VC1 across the capacitor C 1, it is seen that the W-type.
 以上のとおり、第1の実施形態に係る電力伝送装置においては、特性調和伝送によって二次側回路3に電気エネルギーを伝送することにより振幅が小さくなる。即ち、図32に示すように、W型の過渡応答波形の右側の谷が小さくなり、次第に上に持ち上がり、くぼまなくなる。これによって、鋸波的になる全体的にRCの時定数で、寄生抵抗による電気エネルギーの散逸により減衰する。図28に示した回路についての交流理論による近似的なシミュレーションでは、あくまでも近似に過ぎず、交流理論の限界があるが、大凡2段の瘤を有する鋸波状の過渡応答波形が理解できるはずである。現実には、図1(b)及び図2に示した実験データのみが第1の実施形態に係る電力伝送装置の効果を説明できる。 As described above, in the power transmission device according to the first embodiment, the amplitude is reduced by transmitting the electric energy to the secondary circuit 3 by the characteristic harmonic transmission. That is, as shown in FIG. 32, the valley on the right side of the W-type transient response waveform becomes smaller, gradually rises upward, and does not become hollow. As a result, the RC time constant becomes a sawtooth wave and is attenuated by the dissipation of electric energy by the parasitic resistance. The approximate simulation by the AC theory for the circuit shown in FIG. 28 is only an approximation to the last, and there is a limit of the AC theory, but it should be able to understand a sawtooth-like transient response waveform having approximately two steps of bumps. . Actually, only the experimental data shown in FIGS. 1B and 2 can explain the effect of the power transmission device according to the first embodiment.
 即ち、送電側コンデンサC1と受電側コンデンサC2に同一のコンデンサを採用し、送電側コイルL1と受電側コイルL2のインダクタンスに同一のコイルを採用すれば、コイル及びコンデンサに寄生抵抗を含めて、一次側回路2に内在する時定数と二次側回路3に内在する時定数とが調和させることができる。 That is, the power transmission side capacitor C 1 and the power receiving side capacitor C 2 to employ the same capacitor, by employing a power transmitting coil L 1 and the power receiving side the same coil to the inductance of the coil L 2, a parasitic resistance in coil and capacitor In addition, the time constant inherent in the primary circuit 2 and the time constant inherent in the secondary circuit 3 can be harmonized.
 以上述べたとおり、本発明の第1の実施形態に係る電力伝送装置は、特性調和伝送という新規な概念を用いた交流理論に依拠しない技術であるので、安価な直流電源5を使用することができる。このため、第1の実施形態に係る電力伝送装置では高価なスイッチング電源が不要であり、回路構成が単純化され、制御回路側における電力損失も最小化される。特に一次側駆動スイッチSW1として電力用半導体スイッチング素子を採用する場合には、電力用半導体スイッチング素子をオン/オフ制御する単純な制御だけでよいので、制御回路側の電力損失も削減され、電源回路(0次回路)の損失を含めた総合的な電力伝送効率を高めることができる。特に回路構成が単純化されるので壊れにくく、回路設計が容易になる。又、電力伝送の限界電力を従来の交流理論における限界電力を凌駕する値にまで押し上げることができる。電力伝送の限界電力は原理的には無限大に押し上げることが出来るものであるが、電力伝送の限界距離も原理的には無限大に伸ばすことができる。 As described above, the power transmission device according to the first embodiment of the present invention is a technology that does not rely on an AC theory using a novel concept of characteristic harmonic transmission, so that an inexpensive DC power supply 5 can be used. it can. Therefore, the power transmission device according to the first embodiment does not require an expensive switching power supply, simplifies the circuit configuration, and minimizes power loss on the control circuit side. In particular, when a power semiconductor switching element is used as the primary-side drive switch SW1, only simple control for turning on / off the power semiconductor switching element is required, so that power loss on the control circuit side is reduced, and the power supply circuit is reduced. The overall power transmission efficiency including the (zero-order circuit) loss can be improved. In particular, since the circuit configuration is simplified, it is not easily broken, and the circuit design becomes easy. Further, the limit power of the power transmission can be increased to a value exceeding the limit power in the conventional AC theory. Although the limit power of power transmission can be pushed up to infinity in principle, the limit distance of power transmission can also be extended to infinity in principle.
 この結果、第1の実施形態に係る電力伝送装置によれば、電力伝送装置の全体の構成を簡略化して制御回路側の電力損失を最小限に抑制し、軽量・小型化及び高効率化が可能となり、省電力化による総合的な電力伝送効率を高めたワイヤレス電力伝送装置を安価に製造することができる。又、従来の交流理論で求められる繰り返し周期よりも長い繰り返し周期で特性調和伝送が実現できるので、従来の交流理論における重共振の場合よりも低い周波数でよい。低周波数の回路設計でよいので、一次側回路2側の電圧を高めることも容易になり、ジュール熱発生によるエネルギー損失も少なくできるので第1の実施形態に係る電力伝送装置は総合的な電力伝送効率が高い電力伝送装置を安価に製造することができる。寄生抵抗を下げることにより、原理的には電力伝送効率が99%を超え、100%に近い値まで高められた電力伝送装置を製造することができる。 As a result, according to the power transmission device according to the first embodiment, the overall configuration of the power transmission device is simplified, the power loss on the control circuit side is suppressed to a minimum, and a reduction in weight, size, and efficiency is achieved. This makes it possible to manufacture a wireless power transmission device with improved overall power transmission efficiency due to power saving at low cost. In addition, since the characteristic harmonic transmission can be realized with a repetition period longer than the repetition period obtained by the conventional AC theory, the frequency may be lower than the case of the heavy resonance in the conventional AC theory. Since a low-frequency circuit design is sufficient, the voltage on the primary circuit 2 side can be easily increased, and the energy loss due to the generation of Joule heat can be reduced, so that the power transmission device according to the first embodiment has a comprehensive power transmission. A power transmission device with high efficiency can be manufactured at low cost. By lowering the parasitic resistance, it is possible in principle to manufacture a power transmission device whose power transmission efficiency exceeds 99% and is increased to a value close to 100%.
(第2の実施形態)
 本発明の第2の実施形態に係る電力伝送装置は図10(a)に示すように、図1に示した第1の実施形態に係る電力伝送装置の回路構成に、送電側スイッチSW2を追加した構成となっている。「送電側スイッチSW2」も一次側駆動スイッチSW1と同様に、一次側回路2の自由振動を制限し、一次側回路2における過渡的な電流-電圧の変化を実現させる回路素子である。
(Second embodiment)
As shown in FIG. 10A, the power transmission device according to the second embodiment of the present invention adds a power transmission side switch SW2 to the circuit configuration of the power transmission device according to the first embodiment shown in FIG. The configuration is as follows. Similarly to the primary drive switch SW1, the “power transmission switch SW2” is a circuit element that limits free oscillation of the primary circuit 2 and realizes a transient current-voltage change in the primary circuit 2.
 図10(a)に示した一次側駆動スイッチSW1及び送電側スイッチSW2として、第1の実施形態に係る電力伝送装置と同様なFET、SIT、BJTの他、GTOサイリスタ、SIサイリスタ等のサイリスタを含む電力用半導体スイッチング素子が用いられる。特に、MISFET、MISSIT、IGBT、MOS制御SIサイリスタ等の電圧駆動型のスイッチング素子を用いれば消費電力が小さくなるので、一次側駆動スイッチSW1及び送電側スイッチSW2に好適である。市場での入手可能性と電力用半導体スイッチング素子の内部抵抗の評価からは、現状においては、MOSFETを図10(b)に示す回路の一次側駆動スイッチSW1及び送電側スイッチSW2として採用することが可能である。 As the primary side drive switch SW1 and the power transmission side switch SW2 shown in FIG. 10A, thyristors such as a GTO thyristor and an SI thyristor other than the same FET, SIT, and BJT as the power transmission device according to the first embodiment are used. A power semiconductor switching element is used. In particular, when a voltage-driven switching element such as a MISFET, a MISIT, an IGBT, or a MOS-controlled SI thyristor is used, power consumption is reduced. Therefore, it is suitable for the primary drive switch SW1 and the power transmission switch SW2. From the availability on the market and the evaluation of the internal resistance of the power semiconductor switching element, it is currently possible to employ MOSFETs as the primary side drive switch SW1 and the power transmission side switch SW2 of the circuit shown in FIG. It is possible.
 既に第1の実施形態に係る電力伝送装置で説明したとおり、EV用の充電式電池を負荷素子6とするような大電力用電力伝送装置においてはジュール熱の発生が大きい。第2の実施形態に係る電力伝送装置では一次側駆動スイッチSW1及び送電側スイッチSW2として用いるとして用いる電力用半導体スイッチング素子は2個のみで良いので、発熱による素子の破壊を防ぐ冷却構造が簡単に設計でき、しかも浮遊抵抗、浮遊容量、浮遊インダクタンスの発生も最小化できる。又、一次側駆動スイッチSW1及び送電側スイッチSW2をオン/オフ制御する単純な制御だけでよいので、一次側回路2の電圧を高めて、ジュール熱の発生を押さえる設計も簡単にできる。 As described in the power transmission device according to the first embodiment, Joule heat is generated in a large power transmission device in which a rechargeable battery for EV is used as the load element 6. In the power transmission device according to the second embodiment, since only two power semiconductor switching elements are required to be used as the primary side drive switch SW1 and the power transmission side switch SW2, the cooling structure for preventing destruction of the elements due to heat generation can be simplified. It can be designed and the generation of stray resistance, stray capacitance and stray inductance can be minimized. Further, since only simple control for turning on / off the primary-side drive switch SW1 and the power transmission-side switch SW2 is required, the design of increasing the voltage of the primary-side circuit 2 and suppressing the generation of Joule heat can be simplified.
 図10(b)に示す実装回路においては、送電側コイルL1からの環流電流を考慮し第1の還流ダイオードFWD1が第1の半導体スイッチング素子Q1としてのMOSFETのソース・ドレイン間に、第2の還流ダイオードFWD2が第2の半導体スイッチング素子Q2としてのMOSFETのソース・ドレイン間に、それぞれ保護素子として並列接続されている。図4(a)に示した回路と同様に、送電側コイルL1からの環流電流が直流電源5に環流するのを防ぐため、電源側ダイオードD1が直流電源5と第1の半導体スイッチング素子Q1の間に直列接続されている。図10(b)に示す実装回路でも負荷素子6の等価インピーダンスXLeqを充電容量Csで近似して表現している。 10 in the mounting circuit shown in (b), between the MOSFET source and drain of the power transmission side wheeling diode FWD 1 considering circulating electric current in the first coil L 1 is a first semiconductor switching element Q1, the Two return diodes FWD 2 are connected in parallel as protection elements between the source and the drain of the MOSFET as the second semiconductor switching element Q2. Figure 4 similarly to the circuit shown in (a), since the circulating electric current from the power transmission coil L 1 is prevented from refluxing to the DC power supply 5, the power supply side diode D1 and the DC power source 5 the first semiconductor switching element Q1 Are connected in series. In the mounting circuit shown in FIG. 10B, the equivalent impedance X Leq of the load element 6 is expressed by approximating the charging capacity C s .
 第1の実施形態に係るワイヤレス電力伝送方法を、図11のタイミング図及び図12(a)から図12(d)に示す時系列概略図を参照して説明する。ただし、第1の実施形態と同様、交流理論から導かれる結合係数KAC=0.6に等価な結合係数Kの場合を前提としており、充電電圧VCの初期状態における値は満充電に近い十分高い電圧であるとする。先ず、図12(a)に示すタイミングにおいて、送電側スイッチSW2をオフ状態、一次側駆動スイッチSW1をオン状態にして、送電側コンデンサCに初期電圧を印加して電荷を蓄える。図12(a)では一次側駆動スイッチSW1に第1の半導体スイッチング素子Q1を用いているので、第1の半導体スイッチング素子Q1のオン抵抗ron1で一次側駆動スイッチSW1のオン状態を示している。送電側スイッチSW2をオフ状態では一次側回路2は未だ形成されず、図12(a)に示すように、一次側駆動スイッチSW1のオン状態によって、直流電源5、等価内部抵抗r1、第1の半導体スイッチング素子Q1と第1の還流ダイオード(環流ダイオード)FWD1の並列回路及び送電側コンデンサCからなる直列」回路によって給電側回路1が構成されている。 The wireless power transmission method according to the first embodiment will be described with reference to the timing chart of FIG. 11 and the time-series schematic diagrams shown in FIGS. 12 (a) to 12 (d). However, as in the first embodiment, when the equivalent coefficient K in coefficient K AC = 0.6 derived from the AC theory has assumed the value in the initial state of the charge voltage VC S is almost fully charged It is assumed that the voltage is sufficiently high. First, at the timing shown in FIG. 12 (a), the power-transmitting-side switch SW2 turned off, and the primary-side drive switch SW1 in the ON state, storing electric charge by applying an initial voltage to the power transmission side capacitor C 1. In FIG. 12A, since the first semiconductor switching element Q1 is used for the primary-side drive switch SW1, the on-state of the primary-side drive switch SW1 is shown by the on-resistance r on1 of the first semiconductor switching element Q1. . When the power transmission switch SW2 is turned off, the primary circuit 2 has not yet been formed. As shown in FIG. 12A, depending on the ON state of the primary drive switch SW1, the DC power supply 5, the equivalent internal resistance r 1 , the first semiconductor switching elements Q1 and the power supply side circuit 1 by a first freewheeling diode (reflux diode) composed of a parallel circuit and a power-transmitting-side capacitor C 1 of the FWD 1 series "circuit is configured.
 図11に細い破線で示したように、送電側コンデンサCの端子間電圧VCは、リンギングをしながら一定電圧に充電される。図11には示していないが、このタイミングでは受電側コンデンサCの端子間電圧VCは負の値であるとして図12(a)では示している。次に、図12(b)に示すタイミングにおいて、一次側駆動スイッチSW1をオフ状態にして、一定時間をおいて、送電側スイッチSW2をオン状態にすると、送電側コンデンサCに蓄えられた電気エネルギーは送電側コイル電流IL1を介して、送電側コイルL1に蓄積され、更に、一次側回路2と二次側回路3の間の特性調和伝送が生じる。図12(b)のタイミングでは送電側スイッチSW2に第2の半導体スイッチング素子Q2を用いているので、第2の半導体スイッチング素子Q2のオン抵抗ron2で送電側スイッチSW2のオン状態を示している。送電側スイッチSW2をオン状態にすることにより一次側回路2が形成され、直流電源5、等価内部抵抗r1、第1の半導体スイッチング素子Q1と第1の還流ダイオード(環流ダイオード)FWD1の並列回路及び送電側コンデンサCからなる給電側回路1が消滅する。 As indicated by a thin broken line in FIG. 11, the inter-terminal voltage VC 1 of the power transmission capacitor C 1 is charged at a constant voltage while ringing. Although not shown in FIG. 11, but terminal voltage VC 2 of the power receiving side capacitor C at this timing is shown in FIG. 12 (a) as a negative value. Next, at a timing shown in FIG. 12 (b), and the primary-side drive switch SW1 in the OFF state, after a certain time, when the power-transmission-side switch SW2 is turned on, electricity stored in the transmission-side capacitor C 1 energy via a power transmission coil current I L1, stored in the power transmission coil L 1, further characteristic harmonic transmissions between the primary-side circuit 2 and the secondary-side circuit 3 occurs. Since the second semiconductor switching element Q2 is used for the power transmission switch SW2 at the timing of FIG. 12B, the ON state of the power transmission switch SW2 is indicated by the on-resistance r on2 of the second semiconductor switching element Q2. . Primary circuit 2 by the power-transmission-side switch SW2 to the ON state is formed, the DC power source 5, the equivalent internal resistance r 1, a first semiconductor switching element Q1 first freewheeling diode (reflux diode) parallel FWD 1 power feeding side circuit 1 consisting of circuit and transmission-side capacitor C 1 is eliminated.
 送電側コンデンサCに蓄えられた電気エネルギーが送電側コイルL1に移動すると、図11に細い破線で示した端子間電圧VCは、負の極大値をとったのち、0Vになる。一次側回路2から二次側回路3への特性調和伝送によって、受電側コイルL2に伝送された電気エネルギーは、受電側コイル電流IL2によって受電側コンデンサCを充電する。受電側コンデンサCの充電が開始されると、受電側コンデンサCの端子間電圧VCは、図11の太い破線で示すように、負の極大値をとったのち、図12(c)に示すように正の値になる。端子間電圧VCが0Vになった時点で最大値をとる。図11の太い破線の変化から分かるように、端子間電圧VCは、負の極大値をとったのち、正の値になり、細い破線で示した端子間電圧VCが0Vになった時点で最大値をとる。 When the electrical energy stored in the power transmitting side capacitor C 1 is moved to the power transmission coil L 1, terminal voltage VC 1 shown in thin broken lines in FIG. 11, after taking a negative maximum value, becomes 0V. The characteristic harmonic transmission from the primary side circuit 2 to the secondary-side circuit 3, the electrical energy transmitted to the power receiving coil L 2 charges the power receiving side capacitor C 2 by the receiver coil current I L2. When the charging of the power receiving side capacitor C 2 is started, the terminal voltage VC 2 of the power receiving side capacitor C, as shown by the thick broken line in FIG. 11, after taking a negative maximum value, in FIG. 12 (c) It becomes a positive value as shown. Terminal voltage VC 1 takes the maximum value when it becomes 0V. As can be seen from the thick broken line in changes in FIG. 11, when the inter-terminal voltage VC 2 is that after taking the negative maximum value, a positive value, the inter-terminal voltage VC 1 shown in thin broken line becomes 0V To take the maximum value.
 図12(c)に示すタイミングにおいて、端子間電圧VCの増加に伴って、受電側コンデンサCに蓄積された電気エネルギーの一部によって、図11に一点鎖線で示した充電電流ICSが発生し、負荷素子6としての充電式電池に電荷が蓄えられる。受電側コンデンサCに蓄積された電気エネルギーの他の一部は、受電側コイルL2に受電側コイル電流IL2として還流する。図12(d)に示すタイミングにおいて、充電電流Iが0になった時点で、端子間電圧VCは、充電電圧VCと同じ値となる。 At the timing shown in FIG. 12 (c), with an increase in inter-terminal voltage VC 2, by a portion of the accumulated in the power receiving side capacitor C electric energy, the charging current I CS shown in FIG. 11 by a dashed line occurs Then, charge is stored in the rechargeable battery as the load element 6. Another part of the accumulated in the power receiving side capacitor C electrical energy is refluxed as receiver coil current I L2 to the power receiving coil L 2. At the timing shown in FIG. 12 (d), when the charging current I C becomes 0, the inter-terminal voltage VC 2 is the same value as the charge voltage VC S.
 受電側コンデンサCに蓄積された電気エネルギーが受電側コイルL2に還流すると、一次側回路2と二次側回路3の間の特性調和伝送が生じ、一次側回路2に電気エネルギーの一部が戻る。受電側コンデンサCに蓄積された電気エネルギーが負荷素子6及び受電側コイルL2に移動すると、受電側コンデンサCは放電される。受電側コンデンサCが放電すると、図11の右側に太い破線で示した端子間電圧VCは、負の極大値をとったのち、0Vになる。このとき、図11の右側に細い破線で示した端子間電圧VCは、負の極大値をとったのち、正の値となり増大し、送電側スイッチSW2がオフ状態になった時点で一定値に維持される。図9(d)説明したのと同様に、端子間電圧VCを測定することにより、一次側回路2と二次側回路3の間の特性調和伝送の伝送効率や負荷素子6としての充電式電池の充電の状況をモニターすることができることが分かる。図11から分かるように一次側回路2の端子間電圧VCの振動波形と二次側回路3の端子間電圧VCの振動波形とは互いに対称性のある振動波形ではない。 When the electrical energy stored in the power receiving side capacitor C flows back to the power receiving coil L 2, resulting characteristics harmonize transmission between the primary-side circuit 2 and the secondary-side circuit 3, a part of the electrical energy to the primary side circuit 2 Return. When the electrical energy stored in the power receiving side capacitor C is moved to the load device 6 and the receiver coil L 2, the power receiving side capacitor C 2 is discharged. When the power-receiving-side capacitor C 2 is discharged, the voltage between the terminals VC 2 indicated by thick broken line on the right side of FIG. 11, after taking a negative maximum value, it becomes 0V. At this time, the inter-terminal voltage VC 1 indicated by a thin broken line on the right side of FIG. 11 takes a negative local maximum value, then increases to a positive value, and increases when the power transmission side switch SW2 is turned off. Is maintained. As described in FIG. 9D, by measuring the terminal voltage VC 1 , the transmission efficiency of the characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3 and the rechargeable type as the load element 6 are measured. It can be seen that the state of charge of the battery can be monitored. Not mutually symmetry is the vibration waveform and the vibration waveform and the vibration waveform of the terminal voltage VC 2 of the secondary side circuit 3 between the primary circuit second terminal voltage VC 1 As can be seen from Figure 11.
 既に述べたように、「共振」とは、自由振動している系に適用される概念である。これに対し、本発明の第2の実施形態に係る電力伝送装置においては、一次側回路2の自由振動を制限し、一次側回路2における過渡的な電流-電圧の変化を実現させる送電側スイッチSW2及び一次側駆動スイッチSW1を備えている。このため、第2の実施形態に係る電力伝送装置においては、非正弦波の過渡応答特性を、新たな概念である「特性調和伝送」によって、二次側回路3に伝達することが可能である。制御回路の構成が単純で安価な直流電源5に依拠した非正弦波の過渡応答特性を用いることができるので、従来のように一次側回路2に対し商用周波数よりも高い正弦波振動を生成させる高価な交流電源回路が不要となり、壊れにくく回路設計が容易になる。 共振 As mentioned above, “resonance” is a concept applied to a system that is freely vibrating. On the other hand, in the power transmission device according to the second embodiment of the present invention, the power transmission side switch that limits the free oscillation of the primary side circuit 2 and realizes the transient current-voltage change in the primary side circuit 2 SW1 and a primary-side drive switch SW1 are provided. For this reason, in the power transmission device according to the second embodiment, it is possible to transmit the non-sinusoidal transient response characteristic to the secondary circuit 3 by a new concept “characteristic harmonic transmission”. . Since a non-sinusoidal transient response characteristic based on an inexpensive DC power supply 5 having a simple configuration of the control circuit can be used, a sine wave vibration higher than the commercial frequency is generated in the primary circuit 2 as in the related art. Since an expensive AC power supply circuit is not required, the circuit is hardly broken and circuit design becomes easy.
 図33に示した回路は、図28に示した回路の場合と同様に、交流理論により近似的なシミュレーションをする場合の第2の実施形態に係る電力伝送装置の回路であるが、一次側駆動スイッチSW1及び送電側スイッチSW2の2つのスイッチを備えている。図33(a)~(c)において、一次側回路2と二次側回路3のコンデンサの容量とコイルのインダクタンスは同じに設定している。即ちC=C2=500μF、L1=L2=10μHとする。 The circuit shown in FIG. 33 is a circuit of the power transmission device according to the second embodiment in the case of performing an approximate simulation by the AC theory, as in the case of the circuit shown in FIG. It has two switches, a switch SW1 and a power transmission side switch SW2. 33A to 33C, the capacitances of the capacitors and the inductances of the coils of the primary side circuit 2 and the secondary side circuit 3 are set to be the same. That is, C 1 = C 2 = 500 μF and L 1 = L 2 = 10 μH.
 図33(a)は、直流電源5の電圧E0=36Vで、一次側回路2の電気エネルギーを特性調和伝送で二次側回路3に伝送し、負荷回路36として採用している充電式電池の充電電圧Vcs=24Vとする場合の第2の実施形態に係る電力伝送装置の回路である。図33(b)は、図33(a)と同じ直流電源5の電圧E0=36Vを用い、一次側回路2の電気エネルギーを特性調和伝送で二次側回路3に伝送するが、負荷回路36として採用している充電式電池の充電電圧Vcs=100Vとし、負荷回路36に電流が流れないように設定する場合の回路である。図33(b)は、図33(b)と同じように負荷回路36として採用している充電式電池の充電電圧Vcs=100Vとし、負荷回路36に電流が流れないように設定する場合であるが、二次側回路3に伝送される分を予め差し引き、直流電源5の電圧E0=26Vとした場合である。 FIG. 33 (a) shows a rechargeable battery employed as a load circuit 36 by transmitting electric energy of the primary circuit 2 to the secondary circuit 3 by characteristically harmful transmission at a voltage E 0 of the DC power supply 5 = 36 V. 5 is a circuit of the power transmission device according to the second embodiment when the charging voltage V cs = 24V. 33B uses the same voltage E 0 = 36 V of the DC power supply 5 as in FIG. 33A, and transmits the electric energy of the primary circuit 2 to the secondary circuit 3 by characteristic harmony transmission. This is a circuit in which the charging voltage Vcs of the rechargeable battery adopted as 36 is set to 100 V and the current is not set to flow through the load circuit 36. FIG. 33B shows a case where the charging voltage V cs of the rechargeable battery employed as the load circuit 36 is set to 100 V and the current is not set to flow through the load circuit 36 as in FIG. However, there is a case where the voltage transmitted to the secondary circuit 3 is subtracted in advance and the voltage E 0 of the DC power supply 5 is set to 26V.
 図34に近似的なシミュレーション結果としての送電側コンデンサC1の電圧の変化を示す。図32に示したのと同様に、第2の実施形態に係る電力伝送装置の交流理論による近似的シミュレーションでは、送電側コンデンサC1の電圧の変化は図3に示したのと同様なW型の過渡応答波形を示す。図34の実線は、図33(a)に示した回路に対する近似的シミュレーションの結果、図34の破線は図33(b)に示した回路に対する近似的シミュレーションの結果、図34の一点鎖線は図33(c)に示した回路に対する近似的シミュレーションの結果である。 FIG. 34 shows a change in the voltage of the power transmission side capacitor C1 as an approximate simulation result. As shown in FIG. 32, in the approximate simulation based on the AC theory of the power transmission device according to the second embodiment, the change in the voltage of the power transmitting side capacitor C1 is the same as that of the W type shown in FIG. 3. 3 shows a transient response waveform. The solid line in FIG. 34 is the result of the approximate simulation for the circuit shown in FIG. 33A, the broken line in FIG. 34 is the result of the approximate simulation for the circuit shown in FIG. 33B, and the dashed line in FIG. 33 is a result of an approximate simulation of the circuit shown in FIG.
 最初は、図34の破線で示したように負荷回路36に電流を流そうとするが、充電式電池の充電電圧Vcs=100Vと高くしているので負荷回路36に電流が流れず、一点鎖線で示した曲線のような変化になる。負荷回路36に電流を流そうとするタイミングは、図34のW型の過渡応答波形の中央の山の位置あたりと推定される。 At first, an attempt is made to supply current to the load circuit 36 as shown by the broken line in FIG. 34. However, since the charging voltage Vcs of the rechargeable battery is set to be as high as 100 V, no current flows to the load circuit 36, and It changes like the curve shown by the chain line. The timing at which the current is caused to flow through the load circuit 36 is estimated to be around the center of the peak of the W-shaped transient response waveform in FIG.
 以上のように、第2の実施形態に係る電力伝送装置によれば、第1の実施形態に係る電力伝送装置と同様に、制御回路や周辺回路が単純で安価な直流電源5を使用することができるので高価なスイッチング電源が不要である。第2の実施形態に係る電力伝送装置の回路構成は単純化され、制御回路側における電力損失も最小化され壊れにくくなる上に、回路設計も容易になる。この結果、電力伝送装置の全体の構成が簡略化され軽量・小型化及び高効率化が可能になり、電源回路(0次回路)の損失を含めた総合的な電力伝送効率を高めたワイヤレス電力伝送装置を安価に製造することができる。第1の実施形態に係る電力伝送装置で述べたのと同様に、電力伝送の限界電力を従来の交流理論における限界電力を凌駕する値にまで押し上げ、原理的には無限大に押し上げ、電力伝送の限界距離も原理的には無限大に伸ばすことができる。更に電力伝送効率を原理的には100%に近い値まで高めることが可能である。 As described above, according to the power transmission device according to the second embodiment, as in the power transmission device according to the first embodiment, the control circuit and peripheral circuits use the inexpensive DC power supply 5. This eliminates the need for an expensive switching power supply. The circuit configuration of the power transmission device according to the second embodiment is simplified, the power loss on the control circuit side is minimized and hardly broken, and the circuit design becomes easy. As a result, the overall configuration of the power transmission device is simplified, the weight and size of the power transmission device can be reduced, and the efficiency can be improved. The transmission device can be manufactured at low cost. In the same manner as described in the power transmission device according to the first embodiment, the power limit of power transmission is pushed up to a value exceeding the limit power in the conventional AC theory, and in principle, it is pushed up to infinity. Can in principle be extended to infinity. Further, it is possible in principle to increase the power transmission efficiency to a value close to 100%.
(第3の実施形態)
 本発明の第3の実施形態に係る電力伝送装置は、図13(a)に示すように、第2の実施形態に係る電力伝送装置に受電側スイッチSW3を追加した構成となっている。「受電側スイッチSW3」も、送電側スイッチSW2や一次側駆動スイッチSW1と同様に、二次側回路3の自由振動を制限し、二次側回路3における過渡的な電流-電圧の変化を実現させる回路素子である。
(Third embodiment)
As shown in FIG. 13A, the power transmission device according to the third embodiment of the present invention has a configuration in which a power receiving switch SW3 is added to the power transmission device according to the second embodiment. Like the power transmission switch SW2 and the primary drive switch SW1, the "power receiving switch SW3" also limits the free oscillation of the secondary circuit 3 and realizes a transient current-voltage change in the secondary circuit 3. Circuit element.
 図13(a)に示した一次側駆動スイッチSW1、送電側スイッチSW2及び受電側スイッチSW3として、第1及び第2の実施形態に係る電力伝送装置と同様なFET、SIT、BJTの他、GTOサイリスタ、SIサイリスタ等のサイリスタを含む電力用半導体スイッチング素子が用いられる。低い内部抵抗の要求と市場での入手可能性から、MOSFETを、図13(b)に示す実装回路の一次側駆動スイッチSW1、送電側スイッチSW2及び受電側スイッチSW3としてそれぞれ採用することが、工業的には優位と考えられる。 As the primary side drive switch SW1, the power transmission side switch SW2, and the power reception side switch SW3 shown in FIG. 13 (a), in addition to the FET, SIT, BJT similar to the power transmission device according to the first and second embodiments, GTO A power semiconductor switching element including a thyristor such as a thyristor or an SI thyristor is used. In view of the requirement for low internal resistance and availability in the market, it is industrially necessary to employ MOSFETs as the primary drive switch SW1, the power transmission switch SW2, and the power reception switch SW3, respectively, of the mounting circuit shown in FIG. It is considered superior.
 第1及び第2の実施形態に係る電力伝送装置で説明したとおり、大電力用電力伝送装置においてはジュール熱の発生が大きい。第3の実施形態に係る電力伝送装置では一次側駆動スイッチSW1、送電側スイッチSW2及び受電側スイッチSW3として用いるとして用いる電力用半導体スイッチング素子は3個のみで良いので、発熱による素子の破壊を防ぐ冷却構造が簡単に設計でき、しかも浮遊抵抗、浮遊容量、浮遊インダクタンスの発生も最小化できる。又、一次側駆動スイッチSW1及び送電側スイッチSW2をオン/オフ制御する単純な制御だけでよいので、一次側回路2の電圧を高めて、ジュール熱の発生を押さえる設計も簡単にできる。 説明 As described in the power transmission devices according to the first and second embodiments, the large power transmission device generates a large amount of Joule heat. In the power transmission device according to the third embodiment, since only three power semiconductor switching elements are required to be used as the primary side drive switch SW1, the power transmission side switch SW2, and the power reception side switch SW3, the elements are prevented from being damaged due to heat generation. The cooling structure can be easily designed, and the generation of stray resistance, stray capacitance, and stray inductance can be minimized. Further, since only simple control for turning on / off the primary-side drive switch SW1 and the power transmission-side switch SW2 is required, the design of increasing the voltage of the primary-side circuit 2 and suppressing the generation of Joule heat can be simplified.
 図13(b)に示す実装回路においては、第1の還流ダイオードFWD1が第1の半導体スイッチング素子Q1としてのMOSFETのソース・ドレイン間に、第2の還流ダイオードFWD2が第2の半導体スイッチング素子Q2としてのMOSFETのソース・ドレイン間に、第3の還流ダイオードFWD3が第3の半導体スイッチング素子Q3としてのMOSFETのソース・ドレイン間に、それぞれ保護素子として並列接続されている。図13(b)に示すように、第3の還流ダイオードFWD3は、受電側コイルL2にからの環流電流を流す方向に設けられるので、第2の還流ダイオードFWD2がとは反対向きに設けられている。図4(a)及び図10(b)に示した回路と同様に、送電側コイルL1からの環流電流が直流電源5に環流するのを防ぐため、電源側ダイオードD1が直流電源5と第1の半導体スイッチング素子Q1の間に直列接続されている。図13(b)に示す実装回路でも負荷素子6の等価インピーダンスXLeqを充電容量Csで近似して表現している。 In mounting the circuit shown in FIG. 13 (b), the first reflux diode FWD 1 is between MOSFET source and drain of the first semiconductor switching element Q1, a second reflux diode FWD 2 is the second semiconductor switching between the source and drain of the MOSFET as an element Q2, the third wheeling diode FWD 3 of between the source and the drain of the MOSFET as a third semiconductor switching element Q3, are connected in parallel as respective protective elements. As shown in FIG. 13 (b), third wheeling diode FWD 3 of, since it is provided in the direction of flow a circulating electric current from the power receiving side coil L 2, second, and the second is freewheeling diode FWD 2 in the opposite direction Is provided. 4 (a) and similarly to the circuit shown in FIG. 10 (b), since the circulating electric current from the power transmission coil L 1 is prevented from refluxing to the DC power supply 5, the power supply side diode D1 and the DC power source 5 a It is connected in series between one semiconductor switching element Q1. Also in the mounting circuit shown in FIG. 13B, the equivalent impedance X Leq of the load element 6 is expressed by approximating the charging capacity C s .
 第1の実施形態に係るワイヤレス電力伝送方法を、図14に示すフローチャート及び図15に示すタイミング図を参照して説明する。ただし、第1及び第2の実施形態と同様、交流理論による結合係数KAC=0.6に相当する条件での特性調和伝送を仮定しており、充電電圧VCの初期状態における値は満充電に近い十分高い電圧であるとする。 The wireless power transmission method according to the first embodiment will be described with reference to the flowchart shown in FIG. 14 and the timing chart shown in FIG. However, as in the first and second embodiments, and assuming the characteristics harmonize transmission in conditions corresponding to the coupling coefficient K AC = 0.6 by the AC theory, the value in the initial state of the charge voltage VC S is fully It is assumed that the voltage is sufficiently high close to charging.
 先ず、図14のフローチャートのステップS31において、送電側スイッチSW2及び受電側スイッチSW3をオフ状態にし、一次側駆動スイッチSW1のみをオン状態にする。図15に細い破線で示したように、送電側コンデンサCの端子間電圧VCは、リンギングをしながら一定電圧に充電される。図15には示していないが、このタイミングでは受電側コンデンサCの端子間電圧VCは負の値である。送電側コンデンサCに初期電圧を印加して電荷を蓄えたのち、図15に示すように一次側駆動スイッチSW1をオフ状態にする。前述したように、この時点での充電電圧VCは高いものと仮定している。 First, in step S31 of the flowchart in FIG. 14, the power transmission switch SW2 and the power reception switch SW3 are turned off, and only the primary drive switch SW1 is turned on. As indicated by a thin broken line in FIG. 15, the inter-terminal voltage VC 1 of the power transmission capacitor C 1 is charged at a constant voltage while ringing. Although not shown in FIG. 15, but terminal voltage VC 2 of the power receiving side capacitor C is at this timing is a negative value. After an electric charge is charged by applying an initial voltage to the power transmission side capacitor C 1, to turn off the primary-side drive switch SW1 as shown in FIG. 15. As described above, the charging voltage VC S at this point is assumed to high.
 図15に示すように、一次側駆動スイッチSW1をオフ状態にした後、一定時間をおいて、ステップS32において、送電側スイッチSW2及び受電側スイッチSW3を同時にオン状態にする。送電側スイッチSW2がオン状態になると、送電側コンデンサCに蓄えられた電気エネルギーは送電側コイル電流を介して、送電側コイルL1に蓄積され、更に、一次側回路2と二次側回路3の間の特性調和伝送が生じる。送電側コンデンサCに蓄えられた電気エネルギーが送電側コイルL1に移動すると、図15に細い破線で示した端子間電圧VCは、負の極大値をとったのち、0Vになる。一次側回路2から二次側回路3への特性調和伝送によって、受電側コイルL2に伝送された電気エネルギーは、受電側スイッチSW3がオン状態なので、受電側コイル電流によって受電側コンデンサCを充電する。受電側コンデンサCの充電が開始されると、受電側コンデンサCの端子間電圧VCは、図15の太い破線で示すように、負の極大値から増大し始め、図15の中央の左よりの位置に示したように、正の値になる。端子間電圧VCが負の値をとっている間は充電電流ICSは流れないが、端子間電圧VCが正の値になると、図15の中央に一点鎖線で示したように充電電流ICSが立ち上がり始める。 As shown in FIG. 15, after the primary drive switch SW1 is turned off, after a certain time, in step S32, the power transmission switch SW2 and the power reception switch SW3 are simultaneously turned on. When the power-transmitting-side switch SW2 is turned on, electric energy stored in the power-transmitting-side capacitor C 1 via the transmitting-coil current are accumulated in the power transmission coil L 1, further primary circuit 2 and the secondary circuit A characteristic harmonic transmission between three occurs. When the electrical energy stored in the power transmitting side capacitor C 1 is moved to the power transmission coil L 1, terminal voltage VC 1 shown in thin broken lines in FIG. 15, after taking a negative maximum value, becomes 0V. The characteristic harmonic transmission from the primary side circuit 2 to the secondary-side circuit 3, the electrical energy transmitted to the power receiving coil L 2 is the power-receiving-side switch SW3 is so turned on, the power-receiving-side capacitor C 2 by the receiver coil current Charge. When the charging of the power receiving side capacitor C 2 is started, the terminal voltage VC 2 of the power receiving side capacitor C, as shown by the thick broken line in FIG. 15, begins to increase from a negative maximum value, central left of Figure 15 It becomes a positive value as shown in the position indicated by the arrow. While the inter-terminal voltage VC 2 has a negative value, the charging current ICS does not flow. However, when the inter-terminal voltage VC 2 has a positive value, the charging current ICS is as shown by a dashed line in the center of FIG. I CS begins to rise.
 充電電流ICSが立ち上がり始めたタイミングで、ステップS33において送電側スイッチSW2及び受電側スイッチSW3をオフ状態にする。送電側スイッチSW2及び受電側スイッチSW3のオフ状態は、一次側回路2と二次側回路3の間の特性調和伝送によって、図15の太い破線で示した端子間電圧VCが最大になり、且つ細い破線で示した端子間電圧VCが0Vになる時点である。図15の中央に一点鎖線で示した充電電流ICSは、送電側スイッチSW2及び受電側スイッチSW3がオフ状態になった後も増大しピーク値な到達した後、減少し、ステップS34においてゼロになる。 At the timing when the charging current I CS starts to rise, in step S33, the power transmission switch SW2 and the power reception switch SW3 are turned off. Off state of the power transmission switch SW2 and the power receiving side switch SW3, depending on the characteristics conditioner transmission between the primary-side circuit 2 and the secondary-side circuit 3, the voltage between the terminals VC 2 is maximized as shown by a thick broken line in FIG. 15, and terminal voltage VC 1 shown by a thin broken line is a point which becomes 0V. The charging current I CS indicated by a dashed line in the center of FIG. 15 increases even after the power transmitting switch SW2 and the power receiving switch SW3 are turned off, reaches a peak value, and then decreases, and reaches zero in step S34. Become.
 図15の中央の右よりの位置に示したように、太い破線で示した端子間電圧VCの最大値は、充電電流Iが減少を開始すると、若干低い値の一定値になり段差(肩)状の波形になる。充電電流Iがゼロになった後も、図15に太い破線で示した端子間電圧VCの値は、送電側スイッチSW2のオフ時の最大値よりも低い値を維持している。送電側スイッチSW2のオフ後、一定時間を経過すると、端子間電圧VCの最大値は減少するが、ステップS31の時点で充電電圧VCが高い場合、充電電流Iによる端子間電圧VCの最大値の減少量は小さく、一次側回路2と二次側回路3の間の特性調和伝送に与える影響は少ない。 As shown in the position of the center of the right of FIG. 15, the thick maximum value between the indicated terminal voltage VC 2 is a broken line, the charge current I C begins to decrease, the step becomes constant at value slightly lower ( Shoulder) shaped waveform. Even after the charging current I C becomes zero, the value of terminal voltage VC 2 shown by thick broken lines in FIG. 15, maintains a value lower than the maximum value of the off of the power transmission switch SW2. After off of the power transmission switch SW2, after a lapse of the predetermined time, the maximum value of the inter-terminal voltage VC 2 is reduced, if a higher charge voltage VC S at the time of step S31, the charging current I C between by terminal voltage VC 2 Is small, and the influence on the characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3 is small.
 充電電流Iが0AとなったのちにステップS35において、送電側スイッチSW2及び受電側スイッチSW3を同時に、再度オン状態にすると、再度一次側回路2と二次側回路3の間の特性調和伝送が生じる。ステップS35における送電側スイッチSW2及び受電側スイッチSW3のオン状態により、図15の右側に太い破線で示した端子間電圧VCは減少を開始し、負の極大値をとったのち、0Vになる。このとき、図15の右側に細い破線で示した端子間電圧VCも減少を開始し、負の極大値をとったのち、正の値となり増大する。 In step S35 in after the charging current I C becomes 0A, the power-transmission-side switch SW2 and the power receiving side switch SW3 at the same time, when the ON state again, the characteristics between the primary-side circuit 2 and the secondary-side circuit 3 again conditioner transmission Occurs. The on state of the power transmission switch SW2 and the power receiving side switch SW3 at step S35, the inter-terminal voltage VC 2 indicated by thick broken line on the right side of FIG. 15 starts to decrease, then taking the negative maximum value, it becomes 0V . At this time, the inter-terminal voltage VC 1 shown in thin broken lines on the right side of Figure 15 also starts to decrease, then taking the negative maximum value, increasing a positive value.
 次に、ステップS36において、端子間電圧VCが最大になり、端子間電圧VCが0Vになる時点で送電側スイッチSW2及び受電側スイッチSW3をオフ状態にする。図15に示すようにステップS36時点での細い破線で示した端子間電圧VCはステップS34時点での太い破線で示した端子間電圧VCと同じ値であり、送電側スイッチSW2及び受電側スイッチSW3がオフ状態になった時点以降一定値に維持される。る。なお、図示を省略しているが、ステップS36時点で端子間電圧VCと負荷素子6の端子間電圧は同じ値である。このため、図9(d)で説明したのと同様に、端子間電圧VCを測定することにより、一次側回路2と二次側回路3の間の特性調和伝送の伝送効率や負荷素子6としての充電式電池の充電の状況をモニターすることができることが分かる。図11に示した第2の実施形態に係る電力伝送装置のタイミング図と図15に示した第3の実施形態に係る電力伝送装置のタイミング図を比較すると、受電側スイッチSW3が1個増えても、一次側回路2と二次側回路3の間の特性調和伝送における端子間電圧VCや端子間電圧VC等の時間的変化(過渡応答)を示す波形は、殆ど同じであることが分かる。 Next, in step S36, the inter-terminal voltage VC 1 is maximized, the terminal voltage VC 2 to turn off the power-transmission-side switch SW2 and the power receiving side switch SW3 at the time becomes 0V. Figure 15 terminal voltage VC 1 shown in thin broken lines in step S36 the time as shown in is the same value as the terminal voltage VC 2 shown by a thick broken line at step S34, the power-transmission-side switch SW2 and the power receiving side It is maintained at a constant value after the switch SW3 is turned off. You. Although not shown, the voltage between the terminals of the terminal voltage VC 1 and the load device 6 at step S36 the time are the same value. Therefore, in the same manner as described in FIG. 9 (d), the by measuring the terminal voltage VC 1, the transmission efficiency and the load device characteristics harmony transmission between the primary-side circuit 2 and the secondary-side circuit 3 6 It can be seen that the state of charge of the rechargeable battery can be monitored. Comparing the timing diagram of the power transmission device according to the second embodiment shown in FIG. 11 with the timing diagram of the power transmission device according to the third embodiment shown in FIG. 15, the number of power receiving side switches SW3 is increased by one. also, it is a waveform illustrating the primary circuit 2 and the terminal voltage VC 1 and terminal voltage VC 2 temporal change such as in the characteristic harmonic transmissions between the secondary-side circuit 3 (transient response), it is almost identical I understand.
 「共振」は自由振動をしている交流回路で用いられる概念であるが、第3の実施形態に係る電力伝送装置においては、一次側回路2と二次側回路3の自由振動を制限し、一次側回路2と二次側回路3における過渡的な電流-電圧の変化を実現させる一次側駆動スイッチSW1、送電側スイッチSW2、受電側スイッチSW3を備えている。このため、第3の実施形態に係る電力伝送装置においては、一次側回路2の過渡応答特性を、新たな概念である「特性調和伝送」によって、二次側回路3に伝達することが可能である。制御回路の構成が単純で安価な直流電源5に依拠した非正弦波の過渡応答特性を用いて電気エネルギーの伝達をすることができるので、一次側回路2に対し、商用周波数よりも高い正弦波振動を生成させる高価な交流電源回路が不要となる。 “Resonance” is a concept used in an AC circuit that is freely vibrating. However, in the power transmission device according to the third embodiment, the free vibration of the primary circuit 2 and the secondary circuit 3 is limited, A primary side drive switch SW1, a power transmission side switch SW2, and a power reception side switch SW3 for realizing a transient current-voltage change in the primary side circuit 2 and the secondary side circuit 3 are provided. For this reason, in the power transmission device according to the third embodiment, the transient response characteristic of the primary circuit 2 can be transmitted to the secondary circuit 3 by a new concept “characteristic harmony transmission”. is there. Since the control circuit can transmit electric energy using the non-sinusoidal transient response characteristic based on the inexpensive DC power supply 5 having a simple configuration, the sine wave higher than the commercial frequency is applied to the primary circuit 2. An expensive AC power supply circuit for generating vibration is not required.
 よって、本発明の第3の実施形態に係る電力伝送装置によれば、第1及び第2の実施形態に係る電力伝送装置と同様に、制御回路や周辺回路が単純で安価な直流電源5を使用することができるので高価なスイッチング電源が不要であり、回路構成が単純化され、制御回路側における電力損失も最小化される。この結果、第3の実施形態に係る電力伝送装置によれば、電力伝送装置の全体の構成が簡略化され軽量・小型化及び高効率化が可能になり、電源回路(0次回路)の損失を含めた総合的な電力伝送効率を高めたワイヤレス電力伝送装置を安価に製造することができる。第1及び第2の実施形態に係る電力伝送装置で述べたのと同様に第3の実施形態に係る電力伝送装置によれば、回路構成が単純化されるので壊れにくく回路設計が容易になる。又、電力伝送の限界電力を原理的には無限大に押し上げ、電力伝送の限界距離を原理的には無限大に伸ばし、電力伝送効率を原理的には100%に近い値まで高めることが可能である。 Therefore, according to the power transmission device according to the third embodiment of the present invention, similarly to the power transmission devices according to the first and second embodiments, the inexpensive DC power supply 5 whose control circuit and peripheral circuits are simple is used. Since it can be used, an expensive switching power supply is not required, the circuit configuration is simplified, and power loss on the control circuit side is also minimized. As a result, according to the power transmission device according to the third embodiment, the overall configuration of the power transmission device is simplified, and the power transmission device can be reduced in weight, size, and efficiency, and the loss of the power supply circuit (zero-order circuit) can be reduced. Thus, a wireless power transmission device with improved overall power transmission efficiency including the above can be manufactured at low cost. According to the power transmission device according to the third embodiment, as described in the power transmission devices according to the first and second embodiments, the circuit configuration is simplified, so that the circuit is not easily broken and the circuit design becomes easy. . In addition, it is possible to push the limit power of power transmission to infinity in principle, extend the limit distance of power transmission to infinity in principle, and increase the power transmission efficiency to a value close to 100% in principle. It is.
(第4の実施形態)
 本発明の第4の実施形態に係る電力伝送装置は、図16(a)に示すように、第3の実施形態に係る電力伝送装置に、負荷制御スイッチSW4を追加した構成となっている。「負荷制御スイッチSW4」は、受電側スイッチSW3と同様に、二次側回路3の自由振動を制限し、二次側回路3における過渡的な電流-電圧の変化を実現させる回路素子である。
(Fourth embodiment)
As shown in FIG. 16A, the power transmission device according to the fourth embodiment of the present invention has a configuration in which a load control switch SW4 is added to the power transmission device according to the third embodiment. The “load control switch SW4” is a circuit element that limits the free oscillation of the secondary circuit 3 and realizes a transient current-voltage change in the secondary circuit 3, similarly to the power receiving switch SW3.
 図16(a)に示した一次側駆動スイッチSW1、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4として、第1~第3の実施形態に係る電力伝送装置と同様に、FET、SIT、BJTの他、GTOサイリスタ、SIサイリスタ等のサイリスタを含む電力用半導体スイッチング素子を用いることが可能である。低い内部抵抗の要求を考慮すると、現状での市場での入手可能性により、MOSFETが図16(b)に示した実装回路の一次側駆動スイッチSW1、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4としてそれぞれ採用することが好ましい。 As the primary drive switch SW1, the power transmission switch SW2, the power reception switch SW3, and the load control switch SW4 shown in FIG. 16A, similarly to the power transmission devices according to the first to third embodiments, FET, SIT , BJT, and a power semiconductor switching element including a thyristor such as a GTO thyristor and an SI thyristor can be used. Considering the requirement of a low internal resistance, the MOSFET is connected to the primary drive switch SW1, the power transmission switch SW2, the power reception switch SW3, and the load of the mounting circuit shown in FIG. It is preferable to adopt each as the control switch SW4.
 第4の実施形態に係る電力伝送装置では一次側駆動スイッチSW1、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4として用いるとして用いる電力用半導体スイッチング素子は4個のみで良いので、ジュール熱の発生を防ぐ冷却構造が簡単に設計でき、しかも浮遊抵抗、浮遊容量、浮遊インダクタンスの発生も最小化できる。又、一次側駆動スイッチSW1及び送電側スイッチSW2をオン/オフ制御する単純な制御だけでよいので、一次側回路2の電圧を高めてジュール熱の発生を押さえる設計も簡単にできる。 In the power transmission device according to the fourth embodiment, since only four power semiconductor switching elements are required to be used as the primary drive switch SW1, the power transmission switch SW2, the power reception switch SW3, and the load control switch SW4, the Joule heat The cooling structure that prevents the generation of stray light can be easily designed, and the occurrence of stray resistance, stray capacitance, and stray inductance can be minimized. Further, since only simple control for turning on / off the primary-side drive switch SW1 and the power-transmission-side switch SW2 is required, the design for increasing the voltage of the primary-side circuit 2 to suppress the generation of Joule heat can be simplified.
 図16(b)に示す実装回路においては、第1の還流ダイオードFWD1が第1の半導体スイッチング素子Q1としてのMOSFETのソース・ドレイン間に、第2の還流ダイオードFWD2が第2の半導体スイッチング素子Q2としてのMOSFETのソース・ドレイン間に、第3の還流ダイオードFWD3が第3の半導体スイッチング素子Q3としてのMOSFETのソース・ドレイン間に、第4の還流ダイオードFWD4が第4の半導体スイッチング素子Q4としてのMOSFETのソース・ドレイン間に、それぞれ保護素子として並列接続されている。図16(b)に示すように、第3の還流ダイオードFWD3は、受電側コイルL2にからの環流電流を流す方向に設けられるので、第2の還流ダイオードFWD2がとは反対向きに設けられているのは図13(b)と同様である。図4(a)、図10(b)及び図13(b)に示した回路と同様に、送電側コイルL1からの環流電流が直流電源5に環流するのを防ぐため、電源側ダイオードD1が直流電源5と第1の半導体スイッチング素子Q1の間に直列接続されている。図16(b)に示す実装回路でも負荷素子6の等価インピーダンスXLeqを充電容量Csで近似して表現している。 In mounting the circuit shown in FIG. 16 (b), the first reflux diode FWD 1 is between the source and drain of the MOSFET as a first semiconductor switching element Q1, a second reflux diode FWD 2 is the second semiconductor switching between MOSFET source and drain of the elements Q2, third wheeling diode FWD 3 of between MOSFET source and drain of the third semiconductor switching element Q3, a fourth freewheeling diode FWD 4 of the fourth semiconductor switching Each element is connected in parallel as a protection element between the source and the drain of the MOSFET as the element Q4. As shown in FIG. 16B, the third return diode FWD 3 is provided in the direction in which the circulating current flows from the power receiving side coil L 2 , so that the second return diode FWD 2 faces in the opposite direction. This is provided in the same manner as in FIG. FIG. 4 (a), the like the circuit shown in FIG. 10 (b) and 13 (b), since the circulating electric current from the power transmission coil L 1 is prevented from refluxing to the DC power supply 5, the power supply side diode D1 Are connected in series between the DC power supply 5 and the first semiconductor switching element Q1. In the mounting circuit shown in FIG. 16B , the equivalent impedance X Leq of the load element 6 is expressed by approximating the charging capacity C s .
 既に述べたとおり、図11に示した第2の実施形態に係る電力伝送装置のタイミング図と図15に示した第3の実施形態に係る電力伝送装置のタイミング図を比較すると、受電側スイッチSW3が1個増えても、一次側回路2と二次側回路3の間の特性調和伝送における端子間電圧VCや端子間電圧VC等の時間的変化(過渡応答)を示す波形は、殆ど同じである。図16(a)に示すように、第3の実施形態に係る電力伝送装置に、負荷制御スイッチSW4を追加した構成となっても、特性調和伝送の本質は変わらず、その基本的動作や、一次側回路2と二次側回路3の間の特性調和伝送における端子間電圧VCや端子間電圧VC等の時間的変化(過渡応答)を示す波形は、殆ど同じである。 As already described, comparing the timing diagram of the power transmission device according to the second embodiment shown in FIG. 11 with the timing diagram of the power transmission device according to the third embodiment shown in FIG. There is also increasing one, the waveform indicating the primary circuit 2 and the secondary-side circuit terminal voltage VC 1 and terminal voltage VC 2 temporal change such as in the characteristic harmonic transmissions between 3 (transient response), most Is the same. As shown in FIG. 16A, even when the power transmission device according to the third embodiment has a configuration in which a load control switch SW4 is added, the essence of characteristic harmonic transmission does not change, and its basic operation and waveform indicating the temporal change in such voltage VC 1 and terminal voltage VC 2 between the terminals in the characteristic harmonic transmissions between the primary-side circuit 2 and the secondary-side circuit 3 (transient response) is almost the same.
 しかしながら、図16(a)に示すように、一次側駆動スイッチSW1、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4の4つのスイッチを有する構成においては、一次側駆動スイッチSW1と負荷制御スイッチSW4を遮断状態、送電側スイッチSW2と受電側スイッチSW3を導通状態としたタイミングにおいて、直流電源5側の回路と負荷素子6側の回路が、それぞれ一次側回路2及び二次側回路3から分離されるので、一次側回路2と二次側回路3が自由振動することが可能となる。即ち一次側回路2のLC共振回路と二次側回路3のLC共振回路が相互インダクタンスMで結合した回路として扱えるので、交流理論における重共振の考え方が採用可能となる。即ち、一次側駆動スイッチSW1と負荷制御スイッチSW4を遮断状態、送電側スイッチSW2と受電側スイッチSW3を導通状態としたタイミングにおいては、既に述べた式(2)及び(3)の結合方程式で、特性調和伝送の効率を検討することができる。 However, as shown in FIG. 16A, in a configuration having four switches of the primary drive switch SW1, the power transmission switch SW2, the power reception switch SW3, and the load control switch SW4, the primary drive switch SW1 and the load control At the timing when the switch SW4 is turned off and the power transmission switch SW2 and the power receiving switch SW3 are turned on, the circuit on the DC power supply 5 side and the circuit on the load element 6 side are connected to the primary circuit 2 and the secondary circuit 3 respectively. Since they are separated, the primary circuit 2 and the secondary circuit 3 can freely vibrate. That is, since the LC resonance circuit of the primary circuit 2 and the LC resonance circuit of the secondary circuit 3 can be treated as a circuit coupled by mutual inductance M, the concept of heavy resonance in AC theory can be adopted. That is, at the timing when the primary drive switch SW1 and the load control switch SW4 are turned off and the power transmission switch SW2 and the power reception switch SW3 are turned on, the coupling equation of the equations (2) and (3) described above is used. The efficiency of characteristic harmonic transmission can be considered.
 ただし、実装回路においては、一次側駆動スイッチSW1、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4の4つのスイッチに、それぞれ用いる電力用半導体スイッチング素子のオン抵抗を考慮しなくてはならないので、式(2)及び(3)の結合方程式では記述できない。よって、一次側駆動スイッチSW1と負荷制御スイッチSW4を遮断状態、送電側スイッチSW2と受電側スイッチSW3を導通状態としたタイミングの動作では、一次側回路2のLCR共振回路と二次側回路3のLCR共振回路が相互インダクタンスMで結合した回路としての検討が必要になる。 However, in the mounting circuit, it is necessary to consider the on-resistance of the power semiconductor switching element used for each of the four switches of the primary drive switch SW1, the power transmission switch SW2, the power reception switch SW3, and the load control switch SW4. Therefore, it cannot be described by the combination equations of equations (2) and (3). Therefore, in the operation at the timing when the primary-side drive switch SW1 and the load control switch SW4 are turned off and the power transmission-side switch SW2 and the power reception-side switch SW3 are turned on, the LCR resonance circuit of the primary circuit 2 and the secondary circuit 3 It is necessary to consider a circuit in which the LCR resonance circuit is coupled by the mutual inductance M.
 又、一次側駆動スイッチSW1や負荷制御スイッチSW4を導通状態としたときのステップ応答等の過渡応答におけるエネルギー伝送を考慮する必要があるので、本発明の第4の実施形態に係る電力伝送装置のすべてを従来の交流理論で解釈できるわけではない。即ち既に図3(b)の斜線で示したような自由振動の領域では従来の正弦波の交流理論を用いることができるが、一次側駆動スイッチSW1、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4の4つのスイッチを用いて回路の境界条件を時々刻々変化させている第4の実施形態に係る電力伝送装置の動作環境では、図2(b)に例示したような鋸波状の立ち上がり特性等の過渡応答を含めて解析する必要がある。 In addition, since it is necessary to consider energy transmission in a transient response such as a step response when the primary-side drive switch SW1 and the load control switch SW4 are turned on, the power transmission device according to the fourth embodiment of the present invention is required. Not all can be interpreted by conventional AC theory. That is, in the free vibration region as already shown by the diagonal line in FIG. 3B, the conventional sine wave AC theory can be used, but the primary side drive switch SW1, the power transmission side switch SW2, the power reception side switch SW3, and the load. In the operating environment of the power transmission device according to the fourth embodiment in which the boundary condition of the circuit is changed every moment using the four switches of the control switch SW4, a sawtooth rising as illustrated in FIG. It is necessary to analyze including the transient response such as characteristics.
(特性調和伝送波形のシミュレーション)
 図16(a)に例示した構成における送電側コンデンサCと受電側コンデンサCのそれぞれの端子間電圧VCと端子間電圧VCの波形を通常の交流理論によるシミュレーションによって求め、一次側回路2と二次側回路3の間の特性調和伝送波形を確認する。一次側回路2と二次側回路3の結合係数KACを0.6、送電側コンデンサCと受電側コンデンサCの容量をいずれも65μF、送電側コイルL1と受電側コイルL2のインダクタンスをいずれも60μHとする。
(Simulation of characteristic harmonic transmission waveform)
Determined each terminal voltage VC 1 and terminal voltage VC 2 waveform of the power transmission capacitor C 1 and the power receiving side capacitor C 2 in the configuration illustrated in FIG. 16 (a) by simulation by conventional AC theory, primary circuit The characteristic harmonic transmission waveform between the secondary circuit 2 and the secondary circuit 3 is confirmed. The coupling coefficient K AC of the primary side circuit 2 and the secondary side circuit 3 is 0.6, the capacities of the power transmission side capacitor C 1 and the power reception side capacitor C 2 are both 65 μF, and the power transmission side coil L 1 and the power reception side coil L 2 Each of the inductances is set to 60 μH.
 先ず、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4をオフ状態にし、一次側駆動スイッチSW1をオン状態にして、送電側コンデンサCに初期電圧20Vを印加して送電側コンデンサCに電荷を蓄える。次に、一次側駆動スイッチSW1をオフ状態にし、送電側スイッチSW2及び受電側スイッチSW3をオン状態にすると、一次側回路2と二次側回路3の間の特性調和伝送が生じると期待できる。シミュレーションによって得られた端子間電圧VCと端子間電圧VCの波形を図17(a)に示す。端子間電圧VCの波形及び端子間電圧VCの波形のいずれもが大きな振幅の正弦波と小さな振幅の正弦波が合成されたような波形であり、通常の交流理論における正弦波とは異なる。 First, the power transmission side switch SW2, the power-receiving-side switch SW3 and the load control switch SW4 are turned off, and the primary-side drive switch SW1 in the ON state, by applying an initial voltage of 20V to the power transmission side capacitor C 1 transmission side capacitor C 1 To store electric charge. Next, when the primary drive switch SW1 is turned off and the power transmission switch SW2 and the power reception switch SW3 are turned on, it can be expected that characteristic harmony transmission between the primary circuit 2 and the secondary circuit 3 will occur. The resulting terminal voltage VC 1 and terminal voltage VC 2 of the waveform by simulation shown in FIG. 17 (a). A waveform as either sinusoidal sine wave with small amplitude greater amplitude is the synthesis of terminal voltage VC 1 of the waveform and the voltage between the terminals VC 2 waveforms, different from the sine wave in a normal AC Theory .
 図17(a)において、0.2msで送電側スイッチSW2及び受電側スイッチSW3をオン状態にしている。0.45msで、端子間電圧VCが0Vになり、端子間電圧VCが20Vになる。このことは、送電側のエネルギーがすべて受電側へ伝送されていることを示しており、0.45msで送電側スイッチSW2及び受電側スイッチSW3をオフ状態にすると、効率よく、特性調和伝送による電力伝送を行うことができる。 In FIG. 17A, the power transmission switch SW2 and the power reception switch SW3 are turned on in 0.2 ms. In 0.45 ms, the inter-terminal voltage VC 1 is to 0V, and the voltage between the terminals VC 2 becomes 20V. This indicates that all the energy on the power transmission side is transmitted to the power reception side. If the power transmission side switch SW2 and the power reception side switch SW3 are turned off in 0.45 ms, the power by the characteristic harmony transmission is efficiently increased. Transmission can take place.
(実装回路による特性調和伝送波形の測定)
 続いて、図16(a)に例示した構成の実装回路により、一次側回路2と二次側回路3の間の特性調和伝送の波形の測定を行う。一次側回路1と二次側回路2の等価結合係数Kを0.6、送電側コンデンサCと受電側コンデンサCの容量をいずれも65μF、送電側コイルL1と受電側コイルL2のインダクタンスをいずれも60μH、送電側コンデンサCに印加する初期電圧を20Vとする。これらはシミュレーションの場合と同様の値である。測定によって得られた送電側コンデンサCと受電側コンデンサCのそれぞれの端子間電圧VCと端子間電圧VCの波形を図17(b)に示すが、端子間電圧VCの波形と端子間電圧VCの波形の間に対称性がないことが分かる。
(Measurement of characteristic harmonic transmission waveform by mounted circuit)
Subsequently, the waveform of the characteristic harmonic transmission between the primary circuit 2 and the secondary circuit 3 is measured by the mounting circuit having the configuration illustrated in FIG. Primary circuit 1 and the secondary side equivalent coupling coefficient K 0.6 of the circuit 2, the power-transmitting-side capacitor C 1 and both of the capacity of the power receiving side capacitor C 2 65MyuF, of the power transmission coil L 1 and the power receiving coil L 2 any inductance 60MyuH, the initial voltage 20V applied to the power transmission side capacitor C 1. These are the same values as in the simulation. Each terminal voltage VC 1 and terminal voltage VC 2 waveforms the power transmitting side capacitor C 1, obtained by measuring the power receiving side capacitor C 2 is shown in FIG. 17 (b), the waveform of the terminal voltage VC 1 it can be seen there is no symmetry between the terminal voltage VC 2 waveforms.
 実装回路では寄生抵抗が存在するため、図17(a)の通常の交流理論によるシミュレーションの結果と異なり、波形は時間とともに減衰している。図17(b)において、0.2msから伝送が始まり、0.45msで端子間電圧VCが最大の15Vになる。この時の端子間電圧VCは―3Vであり、送電側のエネルギーのすべてが受電側へ伝送されておらず、一部のエネルギーは送電側に残留しているが、送電側のエネルギーが受電側に伝送されていることが確認できる。既に述べたとおり、第3の実施形態に係る電力伝送装置に対し、負荷制御スイッチSW4を追加した構成となっても、端子間電圧VCや端子間電圧VC等の時間的変化(過渡応答)を示す波形は、殆ど同じである。即ち、図17(b)に示す端子間電圧VCの波形と端子間電圧VCの波形はマクロな変化を示す図であり、マクロには大きな振幅の正弦波と小さな振幅の正弦波が合成されたような波形のように見えるが、時間軸を長くして詳細にみれば、図11や図15に示した波形と同様であり、正弦波の変化を示しているのではない。 Since there is a parasitic resistance in the mounted circuit, the waveform is attenuated with time, unlike the result of the simulation based on the normal AC theory in FIG. In FIG. 17B, transmission starts at 0.2 ms, and the terminal voltage VC 2 reaches a maximum of 15 V at 0.45 ms. At this time, the inter-terminal voltage VC 1 is −3 V, and not all of the energy on the power transmission side is transmitted to the power reception side, and part of the energy remains on the power transmission side. It can be confirmed that it is transmitted to the side. As already mentioned, with respect to the power transmission device according to the third embodiment, even if the added constitutes a load control switch SW4, the temporal change of such voltages VC 1 and terminal voltage VC 2 between the terminals (transient response ) Are almost the same. That is, a drawing waveform and the waveform of the terminal voltage VC 2 of terminal voltage VC 1 shown in FIG. 17 (b) showing a macroscopic change, macro sinusoidal small amplitude sinusoidal large amplitude synthesis Although it looks like a waveform as shown in the figure, when the time axis is lengthened and viewed in detail, it is the same as the waveforms shown in FIGS. 11 and 15, and does not indicate a change in a sine wave.
(等価結合係数の変化と特性調和伝送の変化)
 図16(a)に例示した構成において、送電側コンデンサCに電荷を蓄えたのち、一次側駆動スイッチSW1及び負荷制御スイッチSW4をオフ状態にし、送電側スイッチSW2及び受電側スイッチSW3をオン状態にしたとき、一次側回路2と二次側回路3の間の特性調和伝送が生じる。この動作は、従来の交流理論によれば、既に述べた式(2)及び式(3)の結合方程式によって表される。
(Change in equivalent coupling coefficient and change in characteristic harmonic transmission)
In the illustrated arrangement in Fig. 16 (a), after accumulated charge to the power transmission side capacitor C 1, and the primary-side drive switch SW1 and the load control switch SW4 off, turned on the power-transmission-side switch SW2 and the power receiving side switches SW3 , Characteristic harmonic transmission occurs between the primary side circuit 2 and the secondary side circuit 3. According to the conventional AC theory, this operation is represented by the above-described combination equation (2) and equation (3).
 従来の交流理論では、式(2)及び式(3)の結合方程式を解き一次側回路2と二次側回路3の間の特性調和伝送によって発生する受電側コンデンサCの端子間電圧VCを求めると、式(10)で定義される相互誘導関数φ(k)を用いて、
 
VC=VC/2×(L2/L1(1/2)×φ(k) ……(11)
 
となる。ここで、VCは送電側コンデンサCの端子間の初期電圧、ωは共振角周波数であり、ω=L1×C=L2×Cである。送電側コンデンサの端子間電圧VCが0のとき式(11)は最大値VC×(L2/L1(1/2)となり、通常の交流理論によれば、このとき送電側のすべてのエネルギーが受電側に伝送されたことになる。
In the conventional AC theory, the voltage VC 2 between the terminals of the power receiving side capacitor C 2 generated by the characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3 by solving the coupling equations of the equations (2) and (3). Is obtained, using the mutual induction function φ (k) defined by the equation (10),

VC 2 = VC 0/2 × (L 2 / L 1) (1/2) × φ (k) ...... (11)

Becomes Here, VC 0 is the initial voltage between the terminals of the power transmission side capacitor C 1 , ω 0 is the resonance angular frequency, and ω 0 = L 1 × C 1 = L 2 × C 2 . When the inter-terminal voltage VC 1 of the power transmission capacitor is zero formula (11) is the maximum value VC 0 × (L 2 / L 1) (1/2) , and the according to the normal AC theory, in this case the power transmission side All energy has been transmitted to the receiving side.
 図16(a)に例示した構成において、通常の交流理論による結合係数KACを変化させたときの一次側回路2と二次側回路3の間の特性調和伝送の波形の変化を、通常の交流理論によるシミュレーションによって求める。送電側コンデンサCと受電側コンデンサCの容量をいずれも500μF、送電側コイルL1と受電側コイルL2のインダクタンスをいずれも10μH、送電側コンデンサCに印加する初期電圧を25Vとする。以下の説明では交流理論による結合係数KACが等価結合係数に等しいと近似し、等価結合係数Kを0.00、0.1、0.6、0.8、0.88として、それぞれ通常の交流理論によるシミュレーションを行った。通常の交流理論によるシミュレーションの結果得られた端子間電圧VCと端子間電圧VCの波形を、図18(a)から図19(c)に示す。図18(a)に示すように、通常の交流理論による結合係数K=0.00のとき、一次側回路1と二次側回路は互いに相互作用せず、一次側回路2と二次側回路3の間の特性調和伝送は生じない。 In the configuration illustrated in FIG. 16A, the change in the waveform of the characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3 when the coupling coefficient K AC according to the normal AC theory is changed is compared with the normal change. Determined by simulation based on AC theory. Both the capacity of the power transmission capacitor C 1 and the power receiving side capacitor C 2 500μF, both the inductance of the power transmission coil L 1 and the power receiving coil L 2 10 .mu.H, and 25V the initial voltage applied to the power transmission side capacitor C 1 . In the following description, the coupling coefficient K AC according to the AC theory is approximated to be equal to the equivalent coupling coefficient, and the equivalent coupling coefficient K is set to 0.00, 0.1, 0.6, 0.8, and 0.88, respectively. A simulation based on AC theory was performed. The normal AC theoretical simulation results obtained terminal voltage VC 1 and terminal voltage VC 2 waveforms, illustrated in FIG. 19 (c) from Fig. 18 (a). As shown in FIG. 18A, when the coupling coefficient K is 0.00 according to the ordinary AC theory, the primary circuit 1 and the secondary circuit do not interact with each other, and the primary circuit 2 and the secondary circuit do not interact with each other. No characteristic transmission between the three occurs.
 等価結合係数K=0.1、0.6、0.8、0.88のときはいずれも一次側回路2と二次側回路3の間の特性調和伝送が生じている。図18(b)に示すように等価結合係数K=0.1のときは2.2ms、図19(a)に示すように、等価結合係数K=0.6のときは0.28ms、図19(c)に示すように、等価結合係数K=0.88のときは0.3msで送電側コンデンサの端子間電圧VCが0Vになり、受電側コンデンサの端子間電圧VCが送電側コンデンサCの端子間の初期電圧VCと同じ値になっており、送電側のエネルギーがすべて受電側に伝送されている。図19(b)に示すように、等価結合係数K=0.8のとき、受電側コンデンサの端子間電圧VCの最大値は送電側コンデンサCの端子間の初期電圧VCより小さい値をとっており、等価結合係数K=0.1、0.6、0.88のときと比較して、等価結合係数K=0.8のときは、効率よく電力伝送を行うことができない。 When the equivalent coupling coefficient K is 0.1, 0.6, 0.8, 0.88, characteristic harmonic transmission occurs between the primary circuit 2 and the secondary circuit 3 in all cases. As shown in FIG. 18B, 2.2 ms when the equivalent coupling coefficient K = 0.1, and 0.28 ms when the equivalent coupling coefficient K = 0.6 as shown in FIG. 19A. 19 (c), the terminal voltage VC 1 of the power transmission capacitor 0.3ms when the equivalent coupling coefficient K = 0.88 is to 0V, and the voltage between the terminals VC 2 is the power transmission side of the power-receiving-side capacitor has become the same value as the initial voltage VC 0 between terminals of the capacitor C 1, the energy of the power transmission is transmitted to all the power receiving side. As shown in FIG. 19 (b), when the equivalent coupling coefficient K = 0.8, the maximum value of the inter-terminal voltage VC 2 of the power receiving side capacitor initial voltage VC 0 value less than between the transmission side capacitor C 1 pin When the equivalent coupling coefficient K = 0.8, power transmission cannot be performed more efficiently than when the equivalent coupling coefficient K = 0.1, 0.6, and 0.88.
 又、等価結合係数K=0.6、0.88のときと比較して、等価結合係数K=0.1のときは、受電側コンデンサの端子間電圧VCが最大値をとるまでの時間が長い。式(11)は2つのモードの和で表され、
 
(1+k)(1/2)/(1―k)(1/2)=2   ……(12)
 
のとき、即ち等価結合係数K=0.6のとき、受電側コンデンサCの端子間電圧VCが最大値をとるまでの時間が最も短く、次に短いのは、
 
(1+k)(1/2)/(1―k)(1/2)=4   ……(13)
 
のとき、即ち等価結合係数K=0.88のときである。実装回路ではコイルの寄生抵抗r=Rstr(L1)=Rstr(L2)及びコンデンサの寄生抵抗rCによって波形が時間とともに減衰するため、等価結合係数K=0.6、0.88のとき最も効率よく電力伝送を行うことができる。又、寄生抵抗r、rCが低い場合、等価結合係数K=0.1のときでも効率よく電力伝送を行うことができる。間隔dを大きくすると等価結合係数Kは小さくなるため、寄生抵抗r、rCが十分低ければ、長距離を隔てて送ることができるといえる。
Further, as compared with the case of the equivalent coupling coefficient K = 0.6,0.88, time until when the equivalent coupling coefficient K = 0.1, terminal voltage VC 2 of the power receiving side capacitor takes a maximum value Is long. Equation (11) is represented by the sum of two modes,

(1 + k) (1/2) / (1-k) (1/2) = 2 (12)

When, that is, when the equivalent coupling coefficient K = 0.6, terminal voltage VC 2 of the power receiving side capacitor C 2 is the shortest time to the maximum value, then a short is given,

(1 + k) (1/2) / (1-k) (1/2) = 4 (13)

, That is, when the equivalent coupling coefficient K = 0.88. In the mounting circuit, the waveform is attenuated with time due to the coil parasitic resistance r L = R str (L 1 ) = R str (L 2 ) and the capacitor parasitic resistance r C , so that the equivalent coupling coefficient K = 0.6, 0. 88, power transmission can be performed most efficiently. In addition, when the parasitic resistances r L and r C are low, power transmission can be performed efficiently even when the equivalent coupling coefficient K = 0.1. When the distance d is increased, the equivalent coupling coefficient K is decreased. Therefore, if the parasitic resistances r L and r C are sufficiently low, it can be said that the signal can be transmitted over a long distance.
 図19(a)に示した、等価結合係数K=0.6のときの端子間電圧VCと端子間電圧VCの波形を拡大したものを図20(a)に示す。又、このときの送電側コイルL1と受電側コイルL2の電流IとIの波形を図20(b)に示す。0.28msで端子間電圧VCが0Vになり、端子間電圧VCが送電側コンデンサCの端子間の初期電圧VCと同じ値になると同時に、電流IとIは0Aになっている。0.28msで送電側スイッチSW2及び受電側スイッチSW3をオフ状態にすると、最大効率で電力伝送を行うことができ、更に、このとき電流IとIが0Aであり、送電側コイルL1と受電側コイルL2に生じる逆起電力が0となることから、送電側スイッチSW2及び受電側スイッチSW3の破壊を防ぐことができる。 Shown in FIG. 19 (a), shows an enlarged view of a terminal voltage VC 1 and terminal voltage VC 2 of waveform when the equivalent coupling coefficient K = 0.6 in FIG. 20 (a). Also shows the power transmitting coil L 1 and the power receiving side waveform of the current I 1 and I 2 of the coil L 2 in this case is shown in FIG. 20 (b). In 0.28 ms, the terminal voltage VC 1 becomes 0 V, the terminal voltage VC 2 becomes the same value as the initial voltage VC 0 between the terminals of the power transmission side capacitor C 1 , and the currents I 1 and I 2 become 0 A. ing. When the power transmission switch SW2 and the power reception switch SW3 are turned off in 0.28 ms, power transmission can be performed with maximum efficiency. Further, at this time, the currents I 1 and I 2 are 0 A, and the power transmission coil L 1 back electromotive force generated in the power receiving side coil L 2 and from becoming zero, it is possible to prevent the destruction of the power transmission switch SW2 and the power receiving side switch SW3.
(インダクタンスLと容量Cの最適な組み合わせ)
 図16(a)に例示した構成において、一次側回路2と二次側回路3の間の特性調和伝送によって送電側に蓄えられていたエネルギーを受電側に伝送するときの、最も伝送効率のよいコイルのインダクタンスLとコンデンサの容量Cの組み合わせを以下の手順で求める。伝送効率Pは、一回で伝送しようとするエネルギーをPone-tr、コイルの寄生抵抗r及びコンデンサの寄生抵抗rCによって一回で損失するエネルギーをPone-loss、一回に必要な時間をτoneとすれば、式(14)で表される。
 
P=(Pone-tr―Pone-loss)/τone       ……(14)
 
一回で伝送しようとするエネルギーPone-trは1/2×CV 、一回で損失するエネルギーPone-lossは(r+r)/2×C/L×V 、一回に必要な時間τoneは2(1.6)1/2π(LC)1/2であるので、伝送効率Pは、式(15)で表される。
 
P=(1/2×CV -(r+r)/2×C/L×V )/(2(1.6)1/2π(LC)1/2)                                       ……(15)
 
ここで、Vは、送電側コンデンサCに印加する初期電圧である。
(Optimal combination of inductance L and capacitance C)
In the configuration illustrated in FIG. 16A, the transmission efficiency is highest when the energy stored on the power transmission side is transmitted to the power receiving side by the characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3. The combination of the inductance L of the coil and the capacitance C of the capacitor is determined by the following procedure. The transmission efficiency P is defined as P on Ce -tr , the energy to be transmitted at one time, and P on Ce -loss , the energy lost at one time due to the parasitic resistance r L of the coil and the parasitic resistance r C of the capacitor. if the time required in time and τ on C e, it is represented by the formula (14).

P = (P on C e- tr -P on C e-loss) / τ on C e ...... (14)

The energy P on Ce -tr to be transmitted at one time is ×× CV 0 2 , and the energy P on Ce -loss lost at one time is (r L + r C ) / 2 × C / L × V 0 2, since the time tau on C e required for one is 2 (1.6) 1/2 [pi (LC) 1/2, the transmission efficiency P is expressed by equation (15).

P = (1/2 × CV 0 2 - (r L + r C) / 2 × C / L × V 0 2) / (2 (1.6) 1/2 π (LC) 1/2) ...... ( 15)

Here, V 0 is an initial voltage applied to the power transmission side capacitor C 1 .
 コイルの寄生抵抗r及びコンデンサの寄生抵抗rCに対し、K=r/L、K=r×Cとし、コイルに流れる最大電流をImaxとするとImax=(C/L)1/2×Vであるので、
 
P=ImaxV{(1.6)-1/2π-1―(K(LC)1/2+K(LC)-1/2)}
                         ………(16)
 
となり、
 
(LC)1/2+K(LC)-1/2>=2(K1/2……(17)
 
である。
To parasitic resistance r L and the parasitic resistance r C of the capacitor of the coil, K L = r L / L , and K C = r C × C, and the maximum current flowing through the coil and I max I max = (C / L ) Since it is 1/2 × V,

P = I max V {(1.6 ) -1/2 π -1 - (K L (LC) 1/2 + K C (LC) -1/2)}
............ (16)

Becomes

K L (LC) 1/2 + K C (LC) -1/2 > = 2 (K L K C ) 1/2 (17)

It is.
伝送効率Pが最大になるとき
 
(LC)1/2+K(LC)-1/2=2(K1/2……(18)
 
であり、このとき
 
LC=K/K……(19)
 
となる。コイルのインダクタンスLとコンデンサの容量Cが式(19)を満たすとき、伝送効率が最大となる。
When the transmission efficiency P is maximized
K L (LC) 1/2 + K C (LC) -1/2 = 2 (K L K C ) 1/2 (18)

At this time
LC = K C / K L (19)

Becomes When the inductance L of the coil and the capacitance C of the capacitor satisfy Expression (19), the transmission efficiency is maximized.
 図16(a)に例示した構成において、コイルのインダクタンスとコンデンサの容量を変化させたときの伝送効率を通常の交流理論によるシミュレーションによって求める。V=36V、結合係数K=600/H、結合係数K=3.00×10-6ΩFとする。通常の交流理論によるシミュレーションの結果得られた、コイルのインダクタンスが1、2、5、10、20、50μHのときのコンデンサの容量に対する伝送効率の変化を図21に示す。図21に示すように、伝送効率が最大となるコイルのインダクタンスLとコンデンサの容量Cの組み合わせは、コイルのインダクタンスが1、2、5、10、20、50μHのとき、コンデンサの容量Cはそれぞれ5000、2500、1000、500、250、100μFであり、式(19)を満たしている。 In the configuration illustrated in FIG. 16A, the transmission efficiency when the inductance of the coil and the capacitance of the capacitor are changed is obtained by a simulation based on a normal AC theory. It is assumed that V = 36V, coupling coefficient K L = 600 / H, and coupling coefficient K C = 3.00 × 10 −6 ΩF. FIG. 21 shows the change in the transmission efficiency with respect to the capacitance of the capacitor when the inductance of the coil is 1, 2, 5, 10, 20, and 50 μH, obtained as a result of the simulation based on the ordinary AC theory. As shown in FIG. 21, when the inductance of the coil is 1, 2, 5, 10, 20, and 50 μH, the combination of the inductance L of the coil and the capacitance C of the capacitor that maximizes the transmission efficiency is as follows. 5000, 2500, 1000, 500, 250, and 100 μF, satisfying the expression (19).
(負荷素子の端子間電圧が低い場合の電力伝送)
 充電式電池としての負荷素子6の端子間電圧が低い場合の、第4の実施形態に係る第1のワイヤレス電力伝送方法を、図23に示すフローチャート及び図24(a)に示すタイミング図を参照して説明する。ただし、交流理論で定義される結合係数KAC=0.6、0.88に等価な等価結合係数K等、一次側回路2と二次側回路3の間の特性調和伝送が生じた際に、端子間電圧VCの最大値が送電側コンデンサCの端子間の初期電圧VCと同じ値になり、その時、端子間電圧VCは0Vになるように、等価結合係数Kは調整されているものとする。
(Power transmission when the voltage between the terminals of the load element is low)
The first wireless power transmission method according to the fourth embodiment when the voltage between terminals of the load element 6 as a rechargeable battery is low is described with reference to the flowchart shown in FIG. 23 and the timing chart shown in FIG. Will be explained. However, when the characteristic harmonic transmission between the primary side circuit 2 and the secondary side circuit 3 occurs, such as an equivalent coupling coefficient K equivalent to the coupling coefficient K AC = 0.6, 0.88 defined by the AC theory. , the maximum value of the inter-terminal voltage VC 2 is the same value as the initial voltage VC 0 between terminals of the power transmission capacitor C 1, then the terminal voltage VC 1 is so to 0V, and the equivalent coefficient K is adjusted It is assumed that
 先ず、ステップS11において、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4をオフ状態にし、一次側駆動スイッチSW1をオン状態にする。送電側コンデンサCに初期電圧を印加して電荷を蓄えたのち、一次側駆動スイッチSW1をオフ状態にする。なお、この時点で負荷素子6の端子間電圧は十分低いものとする。次に、ステップS12において、送電側スイッチSW2及び受電側スイッチSW3をオン状態にすると一次側回路2と二次側回路3の間の特性調和伝送が生じる。次に、ステップS13において、一次側回路2と二次側回路3の間の特性調和伝送によって端子間電圧VCの絶対値が最大になり、端子間電圧VCが0Vになる時点で送電側スイッチSW2及び受電側スイッチSW3をオフ状態にする。 First, in step S11, the power transmission switch SW2, the power reception switch SW3, and the load control switch SW4 are turned off, and the primary drive switch SW1 is turned on. After an electric charge is charged by applying an initial voltage to the power transmission side capacitor C 1, to turn off the primary-side drive switch SW1. At this point, the voltage between the terminals of the load element 6 is assumed to be sufficiently low. Next, in step S12, when the power transmission switch SW2 and the power reception switch SW3 are turned on, characteristic harmony transmission between the primary circuit 2 and the secondary circuit 3 occurs. Next, in step S13, the power transmission side when the absolute value of terminal voltage VC 2 by characteristic harmonic transmissions between the primary-side circuit 2 and the secondary-side circuit 3 is maximized, the terminal voltage VC 1 is 0V The switch SW2 and the power receiving side switch SW3 are turned off.
 次に、ステップS14において、負荷制御スイッチSW4をオン状態にすると、充電電流ICSが発生し、端子間電圧VCは減少する。次に、ステップS15において、充電電流ICSが0になった時点で負荷制御スイッチSW4をオフ状態にする。このときの端子間電圧VCと負荷素子6の端子間電圧は同じ値となる。ステップS11の時点で負荷素子6の端子間電圧が十分低い場合、ステップS15の時点で受電側コンデンサの端子間電圧VCは0V、又は0Vとみなせる程度に十分低く、受電側コンデンサCを放電することなくステップS11に戻ることができる。 Next, in step S14, when the load control switch SW4 in the ON state, and the charging current I CS is generated, terminal voltage VC 2 is reduced. Next, in step S15, when the charging current ICS becomes 0, the load control switch SW4 is turned off. Terminal voltage VC 2 and terminal voltage of the load device 6 at this time is the same value. If at the time of step S11 the load element 6 terminal voltage is sufficiently low, the voltage between the terminals VC 2 of the power receiving side capacitor at the time of step S15 to 0V, or sufficiently low extent can be regarded as 0V, discharging the power receiving side capacitor C 2 It is possible to return to step S11 without performing.
(負荷素子の端子間電圧が低くない場合の電力伝送方法)
 負荷素子6の端子間電圧が低くない場合の、第4の実施形態に係る第2のワイヤレス電力伝送方法を、図25に示すフローチャート及び図24(b)に示すタイミング図を参照して説明する。ただし、等価結合係数Kは負荷素子6の端子間電圧が低い場合と同様に調整されているものとする。
(Power transmission method when the voltage between the terminals of the load element is not low)
A second wireless power transmission method according to the fourth embodiment when the voltage between terminals of the load element 6 is not low will be described with reference to a flowchart shown in FIG. 25 and a timing chart shown in FIG. . However, it is assumed that the equivalent coupling coefficient K is adjusted similarly to the case where the voltage between the terminals of the load element 6 is low.
 ステップS21からステップS24は、ステップS11からステップS14と同様である。ステップS25において、充電電流ICSが0になった時点で負荷制御スイッチSW4をオフ状態にする。このときの端子間電圧VCは充電電圧VCと同じ値になる。次のステップS26で受電側コンデンサの放電を行う。 Steps S21 to S24 are the same as steps S11 to S14. In step S25, when the charging current ICS becomes 0, the load control switch SW4 is turned off. Terminal voltage VC 2 at this time is equal to the charge voltage VC S. In the next step S26, the power receiving side capacitor is discharged.
 ステップS26において、送電側スイッチSW2及び受電側スイッチSW3をオン状態にすると、再度一次側回路2と二次側回路3の間の特性調和伝送が生じる。ステップS27において、一次側回路2と二次側回路3の間の特性調和伝送によって端子間電圧VCの絶対値が最大になり、端子間電圧VCが0Vになる時点で送電側スイッチSW2及び受電側スイッチSW3をオフ状態にする。ステップS27時点での端子間電圧VCはステップS25時点での端子間電圧VCと同じ値であるので、ステップS27時点で端子間電圧VCと充電電圧VCは同じ値である。よって、この場合、端子間電圧VCで、充電電圧VCをモニターすることができる。 In step S26, when the power transmission side switch SW2 and the power reception side switch SW3 are turned on, characteristic harmony transmission between the primary side circuit 2 and the secondary side circuit 3 occurs again. In step S27, the maximum absolute value of terminal voltage VC 1 by characteristic harmonic transmissions between the primary-side circuit 2 and the secondary-side circuit 3, the power-transmission-side switch SW2 and at the time when the terminal voltage VC 2 becomes 0V The power receiving side switch SW3 is turned off. Since the terminal voltage VC 1 at step S27 the time is equal to the terminal voltage VC 2 at the time step S25, the charging voltage VC S and terminal voltage VC 1 at step S27 the time are the same value. Therefore, in this case, in the inter-terminal voltage VC 1, it is possible to monitor the charging voltage VC S.
 以上に述べたように、本発明の第4の実施形態に係る電力伝送装置によれば、第1~第3実施形態に係る電力伝送装置と同様に、制御回路や周辺回路が単純で安価な直流電源5を使用することができるので高価なスイッチング電源が不要であり、回路構成は単純化され、制御回路側における電力損失も最小化される上に壊れにくくなり、回路設計も容易になる。この結果第4の実施形態に係る電力伝送装置によれば、電力伝送装置の全体の構成が簡略化され軽量・小型化及び高効率化が可能になり、電源回路(0次回路)の損失を含めた総合的な電力伝送効率を原理的には100%に近い値まで高め、電力伝送の限界電力を原理的には無限大に押し上げ、電力伝送の限界距離を原理的には無限大に伸ばしたワイヤレス電力伝送装置を安価に製造することができる。 As described above, according to the power transmission device according to the fourth embodiment of the present invention, similarly to the power transmission devices according to the first to third embodiments, the control circuit and the peripheral circuits are simple and inexpensive. Since the DC power supply 5 can be used, an expensive switching power supply is unnecessary, the circuit configuration is simplified, the power loss on the control circuit side is minimized, the circuit is hardly broken, and the circuit design becomes easy. As a result, according to the power transmission device according to the fourth embodiment, the entire configuration of the power transmission device is simplified, and the power transmission device can be reduced in weight, size, and efficiency, and the loss of the power supply circuit (zero-order circuit) can be reduced. Increasing the total power transmission efficiency, including theoretically, to a value close to 100% in principle, pushing the limit power of power transmission to infinity in principle, and extending the limit distance of power transmission to infinity in principle The wireless power transmission device can be manufactured at low cost.
(第5の実施形態)
 本発明の第5の実施形態に係る電力伝送装置は、図26に示すように、一次側回路2Cと二次側回路3Cとが、第1の相互結合コンデンサC23及び第2の相互結合コンデンサC24で静電的に結合しており、第1の実施形態に係る電力伝送装置の、コイルをコンデンサに、コンデンサをコイルに入れ替えた構成となっている。電磁誘導の法則、及びマックスウェルの方程式より、このようなコイルとコンデンサの入れ替えが可能である。即ち図26に示すように第5の実施形態に係る電力伝送装置は、図1(a)に示した第1の実施形態に係る電力伝送装置と同様に、静電エネルギーを蓄積する送電側コンデンサC21、送電側コンデンサC21に並列接続され送電側コンデンサC21から送られた静電エネルギーを磁気エネルギーとして蓄積し、この磁気エネルギーを送電側コンデンサC21に環流する送電側コイルL21を有する一次側回路2を備える。
(Fifth embodiment)
Power transmission device according to a fifth embodiment of the present invention, as shown in FIG. 26, a primary circuit 2C and the secondary side circuit 3C comprises a first mutual coupling capacitor C 23 and a second mutual coupling capacitor is bound electrostatically at C 24, the power transmission device according to the first embodiment, the coil to the capacitor, has a configuration obtained by rearranging the capacitor to the coil. From the law of electromagnetic induction and Maxwell's equation, it is possible to exchange such a coil and a capacitor. That is, as shown in FIG. 26, the power transmission device according to the fifth embodiment is similar to the power transmission device according to the first embodiment shown in FIG. C 21, the electrostatic energy transmitted from the power transmitting side is connected in parallel to the capacitor C 21 power-transmitting-side capacitor C 21 accumulates as a magnetic energy, a power transmission coil L 21 to reflux the magnetic energy to the power transmission side capacitor C 21 A primary circuit 2 is provided.
 そして、第5の実施形態に係る電力伝送装置は、図26に示すように、送電側コンデンサC21と送電側コイルL21を並列に接続する一方のノードに一方の電極を接続した第1の相互結合コンデンサC23と、送電側コンデンサC21と送電側コイルL21を並列に接続する他方のノードに一方の電極を接続した第2の相互結合コンデンサC24を更に備える点が、図1に示した第1の実施形態に係る電力伝送装置とは異なる。そして、第5の実施形態に係る電力伝送装置は第1の相互結合コンデンサC23の他方の電極に一方の電極を接続し、第2の相互結合コンデンサC24の他方の電極に他方の電極を接続し、一次側回路2から静電エネルギーを受け取る受電側コンデンサC22、受電側コンデンサC22に並列接続され受電側コンデンサC22に蓄積された静電エネルギーを磁気エネルギーとして蓄積する受電側コイルL22を有する二次側回路3を更に備える。 The power transmission device according to the fifth embodiment, as shown in FIG. 26, first the transmission side capacitor C 21 and the power transmission coil L 21 is connected to one electrode on one of the nodes to be connected in parallel mutual coupling capacitor C 23, the power-transmitting-side second interconnection further comprises a point capacitor C 24 of the capacitor C 21 and the power transmission coil L 21 is connected to one electrode to the other nodes connected in parallel, in Figure 1 This is different from the power transmission device according to the first embodiment shown. The power transmission device according to a fifth embodiment is connected to one electrode to the other electrode of the first mutual coupling capacitor C 23, the other electrode to the other electrode of the second cross coupling capacitor C 24 connect the power receiving side capacitor C 22 to receive electrostatic energy from the primary side circuit 2, the power receiving side coil accumulates accumulated in the parallel-connected power reception capacitor C 22 to the power receiving side capacitor C 22 electrostatic energy as magnetic energy L It further comprises a secondary circuit 3 having 22 .
 更に、図26に示すように第5の実施形態に係る電力伝送装置は、送電側コイルL21の一方の端子と他方の端子の間を接続する回路を構成する直流電源5と、送電側コイルL21の一方の端子と直流電源5との間に直列に接続され、送電側コイルL21に断続的な直流電圧をステップ入力する一次側駆動スイッチSW1を備える。又、受電側コイルL22の一方の端子と他方の端子の間を接続する回路を構成し、受電側コイルL22から磁気エネルギーを受け取る負荷素子6と、アノードが受電側コイルL22の一方の端子の側に、カソードが負荷素子6に接続された負荷側ダイオードD2を備える。図26に示すような静電的な結合であっても、第5の実施形態に係る電力伝送装置は、一次側回路2から二次側回路3に非接触で電気エネルギーを伝送することができる。通常の交流理論によるシミュレーションによって送電側コイルL21と受電側コイルL22に流れる電流の波形を求め、一次側回路2と二次側回路3の間の特性調和伝送波形を確認する。 Further, the power transmission device according to the fifth embodiment, as shown in FIG. 26, a DC power source 5 to a circuit for connecting the one terminal and the other terminal of the power transmission coil L 21, the power transmission coil one terminal of L 21 and are connected in series between the DC power source 5 comprises a primary drive switch SW1 for inputting step intermittent DC voltage to the power transmission coil L 21. Further, constitute a circuit for connecting the one terminal and the other terminal of the power receiving coil L 22, a power receiving side coil L 22 and the load device 6 that receives the magnetic energy, the anode is one of the power receiving coil L 22 On the terminal side, a load-side diode D2 having a cathode connected to the load element 6 is provided. Even with the electrostatic coupling as shown in FIG. 26, the power transmission device according to the fifth embodiment can transmit electric energy from the primary circuit 2 to the secondary circuit 3 in a non-contact manner. . Seek waveform of the current flowing through the simulation using conventional AC theoretical power transmission coil L 21 to the power receiving coil L 22, to confirm the characteristics harmonize transmission waveform between the primary-side circuit 2 and the secondary-side circuit 3.
 一次側回路21と二次側回路22の等価結合係数を0、送電側コイルL21と受電側コイルL22のインダクタンスをいずれも0.1μH、送電側コンデンサC21と受電側コンデンサC22の容量をいずれも400pF、第1の相互結合コンデンサC23と第2の相互結合コンデンサC24の容量をいずれも500pFとする。直流電源5は第1の実施形態の場合と同様、定電圧源である。送電側コイルL21と受電側コイルL22に流れる電流の波形を図27(a)に示す。又、送電側コンデンサC21と受電側コンデンサC22のそれぞれの端子間電圧V21、V22の波形を図27(b)に示す。0nsで送電側コイルL21と受電側コイルL22に流れる電流がそれぞれ30Aと0Aであり、60nsで送電側コイルL21と受電側コイルL22に流れる電流がそれぞれ30Aと0Aになっており、一次側回路2と二次側回路3の間の特性調和伝送が生じている。 Primary circuit 21 and 0 equivalent coupling coefficient of the secondary-side circuit 22, both the power transmission coil L 21 and the inductance of the power receiving coil L 22 0.1MyuH, the power transmission side capacitor C 21 capacitance of the power-receiving-side capacitor C 22 the both 400pF, both the first mutual coupling capacitor C 23 a capacitance of the second mutual coupling capacitor C 24 to 500 pF. The DC power supply 5 is a constant voltage source as in the case of the first embodiment. The waveform of the current flowing through the power transmission coil L 21 to the power receiving coil L 22 shown in FIG. 27 (a). Also shows the respective terminal voltage V21, V22 of waveform of the power transmission capacitor C 21 and the power reception side capacitor C 22 in FIG. 27 (b). At 0 ns, the currents flowing through the power transmitting coil L 21 and the power receiving coil L 22 are 30 A and 0 A, respectively. At 60 ns, the currents flowing through the power transmitting coil L 21 and the power receiving coil L 22 are 30 A and 0 A, respectively. Characteristic harmonic transmission occurs between the primary circuit 2 and the secondary circuit 3.
 以上に述べたように、本発明の第5の実施形態に係る電力伝送装置によれば、静電的な結合であっても、第1~第4の実施形態に係る電力伝送装置における磁気的結合の場合と同様に制御回路や周辺回路が単純で安価な直流電源5を使用することができるので高価なスイッチング電源が不要である。又、静電的な結合であっても、第1~第4の実施形態に係る電力伝送装置と同様に回路構成は単純化され壊れにくく回路設計が容易になる上に制御回路側における電力損失も最小化される。この結果、本発明の第5の実施形態に係る電力伝送装置によれば電力伝送装置の全体の構成が簡略化され軽量・小型化及び高効率化が可能になり、電源回路(0次回路)の損失を含めた総合的な電力伝送効率を100%に近い値まで高め、電力伝送の限界電力を原理的には無限大に押し上げ、電力伝送の限界距離を原理的には無限大に伸ばしたワイヤレス電力伝送装置を安価に製造することができる。 As described above, according to the power transmission device according to the fifth embodiment of the present invention, even if the electrostatic coupling is performed, the power transmission device according to the first to fourth embodiments has a magnetic coupling. As in the case of the coupling, the control circuit and the peripheral circuits can use the DC power supply 5 which is simple and inexpensive, so that an expensive switching power supply is unnecessary. Further, even with the electrostatic coupling, the circuit configuration is simplified and hardly broken as in the power transmission devices according to the first to fourth embodiments, the circuit design is facilitated, and the power loss on the control circuit side is reduced. Is also minimized. As a result, according to the power transmission apparatus according to the fifth embodiment of the present invention, the overall configuration of the power transmission apparatus is simplified, and the power transmission apparatus can be reduced in weight, size, and efficiency, and a power supply circuit (zero-order circuit) The total power transmission efficiency, including the power loss, has been increased to a value close to 100%, the limit power for power transmission has been pushed up to infinity in principle, and the limit distance for power transmission has been extended to infinity in principle. A wireless power transmission device can be manufactured at low cost.
(その他の実施形態)
 上記のように、本発明は第1~第5の実施形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。例えば、本発明の第5の実施形態に係る電力伝送装置においては静電的な結合方式として一次側駆動スイッチSW1を1個のみ含む回路構成を説明したが。単なる例示に過ぎない。本発明の第2の実施形態に係る電力伝送装置において説明したように、静電的な結合方式の回路構成の場合であっても、一次側駆動スイッチSW1及び送電側スイッチSW2を含む構成とすることが可能である。
(Other embodiments)
As described above, the present invention has been described with reference to the first to fifth embodiments. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples, and operation techniques will be apparent to those skilled in the art. For example, in the power transmission device according to the fifth embodiment of the present invention, a circuit configuration including only one primary-side drive switch SW1 has been described as an electrostatic coupling method. This is merely an example. As described in the power transmission device according to the second embodiment of the present invention, even in the case of the circuit configuration of the electrostatic coupling method, the configuration including the primary side drive switch SW1 and the power transmission side switch SW2 is adopted. It is possible.
 同様に、本発明の第3の実施形態に係る電力伝送装置で説明したように静電的な結合方式の回路構成の場合であっても、一次側駆動スイッチSW1、送電側スイッチSW2及び受電側スイッチSW3を含む構成とすることが可能である。更に、一次側駆動スイッチSW1、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4を含んで、本発明の第4の実施形態に係る電力伝送装置と同様な構成にしても構わない。 Similarly, even in the case of the circuit configuration of the electrostatic coupling method as described in the power transmission device according to the third embodiment of the present invention, the primary side drive switch SW1, the power transmission side switch SW2, and the power reception side A configuration including the switch SW3 is possible. Further, the configuration may be the same as that of the power transmission device according to the fourth embodiment of the present invention, including the primary drive switch SW1, the power transmission switch SW2, the power reception switch SW3, and the load control switch SW4.
 即ち、本発明に係る電力伝送装置は、図1(a)、10(a)、13(a)、16(a)及び26で示したようなそれぞれの実施形態の技術思想を互いに組み合わせて構成することもできる。又、本発明の第1の実施形態に係る電力伝送装置において図6(a)~図8(b)を用いて説明した磁気的結合度制御機構を、第2~第4の実施形態に係る電力伝送装置に適用しても構わない。以上のとおり本発明は、本明細書及び図面に記載していない様々な実施形態等を含むとともに、本発明の技術的範囲は、上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 That is, the power transmission device according to the present invention is configured by combining the technical ideas of the respective embodiments as shown in FIGS. 1 (a), 10 (a), 13 (a), 16 (a) and 26 with each other. You can also. Further, in the power transmission device according to the first embodiment of the present invention, the magnetic coupling degree control mechanism described with reference to FIGS. 6A to 8B according to the second to fourth embodiments will be described. It may be applied to a power transmission device. As described above, the present invention includes various embodiments and the like that are not described in the present specification and the drawings, and the technical scope of the present invention is defined by the invention-specifying matters according to the appropriate claims from the above description. It is only determined.
1…給電側回路、2、2C…一次側回路、3、3C…二次側回路、5…直流電源、6…負荷素子、32…スペーサ、33…車止め、41…測距ユニット、411…発光部、412…受光部、42,47…論理演算制御部、421…距離演算部、422,472…結合係数計算部、43…結合係数調整駆動装置、45…データ記憶装置、46…伝送効率測定ユニット、461…電流計、462…電圧計、471…伝送効率演算部、71…基板、72…ソース領域、73…ドレイン領域、81…ゲート酸化膜、82…ソース電極、83…ドレイン電極、84…ゲート電極
 
DESCRIPTION OF SYMBOLS 1 ... Power supply side circuit, 2, 2C ... Primary side circuit, 3, 3C ... Secondary side circuit, 5 ... DC power supply, 6 ... Load element, 32 ... Spacer, 33 ... Car stop, 41 ... Distance measuring unit, 411 ... Light emission Unit, 412: light receiving unit, 42, 47: logical operation control unit, 421: distance operation unit, 422, 472: coupling coefficient calculation unit, 43: coupling coefficient adjustment driving device, 45: data storage device, 46: transmission efficiency measurement Unit, 461: Ammeter, 462: Voltmeter, 471: Transmission efficiency calculation unit, 71: Substrate, 72: Source region, 73: Drain region, 81: Gate oxide film, 82: Source electrode, 83: Drain electrode, 84 … Gate electrode

Claims (9)

  1.  送電側コンデンサ、前記送電側コンデンサに並列接続され前記送電側コンデンサから送られた静電エネルギーを磁気エネルギーとして蓄積し、該磁気エネルギーを前記送電側コンデンサに環流する送電側コイルを有する一次側回路と、
     前記送電側コンデンサの一方の端子と他方の端子の間を接続する回路を構成する直流電源と、
     前記送電側コンデンサの前記一方の端子と前記直流電源との間に接続され、前記送電側コンデンサに断続的な直流電圧をステップ入力する一次側駆動スイッチと、
     前記送電側コイルに対向し、前記送電側コイルから前記磁気エネルギーを受け取る受電側コイル、前記受電側コイルに並列接続され前記受電側コイルに蓄積された磁気エネルギーを静電エネルギーとして蓄積する受電側コンデンサを有する二次側回路と、
     前記受電側コンデンサの一方の端子と他方の端子の間を接続する回路を構成し、前記受電側コンデンサから前記静電エネルギーを受け取る負荷素子と、
     アノードが前記受電側コンデンサの前記一方の端子の側に、カソードが前記負荷素子に接続された負荷側ダイオードと
     を備え、前記一次側回路から前記二次側回路に非接触で電気エネルギーを伝送することを特徴とする電力伝送装置。
    A power transmission side capacitor, a primary side circuit having a power transmission side coil connected in parallel to the power transmission side capacitor, storing electrostatic energy sent from the power transmission side capacitor as magnetic energy, and circulating the magnetic energy to the power transmission side capacitor; ,
    A DC power supply that constitutes a circuit that connects between one terminal and the other terminal of the power transmission side capacitor,
    A primary-side drive switch that is connected between the one terminal of the power-transmission-side capacitor and the DC power supply and that step-inputs an intermittent DC voltage to the power-transmission-side capacitor;
    A power receiving side coil facing the power transmitting side coil and receiving the magnetic energy from the power transmitting side coil; a power receiving side capacitor connected in parallel with the power receiving side coil and storing the magnetic energy stored in the power receiving side coil as electrostatic energy A secondary circuit having
    A load element that constitutes a circuit that connects between one terminal and the other terminal of the power receiving side capacitor, and receives the electrostatic energy from the power receiving side capacitor,
    An anode includes a load-side diode connected to the load element, and a cathode is connected to the one terminal of the power-receiving-side capacitor, and transmits electric energy from the primary circuit to the secondary circuit in a non-contact manner. A power transmission device characterized by the above-mentioned.
  2.  アノードが前記直流電源に、カソードが前記送電側コンデンサの前記一方の端子に接続された電源側ダイオードを更に備えることを特徴とする請求項1に記載の電力伝送装置。 2. The power transmission device according to claim 1, further comprising: a power supply side diode having an anode connected to the DC power supply and a cathode connected to the one terminal of the power transmission side capacitor.
  3.  前記一次側駆動スイッチが半導体スイッチング素子であることを特徴とする請求項1又は2に記載の電力伝送装置。 The power transmission device according to claim 1 or 2, wherein the primary-side drive switch is a semiconductor switching element.
  4.  前記一次側駆動スイッチが前記半導体スイッチング素子と並列に接続された保護素子を更に備えることを特徴とする請求項3に記載の電力伝送装置。 4. The power transmission device according to claim 3, wherein the primary-side drive switch further includes a protection element connected in parallel with the semiconductor switching element.
  5.  前記送電側コイルと前記受電側コイルとの間の磁気的結合度を制御する磁気的結合度制御機構を更に備えることを特徴とする請求項1~4のいずれか1項に記載の電力伝送装置。 The power transmission device according to any one of claims 1 to 4, further comprising a magnetic coupling degree control mechanism that controls a magnetic coupling degree between the power transmitting side coil and the power receiving side coil. .
  6.  前記送電側コンデンサの前記一方の電極と前記送電側コイルとの間に直列に接続された送電側スイッチを更に備えることを特徴とする請求項1~5のいずれか1項に記載の電力伝送装置。 The power transmission device according to any one of claims 1 to 5, further comprising a power transmission-side switch connected in series between the one electrode of the power transmission-side capacitor and the power transmission-side coil. .
  7.  前記受電側コンデンサの前記一方の電極と前記受電側コイルとの間に直列に接続された受電側スイッチを更に備えることを特徴とする請求項6に記載の電力伝送装置。 The power transmission device according to claim 6, further comprising: a power receiving side switch connected in series between the one electrode of the power receiving side capacitor and the power receiving side coil.
  8.  前記受電側コンデンサの前記一方の電極と前記負荷側ダイオードとの間に直列に接続された負荷制御スイッチを更に備えることを特徴とする請求項7に記載の電力伝送装置。 The power transmission device according to claim 7, further comprising: a load control switch connected in series between the one electrode of the power receiving side capacitor and the load side diode.
  9.  送電側コンデンサ、前記送電側コンデンサに並列接続され前記送電側コンデンサから送られた静電エネルギーを磁気エネルギーとして蓄積し、該磁気エネルギーを前記送電側コンデンサに環流する送電側コイルを有する一次側回路と、
     前記送電側コイルの一方の端子と他方の端子の間を接続する回路を構成する直流電源と、
     前記送電側コイルの前記一方の端子と前記直流電源との間に接続され、前記送電側コイルに断続的な直流電圧をステップ入力する一次側駆動スイッチと、
     前記送電側コンデンサと前記送電側コイルを並列に接続する一方のノードに一方の電極を接続した第1の相互結合コンデンサと、
     前記送電側コンデンサと前記送電側コイルを並列に接続する他方のノードに一方の電極を接続した第2の相互結合コンデンサと、
     前記第1の相互結合コンデンサの他方の電極に一方の電極を接続し、前記第2の相互結合コンデンサの他方の電極に他方の電極を接続し、前記一次側回路から前記静電エネルギーを受け取る受電側コンデンサ、前記受電側コンデンサに並列接続され前記受電側コンデンサに蓄積された静電エネルギーを磁気エネルギーとして蓄積する受電側コイルを有する二次側回路と、
     前記受電側コイルの一方の端子と他方の端子の間を接続する回路を構成し、前記受電側コイルから前記磁気エネルギーを受け取る負荷素子と、
     アノードが前記受電側コイルの前記一方の端子の側に、カソードが前記負荷素子に接続された負荷側ダイオードと
     を備え、前記一次側回路から前記二次側回路に非接触で電気エネルギーを伝送することを特徴とする電力伝送装置。
     
    A power transmission side capacitor, a primary side circuit having a power transmission side coil connected in parallel to the power transmission side capacitor, storing electrostatic energy sent from the power transmission side capacitor as magnetic energy, and circulating the magnetic energy to the power transmission side capacitor; ,
    A DC power supply that constitutes a circuit that connects between one terminal and the other terminal of the power transmission side coil,
    A primary-side drive switch that is connected between the one terminal of the power-transmission-side coil and the DC power supply and that step-inputs an intermittent DC voltage to the power-transmission-side coil;
    A first mutual coupling capacitor having one electrode connected to one node connecting the power transmission side capacitor and the power transmission side coil in parallel;
    A second mutual coupling capacitor having one electrode connected to the other node connecting the power transmission side capacitor and the power transmission side coil in parallel;
    A power receiving device that connects one electrode to the other electrode of the first interconnection capacitor, connects the other electrode to the other electrode of the second interconnection capacitor, and receives the electrostatic energy from the primary circuit; A side capacitor, a secondary circuit having a power receiving coil that is connected in parallel to the power receiving capacitor and stores the electrostatic energy stored in the power receiving capacitor as magnetic energy,
    A load element that constitutes a circuit that connects between one terminal and the other terminal of the power receiving coil, and receives the magnetic energy from the power receiving coil,
    An anode has a load-side diode connected to the load element, and a cathode is connected to the one terminal of the power-receiving-side coil. A power transmission device characterized by the above-mentioned.
PCT/JP2018/031440 2018-08-24 2018-08-24 Power transmission device WO2020039594A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/031440 WO2020039594A1 (en) 2018-08-24 2018-08-24 Power transmission device
JP2020538004A JP7116288B2 (en) 2018-08-24 2018-08-24 power transmission equipment
JP2022068151A JP7314355B2 (en) 2018-08-24 2022-04-18 Power transmission device and power transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/031440 WO2020039594A1 (en) 2018-08-24 2018-08-24 Power transmission device

Publications (1)

Publication Number Publication Date
WO2020039594A1 true WO2020039594A1 (en) 2020-02-27

Family

ID=69592518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031440 WO2020039594A1 (en) 2018-08-24 2018-08-24 Power transmission device

Country Status (2)

Country Link
JP (1) JP7116288B2 (en)
WO (1) WO2020039594A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7491735B2 (en) 2020-05-18 2024-05-28 トヨタ自動車東日本株式会社 Energy Vibration Transmission System

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646531A (en) * 1992-07-23 1994-02-18 Mitsubishi Electric Home Appliance Co Ltd Charger
JP2010226890A (en) * 2009-03-24 2010-10-07 Panasonic Electric Works Co Ltd Non-contact power transmission apparatus
JP2013070520A (en) * 2011-09-22 2013-04-18 Panasonic Corp Driving method of non contact power supply device, non contact power supply device, and non contact power supply system
WO2013132702A1 (en) * 2012-03-07 2013-09-12 株式会社 村田製作所 System for transmitting electric power and power-transmission device
JP2016120902A (en) * 2014-12-25 2016-07-07 豊田合成株式会社 Light-emitting interior product
WO2017033614A1 (en) * 2015-08-26 2017-03-02 ローム株式会社 Power transmission apparatus and non-contact power supply system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047179A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Contactless electric power transmission device
JP2019176621A (en) 2018-03-28 2019-10-10 パナソニックIpマネジメント株式会社 Electrode unit, power transmission device, power reception device, and wireless power transmission system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646531A (en) * 1992-07-23 1994-02-18 Mitsubishi Electric Home Appliance Co Ltd Charger
JP2010226890A (en) * 2009-03-24 2010-10-07 Panasonic Electric Works Co Ltd Non-contact power transmission apparatus
JP2013070520A (en) * 2011-09-22 2013-04-18 Panasonic Corp Driving method of non contact power supply device, non contact power supply device, and non contact power supply system
WO2013132702A1 (en) * 2012-03-07 2013-09-12 株式会社 村田製作所 System for transmitting electric power and power-transmission device
JP2016120902A (en) * 2014-12-25 2016-07-07 豊田合成株式会社 Light-emitting interior product
WO2017033614A1 (en) * 2015-08-26 2017-03-02 ローム株式会社 Power transmission apparatus and non-contact power supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7491735B2 (en) 2020-05-18 2024-05-28 トヨタ自動車東日本株式会社 Energy Vibration Transmission System

Also Published As

Publication number Publication date
JPWO2020039594A1 (en) 2021-08-10
JP7116288B2 (en) 2022-08-10

Similar Documents

Publication Publication Date Title
US10714979B2 (en) Wireless power receiving terminal and wireless charging system
JP6184529B2 (en) In-vehicle charger, surge suppression method for in-vehicle charger
KR101241221B1 (en) Charging system for mild hybrid vehicle
JP5226753B2 (en) Charging system and charging method
KR101428161B1 (en) Apparatus for receiving wireless power and method for controlling power thereof
US9487098B2 (en) Power conversion apparatus
JPWO2012144249A1 (en) Power conversion device and in-vehicle power supply device including the same
JP3498669B2 (en) Switching power supply
US20120280658A1 (en) Heating circuits and methods based on battery discharging and charging using resonance components in series and freewheeling circuit components
WO2016042776A1 (en) Power reception device, non-contact power transmission system, and charging method
CN113014104B (en) Controller of DC/DC converter and control system thereof
KR20100115087A (en) A bidirectional dc-dc converter and methods of controlling the same
CN104040863A (en) A method for controlling a converter
US20180212510A1 (en) Power conversion device
CN112448586B (en) LLC resonant power converter, method for controlling same and controller
WO2020039594A1 (en) Power transmission device
JP7314355B2 (en) Power transmission device and power transmission method
JP6919759B2 (en) Resonant power converter control method, resonant power converter, and DC-DC converter
JP6937432B2 (en) Control method of resonance type power conversion device and resonance type power conversion device
JP4037106B2 (en) Low load switching device and method
JP7491735B2 (en) Energy Vibration Transmission System
JP5930978B2 (en) DC / DC converter
JP3452745B2 (en) Switching power supply
JP2002044946A (en) Switching power unit
JP2017034916A (en) Power conversion system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18931220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020538004

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18931220

Country of ref document: EP

Kind code of ref document: A1