JPWO2020039594A1 - Power transmission device - Google Patents

Power transmission device Download PDF

Info

Publication number
JPWO2020039594A1
JPWO2020039594A1 JP2020538004A JP2020538004A JPWO2020039594A1 JP WO2020039594 A1 JPWO2020039594 A1 JP WO2020039594A1 JP 2020538004 A JP2020538004 A JP 2020538004A JP 2020538004 A JP2020538004 A JP 2020538004A JP WO2020039594 A1 JPWO2020039594 A1 JP WO2020039594A1
Authority
JP
Japan
Prior art keywords
power transmission
circuit
power
capacitor
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020538004A
Other languages
Japanese (ja)
Other versions
JP7116288B2 (en
Inventor
弘 櫻庭
弘 櫻庭
洋 山田
洋 山田
哲也 間形
哲也 間形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor East Japan Inc
Original Assignee
Toyota Motor East Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor East Japan Inc filed Critical Toyota Motor East Japan Inc
Publication of JPWO2020039594A1 publication Critical patent/JPWO2020039594A1/en
Priority to JP2022068151A priority Critical patent/JP7314355B2/en
Application granted granted Critical
Publication of JP7116288B2 publication Critical patent/JP7116288B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Abstract

回路構成が単純で安価に製造することができる電力伝送装置を提供する。送電側コンデンサ(C1)と送電側コイル(L1)を有する一次側回路(2)、送電側コンデンサ(C1)に接続された直流電源(5)、送電側コンデンサ(C1)と直流電源(5)との間に接続された一次側駆動スイッチ(SW1)、送電側コイル(L1)に対向した受電側コイル(L2)と受電側コンデンサ(C2)を有する二次側回路(3)、受電側コンデンサ(C2)から静電エネルギーを受け取る負荷素子(6)、アノードが受電側コンデンサ(C2)にカソードが負荷素子(6)に接続された負荷側ダイオード(D2)を備える。Provided is a power transmission device having a simple circuit configuration and can be manufactured at low cost. A primary circuit (2) having a transmission side capacitor (C1) and a transmission side coil (L1), a DC power supply (5) connected to the transmission side capacitor (C1), a transmission side capacitor (C1) and a DC power supply (5). Primary side drive switch (SW1) connected between and, secondary side circuit (3) having power receiving side coil (L2) and power receiving side capacitor (C2) facing the power transmitting side coil (L1), power receiving side capacitor It includes a load element (6) that receives electrostatic energy from (C2), a load side diode (D2) whose anode is connected to a power receiving side capacitor (C2) and whose cathode is connected to the load element (6).

Description

本発明は、電力伝送装置に関し、特にワイヤレス電力伝送装置の新たな回路設計に関する。 The present invention relates to a power transmission device, and more particularly to a new circuit design of a wireless power transmission device.

マサチューセッツ工科大学(MIT)のカラリス(Karalis)らの2005年の提案以来、ワイヤレス電力伝送の研究が盛んになっている(特許文献1、2及び3参照)。特許文献1、2及び3に記載された発明は、電源を交流電源とする電力伝送技術であるが、特許文献2等に記載のように、交流理論に依拠したワイヤレス電力伝送方式においては、給電側共振回路(LC回路)の共振周波数2π√LCと受電側共振回路(LC回路)の共振周波数2π√LCを一致させることが必要であるとされている。しかし、実際には、給電側共振回路と受電側共振回路は相互に作用し、それによって新たな共振が生じる。この新たな共振を含む、給電側共振回路と受電側共振回路の共振(重共振)はしない方がよいというのが技術的常識であった。 Since the 2005 proposal by Karalis et al. Of the Massachusetts Institute of Technology (MIT), research on wireless power transmission has been active (see Patent Documents 1, 2 and 3). The inventions described in Patent Documents 1, 2 and 3 are power transmission techniques using a power source as an AC power source, but as described in Patent Document 2 and the like, power is supplied in a wireless power transmission method based on AC theory. It is said that it is necessary to match the resonance frequency 2π√LC of the side resonance circuit (LC circuit) with the resonance frequency 2π√LC of the power receiving side resonance circuit (LC circuit). However, in reality, the power feeding side resonance circuit and the power receiving side resonance circuit interact with each other, which causes new resonance. It was a technical common sense that it is better not to resonate (double resonance) between the power feeding side resonance circuit and the power receiving side resonance circuit including this new resonance.

特許文献2によれば、給電側共振回路と受電側共振回路が磁場成分による結合(磁場結合)し、給電コイルと受電コイルの間に相互インダクタンスMが形成される。相互インダクタンスM、給電側共振回路及び受電側共振回路により形成される新たな共振回路が、共振周波数fr1とは異なる共振周波数fr2を持ち、重共振が発生する。給電側共振回路に供給される交流電力の駆動周波数foを共振周波数fr1に追随させようとする場合、駆動周波数foが本来のターゲットである共振周波数fr1ではなく共振周波数fr2の方に追随してしまう可能性があり、共振周波数fr2は望まざる共振点であり、除去することが望ましいとされ、従来の交流理論では重共振が避けられてきた。According to Patent Document 2, the feeding side resonance circuit and the power receiving side resonance circuit are coupled by a magnetic field component (magnetic field coupling), and a mutual inductance M is formed between the feeding coil and the power receiving coil. The new resonance circuit formed by the mutual inductance M, the feeding side resonance circuit, and the power receiving side resonance circuit has a resonance frequency fr 2 different from the resonance frequency fr 1, and double resonance occurs. When trying to make the drive frequency fo of the AC power supplied to the feeding side resonance circuit follow the resonance frequency fr 1 , the drive frequency fo follows the resonance frequency fr 2 instead of the resonance frequency fr 1 which is the original target. The resonance frequency fr 2 is an undesired resonance point, and it is desirable to remove it. In the conventional AC theory, double resonance has been avoided.

しかも、特許文献1に記載された発明では10kHz〜50GHzの交流電源が、特許文献2に記載された発明では駆動周波数fo=100kHz程度の交流電源が、特許文献3に記載された発明では数百kHz〜数MHzの交流電源が必要である。特に、特許文献1では10MHz前後の周波数帯における実験データを報告している。特許文献1〜3に記載されたような周波数帯の電源回路(0次回路)は商用電源からわざわざ高価なスイッチング電源を用いて精度の良い直流を作り出した後、多数の電力用半導体素子を複雑かつ精密にスイッチングして、矩形波上に切り出された直流のパルスをPWM(Pulse Width Modulation)などにより擬似的もしくは等価的に交流にすることによって作り出される。この際に、電力用半導体素子に生じる抵抗損失や、周波数の増加によって急激に増えるスイッチング損失等の電力損失が発生する。また、コイルに生じる誘導逆起電力によるスイッチング素子の破壊や、共振による過度な電圧上昇によるスイッチング素子の破壊が生じやすく、周波数が高いほど、電力が大きいほど回路設計に困難を極める。一方で、遠くまで電力を送ろうとすると、周波数を上げなければならない。このように、交流理論に依拠した従来のワイヤレス電力伝送装置では、装置が複雑となり総合的な電力伝送効率が低く、壊れやすく信頼性が低くしかも高価になるという問題がある。これらの理由により従来の技術では、今後必要とされる電力を効率よく遠くまで伝送するワイヤレス電力伝送を実現することはできない。つまり、交流理論に依拠した電力伝送装置の回路設計そのものに検討が求められている。 Moreover, in the invention described in Patent Document 1, an AC power supply of 10 kHz to 50 GHz is used, in the invention described in Patent Document 2, an AC power supply having a drive frequency of about 100 kHz is used, and in the invention described in Patent Document 3, several hundreds are used. An AC power supply of kHz to several MHz is required. In particular, Patent Document 1 reports experimental data in a frequency band of around 10 MHz. A power supply circuit (0th-order circuit) in the frequency band as described in Patent Documents 1 to 3 complicates a large number of power semiconductor elements after producing an accurate direct current from a commercial power supply by using an expensive switching power supply. Moreover, it is created by precisely switching and making a direct current pulse cut out on a rectangular wave into an alternating current in a pseudo or equivalent manner by PWM (Pulse Width Modulation) or the like. At this time, power loss such as resistance loss that occurs in the power semiconductor element and switching loss that rapidly increases due to an increase in frequency occurs. Further, the switching element is easily destroyed by the induced back electromotive force generated in the coil, and the switching element is easily destroyed by the excessive voltage rise due to resonance. The higher the frequency and the larger the power, the more difficult the circuit design becomes. On the other hand, if you want to send power far, you have to raise the frequency. As described above, the conventional wireless power transmission device based on the AC theory has a problem that the device becomes complicated, the overall power transmission efficiency is low, it is fragile, the reliability is low, and it is expensive. For these reasons, conventional technology cannot realize wireless power transmission that efficiently transmits the power required in the future to a long distance. In other words, the circuit design itself of the power transmission device based on the AC theory is required to be examined.

米国特許出願公開第2008/0278264号明細書U.S. Patent Application Publication No. 2008/0278264 特許第5549745号公報Japanese Patent No. 5549745 特許第5462953号公報Japanese Patent No. 5462953

上記問題点を鑑み、本発明は、従来の交流理論ではない過渡応答に着目し、回路構成を単純化し電力伝送効率を高め、しかも安価な電力伝送装置を提供することを目的とする。 In view of the above problems, an object of the present invention is to focus on a transient response that is not a conventional AC theory, to simplify a circuit configuration, improve power transmission efficiency, and provide an inexpensive power transmission device.

本発明の第1の態様は、(a)送電側コンデンサ、送電側コンデンサに並列接続され送電側コンデンサから送られた静電エネルギーを磁気エネルギーとして蓄積し、この磁気エネルギーを送電側コンデンサに環流する送電側コイルを有する一次側回路と、(b)送電側コンデンサの一方の端子と他方の端子の間を接続する回路を構成する直流電源と、(c)送電側コンデンサの一方の端子と直流電源との間に接続され、送電側コンデンサに断続的な直流電圧をステップ入力する一次側駆動スイッチと、(d)送電側コイルに対向し、送電側コイルから磁気エネルギーを受け取る受電側コイル、受電側コイルに並列接続され受電側コイルに蓄積された磁気エネルギーを静電エネルギーとして蓄積する受電側コンデンサを有する二次側回路と、(e)受電側コンデンサの一方の端子と他方の端子の間を接続する回路を構成し、受電側コンデンサから静電エネルギーを受け取る負荷素子と、(f)アノードが受電側コンデンサの一方の端子の側に、カソードが負荷素子に接続された負荷側ダイオードを備える電力伝送装置であることを要旨とする。第1の態様に係る電力伝送装置では、一次側回路から二次側回路に非接触で電気エネルギーを伝送することができる。 The first aspect of the present invention is as follows: (a) The electrostatic energy sent in parallel with the transmission side capacitor and the transmission side capacitor is stored as magnetic energy, and this magnetic energy is circulated to the transmission side capacitor. A primary side circuit having a transmission side coil, (b) a DC power supply constituting a circuit connecting between one terminal and the other terminal of the transmission side capacitor, and (c) one terminal and a DC power supply of the transmission side capacitor. The primary side drive switch, which is connected between and step-inputs an intermittent DC voltage to the power transmission side capacitor, and (d) the power receiving side coil facing the power transmission side coil and receiving magnetic energy from the power transmission side coil, the power receiving side. A secondary circuit having a power receiving side capacitor that is connected in parallel to the coil and stores the magnetic energy stored in the power receiving side coil as electrostatic energy, and (e) connecting between one terminal and the other terminal of the power receiving side capacitor. Power transmission with a load element that receives electrostatic energy from the power receiving side capacitor and (f) a load side diode whose anode is connected to one terminal of the power receiving side capacitor and whose cathode is connected to the load element. The gist is that it is a device. In the power transmission device according to the first aspect, electric energy can be transmitted from the primary side circuit to the secondary side circuit in a non-contact manner.

本発明の第2の態様は、(a)送電側コンデンサ、送電側コンデンサに並列接続され送電側コンデンサから送られた静電エネルギーを磁気エネルギーとして蓄積し、この磁気エネルギーを送電側コンデンサに環流する送電側コイルを有する一次側回路と、(b)送電側コイルの一方の端子と他方の端子の間を接続する回路を構成する直流電源と、(c)送電側コイルの一方の端子と直流電源との間に接続され、送電側コイルに断続的な直流電圧をステップ入力する一次側駆動スイッチと、(d)送電側コンデンサと送電側コイルを並列に接続する一方のノードに一方の電極を接続した第1の相互結合コンデンサと、(e)送電側コンデンサと送電側コイルを並列に接続する他方のノードに一方の電極を接続した第2の相互結合コンデンサと、(f)第1の相互結合コンデンサの他方の電極に一方の電極を接続し、第2の相互結合コンデンサの他方の電極に他方の電極を接続し、一次側回路から静電エネルギーを受け取る受電側コンデンサ、受電側コンデンサに並列接続され受電側コンデンサに蓄積された静電エネルギーを磁気エネルギーとして蓄積する受電側コイルを有する二次側回路と、(g)受電側コイルの一方の端子と他方の端子の間を接続する回路を構成し、受電側コイルから磁気エネルギーを受け取る負荷素子と、(h)アノードが受電側コイルの一方の端子の側に、カソードが負荷素子に接続された負荷側ダイオードを備える電力伝送装置であることを要旨とする。第2の態様に係る電力伝送装置も、第1の態様に係る電力伝送装置と同様に、一次側回路から二次側回路に非接触で電気エネルギーを伝送することができる。 A second aspect of the present invention is as follows: (a) A capacitor on the transmission side, electrostatic energy sent from the capacitor on the transmission side connected in parallel to the capacitor on the transmission side is stored as magnetic energy, and this magnetic energy is circulated to the capacitor on the transmission side. A primary side circuit having a transmission side coil, (b) a DC power supply constituting a circuit connecting between one terminal and the other terminal of the transmission side coil, and (c) one terminal and a DC power supply of the transmission side coil. Connect one electrode to one node that is connected between and (d) connects the transmission side capacitor and the transmission side coil in parallel with the primary side drive switch that step-inputs the intermittent DC voltage to the transmission side coil. The first interconnected capacitor, (e) the second interconnected capacitor with one electrode connected to the other node connecting the transmitting side capacitor and the transmitting side coil in parallel, and (f) the first interconnecting. Connect one electrode to the other electrode of the capacitor, connect the other electrode to the other electrode of the second interconnect capacitor, and connect it in parallel to the power receiving side capacitor and the power receiving side capacitor that receive electrostatic energy from the primary side circuit. It constitutes a secondary circuit having a power receiving side coil that stores the electrostatic energy stored in the power receiving side capacitor as magnetic energy, and (g) a circuit that connects between one terminal and the other terminal of the power receiving side coil. The power transmission device is equipped with a load element that receives magnetic energy from the power receiving side coil, and (h) a load side capacitor whose anode is on one terminal side of the power receiving side coil and whose cathode is connected to the load element. It is a summary. The power transmission device according to the second aspect can also transmit electrical energy from the primary side circuit to the secondary side circuit in a non-contact manner, like the power transmission device according to the first aspect.

従来の交流理論を脱却した回路設計による本発明によれば、過渡応答時の現象である特性調和伝送を用いることにより回路構成を単純化し電力伝送効率を高め、しかも安価な電力伝送装置が提供できる。 According to the present invention based on a circuit design that breaks away from the conventional AC theory, it is possible to provide an inexpensive power transmission device that simplifies the circuit configuration and improves the power transmission efficiency by using characteristic harmonized transmission, which is a phenomenon at the time of transient response. ..

図1(a)は本発明の第1の実施形態に係る電力伝送装置の一例の概略を示す回路図で、図1(b)は図1(a)に示した回路の送電側コンデンサの端子間電圧の波形図である。FIG. 1A is a circuit diagram showing an outline of an example of a power transmission device according to the first embodiment of the present invention, and FIG. 1B is a terminal of a power transmission side capacitor of the circuit shown in FIG. 1A. It is a waveform diagram of the inter-voltage. 図2(a)は第1の実施形態に係る電力伝送装置の送電側コンデンサ及び受電側コンデンサのそれぞれの端子間電圧の波形図で、図2(b)は図2(a)の波形に続く詳細な波形図である。FIG. 2A is a waveform diagram of the voltage between the terminals of the power transmission side capacitor and the power reception side capacitor of the power transmission device according to the first embodiment, and FIG. 2B follows the waveform of FIG. 2A. It is a detailed waveform diagram. LC並列回路にステップ入力した場合の過渡応答を説明する図である。It is a figure explaining the transient response at the time of step input to the LC parallel circuit. 第1の実施形態に係る電力伝送装置の実装回路を示す回路図である。It is a circuit diagram which shows the mounting circuit of the power transmission apparatus which concerns on 1st Embodiment. 第1の実施形態に係る電力伝送装置に用いるMOSFETの大信号等価回路を説明する図である。It is a figure explaining the large signal equivalent circuit of the MOSFET used for the power transmission apparatus which concerns on 1st Embodiment. 図6(a)は、第1の実施形態に係る電力伝送装置のコイル間の面間隔の重要性を説明する模式図で,図6(b)は、電気自動車(EV)の電池の充電に適用した場合において、コイル間の面間隔を調整する磁気的結合度制御機構を説明する鳥瞰図である。FIG. 6A is a schematic diagram illustrating the importance of the surface spacing between the coils of the power transmission device according to the first embodiment, and FIG. 6B is for charging a battery of an electric vehicle (EV). It is a bird's-eye view explaining the magnetic coupling degree control mechanism which adjusts the surface spacing between coils when applied. 第1の実施形態に係る電力伝送装置のコイル磁気的結合を調整する機構を説明する鳥瞰図で、図7(a)はコイル間の面間隔がスペーサを用いて制御される場合で、図7(b)及び図7(c)は磁性体板を用いてコイルの磁気的結合を調整する磁気的結合度制御機構の一例を示す。FIG. 7A is a bird's-eye view for explaining the mechanism for adjusting the coil magnetic coupling of the power transmission device according to the first embodiment. FIG. 7A shows a case where the surface spacing between the coils is controlled by using a spacer, and FIG. b) and FIG. 7 (c) show an example of a magnetic coupling degree control mechanism that adjusts the magnetic coupling of the coil using a magnetic plate. 図8(a)は、第1の実施形態に係る電力伝送装置の磁気的結合度制御機構のハードウェアの構成の一例を説明するブロック図で、図8(b)は他の一例を説明するブロック図である。FIG. 8 (a) is a block diagram illustrating an example of the hardware configuration of the magnetic coupling degree control mechanism of the power transmission device according to the first embodiment, and FIG. 8 (b) illustrates another example. It is a block diagram. 第1の実施形態に係る電力伝送装置の動作を時系列に沿ったタイミング毎に分けて説明する概略図である。It is a schematic diagram explaining the operation of the power transmission apparatus which concerns on 1st Embodiment by dividing by the timing along the time series. 図10(a)は本発明の第2の実施形態に係る電力伝送装置の一例の概略を示す回路図で、図10(b)は、図10(a)の回路の具体的な実装回路を示す回路図である。FIG. 10 (a) is a circuit diagram showing an outline of an example of a power transmission device according to a second embodiment of the present invention, and FIG. 10 (b) shows a specific mounting circuit of the circuit of FIG. 10 (a). It is a circuit diagram shown. 第2の実施形態に係る電力伝送装置の電力供給方法を説明するタイミング図である。It is a timing diagram explaining the power supply method of the power transmission apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る電力伝送装置の電力供給方法を説明する概略図であり、(a)充電時、(b)一次側回路2と二次側回路3の間の特性調和伝送時、(c)転送時、(d)一次側回路2と二次側回路3の間の特性調和伝送時である。It is the schematic explaining the power supply method of the power transmission apparatus which concerns on 2nd Embodiment, (a) at the time of charging, (b) at the time of characteristic harmonized transmission between a primary side circuit 2 and a secondary side circuit 3, ( c) At the time of transfer, and (d) at the time of characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3. 図13(a)は、本発明の第3の実施形態に係る電力伝送装置の一例の概略を示す回路図で、図13(b)は図13(a)に示した回路の具体的な実装回路を示す回路図である。FIG. 13A is a circuit diagram showing an outline of an example of a power transmission device according to a third embodiment of the present invention, and FIG. 13B is a specific implementation of the circuit shown in FIG. 13A. It is a circuit diagram which shows a circuit. 第3の実施形態に係る電力伝送装置の電力供給方法を説明するフローチャートである。It is a flowchart explaining the power supply method of the power transmission apparatus which concerns on 3rd Embodiment. 第3の実施形態に係る電力伝送装置の電力供給方法を説明するタイミング図である。It is a timing diagram explaining the power supply method of the power transmission apparatus which concerns on 3rd Embodiment. 図16(a)は、本発明の第4の実施形態に係る電力伝送装置の一例の概略を示す回路図で、図16(b)は図16(a)に示した回路の具体的な実装回路を示す回路図である。16 (a) is a circuit diagram showing an outline of an example of a power transmission device according to a fourth embodiment of the present invention, and FIG. 16 (b) is a specific implementation of the circuit shown in FIG. 16 (a). It is a circuit diagram which shows a circuit. 図17(a)は、第4の実施形態に係る電力伝送装置における送電側コンデンサと受電側コンデンサの端子間電圧のシミュレーションによって得られた波形図で、図17(b)は、送電側コンデンサと受電側コンデンサの端子間電圧の実装回路によって得られた波形図である。FIG. 17 (a) is a waveform diagram obtained by simulating the voltage between the terminals of the power transmitting side capacitor and the power receiving side capacitor in the power transmission device according to the fourth embodiment, and FIG. 17 (b) shows the power transmitting side capacitor. It is a waveform diagram obtained by the mounting circuit of the voltage between terminals of the power receiving side capacitor. 図18(a)は第4の実施形態に係る電力伝送装置における送電側コンデンサと受電側コンデンサの端子間電圧の等価結合係数K=0.00のときの波形図で、図18(b)は等価結合係数K=0.1のときの波形図である。FIG. 18A is a waveform diagram when the equivalent coupling coefficient K = 0.00 of the voltage between the terminals of the power transmission side capacitor and the power reception side capacitor in the power transmission device according to the fourth embodiment, and FIG. 18B is a waveform diagram. It is a waveform figure when the equivalent coupling coefficient K = 0.1. 図19(a)は第4の実施形態に係る電力伝送装置における送電側コンデンサと受電側コンデンサの端子間電圧の等価結合係数K=0.6のときの波形図で、図19(b)は等価結合係数K=0.8のときの波形図で、図19(c)は等価結合係数K=0.88のときの波形図である。FIG. 19A is a waveform diagram when the equivalent coupling coefficient K = 0.6 of the voltage between the terminals of the power transmission side capacitor and the power reception side capacitor in the power transmission device according to the fourth embodiment, and FIG. 19B is a waveform diagram. It is a waveform diagram when the equivalent coupling coefficient K = 0.8, and FIG. 19C is a waveform diagram when the equivalent coupling coefficient K = 0.88. 図20(a)は第4の実施形態に係る電力伝送装置における送電側コンデンサと受電側コンデンサの端子間電圧の等価結合係数K=0.6のときの波形図で、図20(b)は送電側コイルと受電側コイルに流れる電流の等価結合係数K=0.6のときの波形図である。FIG. 20A is a waveform diagram when the equivalent coupling coefficient K = 0.6 of the voltage between the terminals of the power transmission side capacitor and the power reception side capacitor in the power transmission device according to the fourth embodiment, and FIG. 20B is a waveform diagram. It is a waveform diagram when the equivalent coupling coefficient K = 0.6 of the current flowing through the power transmission side coil and the power reception side coil. 第4の実施形態に係る電力伝送装置のキャパシタの容量に対する伝送効率の変化を示すグラフである。It is a graph which shows the change of the transmission efficiency with respect to the capacity of the capacitor of the power transmission apparatus which concerns on 4th Embodiment. 第4の実施形態に係る電力伝送装置の効率を示すグラフである。It is a graph which shows the efficiency of the power transmission apparatus which concerns on 4th Embodiment. 第4の実施形態に係る電力伝送装置の第1の電力供給方法を説明するフローチャートである。It is a flowchart explaining the 1st power supply method of the power transmission apparatus which concerns on 4th Embodiment. 図24(a)は第4の実施形態に係る電力伝送装置の第1の電力供給方法を説明するタイミング図で、図24(b)は第2の電力供給方法を説明するタイミング図である。FIG. 24A is a timing diagram for explaining the first power supply method of the power transmission device according to the fourth embodiment, and FIG. 24B is a timing diagram for explaining the second power supply method. 第4の実施形態に電力伝送装置の第2の電力供給方法を説明するフローチャートである。It is a flowchart explaining the 2nd power supply method of the power transmission apparatus in 4th Embodiment. 本発明の第5の実施形態に係る電力伝送装置の一例の概略を示す回路図である。It is a circuit diagram which shows the outline of an example of the power transmission apparatus which concerns on 5th Embodiment of this invention. 図27(a)は、第5の実施形態に係る電力伝送装置の送電側コイルと受電側コイルに流れる電流の波形図で、図27(b)は第5の実施形態に係る電力伝送装置の送電側コンデンサと受電側コンデンサのそれぞれの端子間電圧の波形図である。FIG. 27A is a waveform diagram of the current flowing through the power transmission side coil and the power reception side coil of the power transmission device according to the fifth embodiment, and FIG. 27B is a waveform diagram of the power transmission device according to the fifth embodiment. It is a waveform diagram of the voltage between each terminal of the power transmission side capacitor and the power reception side capacitor. 本発明の第1の実施形態に係る電力伝送装置の瘤付の鋸波を説明するための近似的シミュレーションに用いた回路図である。It is a circuit diagram used for the approximate simulation for demonstrating the sawtooth wave of the power transmission apparatus which concerns on 1st Embodiment of this invention. 図28の回路に対する近似的シミュレーションにより得られた瘤付の鋸波の過渡応答特性を示す図である。It is a figure which shows the transient response characteristic of the sawtooth wave with a knob obtained by the approximate simulation with respect to the circuit of FIG. 28. 図28の回路を用いた近似的シミュレーションにより得られた鋸波の瘤が繰り返し周期で変化する様子を説明する図である。It is a figure explaining how the sawtooth wave aneurysm obtained by the approximate simulation using the circuit of FIG. 28 changes in a repetition period. 図28の回路から寄生容量や寄生抵抗等を省略し簡略化した回路図である。It is a simplified circuit diagram by omitting a parasitic capacitance, a parasitic resistance, etc. from the circuit of FIG. 28. 図31の簡略化された回路に対する近似的シミュレーションで、W型の過渡応答特性が得られることを説明する図である。It is a figure explaining that the W type transient response characteristic can be obtained by the approximate simulation with respect to the simplified circuit of FIG. 本発明の第2の実施形態に係る電力伝送装置の過渡応答特性を、電源電圧及び負荷電圧を変えて近似的なシミュレーションをする場合に用いた回路図である。It is a circuit diagram used when the transient response characteristic of the power transmission apparatus which concerns on 2nd Embodiment of this invention is simulated by changing a power supply voltage and a load voltage. 図33の3つの回路に対する近似的シミュレーションで得られる過渡応答特性で電気エネルギーの転送を説明する図である。It is a figure explaining the transfer of electric energy by the transient response characteristic obtained by the approximate simulation for three circuits of FIG. 33. 本発明の第1の実施形態に係る電力伝送装置のW型の過渡応答特性を説明する模式図である。It is a schematic diagram explaining the W type transient response characteristic of the power transmission apparatus which concerns on 1st Embodiment of this invention.

次に、図面を参照して、本発明の第1〜第5の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各部材の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Next, the first to fifth embodiments of the present invention will be described with reference to the drawings. In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the plane dimensions, the ratio of the thickness of each member, etc. are different from the actual ones. Therefore, the specific thickness and dimensions should be determined in consideration of the following explanation. In addition, it goes without saying that the drawings include parts having different dimensional relationships and ratios from each other.

又、以下に示す第1〜第5の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。更に、以下の説明における「左右」や「上下」の方向は、単に説明の便宜上の定義であって、本発明の技術的思想を限定するものではない。よって、例えば、紙面を90度回転すれば「左右」と「上下」とは交換して読まれ、紙面を180度回転すれば「左」が「右」に、「右」が「左」になることは勿論である。図6(a)〜図7(c)に示したような、渦巻きの螺旋の向きも同様に説明の便宜上における単なる選択に過ぎず、実際の設計事情に応じて右巻きを左巻きに、左巻きを右巻きに選択することも可能である。 Further, the first to fifth embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is the material of the component parts. , Shape, structure, arrangement, etc. are not specified as follows. The technical idea of the present invention may be modified in various ways within the technical scope specified by the claims stated in the claims. Further, the directions of "left and right" and "up and down" in the following description are merely definitions for convenience of explanation, and do not limit the technical idea of the present invention. Therefore, for example, if the paper surface is rotated 90 degrees, "left and right" and "up and down" are read interchangeably, and if the paper surface is rotated 180 degrees, "left" becomes "right" and "right" becomes "left". Of course it will be. Similarly, the direction of the spiral spiral as shown in FIGS. 6 (a) to 7 (c) is merely a selection for convenience of explanation, and depending on the actual design circumstances, right-handed winding is left-handed and left-handed. It is also possible to select right-handed.

(第1の実施形態)
本発明の第1の実施形態に係る電力伝送装置は、図1(a)に示すように、一次側回路2と二次側回路3とを備える。一次側回路2は、静電エネルギーを蓄積する送電側コンデンサC、送電側コンデンサCに並列接続され送電側コンデンサCから送られた静電エネルギーを磁気エネルギーとして蓄積し、この磁気エネルギーを送電側コンデンサCに環流すると同時に、二次側回路3の受電側コイルL2 に磁気的に結合し、磁気エネルギーを送受する送電側コイルL1を有するLC共振回路である。互いに直列に接続された直流電源5と一次側駆動スイッチSW1とが、送信側コンデンサCに並列接続されている。直流電源5は送電側コンデンサCに直流電圧を供給する。
(First Embodiment)
As shown in FIG. 1A, the power transmission device according to the first embodiment of the present invention includes a primary side circuit 2 and a secondary side circuit 3. Primary circuit 2, the power-transmitting-side capacitor C 1 for storing electrostatic energy, connected in parallel to the power transmission side capacitor C 1 electrostatic energy transmitted from the power transmitting side capacitor C 1 accumulated as the magnetic energy, the magnetic energy This is an LC resonance circuit having a power transmitting side coil L 1 that magnetically couples to the power receiving side coil L 2 of the secondary side circuit 3 and transmits and receives magnetic energy at the same time as circulating to the power transmitting side capacitor C 1. Together with the DC power source 5 connected in series with the primary-side drive switch SW1 is connected in parallel to the transmitting capacitor C 1. DC power source 5 supplies a DC voltage to the power transmission side capacitor C 1.

後述するように「一次側駆動スイッチSW1」は一次側回路2の自由振動を制限する回路素子である。自由振動を制限することにより、一次側駆動スイッチSW1は一次側回路2における過渡的な電流−電圧の変化を実現させる。直流電源5は、擬似的な定電圧源でよく、単に整流したのみの簡単な構造の直流電源で大きなリップル成分を含む電源でもよいので制御回路や周辺回路が単純で壊れにくく回路設計が容易でしかも安価な直流電源5が採用できる。二次側回路3は、送電側コイルL1に対向して離間し、送電側コイルL1から磁気エネルギーを受け取る受電側コイルL2、受電側コイルL2に並列接続され受電側コイルL2に蓄積された磁気エネルギーを静電エネルギーとして蓄積する受電側コンデンサCを有するLC共振回路である。As will be described later, the "primary side drive switch SW1" is a circuit element that limits the free vibration of the primary side circuit 2. By limiting the free vibration, the primary side drive switch SW1 realizes a transient current-voltage change in the primary side circuit 2. The DC power supply 5 may be a pseudo constant voltage source, or may be a DC power supply having a simple structure that is simply rectified and contains a large ripple component. Therefore, the control circuit and peripheral circuits are simple, hard to break, and circuit design is easy. Moreover, an inexpensive DC power supply 5 can be adopted. Secondary circuit 3, spaced in opposition to the power transmission coil L 1, the power transmission side receiving coil L 2 for receiving magnetic energy from the coil L 1, connected in parallel to the power receiving side coil L 2 to the power receiving coil L 2 This is an LC resonant circuit having a power receiving side capacitor C 2 that stores the stored magnetic energy as electrostatic energy.

互いに直列に接続された負荷側ダイオードD2と負荷素子6とが受信側コンデンサCに並列接続されている。負荷素子6は、例えば電気自動車(EV)の車載用のリチウム(Li)イオン電池等の充電式電池が採用可能である。図1(a)では、例示的にリチウムイオン電池の等価回路を抵抗とコンデンサの直並列回路で模式的に示している。リチウムイオン電池には集電体や電界液の抵抗、電池内の界面にできる電気的2重層のコンデンサや抵抗が含まれる。負荷側ダイオードD2は、アノードが受信側共振器2側、カソードが負荷素子6側を向くように接続され、充電電流Iの流れる方向を一方向に限定している。Connected in series with the load-side diode D2 and a load element 6 is connected in parallel to the receiving side capacitor C 2 to each other. As the load element 6, for example, a rechargeable battery such as an in-vehicle lithium (Li) ion battery of an electric vehicle (EV) can be adopted. In FIG. 1A, an equivalent circuit of a lithium ion battery is schematically shown as a series-parallel circuit of a resistor and a capacitor. Lithium-ion batteries include resistors for current collectors and electric field fluids, and electrical double-layer capacitors and resistors that form at the interface inside the battery. Load side diode D2 has an anode recipient resonator 2 side, a cathode connected to face the load element 6 side to limit the direction of flow of the charging current I C in one direction.

図1(a)において直流電源5と等価内部抵抗rの端子間電圧をE、送信側コンデンサCの端子間電圧をVC、受電側コンデンサCの端子間電圧をVC、負荷素子6の端子間で測られる充電電圧をVC、負荷側等価浮遊抵抗rを流れる電流を充電電流Iとする。等価内部抵抗rは、直流電源5の内部インピーダンスを近似的に抵抗値で示している。そして、一次側駆動スイッチSW1をオン・オフ駆動した場合の実測によって得られた端子間電圧VCの過渡応答波形を図1(b)に示す。Figure 1 (a) E a terminal voltage of the DC power source 5 and the equivalent internal resistance r 1 at the transmitting side VC 1 the terminal voltage of the capacitor C 1, the terminal voltage of the power receiving side capacitor C 2 VC 2, the load element the charging voltage measured between sixth terminal VC S, the current flowing through the load-side equivalent stray resistance r L and the charge current I C. The equivalent internal resistance r 1 approximately indicates the internal impedance of the DC power supply 5 as a resistance value. Then, the transient response waveform of the inter-terminal voltage VC 1 obtained by the actual measurement when the primary side drive switch SW1 is driven on / off is shown in FIG. 1 (b).

第1の実施形態では、負荷素子6の充電電圧VCの初期状態における値は、充電完了電圧に近い(満充電に近い)、高い値であるものとする。時間t=0の時点で、送電側コンデンサCは充電されておらず端子間電圧VC=0である。t=0で一次側駆動スイッチSW1をオン状態にすると、直流電源5の端子間電圧Eがステップ入力される。t=0のステップ入力により、最初はコンデンサC1への充電電流が流れ、その値はE/r1である。この時にコイルL1は流入する電流を阻止するよう逆起電力を発生するので、L1への電流はゼロである。図1(b)に示すように、等価内部抵抗r、送電側コンデンサの容量C、送電側コイルのインダクタンスL1、相互インダクタンスMで決まる時定数τ1で送電側コンデンサCが充電され、端子間電圧VCは増加する。時定数τ1は、主に送信側コンデンサCの容量Cと等価内部抵抗rの抵抗値Cの積C・rに関係したパラメータに依存する値となる。In the first embodiment, it is assumed that the value of the charging voltage VC S of the load element 6 in the initial state is close to the charging completion voltage (close to full charge) and high. At the time t = 0, the power transmission side capacitor C 1 is not charged and the terminal voltage VC 1 = 0. When the primary side drive switch SW1 is turned on at t = 0, the inter-terminal voltage E of the DC power supply 5 is step-input. By the step input of t = 0, the charging current flows to the capacitor C1 at first, and its value is E / r1. At this time, the coil L1 generates a counter electromotive force so as to block the inflowing current, so that the current to L1 is zero. As shown in FIG. 1 (b), the power transmission side capacitor C 1 is charged with the equivalent internal resistance r 1 , the capacity C 1 of the power transmission side capacitor, the inductance L 1 of the power transmission side coil, and the time constant τ 1 determined by the mutual inductance M. , The voltage between terminals VC 1 increases. The time constant τ 1 is a value that mainly depends on the parameters related to the product C 1 · r 1 of the capacitance C 1 of the transmitting capacitor C 1 and the resistance value C 1 of the equivalent internal resistance r 1.

次第にC1の電圧が上昇し、電流が小さくなるにしたがってL1の逆起電力は小さくなりL1への電流が流れ始める。それによってC1の両端の電圧は少し下がる。この時点で SW1を閉じる(t=t1)。このスイッチを閉じる時間t1は、コイルに電流が流れ始めた時点で、かつそれを切ることによって生じる逆起電力によって生じるSW1に加えられる電圧によってSW1が破壊しないような時間とする。t=t1で一次側駆動スイッチSWをオフにすると、送電側コンデンサCから送電コイルL1に電流が流れるようになり本格的な放電を開始する。送電側コンデンサCに蓄えられた電気エネルギーは送電側コイルL1に移動しようとする。この時に送電側コイルLに流れる電流によってL1の周囲に発生した磁界により、相互インダクタンスMで結合した受電側コイルL2に起電力が生じ電流が流れる。後に述べるように、この時に一次側回路2と二次側回路3の特性が調和していれば、この伝送された電力によって最も効率よく受電側コンデンサCが充電される。すなわち一次側回路2から二次側回路3へ電力が最も効率よく伝送される。この受電側コイルLに流れる電流によって受電側コイルLの周囲に生じた磁界によってL1に起電力が生じる。もともとの電圧とこの起電力によって、送電側コイルLの電圧は通常の交流の波形ではない正弦波から逸脱した鋸波のようになる。この鋸波の電圧の最も電圧の低い部分を少し過ぎたあたりで瘤のように盛り上がりつつ上昇する瘤付き鋸波特性となる。The voltage of C1 gradually rises, and as the current becomes smaller, the back electromotive force of L1 becomes smaller and the current to L1 begins to flow. As a result, the voltage across C1 drops slightly. At this point, SW1 is closed (t = t1). The time t1 for closing this switch is a time at which the SW1 is not destroyed by the voltage applied to the SW1 generated by the counter electromotive force generated by turning off the current at the time when the current starts to flow in the coil. When the primary side drive switch SW 1 is turned off at t = t 1 , a current flows from the power transmission side capacitor C 1 to the power transmission coil L 1 to start full-scale discharge. The electric energy stored in the power transmission side capacitor C 1 tries to move to the power transmission side coil L 1. At this time, the magnetic field generated around L 1 by the current flowing through the transmission side coil L 1 generates an electromotive force in the power receiving side coil L 2 coupled by the mutual inductance M, and the current flows. As will be described later, if the characteristics of the primary side circuit 2 and the secondary side circuit 3 are in harmony at this time, the power receiving side capacitor C 2 is charged most efficiently by the transmitted electric power. That is, electric power is most efficiently transmitted from the primary circuit 2 to the secondary circuit 3. An electromotive force is generated in L1 by a magnetic field generated around the power receiving side coil L 2 by the current flowing through the power receiving side coil L 2. This electromotive force to the original voltage, the voltage of the power transmission coil L 1 is as sawtooth wave deviates from a sine wave is not a wave in the normal exchange. A little past the lowest voltage part of this sawtooth wave, it becomes a sawtooth wave characteristic with a hump that rises while rising like a hump.

この瘤のように盛り上がりが発生するまでの時定数τ2は、主に送信側コンデンサCの容量C、送電側コイルL1のインダクタンスL1及び送電側コイルL1の寄生抵抗をRstr(L1)に、後述する式(4)に類似な関係で示されるパラメータに依存する値となる。ただし、送電側コイルL1のインダクタンスは、時間tに依存する値である受電側コイルL2のとの相互インダクタンスM=M(t)を考慮する必要がある。Constant tau 2 time until swelling occurs as the aneurysm is mainly capacitance C 1 of the transmitting-side capacitor C 1, the parasitic resistance of the inductance L 1 and the power transmission coil L 1 of the power transmission coil L 1 R str (L 1 ) is a value that depends on the parameters shown in a relationship similar to the equation (4) described later. However, it is necessary to consider the mutual inductance M = M (t) of the power receiving side coil L 2 which is a value dependent on the time t for the inductance of the power transmitting side coil L 1.

t=t2で一次側コンデンサの電圧は再び極大ピークとなり、この時に二次側のコンデンサの電圧は極小に近い値となる。このピークに合わせて一次側駆動スイッチSW1を再度オン状態にすると、再度、直流電源5の端子間電圧Eがステップ入力される。先ほどと同様に、最初はコンデンサCへの充電電流が流れ、その値は直流電源5の端子間電圧Eからt=tおけるコンデンサCの電圧を引いたものをr1で除した値である。この時にコイルL1は流入する電流を阻止するよう逆起電力を発生するので、L1への電流はゼロである。次第にC1の電圧が上昇し、電流が小さくなるにしたがってL1の逆起電力は小さくなりL1への電流が流れ始める。それによってCの両端の電圧は少し下がる。この時点で SW1を閉じる(t=t3)。このスイッチを閉じる時間t3は、コイルに電流が流れ始めた時点で、かつそれを切ることによって送電コイルL1生じる逆起電力によってSW1に加えられる電圧によってSW1が破壊しないような時間とする。t=t3で一次側駆動スイッチSW1をオフした後は送電側コンデンサCから送電コイルL1に電流が流れるようになり本格的な放電を開始する。送電側コンデンサCに蓄えられた電気エネルギーは送電側コイルL1に移動しようとする。この時に送電側コイルLに流れる電流によってL1の周囲に発生した磁界により、相互インダクタンスMで結合した受電側コイルL2に起電力が生じ電流が流れる。後に述べるように、この時に一次側回路2と二次側回路3の特性が調和していれば、この伝送された電力によって最も効率よく受電側コンデンサCが充電される。すなわち一次側回路2から二次側回路3へ電力が最も効率よく伝送される。この受電側コイルLに流れる電流によって受電側コイルLの周囲に生じた磁界によってL1に起電力が生じる。もともとの電圧とこの起電力によって、送電側コイルLの電圧は通常の交流の波形ではない正弦波から逸脱した鋸波のようになる。この鋸波の電圧の最も電圧の低い部分を少し過ぎたあたりで瘤のように盛り上がりつつ上昇する瘤付き鋸波特性となる。When t = t 2 , the voltage of the primary side capacitor reaches the maximum peak again, and at this time, the voltage of the secondary side capacitor becomes a value close to the minimum. When the primary side drive switch SW1 is turned on again in accordance with this peak, the inter-terminal voltage E of the DC power supply 5 is step-input again. As before, the charging current flows to the capacitor C 1 at first, and the value is the value obtained by subtracting the voltage of the capacitor C 1 at t = t 2 from the voltage E between the terminals of the DC power supply 5 and dividing it by r 1. Is. At this time, the coil L 1 generates a counter electromotive force to block the inflowing current, so the current to L 1 is zero. The voltage of C1 gradually rises, and as the current becomes smaller, the back electromotive force of L1 becomes smaller and the current to L1 begins to flow. As a result, the voltage across C 1 drops a little. At this point, SW1 is closed (t = t 3 ). The time t 3 for closing this switch shall be the time when the current starts to flow in the coil and the time during which SW 1 is not destroyed by the voltage applied to SW 1 by the counter electromotive force generated by the transmission coil L 1 by turning it off. .. t = t 3 after turning off the primary-side drive switch SW1 initiates the full-scale discharge is as current flows from the power transmission side capacitor C 1 to the power transmission coil L 1. The electric energy stored in the power transmission side capacitor C 1 tries to move to the power transmission side coil L 1. At this time, the magnetic field generated around L 1 by the current flowing through the transmission side coil L 1 generates an electromotive force in the power receiving side coil L 2 coupled by the mutual inductance M, and the current flows. As will be described later, if the characteristics of the primary side circuit 2 and the secondary side circuit 3 are in harmony at this time, the power receiving side capacitor C 2 is charged most efficiently by the transmitted electric power. That is, electric power is most efficiently transmitted from the primary circuit 2 to the secondary circuit 3. An electromotive force is generated in L1 by a magnetic field generated around the power receiving side coil L 2 by the current flowing through the power receiving side coil L 2. This electromotive force to the original voltage, the voltage of the power transmission coil L 1 is as sawtooth wave deviates from a sine wave is not a wave in the normal exchange. A little past the lowest voltage part of this sawtooth wave, it becomes a sawtooth wave characteristic with a hump that rises while rising like a hump.

この結果、t=t3以降は、図1(b)の右側に示すように、送電側コンデンサCの端子間電圧VCは減少し、再度負の値になる。送電側コンデンサCの端子間電圧VCが負の値になると、送電側コイルL1に蓄えられた電気エネルギーは送電側コンデンサCに環流し始め、図1(b)の右端に示すように、送電側コンデンサCの端子間電圧VCは環流電流により増大を開始し、正の値になり、更に増大する。ここまでの時間は、送電側コンデンサの容量C、送電側コイルのインダクタンスL1、相互インダクタンスMで決まる時定数τ2で決められる。図1(b)に示すように、一次側駆動スイッチSW1による直流電源5の端子間電圧Eのステップ入力と遮断により、端子間電圧VCの変化は通常の交流理論における正弦波の波形ではなく、瘤付鋸波がなまった立ち上がり・立ち下がり特性の繰り返し波形の過渡応答を示す。As a result, after t = t 3 , as shown on the right side of FIG. 1 (b), the voltage between terminals VC 1 of the power transmission side capacitor C 1 decreases and becomes a negative value again. When the terminal voltage VC 1 of the power transmission capacitor C 1 becomes a negative value, the electric energy stored in the power transmission coil L 1 starts refluxed to the power transmission side capacitor C 1, as shown at the right end shown in FIG. 1 (b) In addition, the voltage between terminals VC 1 of the power transmission side capacitor C 1 starts to increase due to the recirculation current, becomes a positive value, and further increases. The time up to this point is determined by the time constant τ 2 determined by the capacitance C 1 of the power transmission side capacitor, the inductance L 1 of the power transmission side coil, and the mutual inductance M. As shown in FIG. 1 (b), the change in the terminal voltage VC 1 is not a sinusoidal waveform in the usual AC theory due to the step input and interruption of the terminal voltage E of the DC power supply 5 by the primary side drive switch SW1. , Shows the transient response of the repeating waveform of the rising and falling characteristics of the sawtooth wave with a hump.

一次側回路2の回路特性に内在する時定数と二次側回路3の回路特性に内在する時定数とが調和したとき、一次側回路2の電気エネルギーが二次側回路3に最も効率よく伝送され、一次側回路2と二次側回路3の間の特性調和伝送が生じる。この一次側回路2と二次側回路3の間の特性調和伝送が生じる際の一次側回路2の端子間電圧VCと、二次側回路3の端子間電圧VCの過渡応答波形を図2(a)に示す。図2(a)では、図1(b)と同様に、一次側駆動スイッチSW1による直流電源5の端子間電圧Eのステップ入力と遮断により、端子間電圧VCが瘤付鋸波がなまった立ち上がり・立ち下がり特性の繰り返し過渡応答波形を示している。図2(a)に実線で示した過渡応答波形は、送電側コンデンサCの端子間電圧VCが負の値から増大を開始し、正の値になり、更に増大して、t=tiで一次側駆動スイッチSW1がオン状態に至る様子である。When the time constant inherent in the circuit characteristics of the primary side circuit 2 and the time constant inherent in the circuit characteristics of the secondary side circuit 3 are in harmony, the electrical energy of the primary side circuit 2 is most efficiently transmitted to the secondary side circuit 3. Then, characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 occurs. Figure a terminal voltage VC 1 of the primary-side circuit 2, the transient response waveform of terminal voltage VC 2 of the secondary side circuit 3 when the characteristic harmonic transmissions between the primary-side circuit 2 and the secondary-side circuit 3 occurs It is shown in 2 (a). In FIG. 2 (a), as in FIG. 1 (b), the inter-terminal voltage VC 1 has a sawtooth wave due to the step input and interruption of the inter-terminal voltage E of the DC power supply 5 by the primary side drive switch SW1. The repeated transient response waveforms of rising and falling characteristics are shown. In the transient response waveform shown by the solid line in FIG. 2 (a), the inter-terminal voltage VC 1 of the power transmission side capacitor C 1 starts increasing from a negative value, becomes a positive value, and further increases, t = t. It seems that the primary side drive switch SW1 is turned on by i.

このとき、図2(a)の左側に破線で示したように、一次側回路2と二次側回路3との間の一次側回路2と二次側回路3の間の特性調和伝送によって、二次側回路3の受電側コンデンサCが充電され、受電側コンデンサCの端子間電圧をVCがピーク値に到達した後、受電側コンデンサCが放電を開始し、端子間電圧をVCが減少を開始している。t=tiで一次側駆動スイッチSW1をオン状態にすると、直流電源5の端子間電圧Eがステップ入力される。二次側回路3の受電側コンデンサCの端子間電圧VCはt=tiでは負の値にまで減少している。At this time, as shown by the broken line on the left side of FIG. 2A, the characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 between the primary side circuit 2 and the secondary side circuit 3 causes the characteristic harmonized transmission. power receiving side capacitor C 2 of the secondary side circuit 3 is charged, after the terminal voltage of the power receiving side capacitor C 2 VC 2 has reached the peak value, the power-receiving-side capacitor C 2 starts to discharge, the terminal voltage VC 2 has begun to decrease. When t = t i to turn on the primary side drive switch SW1, the terminal voltage E of the DC power source 5 is a step input. Terminal voltage VC 2 of the power receiving side capacitor C 2 of the secondary side circuit 3 is reduced to a negative value at t = t i.

t=tiのステップ入力により、図2(a)の中央左側付近に示すように、等価内部抵抗r、送電側コンデンサの容量C、送電側コイルのインダクタンスL1、相互インダクタンスMで決まる時定数τ1で一次側回路2の送電側コンデンサCが充電され、端子間電圧VCは増加する。図2(a)に示すように、一次側回路2の端子間電圧VCはピーク値に到達した後、減少を開始する。t=ti+1で一次側駆動スイッチSW1をオフ状態にすると、一次側回路2の送電側コンデンサCは本格的な放電を開始し、送電側コンデンサCに蓄えられた電気エネルギーは送電側コイルL1に移動する。二次側回路3の受電側コンデンサCの端子間電圧VCは破線で示したようにt=tiからt=ti+1での間では負の値である。The step input t = t i, as shown near the center left of FIG. 2 (a), the equivalent internal resistance r 1, the capacitance C 1 of the power transmission capacitor, the power-transmitting-side coil inductance L 1, determined by the mutual inductance M The power transmission side capacitor C 1 of the primary circuit 2 is charged by the time constant τ 1 , and the terminal voltage VC 1 increases. As shown in FIG. 2A, the voltage between terminals VC 1 of the primary side circuit 2 starts to decrease after reaching the peak value. When the t = t i + 1 on the primary side driving switch SW1 is turned off, the power-transmitting-side capacitor C 1 of the primary-side circuit 2 starts a full-scale discharge, electric energy stored in the power transmitting side capacitor C 1 is transmission Move to the side coil L 1. The voltage between terminals VC 2 of the power receiving side capacitor C 2 of the secondary circuit 3 is a negative value between t = t i and t = t i + 1 as shown by the broken line.

t=ti+1以降は、図2(a)の中央付近に実線で示すように、送電側コンデンサの容量C、送電側コイルのインダクタンスL1、相互インダクタンスMで決まる時定数τ2で送電側コンデンサCの端子間電圧VCは減少し負の値になり、送電側コンデンサCに蓄積された電気エネルギーは送電側コイルL1に移る。送電側コイルL1に蓄積された電気エネルギーは、一次側回路2と二次側回路3との間の一次側回路2と二次側回路3の間の特性調和伝送によって二次側回路3の受電側コイルL2にワイヤレス伝送される。二次側回路3の受電側コイルL2にワイヤレス伝送された電気エネルギーは、二次側回路3の受電側コンデンサCに蓄積される。After t = t i + 1 , as shown by the solid line near the center of Fig. 2 (a), the capacitance C 1 of the power transmission side capacitor, the inductance L 1 of the power transmission side coil, and the time constant τ 2 determined by the mutual inductance M. terminal voltage VC 1 of the power transmission capacitor C 1 becomes reduced to a negative value, the electric energy stored in the power transmitting side capacitor C 1 transfers to the power transmission coil L 1. The electrical energy stored in the transmission side coil L 1 is transferred from the secondary side circuit 3 by characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 between the primary side circuit 2 and the secondary side circuit 3. It is wirelessly transmitted to the power receiving side coil L 2. The electric energy wirelessly transmitted to the power receiving side coil L 2 of the secondary side circuit 3 is stored in the power receiving side capacitor C 2 of the secondary side circuit 3.

この結果、t=ti+1以降において、図2(a)の中央付近に破線で示すように、二次側回路3の受電側コンデンサCの端子間電圧VCは増大を開始する。二次側回路3の受電側コンデンサCの端子間電圧VCはピーク値に到達した後、減少を開始し、図2(a)の右側に破線で示すように負の値となる。本実施形態での条件として、負荷素子6の充電電圧VCの初期状態における値は、充電完了電圧に近い(満充電に近い)、高い値であるため、受電側コンデンサCの端子間電圧VCがピーク値になった付近で負荷素子6の充電電圧VCを超えるため、負荷素子6に電流が流れ、受電側コンデンサC2に蓄積された電気エネルギーは負荷素子6に移動し、負荷素子6である充電式電池が充電される。As a result, after t = t i + 1 , the voltage between terminals VC 2 of the power receiving side capacitor C 2 of the secondary circuit 3 starts to increase, as shown by the broken line near the center of FIG. 2 (a). The voltage between terminals VC 2 of the power receiving side capacitor C 2 of the secondary circuit 3 starts to decrease after reaching the peak value, and becomes a negative value as shown by a broken line on the right side of FIG. 2 (a). As a condition in this embodiment, the value of the charging voltage VC S of the load element 6 in the initial state is close to the charging completion voltage (close to full charge) and high, so that the voltage between the terminals of the power receiving side capacitor C 2 is high. Since the charging voltage VC S of the load element 6 is exceeded near the peak value of VC 2 , a current flows through the load element 6, and the electric energy stored in the power receiving side capacitor C2 moves to the load element 6 and is transferred to the load element 6. The rechargeable battery of No. 6 is charged.

t=ti+1以降は、図2(a)の中央の実線に示すように送電側コンデンサCの端子間電圧VCが負の値の最小値に到達すると、送電側コイルL1に蓄えられた電気エネルギーは送電側コンデンサCに環流し始め、送電側コンデンサCの端子間電圧VCは環流電流により増大を開始し、正の値になり、更に増大する。図2(a)の右側に破線で示すように、端子間電圧VCが正の値になると、受電側コンデンサCの端子間電圧VCは負の値になる。After t = t i + 1 , as shown by the solid line in the center of FIG. 2A, when the voltage between terminals VC 1 of the power transmission side capacitor C 1 reaches the minimum negative value, the power transmission side coil L 1 is reached. the stored electric energy is started refluxed to the power transmission side capacitor C 1, the inter-terminal voltage VC 1 of the power transmission capacitor C 1 starts to increase by circulating electric current, a positive value, further increases. As shown by the broken line on the right side of FIG. 2A, when the inter-terminal voltage VC 1 becomes a positive value, the inter-terminal voltage VC 2 of the power receiving side capacitor C 2 becomes a negative value.

送電側コンデンサCの端子間電圧VCが正の値で増大し、t=ti+2で一次側駆動スイッチSW1を再度オン状態にすると、直流電源5の端子間電圧Eがステップ入力される。t=ti+2のステップ入力により、図2(a)の右側の実線に示すように送電側コンデンサCが充電され、端子間電圧VCは増加する。図2(a)の実線に示すように、端子間電圧VCはピーク値E0に到達した後、再度減少を開始する。t=ti+3で一次側駆動スイッチSW1をオフ状態にすると、送電側コンデンサCは再度放電を開始し、送電側コンデンサCに蓄えられた電気エネルギーは送電側コイルL1に移動する。二次側回路3の受電側コンデンサCの端子間電圧VCは破線で示したようにt=ti+2からt=ti+3での間では負の値である。Terminal voltage VC 1 of the power transmission capacitor C 1 is increased in a positive value, when t = t i + 2 in which again turns on the primary side driving switch SW1, the voltage between the terminals E of the DC power source 5 is step input NS. By the step input of t = t i + 2 , the power transmission side capacitor C 1 is charged as shown by the solid line on the right side of FIG. 2 (a), and the terminal voltage VC 1 increases. As shown by the solid line in FIG. 2A, the voltage between terminals VC 1 starts to decrease again after reaching the peak value E 0. When the primary side drive switch SW1 is turned off at t = t i + 3 , the power transmission side capacitor C 1 starts discharging again, and the electric energy stored in the power transmission side capacitor C 1 moves to the power transmission side coil L 1. .. The voltage between terminals VC 2 of the power receiving side capacitor C 2 of the secondary circuit 3 is a negative value between t = t i + 2 and t = t i + 3 , as shown by the broken line.

送電側コイルL1に蓄積された電気エネルギーは、一次側回路2と二次側回路3との間の一次側回路2と二次側回路3の間の特性調和伝送によって二次側回路3の受電側コイルL2にワイヤレス伝送される。二次側回路3の受電側コイルL2にワイヤレス伝送された電気エネルギーは、二次側回路3の受電側コンデンサCに蓄積される。図2(a)に示すように、一次側駆動スイッチSW1による端子間電圧Eのステップ入力と遮断により、一次側回路2の端子間電圧VCの変化は通常の交流理論における正弦波の波形ではなく、瘤付鋸波がなまった立ち上がり・立ち下がり特性の繰り返し波形の過渡応答を示す。一方、二次側回路3の端子間電圧VCの変化は、間引かれた三角波のような繰り返し波形の過渡応答を示すが、通常の交流理論における正弦波の波形ではない。図2(a)から分かるように「間引かれた三角波」とは、台形波の極性を逆にした波形とも解釈できる。いずれにせよ、一次側回路2の振動波形と二次側回路3の振動波形とは互いに対称性のある振動波形ではない。The electrical energy stored in the transmission side coil L 1 is transferred from the secondary side circuit 3 by characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 between the primary side circuit 2 and the secondary side circuit 3. It is wirelessly transmitted to the power receiving side coil L 2. The electric energy wirelessly transmitted to the power receiving side coil L 2 of the secondary side circuit 3 is stored in the power receiving side capacitor C 2 of the secondary side circuit 3. As shown in FIG. 2A, the change in the inter-terminal voltage VC 1 of the primary side circuit 2 due to the step input and cutoff of the inter-terminal voltage E by the primary side drive switch SW1 is the waveform of the sinusoidal wave in the ordinary AC theory. It shows the transient response of the repeating waveform of the rising and falling characteristics of the sawtooth wave with a hump. On the other hand, the change in the voltage VC 2 between the terminals of the secondary circuit 3 shows a transient response of a repeating waveform such as a thinned triangular wave, but it is not a sinusoidal waveform in the usual AC theory. As can be seen from FIG. 2A, the "thinned triangular wave" can be interpreted as a waveform in which the polarity of the trapezoidal wave is reversed. In any case, the vibration waveform of the primary side circuit 2 and the vibration waveform of the secondary side circuit 3 are not symmetrical with each other.

図2(b)は図2(a)に示した端子間電圧VC及び端子間電圧VCの過渡応答波形に更に直流電源5の端子間電圧E、負荷素子6の端子間電圧VC及び負荷素子6である充電式電池への充電電流Iを加えた過渡応答の実測波形である。t=tで一次側駆動スイッチSW1をオン状態にして送電側コンデンサCに電荷を蓄えたのち、t=ti+1で一次側駆動スイッチSW1をオフ状態にすると、一次側回路2から二次側回路3への一次側回路2と二次側回路3の間の特性調和伝送が生じる。一次側駆動スイッチSW1をオン状態にすると、直流電源5の等価内部抵抗rが小さいので、図2(b)において太い実線で示した直流電源5の端子間電圧Eが一次側回路2の端子間電圧VCに重畳する変化を示している。 2 (b) shows the transient response waveforms of the inter-terminal voltage VC 1 and the inter-terminal voltage VC 2 shown in FIG. 2 (a), the inter-terminal voltage E of the DC power supply 5, the inter-terminal voltage VC S of the load element 6, and the inter-terminal voltage VC S. load element is a 6 plus charge current I C to rechargeable battery is a measured waveform of the transient response. After stored the to charge to the power transmission side capacitor C 1 of the primary-side drive switch SW1 to the ON state at t = t i, the t = t i + 1 on the primary side driving switch SW1 when the OFF state, the primary circuit 2 Characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 to the secondary side circuit 3 occurs. When the primary-side drive switch SW1 in the ON state, the equivalent internal resistance r 1 of the DC power source 5 is low, the voltage between the terminals E of the DC power source 5 shown by a thick solid line in FIG. 2 (b) is a primary-side circuit 2 terminal It shows the change superimposed on the inter-voltage VC 1.

図2(b)のt=ti+1以降の過渡応答に着目して説明する。図2(b)の中央付近に実線で示すように、送電側コンデンサCの端子間電圧VCは、t=ti+1以降において減少し負の値になる。送電側コンデンサCに蓄積された電気エネルギーは送電側コイルL1に移り、送電側コイルL1に蓄積される。送電側コイルL1に蓄積された電気エネルギーは、一次側回路2と二次側回路3との間の一次側回路2と二次側回路3の間の特性調和伝送によって二次側回路3の受電側コイルL2に伝送される。二次側回路3の受電側コイルL2に伝送された電気エネルギーは、二次側回路3の受電側コンデンサCに蓄積されるため、受電側コンデンサCの端子間電圧VCは、図2(b)の中央付近に破線で示すように、t=ti+1以降において負の値から増大を始める。This description will be focused on the transient response after t = t i + 1 in FIG. 2 (b). As shown by a solid line near the center of FIG. 2B, the voltage between terminals VC 1 of the power transmission side capacitor C 1 decreases after t = ti + 1 and becomes a negative value. Electrical energy stored in the power transmitting side capacitor C 1 is transferred to the power transmission coil L 1, it is accumulated in the power transmission coil L 1. The electrical energy stored in the transmission side coil L 1 is transferred from the secondary side circuit 3 by characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 between the primary side circuit 2 and the secondary side circuit 3. It is transmitted to the power receiving side coil L 2. Electrical energy transmitted to the power receiving coil L 2 of the secondary side circuit 3 to be accumulated in the power receiving side capacitor C 2 of the secondary side circuit 3, the voltage between the terminals VC 2 of the power receiving side capacitor C 2, as shown in FIG. As shown by the broken line near the center of 2 (b), the increase starts from a negative value after t = t i + 1.

二次側回路3の受電側コンデンサCの端子間電圧VCは、中央の左側よりの破線で示したようにt=tiからt=ti+1での間では負の値である。受電側コンデンサCの端子間電圧VCは、t=ti+1の負の値から増大し、正の値になり更に増大し、ピーク値に到達した後、図2(b)の右側に破線で示すように、減少を開始する。端子間電圧VCが減少すると、受電側コンデンサCに蓄積された電気エネルギーは、図2(b)の右側に一点鎖線で示した充電電流Iとして負荷素子6に流れ、負荷素子6が充電される。一点鎖線で示した充電電流Iの増大とほぼ同期して、図2(b)の右側に点線で示した負荷素子6の端子間電圧VCも僅かに増大し、ピーク値を経た後に、充電電流Iの減少に同期して減少する過渡応答を示す。充電電流Iが減少してゼロになると、負荷素子6の端子間電圧VCの減少は停止し、増大に転じ、負荷素子6の端子間電圧が定常値になる。Icに応じたVcsの変化は図1(a)に例示的に等価回路を示したような抵抗とコンデンサの直並列回路が存在するために生じる。The voltage between terminals VC 2 of the power receiving side capacitor C 2 of the secondary circuit 3 is a negative value between t = t i and t = t i + 1 as shown by the broken line from the left side of the center. .. The voltage between terminals VC 2 of the power receiving capacitor C 2 increases from the negative value of t = ti + 1 , becomes a positive value, further increases, and after reaching the peak value, the right side of FIG. 2 (b). As shown by the broken line in, the decrease starts. When the terminal voltage VC 2 is reduced, the electric energy stored in the power receiving side capacitor C 2 flows to the load device 6 as the charging current I C as shown by the dashed line on the right side of FIG. 2 (b), the load element 6 It will be charged. And substantially synchronized with the increase of the charging current I C indicated by one-dot chain line, also the voltage between the terminals VC S load element 6 shown by a dotted line on the right side shown in FIG. 2 (b) slightly increases, after being subjected to a peak value, shows a transient response which decreases in synchronization with decreasing of the charging current I C. When the charging current I C is reduced to zero, a decrease in inter-terminal voltage VC S load element 6 stops and turns to an increase, the voltage between the terminals of the load element 6 becomes a steady value. The change of Vcs according to Ic occurs due to the existence of a series-parallel circuit of a resistor and a capacitor as shown in FIG. 1 (a) as an example of an equivalent circuit.

t=ti+1以降において、図2(b)の中央の実線に示すように送電側コンデンサCの端子間電圧VCが負の値の最小値に到達すると、送電側コイルL1に蓄えられた電気エネルギーは送電側コンデンサCに環流し始め、送電側コンデンサCの端子間電圧VCは環流電流により増大を開始し、正の値になり、更に増大する。図2(b)の右側に破線で示すように、端子間電圧VCが正の値になると、受電側コンデンサCの端子間電圧VCは負の値になる。After t = t i + 1 , when the inter-terminal voltage VC 1 of the power transmission side capacitor C 1 reaches the minimum negative value as shown by the solid line in the center of FIG. 2 (b), the power transmission side coil L 1 is reached. the stored electric energy is started refluxed to the power transmission side capacitor C 1, the inter-terminal voltage VC 1 of the power transmission capacitor C 1 starts to increase by circulating electric current, a positive value, further increases. As shown by the broken line on the right side of FIG. 2B, when the inter-terminal voltage VC 1 becomes a positive value, the inter-terminal voltage VC 2 of the power receiving side capacitor C 2 becomes a negative value.

送電側コンデンサCの端子間電圧VCが正の値で増大し、t=ti+2で一次側駆動スイッチSW1を再度オン状態にすると、直流電源5の端子間電圧Eがステップ入力される。t=ti+2のステップ入力により、図2(b)の右側の実線に示すように送電側コンデンサCが充電され、端子間電圧VCは増加する。前述したように、直流電源5の等価内部抵抗rが小さいので、一次側駆動スイッチSW1をオン状態にすると、図2(b)の太い実線で示した直流電源5の端子間電圧Eは端子間電圧VCに重畳する変化をする。図2(b)の右端の端子間電圧Eに重畳された実線に示されるように、端子間電圧VCはピーク値に到達した後、再度減少を開始する。t=ti+3で一次側駆動スイッチSW1をオフ状態にすると、送電側コンデンサCは再度放電を開始し、送電側コンデンサCに蓄えられた電気エネルギーは送電側コイルL1に移動する。二次側回路3の受電側コンデンサCの端子間電圧VCは破線で示したようにt=ti+2からt=ti+3での間では負の値である。Terminal voltage VC 1 of the power transmission capacitor C 1 is increased in a positive value, when t = t i + 2 in which again turns on the primary side driving switch SW1, the voltage between the terminals E of the DC power source 5 is step input NS. By the step input of t = t i + 2 , the power transmission side capacitor C 1 is charged as shown by the solid line on the right side of FIG. 2 (b), and the terminal voltage VC 1 increases. As described above, the equivalent internal resistance r 1 of the DC power source 5 is small, when the primary-side drive switch SW1 in the ON state, the voltage between the terminals E of the DC power source 5 shown in thick line in FIG. 2 (b) terminal The change is superimposed on the inter-voltage VC 1. As shown by the solid line superimposed on the rightmost terminal voltage E in FIG. 2B, the terminal voltage VC 1 starts decreasing again after reaching the peak value. When the primary side drive switch SW1 is turned off at t = t i + 3 , the power transmission side capacitor C 1 starts discharging again, and the electric energy stored in the power transmission side capacitor C 1 moves to the power transmission side coil L 1. .. The voltage between terminals VC 2 of the power receiving side capacitor C 2 of the secondary circuit 3 is a negative value between t = t i + 2 and t = t i + 3 , as shown by the broken line.

t=ti以前の振る舞いも同様であり、受電側コンデンサCの端子間電圧VCは、図2(b)の左側に破線で示すように、ピーク値に到達した後、減少を開始する。端子間電圧VCが増加していきVcsを上回ると、受電側コンデンサCに蓄積された電気エネルギーは、図2(b)の左側に一点鎖線で示した充電電流Iとして負荷素子6に流れ、負荷素子6が充電される。一点鎖線で示した充電電流Iの増大とほぼ同期して、図2(b)の左側に点線で示した負荷素子6の端子間電圧VCも僅かに増大し、ピーク値を経た後に、充電電流Iの減少に同期して減少する過渡応答を示す。充電電流Iが減少してゼロになると、負荷素子6の端子間電圧VCの減少は停止し、増大に転じ、負荷素子6の端子間電圧が定常値になる。Icに応じたVcsの変化は図1(a)に例示的に等価回路を示したような抵抗とコンデンサの直並列回路が存在するために生じる。t = t i previous behavior is also similar, terminal voltage VC 2 of the power receiving side capacitor C 2, as shown by the broken line on the left side of FIG. 2 (b), after reaching the peak value, starts decreasing .. When the terminal voltage VC 2 exceeds Vcs continue to increase, electric energy stored in the power receiving side capacitor C 2 is the load element 6 as the charging current I C indicated by one-dot chain line on the left side shown in FIG. 2 (b) Flow, the load element 6 is charged. And substantially synchronized with the increase of the charging current I C indicated by one-dot chain line, also the voltage between the terminals VC S load element 6 shown by a dotted line on the left side shown in FIG. 2 (b) slightly increases, after being subjected to a peak value, shows a transient response which decreases in synchronization with decreasing of the charging current I C. When the charging current I C is reduced to zero, a decrease in inter-terminal voltage VC S load element 6 stops and turns to an increase, the voltage between the terminals of the load element 6 becomes a steady value. The change of Vcs according to Ic occurs due to the existence of a series-parallel circuit of a resistor and a capacitor as shown in FIG. 1 (a) as an example of an equivalent circuit.

そして、既に説明したt=ti+1で一次側駆動スイッチSW1をオフ状態にすると、図2(b)の中央の実線に示すように送電側コンデンサCの端子間電圧VCが負の値に向かって減少を開始する。このようにして、送電側コイルL1に蓄積された電気エネルギーは、一次側回路2と二次側回路3との間の一次側回路2と二次側回路3の間の特性調和伝送によって二次側回路3の受電側コイルL2にワイヤレス伝送される。二次側回路3の受電側コイルL2にワイヤレス伝送された電気エネルギーは、二次側回路3の受電側コンデンサCに蓄積される。図2(b)に示すように、一次側駆動スイッチSW1による端子間電圧Eのステップ入力と遮断により、一次側回路2の端子間電圧VCの変化は通常の交流理論における正弦波の波形ではなく、瘤付鋸波がなまった立ち上がり・立ち下がり特性の繰り返し過渡応答波形を示し、二次側回路3の端子間電圧VCは間引かれた三角波のような繰り返し波形の過渡応答を示す。Then, already when the the t = t i + 1 on the primary side drives the switch SW1 in the OFF state description, Figure 2 central terminal voltage VC 1 of the power transmission capacitor C 1 as shown by the solid line is a negative (b) It starts to decrease toward the value. In this way, the electrical energy stored in the transmission side coil L 1 is transferred by characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 between the primary side circuit 2 and the secondary side circuit 3. It is wirelessly transmitted to the power receiving side coil L 2 of the next side circuit 3. The electric energy wirelessly transmitted to the power receiving side coil L 2 of the secondary side circuit 3 is stored in the power receiving side capacitor C 2 of the secondary side circuit 3. As shown in FIG. 2B, the change in the inter-terminal voltage VC 1 of the primary side circuit 2 due to the step input and interruption of the inter-terminal voltage E by the primary side drive switch SW1 is the waveform of the sinusoidal wave in the ordinary AC theory. The inter-terminal voltage VC 2 of the secondary side circuit 3 shows a transient response of a repeating waveform such as a thinned triangular wave.

図3(a)は一次側回路2と二次側回路3との電磁的結合がない状態での、一次側回路2の単独回路としてのステップ応答を説明する回路図である。図3(a)において、直流電源の端子間電圧をE、送信側コンデンサCの端子間電圧をVC、送電側コイルL1を流れる電流を送電側コイル電流IL1とする。t=0msで一次側駆動スイッチSW1をオン状態にすると、直流電源5の端子間電圧Eがステップ入力される。t=0msのステップ入力により、図3(b)に示すように、送電側コンデンサの容量C、送電側コイルのインダクタンスL1で決まる時定数が送電側コンデンサCが充電の立ち上がり波形Vriseを規定し、端子間電圧VCは立ち上がり波形Vriseで増加する。同時に送電側コイル電流IL1も、図3(b)に示すように増加を開始する。FIG. 3A is a circuit diagram illustrating a step response as a single circuit of the primary side circuit 2 in a state where there is no electromagnetic coupling between the primary side circuit 2 and the secondary side circuit 3. In FIG. 3A, the voltage between the terminals of the DC power supply is E, the voltage between the terminals of the transmission side capacitor C 1 is VC 1 , and the current flowing through the transmission side coil L 1 is the power transmission side coil current IL 1 . When the primary side drive switch SW1 is turned on at t = 0 ms, the inter-terminal voltage E of the DC power supply 5 is step-input. The step input t = 0ms, as shown in FIG. 3 (b), the capacitance C 1 of the power transmission capacitor, the time constant determined by the inductance L 1 of the power transmission coil transmitting side capacitor C 1 to charge the rising waveform V rise The voltage between terminals VC 1 increases with the rising waveform V rise. At the same time, the power transmission side coil current IL1 also starts to increase as shown in FIG. 3 (b).

図3(b)に示すように、端子間電圧VCは立ち上がり波形Vriseで増加してt=0.075msでピーク値に到達した後、減少を開始する。端子間電圧VCが減少を開始した後も、送電側コイル電流IL1が増加を継続し、送電側コンデンサCの電気エネルギーが送電側コイルL1に移動し続けていることが分かる。t=0.15msで一次側駆動スイッチSW1をオフ状態にすると、送電側コンデンサCは本格的な放電を開始し、立ち下がり波形Vfallで急激に減少する。このとき送電側コイル電流IL1は増加を継続しており、t=0.17msで送電側コイル電流IL1のピーク値に到達するまで、送電側コンデンサCに蓄えられた電気エネルギーは送電側コイルL1に移動する。As shown in FIG. 3 (b), the inter-terminal voltage VC 1 increases with the rising waveform V rise , reaches the peak value at t = 0.075 ms, and then starts decreasing. It can be seen that even after the terminal voltage VC 1 starts to decrease, the power transmission side coil current IL 1 continues to increase, and the electric energy of the power transmission side capacitor C 1 continues to move to the power transmission side coil L 1. When the primary-side drive switch SW1 is turned off at t = 0.15 ms, the power-transmitting-side capacitor C 1 begins a full-scale discharge, rapidly decreases with falling waveform V fall. In this case the power transmission coil current I L1 is continuing to increase, until it reaches the peak value of the power transmission coil current I L1 at t = 0.17ms, electrical energy stored in the power-transmitting-side capacitor C 1 is the transmission side Move to coil L 1.

この結果、t=0.15ms以降は、図3(b)に示すように、送電側コンデンサの容量C、送電側コイルのインダクタンスL1で決まる時定数で送電側コンデンサCの端子間電圧VCは減少し、t=0.17msで送電側コイル電流IL1のピーク値に到達したとき、端子間電圧VCはゼロになる。そして、t=0.17ms以降は、送電側コンデンサCの端子間電圧VCは負の値になる。送電側コンデンサCの端子間電圧VCが負の値になると、送電側コイル電流IL1の値が減少し始め、送電側コイルL1に蓄えられた電気エネルギーは送電側コンデンサCに環流し始める。そして、図3(b)に示すように、送電側コイル電流IL1の値がt=0.29msでゼロになったとき、送電側コンデンサCの端子間電圧VCは環流電流により増大を開始する。送電側コイル電流IL1の値が、t=0.4msでゼ負の値の最小値になったとき、端子間電圧VCはゼロになり、この後、端子間電圧VCは正の値になり、更に増大する。As a result, after t = 0.15 ms, as shown in FIG. 3 (b), the voltage between the terminals of the power transmission side capacitor C 1 is a time constant determined by the capacity C 1 of the power transmission side capacitor and the inductance L 1 of the power transmission side coil. VC 1 decreases, and when the peak value of the transmission side coil current IL1 is reached at t = 0.17 ms, the terminal voltage VC 1 becomes zero. Then, after t = 0.17 ms, the voltage between terminals VC 1 of the power transmission side capacitor C 1 becomes a negative value. When the terminal voltage VC 1 of the power transmission capacitor C 1 becomes a negative value, the value of the power transmission coil current I L1 begins to decrease, the electrical energy stored in the power transmission coil L 1 is circulating to the power transmission side capacitor C 1 Begin to. Then, as shown in FIG. 3 (b), when the value of the power transmission side coil current IL1 becomes zero at t = 0.29 ms, the inter-terminal voltage VC 1 of the power transmission side capacitor C 1 increases due to the recirculation current. Start. When the value of the coil current IL1 on the power transmission side reaches the minimum negative value at t = 0.4 ms, the terminal voltage VC 1 becomes zero, and then the terminal voltage VC 1 becomes a positive value. And further increase.

図3(a)に示す回路は、t=0.15msで一次側駆動スイッチSW1をオフ状態にした後、一次側駆動スイッチSW1を再度オン状態にすることはない。つまり、図3(a)に示す回路の場合は、図3(b)の右側に斜線で示した領域において自由振動をするので、通常の正弦波の交流理論で処理できる。しかしながら、図1(a)に示す回路では一次側駆動スイッチSW1が周期的にオン/オフを繰り返す強制的なステップ応答の駆動をするので、図3(b)の斜線で示した自由振動の領域は、第1の実施形態に係る電力伝送装置の対象外である。強制的なステップ応答の場合、図1(b)〜図2(b)に示したように、一次側回路2の端子間電圧VCは瘤付鋸波がなまった立ち上がり・立ち下がり特性の繰り返し波形の過渡応答を示す。又、二次側回路3の端子間電圧VCは間引かれた三角波のような繰り返し波形の過渡応答を示す。In the circuit shown in FIG. 3A, after the primary side drive switch SW1 is turned off at t = 0.15 ms, the primary side drive switch SW1 is not turned on again. That is, in the case of the circuit shown in FIG. 3 (a), since it vibrates freely in the region shown by the diagonal line on the right side of FIG. 3 (b), it can be processed by the ordinary AC theory of a sine wave. However, in the circuit shown in FIG. 1 (a), since the primary side drive switch SW1 drives a forced step response that periodically repeats on / off, the region of free vibration shown by the diagonal line in FIG. 3 (b). Is out of the scope of the power transmission device according to the first embodiment. In the case of a forced step response, as shown in FIGS. 1 (b) to 2 (b), the voltage between terminals VC 1 of the primary side circuit 2 repeats rising / falling characteristics in which a sawtooth wave with a hump is blunted. The transient response of the waveform is shown. Further, the voltage between terminals VC 2 of the secondary circuit 3 shows a transient response of a repetitive waveform such as a thinned triangular wave.

即ち、第1の実施形態に係る電力伝送装置においては、通常の交流理論での正弦波に依拠した共振ではなく、一次側回路2の回路特性に内在する時定数と二次側回路3の回路特性に内在する時定数とが調和したとき、一次側回路2と二次側回路3の間の特性調和伝送によって、一次側回路2の電気エネルギーが、効率よく二次側回路3に伝送される。一次側回路2の回路特性に内在する時定数と二次側回路3の回路特性に内在する時定数とを調和させるためには、送電側コンデンサC1と送電側コイルL1の積、と受電側コンデンサC2と受電側コイルL2の積を同じにすることを基本とし、送電側、受電側の寄生抵抗、浮遊容量などを加味したそれぞれの時定数を一致もしくは整数倍にして調和させなければならない。最も簡単な方法は、送電側コンデンサC1と受電側コンデンサC2の容量を、コンデンサの寄生抵抗を含めて等しくし、送電側コイルL1と受電側コイルL2のインダクタンスをコイルの寄生抵抗を含めて等しくすることである。なお、コイル及びコンデンサに寄生抵抗が存在する場合は、後述するように、コイルのインダクタンスLとコンデンサの容量Cが式(19)を満たすとき、伝送効率が最大となることにも留意すべきである。That is, in the power transmission device according to the first embodiment, the time constant inherent in the circuit characteristics of the primary side circuit 2 and the circuit of the secondary side circuit 3 are not the resonances based on the sine wave in the usual AC theory. When the time constant inherent in the characteristic is harmonized, the electrical energy of the primary side circuit 2 is efficiently transmitted to the secondary side circuit 3 by the characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3. .. In order to harmonize the time constant inherent in the circuit characteristics of the primary side circuit 2 with the time constant inherent in the circuit characteristics of the secondary side circuit 3, the product of the transmission side capacitor C1 and the transmission side coil L1 and the power reception side capacitor Basically, the product of C2 and the power receiving side coil L2 must be the same, and the time constants of the transmitting side and the power receiving side, taking into account the parasitic resistance, stray capacitance, etc., must be matched or multiplied by an integral number to be harmonized. The simplest method is to equalize the capacitance of the transmitting side capacitor C1 and the receiving side capacitor C2 including the parasitic resistance of the capacitor, and to make the inductance of the transmitting side coil L 1 and the receiving side coil L 2 including the parasitic resistance of the coil. To be equal. It should also be noted that when the coil and the capacitor have parasitic resistance, the transmission efficiency is maximized when the inductance L of the coil and the capacitance C of the capacitor satisfy the equation (19), as will be described later. be.

図1(a)に示した一次側駆動スイッチSW1として、電磁接触器等の機械的なスイッチング素子の他、より好ましい態様として、より高速スイッチングが可能な電力用半導体スイッチング素子が用いられる。電力用半導体スイッチング素子としては、電界効果トランジスタ(FET)、静電誘導トランジスタ(SIT)、バイポーラトランジスタ(BJT)の他、ゲートターンオフサイリスタ(GTO)、静電誘導サイリスタ(SIサイリスタ)等のサイリスタが好適である。特に、絶縁ゲート型電界効果トランジスタ(MISFET)、絶縁ゲート型静電誘導トランジスタ(MISSIT)、絶縁ゲートバイポーラトランジスタ(IGBT)、MOS制御SIサイリスタ等の電圧駆動型のスイッチング素子は、消費電力が小さくなり好適である。市場での入手可能性と電力用半導体スイッチング素子の内部抵抗の評価からは、現状においては、MISFETの類型であるMOS型電界効果トランジスタ(MOSFET)を図4(a)に示す回路のように採用することが可能である。 As the primary side drive switch SW1 shown in FIG. 1A, in addition to a mechanical switching element such as an electromagnetic contactor, as a more preferable embodiment, a power semiconductor switching element capable of higher speed switching is used. Examples of semiconductor switching elements for electric power include field effect transistors (FETs), static induction transistors (SITs), bipolar transistors (BJTs), gate turn-off thyristors (GTOs), and static induction thyristors (SI thyristors). Suitable. In particular, voltage-driven switching elements such as insulated gate field effect transistors (MISFETs), insulated gate static induction transistors (MISSITs), insulated gate bipolar transistors (IGBTs), and MOS-controlled SI thyristors consume less power. Suitable. From the market availability and the evaluation of the internal resistance of power semiconductor switching elements, at present, MOS field effect transistors (MOSFETs), which are a type of MISFET, are used as shown in the circuit shown in FIG. 4 (a). It is possible to do.

EVの車載用の充電式電池を負荷素子6とするような電力伝送装置においては大電流が流れることによるジュール熱の発生が大きく、数百ワット以上の発熱が伴うことになり、電力伝送装置が暖房装置(ヒーター)になってしまう。第1の実施形態に係る電力伝送装置では一次側駆動スイッチSW1として用いる電力用半導体スイッチング素子は1個のみで良いので、銅のブロック等のヒートシンクで覆い熱伝導性を上げ、発熱による素子の破壊を防ぐ構造が簡単に設計でき、しかも浮遊抵抗、浮遊容量、浮遊インダクタンスの発生も最小化できる。送電側コイルL1及び受電側コイルL2の浮遊抵抗(寄生抵抗)による発熱も大きいので、送電側コイルL1及び受電側コイルL2を空冷、水冷する等の対策が好ましい。In a power transmission device in which an EV vehicle-mounted rechargeable battery is used as the load element 6, Joule heat is generated significantly due to a large current flowing, and heat generation of several hundred watts or more is accompanied. It becomes a heating device (heater). In the power transmission device according to the first embodiment, since only one power semiconductor switching element is used as the primary side drive switch SW1, it is covered with a heat sink such as a copper block to improve thermal conductivity, and the element is destroyed by heat generation. The structure that prevents the stray resistance can be easily designed, and the generation of stray resistance, stray capacitance, and stray inductance can be minimized. Stray resistance of the power transmission coil L 1 and the receiver coil L 2 (parasitic resistance) heating is large due to the power transmission coil L 1 and the power receiving coil L 2 air, measures such as water cooling is preferred.

EVの車載用等の大電力用電力伝送装置におけるジュール熱の発生を押さえる一つの方法は、一次側回路2の電圧を高め、送電側コイルL1と受電側コイルL2の巻線比で二次側回路3の電圧を負荷素子6の最適電圧に設定することである。一次側駆動スイッチSW1として電力用半導体スイッチング素子を採用する場合には、電力用半導体スイッチング素子をオン/オフ制御する単純な制御だけでよいので、一次側回路2の電圧を高める回路設計は容易である。One method of suppressing the generation of Joule heat in a high-power power transmission device such as an EV for automobiles is to increase the voltage of the primary side circuit 2 and adjust the winding ratio of the transmission side coil L 1 and the power reception side coil L 2 to two. The voltage of the next circuit 3 is set to the optimum voltage of the load element 6. When a power semiconductor switching element is adopted as the primary side drive switch SW1, simple control for turning on / off the power semiconductor switching element is sufficient, so that it is easy to design a circuit for increasing the voltage of the primary side circuit 2. be.

このように、第1の実施形態に係る電力伝送装置によれば、一次側駆動スイッチSW1が1個のみの単純設計であるので、一次側回路2の電圧を高めて一次側回路2側のジュール熱の発生による電力損失を最小限に抑制する設計が容易である。ジュール熱発生によるエネルギー損失も少なくできるので第1の実施形態に係る電力伝送装置によれば、EVの車載用等の大電力用電力伝送の場合における電源回路(0次回路)の損失を含めた総合的な電力伝送効率が高くなり、人類のエネルギー問題の解消に寄与できる。 As described above, according to the power transmission device according to the first embodiment, since the primary side drive switch SW1 is a simple design of only one, the voltage of the primary side circuit 2 is increased to joule the primary side circuit 2 side. It is easy to design to minimize the power loss due to heat generation. Since the energy loss due to Joule heat generation can be reduced, the power transmission device according to the first embodiment includes the loss of the power supply circuit (0th order circuit) in the case of high power power transmission such as for an EV in a vehicle. The overall power transmission efficiency will be high, which can contribute to solving the energy problems of humankind.

図4(a)に示す実装回路においては、送電側コイルL1からの環流電流を考慮し第1の還流ダイオード(フリーホイルダイオード)FWD1が、第1の半導体スイッチング素子Q1としてのMOSFETのソース・ドレイン間に、保護素子として並列接続されている。又、送電側コイルL1からの環流電流が直流電源5に環流するのを防ぐため、電源側ダイオードD1が直流電源5と第1の半導体スイッチング素子Q1の間に直列接続されている。図4(a)に示す実装回路では負荷素子6の等価インピーダンスXLeqを充電容量Csで近似して表現している。4 in the mounting circuit shown in (a), the power-transmitting-side first reflux diode considering circulating electric current from the coil L 1 (freewheeling diode) FWD 1 is the source of the MOSFET as a first semiconductor switching element Q1 -The drains are connected in parallel as a protective element. Further, in order to prevent the recirculation current from the transmission side coil L 1 from recirculating to the DC power supply 5, the power supply side diode D1 is connected in series between the DC power supply 5 and the first semiconductor switching element Q1. Figure 4 is a mounting circuit shown in (a) are represented by approximation the equivalent impedance X Leq load element 6 in the charge capacity C s.

通常の定常状態の正弦波に依拠した交流理論では、送電側コイルL1と受電側コイルL2の間の相互インダクタンスMは、結合係数KACを用いて:

M=KAC(L1・L21/2 ……(1)

と示すことができる。そして送電側コンデンサCと送電側コイルL1との直列回路と、受電側コンデンサCと受電側コイルL2の直列回路との相互誘導は、相互インダクタンスMを用いると、以下の結合方程式

1di/dt+(1/C)∫idt+Mdi/dt=0 …(2)
2di/dt+(1/C)∫idt+Mdi/dt=0 …(3)

によって表される。式(2)及び(3)において、∫は積分記号である。即ち、図4(a)に示す実装回路は、通常の定常状態の正弦波に依拠した交流理論によれば、相互インダクタンスMのコイルを用いて図4(b)のように表現できる。
The AC theory relies on a sine wave of the normal steady state, the mutual inductance M between the power transmission coil L 1 and the power receiving coil L 2, using the coupling coefficient K AC:

M = KAC (L 1・ L 2 ) 1/2 …… (1)

Can be shown. Then, when the mutual induction between the series circuit of the power transmission side capacitor C 1 and the power transmission side coil L 1 and the series circuit of the power reception side capacitor C 2 and the power reception side coil L 2 uses the mutual inductance M, the following coupling equation is used.

L 1 di 1 / dt + (1 / C 1 ) ∫i 1 dt + Mdi 2 / dt = 0 ... (2)
L 2 di 1 / dt + (1 / C 2 ) ∫i 2 dt + Mdi 1 / dt = 0 ... (3)

Represented by. In equations (2) and (3), ∫ is an integral symbol. That is, the mounting circuit shown in FIG. 4A can be expressed as shown in FIG. 4B by using a coil having a mutual inductance M according to the AC theory based on a normal steady-state sine wave.

ただし、第1の実施形態に係る電力伝送装置は、正弦波の交流理論に依拠しない過渡応答の伝送技術であるので、図4(b)の等価回路の表現は近似的な物理モデルを考える上での模式図に過ぎない。時間変化のある場合のマックスウェルの方程式は、時間変化が正弦波に依拠する場合は解析的に解くことが可能である。しかし、図1(b)〜図2(b)に示したように鋸波状の時間変化がある場合は、マックスウェルの方程式を解析的に解くことは極めて難しい。よって、交流理論で用いられる相互インダクタンスMは、本発明においては、tを時間とする関数M(t)で表現される時間依存性のあるパラメータであり、図4(b)の等価回路の表現には注意が必要である。 However, since the power transmission device according to the first embodiment is a transient response transmission technique that does not rely on the AC theory of sine waves, the representation of the equivalent circuit in FIG. 4B is for considering an approximate physical model. It is just a schematic diagram in. Maxwell's equation with time variation can be solved analytically if the time variation relies on a sine wave. However, when there is a serrated time change as shown in FIGS. 1 (b) and 2 (b), it is extremely difficult to analytically solve Maxwell's equation. Therefore, the mutual inductance M used in the AC theory is a time-dependent parameter expressed by a function M (t) having t as time in the present invention, and is represented by the equivalent circuit in FIG. 4 (b). Need attention.

図5は、図4(a)に示す実装回路に第1の半導体スイッチング素子Q1の一例として用いているnMOSFETの大信号用等価回路を示す。図5(a)に示すように、一般的なnMOSFETはp型基板71にn型のソース領域72とn型のドレイン領域73をチャネル領域となるp型基板71の表面を挟んで対向させている。ソース領域72とドレイン領域73のチャネル領域の上には厚さTOXのゲート酸化膜81を介してゲート電極84が設けられている。ソース領域72の上にはソース電極82が、ドレイン領域73の上にはドレイン電極83がそれぞれオーミック接触している。FIG. 5 shows an equivalent circuit for a large signal of nMOSFET used as an example of the first semiconductor switching element Q1 in the mounting circuit shown in FIG. 4A. As shown in FIG. 5A, a general nMOSFET faces a p-type substrate 71 with an n + -type source region 72 and an n + -type drain region 73 sandwiching the surface of the p-type substrate 71 as a channel region. I'm letting you. A gate electrode 84 is provided above the channel regions of the source region 72 and the drain region 73 via a gate oxide film 81 having a thickness of TOX. The source electrode 82 is in ohmic contact on the source region 72, and the drain electrode 83 is in ohmic contact on the drain region 73.

図5(a)に示すように、一般的なnMOSFETではゲート電極84とソース領域72の間にはゲート・ソース間容量CGSが、ゲート電極84とドレイン領域73の間にはゲート・ドレイン間容量CGDが、ゲート電極84と基板71の間にはゲート・基板間容量CGBが存在する。更に、ソース領域72と基板71の間にはソース・基板間容量CBSが、ドレイン領域73と基板71の間にはドレイン・基板間容量CBDが存在する。図5(b)に示す等価回路では、ドレイン電極とチャネル領域の間に直列接続されるドレイン抵抗RDと、ソース電極とチャネル領域の間に直列接続されるソース抵抗RSとが、チャネル領域に設けられた電流IDSの定電流源に直列接続された構成が示されている。As shown in FIG. 5A, in a general nMOSFET, the gate-source capacitance C GS is between the gate electrode 84 and the source region 72, and the gate-drain is between the gate electrode 84 and the drain region 73. There is a capacitance C GD and a gate-to-board capacitance C GB between the gate electrode 84 and the substrate 71. Further, there is a source-board capacitance C BS between the source region 72 and the substrate 71, and a drain-board capacitance C BD between the drain region 73 and the substrate 71. In the equivalent circuit shown in FIG. 5B, the drain resistor R D connected in series between the drain electrode and the channel region and the source resistor R S connected in series between the source electrode and the channel region are formed in the channel region. The configuration shown is connected in series to the constant current source of the current IDS provided in.

図4に示した第1の実施形態に係る電力伝送装置においては、第1の半導体スイッチング素子Q1のオン抵抗となる図5に示したMOSFETのドレイン抵抗RDとソース抵抗RSが重要な意味を持ち、第1の半導体スイッチング素子Q1にはオン抵抗の小さな素子を選ぶ必要がある。したがって、図4(a)に示す実装回路において、直流電源5の等価内部抵抗rに第1の半導体スイッチング素子Q1のオン抵抗を含ませて、一次側回路2の回路特性に内在する時定数を決定する必要がある。 In the power transmission device according to the first embodiment shown in FIG. 4, the drain resistance R D and the source resistance R S of the MOSFET shown in FIG. 5, which are the on-resistances of the first semiconductor switching element Q1, have important meanings. It is necessary to select an element having a small on-resistance for the first semiconductor switching element Q1. Accordingly, in mounting the circuit shown in FIG. 4 (a), when moistened with on-resistance of the first semiconductor switching element Q1 to the equivalent internal resistance r 1 of the DC power source 5, inherent in the circuit characteristics of the primary-side circuit 2 constants Need to be decided.

図1(b)のt=t1で一次側駆動スイッチSW1をオフ状態にした場合、一次側回路2はRLC直列回路になる。交流理論によれば、送電側コイルL1の寄生抵抗をRstr(L1)とすると、RLC直列回路の減衰係数ζ1は、

ζ1=(Rstr(L1)/2)(C/L11/2 ……(4)

と表される。しかし、送電側コイルL1のインダクタンスは、実際には図4(b)に示した相互インダクタンスM=M(t)を考慮する必要があるが、相互インダクタンスM=M(t)を解析的に説明するのは困難である。
When the primary side drive switch SW1 is turned off at t = t 1 in FIG. 1B, the primary side circuit 2 becomes an RLC series circuit. According to the AC theory, if the parasitic resistance of the transmission side coil L 1 is R str (L 1 ), the attenuation coefficient ζ 1 of the RLC series circuit is

ζ 1 = (R str (L 1 ) / 2) (C 1 / L 1 ) 1/2 …… (4)

It is expressed as. However, for the inductance of the power transmission side coil L 1 , it is actually necessary to consider the mutual inductance M = M (t) shown in FIG. 4 (b), but the mutual inductance M = M (t) is analytically taken into consideration. It is difficult to explain.

このときの二次側回路3の負荷側の負荷側ダイオードD2と負荷素子6等を無視すれば、RLC直列回路と見なすことができる。負荷側ダイオードD2と負荷素子6等を無視して交流理論を採用すれば、受電側コイルL2の寄生抵抗をRstr(L2)として、二次側回路3の減衰係数ζ2は、

ζ2=(Rstr(L2)/2)(C/L21/2 ……(5)

と表される。(5)式においても、受電側コイルL2のインダクタンスは、図4(b)に示した相互インダクタンスM=M(t)を考慮する必要がある。
If the load side diode D2 on the load side of the secondary side circuit 3 and the load element 6 and the like at this time are ignored, it can be regarded as an RLC series circuit. If the AC theory is adopted by ignoring the load side diode D2 and the load element 6 , the attenuation coefficient ζ 2 of the secondary side circuit 3 is set to R str (L 2 ) as the parasitic resistance of the power receiving side coil L 2.

ζ 2 = (R str (L 2 ) / 2) (C 2 / L 2 ) 1/2 …… (5)

It is expressed as. Also in the equation (5), it is necessary to consider the mutual inductance M = M (t) shown in FIG. 4 (b) for the inductance of the power receiving side coil L 2.

図1(b)のt=t1で一次側駆動スイッチSW1をオフ状態で構成されるRLC直列回路の共振周波数は、交流理論によれば、

o1=(1/2π)(C・L1)-1/2 ……(6)

と近似できる。上述したとおり、(6)式において、実際には、受電側コイルL1のインダクタンスとして、図4(b)に示した相互インダクタンスM=M(t)を考慮する必要があることに留意が必要である。同様に、二次側回路3の負荷側の負荷側ダイオードD2と負荷素子6等を無視した場合のRLC直列回路の共振周波数は、交流理論によれば、

o2=(1/2π)(C・L2)-1/2 ……(7)

と近似できる。(7)式においても、受電側コイルL2のインダクタンスは、図4(b)に示した相互インダクタンスM=M(t)を考慮する必要がある。
According to the AC theory, the resonance frequency of the RLC series circuit configured with the primary side drive switch SW1 turned off at t = t 1 in FIG. 1 (b) is determined.

fo1 = (1 / 2π) (C 1 , L 1 ) -1/2 …… (6)

Can be approximated to. As described above, it should be noted that in the equation (6), it is actually necessary to consider the mutual inductance M = M (t) shown in FIG. 4 (b) as the inductance of the power receiving side coil L 1. Is. Similarly, according to the AC theory, the resonance frequency of the RLC series circuit when the load side diode D2 on the load side of the secondary side circuit 3 and the load element 6 and the like are ignored is determined.

fo2 = (1 / 2π) (C 2・ L 2 ) -1/2 …… (7)

Can be approximated to. Also in the equation (7), it is necessary to consider the mutual inductance M = M (t) shown in FIG. 4 (b) for the inductance of the power receiving side coil L 2.

第1の実施形態に係る電力伝送装置の送電側コイルL1と受電側コイルL2は、例えば図6(a)〜図7(c)に示したような、渦巻き状平面コイルとすることができる。一次側回路2と二次側回路3は、交流理論が成立する定常状態では、図4(b)に示したように、送電側コイルL1と受電側コイルL2の間が等価結合係数K、相互インダクタンスMで磁気的に結合された回路で近似することが可能である。ここで「等価結合係数K」は、交流理論から導かれる結合係数KACと等価な、過渡応答時に定義される非定常状態における擬結合係数であり、厳密には時間に依存するパラメータである。よって、一次側回路2の回路特性に内在する時定数と二次側回路3の回路特性に内在する時定数との一次側回路2と二次側回路3の間の特性調和伝送においても、交流理論の結合係数KACと同様な「磁気的結合度」で評価することができる。 The power transmission side coil L 1 and the power reception side coil L 2 of the power transmission device according to the first embodiment may be spiral plane coils as shown in FIGS. 6 (a) to 7 (c), for example. can. In the primary side circuit 2 and the secondary side circuit 3, in the steady state where the AC theory is established, as shown in FIG. 4B, the equivalent coupling coefficient K is between the power transmission side coil L 1 and the power reception side coil L 2. , It is possible to approximate with a circuit magnetically coupled with mutual inductance M. Here "equivalent coefficient K" is equivalent to the coupling coefficient K AC derived from the AC theory, a quasi-coupling coefficient in unsteady state defined during a transient response, strictly a parameter dependent on time. Therefore, even in the characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 of the time constant inherent in the circuit characteristics of the primary side circuit 2 and the time constant inherent in the circuit characteristics of the secondary side circuit 3, alternating current it can be evaluated in a manner similar to the coupling coefficient of the theoretical K AC "magnetic coupling degree".

図6(a)〜図7(c)は、図4(a)の送電側コイルL1と受電側コイルL2の構造を具体化して示した模式図である。第1の実施形態に係る電力伝送装置では、例えば、導体断面積16mm2の配線用ケーブルをそれぞれ9巻して直径約30Cm程度の渦巻き状平面コイルとしている。この直径約30Cm程度の2つの渦巻き状平面コイルを、間隔dのギャップを設けて、非接触で互いに平行に対抗させて配置する。一次側回路2から二次側回路3への一次側回路2と二次側回路3の間の特性調和伝送の効率は、交流理論で定義される結合係数KACと同様な磁気的結合度の値に依存する。磁気的結合度は、2つの渦巻き状平面コイルの間隔dによって異なり、2つの渦巻き状平面コイの間隔dを制御する必要がある。6 (a) to 7 (c) are schematic views showing the structures of the power transmission side coil L 1 and the power reception side coil L 2 of FIG. 4 (a) in a concrete manner. In the power transmission device according to the first embodiment, for example, nine wiring cables having a conductor cross-sectional area of 16 mm 2 are wound to form a spiral flat coil having a diameter of about 30 Cm. The two spiral plane coils having a diameter of about 30 Cm are arranged in parallel with each other in a non-contact manner with a gap d. Efficiency characteristics harmony transmission between the primary-side circuit 2 and the secondary-side circuit 3 from the primary circuit 2 to the secondary-side circuit 3, the coupling coefficient K AC similar magnetic coupling degree is defined by alternating theory Depends on the value. The degree of magnetic coupling depends on the distance d between the two spiral plane coils, and it is necessary to control the distance d between the two spiral plane coils.

磁気的結合度は、2つの渦巻き状平面コイルの位置関係を機械的に調整する、2つの渦巻き状平面コイルの間に磁性体を挿入する、若しくは2つの渦巻き状平面コイルの周辺に磁性体を配置する、2つの渦巻き状平面コイルの間に働く吸引力若しくは反発力を利用してあらかじめ形作られたカップリングにアタッチする等によって調整することができる。 The degree of magnetic coupling mechanically adjusts the positional relationship between the two spiral plane coils. A magnetic material is inserted between the two spiral plane coils, or a magnetic material is placed around the two spiral plane coils. It can be adjusted by attaching to a preformed coupling using the attractive force or repulsive force acting between the two spiral flat coils to be arranged.

第4の実施形態等で説明するが、交流理論の結合係数KAC=0.6にほぼ近似できる等価結合係数Kとなる送電側コイルL1と受電側コイルL2の相互関係のときが、一次側回路2と二次側回路3の間の特性調和伝送には好適である。導体断面積16mm2の配線用ケーブルをそれぞれ9巻した渦巻き状平面コイルの場合、等価結合係数K=0.6を実現するためには、間隔dは、0Cm〜2.0Cm程度が必要になる。一方、交流理論の結合係数KAC=0.1にほぼ近似できる等価結合係数Kとなる条件の送電側コイルL1と受電側コイルL2の相互関係を実現するためには、間隔dは10Cm程度である。図6(b)に送電側コイルL1と受電側コイルL2を誇張(拡大)して模式的に示すように、EVの車載用の充電式電池である負荷素子6を第1の実施形態に係る電力伝送装置を用いて充電するためには、後輪の車止め33を磁気的結合度制御機構として用いて送電側コイルL1と受電側コイルL2の間隔dを10Cm程度に制御し、効率のよい無接触給電をすることができる。As will be described in the fourth embodiment, the interrelationship between the power transmitting side coil L 1 and the power receiving side coil L 2 having an equivalent coupling coefficient K that can be approximately approximated to the coupling coefficient KAC = 0.6 of the AC theory It is suitable for characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3. In the case of a spiral flat coil in which 9 wiring cables having a conductor cross-sectional area of 16 mm 2 are wound, the interval d needs to be about 0 Cm to 2.0 Cm in order to realize the equivalent coupling coefficient K = 0.6. .. On the other hand, in order to realize the mutual relationship between the power transmitting side coil L 1 and the power receiving side coil L 2 under the condition that the equivalent coupling coefficient K can be approximately approximated to the coupling coefficient KAC = 0.1 of the AC theory, the interval d is 10 Cm. Degree. As shown schematically in FIG. 6 (b) by exaggerating (enlarging) the power transmission side coil L 1 and the power reception side coil L 2 , the load element 6 which is an EV vehicle-mounted rechargeable battery is the first embodiment. In order to charge using the power transmission device according to the above, the vehicle stop 33 of the rear wheel is used as a magnetic coupling degree control mechanism to control the distance d between the power transmission side coil L 1 and the power reception side coil L 2 to about 10 Cm. Efficient contactless power supply can be performed.

送電側コイルL1と受電側コイルL2の間隔dを制御する磁気的結合度制御機構として、図7(a)に示すように、送電側コイルL1と受電側コイルL2の間に厚さd0のスペーサ32を挟めば、送電側コイルL1と受電側コイルL2の間隔d=d0に制御できる。なお、一次側回路2から二次側回路3への一次側回路2と二次側回路3の間の特性調和伝送の効率に重要な磁気的結合度の値に対応する送電側コイルL1と受電側コイルL2の相互関係は、送電側コイルL1と受電側コイルL2の間隔d以外のパラメータによっても磁気的結合度制御機構を構成することが可能である。As a magnetic coupling degree control mechanism for controlling the distance d between the power transmission side coil L 1 and the power reception side coil L 2 , as shown in FIG. 7A, there is a thickness between the power transmission side coil L 1 and the power reception side coil L 2. By sandwiching the spacer 32 of d 0 , the distance between the power transmission side coil L 1 and the power reception side coil L 2 can be controlled to d = d 0. It should be noted that the transmission side coil L 1 corresponding to the value of the magnetic coupling degree, which is important for the efficiency of characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 from the primary side circuit 2 to the secondary side circuit 3. interrelation of the power receiving coil L 2, it is possible to configure the magnetic coupling of the control mechanism by the power transmission coil L 1 and the power receiving side parameters other than distance d of the coil L 2.

例えば、図7(b)に示すように送電側コイルL1と受電側コイルL2の間に透磁率μrのフェライト等の磁性体板31Cを挿入して磁気的結合度制御機構を構成しもよい。磁性体板31Cの上下方向における挿入位置、若しくは磁性体板31Cの挿入面積によって、送電側コイルL1と受電側コイルL2の間の磁気的結合度の値は制御できる。磁性体板31Cは、送電側コイルL1と受電側コイルL2の間ではなく、図7(c)に示すように、磁性体板31bを送電側コイルL1の裏側に挿入しても構わない。磁性体板31bの上下方向における挿入位置、若しくは送電側コイルL1の面積に対する磁性体板31bの挿入面積の比によって、送電側コイルL1と受電側コイルL2の間の磁気的結合度の値は制御できる。図示を省略しているが、磁性体板を受電側コイルL2の裏側に挿入しても同様に、送電側コイルL1と受電側コイルL2の間の磁気的結合度の値を制御できることは、勿論である。For example, to configure the magnetic coupling degree control mechanism between the power transmission coil L 1 and the power receiving side coil L 2 by inserting the magnetic material plate 31C of the ferrite permeability mu r as shown in FIG. 7 (b) May be good. The value of the degree of magnetic coupling between the power transmission side coil L 1 and the power reception side coil L 2 can be controlled by the insertion position of the magnetic material plate 31C in the vertical direction or the insertion area of the magnetic material plate 31C. The magnetic plate 31C may be inserted not between the power transmission side coil L 1 and the power transmission side coil L 2 but on the back side of the power transmission side coil L 1 as shown in FIG. 7 (c). do not have. Insertion position in the vertical direction of the magnetic plate 31b, or by the ratio of the insertion area of the magnetic plate 31b to the area of the power transmission coil L 1, a magnetic coupling degree between the power transmission coil L 1 and the power receiving coil L 2 The value can be controlled. Although not shown, similarly be inserted magnetic plate on the back of the power receiving coil L 2, it can be controlled value of magnetic coupling degree between the power transmission coil L 1 and the power receiving coil L 2 Of course.

具体的に図7(b)に示した磁性体板31Cの上下方向における挿入位置や図7(c)に示した磁性体板31bの上下方向における挿入位置を制御するには、図8(a)に示すような光学的な測距ユニット41を、送電側コイルL1が設けられている給電装置側に設けてもよい。測距ユニット41は発光部411と受光部412を備えた磁気的結合度制御機構を用意すればよい。受光部412が光飛行時間型(TOF型)の測距素子dであれば、発光部411から、パルス発光がなされる。パルス発光は、例えば、近赤外LD(レーザダイオード)や近赤外LEDが用いられる。受電側コイルL2やEVの後部から反射したパルス光が、レンズやBPF(バンドパスフィルタ)などを通して受光部412に照射される。測距ユニット41はレーザ干渉計等の構成でも構わない。Specifically, in order to control the insertion position of the magnetic plate 31C shown in FIG. 7B in the vertical direction and the insertion position of the magnetic plate 31b shown in FIG. 7C in the vertical direction, FIG. 8A ) May be provided on the power feeding device side where the power transmission side coil L 1 is provided. The distance measuring unit 41 may provide a magnetic coupling degree control mechanism including a light emitting unit 411 and a light receiving unit 412. If the light receiving unit 412 is a time-of-flight type (TOF type) ranging element d, pulse light is emitted from the light emitting unit 411. For pulse emission, for example, a near-infrared LD (laser diode) or a near-infrared LED is used. The pulsed light reflected from the rear part of the power receiving side coil L 2 or EV is applied to the light receiving unit 412 through a lens, a BPF (bandpass filter), or the like. The ranging unit 41 may have a configuration such as a laser interferometer.

測距ユニット41の受光部412は、図8(a)に示した論理演算制御部42の距離演算部421が接続されている。受光部412の出力は、図示を省略した出力バッファやインターフェイスを介して、磁気的結合度制御機構を構成する距離演算部421に入力され、距離演算部421において、送電側コイルL1と受電側コイルL2の間の距離測定に必要な演算処理が実施される。論理演算制御部42には論理演算制御部42における磁気的結合度の値の計算等の論理演算に必要なデータや所望の等価結合係数(擬結合係数)を実現するために必要な磁性体板の上下方向における挿入位置のデータが格納されたデータ記憶装置45が接続されている。なお、図示を省略しているが、論理演算制御部42には論理演算制御部42の動作を命令するプログラムを記憶したプログラム記憶装置等が接続されていてもよい。The distance calculation unit 421 of the logical operation control unit 42 shown in FIG. 8A is connected to the light receiving unit 412 of the distance measurement unit 41. The output of the light receiving unit 412 is input to the distance calculation unit 421 constituting the magnetic coupling degree control mechanism via an output buffer or an interface (not shown), and in the distance calculation unit 421, the transmission side coil L 1 and the power reception side The arithmetic processing necessary for measuring the distance between the coils L 2 is performed. The logical operation control unit 42 contains data necessary for logical operations such as calculation of the value of the degree of magnetic coupling in the logical operation control unit 42 and a magnetic material plate necessary for realizing a desired equivalent coupling coefficient (pseudo-coupling coefficient). A data storage device 45 in which data of the insertion position in the vertical direction of the above is stored is connected. Although not shown, the logical operation control unit 42 may be connected to a program storage device or the like that stores a program that commands the operation of the logical operation control unit 42.

距離演算部421が計算した送電側コイルL1と受電側コイルL2の間の距離のデータは、論理演算制御部42の結合係数計算部422に送信される。結合係数計算部422は、距離演算部421が計算した送電側コイルL1と受電側コイルL2の間の距離のデータから、現在の送電側コイルL1と受電側コイルL2の間の磁気的結合度の値を求める。結合係数計算部422は更に、データ記憶装置45に格納された、所望の等価結合係数を実現するために必要な磁性体板の上下方向における挿入位置のデータから、磁性体板の移動距離を算出し、結合係数調整駆動装置43に出力する。図8(a)に示した磁気的結合度制御機構の結合係数調整駆動装置43は結合係数計算部422から送られた磁性体板の移動距離のデータから、図7(b)に示した磁性体板31Cの上下方向における挿入位置や図7(c)に示した磁性体板31bの上下方向における挿入位置を所望の位置になるように駆動制御する。結合係数調整駆動装置43にはステップモータ等、周知の位置制御機構を採用可能である。このようにして、測距ユニット41の出力から、磁性体板31Cや磁性体板31bの上下方向における挿入位置を所望の位置になるようにフィードバック制御することができる。 The data of the distance between the power transmission side coil L 1 and the power reception side coil L 2 calculated by the distance calculation unit 421 is transmitted to the coupling coefficient calculation unit 422 of the logical operation control unit 42. The coupling coefficient calculation unit 422 uses the data of the distance between the power transmission side coil L 1 and the power reception side coil L 2 calculated by the distance calculation unit 421 to determine the magnetism between the current power transmission side coil L 1 and the power reception side coil L 2. Find the value of the degree of coupling. The coupling coefficient calculation unit 422 further calculates the moving distance of the magnetic plate from the data of the insertion position in the vertical direction of the magnetic plate required to realize the desired equivalent coupling coefficient stored in the data storage device 45. Then, the data is output to the coupling coefficient adjustment drive device 43. The coupling coefficient adjustment driving device 43 of the magnetic coupling degree control mechanism shown in FIG. 8 (a) has the magnetism shown in FIG. 7 (b) from the data of the moving distance of the magnetic material plate sent from the coupling coefficient calculation unit 422. The insertion position of the body plate 31C in the vertical direction and the insertion position of the magnetic body plate 31b shown in FIG. 7C in the vertical direction are driven and controlled to be desired positions. A well-known position control mechanism such as a step motor can be adopted for the coupling coefficient adjusting drive device 43. In this way, feedback control can be performed from the output of the ranging unit 41 so that the insertion position of the magnetic material plate 31C or the magnetic material plate 31b in the vertical direction becomes a desired position.

図8(a)に示す論理演算制御部42を含む磁気的結合度制御機構のコンピュータシステムにおいて、データ記憶装置45は、複数のレジスタ、複数のキャッシュメモリ、主記憶装置、補助記憶装置を含む一群の内から適宜選択された任意の組み合わせとすることも可能である。又、キャッシュメモリは1次キャッシュメモリと2次キャッシュメモリの組み合わせとしてもよく、更に3次キャッシュメモリを備えるヒエラルキーを有しても構わない。図8(a)に示した論理演算制御部42は、マイクロチップとして実装されたマイクロプロセッサ(MPU)等を使用してコンピュータシステムを構成することが可能である。又、磁気的結合度制御機構のコンピュータシステムを構成する論理演算制御部42として、算術演算機能を強化し信号処理に特化したデジタルシグナルプロセッサ(DSP)や、メモリや周辺回路を搭載し組込み機器制御を目的としたマイクロコントローラ(マイコン)等を用いてもよい。或いは、現在の汎用コンピュータのメインCPUを論理演算制御部42に用いてもよい。 In the computer system of the magnetic coupling degree control mechanism including the logical calculation control unit 42 shown in FIG. 8A, the data storage device 45 is a group including a plurality of registers, a plurality of cache memories, a main storage device, and an auxiliary storage device. It is also possible to use any combination appropriately selected from the above. Further, the cache memory may be a combination of a primary cache memory and a secondary cache memory, and may have a hierarchy including a tertiary cache memory. The logical operation control unit 42 shown in FIG. 8A can configure a computer system by using a microprocessor (MPU) or the like mounted as a microchip. In addition, as a logical operation control unit 42 that constitutes a computer system of a magnetic coupling degree control mechanism, an embedded device equipped with a digital signal processor (DSP) that enhances arithmetic operation functions and specializes in signal processing, and a memory and peripheral circuits. A microcontroller (microcomputer) or the like for the purpose of control may be used. Alternatively, the main CPU of the current general-purpose computer may be used for the logical operation control unit 42.

図9は、図4(a)に示した実装回路の動作をタイミング毎に分けて時系列で示す図である。図9(a)に示すように、一次側駆動スイッチSW1としての第1の半導体スイッチング素子Q1をオン状態にしたタイミングでは、先ず送電側コンデンサCに電荷が蓄えられる。図9(a)に示すように、このときの第1の半導体スイッチング素子Q1の内部抵抗ron1である。図9(a)のタイミングにおいて、送電側コンデンサCの端子間電圧VCが増大し始めると、送電側コンデンサCに蓄積された電気エネルギーの一部は送電側コイル電流IL1として送電側コイルL1に移り、送電側コイルL1に蓄積される。送電側コイルL1の電気エネルギーは、僅かであるが、二次側回路3の受電側コイルL2に伝送される。二次側回路3の受電側コイルL2に伝送された電気エネルギーは、受電側コイル電流IL2として二次側回路3の受電側コンデンサCの充電に費やされる。しかし、図9(a)のタイミングでは受電側コンデンサCの端子間電圧VCは負の値である。FIG. 9 is a diagram showing the operation of the mounting circuit shown in FIG. 4A in chronological order, divided for each timing. As shown in FIG. 9 (a), at the timing of the first semiconductor switching element Q1 as a primary-side drive switch SW1 to the ON state, charges are stored first in the transmission side capacitor C 1. As shown in FIG. 9A, the internal resistance r on 1 of the first semiconductor switching element Q1 at this time. In the timing of FIG. 9 (a), the inter-terminal voltage VC 1 of the power transmission capacitor C 1 begins to increase, a portion of the stored electrical energy to the power transmission side capacitor C 1 is the transmission side as the power transmission coil current I L1 moves to the coil L 1, is accumulated in the power transmission coil L 1. Although the electric energy of the transmission side coil L 1 is small, it is transmitted to the power reception side coil L 2 of the secondary side circuit 3. Electrical energy transmitted to the power receiving coil L 2 of the secondary side circuit 3 is consumed for charging the power receiving side capacitor C 2 of the power receiving coil current I L2 as the secondary-side circuit 3. However, the inter-terminal voltage VC 2 of the power receiving side capacitor C 2 is a timing shown in FIG. 9 (a) is a negative value.

次に、図9(b)に示すタイミングで、一次側駆動スイッチSW1としての第1の半導体スイッチング素子Q1を遮断状態(オフ状態)にすると、送電側コンデンサCの端子間電圧VCが減少し始め、送電側コンデンサCに蓄積された電気エネルギーは送電側コイル電流IL1として送電側コイルL1に移り、送電側コイルL1に蓄積される。送電側コイルL1に蓄積された電気エネルギーは、一次側回路2と二次側回路3との間の一次側回路2と二次側回路3の間の特性調和伝送によって二次側回路3の受電側コイルL2にワイヤレス伝送される。二次側回路3の受電側コイルL2に伝送された電気エネルギーは、受電側コイル電流IL2として二次側回路3の受電側コンデンサCに蓄積される。図9(b)のタイミングでは受電側コンデンサCの端子間電圧VCは正の値になる。受電側コンデンサCの端子間電圧VCはピーク値に到達した後、減少を開始する。Then, at the timing shown in FIG. 9 (b), when the first semiconductor switching element Q1 as a primary-side drive switch SW1 to cut off state (OFF state), the voltage between the terminals VC 1 of the power transmission capacitor C 1 decreases was started, electric energy stored in the power transmitting side capacitor C 1 is transferred to the power transmission coil L 1 as the power transmission coil current I L1, it is accumulated in the power transmission coil L 1. The electrical energy stored in the transmission side coil L 1 is transferred from the secondary side circuit 3 by characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 between the primary side circuit 2 and the secondary side circuit 3. It is wirelessly transmitted to the power receiving side coil L 2. Electrical energy transmitted to the power receiving coil L 2 of the secondary side circuit 3 is stored in the power receiving side capacitor C 2 of the secondary side circuit 3 as the power receiving coil current I L2. At the timing of FIG. 9B, the voltage between terminals VC 2 of the power receiving side capacitor C 2 becomes a positive value. The voltage between terminals VC 2 of the power receiving side capacitor C 2 reaches a peak value and then starts to decrease.

端子間電圧VCが減少すると、受電側コンデンサCに蓄積された電気エネルギーは、図9(b)に示すように、充電電流ICSとして負荷素子6に流れ、負荷素子6が充電される。しかしながら、端子間電圧VCの減少に伴い、受電側コンデンサCに蓄積された電気エネルギーの一部は、図9(b)に示すように、受電側コイルL2に受電側コイル電流IL2として環流し、受電側コイルL2にも電気的エネルギーが蓄積される。受電側コイルL2に蓄積された電気エネルギーは、図9(c)に示すように、二次側回路3と一次側回路2との間の一次側回路2と二次側回路3の間の特性調和伝送によって一次側回路2の送電側コイルL1に環流される。When the voltage between terminals VC 2 decreases, the electrical energy stored in the power receiving side capacitor C 2 flows to the load element 6 as the charging current ICS as shown in FIG. 9B, and the load element 6 is charged. .. However, with the decrease of the terminal voltage VC 2, a portion of the accumulated in the power receiving side capacitor C 2 electrical energy, as shown in FIG. 9 (b), the power receiving side coil current to the power receiving side coil L 2 I L2 As a result, electrical energy is also stored in the coil L 2 on the power receiving side. As shown in FIG. 9C, the electric energy stored in the power receiving side coil L 2 is between the primary side circuit 2 and the secondary side circuit 3 between the secondary side circuit 3 and the primary side circuit 2. It is recirculated to the transmission side coil L 1 of the primary side circuit 2 by the characteristic harmonized transmission.

図9(c)に示すように、送電側コイルL1に環流された送電側コイル電流IL1によって、送電側コイルL1に蓄えられた電気エネルギーは送電側コンデンサCに環流し始め、送電側コンデンサCの端子間電圧VCは環流電流により増大を開始する。したがって、図9(c)に示すように、送電側コイルL1に環流された送電側コイル電流IL1を測定する電流計461、及び端子間電圧VCを測定する電圧計462を、一次側回路2に設けておけば、二次側回路3から環流した電気エネルギーの大きさが測定できる。即ち、一次側回路2に設けた電流計461と電圧計462によって、一次側回路2と二次側回路3の間の特性調和伝送によって、一次側回路2から二次側回路3に伝送されるワイヤレス伝送の効率が測定できる。As shown in FIG. 9 (c), the power transmission coil L 1 transmitting-coil current was circulated to I L1, electrical energy stored in the power transmission coil L 1 starts refluxed to the power transmission side capacitor C 1, the transmission terminal voltage VC 1 side capacitor C 1 starts to increase by circulating electric current. Accordingly, as shown in FIG. 9 (c), an ammeter 461 for measuring the power transmission coil current I L1 which circulated in the power transmission coil L 1, and a voltmeter 462 for measuring the terminal voltage VC 1, the primary side If it is provided in the circuit 2, the magnitude of the electric energy recirculated from the secondary circuit 3 can be measured. That is, it is transmitted from the primary side circuit 2 to the secondary side circuit 3 by the characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 by the ammeter 461 and the voltmeter 462 provided in the primary side circuit 2. The efficiency of wireless transmission can be measured.

このため、図7(b)に示した磁性体板31Cの上下方向における挿入位置や図7(c)に示した磁性体板31bの上下方向における挿入位置を制御する磁気的結合度制御機構を構成するには、図8(b)に示すような伝送効率測定ユニット46を、送電側コイルL1が設けられている給電装置側に設けてもよい。伝送効率測定ユニット46は、図9(c)に示したように、一次側回路2に設けた電流計461と電圧計462である。Therefore, a magnetic coupling degree control mechanism that controls the insertion position of the magnetic plate 31C shown in FIG. 7B in the vertical direction and the insertion position of the magnetic plate 31b shown in FIG. 7C in the vertical direction is provided. To configure the structure, the transmission efficiency measuring unit 46 as shown in FIG. 8B may be provided on the power feeding device side where the power transmission side coil L 1 is provided. As shown in FIG. 9C, the transmission efficiency measuring unit 46 is an ammeter 461 and a voltmeter 462 provided in the primary side circuit 2.

図9(c)に示した電流計461と電圧計462は、図8(b)に示した磁気的結合度制御機構を構成する論理演算制御部47の伝送効率演算部471が接続されている。電流計461と電圧計462の出力は、図示を省略した出力バッファやインターフェイスを介して伝送効率演算部471に入力され、伝送効率演算部471において、送電側コイルL1と受電側コイルL2の間の伝送効率測定に必要な演算処理が実施される。論理演算制御部47には論理演算制御部47における伝送効率の演算等の論理演算に必要なデータや所望の伝送効率を実現するために必要な磁性体板の上下方向における挿入位置のデータが格納されたデータ記憶装置45が接続されている。なお、図示を省略しているが、論理演算制御部47には論理演算制御部47の動作を命令するプログラムを記憶したプログラム記憶装置等が接続されていてもよい。The ammeter 461 and the voltmeter 462 shown in FIG. 9 (c) are connected to the transmission efficiency calculation unit 471 of the logical operation control unit 47 constituting the magnetic coupling degree control mechanism shown in FIG. 8 (b). .. The outputs of the ammeter 461 and the voltmeter 462 are input to the transmission efficiency calculation unit 471 via an output buffer and an interface (not shown), and in the transmission efficiency calculation unit 471, the transmission side coil L 1 and the power reception side coil L 2 The arithmetic processing necessary for measuring the transmission efficiency between the two is performed. The logical operation control unit 47 stores data required for logical operations such as transmission efficiency calculation in the logical operation control unit 47 and data on the insertion position of the magnetic plate in the vertical direction necessary for achieving the desired transmission efficiency. The data storage device 45 is connected. Although not shown, the logical operation control unit 47 may be connected to a program storage device or the like that stores a program that commands the operation of the logical operation control unit 47.

伝送効率演算部471が計算した送電側コイルL1と受電側コイルL2の間の伝送効率のデータは、磁気的結合度制御機構を構成する論理演算制御部47の結合係数計算部472に送信される。結合係数計算部472は、伝送効率演算部471が計算した送電側コイルL1と受電側コイルL2の間の伝送効率のデータから、現在の送電側コイルL1と受電側コイルL2の間の磁気的結合度の値を求める。結合係数計算部472は更に、データ記憶装置45に格納された、所望の伝送効率を実現するために必要な磁性体板の上下方向における挿入位置のデータから、磁性体板の移動距離を算出し、結合係数調整駆動装置43に出力する。結合係数調整駆動装置43は結合係数計算部472から送られた磁性体板の移動による伝送効率の変化のデータから、図7(b)に示した磁性体板31Cの上下方向における挿入位置や図7(c)に示した磁性体板31bの上下方向における挿入位置を所望の位置になるように駆動制御する。結合係数調整駆動装置43にはステップモータ等、周知の位置制御機構を採用可能である。このようにして、図8(b)に示した磁気的結合度制御機構は伝送効率測定ユニット46の出力から、磁性体板31Cや磁性体板31bの上下方向における挿入位置を所望の位置になるようにフィードバック制御することができる。 The transmission efficiency data between the transmission side coil L 1 and the power reception side coil L 2 calculated by the transmission efficiency calculation unit 471 is transmitted to the coupling coefficient calculation unit 472 of the logical operation control unit 47 constituting the magnetic coupling degree control mechanism. Will be done. The coupling coefficient calculation unit 472 is located between the current power transmission side coil L 1 and the power reception side coil L 2 from the transmission efficiency data between the power transmission side coil L 1 and the power reception side coil L 2 calculated by the transmission efficiency calculation unit 471. The value of the magnetic coupling degree of is obtained. The coupling coefficient calculation unit 472 further calculates the moving distance of the magnetic plate from the data of the insertion position in the vertical direction of the magnetic plate, which is stored in the data storage device 45 and is necessary for realizing the desired transmission efficiency. , Output to the coupling coefficient adjustment drive device 43. From the data of the change in transmission efficiency due to the movement of the magnetic material plate sent from the coupling coefficient calculation unit 472, the coupling coefficient adjusting drive device 43 shows the insertion position and the vertical direction of the magnetic material plate 31C shown in FIG. 7 (b). The insertion position of the magnetic plate 31b shown in 7 (c) in the vertical direction is driven and controlled so as to be a desired position. A well-known position control mechanism such as a step motor can be adopted for the coupling coefficient adjusting drive device 43. In this way, the magnetic coupling degree control mechanism shown in FIG. 8B sets the insertion position of the magnetic material plate 31C and the magnetic material plate 31b in the vertical direction from the output of the transmission efficiency measuring unit 46 to a desired position. Feedback control can be performed as follows.

図8(a)で説明したのと同様に、図8(b)に示す磁気的結合度制御機構の一部をなすデータ記憶装置45は、複数のレジスタ、複数のキャッシュメモリ、主記憶装置、補助記憶装置を含む一群の内から適宜選択された任意の組み合わせとすることも可能である。図8(b)に示した論理演算制御部47は、マイクロチップとして実装されたMPU等を使用してコンピュータシステムを構成することが可能である。又、コンピュータシステムを構成する論理演算制御部47として、算術演算機能を強化し信号処理に特化したDSPや、メモリや周辺回路を搭載し組込み機器制御を目的としたマイコン等を用いてもよい。或いは、現在の汎用コンピュータのメインCPUを論理演算制御部47に用いてもよい。 Similar to that described in FIG. 8A, the data storage device 45, which is a part of the magnetic coupling degree control mechanism shown in FIG. 8B, includes a plurality of registers, a plurality of cache memories, a main storage device, and the like. It is also possible to use any combination appropriately selected from the group including the auxiliary storage device. The logical operation control unit 47 shown in FIG. 8B can configure a computer system by using an MPU or the like mounted as a microchip. Further, as the logical operation control unit 47 constituting the computer system, a DSP specializing in signal processing with enhanced arithmetic operation functions, a microcomputer equipped with a memory and peripheral circuits for the purpose of controlling embedded devices, and the like may be used. .. Alternatively, the main CPU of the current general-purpose computer may be used for the logical operation control unit 47.

従来知られている「共振」とは、一次側回路2の正弦波の振動が、自由振動している二次側回路3に伝達され、二次側回路3が一次側回路2と同じ周波数で振動する概念である。本発明の第1の実施形態に係る電力伝送装置においては、一次側回路2の自由振動を制限し、一次側回路2における過渡的な電流−電圧の変化を実現させる一次側駆動スイッチSW1を備えているので、非正弦波である鋸波状の過渡応答特性を、本発明者らが初めて提案した「特性調和伝送」という概念によって、二次側回路3に伝達することが可能である。非正弦波である鋸波状の過渡応答特性を用いることにより、従来のように一次側回路2の側に正弦波の振動を生成する複雑で高価な交流電源回路が不要となる。 Conventionally known "resonance" is that the vibration of the sine wave of the primary side circuit 2 is transmitted to the secondary side circuit 3 which is free-vibrating, and the secondary side circuit 3 has the same frequency as the primary side circuit 2. It is a vibrating concept. The power transmission device according to the first embodiment of the present invention includes a primary side drive switch SW1 that limits the free vibration of the primary side circuit 2 and realizes a transient current-voltage change in the primary side circuit 2. Therefore, it is possible to transmit the serrated transient response characteristic, which is a non-sinusoidal wave, to the secondary circuit 3 by the concept of "characteristic harmonized transmission" proposed by the present inventors for the first time. By using the sawtooth-shaped transient response characteristic which is a non-sinusoidal wave, a complicated and expensive AC power supply circuit that generates a sinusoidal vibration on the primary side circuit 2 side as in the conventional case becomes unnecessary.

既に述べたとおり、第1の実施形態に係る電力伝送装置においては、一次側回路2に内在する時定数と二次側回路3に内在する時定数とを調和させて一次側回路2の電気エネルギーを二次側回路3に伝送する。この一次側回路2と二次側回路3の間の特性調和伝送は、例えば、送電側コンデンサC1と受電側コンデンサC2の容量を、コンデンサの寄生抵抗を含めて等しくし、送電側コイルL1と受電側コイルL2のインダクタンスをコイルの寄生抵抗を含めて等しくすればよい。よって、例えば一次側駆動スイッチSW1のオン/オフの繰り返し周期を500〜600μsとするのであれば、送電側コンデンサC1と受電側コンデンサC2の容量を、例えば400μF〜600μFの範囲で互いに同一とし、送電側コイルL1と受電側コイルL2のインダクタンスを、例えば5μH〜20μHの範囲で互いに同一とすればよい。As described above, in the power transmission device according to the first embodiment, the time constant inherent in the primary side circuit 2 and the time constant inherent in the secondary side circuit 3 are harmonized with each other to harmonize the electric energy of the primary side circuit 2. Is transmitted to the secondary circuit 3. In the characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3, for example, the capacities of the power transmission side capacitor C 1 and the power reception side capacitor C 2 are equalized including the parasitic resistance of the capacitor, and the power transmission side coil L is used. The inductance of 1 and the power receiving side coil L 2 may be equalized including the parasitic resistance of the coil. Therefore, for example, if the on / off repetition period of the primary side drive switch SW1 is set to 500 to 600 μs, the capacitances of the power transmitting side capacitor C 1 and the power receiving side capacitor C 2 are set to be the same as each other in the range of, for example, 400 μF to 600 μF. , The inductance of the power transmitting side coil L 1 and the power receiving side coil L 2 may be the same as each other in the range of, for example, 5 μH to 20 μH.

図1(b)及び図2に示したような鋸波状の過渡応答波形には複数の瘤が1周期に含まれている。第1の実施形態に係る電力伝送装置の過渡応答波形を解析的に解くのは極めて難しい。そこで、近似的ではあるが、図28に示した回路について、交流理論によりシミュレーションをしてみる。図28において、一次側回路2と二次側回路3のコンデンサの容量とコイルのインダクタンスは同じ値にする。即ちC=C2=500μF、L1=L2=10μHとして近似的なシミュレーションする。このとき(6)式で与えられるRLC直列回路の共振周波数fo1=2.25kHz,(7)式で与えられるRLC直列回路の共振周波数fo2=2.25kHzである。対応する繰り返し周期は444μsとなる。The sawtooth-shaped transient response waveform as shown in FIGS. 1 (b) and 2 includes a plurality of bumps in one cycle. It is extremely difficult to analytically solve the transient response waveform of the power transmission device according to the first embodiment. Therefore, although it is approximate, the circuit shown in FIG. 28 will be simulated by the AC theory. In FIG. 28, the capacitance of the capacitor and the inductance of the coil of the primary side circuit 2 and the secondary side circuit 3 are set to the same value. That is, an approximate simulation is performed with C 1 = C 2 = 500 μF and L 1 = L 2 = 10 μH. In this case (6) the resonant frequency of the RLC series circuit is given by equation f o1 = 2.25 kHz, the resonant frequency f o2 = 2.25 kHz of the RLC series circuit is given by equation (7). The corresponding repetition period is 444 μs.

一次側駆動スイッチSW1をオンにして、ステップ入力があった場合、電流は、最初に送電側コンデンサCに流れる。送電側コイルL1は、もともと急激な電流の流入を妨げる性質がある。徐々に送電側コンデンサCの電圧が上昇し、徐々に送電側コイルL1にも電流が流れ始める。そのうちに、送電側コンデンサCに溜まった電荷も送電側コイルL1側に流れ出すようになる。こうなると、送電側コンデンサC1の電圧は降下する。一次側駆動スイッチSW1をオフするまでの時間は、静電的エネルギー(1/2)CVと磁気的エネルギー(1/2)LIの和が最大になるように設定するのが理想であるが、送電側コイルL1に電流Iが流れた状態で、一次側駆動スイッチSW1がオフするので、送電側コイルL1に逆起電力が発生する。Turn on the primary side driving switch SW1, when there is a step input, current initially flows to the power transmission side capacitor C 1. The power transmission side coil L 1 originally has a property of hindering a sudden inflow of current. The voltage of the power transmission side capacitor C 1 gradually rises, and a current gradually begins to flow in the power transmission side coil L 1. In the meantime, the electric charge accumulated in the power transmission side capacitor C 1 also flows out to the power transmission side coil L 1. When this happens, the voltage of the power transmission side capacitor C1 drops. Ideally, the time until the primary side drive switch SW1 is turned off is set so that the sum of the electrostatic energy (1/2) CV 2 and the magnetic energy (1/2) LI 2 is maximized. but, with the current I to the power transmission coil L 1 flows, the primary side driving switch SW1 is turned off so that counter electromotive force is generated in the power transmission coil L 1.

送電側コイルL1に発生する逆起電力の電圧が、図4に示した一次側駆動スイッチSW1に用いる第1の半導体スイッチング素子Q1の耐圧を越えないように注意が必要である。一次側駆動スイッチSW1のオン/オフの繰り返し周期は、送電側コンデンサC1の端子間電圧VC1が、再び上昇してピークとなるまでの時間を考慮して、ピークに達するタイミングより少し早めにする。Care must be taken so that the voltage of the counter electromotive force generated in the transmission side coil L 1 does not exceed the withstand voltage of the first semiconductor switching element Q1 used for the primary side drive switch SW1 shown in FIG. The on / off repetition cycle of the primary side drive switch SW1 is set to be slightly earlier than the timing at which the peak is reached, in consideration of the time until the terminal voltage VC1 of the power transmission side capacitor C1 rises again and reaches its peak.

図29に近似的なシミュレーション結果としての送電側コンデンサCの電圧の変化を示す。図29には図1(b)及び図2に示したように、送電側コンデンサCの電圧の変化に鋸波状の過渡応答波形が得られる。図30を用いて、鋸波の瘤は、受電側コイルL2に誘導される電流による磁束によって一次側回路2の電流が減少させられる為に生じることを説明する。第4の実施形態で後述するような一次側駆動スイッチSW1、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4の4つのスイッチを用いるモードの場合と同様に、二次側回路3の電圧が最大となる時に、一次側回路2の電圧がゼロになる現象に対応し、図34に示すW型の過渡応答波形の真ん中の山が鋸波の瘤になる。It indicates an approximate simulation change of the voltage of the power transmission capacitor C 1 as a result of the Figure 29. The Figure 29 as shown in FIG. 1 (b) and 2, the transient response waveform sawtooth obtain the change of the voltage of the power transmission capacitor C 1. It will be described with reference to FIG. 30 that the sawtooth wave aneurysm is generated because the current of the primary side circuit 2 is reduced by the magnetic flux due to the current induced in the power receiving side coil L 2. The voltage of the secondary circuit 3 is the same as in the mode using the four switches of the primary side drive switch SW1, the power transmission side switch SW2, the power reception side switch SW3, and the load control switch SW4, which will be described later in the fourth embodiment. Corresponds to the phenomenon that the voltage of the primary side circuit 2 becomes zero when the voltage becomes maximum, and the peak in the middle of the W-shaped transient response waveform shown in FIG.

図34に示すW型の過渡応答波形については図35を用いて後述する。図28の回路から寄生容量や寄生抵抗等を省略し簡略化した回路図である図31に示した回路を用い、近似的なシミュレーションをしてみると、図32に示したようなWの形状の右側の谷の電圧が持ち上がった過渡応答波形が得られる。図32の破線の円A1及びA2でそれぞれ囲んで示したW型の過渡応答波形の真ん中の山が、寄生容量や寄生抵抗等の影響で、図1(b)及び図2に示したような鋸波に瘤として現れていることが分かる。The W-type transient response waveform shown in FIG. 34 will be described later with reference to FIG. 35. An approximate simulation using the circuit shown in FIG. 31, which is a simplified circuit diagram in which parasitic capacitance and resistance are omitted from the circuit of FIG. 28, shows a W shape as shown in FIG. 32. A transient response waveform is obtained in which the voltage in the valley on the right side of is raised. The mountain in the middle of the W-shaped transient response waveform shown by the dashed circles A 1 and A 2 in FIG. 32 is shown in FIGS. 1 (b) and 2 due to the influence of parasitic capacitance and resistance. It can be seen that it appears as a hump in such a sawtooth wave.

第1の実施形態における一次側駆動スイッチSW1のみのモードの場合、図30(a)〜(d)に示すように、一次側駆動スイッチSW1のオン/オフの繰り返し周期を長くすると、過渡応答波形の瘤が小さくなり、次第に図1(b)及び図2に示したような鋸波の応答波形に近づいていく。図29は、図30(c)に示した繰り返し周期575μsの場合の過渡応答波形を拡大して示す図であるが、図1(b)及び図2に示した過渡応答波形に対応している。 In the mode of only the primary side drive switch SW1 in the first embodiment, as shown in FIGS. 30A to 30D, when the ON / OFF repetition cycle of the primary side drive switch SW1 is lengthened, the transient response waveform is generated. The aneurysm becomes smaller and gradually approaches the response waveform of the sawtooth wave as shown in FIGS. 1 (b) and 2. FIG. 29 is an enlarged view of the transient response waveform in the case of the repetition period of 575 μs shown in FIG. 30 (c), and corresponds to the transient response waveform shown in FIGS. 1 (b) and 2. ..

一次側駆動スイッチSW1のオン/オフの繰り返し周期565μsの場合は、図30(a)の破線の円Aaで囲んで示すようなW型の過渡応答波形である。(6)式及び(7)式が規定するRLC直列回路の共振周波数から求められる繰り返し周期は444μsであるので、図30(a)の繰り返し周期は、SW1をONしている時間100μsを考慮しても交流理論で求められる繰り返し周期よりも長い。即ち第1の実施形態に係る電力伝送装置においては、交流理論で求められるRLC直列回路の共振周波数とは異なる繰り返し周期で振動していることが分かる。When the on / off repetition period of the primary side drive switch SW1 is 565 μs, it is a W-shaped transient response waveform as shown by the circle A a of the broken line in FIG. 30 (a). Since the repetition period obtained from the resonance frequency of the RLC series circuit defined by the equations (6) and (7) is 444 μs, the repetition period of FIG. 30 (a) takes into consideration the time of turning on SW1 of 100 μs. However, it is longer than the repetition period required by the AC theory. That is, it can be seen that the power transmission device according to the first embodiment vibrates at a repetition period different from the resonance frequency of the RLC series circuit obtained by the AC theory.

第1の実施形態に係る電力伝送装置において、二次側回路3に一次側回路2から電気エネルギーを特性調和伝送によって伝送することにより振幅が小さくなる。繰り返し周期を、少し長くして図30(b)の繰り返し周期570μsの場合は、破線の円Abで囲んで示したように、過渡応答波形を示すWの形状のうち右側の谷の電圧が持ち上がる。更に、図1(b)及び図2に示したのと同様に、鋸波の上側にも膨らみが生じはじめる。In the power transmission device according to the first embodiment, the amplitude is reduced by transmitting electrical energy from the primary side circuit 2 to the secondary side circuit 3 by characteristic harmonized transmission. The repetition period, in the case of repetition period 570μs in Figure 30 was slightly longer (b), as shown enclosed by the dashed circle A b, the voltage of the right valley of the shape of W showing a transient response waveform Lift up. Further, as shown in FIGS. 1 (b) and 2, a bulge begins to occur on the upper side of the sawtooth wave.

特性調和伝送によって一次側回路2から二次側回路3に電気エネルギーを更に伝送することにより、更に振幅が小さくなる。繰り返し周期を更に長くして図30(c)の繰り返し周期575μsとした場合は、破線の円Acで囲んで示したようにWの形状のうち、右側の谷の電圧が更に持ち上がり瘤状の肩部となり、過渡応答波形からWの形状が消える。そして、図1(b)及び図2に示したのと同様に、鋸波の上側にも瘤が現れてくる。By further transmitting electrical energy from the primary side circuit 2 to the secondary side circuit 3 by characteristic harmonized transmission, the amplitude is further reduced. If the repetition period was longer and the repetition period 575μs in FIG. 30 (c), the one in the shape of W as shown enclosed by the dashed circle A c, the voltage of the right valley further raised nodular It becomes the shoulder part, and the shape of W disappears from the transient response waveform. Then, as shown in FIGS. 1 (b) and 2, a bump appears on the upper side of the sawtooth wave.

特性調和伝送によって、二次側回路3に電気エネルギーを更に伝送することにより更に振幅が小さくなり、繰り返し周期を更に長くして図30(d)の繰り返し周期580μsとした場合は、破線の円Adで囲んで示したように、過渡応答波形を示す瘤状の肩部が更に持ち上がる。そして、図1(b)及び図2に示したのと同様に、鋸波の上側の瘤も顕著になって、2段の瘤が示されるようになる。このように、過渡応答波形を示すWの形状のうち、振幅がだんだん小さくなり、繰り返し周期を長くすると右側の谷の電圧がだんだん下がらなくなり、Wの形状の右側の谷が持ち上がり、2段の瘤を有する鋸波状の過渡応答波形になっていく。When the amplitude is further reduced by further transmitting electrical energy to the secondary circuit 3 by the characteristic harmonized transmission and the repetition period is further lengthened to the repetition period of 580 μs in FIG. 30 (d), the broken line circle A As shown by the circled d, the bumpy shoulder showing the transient response waveform is further lifted. Then, as shown in FIGS. 1 (b) and 2, the upper aneurysm of the sawtooth wave also becomes prominent, and a two-stage aneurysm is shown. In this way, among the W shapes showing the transient response waveform, the amplitude gradually becomes smaller, and when the repetition period is lengthened, the voltage in the valley on the right side does not gradually decrease, and the valley on the right side of the W shape rises, and a two-stage bump. It becomes a serrated transient response waveform with.

一次側駆動スイッチSW1のオン/オフの繰り返し周期を長くするとWの形状の右側の谷の電圧が持ち上がるのは、二次側回路3で受け取った電気エネルギーが充電対象である負荷素子6に移動したためと考えられる。一次側駆動スイッチSW1を入れた際の電流の最大値と、負荷素子6に流れる電流の最大値は、第1の実施形態に係る電力伝送装置の実回路を構成している電線の寄生インダクタンスに依存する。実回路で測定された波形の解析から寄生インダクタンスは、1mH〜3μH程度あるものと推定される。即ち、図1(b)及び図2に示した複数の瘤を有する鋸波状の過渡応答波形は、寄生抵抗、寄生容量、寄生インダクタンスに依拠した回路に固有の時定数によって、発生していることがわかる。 When the on / off repetition cycle of the primary side drive switch SW1 is lengthened, the voltage in the valley on the right side of the W shape rises because the electrical energy received by the secondary side circuit 3 moves to the load element 6 to be charged. it is conceivable that. The maximum value of the current when the primary side drive switch SW1 is turned on and the maximum value of the current flowing through the load element 6 are the parasitic inductances of the electric wires constituting the actual circuit of the power transmission device according to the first embodiment. Dependent. From the analysis of the waveform measured in the actual circuit, the parasitic inductance is estimated to be about 1 mH to 3 μH. That is, the serrated transient response waveform having a plurality of bumps shown in FIGS. 1 (b) and 2 is generated by the time constant peculiar to the circuit depending on the parasitic resistance, parasitic capacitance, and parasitic inductance. I understand.

次に、従来の交流理論である(6)式が与えるRLC直列回路の共振周波数fo1を用い、ω0=2πfo1、ω1=ω0 /(1−k)1/2とし、図35に示すように、エネルギー転送関数f1として、転送タイミングである2π/ω1秒後にステップ状に減衰するシグモイド関数:

f1=V3/[1+exp{106(t−2π/ω1)}]+V2 ……(8)

を考える。ここで、ω1=ω0 /(1−k)1/2を定義するkは、式(1)の定義に用いた交流理論の結合係数KACである(k=KAC)。
Next, using the resonance frequency f o1 of the RLC series circuit is a conventional AC Theory (6) gives, omega 0 = 2 [pi] f o1, and ω1 = ω 0 / (1- k) 1/2, in FIG. 35 As shown, as the energy transfer function f1, the sigmoid function that decays in steps after 2π / ω 1 second, which is the transfer timing:

f1 = V3 / [1 + exp {10 6 (t-2π / ω1)}] + V2 …… (8)

think of. Here, k that defines ω1 = ω 0 / (1-k) 1/2 is the coupling coefficient KAC of the AC theory used in the definition of equation (1) (k = KAC ).

更に、任意の減衰関数f2として、適当な減衰定数τで減数をする関数:

f2=exp(−τt) ……(9)

を考える。例えば、第1の実施形態に係る電力伝送装置においては、減衰関数f2は、一次側コンデンサC1の両端の電圧VC1の最大値の寄生抵抗とコンデンサによる時定数τによる減衰する関数に対応する。
Furthermore, as an arbitrary attenuation function f2, a function that diminishes with an appropriate attenuation constant τ:

f2 = exp (−τt) …… (9)

think of. For example, in a power transmission device according to the first embodiment, the damping function f2 corresponds to a function that decays by a constant τ time due to the parasitic resistance and the capacitor of the maximum value of the voltage VC1 across the primary-side capacitor C 1.

図35に記載したV1,V2,V3は、すべて一次側のコンデンサC1の両端の電圧VC1に対応させることができる。V1は、最初に、一次側のコンデンサC1にチャージされた電圧、V2が、二次側回路3に電気エネルギーに転送されたのちの一次側のコンデンサC1に残った電圧に対応出来る。図35に記載したV3は、それらの差分に対応する。エネルギー転送関数f1は一次側のコンデンサC1の両端の電圧VC1がV1からV2に下がることを意図して作った関数である。Figure 35 V1, V2, V3 described may be all corresponding to the voltage VC1 at both ends of the capacitor C 1 of the primary side. V1 can correspond to the voltage first charged in the capacitor C 1 on the primary side and the voltage remaining in the capacitor C 1 on the primary side after V2 is transferred to the secondary circuit 3 for electrical energy. V3 shown in FIG. 35 corresponds to those differences. Energy transfer function f1 is a function of the voltage VC1 across the capacitor C 1 of the primary side is made with the intention that falls V2 from V1.

上述のω0=2πfo1を用いω2=ω0 /(1+k)1/2とし相互誘導関数φ(k)を、

φ(k)=cos(ω1t)+cos(ω2t) ……(10)

と定義すれば、関数(V1/2)φ(k)は図35の転送タイミング2π/ω1 秒後の細い破線の曲線で示すような変化を示す。ただし、第1の実施形態に係る電力伝送装置の結合係数Kは時間に依存するパラメータであり、交流理論の結合係数KACとは、厳密には異なることに留意が必要である。図35の細い破線は、負荷回路6に電流を供給する前の波形であり、一次側コンデンサC1の両端の電圧VC1の波形に対応する。転送タイミング2π/ω1秒後の細い破線は一次側コンデンサC1のエネルギーが、二次側に転送されない時の波形と考えることができる。
Using the above-described ω 0 = 2πf o1 ω2 = ω 0 / (1 + k) 1/2 and then mutual induction function φ a (k),

φ (k) = cos (ω1t) + cos (ω2t) …… (10)

If defined as, the function (V1 / 2) φ (k) shows a change as shown by a thin broken line curve after the transfer timing of 2π / ω1 second in FIG. 35. However, it should be noted that the coupling coefficient K of the power transmission device according to the first embodiment is a time-dependent parameter and is strictly different from the coupling coefficient KAC of the AC theory. Thin broken line in FIG. 35 is a waveform before supplying a current to the load circuit 6, corresponding to the waveform of the voltage VC1 across the primary-side capacitor C 1. The thin broken line after the transfer timing of 2π / ω 1 second can be considered as the waveform when the energy of the primary side capacitor C1 is not transferred to the secondary side.

関数(V2/2)φ(k)は、図35の転送タイミング2π/ω1 秒に至るまでの細い破線の曲線であり、負荷回路6に電流を供給した後のコンデンサC1の両端の電圧VC1の波形である。一次側コンデンサC1のエネルギーが、二次側に転送される分だけ、初めから二次側に移動していたと考えた時の波形に相当する。実線で示した関数f1・f2・φ(k)がコンデンサC1の両端の電圧VC1になり、W型を示すことが分かる。Function (V2 / 2) φ (k ) is a thin dashed curve up to the transfer timing 2 [pi / .omega.1 seconds in FIG. 35, the voltage across the capacitor C 1 after a current is supplied to the load circuit 6 VC1 It is a waveform of. It corresponds to the waveform when it is considered that the energy of the primary side capacitor C1 has moved to the secondary side from the beginning by the amount transferred to the secondary side. It can be seen that the functions f1, f2, φ (k) shown by the solid line become the voltage VC1 across the capacitor C 1 and indicate the W type.

以上のとおり、第1の実施形態に係る電力伝送装置においては、特性調和伝送によって二次側回路3に電気エネルギーを伝送することにより振幅が小さくなる。即ち、図32に示すように、W型の過渡応答波形の右側の谷が小さくなり、次第に上に持ち上がり、くぼまなくなる。これによって、鋸波的になる全体的にRCの時定数で、寄生抵抗による電気エネルギーの散逸により減衰する。図28に示した回路についての交流理論による近似的なシミュレーションでは、あくまでも近似に過ぎず、交流理論の限界があるが、大凡2段の瘤を有する鋸波状の過渡応答波形が理解できるはずである。現実には、図1(b)及び図2に示した実験データのみが第1の実施形態に係る電力伝送装置の効果を説明できる。 As described above, in the power transmission device according to the first embodiment, the amplitude is reduced by transmitting the electric energy to the secondary side circuit 3 by the characteristic harmonized transmission. That is, as shown in FIG. 32, the valley on the right side of the W-shaped transient response waveform becomes smaller, gradually rises upward, and does not become dented. This results in a sawtooth-like overall RC time constant, which is attenuated by the dissipation of electrical energy due to parasitic resistance. The approximate simulation of the circuit shown in FIG. 28 by the AC theory is only an approximation, and although there are limits to the AC theory, it should be possible to understand a sawtooth-shaped transient response waveform with roughly two steps of bumps. .. In reality, only the experimental data shown in FIGS. 1B and 2 can explain the effect of the power transmission device according to the first embodiment.

即ち、送電側コンデンサC1と受電側コンデンサC2に同一のコンデンサを採用し、送電側コイルL1と受電側コイルL2のインダクタンスに同一のコイルを採用すれば、コイル及びコンデンサに寄生抵抗を含めて、一次側回路2に内在する時定数と二次側回路3に内在する時定数とが調和させることができる。That is, if the same capacitor is used for the power transmitting side capacitor C 1 and the power receiving side capacitor C 2 , and the same coil is used for the inductance of the power transmitting side coil L 1 and the power receiving side coil L 2 , parasitic resistance is added to the coil and the capacitor. Including, the time constant inherent in the primary side circuit 2 and the time constant inherent in the secondary side circuit 3 can be harmonized.

以上述べたとおり、本発明の第1の実施形態に係る電力伝送装置は、特性調和伝送という新規な概念を用いた交流理論に依拠しない技術であるので、安価な直流電源5を使用することができる。このため、第1の実施形態に係る電力伝送装置では高価なスイッチング電源が不要であり、回路構成が単純化され、制御回路側における電力損失も最小化される。特に一次側駆動スイッチSW1として電力用半導体スイッチング素子を採用する場合には、電力用半導体スイッチング素子をオン/オフ制御する単純な制御だけでよいので、制御回路側の電力損失も削減され、電源回路(0次回路)の損失を含めた総合的な電力伝送効率を高めることができる。特に回路構成が単純化されるので壊れにくく、回路設計が容易になる。又、電力伝送の限界電力を従来の交流理論における限界電力を凌駕する値にまで押し上げることができる。電力伝送の限界電力は原理的には無限大に押し上げることが出来るものであるが、電力伝送の限界距離も原理的には無限大に伸ばすことができる。 As described above, since the power transmission device according to the first embodiment of the present invention is a technique that does not rely on the AC theory using a novel concept of characteristic harmonized transmission, it is possible to use an inexpensive DC power supply 5. can. Therefore, the power transmission device according to the first embodiment does not require an expensive switching power supply, simplifies the circuit configuration, and minimizes the power loss on the control circuit side. In particular, when a power semiconductor switching element is used as the primary side drive switch SW1, simple control for turning on / off the power semiconductor switching element is sufficient, so that power loss on the control circuit side is also reduced and the power supply circuit. The overall power transmission efficiency including the loss of the (0th order circuit) can be improved. In particular, since the circuit configuration is simplified, it is hard to break and the circuit design becomes easy. In addition, the limit power of power transmission can be pushed up to a value that exceeds the limit power in the conventional AC theory. The limit power of power transmission can be pushed up to infinity in principle, but the limit distance of power transmission can also be extended to infinity in principle.

この結果、第1の実施形態に係る電力伝送装置によれば、電力伝送装置の全体の構成を簡略化して制御回路側の電力損失を最小限に抑制し、軽量・小型化及び高効率化が可能となり、省電力化による総合的な電力伝送効率を高めたワイヤレス電力伝送装置を安価に製造することができる。又、従来の交流理論で求められる繰り返し周期よりも長い繰り返し周期で特性調和伝送が実現できるので、従来の交流理論における重共振の場合よりも低い周波数でよい。低周波数の回路設計でよいので、一次側回路2側の電圧を高めることも容易になり、ジュール熱発生によるエネルギー損失も少なくできるので第1の実施形態に係る電力伝送装置は総合的な電力伝送効率が高い電力伝送装置を安価に製造することができる。寄生抵抗を下げることにより、原理的には電力伝送効率が99%を超え、100%に近い値まで高められた電力伝送装置を製造することができる。 As a result, according to the power transmission device according to the first embodiment, the overall configuration of the power transmission device is simplified, the power loss on the control circuit side is minimized, and the weight, size, and efficiency are improved. This makes it possible to inexpensively manufacture wireless power transmission devices with improved overall power transmission efficiency due to power saving. Further, since characteristic harmonized transmission can be realized with a repetition period longer than the repetition period required by the conventional AC theory, a frequency lower than that in the case of multiple resonance in the conventional AC theory may be used. Since a low frequency circuit design is sufficient, it is easy to increase the voltage on the primary side circuit 2 side, and energy loss due to Joule heat generation can be reduced. Therefore, the power transmission device according to the first embodiment is a comprehensive power transmission. A highly efficient power transmission device can be manufactured at low cost. By lowering the parasitic resistance, in principle, it is possible to manufacture a power transmission device in which the power transmission efficiency exceeds 99% and is increased to a value close to 100%.

(第2の実施形態)
本発明の第2の実施形態に係る電力伝送装置は図10(a)に示すように、図1に示した第1の実施形態に係る電力伝送装置の回路構成に、送電側スイッチSW2を追加した構成となっている。「送電側スイッチSW2」も一次側駆動スイッチSW1と同様に、一次側回路2の自由振動を制限し、一次側回路2における過渡的な電流−電圧の変化を実現させる回路素子である。
(Second embodiment)
As shown in FIG. 10A, the power transmission device according to the second embodiment of the present invention adds the power transmission side switch SW2 to the circuit configuration of the power transmission device according to the first embodiment shown in FIG. It has a structure that is Like the primary side drive switch SW1, the “power transmission side switch SW2” is also a circuit element that limits the free vibration of the primary side circuit 2 and realizes a transient current-voltage change in the primary side circuit 2.

図10(a)に示した一次側駆動スイッチSW1及び送電側スイッチSW2として、第1の実施形態に係る電力伝送装置と同様なFET、SIT、BJTの他、GTOサイリスタ、SIサイリスタ等のサイリスタを含む電力用半導体スイッチング素子が用いられる。特に、MISFET、MISSIT、IGBT、MOS制御SIサイリスタ等の電圧駆動型のスイッチング素子を用いれば消費電力が小さくなるので、一次側駆動スイッチSW1及び送電側スイッチSW2に好適である。市場での入手可能性と電力用半導体スイッチング素子の内部抵抗の評価からは、現状においては、MOSFETを図10(b)に示す回路の一次側駆動スイッチSW1及び送電側スイッチSW2として採用することが可能である。 As the primary side drive switch SW1 and the transmission side switch SW2 shown in FIG. 10A, thyristors such as a GTO thyristor and an SI thyristor are used in addition to the FET, SIT, and BJT similar to the power transmission device according to the first embodiment. Power semiconductor switching elements including are used. In particular, if a voltage-driven switching element such as a MISFET, MISSIT, IGBT, or MOS-controlled SI thyristor is used, the power consumption is reduced, so that it is suitable for the primary side drive switch SW1 and the power transmission side switch SW2. From the market availability and the evaluation of the internal resistance of power semiconductor switching elements, it is currently possible to adopt MOSFETs as the primary side drive switch SW1 and power transmission side switch SW2 of the circuit shown in FIG. 10B. It is possible.

既に第1の実施形態に係る電力伝送装置で説明したとおり、EV用の充電式電池を負荷素子6とするような大電力用電力伝送装置においてはジュール熱の発生が大きい。第2の実施形態に係る電力伝送装置では一次側駆動スイッチSW1及び送電側スイッチSW2として用いるとして用いる電力用半導体スイッチング素子は2個のみで良いので、発熱による素子の破壊を防ぐ冷却構造が簡単に設計でき、しかも浮遊抵抗、浮遊容量、浮遊インダクタンスの発生も最小化できる。又、一次側駆動スイッチSW1及び送電側スイッチSW2をオン/オフ制御する単純な制御だけでよいので、一次側回路2の電圧を高めて、ジュール熱の発生を押さえる設計も簡単にできる。 As already described in the power transmission device according to the first embodiment, Joule heat is generated significantly in a high power power transmission device in which the EV rechargeable battery is used as the load element 6. In the power transmission device according to the second embodiment, only two power semiconductor switching elements are used as the primary side drive switch SW1 and the power transmission side switch SW2, so that a cooling structure for preventing element destruction due to heat generation is simple. It can be designed, and the generation of stray resistance, stray capacitance, and stray inductance can be minimized. Further, since the simple control of turning on / off the primary side drive switch SW1 and the power transmission side switch SW2 is sufficient, it is possible to easily design by increasing the voltage of the primary side circuit 2 and suppressing the generation of Joule heat.

図10(b)に示す実装回路においては、送電側コイルL1からの環流電流を考慮し第1の還流ダイオードFWD1が第1の半導体スイッチング素子Q1としてのMOSFETのソース・ドレイン間に、第2の還流ダイオードFWD2が第2の半導体スイッチング素子Q2としてのMOSFETのソース・ドレイン間に、それぞれ保護素子として並列接続されている。図4(a)に示した回路と同様に、送電側コイルL1からの環流電流が直流電源5に環流するのを防ぐため、電源側ダイオードD1が直流電源5と第1の半導体スイッチング素子Q1の間に直列接続されている。図10(b)に示す実装回路でも負荷素子6の等価インピーダンスXLeqを充電容量Csで近似して表現している。10 in the mounting circuit shown in (b), between the MOSFET source and drain of the power transmission side wheeling diode FWD 1 considering circulating electric current in the first coil L 1 is a first semiconductor switching element Q1, the The freewheeling diode FWD 2 of 2 is connected in parallel as a protection element between the source and drain of the MOSFET as the second semiconductor switching element Q2. Figure 4 similarly to the circuit shown in (a), since the circulating electric current from the power transmission coil L 1 is prevented from refluxing to the DC power supply 5, the power supply side diode D1 and the DC power source 5 the first semiconductor switching element Q1 Is connected in series between. Even in the mounting circuit shown in FIG. 10B, the equivalent impedance X Leq of the load element 6 is approximated by the charging capacity C s and expressed.

第1の実施形態に係るワイヤレス電力伝送方法を、図11のタイミング図及び図12(a)から図12(d)に示す時系列概略図を参照して説明する。ただし、第1の実施形態と同様、交流理論から導かれる結合係数KAC=0.6に等価な結合係数Kの場合を前提としており、充電電圧VCの初期状態における値は満充電に近い十分高い電圧であるとする。先ず、図12(a)に示すタイミングにおいて、送電側スイッチSW2をオフ状態、一次側駆動スイッチSW1をオン状態にして、送電側コンデンサCに初期電圧を印加して電荷を蓄える。図12(a)では一次側駆動スイッチSW1に第1の半導体スイッチング素子Q1を用いているので、第1の半導体スイッチング素子Q1のオン抵抗ron1で一次側駆動スイッチSW1のオン状態を示している。送電側スイッチSW2をオフ状態では一次側回路2は未だ形成されず、図12(a)に示すように、一次側駆動スイッチSW1のオン状態によって、直流電源5、等価内部抵抗r1、第1の半導体スイッチング素子Q1と第1の還流ダイオード(環流ダイオード)FWD1の並列回路及び送電側コンデンサCからなる直列」回路によって給電側回路1が構成されている。The wireless power transmission method according to the first embodiment will be described with reference to the timing diagram of FIG. 11 and the time series schematic diagram shown in FIGS. 12 (a) to 12 (d). However, as in the first embodiment, when the equivalent coefficient K in coefficient K AC = 0.6 derived from the AC theory has assumed the value in the initial state of the charge voltage VC S is almost fully charged It is assumed that the voltage is sufficiently high. First, at the timing shown in FIG. 12 (a), the power-transmitting-side switch SW2 turned off, and the primary-side drive switch SW1 in the ON state, storing electric charge by applying an initial voltage to the power transmission side capacitor C 1. In FIG. 12A, since the first semiconductor switching element Q1 is used for the primary side drive switch SW1, the on state of the primary side drive switch SW1 is shown by the on-resistance r on1 of the first semiconductor switching element Q1. .. Power-transmission-side primary circuit 2 the switch SW2 in an OFF state is not yet formed, as shown in FIG. 12 (a), the on-state of the primary-side drive switch SW1, a DC power source 5, the equivalent internal resistance r 1, the first semiconductor switching elements Q1 and the power supply side circuit 1 by a first freewheeling diode (reflux diode) composed of a parallel circuit and a power-transmitting-side capacitor C 1 of the FWD 1 series "circuit is configured.

図11に細い破線で示したように、送電側コンデンサCの端子間電圧VCは、リンギングをしながら一定電圧に充電される。図11には示していないが、このタイミングでは受電側コンデンサCの端子間電圧VCは負の値であるとして図12(a)では示している。次に、図12(b)に示すタイミングにおいて、一次側駆動スイッチSW1をオフ状態にして、一定時間をおいて、送電側スイッチSW2をオン状態にすると、送電側コンデンサCに蓄えられた電気エネルギーは送電側コイル電流IL1を介して、送電側コイルL1に蓄積され、更に、一次側回路2と二次側回路3の間の特性調和伝送が生じる。図12(b)のタイミングでは送電側スイッチSW2に第2の半導体スイッチング素子Q2を用いているので、第2の半導体スイッチング素子Q2のオン抵抗ron2で送電側スイッチSW2のオン状態を示している。送電側スイッチSW2をオン状態にすることにより一次側回路2が形成され、直流電源5、等価内部抵抗r1、第1の半導体スイッチング素子Q1と第1の還流ダイオード(環流ダイオード)FWD1の並列回路及び送電側コンデンサCからなる給電側回路1が消滅する。As shown by a thin broken line in FIG. 11, the inter-terminal voltage VC 1 of the power transmission side capacitor C 1 is charged to a constant voltage while ringing. Although not shown in FIG. 11, FIG. 12A shows that the voltage between terminals VC 2 of the power receiving side capacitor C is a negative value at this timing. Next, at a timing shown in FIG. 12 (b), and the primary-side drive switch SW1 in the OFF state, after a certain time, when the power-transmission-side switch SW2 is turned on, electricity stored in the transmission-side capacitor C 1 energy via a power transmission coil current I L1, stored in the power transmission coil L 1, further characteristic harmonic transmissions between the primary-side circuit 2 and the secondary-side circuit 3 occurs. Since the second semiconductor switching element Q2 is used for the power transmission side switch SW2 at the timing of FIG. 12B, the on-resistance r on2 of the second semiconductor switching element Q2 indicates the on state of the power transmission side switch SW2. .. Primary circuit 2 by the power-transmission-side switch SW2 to the ON state is formed, the DC power source 5, the equivalent internal resistance r 1, a first semiconductor switching element Q1 first freewheeling diode (reflux diode) parallel FWD 1 The power supply side circuit 1 including the circuit and the power transmission side capacitor C 1 disappears.

送電側コンデンサCに蓄えられた電気エネルギーが送電側コイルL1に移動すると、図11に細い破線で示した端子間電圧VCは、負の極大値をとったのち、0Vになる。一次側回路2から二次側回路3への特性調和伝送によって、受電側コイルL2に伝送された電気エネルギーは、受電側コイル電流IL2によって受電側コンデンサCを充電する。受電側コンデンサCの充電が開始されると、受電側コンデンサCの端子間電圧VCは、図11の太い破線で示すように、負の極大値をとったのち、図12(c)に示すように正の値になる。端子間電圧VCが0Vになった時点で最大値をとる。図11の太い破線の変化から分かるように、端子間電圧VCは、負の極大値をとったのち、正の値になり、細い破線で示した端子間電圧VCが0Vになった時点で最大値をとる。When the electric energy stored in the power transmission side capacitor C 1 moves to the power transmission side coil L 1 , the inter-terminal voltage VC 1 shown by the thin broken line in FIG. 11 takes a negative maximum value and then becomes 0 V. The characteristic harmonic transmission from the primary side circuit 2 to the secondary-side circuit 3, the electrical energy transmitted to the power receiving coil L 2 charges the power receiving side capacitor C 2 by the receiver coil current I L2. When charging of the power receiving side capacitor C 2 is started, the terminal voltage VC 2 of the power receiving side capacitor C takes a negative maximum value as shown by the thick broken line in FIG. 11, and then is shown in FIG. 12 (c). It becomes a positive value as shown. The maximum value is taken when the voltage between terminals VC 1 becomes 0V. As can be seen from the change in the thick broken line in FIG. 11, the terminal voltage VC 2 becomes a positive value after taking a negative maximum value, and when the terminal voltage VC 1 shown by the thin broken line becomes 0 V. Take the maximum value with.

図12(c)に示すタイミングにおいて、端子間電圧VCの増加に伴って、受電側コンデンサCに蓄積された電気エネルギーの一部によって、図11に一点鎖線で示した充電電流ICSが発生し、負荷素子6としての充電式電池に電荷が蓄えられる。受電側コンデンサCに蓄積された電気エネルギーの他の一部は、受電側コイルL2に受電側コイル電流IL2として還流する。図12(d)に示すタイミングにおいて、充電電流Iが0になった時点で、端子間電圧VCは、充電電圧VCと同じ値となる。At the timing shown in FIG. 12 (c), with an increase in inter-terminal voltage VC 2, by a portion of the accumulated in the power receiving side capacitor C electric energy, the charging current I CS shown in FIG. 11 by a dashed line occurs Then, the electric charge is stored in the rechargeable battery as the load element 6. Another part of the accumulated in the power receiving side capacitor C electrical energy is refluxed as receiver coil current I L2 to the power receiving coil L 2. At the timing shown in FIG. 12 (d), when the charging current I C becomes 0, the inter-terminal voltage VC 2 is the same value as the charge voltage VC S.

受電側コンデンサCに蓄積された電気エネルギーが受電側コイルL2に還流すると、一次側回路2と二次側回路3の間の特性調和伝送が生じ、一次側回路2に電気エネルギーの一部が戻る。受電側コンデンサCに蓄積された電気エネルギーが負荷素子6及び受電側コイルL2に移動すると、受電側コンデンサCは放電される。受電側コンデンサCが放電すると、図11の右側に太い破線で示した端子間電圧VCは、負の極大値をとったのち、0Vになる。このとき、図11の右側に細い破線で示した端子間電圧VCは、負の極大値をとったのち、正の値となり増大し、送電側スイッチSW2がオフ状態になった時点で一定値に維持される。図9(d)説明したのと同様に、端子間電圧VCを測定することにより、一次側回路2と二次側回路3の間の特性調和伝送の伝送効率や負荷素子6としての充電式電池の充電の状況をモニターすることができることが分かる。図11から分かるように一次側回路2の端子間電圧VCの振動波形と二次側回路3の端子間電圧VCの振動波形とは互いに対称性のある振動波形ではない。When the electric energy stored in the power receiving side capacitor C is returned to the power receiving side coil L 2 , characteristic harmonized transmission occurs between the primary side circuit 2 and the secondary side circuit 3, and a part of the electric energy is transferred to the primary side circuit 2. return. When the electric energy stored in the power receiving side capacitor C moves to the load element 6 and the power receiving side coil L 2 , the power receiving side capacitor C 2 is discharged. When the power receiving side capacitor C 2 is discharged, the terminal voltage VC 2 shown by the thick broken line on the right side of FIG. 11 takes a negative maximum value and then becomes 0 V. At this time, the voltage between terminals VC 1 shown by a thin broken line on the right side of FIG. 11 takes a negative maximum value, then becomes a positive value and increases, and is a constant value when the power transmission side switch SW2 is turned off. Is maintained at. As described in FIG. 9D, by measuring the voltage between terminals VC 1 , the transmission efficiency of characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 and the rechargeable type as the load element 6 It can be seen that the charging status of the battery can be monitored. As can be seen from FIG. 11, the vibration waveform of the terminal voltage VC 1 of the primary circuit 2 and the vibration waveform of the terminal voltage VC 2 of the secondary circuit 3 are not symmetrical with each other.

既に述べたように、「共振」とは、自由振動している系に適用される概念である。これに対し、本発明の第2の実施形態に係る電力伝送装置においては、一次側回路2の自由振動を制限し、一次側回路2における過渡的な電流−電圧の変化を実現させる送電側スイッチSW2及び一次側駆動スイッチSW1を備えている。このため、第2の実施形態に係る電力伝送装置においては、非正弦波の過渡応答特性を、新たな概念である「特性調和伝送」によって、二次側回路3に伝達することが可能である。制御回路の構成が単純で安価な直流電源5に依拠した非正弦波の過渡応答特性を用いることができるので、従来のように一次側回路2に対し商用周波数よりも高い正弦波振動を生成させる高価な交流電源回路が不要となり、壊れにくく回路設計が容易になる。 As already mentioned, "resonance" is a concept applied to a system that vibrates freely. On the other hand, in the power transmission device according to the second embodiment of the present invention, the power transmission side switch that limits the free vibration of the primary side circuit 2 and realizes a transient current-voltage change in the primary side circuit 2. It includes SW2 and a primary side drive switch SW1. Therefore, in the power transmission device according to the second embodiment, the transient response characteristic of the non-sinusoidal wave can be transmitted to the secondary side circuit 3 by the new concept "characteristic harmonized transmission". .. Since the non-sinusoidal transient response characteristic that relies on the DC power supply 5 which has a simple and inexpensive control circuit configuration can be used, the primary side circuit 2 is made to generate a sinusoidal vibration higher than the commercial frequency as in the conventional case. It eliminates the need for expensive AC power supply circuits, making it hard to break and facilitating circuit design.

図33に示した回路は、図28に示した回路の場合と同様に、交流理論により近似的なシミュレーションをする場合の第2の実施形態に係る電力伝送装置の回路であるが、一次側駆動スイッチSW1及び送電側スイッチSW2の2つのスイッチを備えている。図33(a)〜(c)において、一次側回路2と二次側回路3のコンデンサの容量とコイルのインダクタンスは同じに設定している。即ちC=C2=500μF、L1=L2=10μHとする。The circuit shown in FIG. 33 is a circuit of the power transmission device according to the second embodiment in the case of performing an approximate simulation by the AC theory, as in the case of the circuit shown in FIG. 28, but is driven on the primary side. It is provided with two switches, a switch SW1 and a power transmission side switch SW2. In FIGS. 33 (a) to 33 (c), the capacitance of the capacitor and the inductance of the coil of the primary side circuit 2 and the secondary side circuit 3 are set to be the same. That is, C 1 = C 2 = 500 μF and L 1 = L 2 = 10 μH.

図33(a)は、直流電源5の電圧E0=36Vで、一次側回路2の電気エネルギーを特性調和伝送で二次側回路3に伝送し、負荷回路36として採用している充電式電池の充電電圧Vcs=24Vとする場合の第2の実施形態に係る電力伝送装置の回路である。図33(b)は、図33(a)と同じ直流電源5の電圧E0=36Vを用い、一次側回路2の電気エネルギーを特性調和伝送で二次側回路3に伝送するが、負荷回路36として採用している充電式電池の充電電圧Vcs=100Vとし、負荷回路36に電流が流れないように設定する場合の回路である。図33(b)は、図33(b)と同じように負荷回路36として採用している充電式電池の充電電圧Vcs=100Vとし、負荷回路36に電流が流れないように設定する場合であるが、二次側回路3に伝送される分を予め差し引き、直流電源5の電圧E0=26Vとした場合である。FIG. 33A shows a rechargeable battery used as the load circuit 36 by transmitting the electrical energy of the primary side circuit 2 to the secondary side circuit 3 by characteristic harmonized transmission at the voltage E 0 = 36V of the DC power supply 5. This is the circuit of the power transmission device according to the second embodiment when the charging voltage V cs = 24 V. In FIG. 33 (b), the same voltage E 0 = 36 V of the DC power supply 5 as in FIG. 33 (a) is used, and the electric energy of the primary side circuit 2 is transmitted to the secondary side circuit 3 by characteristic harmonized transmission, but the load circuit This is a circuit in which the charging voltage V cs = 100V of the rechargeable battery adopted as 36 is set and the load circuit 36 is set so that no current flows. FIG. 33 (b) shows a case where the charging voltage V cs = 100 V of the rechargeable battery adopted as the load circuit 36 is set as in the case of FIG. 33 (b) and the load circuit 36 is set so that no current flows. However, this is a case where the voltage E 0 = 26V of the DC power supply 5 is set by subtracting the amount transmitted to the secondary circuit 3 in advance.

図34に近似的なシミュレーション結果としての送電側コンデンサC1の電圧の変化を示す。図32に示したのと同様に、第2の実施形態に係る電力伝送装置の交流理論による近似的シミュレーションでは、送電側コンデンサC1の電圧の変化は図3に示したのと同様なW型の過渡応答波形を示す。図34の実線は、図33(a)に示した回路に対する近似的シミュレーションの結果、図34の破線は図33(b)に示した回路に対する近似的シミュレーションの結果、図34の一点鎖線は図33(c)に示した回路に対する近似的シミュレーションの結果である。 FIG. 34 shows a change in the voltage of the power transmission side capacitor C1 as an approximate simulation result. Similar to that shown in FIG. 32, in the approximate simulation of the power transmission device according to the second embodiment by the AC theory, the change in the voltage of the power transmission side capacitor C1 is the same W type as shown in FIG. The transient response waveform is shown. The solid line in FIG. 34 is the result of an approximate simulation for the circuit shown in FIG. 33 (a), the broken line in FIG. 34 is the result of the approximate simulation for the circuit shown in FIG. 33 (b), and the alternate long and short dash line in FIG. 34 is a diagram. It is the result of the approximate simulation for the circuit shown in 33 (c).

最初は、図34の破線で示したように負荷回路36に電流を流そうとするが、充電式電池の充電電圧Vcs=100Vと高くしているので負荷回路36に電流が流れず、一点鎖線で示した曲線のような変化になる。負荷回路36に電流を流そうとするタイミングは、図34のW型の過渡応答波形の中央の山の位置あたりと推定される。At first, as shown by the broken line in FIG. 34, an attempt is made to pass a current through the load circuit 36, but since the charging voltage of the rechargeable battery is set to V cs = 100V, no current flows through the load circuit 36, which is one point. The change is similar to the curve shown by the chain line. The timing at which the current is to flow through the load circuit 36 is estimated to be around the position of the central peak of the W-shaped transient response waveform in FIG. 34.

以上のように、第2の実施形態に係る電力伝送装置によれば、第1の実施形態に係る電力伝送装置と同様に、制御回路や周辺回路が単純で安価な直流電源5を使用することができるので高価なスイッチング電源が不要である。第2の実施形態に係る電力伝送装置の回路構成は単純化され、制御回路側における電力損失も最小化され壊れにくくなる上に、回路設計も容易になる。この結果、電力伝送装置の全体の構成が簡略化され軽量・小型化及び高効率化が可能になり、電源回路(0次回路)の損失を含めた総合的な電力伝送効率を高めたワイヤレス電力伝送装置を安価に製造することができる。第1の実施形態に係る電力伝送装置で述べたのと同様に、電力伝送の限界電力を従来の交流理論における限界電力を凌駕する値にまで押し上げ、原理的には無限大に押し上げ、電力伝送の限界距離も原理的には無限大に伸ばすことができる。更に電力伝送効率を原理的には100%に近い値まで高めることが可能である。 As described above, according to the power transmission device according to the second embodiment, the DC power supply 5 having a simple and inexpensive control circuit and peripheral circuits is used as in the power transmission device according to the first embodiment. Therefore, an expensive switching power supply is not required. The circuit configuration of the power transmission device according to the second embodiment is simplified, the power loss on the control circuit side is minimized, it is hard to break, and the circuit design becomes easy. As a result, the overall configuration of the power transmission device has been simplified, making it possible to reduce the weight, size, and efficiency, and to improve the overall power transmission efficiency including the loss of the power supply circuit (0th-order circuit). The transmission device can be manufactured at low cost. Similar to that described in the power transmission device according to the first embodiment, the limit power of power transmission is pushed up to a value exceeding the limit power in the conventional AC theory, and in principle, it is pushed up to infinity, and power transmission is performed. In principle, the limit distance of can be extended to infinity. Further, the power transmission efficiency can be increased to a value close to 100% in principle.

(第3の実施形態)
本発明の第3の実施形態に係る電力伝送装置は、図13(a)に示すように、第2の実施形態に係る電力伝送装置に受電側スイッチSW3を追加した構成となっている。「受電側スイッチSW3」も、送電側スイッチSW2や一次側駆動スイッチSW1と同様に、二次側回路3の自由振動を制限し、二次側回路3における過渡的な電流−電圧の変化を実現させる回路素子である。
(Third Embodiment)
As shown in FIG. 13A, the power transmission device according to the third embodiment of the present invention has a configuration in which the power receiving side switch SW3 is added to the power transmission device according to the second embodiment. Like the power transmission side switch SW2 and the primary side drive switch SW1, the "power receiving side switch SW3" also limits the free vibration of the secondary side circuit 3 and realizes a transient current-voltage change in the secondary side circuit 3. It is a circuit element to be made to.

図13(a)に示した一次側駆動スイッチSW1、送電側スイッチSW2及び受電側スイッチSW3として、第1及び第2の実施形態に係る電力伝送装置と同様なFET、SIT、BJTの他、GTOサイリスタ、SIサイリスタ等のサイリスタを含む電力用半導体スイッチング素子が用いられる。低い内部抵抗の要求と市場での入手可能性から、MOSFETを、図13(b)に示す実装回路の一次側駆動スイッチSW1、送電側スイッチSW2及び受電側スイッチSW3としてそれぞれ採用することが、工業的には優位と考えられる。 As the primary side drive switch SW1, the transmission side switch SW2, and the power reception side switch SW3 shown in FIG. Power semiconductor switching elements including thyristors such as thyristors and SI thyristors are used. Due to the demand for low internal resistance and market availability, it is industrially possible to adopt MOSFETs as the primary side drive switch SW1, the power transmission side switch SW2, and the power reception side switch SW3 of the mounting circuit shown in FIG. 13 (b), respectively. It is considered to be superior in terms of.

第1及び第2の実施形態に係る電力伝送装置で説明したとおり、大電力用電力伝送装置においてはジュール熱の発生が大きい。第3の実施形態に係る電力伝送装置では一次側駆動スイッチSW1、送電側スイッチSW2及び受電側スイッチSW3として用いるとして用いる電力用半導体スイッチング素子は3個のみで良いので、発熱による素子の破壊を防ぐ冷却構造が簡単に設計でき、しかも浮遊抵抗、浮遊容量、浮遊インダクタンスの発生も最小化できる。又、一次側駆動スイッチSW1及び送電側スイッチSW2をオン/オフ制御する単純な制御だけでよいので、一次側回路2の電圧を高めて、ジュール熱の発生を押さえる設計も簡単にできる。 As described in the power transmission device according to the first and second embodiments, the Joule heat is generated significantly in the high power power transmission device. In the power transmission device according to the third embodiment, only three power semiconductor switching elements are used as the primary side drive switch SW1, the power transmission side switch SW2, and the power reception side switch SW3, so that the elements are prevented from being destroyed by heat generation. The cooling structure can be easily designed, and the generation of stray resistance, stray capacitance, and stray inductance can be minimized. Further, since the simple control of turning on / off the primary side drive switch SW1 and the power transmission side switch SW2 is sufficient, it is possible to easily design by increasing the voltage of the primary side circuit 2 and suppressing the generation of Joule heat.

図13(b)に示す実装回路においては、第1の還流ダイオードFWD1が第1の半導体スイッチング素子Q1としてのMOSFETのソース・ドレイン間に、第2の還流ダイオードFWD2が第2の半導体スイッチング素子Q2としてのMOSFETのソース・ドレイン間に、第3の還流ダイオードFWD3が第3の半導体スイッチング素子Q3としてのMOSFETのソース・ドレイン間に、それぞれ保護素子として並列接続されている。図13(b)に示すように、第3の還流ダイオードFWD3は、受電側コイルL2にからの環流電流を流す方向に設けられるので、第2の還流ダイオードFWD2がとは反対向きに設けられている。図4(a)及び図10(b)に示した回路と同様に、送電側コイルL1からの環流電流が直流電源5に環流するのを防ぐため、電源側ダイオードD1が直流電源5と第1の半導体スイッチング素子Q1の間に直列接続されている。図13(b)に示す実装回路でも負荷素子6の等価インピーダンスXLeqを充電容量Csで近似して表現している。In the mounting circuit shown in FIG. 13B, the first freewheeling diode FWD 1 switches between the source and drain of the MOSFET as the first semiconductor switching element Q1 and the second freewheeling diode FWD 2 switches the second semiconductor. A third freewheeling diode FWD 3 is connected in parallel as a protection element between the source and drain of the MOSFET as the element Q2 and between the source and drain of the MOSFET as the third semiconductor switching element Q3. As shown in FIG. 13 (b), the third freewheeling diode FWD 3 is provided in the direction in which the recirculation current from the power receiving side coil L 2 flows, so that the second freewheeling diode FWD 2 is in the opposite direction. It is provided. 4 (a) and similarly to the circuit shown in FIG. 10 (b), since the circulating electric current from the power transmission coil L 1 is prevented from refluxing to the DC power supply 5, the power supply side diode D1 and the DC power source 5 a It is connected in series between the semiconductor switching elements Q1 of 1. In the mounting circuit shown in FIG. 13B, the equivalent impedance X Leq of the load element 6 is approximated by the charging capacity C s and expressed.

第1の実施形態に係るワイヤレス電力伝送方法を、図14に示すフローチャート及び図15に示すタイミング図を参照して説明する。ただし、第1及び第2の実施形態と同様、交流理論による結合係数KAC=0.6に相当する条件での特性調和伝送を仮定しており、充電電圧VCの初期状態における値は満充電に近い十分高い電圧であるとする。The wireless power transmission method according to the first embodiment will be described with reference to the flowchart shown in FIG. 14 and the timing diagram shown in FIG. However, as in the first and second embodiments, it is assumed that the characteristic harmonized transmission is performed under the condition corresponding to the coupling coefficient KAC = 0.6 according to the AC theory, and the value of the charging voltage VC S in the initial state is full. It is assumed that the voltage is sufficiently high, which is close to charging.

先ず、図14のフローチャートのステップS31において、送電側スイッチSW2及び受電側スイッチSW3をオフ状態にし、一次側駆動スイッチSW1のみをオン状態にする。図15に細い破線で示したように、送電側コンデンサCの端子間電圧VCは、リンギングをしながら一定電圧に充電される。図15には示していないが、このタイミングでは受電側コンデンサCの端子間電圧VCは負の値である。送電側コンデンサCに初期電圧を印加して電荷を蓄えたのち、図15に示すように一次側駆動スイッチSW1をオフ状態にする。前述したように、この時点での充電電圧VCは高いものと仮定している。First, in step S31 of the flowchart of FIG. 14, the power transmission side switch SW2 and the power reception side switch SW3 are turned off, and only the primary side drive switch SW1 is turned on. As shown by a thin broken line in FIG. 15, the inter-terminal voltage VC 1 of the power transmission side capacitor C 1 is charged to a constant voltage while ringing. Although not shown in FIG. 15, the voltage between terminals VC 2 of the power receiving side capacitor C is a negative value at this timing. After an electric charge is charged by applying an initial voltage to the power transmission side capacitor C 1, to turn off the primary-side drive switch SW1 as shown in FIG. 15. As described above, it is assumed that the charging voltage VC S at this point is high.

図15に示すように、一次側駆動スイッチSW1をオフ状態にした後、一定時間をおいて、ステップS32において、送電側スイッチSW2及び受電側スイッチSW3を同時にオン状態にする。送電側スイッチSW2がオン状態になると、送電側コンデンサCに蓄えられた電気エネルギーは送電側コイル電流を介して、送電側コイルL1に蓄積され、更に、一次側回路2と二次側回路3の間の特性調和伝送が生じる。送電側コンデンサCに蓄えられた電気エネルギーが送電側コイルL1に移動すると、図15に細い破線で示した端子間電圧VCは、負の極大値をとったのち、0Vになる。一次側回路2から二次側回路3への特性調和伝送によって、受電側コイルL2に伝送された電気エネルギーは、受電側スイッチSW3がオン状態なので、受電側コイル電流によって受電側コンデンサCを充電する。受電側コンデンサCの充電が開始されると、受電側コンデンサCの端子間電圧VCは、図15の太い破線で示すように、負の極大値から増大し始め、図15の中央の左よりの位置に示したように、正の値になる。端子間電圧VCが負の値をとっている間は充電電流ICSは流れないが、端子間電圧VCが正の値になると、図15の中央に一点鎖線で示したように充電電流ICSが立ち上がり始める。As shown in FIG. 15, after turning off the primary side drive switch SW1, the power transmission side switch SW2 and the power receiving side switch SW3 are turned on at the same time in step S32 after a certain period of time. When the power-transmitting-side switch SW2 is turned on, electric energy stored in the power-transmitting-side capacitor C 1 via the transmitting-coil current are accumulated in the power transmission coil L 1, further primary circuit 2 and the secondary circuit Characteristic harmonized transmission between 3 occurs. When the electric energy stored in the power transmission side capacitor C 1 moves to the power transmission side coil L 1 , the inter-terminal voltage VC 1 shown by the thin broken line in FIG. 15 takes a negative maximum value and then becomes 0 V. Since the power receiving side switch SW3 is on, the electric energy transmitted to the power receiving side coil L 2 by the characteristic harmonized transmission from the primary side circuit 2 to the secondary side circuit 3 causes the power receiving side capacitor C 2 to be driven by the power receiving side coil current. Charge. When charging of the power receiving side capacitor C 2 is started, the voltage between terminals VC 2 of the power receiving side capacitor C starts to increase from the negative maximum value as shown by the thick broken line in FIG. 15, and the left in the center of FIG. As shown in the more position, it becomes a positive value. While the inter-terminal voltage VC 2 has a negative value, the charging current ICS does not flow, but when the inter-terminal voltage VC 2 becomes a positive value, the charging current is shown by the alternate long and short dash line in the center of FIG. I CS begins to rise.

充電電流ICSが立ち上がり始めたタイミングで、ステップS33において送電側スイッチSW2及び受電側スイッチSW3をオフ状態にする。送電側スイッチSW2及び受電側スイッチSW3のオフ状態は、一次側回路2と二次側回路3の間の特性調和伝送によって、図15の太い破線で示した端子間電圧VCが最大になり、且つ細い破線で示した端子間電圧VCが0Vになる時点である。図15の中央に一点鎖線で示した充電電流ICSは、送電側スイッチSW2及び受電側スイッチSW3がオフ状態になった後も増大しピーク値な到達した後、減少し、ステップS34においてゼロになる。At the timing when the charging current I CS began rising, to turn off the power-transmission-side switch SW2 and the power receiving side switch SW3 at step S33. In the off state of the power transmission side switch SW2 and the power reception side switch SW3, the inter-terminal voltage VC 2 shown by the thick broken line in FIG. 15 becomes maximum due to the characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3. Moreover, it is a time point when the voltage between terminals VC 1 shown by a thin broken line becomes 0V. Charging current I CS indicated by a chain line in the center of FIG. 15, after the power-transmission-side switch SW2 and the power receiving side switch SW3 has reached also an increased peak value after the off state, reduced, to zero in step S34 Become.

図15の中央の右よりの位置に示したように、太い破線で示した端子間電圧VCの最大値は、充電電流Iが減少を開始すると、若干低い値の一定値になり段差(肩)状の波形になる。充電電流Iがゼロになった後も、図15に太い破線で示した端子間電圧VCの値は、送電側スイッチSW2のオフ時の最大値よりも低い値を維持している。送電側スイッチSW2のオフ後、一定時間を経過すると、端子間電圧VCの最大値は減少するが、ステップS31の時点で充電電圧VCが高い場合、充電電流Iによる端子間電圧VCの最大値の減少量は小さく、一次側回路2と二次側回路3の間の特性調和伝送に与える影響は少ない。As shown in the position of the center of the right of FIG. 15, the thick maximum value between the indicated terminal voltage VC 2 is a broken line, the charge current I C begins to decrease, the step becomes constant at value slightly lower ( It becomes a corrugated shape (shoulder). Even after the charging current I C becomes zero, the value of terminal voltage VC 2 shown by thick broken lines in FIG. 15, maintains a value lower than the maximum value of the off of the power transmission switch SW2. After off of the power transmission switch SW2, after a lapse of the predetermined time, the maximum value of the inter-terminal voltage VC 2 is reduced, if a higher charge voltage VC S at the time of step S31, the charging current I C between by terminal voltage VC 2 The amount of decrease in the maximum value of is small, and the influence on the characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 is small.

充電電流Iが0AとなったのちにステップS35において、送電側スイッチSW2及び受電側スイッチSW3を同時に、再度オン状態にすると、再度一次側回路2と二次側回路3の間の特性調和伝送が生じる。ステップS35における送電側スイッチSW2及び受電側スイッチSW3のオン状態により、図15の右側に太い破線で示した端子間電圧VCは減少を開始し、負の極大値をとったのち、0Vになる。このとき、図15の右側に細い破線で示した端子間電圧VCも減少を開始し、負の極大値をとったのち、正の値となり増大する。In step S35 in after the charging current I C becomes 0A, the power-transmission-side switch SW2 and the power receiving side switch SW3 at the same time, when the ON state again, the characteristics between the primary-side circuit 2 and the secondary-side circuit 3 again conditioner transmission Occurs. The on state of the power transmission switch SW2 and the power receiving side switch SW3 at step S35, the inter-terminal voltage VC 2 indicated by thick broken line on the right side of FIG. 15 starts to decrease, then taking the negative maximum value, it becomes 0V .. At this time, the voltage between terminals VC 1 shown by a thin broken line on the right side of FIG. 15 also starts to decrease, takes a negative maximum value, and then increases to a positive value.

次に、ステップS36において、端子間電圧VCが最大になり、端子間電圧VCが0Vになる時点で送電側スイッチSW2及び受電側スイッチSW3をオフ状態にする。図15に示すようにステップS36時点での細い破線で示した端子間電圧VCはステップS34時点での太い破線で示した端子間電圧VCと同じ値であり、送電側スイッチSW2及び受電側スイッチSW3がオフ状態になった時点以降一定値に維持される。る。なお、図示を省略しているが、ステップS36時点で端子間電圧VCと負荷素子6の端子間電圧は同じ値である。このため、図9(d)で説明したのと同様に、端子間電圧VCを測定することにより、一次側回路2と二次側回路3の間の特性調和伝送の伝送効率や負荷素子6としての充電式電池の充電の状況をモニターすることができることが分かる。図11に示した第2の実施形態に係る電力伝送装置のタイミング図と図15に示した第3の実施形態に係る電力伝送装置のタイミング図を比較すると、受電側スイッチSW3が1個増えても、一次側回路2と二次側回路3の間の特性調和伝送における端子間電圧VCや端子間電圧VC等の時間的変化(過渡応答)を示す波形は、殆ど同じであることが分かる。Next, in step S36, when the inter-terminal voltage VC 1 becomes maximum and the inter-terminal voltage VC 2 becomes 0 V, the power transmission side switch SW2 and the power reception side switch SW3 are turned off. As shown in FIG. 15, the inter-terminal voltage VC 1 shown by the thin broken line at the time of step S36 is the same value as the inter-terminal voltage VC 2 shown by the thick broken line at the time of step S34, and is the same value as the power transmission side switch SW2 and the power receiving side. The value is maintained at a constant value after the switch SW3 is turned off. NS. Although not shown, the inter-terminal voltage VC 1 and the inter-terminal voltage of the load element 6 have the same value at the time of step S36. Therefore, as described in FIG. 9D, by measuring the terminal voltage VC 1 , the transmission efficiency of the characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 and the load element 6 are obtained. It can be seen that the charging status of the rechargeable battery can be monitored. Comparing the timing diagram of the power transmission device according to the second embodiment shown in FIG. 11 and the timing diagram of the power transmission device according to the third embodiment shown in FIG. 15, the power receiving side switch SW3 is increased by one. However, the waveforms showing temporal changes (transient response) such as the inter-terminal voltage VC 1 and the inter-terminal voltage VC 2 in the characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 are almost the same. I understand.

「共振」は自由振動をしている交流回路で用いられる概念であるが、第3の実施形態に係る電力伝送装置においては、一次側回路2と二次側回路3の自由振動を制限し、一次側回路2と二次側回路3における過渡的な電流−電圧の変化を実現させる一次側駆動スイッチSW1、送電側スイッチSW2、受電側スイッチSW3を備えている。このため、第3の実施形態に係る電力伝送装置においては、一次側回路2の過渡応答特性を、新たな概念である「特性調和伝送」によって、二次側回路3に伝達することが可能である。制御回路の構成が単純で安価な直流電源5に依拠した非正弦波の過渡応答特性を用いて電気エネルギーの伝達をすることができるので、一次側回路2に対し、商用周波数よりも高い正弦波振動を生成させる高価な交流電源回路が不要となる。 "Resonance" is a concept used in an AC circuit having free vibration, but in the power transmission device according to the third embodiment, the free vibration of the primary side circuit 2 and the secondary side circuit 3 is limited. It includes a primary side drive switch SW1, a power transmission side switch SW2, and a power reception side switch SW3 that realize a transient current-voltage change in the primary side circuit 2 and the secondary side circuit 3. Therefore, in the power transmission device according to the third embodiment, the transient response characteristic of the primary side circuit 2 can be transmitted to the secondary side circuit 3 by a new concept "characteristic harmonized transmission". be. Since the electrical energy can be transmitted using the non-sinusoidal transient response characteristic that relies on the DC power supply 5 which has a simple and inexpensive control circuit configuration, the sinusoidal wave higher than the commercial frequency is compared to the primary circuit 2. It eliminates the need for expensive AC power circuits that generate vibrations.

よって、本発明の第3の実施形態に係る電力伝送装置によれば、第1及び第2の実施形態に係る電力伝送装置と同様に、制御回路や周辺回路が単純で安価な直流電源5を使用することができるので高価なスイッチング電源が不要であり、回路構成が単純化され、制御回路側における電力損失も最小化される。この結果、第3の実施形態に係る電力伝送装置によれば、電力伝送装置の全体の構成が簡略化され軽量・小型化及び高効率化が可能になり、電源回路(0次回路)の損失を含めた総合的な電力伝送効率を高めたワイヤレス電力伝送装置を安価に製造することができる。第1及び第2の実施形態に係る電力伝送装置で述べたのと同様に第3の実施形態に係る電力伝送装置によれば、回路構成が単純化されるので壊れにくく回路設計が容易になる。又、電力伝送の限界電力を原理的には無限大に押し上げ、電力伝送の限界距離を原理的には無限大に伸ばし、電力伝送効率を原理的には100%に近い値まで高めることが可能である。 Therefore, according to the power transmission device according to the third embodiment of the present invention, the DC power supply 5 having a simple and inexpensive control circuit and peripheral circuits is used as in the power transmission device according to the first and second embodiments. Since it can be used, an expensive switching power supply is not required, the circuit configuration is simplified, and the power loss on the control circuit side is also minimized. As a result, according to the power transmission device according to the third embodiment, the overall configuration of the power transmission device can be simplified, the weight can be reduced, the size can be reduced, and the efficiency can be improved, and the loss of the power supply circuit (0th order circuit) can be achieved. It is possible to inexpensively manufacture a wireless power transmission device with improved overall power transmission efficiency including the above. According to the power transmission device according to the third embodiment as described in the power transmission device according to the first and second embodiments, the circuit configuration is simplified, so that it is hard to break and the circuit design becomes easy. .. In addition, it is possible to push the limit power of power transmission to infinity in principle, extend the limit distance of power transmission to infinity in principle, and increase the power transmission efficiency to a value close to 100% in principle. Is.

(第4の実施形態)
本発明の第4の実施形態に係る電力伝送装置は、図16(a)に示すように、第3の実施形態に係る電力伝送装置に、負荷制御スイッチSW4を追加した構成となっている。「負荷制御スイッチSW4」は、受電側スイッチSW3と同様に、二次側回路3の自由振動を制限し、二次側回路3における過渡的な電流−電圧の変化を実現させる回路素子である。
(Fourth Embodiment)
As shown in FIG. 16A, the power transmission device according to the fourth embodiment of the present invention has a configuration in which the load control switch SW4 is added to the power transmission device according to the third embodiment. Like the power receiving side switch SW3, the “load control switch SW4” is a circuit element that limits the free vibration of the secondary side circuit 3 and realizes a transient current-voltage change in the secondary side circuit 3.

図16(a)に示した一次側駆動スイッチSW1、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4として、第1〜第3の実施形態に係る電力伝送装置と同様に、FET、SIT、BJTの他、GTOサイリスタ、SIサイリスタ等のサイリスタを含む電力用半導体スイッチング素子を用いることが可能である。低い内部抵抗の要求を考慮すると、現状での市場での入手可能性により、MOSFETが図16(b)に示した実装回路の一次側駆動スイッチSW1、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4としてそれぞれ採用することが好ましい。 The primary side drive switch SW1, the transmission side switch SW2, the power reception side switch SW3, and the load control switch SW4 shown in FIG. 16A are FETs and SITs as in the power transmission devices according to the first to third embodiments. , BJT, GTO thyristors, SI thyristors, and other power semiconductor switching elements including thyristors can be used. Considering the demand for low internal resistance, due to the availability on the market at present, the MOSFET has the primary side drive switch SW1, the power transmission side switch SW2, the power reception side switch SW3 and the load of the mounting circuit shown in FIG. 16 (b). It is preferable to use each as the control switch SW4.

第4の実施形態に係る電力伝送装置では一次側駆動スイッチSW1、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4として用いるとして用いる電力用半導体スイッチング素子は4個のみで良いので、ジュール熱の発生を防ぐ冷却構造が簡単に設計でき、しかも浮遊抵抗、浮遊容量、浮遊インダクタンスの発生も最小化できる。又、一次側駆動スイッチSW1及び送電側スイッチSW2をオン/オフ制御する単純な制御だけでよいので、一次側回路2の電圧を高めてジュール熱の発生を押さえる設計も簡単にできる。 In the power transmission device according to the fourth embodiment, only four power semiconductor switching elements are used as the primary side drive switch SW1, the power transmission side switch SW2, the power reception side switch SW3, and the load control switch SW4. The cooling structure that prevents the occurrence of stray resistance can be easily designed, and the occurrence of stray resistance, stray capacitance, and stray inductance can also be minimized. Further, since the simple control of turning on / off the primary side drive switch SW1 and the power transmission side switch SW2 is sufficient, it is possible to easily design by increasing the voltage of the primary side circuit 2 to suppress the generation of Joule heat.

図16(b)に示す実装回路においては、第1の還流ダイオードFWD1が第1の半導体スイッチング素子Q1としてのMOSFETのソース・ドレイン間に、第2の還流ダイオードFWD2が第2の半導体スイッチング素子Q2としてのMOSFETのソース・ドレイン間に、第3の還流ダイオードFWD3が第3の半導体スイッチング素子Q3としてのMOSFETのソース・ドレイン間に、第4の還流ダイオードFWD4が第4の半導体スイッチング素子Q4としてのMOSFETのソース・ドレイン間に、それぞれ保護素子として並列接続されている。図16(b)に示すように、第3の還流ダイオードFWD3は、受電側コイルL2にからの環流電流を流す方向に設けられるので、第2の還流ダイオードFWD2がとは反対向きに設けられているのは図13(b)と同様である。図4(a)、図10(b)及び図13(b)に示した回路と同様に、送電側コイルL1からの環流電流が直流電源5に環流するのを防ぐため、電源側ダイオードD1が直流電源5と第1の半導体スイッチング素子Q1の間に直列接続されている。図16(b)に示す実装回路でも負荷素子6の等価インピーダンスXLeqを充電容量Csで近似して表現している。In the mounting circuit shown in FIG. 16B, the first freewheeling diode FWD 1 switches between the source and drain of the MOSFET as the first semiconductor switching element Q1 and the second freewheeling diode FWD 2 switches the second semiconductor. Between the source and drain of the MOSFET as element Q2, the third freewheeling diode FWD 3 is between the source and drain of the MOSFET as the third semiconductor switching element Q3, and the fourth freewheeling diode FWD 4 is the fourth semiconductor switching. The source and drain of the MOSFET as the element Q4 are connected in parallel as protective elements. As shown in FIG. 16B, the third freewheeling diode FWD 3 is provided in the direction in which the recirculation current from the power receiving side coil L 2 flows, so that the second freewheeling diode FWD 2 is in the opposite direction. It is the same as in FIG. 13 (b). FIG. 4 (a), the like the circuit shown in FIG. 10 (b) and 13 (b), since the circulating electric current from the power transmission coil L 1 is prevented from refluxing to the DC power supply 5, the power supply side diode D1 Is connected in series between the DC power supply 5 and the first semiconductor switching element Q1. In the mounting circuit shown in FIG. 16B , the equivalent impedance X Leq of the load element 6 is approximated by the charging capacity C s and expressed.

既に述べたとおり、図11に示した第2の実施形態に係る電力伝送装置のタイミング図と図15に示した第3の実施形態に係る電力伝送装置のタイミング図を比較すると、受電側スイッチSW3が1個増えても、一次側回路2と二次側回路3の間の特性調和伝送における端子間電圧VCや端子間電圧VC等の時間的変化(過渡応答)を示す波形は、殆ど同じである。図16(a)に示すように、第3の実施形態に係る電力伝送装置に、負荷制御スイッチSW4を追加した構成となっても、特性調和伝送の本質は変わらず、その基本的動作や、一次側回路2と二次側回路3の間の特性調和伝送における端子間電圧VCや端子間電圧VC等の時間的変化(過渡応答)を示す波形は、殆ど同じである。As described above, comparing the timing diagram of the power transmission device according to the second embodiment shown in FIG. 11 and the timing diagram of the power transmission device according to the third embodiment shown in FIG. 15, the power receiving side switch SW3 Even if the number increases by one, most of the waveforms showing the temporal change (transient response) such as the inter-terminal voltage VC 1 and the inter-terminal voltage VC 2 in the characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 It is the same. As shown in FIG. 16A, even if the load control switch SW4 is added to the power transmission device according to the third embodiment, the essence of the characteristic harmonized transmission does not change, and its basic operation and its basic operation are not changed. The waveforms showing temporal changes (transient response) such as the inter-terminal voltage VC 1 and the inter-terminal voltage VC 2 in the characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 are almost the same.

しかしながら、図16(a)に示すように、一次側駆動スイッチSW1、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4の4つのスイッチを有する構成においては、一次側駆動スイッチSW1と負荷制御スイッチSW4を遮断状態、送電側スイッチSW2と受電側スイッチSW3を導通状態としたタイミングにおいて、直流電源5側の回路と負荷素子6側の回路が、それぞれ一次側回路2及び二次側回路3から分離されるので、一次側回路2と二次側回路3が自由振動することが可能となる。即ち一次側回路2のLC共振回路と二次側回路3のLC共振回路が相互インダクタンスMで結合した回路として扱えるので、交流理論における重共振の考え方が採用可能となる。即ち、一次側駆動スイッチSW1と負荷制御スイッチSW4を遮断状態、送電側スイッチSW2と受電側スイッチSW3を導通状態としたタイミングにおいては、既に述べた式(2)及び(3)の結合方程式で、特性調和伝送の効率を検討することができる。 However, as shown in FIG. 16A, in the configuration having four switches of the primary side drive switch SW1, the power transmission side switch SW2, the power reception side switch SW3, and the load control switch SW4, the primary side drive switch SW1 and the load control At the timing when the switch SW4 is cut off and the power transmission side switch SW2 and the power reception side switch SW3 are in a conductive state, the circuit on the DC power supply 5 side and the circuit on the load element 6 side are separated from the primary side circuit 2 and the secondary side circuit 3, respectively. Since they are separated, the primary side circuit 2 and the secondary side circuit 3 can freely vibrate. That is, since the LC resonance circuit of the primary side circuit 2 and the LC resonance circuit of the secondary side circuit 3 can be treated as a circuit coupled by the mutual inductance M, the concept of multiple resonance in the AC theory can be adopted. That is, at the timing when the primary side drive switch SW1 and the load control switch SW4 are in the cutoff state and the power transmission side switch SW2 and the power reception side switch SW3 are in the conductive state, the coupling equations of the equations (2) and (3) already described can be used. The efficiency of characteristic harmonized transmission can be examined.

ただし、実装回路においては、一次側駆動スイッチSW1、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4の4つのスイッチに、それぞれ用いる電力用半導体スイッチング素子のオン抵抗を考慮しなくてはならないので、式(2)及び(3)の結合方程式では記述できない。よって、一次側駆動スイッチSW1と負荷制御スイッチSW4を遮断状態、送電側スイッチSW2と受電側スイッチSW3を導通状態としたタイミングの動作では、一次側回路2のLCR共振回路と二次側回路3のLCR共振回路が相互インダクタンスMで結合した回路としての検討が必要になる。 However, in the mounting circuit, it is necessary to consider the on-resistance of the power semiconductor switching element used for each of the four switches, the primary side drive switch SW1, the power transmission side switch SW2, the power reception side switch SW3, and the load control switch SW4. Therefore, it cannot be described by the coupling equations of equations (2) and (3). Therefore, in the operation at the timing when the primary side drive switch SW1 and the load control switch SW4 are in the cutoff state and the transmission side switch SW2 and the power reception side switch SW3 are in the conduction state, the LCR resonance circuit and the secondary side circuit 3 of the primary side circuit 2 are operated. It is necessary to study as a circuit in which the LCR resonant circuit is coupled by the mutual inductance M.

又、一次側駆動スイッチSW1や負荷制御スイッチSW4を導通状態としたときのステップ応答等の過渡応答におけるエネルギー伝送を考慮する必要があるので、本発明の第4の実施形態に係る電力伝送装置のすべてを従来の交流理論で解釈できるわけではない。即ち既に図3(b)の斜線で示したような自由振動の領域では従来の正弦波の交流理論を用いることができるが、一次側駆動スイッチSW1、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4の4つのスイッチを用いて回路の境界条件を時々刻々変化させている第4の実施形態に係る電力伝送装置の動作環境では、図2(b)に例示したような鋸波状の立ち上がり特性等の過渡応答を含めて解析する必要がある。 Further, since it is necessary to consider energy transmission in a transient response such as a step response when the primary side drive switch SW1 and the load control switch SW4 are in a conductive state, the power transmission device according to the fourth embodiment of the present invention. Not all can be interpreted by conventional exchange theory. That is, although the conventional sine wave AC theory can be used in the free vibration region as shown by the diagonal line in FIG. 3B, the primary side drive switch SW1, the power transmission side switch SW2, the power reception side switch SW3 and the load can be used. In the operating environment of the power transmission device according to the fourth embodiment in which the boundary conditions of the circuit are changed from moment to moment by using the four switches of the control switch SW4, the sawtooth rise as illustrated in FIG. 2 (b). It is necessary to analyze including the transient response such as characteristics.

(特性調和伝送波形のシミュレーション)
図16(a)に例示した構成における送電側コンデンサCと受電側コンデンサCのそれぞれの端子間電圧VCと端子間電圧VCの波形を通常の交流理論によるシミュレーションによって求め、一次側回路2と二次側回路3の間の特性調和伝送波形を確認する。一次側回路2と二次側回路3の結合係数KACを0.6、送電側コンデンサCと受電側コンデンサCの容量をいずれも65μF、送電側コイルL1と受電側コイルL2のインダクタンスをいずれも60μHとする。
(Simulation of characteristic harmonized transmission waveform)
The waveforms of the inter-terminal voltage VC 1 and the inter-terminal voltage VC 2 of the power transmitting side capacitor C 1 and the power receiving side capacitor C 2 in the configuration illustrated in FIG. 16A are obtained by simulation by ordinary AC theory, and the primary side circuit is obtained. Check the characteristic harmonized transmission waveform between 2 and the secondary circuit 3. Primary circuit 2 and the secondary-side circuit 0.6 the coupling coefficient K AC 3, the power-transmitting-side capacitor C 1 and both of the capacity of the power receiving side capacitor C 2 65MyuF, of the power transmission coil L 1 and the power receiving coil L 2 The inductance is set to 60 μH.

先ず、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4をオフ状態にし、一次側駆動スイッチSW1をオン状態にして、送電側コンデンサCに初期電圧20Vを印加して送電側コンデンサCに電荷を蓄える。次に、一次側駆動スイッチSW1をオフ状態にし、送電側スイッチSW2及び受電側スイッチSW3をオン状態にすると、一次側回路2と二次側回路3の間の特性調和伝送が生じると期待できる。シミュレーションによって得られた端子間電圧VCと端子間電圧VCの波形を図17(a)に示す。端子間電圧VCの波形及び端子間電圧VCの波形のいずれもが大きな振幅の正弦波と小さな振幅の正弦波が合成されたような波形であり、通常の交流理論における正弦波とは異なる。First, the power transmission side switch SW2, the power-receiving-side switch SW3 and the load control switch SW4 are turned off, and the primary-side drive switch SW1 in the ON state, by applying an initial voltage of 20V to the power transmission side capacitor C 1 transmission side capacitor C 1 Stores electric charge in. Next, when the primary side drive switch SW1 is turned off and the power transmission side switch SW2 and the power receiving side switch SW3 are turned on, it can be expected that characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 will occur. The waveforms of the inter-terminal voltage VC 1 and the inter-terminal voltage VC 2 obtained by the simulation are shown in FIG. 17 (a). Both the waveform of the inter-terminal voltage VC 1 and the waveform of the inter-terminal voltage VC 2 are waveforms in which a sine wave with a large amplitude and a sine wave with a small amplitude are combined, which is different from the sine wave in the usual AC theory. ..

図17(a)において、0.2msで送電側スイッチSW2及び受電側スイッチSW3をオン状態にしている。0.45msで、端子間電圧VCが0Vになり、端子間電圧VCが20Vになる。このことは、送電側のエネルギーがすべて受電側へ伝送されていることを示しており、0.45msで送電側スイッチSW2及び受電側スイッチSW3をオフ状態にすると、効率よく、特性調和伝送による電力伝送を行うことができる。In FIG. 17A, the power transmission side switch SW2 and the power reception side switch SW3 are turned on in 0.2 ms. At 0.45 ms, the terminal voltage VC 1 becomes 0 V, and the terminal voltage VC 2 becomes 20 V. This indicates that all the energy on the power transmission side is transmitted to the power reception side, and when the power transmission side switch SW2 and the power reception side switch SW3 are turned off at 0.45 ms, the power by characteristic harmonized transmission is efficiently performed. Transmission can be performed.

(実装回路による特性調和伝送波形の測定)
続いて、図16(a)に例示した構成の実装回路により、一次側回路2と二次側回路3の間の特性調和伝送の波形の測定を行う。一次側回路1と二次側回路2の等価結合係数Kを0.6、送電側コンデンサCと受電側コンデンサCの容量をいずれも65μF、送電側コイルL1と受電側コイルL2のインダクタンスをいずれも60μH、送電側コンデンサCに印加する初期電圧を20Vとする。これらはシミュレーションの場合と同様の値である。測定によって得られた送電側コンデンサCと受電側コンデンサCのそれぞれの端子間電圧VCと端子間電圧VCの波形を図17(b)に示すが、端子間電圧VCの波形と端子間電圧VCの波形の間に対称性がないことが分かる。
(Measurement of characteristic harmonized transmission waveform by mounting circuit)
Subsequently, the waveform of the characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 is measured by the mounting circuit having the configuration illustrated in FIG. 16A. The equivalent coupling coefficient K of the primary side circuit 1 and the secondary side circuit 2 is 0.6, the capacitances of the power transmission side capacitor C 1 and the power reception side capacitor C 2 are both 65 μF, and the power transmission side coil L 1 and the power reception side coil L 2 The inductance is 60 μH, and the initial voltage applied to the power transmission side capacitor C 1 is 20 V. These are the same values as in the simulation. Each terminal voltage VC 1 and terminal voltage VC 2 waveforms the power transmitting side capacitor C 1, obtained by measuring the power receiving side capacitor C 2 is shown in FIG. 17 (b), the waveform of the terminal voltage VC 1 It can be seen that there is no symmetry between the waveforms of the inter-terminal voltage VC 2.

実装回路では寄生抵抗が存在するため、図17(a)の通常の交流理論によるシミュレーションの結果と異なり、波形は時間とともに減衰している。図17(b)において、0.2msから伝送が始まり、0.45msで端子間電圧VCが最大の15Vになる。この時の端子間電圧VCは―3Vであり、送電側のエネルギーのすべてが受電側へ伝送されておらず、一部のエネルギーは送電側に残留しているが、送電側のエネルギーが受電側に伝送されていることが確認できる。既に述べたとおり、第3の実施形態に係る電力伝送装置に対し、負荷制御スイッチSW4を追加した構成となっても、端子間電圧VCや端子間電圧VC等の時間的変化(過渡応答)を示す波形は、殆ど同じである。即ち、図17(b)に示す端子間電圧VCの波形と端子間電圧VCの波形はマクロな変化を示す図であり、マクロには大きな振幅の正弦波と小さな振幅の正弦波が合成されたような波形のように見えるが、時間軸を長くして詳細にみれば、図11や図15に示した波形と同様であり、正弦波の変化を示しているのではない。Due to the presence of parasitic resistance in the mounting circuit, the waveform is attenuated with time, unlike the result of the simulation by the usual AC theory shown in FIG. 17 (a). In FIG. 17B, transmission starts from 0.2 ms, and the terminal voltage VC 2 reaches a maximum of 15 V at 0.45 ms. At this time, the voltage between terminals VC 1 is -3V, and all the energy on the transmission side is not transmitted to the power receiving side, and some energy remains on the transmission side, but the energy on the transmission side receives power. It can be confirmed that it is transmitted to the side. As described above, even if the load control switch SW4 is added to the power transmission device according to the third embodiment, the temporal change (transient response) such as the inter-terminal voltage VC 1 and the inter-terminal voltage VC 2 is provided. ) Are almost the same. That is, the waveform of the inter-terminal voltage VC 1 and the waveform of the inter-terminal voltage VC 2 shown in FIG. 17B are diagrams showing macroscopic changes, and the macro is a combination of a large-amplitude sine wave and a small-amplitude sine wave. Although it looks like a waveform like the one shown above, if the time axis is lengthened and viewed in detail, it is similar to the waveform shown in FIGS. 11 and 15, and does not indicate a change in a sine wave.

(等価結合係数の変化と特性調和伝送の変化)
図16(a)に例示した構成において、送電側コンデンサCに電荷を蓄えたのち、一次側駆動スイッチSW1及び負荷制御スイッチSW4をオフ状態にし、送電側スイッチSW2及び受電側スイッチSW3をオン状態にしたとき、一次側回路2と二次側回路3の間の特性調和伝送が生じる。この動作は、従来の交流理論によれば、既に述べた式(2)及び式(3)の結合方程式によって表される。
(Changes in equivalent coupling coefficient and changes in characteristic harmonized transmission)
In the illustrated arrangement in Fig. 16 (a), after accumulated charge to the power transmission side capacitor C 1, and the primary-side drive switch SW1 and the load control switch SW4 off, turned on the power-transmission-side switch SW2 and the power receiving side switches SW3 When set to, characteristic harmonized transmission occurs between the primary side circuit 2 and the secondary side circuit 3. According to the conventional AC theory, this operation is represented by the coupling equations of the equations (2) and (3) already described.

従来の交流理論では、式(2)及び式(3)の結合方程式を解き一次側回路2と二次側回路3の間の特性調和伝送によって発生する受電側コンデンサCの端子間電圧VCを求めると、式(10)で定義される相互誘導関数φ(k)を用いて、

VC=VC/2×(L2/L1(1/2)×φ(k) ……(11)

となる。ここで、VCは送電側コンデンサCの端子間の初期電圧、ωは共振角周波数であり、ω=L1×C=L2×Cである。送電側コンデンサの端子間電圧VCが0のとき式(11)は最大値VC×(L2/L1(1/2)となり、通常の交流理論によれば、このとき送電側のすべてのエネルギーが受電側に伝送されたことになる。
In the conventional AC theory, the voltage between terminals VC 2 of the power receiving side capacitor C 2 generated by the characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 by solving the coupling equations of the equations (2) and (3). Is obtained, using the mutual induction function φ (k) defined by the equation (10),

VC 2 = VC 0/2 × (L 2 / L 1) (1/2) × φ (k) ...... (11)

Will be. Here, VC 0 is the initial voltage between the terminals of the power transmission side capacitor C 1 , ω 0 is the resonance angular frequency, and ω 0 = L 1 × C 1 = L 2 × C 2 . When the voltage between terminals VC 1 of the power transmission side capacitor is 0, equation (11) becomes the maximum value VC 0 × (L 2 / L 1 ) (1/2) , and according to the usual AC theory, at this time, the power transmission side This means that all energy has been transmitted to the power receiving side.

図16(a)に例示した構成において、通常の交流理論による結合係数KACを変化させたときの一次側回路2と二次側回路3の間の特性調和伝送の波形の変化を、通常の交流理論によるシミュレーションによって求める。送電側コンデンサCと受電側コンデンサCの容量をいずれも500μF、送電側コイルL1と受電側コイルL2のインダクタンスをいずれも10μH、送電側コンデンサCに印加する初期電圧を25Vとする。以下の説明では交流理論による結合係数KACが等価結合係数に等しいと近似し、等価結合係数Kを0.00、0.1、0.6、0.8、0.88として、それぞれ通常の交流理論によるシミュレーションを行った。通常の交流理論によるシミュレーションの結果得られた端子間電圧VCと端子間電圧VCの波形を、図18(a)から図19(c)に示す。図18(a)に示すように、通常の交流理論による結合係数K=0.00のとき、一次側回路1と二次側回路は互いに相互作用せず、一次側回路2と二次側回路3の間の特性調和伝送は生じない。In the illustrated arrangement in FIG. 16 (a), the characteristic harmonic transmission waveforms between the primary-side circuit 2 and the secondary-side circuit 3 at the time of changing the coupling coefficient K AC by conventional AC theory changes, normal Obtained by simulation based on AC theory. The capacitances of the power transmission side capacitor C 1 and the power reception side capacitor C 2 are both 500 μF, the inductances of the power transmission side coil L 1 and the power reception side coil L 2 are both 10 μH, and the initial voltage applied to the power transmission side capacitor C 1 is 25 V. .. In the following description approximates the coefficient K AC by the AC theory equal to the equivalent coupling coefficient, the equivalent coefficient K as 0.00,0.1,0.6,0.8,0.88, ordinary respectively A simulation based on AC theory was performed. The waveforms of the inter-terminal voltage VC 1 and the inter-terminal voltage VC 2 obtained as a result of the simulation by the ordinary AC theory are shown in FIGS. 18 (a) to 19 (c). As shown in FIG. 18A, when the coupling coefficient K = 0.00 according to the usual AC theory, the primary side circuit 1 and the secondary side circuit do not interact with each other, and the primary side circuit 2 and the secondary side circuit do not interact with each other. Characteristic harmonized transmission between 3 does not occur.

等価結合係数K=0.1、0.6、0.8、0.88のときはいずれも一次側回路2と二次側回路3の間の特性調和伝送が生じている。図18(b)に示すように等価結合係数K=0.1のときは2.2ms、図19(a)に示すように、等価結合係数K=0.6のときは0.28ms、図19(c)に示すように、等価結合係数K=0.88のときは0.3msで送電側コンデンサの端子間電圧VCが0Vになり、受電側コンデンサの端子間電圧VCが送電側コンデンサCの端子間の初期電圧VCと同じ値になっており、送電側のエネルギーがすべて受電側に伝送されている。図19(b)に示すように、等価結合係数K=0.8のとき、受電側コンデンサの端子間電圧VCの最大値は送電側コンデンサCの端子間の初期電圧VCより小さい値をとっており、等価結合係数K=0.1、0.6、0.88のときと比較して、等価結合係数K=0.8のときは、効率よく電力伝送を行うことができない。When the equivalent coupling coefficient K = 0.1, 0.6, 0.8, 0.88, characteristic harmonized transmission occurs between the primary side circuit 2 and the secondary side circuit 3. As shown in FIG. 18 (b), when the equivalent coupling coefficient K = 0.1, 2.2 ms, and as shown in FIG. 19 (a), when the equivalent coupling coefficient K = 0.6, 0.28 ms. As shown in 19 (c), when the equivalent coupling coefficient K = 0.88, the inter-terminal voltage VC 1 of the transmitting side capacitor becomes 0V at 0.3 ms, and the inter-terminal voltage VC 2 of the receiving side capacitor becomes the transmitting side. The initial voltage between the terminals of the capacitor C 1 is the same as VC 0, and all the energy on the power transmission side is transmitted to the power reception side. As shown in FIG. 19B, when the equivalent coupling coefficient K = 0.8, the maximum value of the inter-terminal voltage VC 2 of the power receiving side capacitor is smaller than the initial voltage VC 0 between the terminals of the transmitting side capacitor C 1. When the equivalent coupling coefficient K = 0.8, power transmission cannot be performed efficiently as compared with the case where the equivalent coupling coefficient K = 0.1, 0.6, 0.88.

又、等価結合係数K=0.6、0.88のときと比較して、等価結合係数K=0.1のときは、受電側コンデンサの端子間電圧VCが最大値をとるまでの時間が長い。式(11)は2つのモードの和で表され、

(1+k)(1/2)/(1―k)(1/2)=2 ……(12)

のとき、即ち等価結合係数K=0.6のとき、受電側コンデンサCの端子間電圧VCが最大値をとるまでの時間が最も短く、次に短いのは、

(1+k)(1/2)/(1―k)(1/2)=4 ……(13)

のとき、即ち等価結合係数K=0.88のときである。実装回路ではコイルの寄生抵抗r=Rstr(L1)=Rstr(L2)及びコンデンサの寄生抵抗rCによって波形が時間とともに減衰するため、等価結合係数K=0.6、0.88のとき最も効率よく電力伝送を行うことができる。又、寄生抵抗r、rCが低い場合、等価結合係数K=0.1のときでも効率よく電力伝送を行うことができる。間隔dを大きくすると等価結合係数Kは小さくなるため、寄生抵抗r、rCが十分低ければ、長距離を隔てて送ることができるといえる。
Further, when the equivalent coupling coefficient K = 0.1 is compared with the case where the equivalent coupling coefficient K = 0.6 and 0.88, the time until the terminal voltage VC 2 of the power receiving side capacitor reaches the maximum value. Is long. Equation (11) is expressed as the sum of the two modes.

(1 + k) (1/2) / (1-k) (1/2) = 2 …… (12)

When, that is, when the equivalent coupling coefficient K = 0.6, terminal voltage VC 2 of the power receiving side capacitor C 2 is the shortest time to the maximum value, then a short is given,

(1 + k) (1/2) / (1-k) (1/2) = 4 …… (13)

That is, when the equivalent coupling coefficient K = 0.88. In the mounting circuit, the waveform is attenuated with time by the parasitic resistance r L = R str (L 1 ) = R str (L 2 ) of the coil and the parasitic resistance r C of the capacitor, so the equivalent coupling coefficient K = 0.6, 0. At 88, power transmission can be performed most efficiently. Further, when the parasitic resistors r L and r C are low, power transmission can be efficiently performed even when the equivalent coupling coefficient K = 0.1. Since the equivalent coupling coefficient K becomes smaller as the interval d is increased , it can be said that if the parasitic resistors r L and r C are sufficiently low, they can be sent over a long distance.

図19(a)に示した、等価結合係数K=0.6のときの端子間電圧VCと端子間電圧VCの波形を拡大したものを図20(a)に示す。又、このときの送電側コイルL1と受電側コイルL2の電流IとIの波形を図20(b)に示す。0.28msで端子間電圧VCが0Vになり、端子間電圧VCが送電側コンデンサCの端子間の初期電圧VCと同じ値になると同時に、電流IとIは0Aになっている。0.28msで送電側スイッチSW2及び受電側スイッチSW3をオフ状態にすると、最大効率で電力伝送を行うことができ、更に、このとき電流IとIが0Aであり、送電側コイルL1と受電側コイルL2に生じる逆起電力が0となることから、送電側スイッチSW2及び受電側スイッチSW3の破壊を防ぐことができる。FIG. 20 (a) shows an enlarged waveform of the inter-terminal voltage VC 1 and the inter-terminal voltage VC 2 when the equivalent coupling coefficient K = 0.6 shown in FIG. 19 (a). Further, the waveforms of the currents I 1 and I 2 of the power transmitting side coil L 1 and the power receiving side coil L 2 at this time are shown in FIG. 20 (b). At 0.28 ms, the terminal voltage VC 1 becomes 0 V, the terminal voltage VC 2 becomes the same value as the initial voltage VC 0 between the terminals of the transmission side capacitor C 1 , and at the same time, the currents I 1 and I 2 become 0 A. ing. When the power transmission side switch SW2 and the power reception side switch SW3 are turned off at 0.28 ms, power transmission can be performed with maximum efficiency, and at this time, the currents I 1 and I 2 are 0A, and the power transmission side coil L 1 Since the counter electromotive force generated in the power receiving side coil L 2 becomes 0, it is possible to prevent the power transmission side switch SW2 and the power receiving side switch SW3 from being destroyed.

(インダクタンスLと容量Cの最適な組み合わせ)
図16(a)に例示した構成において、一次側回路2と二次側回路3の間の特性調和伝送によって送電側に蓄えられていたエネルギーを受電側に伝送するときの、最も伝送効率のよいコイルのインダクタンスLとコンデンサの容量Cの組み合わせを以下の手順で求める。伝送効率Pは、一回で伝送しようとするエネルギーをPone-tr、コイルの寄生抵抗r及びコンデンサの寄生抵抗rCによって一回で損失するエネルギーをPone-loss、一回に必要な時間をτoneとすれば、式(14)で表される。

P=(Pone-tr―Pone-loss)/τone ……(14)

一回で伝送しようとするエネルギーPone-trは1/2×CV 、一回で損失するエネルギーPone-lossは(r+r)/2×C/L×V 、一回に必要な時間τoneは2(1.6)1/2π(LC)1/2であるので、伝送効率Pは、式(15)で表される。

P=(1/2×CV −(r+r)/2×C/L×V )/(2(1.6)1/2π(LC)1/2) ……(15)

ここで、Vは、送電側コンデンサCに印加する初期電圧である。
(Optimal combination of inductance L and capacitance C)
In the configuration illustrated in FIG. 16A, the transmission efficiency is the highest when the energy stored on the power transmission side is transmitted to the power reception side by the characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3. The combination of the coil inductance L and the capacitor capacitance C is obtained by the following procedure. Transmission efficiency P is the energy to be transmitted in a single P on C e-tr, energy P on which the loss in one by the parasitic resistance r C of the parasitic resistance r L and the capacitor of the coil C e-loss, one if the time required in time and τ on C e, it is represented by the formula (14).

P = (P on C e- tr -P on C e-loss) / τ on C e ...... (14)

Energy P on C e-tr is 1/2 × CV 0 2, energy P on C e-loss to the loss in one the (r L + r C) / 2 × C / L × V to be transmitted in one 0 2, since the time tau on C e required for one is 2 (1.6) 1/2 [pi (LC) 1/2, the transmission efficiency P is expressed by equation (15).

P = (1/2 × CV 0 2 - (r L + r C) / 2 × C / L × V 0 2) / (2 (1.6) 1/2 π (LC) 1/2) ...... ( 15)

Here, V 0 is an initial voltage applied to the power transmission side capacitor C 1.

コイルの寄生抵抗r及びコンデンサの寄生抵抗rCに対し、K=r/L、K=r×Cとし、コイルに流れる最大電流をImaxとするとImax=(C/L)1/2×Vであるので、

P=ImaxV{(1.6)−1/2π−1―(K(LC)1/2+K(LC)−1/2)}
………(16)

となり、

(LC)1/2+K(LC)−1/2>=2(K1/2……(17)

である。
To parasitic resistance r L and the parasitic resistance r C of the capacitor of the coil, K L = r L / L , and K C = r C × C, and the maximum current flowing through the coil and I max I max = (C / L ) 1/2 x V, so

P = I max V {(1.6 ) -1/2 π -1 - (K L (LC) 1/2 + K C (LC) -1/2)}
……… (16)

Next,

K L (LC) 1/2 + K C (LC) -1/2> = 2 (K L K C) 1/2 ...... (17)

Is.

伝送効率Pが最大になるとき

(LC)1/2+K(LC)−1/2=2(K1/2……(18)

であり、このとき

LC=K/K……(19)

となる。コイルのインダクタンスLとコンデンサの容量Cが式(19)を満たすとき、伝送効率が最大となる。
When the transmission efficiency P is maximized

K L (LC) 1/2 + K C (LC) -1/2 = 2 (K L K C) 1/2 ...... (18)

And at this time

LC = K C / K L ...... (19)

Will be. When the inductance L of the coil and the capacitance C of the capacitor satisfy the equation (19), the transmission efficiency is maximized.

図16(a)に例示した構成において、コイルのインダクタンスとコンデンサの容量を変化させたときの伝送効率を通常の交流理論によるシミュレーションによって求める。V=36V、結合係数K=600/H、結合係数K=3.00×10−6ΩFとする。通常の交流理論によるシミュレーションの結果得られた、コイルのインダクタンスが1、2、5、10、20、50μHのときのコンデンサの容量に対する伝送効率の変化を図21に示す。図21に示すように、伝送効率が最大となるコイルのインダクタンスLとコンデンサの容量Cの組み合わせは、コイルのインダクタンスが1、2、5、10、20、50μHのとき、コンデンサの容量Cはそれぞれ5000、2500、1000、500、250、100μFであり、式(19)を満たしている。In the configuration illustrated in FIG. 16A, the transmission efficiency when the inductance of the coil and the capacitance of the capacitor are changed is obtained by a simulation based on ordinary AC theory. V = 36V, the coupling coefficient K L = 600 / H, the coupling coefficient K C = 3.00 × 10 -6 ΩF . FIG. 21 shows the change in transmission efficiency with respect to the capacitance of the capacitor when the coil inductance is 1, 2, 5, 10, 20, and 50 μH, which is obtained as a result of a simulation by ordinary AC theory. As shown in FIG. 21, the combination of the coil inductance L and the capacitor capacitance C that maximizes the transmission efficiency is such that when the coil inductance is 1, 2, 5, 10, 20, and 50 μH, the capacitor capacitance C is different. It is 5000, 2500, 1000, 500, 250, 100 μF, and satisfies the formula (19).

(負荷素子の端子間電圧が低い場合の電力伝送)
充電式電池としての負荷素子6の端子間電圧が低い場合の、第4の実施形態に係る第1のワイヤレス電力伝送方法を、図23に示すフローチャート及び図24(a)に示すタイミング図を参照して説明する。ただし、交流理論で定義される結合係数KAC=0.6、0.88に等価な等価結合係数K等、一次側回路2と二次側回路3の間の特性調和伝送が生じた際に、端子間電圧VCの最大値が送電側コンデンサCの端子間の初期電圧VCと同じ値になり、その時、端子間電圧VCは0Vになるように、等価結合係数Kは調整されているものとする。
(Power transmission when the voltage between the terminals of the load element is low)
Refer to the flowchart shown in FIG. 23 and the timing diagram shown in FIG. 24A for the first wireless power transmission method according to the fourth embodiment when the voltage between terminals of the load element 6 as a rechargeable battery is low. I will explain. However, when the coupling coefficient K AC = 0.6,0.88 equivalent equivalent coefficient K or the like which is defined by an alternating current theory, the characteristic harmonic transmissions between the primary-side circuit 2 and the secondary-side circuit 3 occurs , The equivalent coupling coefficient K is adjusted so that the maximum value of the terminal voltage VC 2 becomes the same as the initial voltage VC 0 between the terminals of the transmission side capacitor C 1 , and then the terminal voltage VC 1 becomes 0 V. It is assumed that

先ず、ステップS11において、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4をオフ状態にし、一次側駆動スイッチSW1をオン状態にする。送電側コンデンサCに初期電圧を印加して電荷を蓄えたのち、一次側駆動スイッチSW1をオフ状態にする。なお、この時点で負荷素子6の端子間電圧は十分低いものとする。次に、ステップS12において、送電側スイッチSW2及び受電側スイッチSW3をオン状態にすると一次側回路2と二次側回路3の間の特性調和伝送が生じる。次に、ステップS13において、一次側回路2と二次側回路3の間の特性調和伝送によって端子間電圧VCの絶対値が最大になり、端子間電圧VCが0Vになる時点で送電側スイッチSW2及び受電側スイッチSW3をオフ状態にする。First, in step S11, the power transmission side switch SW2, the power reception side switch SW3, and the load control switch SW4 are turned off, and the primary side drive switch SW1 is turned on. After an electric charge is charged by applying an initial voltage to the power transmission side capacitor C 1, to turn off the primary-side drive switch SW1. At this point, the voltage between the terminals of the load element 6 is assumed to be sufficiently low. Next, in step S12, when the power transmission side switch SW2 and the power reception side switch SW3 are turned on, characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 occurs. Next, in step S13, when the absolute value of the inter-terminal voltage VC 2 becomes maximum due to the characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3, and the inter- terminal voltage VC 1 becomes 0 V, the power transmission side Turn off the switch SW2 and the power receiving side switch SW3.

次に、ステップS14において、負荷制御スイッチSW4をオン状態にすると、充電電流ICSが発生し、端子間電圧VCは減少する。次に、ステップS15において、充電電流ICSが0になった時点で負荷制御スイッチSW4をオフ状態にする。このときの端子間電圧VCと負荷素子6の端子間電圧は同じ値となる。ステップS11の時点で負荷素子6の端子間電圧が十分低い場合、ステップS15の時点で受電側コンデンサの端子間電圧VCは0V、又は0Vとみなせる程度に十分低く、受電側コンデンサCを放電することなくステップS11に戻ることができる。Next, in step S14, when the load control switch SW4 is turned on, a charging current ICS is generated and the voltage between terminals VC 2 is reduced. Next, in step S15, the load control switch SW4 is turned off when the charging current ICS becomes 0. At this time, the voltage between terminals VC 2 and the voltage between terminals of the load element 6 have the same value. If the voltage between the terminals of the load element 6 is sufficiently low at the time of step S11, the voltage between terminals VC 2 of the power receiving side capacitor is sufficiently low to be regarded as 0V or 0V at the time of step S15, and the power receiving side capacitor C 2 is discharged. It is possible to return to step S11 without doing so.

(負荷素子の端子間電圧が低くない場合の電力伝送方法)
負荷素子6の端子間電圧が低くない場合の、第4の実施形態に係る第2のワイヤレス電力伝送方法を、図25に示すフローチャート及び図24(b)に示すタイミング図を参照して説明する。ただし、等価結合係数Kは負荷素子6の端子間電圧が低い場合と同様に調整されているものとする。
(Power transmission method when the voltage between terminals of the load element is not low)
The second wireless power transmission method according to the fourth embodiment when the voltage between the terminals of the load element 6 is not low will be described with reference to the flowchart shown in FIG. 25 and the timing diagram shown in FIG. 24 (b). .. However, it is assumed that the equivalent coupling coefficient K is adjusted in the same manner as when the voltage between the terminals of the load element 6 is low.

ステップS21からステップS24は、ステップS11からステップS14と同様である。ステップS25において、充電電流ICSが0になった時点で負荷制御スイッチSW4をオフ状態にする。このときの端子間電圧VCは充電電圧VCと同じ値になる。次のステップS26で受電側コンデンサの放電を行う。Steps S21 to S24 are the same as steps S11 to S14. In step S25, the load control switch SW4 is turned off when the charging current ICS becomes 0. The voltage between terminals VC 2 at this time has the same value as the charging voltage VC S. In the next step S26, the power receiving side capacitor is discharged.

ステップS26において、送電側スイッチSW2及び受電側スイッチSW3をオン状態にすると、再度一次側回路2と二次側回路3の間の特性調和伝送が生じる。ステップS27において、一次側回路2と二次側回路3の間の特性調和伝送によって端子間電圧VCの絶対値が最大になり、端子間電圧VCが0Vになる時点で送電側スイッチSW2及び受電側スイッチSW3をオフ状態にする。ステップS27時点での端子間電圧VCはステップS25時点での端子間電圧VCと同じ値であるので、ステップS27時点で端子間電圧VCと充電電圧VCは同じ値である。よって、この場合、端子間電圧VCで、充電電圧VCをモニターすることができる。When the power transmission side switch SW2 and the power reception side switch SW3 are turned on in step S26, characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 occurs again. In step S27, when the absolute value of the terminal voltage VC 1 is maximized by the characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3, and the terminal voltage VC 2 becomes 0 V, the power transmission side switch SW2 and Turn off the power receiving side switch SW3. Since the inter-terminal voltage VC 1 at the time of step S27 is the same value as the inter-terminal voltage VC 2 at the time of step S25, the inter- terminal voltage VC 1 and the charging voltage VC S are the same values at the time of step S27. Therefore, in this case, the charging voltage VC S can be monitored by the terminal voltage VC 1.

以上に述べたように、本発明の第4の実施形態に係る電力伝送装置によれば、第1〜第3実施形態に係る電力伝送装置と同様に、制御回路や周辺回路が単純で安価な直流電源5を使用することができるので高価なスイッチング電源が不要であり、回路構成は単純化され、制御回路側における電力損失も最小化される上に壊れにくくなり、回路設計も容易になる。この結果第4の実施形態に係る電力伝送装置によれば、電力伝送装置の全体の構成が簡略化され軽量・小型化及び高効率化が可能になり、電源回路(0次回路)の損失を含めた総合的な電力伝送効率を原理的には100%に近い値まで高め、電力伝送の限界電力を原理的には無限大に押し上げ、電力伝送の限界距離を原理的には無限大に伸ばしたワイヤレス電力伝送装置を安価に製造することができる。 As described above, according to the power transmission device according to the fourth embodiment of the present invention, the control circuit and the peripheral circuit are simple and inexpensive as in the power transmission device according to the first to third embodiments. Since the DC power supply 5 can be used, an expensive switching power supply is not required, the circuit configuration is simplified, the power loss on the control circuit side is minimized, the circuit is not easily broken, and the circuit design is facilitated. As a result, according to the power transmission device according to the fourth embodiment, the overall configuration of the power transmission device can be simplified, the weight and size can be reduced, and the efficiency can be improved, and the loss of the power supply circuit (0th order circuit) can be reduced. In principle, the overall power transmission efficiency including is increased to a value close to 100%, the limit power of power transmission is pushed up to infinity in principle, and the limit distance of power transmission is extended to infinity in principle. Wireless power transmission equipment can be manufactured at low cost.

(第5の実施形態)
本発明の第5の実施形態に係る電力伝送装置は、図26に示すように、一次側回路2Cと二次側回路3Cとが、第1の相互結合コンデンサC23及び第2の相互結合コンデンサC24で静電的に結合しており、第1の実施形態に係る電力伝送装置の、コイルをコンデンサに、コンデンサをコイルに入れ替えた構成となっている。電磁誘導の法則、及びマックスウェルの方程式より、このようなコイルとコンデンサの入れ替えが可能である。即ち図26に示すように第5の実施形態に係る電力伝送装置は、図1(a)に示した第1の実施形態に係る電力伝送装置と同様に、静電エネルギーを蓄積する送電側コンデンサC21、送電側コンデンサC21に並列接続され送電側コンデンサC21から送られた静電エネルギーを磁気エネルギーとして蓄積し、この磁気エネルギーを送電側コンデンサC21に環流する送電側コイルL21を有する一次側回路2を備える。
(Fifth Embodiment)
In the power transmission device according to the fifth embodiment of the present invention, as shown in FIG. 26, the primary side circuit 2C and the secondary side circuit 3C are composed of a first interconnect capacitor C 23 and a second interconnect capacitor. It is electrostatically coupled at C 24 , and has a configuration in which the coil is replaced with a capacitor and the capacitor is replaced with a coil in the power transmission device according to the first embodiment. From the law of electromagnetic induction and Maxwell's equation, it is possible to replace such a coil and a capacitor. That is, as shown in FIG. 26, the power transmission device according to the fifth embodiment is a power transmission side capacitor that stores electrostatic energy, similarly to the power transmission device according to the first embodiment shown in FIG. 1 (a). C 21, the electrostatic energy transmitted from the power transmitting side is connected in parallel to the capacitor C 21 power-transmitting-side capacitor C 21 accumulates as a magnetic energy, a power transmission coil L 21 to reflux the magnetic energy to the power transmission side capacitor C 21 The primary side circuit 2 is provided.

そして、第5の実施形態に係る電力伝送装置は、図26に示すように、送電側コンデンサC21と送電側コイルL21を並列に接続する一方のノードに一方の電極を接続した第1の相互結合コンデンサC23と、送電側コンデンサC21と送電側コイルL21を並列に接続する他方のノードに一方の電極を接続した第2の相互結合コンデンサC24を更に備える点が、図1に示した第1の実施形態に係る電力伝送装置とは異なる。そして、第5の実施形態に係る電力伝送装置は第1の相互結合コンデンサC23の他方の電極に一方の電極を接続し、第2の相互結合コンデンサC24の他方の電極に他方の電極を接続し、一次側回路2から静電エネルギーを受け取る受電側コンデンサC22、受電側コンデンサC22に並列接続され受電側コンデンサC22に蓄積された静電エネルギーを磁気エネルギーとして蓄積する受電側コイルL22を有する二次側回路3を更に備える。Then, in the power transmission device according to the fifth embodiment, as shown in FIG. 26, the first electrode is connected to one node that connects the power transmission side capacitor C 21 and the power transmission side coil L 21 in parallel. mutual coupling capacitor C 23, the power-transmitting-side second interconnection further comprises a point capacitor C 24 of the capacitor C 21 and the power transmission coil L 21 is connected to one electrode to the other nodes connected in parallel, in Figure 1 It is different from the power transmission device according to the first embodiment shown. Then, in the power transmission device according to the fifth embodiment , one electrode is connected to the other electrode of the first interconnect capacitor C 23 , and the other electrode is connected to the other electrode of the second interconnect capacitor C 24. connect the power receiving side capacitor C 22 to receive electrostatic energy from the primary side circuit 2, the power receiving side coil accumulates accumulated in the parallel-connected power reception capacitor C 22 to the power receiving side capacitor C 22 electrostatic energy as magnetic energy L A secondary side circuit 3 having 22 is further provided.

更に、図26に示すように第5の実施形態に係る電力伝送装置は、送電側コイルL21の一方の端子と他方の端子の間を接続する回路を構成する直流電源5と、送電側コイルL21の一方の端子と直流電源5との間に直列に接続され、送電側コイルL21に断続的な直流電圧をステップ入力する一次側駆動スイッチSW1を備える。又、受電側コイルL22の一方の端子と他方の端子の間を接続する回路を構成し、受電側コイルL22から磁気エネルギーを受け取る負荷素子6と、アノードが受電側コイルL22の一方の端子の側に、カソードが負荷素子6に接続された負荷側ダイオードD2を備える。図26に示すような静電的な結合であっても、第5の実施形態に係る電力伝送装置は、一次側回路2から二次側回路3に非接触で電気エネルギーを伝送することができる。通常の交流理論によるシミュレーションによって送電側コイルL21と受電側コイルL22に流れる電流の波形を求め、一次側回路2と二次側回路3の間の特性調和伝送波形を確認する。Further, the power transmission device according to the fifth embodiment, as shown in FIG. 26, a DC power source 5 to a circuit for connecting the one terminal and the other terminal of the power transmission coil L 21, the power transmission coil It is provided with a primary side drive switch SW1 which is connected in series between one terminal of L 21 and a DC power supply 5 and step-inputs an intermittent DC voltage to the power transmission side coil L 21. Further, a circuit is configured to connect between one terminal of the power receiving side coil L 22 and the other terminal, and the load element 6 that receives magnetic energy from the power receiving side coil L 22 and the anode are one of the power receiving side coil L 22 . A load-side diode D2 whose cathode is connected to the load element 6 is provided on the terminal side. Even with the electrostatic coupling as shown in FIG. 26, the power transmission device according to the fifth embodiment can transmit electric energy from the primary side circuit 2 to the secondary side circuit 3 in a non-contact manner. .. The waveform of the current flowing through the power transmitting side coil L 21 and the power receiving side coil L 22 is obtained by a simulation based on ordinary AC theory, and the characteristic harmonized transmission waveform between the primary side circuit 2 and the secondary side circuit 3 is confirmed.

一次側回路21と二次側回路22の等価結合係数を0、送電側コイルL21と受電側コイルL22のインダクタンスをいずれも0.1μH、送電側コンデンサC21と受電側コンデンサC22の容量をいずれも400pF、第1の相互結合コンデンサC23と第2の相互結合コンデンサC24の容量をいずれも500pFとする。直流電源5は第1の実施形態の場合と同様、定電圧源である。送電側コイルL21と受電側コイルL22に流れる電流の波形を図27(a)に示す。又、送電側コンデンサC21と受電側コンデンサC22のそれぞれの端子間電圧V21、V22の波形を図27(b)に示す。0nsで送電側コイルL21と受電側コイルL22に流れる電流がそれぞれ30Aと0Aであり、60nsで送電側コイルL21と受電側コイルL22に流れる電流がそれぞれ30Aと0Aになっており、一次側回路2と二次側回路3の間の特性調和伝送が生じている。The equivalent coupling coefficient of the primary side circuit 21 and the secondary side circuit 22 is 0, the inductance of the power transmission side coil L 21 and the power reception side coil L 22 is 0.1 μH, and the capacitance of the power transmission side capacitor C 21 and the power reception side capacitor C 22 . Both are 400 pF, and the capacitances of the first interconnect capacitor C 23 and the second interconnect capacitor C 24 are both 500 pF. The DC power supply 5 is a constant voltage source as in the case of the first embodiment. The waveform of the current flowing through the power transmitting side coil L 21 and the power receiving side coil L 22 is shown in FIG. 27 (a). Further, the waveforms of the voltage V21 and V22 between the terminals of the power transmitting side capacitor C 21 and the power receiving side capacitor C 22 are shown in FIG. 27 (b), respectively. At 0 ns, the currents flowing through the power transmitting side coil L 21 and the power receiving side coil L 22 are 30 A and 0 A, respectively, and at 60 ns, the currents flowing through the power transmitting side coil L 21 and the power receiving side coil L 22 are 30 A and 0 A, respectively. Characteristic harmonized transmission between the primary side circuit 2 and the secondary side circuit 3 has occurred.

以上に述べたように、本発明の第5の実施形態に係る電力伝送装置によれば、静電的な結合であっても、第1〜第4の実施形態に係る電力伝送装置における磁気的結合の場合と同様に制御回路や周辺回路が単純で安価な直流電源5を使用することができるので高価なスイッチング電源が不要である。又、静電的な結合であっても、第1〜第4の実施形態に係る電力伝送装置と同様に回路構成は単純化され壊れにくく回路設計が容易になる上に制御回路側における電力損失も最小化される。この結果、本発明の第5の実施形態に係る電力伝送装置によれば電力伝送装置の全体の構成が簡略化され軽量・小型化及び高効率化が可能になり、電源回路(0次回路)の損失を含めた総合的な電力伝送効率を100%に近い値まで高め、電力伝送の限界電力を原理的には無限大に押し上げ、電力伝送の限界距離を原理的には無限大に伸ばしたワイヤレス電力伝送装置を安価に製造することができる。 As described above, according to the power transmission device according to the fifth embodiment of the present invention, even if it is electrostatically coupled, the magnetic power transmission device according to the first to fourth embodiments is magnetic. As in the case of coupling, the control circuit and peripheral circuits are simple and an inexpensive DC power supply 5 can be used, so that an expensive switching power supply is unnecessary. Further, even in the case of electrostatic coupling, the circuit configuration is simplified, hard to break, and circuit design is easy as in the power transmission device according to the first to fourth embodiments, and power loss on the control circuit side. Is also minimized. As a result, according to the power transmission device according to the fifth embodiment of the present invention, the overall configuration of the power transmission device is simplified, the weight and size can be reduced, and the efficiency can be improved, and the power supply circuit (0th order circuit). The overall power transfer efficiency including the loss of Wireless power transmission equipment can be manufactured at low cost.

(その他の実施形態)
上記のように、本発明は第1〜第5の実施形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。例えば、本発明の第5の実施形態に係る電力伝送装置においては静電的な結合方式として一次側駆動スイッチSW1を1個のみ含む回路構成を説明したが。単なる例示に過ぎない。本発明の第2の実施形態に係る電力伝送装置において説明したように、静電的な結合方式の回路構成の場合であっても、一次側駆動スイッチSW1及び送電側スイッチSW2を含む構成とすることが可能である。
(Other embodiments)
As mentioned above, the present invention has been described by the first to fifth embodiments, but the statements and drawings that form part of this disclosure should not be understood as limiting the invention. Various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art from this disclosure. For example, in the power transmission device according to the fifth embodiment of the present invention, a circuit configuration including only one primary side drive switch SW1 has been described as an electrostatic coupling method. It is just an example. As described in the power transmission device according to the second embodiment of the present invention, even in the case of the circuit configuration of the electrostatic coupling method, the configuration includes the primary side drive switch SW1 and the power transmission side switch SW2. It is possible.

同様に、本発明の第3の実施形態に係る電力伝送装置で説明したように静電的な結合方式の回路構成の場合であっても、一次側駆動スイッチSW1、送電側スイッチSW2及び受電側スイッチSW3を含む構成とすることが可能である。更に、一次側駆動スイッチSW1、送電側スイッチSW2、受電側スイッチSW3及び負荷制御スイッチSW4を含んで、本発明の第4の実施形態に係る電力伝送装置と同様な構成にしても構わない。 Similarly, even in the case of an electrostatic coupling type circuit configuration as described in the power transmission device according to the third embodiment of the present invention, the primary side drive switch SW1, the power transmission side switch SW2, and the power reception side The configuration can include the switch SW3. Further, the power transmission device according to the fourth embodiment of the present invention may be configured in the same manner as the power transmission device according to the fourth embodiment of the present invention, including the primary side drive switch SW1, the power transmission side switch SW2, the power reception side switch SW3, and the load control switch SW4.

即ち、本発明に係る電力伝送装置は、図1(a)、10(a)、13(a)、16(a)及び26で示したようなそれぞれの実施形態の技術思想を互いに組み合わせて構成することもできる。又、本発明の第1の実施形態に係る電力伝送装置において図6(a)〜図8(b)を用いて説明した磁気的結合度制御機構を、第2〜第4の実施形態に係る電力伝送装置に適用しても構わない。以上のとおり本発明は、本明細書及び図面に記載していない様々な実施形態等を含むとともに、本発明の技術的範囲は、上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。 That is, the power transmission device according to the present invention is configured by combining the technical ideas of the respective embodiments as shown in FIGS. 1 (a), 10 (a), 13 (a), 16 (a) and 26. You can also do it. Further, the magnetic coupling degree control mechanism described with reference to FIGS. 6 (a) to 8 (b) in the power transmission device according to the first embodiment of the present invention is related to the second to fourth embodiments. It may be applied to a power transmission device. As described above, the present invention includes various embodiments not described in the present specification and drawings, and the technical scope of the present invention is based on the matters specifying the invention relating to the reasonable claims from the above description. Only defined.

1…給電側回路、2、2C…一次側回路、3、3C…二次側回路、5…直流電源、6…負荷素子、32…スペーサ、33…車止め、41…測距ユニット、411…発光部、412…受光部、42,47…論理演算制御部、421…距離演算部、422,472…結合係数計算部、43…結合係数調整駆動装置、45…データ記憶装置、46…伝送効率測定ユニット、461…電流計、462…電圧計、471…伝送効率演算部、71…基板、72…ソース領域、73…ドレイン領域、81…ゲート酸化膜、82…ソース電極、83…ドレイン電極、84…ゲート電極
1 ... Power supply side circuit, 2, 2C ... Primary side circuit, 3, 3C ... Secondary side circuit, 5 ... DC power supply, 6 ... Load element, 32 ... Spacer, 33 ... Car stop, 41 ... Distance measuring unit, 411 ... Light emission Unit, 412 ... Light receiving unit, 42, 47 ... Logic calculation control unit, 421 ... Distance calculation unit, 422, 472 ... Coupling coefficient calculation unit, 43 ... Coupling coefficient adjustment drive device, 45 ... Data storage device, 46 ... Transmission efficiency measurement Unit, 461 ... ammeter, 462 ... voltmeter, 471 ... transmission efficiency calculation unit, 71 ... substrate, 72 ... source region, 73 ... drain region, 81 ... gate oxide film, 82 ... source electrode, 83 ... drain electrode, 84 … Gate electrode

Claims (9)

送電側コンデンサ、前記送電側コンデンサに並列接続され前記送電側コンデンサから送られた静電エネルギーを磁気エネルギーとして蓄積し、該磁気エネルギーを前記送電側コンデンサに環流する送電側コイルを有する一次側回路と、
前記送電側コンデンサの一方の端子と他方の端子の間を接続する回路を構成する直流電源と、
前記送電側コンデンサの前記一方の端子と前記直流電源との間に接続され、前記送電側コンデンサに断続的な直流電圧をステップ入力する一次側駆動スイッチと、
前記送電側コイルに対向し、前記送電側コイルから前記磁気エネルギーを受け取る受電側コイル、前記受電側コイルに並列接続され前記受電側コイルに蓄積された磁気エネルギーを静電エネルギーとして蓄積する受電側コンデンサを有する二次側回路と、
前記受電側コンデンサの一方の端子と他方の端子の間を接続する回路を構成し、前記受電側コンデンサから前記静電エネルギーを受け取る負荷素子と、
アノードが前記受電側コンデンサの前記一方の端子の側に、カソードが前記負荷素子に接続された負荷側ダイオードと
を備え、前記一次側回路から前記二次側回路に非接触で電気エネルギーを伝送することを特徴とする電力伝送装置。
A primary side circuit having a power transmission side capacitor, a primary side circuit having a power transmission side coil connected in parallel to the power transmission side capacitor, storing electrostatic energy sent from the power transmission side capacitor as magnetic energy, and circulating the magnetic energy to the power transmission side capacitor. ,
A DC power supply that constitutes a circuit that connects one terminal and the other terminal of the power transmission side capacitor,
A primary side drive switch connected between the one terminal of the power transmission side capacitor and the DC power supply and step-inputting an intermittent DC voltage to the power transmission side capacitor.
A power receiving side coil that faces the power transmitting side coil and receives the magnetic energy from the power transmitting side coil, and a power receiving side capacitor that is connected in parallel to the power receiving side coil and stores the magnetic energy stored in the power receiving side coil as electrostatic energy. Secondary side circuit with
A load element that constitutes a circuit that connects one terminal and the other terminal of the power receiving side capacitor and receives the electrostatic energy from the power receiving side capacitor.
The anode is provided on the side of the one terminal of the power receiving side capacitor, and the cathode is provided with a load side diode connected to the load element, and electrical energy is transmitted from the primary side circuit to the secondary side circuit in a non-contact manner. A power transmission device characterized by the fact that.
アノードが前記直流電源に、カソードが前記送電側コンデンサの前記一方の端子に接続された電源側ダイオードを更に備えることを特徴とする請求項1に記載の電力伝送装置。 The power transmission device according to claim 1, wherein the anode is further provided with the DC power supply, and the cathode is further provided with a power supply side diode connected to the one terminal of the transmission side capacitor. 前記一次側駆動スイッチが半導体スイッチング素子であることを特徴とする請求項1又は2に記載の電力伝送装置。 The power transmission device according to claim 1 or 2, wherein the primary side drive switch is a semiconductor switching element. 前記一次側駆動スイッチが前記半導体スイッチング素子と並列に接続された保護素子を更に備えることを特徴とする請求項3に記載の電力伝送装置。 The power transmission device according to claim 3, wherein the primary side drive switch further includes a protection element connected in parallel with the semiconductor switching element. 前記送電側コイルと前記受電側コイルとの間の磁気的結合度を制御する磁気的結合度制御機構を更に備えることを特徴とする請求項1〜4のいずれか1項に記載の電力伝送装置。 The power transmission device according to any one of claims 1 to 4, further comprising a magnetic coupling degree control mechanism for controlling the magnetic coupling degree between the power transmitting side coil and the power receiving side coil. .. 前記送電側コンデンサの前記一方の電極と前記送電側コイルとの間に直列に接続された送電側スイッチを更に備えることを特徴とする請求項1〜5のいずれか1項に記載の電力伝送装置。 The power transmission device according to any one of claims 1 to 5, further comprising a power transmission side switch connected in series between the one electrode of the power transmission side capacitor and the power transmission side coil. .. 前記受電側コンデンサの前記一方の電極と前記受電側コイルとの間に直列に接続された受電側スイッチを更に備えることを特徴とする請求項6に記載の電力伝送装置。 The power transmission device according to claim 6, further comprising a power receiving side switch connected in series between the one electrode of the power receiving side capacitor and the power receiving side coil. 前記受電側コンデンサの前記一方の電極と前記負荷側ダイオードとの間に直列に接続された負荷制御スイッチを更に備えることを特徴とする請求項7に記載の電力伝送装置。 The power transmission device according to claim 7, further comprising a load control switch connected in series between the one electrode of the power receiving side capacitor and the load side diode. 送電側コンデンサ、前記送電側コンデンサに並列接続され前記送電側コンデンサから送られた静電エネルギーを磁気エネルギーとして蓄積し、該磁気エネルギーを前記送電側コンデンサに環流する送電側コイルを有する一次側回路と、
前記送電側コイルの一方の端子と他方の端子の間を接続する回路を構成する直流電源と、
前記送電側コイルの前記一方の端子と前記直流電源との間に接続され、前記送電側コイルに断続的な直流電圧をステップ入力する一次側駆動スイッチと、
前記送電側コンデンサと前記送電側コイルを並列に接続する一方のノードに一方の電極を接続した第1の相互結合コンデンサと、
前記送電側コンデンサと前記送電側コイルを並列に接続する他方のノードに一方の電極を接続した第2の相互結合コンデンサと、
前記第1の相互結合コンデンサの他方の電極に一方の電極を接続し、前記第2の相互結合コンデンサの他方の電極に他方の電極を接続し、前記一次側回路から前記静電エネルギーを受け取る受電側コンデンサ、前記受電側コンデンサに並列接続され前記受電側コンデンサに蓄積された静電エネルギーを磁気エネルギーとして蓄積する受電側コイルを有する二次側回路と、
前記受電側コイルの一方の端子と他方の端子の間を接続する回路を構成し、前記受電側コイルから前記磁気エネルギーを受け取る負荷素子と、
アノードが前記受電側コイルの前記一方の端子の側に、カソードが前記負荷素子に接続された負荷側ダイオードと
を備え、前記一次側回路から前記二次側回路に非接触で電気エネルギーを伝送することを特徴とする電力伝送装置。
A primary side circuit having a power transmission side capacitor, a primary side circuit having a power transmission side coil connected in parallel to the power transmission side capacitor, storing electrostatic energy sent from the power transmission side capacitor as magnetic energy, and circulating the magnetic energy to the power transmission side capacitor. ,
A DC power supply that constitutes a circuit that connects one terminal and the other terminal of the power transmission side coil,
A primary side drive switch which is connected between the one terminal of the power transmission side coil and the DC power supply and step-inputs an intermittent DC voltage to the power transmission side coil.
A first interconnect capacitor in which one electrode is connected to one node that connects the power transmission side capacitor and the power transmission side coil in parallel, and
A second interconnect capacitor with one electrode connected to the other node connecting the power transmission side capacitor and the power transmission side coil in parallel,
One electrode is connected to the other electrode of the first interconnect capacitor, the other electrode is connected to the other electrode of the second interconnect capacitor, and the electrostatic energy is received from the primary side circuit. A side capacitor, a secondary circuit having a power receiving side coil connected in parallel to the power receiving side capacitor and storing the electrostatic energy stored in the power receiving side capacitor as magnetic energy, and a secondary side circuit.
A load element that constitutes a circuit that connects one terminal and the other terminal of the power receiving side coil and receives the magnetic energy from the power receiving side coil.
The anode is provided with a load-side diode whose cathode is connected to the load element on the side of the one terminal of the power-receiving side coil, and electrical energy is transmitted from the primary-side circuit to the secondary-side circuit in a non-contact manner. A power transmission device characterized by the fact that.
JP2020538004A 2018-08-24 2018-08-24 power transmission equipment Active JP7116288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022068151A JP7314355B2 (en) 2018-08-24 2022-04-18 Power transmission device and power transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/031440 WO2020039594A1 (en) 2018-08-24 2018-08-24 Power transmission device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022068151A Division JP7314355B2 (en) 2018-08-24 2022-04-18 Power transmission device and power transmission method

Publications (2)

Publication Number Publication Date
JPWO2020039594A1 true JPWO2020039594A1 (en) 2021-08-10
JP7116288B2 JP7116288B2 (en) 2022-08-10

Family

ID=69592518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020538004A Active JP7116288B2 (en) 2018-08-24 2018-08-24 power transmission equipment

Country Status (2)

Country Link
JP (1) JP7116288B2 (en)
WO (1) WO2020039594A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646531A (en) * 1992-07-23 1994-02-18 Mitsubishi Electric Home Appliance Co Ltd Charger
JP2003047179A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Contactless electric power transmission device
JP2010226890A (en) * 2009-03-24 2010-10-07 Panasonic Electric Works Co Ltd Non-contact power transmission apparatus
JP2013070520A (en) * 2011-09-22 2013-04-18 Panasonic Corp Driving method of non contact power supply device, non contact power supply device, and non contact power supply system
WO2013132702A1 (en) * 2012-03-07 2013-09-12 株式会社 村田製作所 System for transmitting electric power and power-transmission device
JP2016120902A (en) * 2014-12-25 2016-07-07 豊田合成株式会社 Light-emitting interior product
WO2017033614A1 (en) * 2015-08-26 2017-03-02 ローム株式会社 Power transmission apparatus and non-contact power supply system
JP2019176621A (en) * 2018-03-28 2019-10-10 パナソニックIpマネジメント株式会社 Electrode unit, power transmission device, power reception device, and wireless power transmission system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0646531A (en) * 1992-07-23 1994-02-18 Mitsubishi Electric Home Appliance Co Ltd Charger
JP2003047179A (en) * 2001-07-26 2003-02-14 Matsushita Electric Works Ltd Contactless electric power transmission device
JP2010226890A (en) * 2009-03-24 2010-10-07 Panasonic Electric Works Co Ltd Non-contact power transmission apparatus
JP2013070520A (en) * 2011-09-22 2013-04-18 Panasonic Corp Driving method of non contact power supply device, non contact power supply device, and non contact power supply system
WO2013132702A1 (en) * 2012-03-07 2013-09-12 株式会社 村田製作所 System for transmitting electric power and power-transmission device
JP2016120902A (en) * 2014-12-25 2016-07-07 豊田合成株式会社 Light-emitting interior product
WO2017033614A1 (en) * 2015-08-26 2017-03-02 ローム株式会社 Power transmission apparatus and non-contact power supply system
JP2019176621A (en) * 2018-03-28 2019-10-10 パナソニックIpマネジメント株式会社 Electrode unit, power transmission device, power reception device, and wireless power transmission system

Also Published As

Publication number Publication date
JP7116288B2 (en) 2022-08-10
WO2020039594A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
US10714979B2 (en) Wireless power receiving terminal and wireless charging system
US9991779B2 (en) Harmonic reduction apparatus for wireless power transfer systems
JP6184529B2 (en) In-vehicle charger, surge suppression method for in-vehicle charger
KR101241221B1 (en) Charging system for mild hybrid vehicle
JP5642245B1 (en) Car charger
Cai et al. A 2-kW, 95% efficiency inductive power transfer system using gallium nitride gate injection transistors
JP2015159711A (en) Switching power supply and power converter
US9487098B2 (en) Power conversion apparatus
Choe et al. Passive snubber for reducing switching-power losses of an IGBT in a DC–DC boost converter
Cai et al. A high frequency, high efficiency GaN HFET based inductive power transfer system
Lee et al. Quasi-resonant passive snubber for improving power conversion efficiency of a DC–DC step-down converter
Ohara et al. Comparative study of IGBT and SiC-MOSFET in a wireless V2H system with a new bidirectional single-ended ZVS converter
TWI477027B (en) Battery heating circuit
JP7314355B2 (en) Power transmission device and power transmission method
JPWO2020039594A1 (en) Power transmission device
US20190238001A1 (en) Dc link charging of capacitor in a wireless power transfer pad
Kuroda et al. A wireless V2H apparatus with a new SiC-MOSFET and unique bidirectional controlled single-ended converter
JP2021182787A (en) Energy vibration type transmission system
Qi et al. 900V GaN FETs in a 300kHz 2kW LLC Converter for High Input Voltage Applications
JP6910115B2 (en) Active snubber circuit
JP2015139312A (en) Switching power supply arrangement and electric power converter unit
JP2013038891A (en) Power factor improvement circuit for dc power supply device
WO2012013982A2 (en) Quasi-resonant braking load
Alatawi et al. Performance enhancement of two-switch forward converter using GaN FETs
Iwanaga et al. A New Type of Kelvin-Source SiC-VMOSFET for a High-Power Single-Ended Wireless EV Charger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201214

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A801

Effective date: 20201214

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20201215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220418

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220418

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220502

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220607

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220707

R150 Certificate of patent or registration of utility model

Ref document number: 7116288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150