WO2020039499A1 - 非接触給電用の送電制御装置、非接触給電用の送電制御方法、および、非接触給電システム - Google Patents

非接触給電用の送電制御装置、非接触給電用の送電制御方法、および、非接触給電システム Download PDF

Info

Publication number
WO2020039499A1
WO2020039499A1 PCT/JP2018/030812 JP2018030812W WO2020039499A1 WO 2020039499 A1 WO2020039499 A1 WO 2020039499A1 JP 2018030812 W JP2018030812 W JP 2018030812W WO 2020039499 A1 WO2020039499 A1 WO 2020039499A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
antenna
transmission
power transmission
power supply
Prior art date
Application number
PCT/JP2018/030812
Other languages
English (en)
French (fr)
Inventor
文恵 大坪
嶺 志村
大地 儘田
阿久澤 好幸
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201880096542.XA priority Critical patent/CN112567593A/zh
Priority to PCT/JP2018/030812 priority patent/WO2020039499A1/ja
Priority to EP18930837.2A priority patent/EP3826139A1/en
Priority to SG11202101595RA priority patent/SG11202101595RA/en
Priority to JP2019515669A priority patent/JP6687294B1/ja
Publication of WO2020039499A1 publication Critical patent/WO2020039499A1/ja
Priority to US17/162,898 priority patent/US20210152029A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices

Definitions

  • the present invention relates to a power transmission control device, a power transmission control method, and a wireless power supply system.
  • a power transmission device for performing non-contact power supply includes a plurality of transmission antennas
  • a technology capable of detecting a transmission antenna in which a power receiving device is arranged to face the plurality of transmission antennas ing.
  • a rated current is supplied to primary coils of a plurality of non-contact power supply units arranged on a wall of a building or the like at regular time intervals to generate a high-frequency magnetic field.
  • a non-contact power supply system which detects whether or not a non-contact power reception unit is arranged to face the non-contact power supply unit based on a change pattern in which the impedance when the power receiving side is viewed from the contact power supply unit is changed.
  • the plurality of non-contact power supply units disclosed in Patent Literature 1 each have a primary coil. This primary coil functions as a transmitting antenna.
  • the power supply from each transmitting antenna is sequentially turned ON and OFF at regular time intervals during a normal power supply operation. Therefore, even in an area where the power receiving device including the non-contact power receiving unit is not arranged to face the transmitting antenna, power is supplied at regular time intervals.
  • the related art has a problem that unnecessary electromagnetic waves are radiated at regular intervals in an area where the power receiving device is not arranged to face the transmitting antenna.
  • the electromagnetic wave may affect a power receiving device installed near the electromagnetic wave as an interference wave.
  • the present invention has been made to solve the above-described problems, and has as its object to provide a power transmission control device that can reduce unnecessary radiation of electromagnetic waves from a transmission antenna.
  • a power transmission control device for non-contact power supply includes a power transmission unit that starts power supply to a plurality of transmission antennas when an external switch is operated in conjunction with an external switch, and a power supply unit that starts power supply. And an antenna determining unit that determines a power transmitting target transmitting antenna for continuing power supply from the power transmitting unit.
  • FIG. 2 is a diagram for explaining an example of an image of a configuration of a wireless power supply system according to Embodiment 1.
  • FIG. 2 is a diagram illustrating a configuration example of the entire wireless power supply system according to the first embodiment
  • FIG. 3 is a diagram illustrating a specific configuration example of a power transmission control device included in the power transmission device in the first embodiment.
  • FIG. 3 is a diagram illustrating a specific configuration example of a power receiving device in Embodiment 1.
  • FIG. 7 is a diagram illustrating an example of a relationship between a parameter for which a foreign object detection unit detects a change and a foreign object detected based on a change in the parameter in the first embodiment.
  • 4 is a flowchart for explaining an operation of the power transmission control device according to the first embodiment.
  • FIG. 7 is a diagram illustrating an image of an example of a state in which a receiving antenna is installed across a transmitting antenna in Embodiment 1.
  • 6A and 6B are diagrams illustrating an example of a hardware configuration of the power transmission control device according to the first embodiment.
  • FIG. 9 is a diagram for describing a configuration example of a power transmission device and a power receiving device in a wireless power supply system according to Embodiment 2.
  • Embodiment 1 FIG.
  • a non-contact power supply system of a resonance type is employed in the non-contact power supply system. Since the technology of the resonance-type non-contact power supply system is an existing technology, a detailed description is omitted.
  • the resonance-type non-contact power feeding method power can be supplied from the power transmitting device to the power receiving device even when the power receiving device that is operated by being supplied with power from the power transmitting device is not installed accurately facing the power transmitting device.
  • the state in which the power receiving device is not installed facing the power transmission device refers to a state in which the power receiving device and each surface and each center of the power transmission device do not face each other so as to overlap.
  • FIG. 1 is a diagram for explaining an example of an image of a configuration of a wireless power supply system 1000 according to the first embodiment.
  • wireless power supply system 1000 is used in a building such as a house.
  • the power transmitting device 1 and the power receiving device 2 constitute a wireless power supply system 1000.
  • the power transmission device 1 installed on a structure constituting a building such as a floor or a wall of the building supplies power to the power receiving device 2 in a non-contact manner.
  • a structure in which the power transmission device 1 is installed is a floor.
  • the power receiving device 2 is a household electric device.
  • FIG. 1 is a diagram for explaining an example of an image of a configuration of a wireless power supply system 1000 according to the first embodiment.
  • wireless power supply system 1000 is used in a building such as a house.
  • the power transmitting device 1 and the power receiving device 2 constitute a wireless power supply system 1000.
  • the power transmission device 1 installed on a structure constituting a building such as a floor or a wall
  • the term “home electric appliance” is not limited to an electric appliance exclusively used in a general household, but includes various electric appliances.
  • the user can appropriately install the power receiving device 2 in an area where the power transmission device 1 can supply power. Further, the user can appropriately remove the power receiving device 2 installed in the area to which the power transmitting device 1 can supply power, move out of the area, or move in the area.
  • the power transmission device 1 includes a power transmission control device 10 and a plurality of transmission antennas 11, receives power supplied from a commercial power supply, and supplies power to a power receiving device 2 installed in an area where power can be supplied.
  • the power transmission control device 10 receives power and supplies high-frequency AC power (hereinafter, referred to as “high-frequency power”) to any one of the plurality of transmission antennas 11.
  • the transmitting antenna 11 that has been supplied with the high-frequency power from the power transmission control device 10 resonates at the same frequency as the frequency of the high-frequency power and generates a magnetic field in space (hereinafter, when the transmitting antenna 11 is supplied with the high-frequency power, The state in which a magnetic field is generated in the space is referred to as “activation state”.)
  • activation state When the power receiving device 2 is installed in an area where power can be supplied from the transmission antenna 11, power is supplied to the power receiving device 21 provided in the power receiving device 2 in a non-contact manner. Thereby, non-contact power supply from the power transmission device 1 to the power receiving device 2 is performed.
  • the plurality of transmitting antennas 11 are also simply referred to as transmitting antennas 11.
  • the power transmission control device 10 is installed inside a floor. A detailed configuration example of the power transmission control device 10 will be described later.
  • the plurality of transmitting antennas 11 are respectively installed on the floor surface, inside the floor material, or below the floor. In FIG. 1, the plurality of transmitting antennas 11 are laid on the floor at a small interval from each other, but it is not essential that the transmitting antennas 11 be laid on the floor in this way.
  • the transmitting antenna 11 may be installed so as to be scattered on the floor.
  • the image of the state where the transmitting antenna 11 is installed is shown by a circle, but this is only an image of the state of installation and does not show the shape of the transmitting antenna 11.
  • the power transmission control device 10 and the transmission antenna 11 are connected by, for example, a cable.
  • the power supply from the commercial power supply to the power transmission device 1 is controlled by the switch 3.
  • the switch 3 is, for example, a switch 3 for turning on or off lighting installed in a building.
  • the power transmission control device 10 of the power transmission device 1 starts processing such as activation of the transmission antenna 11 described below, in conjunction with the operation of the switch 3.
  • the power receiving device 2 receives power from the power transmitting device 1 in a non-contact manner.
  • the power receiving device 2 includes a power receiving device 21 including a receiving antenna 211, and the power receiving device 21 wirelessly receives power from the power transmission control device 10 via the receiving antenna 211 and the transmitting antenna 11.
  • the receiving antenna 211 resonates at the same frequency as the resonance frequency of the transmitting antenna 11 by the magnetic field generated by the transmitting antenna 11 in the activated state, and receives power from the transmitting antenna 11 in a non-contact manner.
  • the power receiving device 2 becomes operable by the power received by the power receiving device 21. A detailed configuration example of the power receiving device 2 will be described later.
  • the power transmission control device 10 and the power receiving device 2 can communicate with each other using wireless communication.
  • the communication standard for example, Bluetooth (registered trademark; the following description is omitted), Zigbee (registered trademark, the following description is omitted) and the like are used.
  • the power transmission control device 10 outputs a start signal and starts supplying high-frequency power to the transmission antenna 11, thereby putting the transmission antenna 11 into the start state.
  • the power receiving device 2 is installed in an area where power can be supplied from the transmitting antenna 11 in the activated state, wireless power feeding to the power receiving device 2 is started by any of the transmitting antennas 11.
  • the power receiving device 2 for which the non-contact power supply has been started transmits a response signal to the power transmission control device 10 that the non-contact power supply has started.
  • the power transmission control device 10 responds to the response signal received from the power receiving device 2, of the transmitting antennas 11 in the activated state, the transmitting antennas that need to continue supplying high-frequency power (hereinafter referred to as “power transmitting target transmitting antenna”). ).
  • the power transmission control device 10 keeps the power transmitting target transmitting antenna in the active state by continuously supplying the high frequency power to the power transmitting target transmitting antenna.
  • the power transmission control device 10 stops supplying high frequency power to the transmission antennas 11 other than the power transmission target transmission antenna.
  • the transmitting antenna 11 from which the supply of the high-frequency power is stopped does not enter the activation state until the activation signal is output by turning on the switch 3 again.
  • FIG. 2A is a diagram illustrating a configuration example of the entire wireless power supply system 1000 according to Embodiment 1.
  • FIG. 2B is a diagram illustrating a specific configuration example of the power transmission control device 10 included in the power transmission device 1 according to the first embodiment.
  • FIG. 2C is a diagram illustrating a specific configuration example of the power receiving device 2 in the first embodiment.
  • the power transmission device 1 includes a power transmission control device 10 and a transmission antenna 11.
  • the power transmission control device 10 performs a “activation process” that activates the transmission antenna 11, and a transmission antenna to be transmitted after the “activation process”.
  • the power transmission control device 10 includes an activation control unit 101, a high-frequency inverter circuit 102, a foreign object detection unit 103, a power transmission control unit 104, and a communication unit 105.
  • the power transmission control unit 104 includes an antenna control unit 1041, a power transmission unit 1042, and an antenna determination unit 1043.
  • the communication unit 105 includes a response receiving unit 1051 and an error notification unit 1052.
  • the start control unit 101 outputs a start signal in conjunction with the operation of the switch 3.
  • the activation control unit 101 outputs an activation signal to the power transmission control unit 104 when the switch 3 is turned on from the off state.
  • activation control section 101 receives electric power supplied from a commercial power supply.
  • the commercial power supply is assumed to be, for example, a 50 Hz or 60 Hz commercial AC power supply.
  • the start control unit 101 outputs the power supplied from the commercial power supply to the high-frequency inverter circuit 102.
  • the activation control unit 101 also functions as a conversion unit that converts commercial power, which is AC power, into DC power.
  • the high-frequency inverter circuit 102 converts the DC power output from the activation control unit 101 into high-frequency power.
  • the high-frequency inverter circuit 102 outputs the high-frequency power to the foreign object detection unit 103 and the power transmission control unit 104.
  • the power transmission control unit 104 performs control to supply the high frequency power output from the high frequency inverter circuit 102 to the transmission antenna 11.
  • the antenna control unit 1041 of the power transmission control unit 104 controls supply of high-frequency power to the transmission antenna 11 by the power transmission unit 1042. Specifically, the antenna control unit 1041 causes the power transmission unit 1042 to supply high-frequency power to the transmission antenna 11 when the activation signal is output from the activation control unit 101 in the “activation process”. The transmission antenna 11 is activated. At this time, the antenna control unit 1041 sets all the other transmitting antennas 11 to the active state, except for the transmitting antenna 11 that has been set as the power transmitting target transmitting antenna during the past “steady power transmission processing” and has been in the active state.
  • the antenna control unit 1041 sets the other transmission antennas except for the transmission antenna 11 that has been set as the power transmission target transmission antenna in the past “steady power transmission processing” and has been continuously activated. It is assumed that all 11 are activated, but this is merely an example.
  • the antenna control unit 1041 causes the power transmission unit 1042 to supply high-frequency power to all the transmission antennas 11, thereby setting all the transmission antennas 11 to the activation state. You may do it.
  • the antenna control unit 1041 determines whether the power transmission device 1 is normally activated. Details will be described later.
  • the antenna control unit 1041 controls the power transmission unit 1042 to continue supplying high frequency power to the power transmission target transmission antenna, and The supply of high-frequency power to the transmission antennas 11 other than the target transmission antenna is stopped. Details will be described later.
  • the antenna control unit 1041 when the foreign object detection unit 103 detects a foreign object with respect to the activated power transmission target transmission antenna, the antenna control unit 1041 outputs an error signal to the communication unit 105 and sends the error signal to the power transmission unit 1042. Then, the supply of the high-frequency power to the power transmitting target transmitting antenna is stopped. Details will be described later. Also, in the “steady power transmission process”, the antenna control unit 1041 determines whether the activated power transmission target transmission antenna is performing non-contact power feeding to the power receiving device 21, and the non-contact power feeding to the power receiving device 21 is determined. If it is determined that the transmission has not been performed, an error signal is output to the communication unit 105, and the power transmission unit 1042 is caused to stop supplying high-frequency power to the power transmission target transmission antenna. Details will be described later.
  • the power transmission unit 1042 of the power transmission control unit 104 starts supplying high-frequency power to the transmission antenna 11 based on the control of the antenna control unit 1041 when the activation control unit 101 outputs the activation signal in the “activation process”. Further, in the “steady power transmission process”, the power transmission unit 1042 continues to supply high-frequency power to the transmission target transmission antenna under the control of the antenna control unit 1041, and supplies high-frequency power to the transmission antennas 11 other than the power transmission target antenna. Stop supplying.
  • the antenna determination unit 1043 of the power transmission control unit 104 responds to the response signal in the “steady power transmission process”. Then, the transmission antenna to be transmitted is determined from the plurality of transmission antennas in the activated state.
  • the antenna determination unit 1043 outputs information on the determined power transmission target transmission antenna to the antenna control unit 1041.
  • the foreign object detection unit 103 determines whether or not the power transmission unit 1042 is supplying high-frequency power to the power transmission target transmission antenna, based on the supply state of the high frequency power to the power transmission target transmission antenna. 1 and a power receiving device 21 are detected. Specifically, foreign object detection section 103 detects a foreign object existing between a power transmitting target transmitting antenna and receiving antenna 211. In the first embodiment, between the transmitting antenna 11 and the receiving antenna 211, the magnetic field mainly transmitted by the electromagnetic wave generated in the space when the transmitting antenna 11 is in an activated state is transmitted to the power receiving device 2 in a non-contact manner. It refers to the space in the range where power is supplied.
  • the foreign substance detection unit 103 detects a change in the parameter, and detects a foreign substance based on the detected change in the parameter.
  • the parameter for which the foreign substance detection unit 103 detects a change is the input voltage or the input current of the high-frequency inverter circuit 102, and the like.
  • FIG. 3 is a diagram illustrating an example of a relationship between a parameter whose change is detected by the foreign object detection unit 103 and a foreign object detected by a change in the parameter according to the first embodiment. As shown in FIG. 3, the foreign substance detection unit 103 detects a foreign substance as follows using, for example, an input voltage or an input current of the high-frequency inverter circuit 102 as a parameter.
  • a metal such as aluminum, copper, or stainless steel is detected as a foreign substance.
  • the foreign object detection unit 103 calculates power from the input voltage and the input current. If the increase in power or current is larger than a preset threshold (second threshold), a magnetic substance such as a DVD (Digital Versatile Disc), a ferrite, or a magnet is detected as a foreign substance. If the decrease in power or current is smaller than a preset threshold (third threshold), a dielectric such as a human body, an animal, or water is detected as a foreign substance.
  • the foreign substance detection unit 103 detects a foreign substance based on a change in a parameter. Further, the foreign substance detection unit 103 can specify the type of the foreign substance according to the change in the parameter. In addition, the foreign substance detection unit 103 can detect a plurality of different types of foreign substances based on a combination of parameters as shown in FIG. As the number of parameters to be detected increases, the accuracy of foreign matter detection improves. Upon detecting a foreign substance, foreign substance detection section 103 outputs information indicating that the foreign substance has been detected to power transmission control section 104.
  • the communication unit 105 transmits and receives information to and from the power receiving device 2 using wireless communication.
  • wireless communication For example, Bluetooth or Zigbee is used as the communication standard.
  • the response receiving unit 1051 of the communication unit 105 receives a response signal transmitted from the power receiving device 2 in the “activation process”.
  • the power receiving device 2 is set in an area where power can be supplied from the transmitting antenna 11 in the activated state, the receiving antenna 211 of the power receiving device 21 receives power, and one of the transmitting antennas 11 starts non-contact power supply to the power receiving device 2. Is done.
  • the power receiving device 2 to which the non-contact power supply has been started transmits a response signal to the power transmission control device 10 to the effect that the non-contact power supply has started, by the communication unit 22.
  • the response receiving unit 1051 receives a response signal transmitted by the power receiving device 2 for which contactless power supply has been started. When there are a plurality of power receiving devices 2 to which power is supplied, a response signal is transmitted from each power receiving device 2, and the response receiving unit 1051 receives each response signal.
  • the response signal received by the response receiving unit 1051 is, for example, a flag, and from the response signal, it cannot be determined from which power receiving device 2 the response signal is transmitted.
  • Response receiving section 1051 outputs the received response signal to power transmission control section 104.
  • the error notification unit 1052 of the communication unit 105 transmits the error signal to the power receiving device 2 when an error signal is output from the power transmission control unit 104 in the “steady power transmission process”.
  • the power receiving device 2 includes a power receiving device 21, a communication unit 22, an output unit 23, and a control unit 24.
  • the power receiving device 21 includes a receiving antenna 211.
  • the communication unit 22 includes a response transmission unit 221 and an error reception unit 222.
  • the power receiving device 21 receives power from the transmitting antenna 11 via the receiving antenna 211.
  • the power receiving device 21 includes a rectifier circuit (not shown) and a DC / DC converter (not shown).
  • the power receiving device 21 converts AC power received by the receiving antenna 211 into DC power.
  • the power receiving device 21 outputs the power received by the receiving antenna 211 to the control unit 24.
  • the control unit 24 operates with the power output from the power receiving device 21 and controls each component of the power receiving device 2.
  • the communication unit 22 transmits and receives information to and from the power transmission control device 10 using wireless communication.
  • wireless communication For example, Bluetooth or Zigbee is used as the communication standard.
  • the response transmission unit 221 of the communication unit 22 transmits a signal to the communication unit 105 of the power transmission control device 10 when wireless power supply from the power transmission control device 10 to the power reception device 21 is started via the reception antenna 211 and the transmission antenna 11. To send a response signal.
  • the control unit 24 controls the response transmitting unit 221 to transmit a response signal.
  • the operation in which the response transmission unit 221 transmits a response signal to the communication unit 105 of the power transmission control device 10 is such that the power transmission control device 10 activates the transmission antenna 11 every time the switch 3 is turned on. It is performed at the time of "start processing".
  • the antenna determination unit 1043 receives the response signal from the communication unit 22 in the “steady power transmission process”.
  • a power transmitting target transmitting antenna is determined according to the response signal.
  • the error receiving unit 222 of the communication unit 22 receives the error signal transmitted from the power transmission control device 10.
  • the operation in which the error receiving unit 222 receives the error signal transmitted from the power transmission control device 10 is an operation performed at the time of the “steady power transmission process” in the power transmission control device 10.
  • the error receiving section 222 outputs the received error signal to the control section 24.
  • the control unit 24 causes the output unit 23 to temporarily output the error information.
  • the output unit 23 is a display or a level meter, and outputs various information.
  • the output unit 23 outputs information indicating a power supply state from the power transmission device 1 in the power receiving device 2.
  • the power receiving device 2 measures the power (hereinafter, referred to as “power measurement value”) that the power receiving device 21 receives from the power transmission control device 10 via the reception antenna 211 and the transmission antenna 11. (Not shown).
  • the control unit 24 controls the output unit 23 according to the measured power value, and causes the output unit 23 to output information indicating the power supply state.
  • a wattmeter is used as the measuring unit.
  • the control unit 24 causes the output unit 23 to output information indicating the power supply state by various methods based on the measured power value.
  • the output unit 23 when the output unit 23 is a display, the output unit 23 displays the measured power value in characters. Further, for example, when the output unit 23 is a level meter, the output unit 23 displays a power supply state corresponding to the measured power value with light. Further, for example, the output unit 23 may be an audio output device, and the power supply state according to the measured power value may be output as a sound.
  • the user can grasp the relative position between the power receiving device 2 and the power transmission device 1 by checking the information indicating the power supply state output by the output unit 23.
  • the relative position between the power receiving device 2 and the power transmitting device 1 is a relative position between the receiving antenna 211 and the transmitting antenna 11.
  • the output unit 23 outputs error information based on the control of the control unit 24. For example, when the output unit 23 is a display, the output unit 23 displays an error message.
  • the control unit 24 controls each component of the power receiving device 2.
  • FIG. 4 is a flowchart for explaining the operation of the power transmission control device 10 according to the first embodiment.
  • the operation of the power transmission control device 10 will be described assuming that the power transmission device 1 is started for the first time after being installed.
  • the operations of steps ST401 to ST404 and ST409 described below are operations of the “startup process”, and the operations of steps ST405 to ST410 are operations of the “steady power transmission process”.
  • the activation control unit 101 waits until the switch 3 is turned on from the OFF state (“NO” in step ST401). When switch 3 is turned on (“YES” in step ST401), activation control section 101 outputs the power supplied from the commercial power supply to high-frequency inverter circuit 102 and activates power transmission control section 104. Output a signal.
  • antenna control section 1041 of power transmission control section 104 causes power transmission section 1042 to supply high-frequency power to all transmission antennas 11 (step ST402). ).
  • the antenna control unit 1041 determines whether the power transmission device 1 has been normally started (step ST403). Specifically, if the voltage level or the current level of the high-frequency power output from high-frequency inverter circuit 102 has reached a preset voltage level or current level, antenna control section 1041 determines that power transmission device 1 has been normally operating. Determine that it is running.
  • step ST403 If the antenna control unit 1041 determines that the power transmitting device 1 has been started up normally (“YES” in step ST403), the process proceeds to step ST404.
  • antenna control section 1041 When determining that power transmitting apparatus 1 has not been started up normally (in the case of “NO” in step ST403), antenna control section 1041 turns off supply of high-frequency power to power transmitting section 1042 (step ST409).
  • step ST409 the supply of high-frequency power to all transmitting antennas 11 performed by power transmitting section 1042 is turned off. After that, the supply of the high-frequency power to the transmitting antenna 11 remains off until the user turns on the switch 3 in the OFF state again (step ST401).
  • step ST404 response receiving section 1051 of communication section 105 determines whether or not a response signal from power receiving device 2 has been received as a result of power transmitting section 1042 supplying high-frequency power to transmitting antenna 11 in step ST402. (Step ST404). In step ST404, when response receiving section 1051 does not receive a response signal (in the case of “NO” in step ST404), the process proceeds to step ST409.
  • step ST404 when response receiving section 1051 receives the response signal (“YES” in step ST404), response receiving section 1051 outputs the received response signal to power transmission control section 104.
  • step ST404 when a response signal is output from response receiving section 1051, antenna control section 1041 starts “steady power transmission processing”. Specifically, antenna control section 1041 determines transmission antenna 11 which needs to continue supplying high-frequency power among a plurality of transmission antennas 11, and instructs power transmission section 1042 to transmission antenna 11 in step ST402. A process for continuing the supplied high-frequency power is started.
  • Antenna determination section 1043 of power transmission control section 104 determines a power transmission target transmission antenna according to the response signal received by response receiving section 1051 from power receiving device 2 in step ST404 (step ST405).
  • a method in which the antenna determination unit 1043 determines the power transmission target transmission antenna will be described using a specific example.
  • the antenna determination unit 1043 specifies the three transmitting antennas 11 in the order of the best state among all the transmitting antennas 11 based on the state of the non-contact power feeding by the respective transmitting antennas 11, and the three transmitting antennas 11 11 is determined as the power transmitting target transmitting antenna.
  • the antenna determining unit 1043 may determine the contactless power supply state based on the voltage level or the current level of the high-frequency power output from the high-frequency inverter circuit 102.
  • one receiving antenna 211 is installed across a plurality of transmitting antennas 11.
  • one receiving antenna 211 straddles a plurality of transmitting antennas 11 means that the positional relationship between one receiving antenna 211 and the plurality of transmitting antennas 11 is relative to the one receiving antenna 211.
  • FIG. 5 is a diagram illustrating an image of an example of a state in which reception antenna 211 is installed across transmission antenna 11 in the first embodiment.
  • FIG. 5 shows an example of an image in which the receiving antenna X (211) is installed across the transmitting antenna A (11a) and the transmitting antenna B (11b).
  • the antenna determination unit 1043 determines a power transmission target transmission antenna based on the state of non-contact power feeding by the transmission antenna 11.
  • the receiving antenna X (211) is larger in a range facing the transmitting antenna B (11b) than in a range facing the transmitting antenna A (11a). Therefore, the high-frequency power supplied to the transmission antennas 11B (11b) is higher than the high-frequency power supplied to the transmission antennas 11A (11a) with respect to the high-frequency power supplied to the transmission antennas 11 by the power transmission control device 10. That is, the state of non-contact power supply to the receiving antenna X (211) is better in the transmitting antenna B (11b) than in the transmitting antenna A (11a).
  • the antenna determination unit 1043 determines the transmission antenna B (11b), which has a relatively good contactless power supply state, as the power transmission target transmission antenna.
  • the antenna determination unit 1043 outputs information on the determined power transmission target transmission antenna to the antenna control unit 1041. Specifically, for example, the antenna determination unit 1043 adds a power transmission target flag to information of each transmission antenna 11 included in the power transmission control device 10. Based on the power transmission target flag, the antenna control unit 1041 determines whether the transmission antenna 11 is the power transmission target transmission antenna.
  • the antenna control unit 1041 continues to supply the high-frequency power to the power transmission target transmission antenna determined by the antenna determination unit 1043 in step ST405 to the power transmission unit 1042, and supplies the high frequency power to the transmission antennas 11 other than the power transmission target antenna.
  • the power supply is stopped (step ST406). Accordingly, power is supplied from the power transmitting target transmitting antenna to the power receiving device 2 to which power is to be actually supplied, and supply of high-frequency power to the transmitting antennas 11 other than the power transmitting target transmitting antenna is stopped. No electromagnetic waves are emitted.
  • the foreign matter detection unit 103 determines whether the power transmitting device 1 and the power receiving device 21 are connected to each other based on the high-frequency power supply state to the power transmission target transmission antenna while the power transmission unit 1042 supplies high frequency power to the power transmission target transmission antenna. A foreign substance existing therebetween is detected (step ST407).
  • step ST407 when foreign object detection section 103 detects a foreign object (in the case of “YES” in step ST407), foreign matter detection section 103 outputs information to the effect that foreign matter has been detected to power transmission control section 104.
  • Antenna control section 1041 of power transmission control section 104 outputs an error signal to communication section 105 (step ST410), and proceeds to step ST409.
  • error notification section 1052 of communication section 105 transmits the error signal to power receiving device 2.
  • the error receiving unit 222 of the communication unit 22 receives the error signal and outputs the signal to the control unit 24.
  • the control unit 24 causes the output unit 23 to output the error information.
  • the control unit 24 causes the error information to be temporarily output. It is assumed that the time during which the error information is output is set in advance.
  • the antenna control unit 1041 transmits the power transmitted to the power transmission target transmission antenna that has been detected to have a foreign object to the power receiving device 21. Initialize the target flag.
  • antenna control section 1041 transmits power signal to transmission section 1042. The supply of high-frequency power to the transmitting antennas 11 other than the transmitting antenna to be transmitted is turned off.
  • the antenna control unit 1041 may determine whether or not the transmission antenna 11 is a power transmission target transmission antenna by using a power transmission target flag.
  • steps ST407 to ST410 will be described with a specific example.
  • four power receiving devices 2 are installed on the floor, and a DVD as a foreign substance is sandwiched under one of the four power receiving devices 2.
  • the response receiving unit 1051 cannot determine which response signal is a response transmitted from which power receiving device 2. That is, the power transmission control device 10 cannot determine from which power transmission target transmission antenna the unnecessary non-contact power supply to the DVD is performed.
  • the power transmission control device 10 performs the foreign object detection by the foreign object detection unit 103 in step ST407, and when the power transmission control unit 104 detects the foreign object, The supply of high frequency power to the antenna 11 is turned off.
  • the power transmission target flag is initialized by the antenna control unit 1041 so that the transmission antenna 11 is not determined to be the power transmission target transmission antenna.
  • the user detects that an error has occurred and power supply to the power receiving device 2 is stopped, and, for example, removes a foreign substance.
  • the switch 3 is turned on again. Then, the processes after step ST401 are performed again.
  • the power transmission control device 10 detects a foreign substance during the “steady power transmission processing”, for example, a user's burns or deformation of the foreign substance due to the fact that the foreign substance continues to be supplied with power and the temperature of the foreign substance becomes high. , Melting, ignition or breakage, or the possibility of occurrence of fire due to ignition of foreign matter can be reduced.
  • step ST407 when foreign object detection section 103 does not detect any foreign object (“NO” in step ST407), the process proceeds to step ST408.
  • the control unit 24 causes the output unit 23 to output information indicating the power supply state according to the power supply state from the power transmission device 1.
  • the output unit 23 is an LED level meter including three LEDs (a first LED, a second LED, and a third LED)
  • the control unit 24 outputs the measured power value.
  • the lighting of the three LEDs is controlled based on the corresponding power supply state. For example, assuming that the power supplied from the power transmission device 1 is 1000 W, the control unit 24 determines that the power measurement value is 500 W or more when the power measurement value has reached 1000 W (the first state).
  • the control unit 24 turns on all of the first to third LEDs in the first state, and turns on the first and second LEDs in the second state. In the third state, only the first LED is turned on, and in the fourth state, no LED is turned on.
  • the receiving antenna 211 is installed across the plurality of transmitting antennas 11 as in the example of FIG. 5 described above, the power receiving device 2 is supplied with power that is guaranteed as the power supplied from the power transmitting device 1. Therefore, for example, one or two of the first to third LEDs are turned on.
  • the user can instantly grasp the power supply status, which indicates that power is being supplied or that power is being supplied but is not sufficient.
  • the user can grasp the relative position between the power transmitting device 1 and the power receiving device 2 based on the lighting state of the output unit 23. For example, when the user checks the lighting state of the output unit 23 and determines that the power receiving device 2 is supplied with power but is not sufficient, the user moves the power receiving device 2 and changes the power receiving device 2 to power. Is moved to a position where is supplied sufficiently.
  • Antenna control section 1041 determines whether or not the power transmitting target transmitting antenna is performing non-contact power supply to power receiving device 21 (step ST408).
  • the antenna control unit 1041 may determine whether the power transmitting target transmitting antenna is performing non-contact power feeding to the power receiving device 21 based on the voltage level or the current level of the high frequency power output from the high frequency inverter circuit 102. .
  • step ST408 when the antenna control unit 1041 determines that the power transmitting target transmitting antenna is performing non-contact power supply to the power receiving device 21 (in the case of “YES” in step ST408), the process returns to step ST405 and returns to “steady power transmission”.
  • Process ” is repeated. Specifically, the antenna control unit 1041 causes the power transmission unit 1042 to continue supplying the current high-frequency power to the power transmission target transmission antenna. Therefore, the power transmission unit 1042 continues to supply high-frequency power to the transmission antenna to be transmitted, and stops stopping high-frequency power to the transmission antennas 11 other than the transmission antenna to be transmitted. Thereafter, high-frequency power is supplied to the power transmitting target transmitting antenna, and as long as no abnormality such as foreign object detection occurs, the “steady power transmitting process” from step ST405 is repeated.
  • step ST408 when the antenna control unit 1041 determines that the power transmitting target transmitting antenna is not performing non-contact power supply to the power receiving device 21 (in the case of “NO” in step ST408), the antenna control unit 1041 It is determined that an abnormality has occurred in the state of non-contact power supply, and the process proceeds to step ST410. Note that when there are a plurality of power transmission target transmission antennas, the antenna control unit 1041 sends the power transmission target transmission antenna to the power reception device 21 if the antenna control unit 1041 determines that non-contact power supply to the power reception device 21 is not performed. It is determined that non-contact power supply is not performed.
  • the antenna control unit 1041 initializes the power transmission target flag assigned to the power transmission target transmission antenna that has been determined not to perform non-contact power supply to the power receiving device 21. For example, it is assumed that the user moves the power receiving device 2 and the installation position of the power receiving device 2 changes. Then, the relative position between the power transmitting device 1 and the power receiving device 2 fluctuates, and non-contact power supply from the power transmitting device 1 to the power receiving device 21 of the power receiving device 2 may not be performed. As described above, the antenna control unit 1041 determines that the non-contact power supply from the power transmission device 1 to the power reception device 21 is not performed.
  • antenna control section 1041 When proceeding to step ST410, antenna control section 1041 outputs an error signal to communication section 105 (step ST410). Then, antenna control section 1041 causes power transmitting section 1042 to turn off the supply of the high-frequency power to the power transmitting target transmitting antenna (step ST409).
  • the user recognizes that an error has occurred and the power supply to the power receiving device 2 has been stopped, and, for example, if the current position of the power receiving device 2 is outside the area where power can be supplied from any of the transmitting antennas 11, After the power receiving device 2 is moved into the area, or if the current position of the power receiving device 2 is in the area where the power can be supplied, the switch 3 is again operated while the power receiving device 2 is in that position. Turn ON. Then, the processes after step ST401 are performed again.
  • step ST405 the operation is performed in the order of step ST405 to step ST407, but the operation of step ST407 may be performed before step ST405 and step ST406.
  • the operation of the power transmission control device 10 has been described above assuming that the power transmission control device 10 is started for the first time after installation.
  • an operation when the power transmission control device 10 is activated for the second time or more after installation will be described.
  • the antenna control unit 1041 of the power transmission control unit 104 When the activation of the power transmission control device 10 is the second or subsequent time after the installation, the antenna control unit 1041 of the power transmission control unit 104 outputs the activation signal from the activation control unit 101, and the power transmission unit 1042 When supplying high-frequency power, if there is already one or more power receiving devices 2 to which wireless power supply is being performed from one or more power transmission target transmission antennas, the power transmission target transmission antenna continues to transmit power. As a target transmission antenna, the power transmission unit 1042 supplies high-frequency power to the transmission antennas 11 other than the power transmission target transmission antenna (steps ST401 to ST402). The antenna control unit 1041 may specify the power transmission target antenna based on, for example, the power transmission target flag.
  • the power transmission control device 10 determines, for example, that a foreign object is detected or that a power receiving device The supply of the high-frequency power is continued unless an abnormal event such as a non-contact power supply to the power supply 21 becomes impossible.
  • the power transmission control device 10 supplies the high-frequency power to the transmission antenna 11 once, and supplies the high-frequency power. Is determined to be unnecessary, thereafter, unnecessary supply of high-frequency power to the transmitting antenna 11 is not performed until the switch 3 in the OFF state is turned on again. That is, unlike the related art described above, power transmission does not need to be performed at regular intervals. As a result, it is possible to reduce unnecessary radiation of electromagnetic waves periodically to an area where the power receiving device 2 is not installed. This can reduce the possibility that unnecessary electromagnetic waves may affect the power receiving device 2 installed near the electromagnetic waves.
  • the power receiving device 2 when a power receiving device 2 that requires power supply constantly is installed facing the non-contact power supply unit, the power receiving device 2 turns off the power supply at regular time intervals. It is necessary to mount a battery in preparation for the operation.
  • the supply of the high-frequency power to the power transmission target transmission antenna once determined is continued as long as no abnormality occurs in the power supply environment to the power receiving device 2. . Therefore, the power receiving device 2 can be continuously used by being supplied with power from the power transmitting device 1 even if the power receiving device 2 does not include a battery.
  • the power transmission control device 10 detects a foreign object during the steady-state power transmission process. For example, a user's burn, deformation of the foreign object, melting, and ignition due to the high temperature of the foreign object are detected. Alternatively, it is possible to reduce the possibility of breakage or the occurrence of fire due to ignition of foreign matter.
  • the power transmission control device 10 does not detect the impedance when looking at the power receiving side when determining the power transmitting target transmitting antenna, so that the circuit scale is large even in high-frequency transmission over the MHz band. This makes it possible to reduce the size and cost of the device.
  • the power transmission control device 10 according to the first embodiment includes the foreign object detection unit 103, and completes the foreign object detection operation in the power transmission control device 10. Therefore, the power transmission control device 10 Foreign matter can be detected regardless of whether or not the power receiving device 21 exists. Also, for example, conventionally, a technology for performing non-contact power supply to a smartphone is known. You had to do it with a battery.
  • the power transmission control device 10 starts the non-contact power supply to the power receiving device 2 in cooperation with the switch 3 such as a light, and supplies the power by the non-contact power supply.
  • the received power can be used to authenticate the power receiving device 2. Therefore, a battery is not required on the power receiving device 2 side.
  • the switch 3 of the lighting device and the power transmission control device 10 are linked.
  • the non-contact power supply system 1000 can execute the “start-up process” without the user being particularly conscious.
  • the switch 3 of the lighting device is generally located at a position where the user can easily operate, it is easy for the user to intentionally cause the non-contact power supply system 1000 to execute the “activation process”.
  • FIG. 6A and 6B are diagrams illustrating an example of a hardware configuration of the power transmission control device 10 according to the first embodiment.
  • the functions of the activation control unit 101, the foreign substance detection unit 103, the power transmission control unit 104, and the communication unit 105 are realized by the processing circuit 601. That is, when the switch 3 is turned ON, the power transmission control device 10 determines a power transmission target transmission antenna for supplying high-frequency power to the power reception device 21 included in the power reception device 2, and determines the power transmission target transmission antenna via the power transmission target transmission antenna.
  • the processing circuit 601 may be dedicated hardware as shown in FIG. 6A, or may be a CPU (Central Processing Unit) 605 that executes a program stored in the memory 606 as shown in FIG. 6B.
  • CPU Central Processing Unit
  • the processing circuit 601 When the processing circuit 601 is dedicated hardware, the processing circuit 601 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and an FPGA (Field-Programmable). Gate @ Array) or a combination thereof.
  • the processing circuit 601 is the CPU 605
  • the functions of the activation control unit 101, the foreign object detection unit 103, the power transmission control unit 104, and the communication unit 105 are realized by software, firmware, or a combination of software and firmware. That is, the activation control unit 101, the foreign substance detection unit 103, the power transmission control unit 104, and the communication unit 105 include a CPU (605) that executes a program stored in an HDD (Hard Disk Drive) 602, a memory 606, or a system LSI ( It is realized by a processing circuit such as Large-Scale @ Integration.
  • the program stored in the HDD 602 or the memory 606 causes the computer to execute the procedures and methods of the activation control unit 101, the foreign substance detection unit 103, the power transmission control unit 104, and the communication unit 105.
  • the memory 606 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Memory Only), an EEPROM (Electrical Memory, etc.).
  • a volatile or volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), or the like is applicable.
  • the functions of the activation control unit 101, the foreign object detection unit 103, the power transmission control unit 104, and the communication unit 105 are realized by dedicated hardware and partially realized by software or firmware. Is also good.
  • the function of the activation control unit 101 is realized by a processing circuit 601 as dedicated hardware, and the processing circuits of the foreign object detection unit 103, the power transmission control unit 104, and the communication unit 105 are stored in the memory 606. The function can be realized by reading and executing the program.
  • the power transmission control device 10 includes an input interface device 603 and an output interface device 604 that communicate with the switch 3 or the power receiving device 2 or the like.
  • the power transmission control device 10 includes a high-frequency inverter circuit 102 (not shown in FIGS. 6A and 6B).
  • the power receiving device 2 according to the first embodiment also has a hardware configuration as shown in FIGS. 6A and 6B.
  • FIGS. 6A and 6B An example of a hardware configuration of the power receiving device 2 according to Embodiment 1 will be described with reference to FIGS. 6A and 6B.
  • the functions of the communication unit 22 and the control unit 24 are realized by the processing circuit 601. That is, the power receiving device 2 causes the power transmission device 1 to transmit a start signal for causing the transmission antennas 11 to supply high-frequency power to the plurality of transmission antennas 11, and performs control to operate using the power supplied from the power transmission device 1.
  • the processing circuit 601 may be dedicated hardware as shown in FIG. 6A, or may be a CPU (Central Processing Unit) 605 that executes a program stored in the memory 606 as shown in FIG. 6B.
  • CPU Central Processing Unit
  • the processing circuit 601 When the processing circuit 601 is dedicated hardware, the processing circuit 601 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), and an FPGA (Field-Programmable). Gate @ Array) or a combination thereof.
  • the processing circuit 601 is the CPU 605
  • the functions of the communication unit 22 and the control unit 24 are realized by software, firmware, or a combination of software and firmware. That is, the communication unit 22 and the control unit 24 are realized by a processing circuit such as an HDD (Hard Disk Drive) 602, a CPU 605 that executes a program stored in a memory 606 or the like, or a system LSI (Large-Scale Integration). Also, it can be said that the program stored in the HDD 602 or the memory 606 causes the computer to execute the procedures and methods of the communication unit 22 and the control unit 24.
  • HDD Hard Disk Drive
  • LSI Large-Scale Integration
  • the memory 606 is, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Memory Only), an EEPROM (Electrical Memory, etc.).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory an EPROM (Erasable Programmable Read Memory Only)
  • EEPROM Electrical Memory, etc.
  • a volatile or volatile semiconductor memory a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), or the like is applicable.
  • the functions of the communication unit 22 and the control unit 24 may be partially realized by dedicated hardware, and partially realized by software or firmware.
  • the function of the communication unit 22 is realized by a processing circuit 601 as dedicated hardware
  • the function of the control unit 24 is realized by the processing circuit reading and executing a program stored in the memory 606. It is possible.
  • the power receiving device 2 includes an input interface device 603 and an output interface device 604 that communicate with an external device such as the power transmission device 1.
  • the power receiving device 2 includes a receiving antenna 211 (not shown in FIGS. 6A and 6B).
  • the power receiving device 2 includes an output device (not shown in FIGS. 6A and 6B).
  • the output device is a display, a level meter, an audio output device, or the like.
  • power transmission control device 10 operates in conjunction with an external switch (switch 3), and starts power supply to a plurality of transmission antennas 11 when the external switch is operated. It is configured to include a unit 1042 and an antenna determination unit 1043 that determines a power transmission target transmission antenna that continues power supply from the power transmission unit 1042 among the plurality of transmission antennas 11 whose power supply has been started. Therefore, it is possible to reduce unnecessary radiation of electromagnetic waves to an area where the power receiving device 2 supplied with power from the power transmission device 1 is not installed. This can reduce the possibility that unnecessary electromagnetic waves may affect the power receiving device 2 installed near the electromagnetic waves.
  • the antenna control unit 1041 supplies power to the power transmission target transmission antenna until the external switch is operated again.
  • the power supply to the transmitting antennas other than the power transmitting target transmitting antenna is stopped, and the power supply to the transmitting antenna other than the power transmitting target transmitting antenna is stopped.
  • the supply of the high-frequency power is continued as long as no abnormality occurs in the power supply environment to the power receiving device 2, so that the power receiving device 2 does not need to have a battery. Power supply from the power transmission device 1 enables continuous use.
  • the activation control unit 101 of the power transmission control device 10 outputs an activation signal when the external switch is turned on.
  • the non-contact power supply to the power receiving device 2 is started in conjunction with the switch 3, and the power receiving device 2 is authenticated by the power supplied by the non-contact power supply. Therefore, the power receiving device 2 does not require a battery.
  • the power transmission control device 10 detects a foreign object during the steady power transmission process, for example, a user's burn, deformation, melting, ignition, or breakage of the foreign object due to the high temperature of the foreign object, or ignition of the foreign object It is possible to reduce the possibility of causing a fire due to the fire.
  • the power transmission control device 10 receives the transmission antenna and the power reception device 2 based on the power supply state to the power transmission target transmission antenna.
  • the apparatus further includes a foreign object detection unit 103 that detects a foreign object existing between the antenna 211 and the antenna control unit 1041. Stop supply. Since the foreign object detection operation is completed in the power transmission control device 10, the power transmission control device 10 can detect a foreign object irrespective of whether or not the power receiving device 21 exists in an area where power can be supplied via the transmission antenna 11. .
  • the power transmission control device 10 does not detect the impedance looking at the power receiving side when determining the transmission antenna to be transmitted, so that the circuit scale does not increase even in high-frequency transmission over the MHz band. , And cost reduction.
  • Embodiment 2 FIG.
  • the power transmission device 1 supplies high-frequency power from one power transmission control device 10 to a plurality of transmission antennas 11.
  • the power transmission device 1 includes a power transmission control device 10 corresponding to each of the plurality of transmission antennas 11.
  • FIG. 7 is a diagram for describing a configuration example of the power transmitting device 1a and the power receiving device 2 in the non-contact power supply system 1000 according to Embodiment 2.
  • the contactless power supply system 1000 according to the second embodiment differs from the contactless power supply system 1000 according to the first embodiment in that the power transmission device 1a includes the power transmission control device 10 corresponding to each of the plurality of transmission antennas 11. The points are different.
  • the power transmission control device 10 and the transmission antenna 11 are connected by, for example, a cable.
  • the other configuration is the same as that of the non-contact power supply system 1000 according to the first embodiment, and a duplicate description will be omitted.
  • each power transmission control device 10 included in the power transmission device 1a is the same as the specific configuration of the power transmission control device 10 described in Embodiment 1 with reference to FIG. Description is omitted.
  • the description of each component included in each power transmission control device 10 is omitted.
  • each power transmission control device 10 is provided outside the transmission antenna 11 and is connected to the corresponding transmission antenna 11.
  • the power transmission control device 10 is incorporated in the transmission antenna 11 to form an integrated transmission antenna. It may be.
  • each power transmission control device 10 performs an operation described below.
  • the operation of the power transmission control device 10 will be described assuming that the power transmission device 1a is started for the first time after being installed.
  • the activation control unit 101 waits until the switch 3 is turned on from the OFF state (“NO” in step ST401), and is activated when the switch 3 is turned on (“YES” in step ST401). Outputs signals, etc.
  • the specific operation is the same as the operation described in the first embodiment, and a duplicate description will be omitted.
  • antenna control section 1041 of power transmission control section 104 causes power transmission section 1042 to supply high-frequency power to corresponding transmission antenna 11 (step ST402). ).
  • the antenna control unit 1041 determines whether the power transmission device 1a has been started up normally (step ST403).
  • the specific operation is the same as the operation described in the first embodiment, and a duplicate description will be omitted.
  • step ST403 If the antenna control unit 1041 determines that the power transmitting device 1a has been started up normally (“YES” in step ST403), the process proceeds to step ST404.
  • antenna control section 1041 When determining that power transmitting apparatus 1a has not been started up normally (in the case of “NO” in step ST403), antenna control section 1041 turns off supply of high-frequency power to power transmitting section 1042 (step ST409).
  • step ST409 the supply of the high-frequency power to the corresponding transmitting antenna 11 performed by the power transmitting unit 1042 is turned off. After that, the supply of the high-frequency power to the transmitting antenna 11 remains off until the user turns on the switch 3 in the OFF state again (step ST401).
  • step ST404 response receiving section 1051 of communication section 105 determines whether or not a response signal transmitted from power receiving device 2 has been received (step ST404).
  • power receiving device 2 transmits a response signal to all power transmission control devices 10. Therefore, even when the response reception unit 1051 of a certain power transmission control device 10 receives a response signal, the response signal is transmitted by the transmission antenna 112 to which the power transmission unit 1042 of the power transmission control device 10 has supplied the high-frequency power in step ST402. Is not necessarily a response signal due to the fact that the power receiving device 2 has received the non-contact power supply from.
  • step ST404 when the response receiving unit 1051 does not receive a response signal (“NO” in step ST404), the process proceeds to step ST409.
  • step ST404 when response receiving section 1051 receives the response signal (“YES” in step ST404), response receiving section 1051 outputs the received response signal to power transmission control section 104.
  • step ST404 when a response signal is output from response receiving section 1051, antenna control section 1041 starts “steady power transmission processing”. Specifically, when the corresponding transmitting antenna 11 is a transmitting antenna 11 that needs to continue supplying high-frequency power, the antenna control unit 1041 sends the transmitting antenna 11 to the power transmitting unit 1042 in step ST402. A process for continuing the supply of the adjusted high-frequency power is started.
  • Antenna determination section 1043 of power transmission control section 104 determines a power transmission target transmission antenna according to the response signal received by response receiving section 1051 from power receiving device 2 in step ST404 (step ST405).
  • the specific operation of step ST405 is different from the specific operation of step ST405 described in the first embodiment.
  • power transmission control apparatus 10 supplies high-frequency power to only one corresponding transmission antenna 11, so that antenna determination section 1043 compares the supply state of high-frequency power to multiple transmission antennas 11 with the transmission state. Then, it cannot be determined whether or not the corresponding transmitting antenna 11 is a power transmitting target transmitting antenna.
  • antenna determining section 1043 determines that the voltage level or the current level for supplying high-frequency power to corresponding transmitting antenna 11 exceeds the fourth threshold. Whether or not the corresponding transmitting antenna 11 is a power transmitting target transmitting antenna is determined based on whether or not the transmitting antenna 11 is a power transmitting target transmitting antenna. Regarding the determination whether the voltage level or the current level exceeds the fourth threshold, the antenna determination unit 1043 determines whether the voltage level or the current level exceeds the fourth threshold, or determines whether the voltage level or the current level exceeds the fourth threshold. Can be appropriately set by the user to determine whether or not the threshold value has been exceeded.
  • the power transmission control devices 10 included in the power transmission device 1a are simultaneously activated.
  • the transmission antenna 11 is the power transmission target transmission antenna in comparison with the supply state of the high frequency power to the plurality of transmission antennas 11 and the antenna determination unit 1043 .
  • the power transmitting target transmitting antenna is determined based on the fourth threshold value.
  • the present invention is not limited to this, and in the power transmission device 1a, it is also possible to provide a time difference in the activation of each power transmission control device 10. In this case, in the power transmission device 1a, the power transmission state corresponding to the power receiving device 2 can be identified.
  • the antenna control unit 1041 causes the power transmission unit 1042 to continue supplying high-frequency power to the power transmission target transmission antenna.
  • the antenna control unit 1041 supplies the high frequency power to the corresponding transmission antenna 11 to the power transmission unit 1042. Is stopped (step ST406).
  • the foreign object detection unit 103 determines whether the power transmission device 1 and the power reception device 21 are based on the state of high frequency power supply to the power transmission target transmission antenna. A foreign substance existing between them is detected (step ST407).
  • step ST407 when foreign object detection section 103 detects a foreign object (in the case of “YES” in step ST407), foreign matter detection section 103 outputs information to the effect that foreign matter has been detected to power transmission control section 104.
  • Antenna control section 1041 of power transmission control section 104 outputs an error signal to communication section 105 (step ST410).
  • error notification section 1052 of communication section 105 transmits the error signal to power receiving device 2.
  • the error receiving unit 222 of the communication unit 22 receives the error signal and outputs the signal to the control unit 24.
  • the power receiving device 2 communicates with each power transmission control device 10.
  • the control unit 24 determines whether the voltage level supplied to the power receiving device 21 is within the normal range. to decide. If the voltage level supplied to the power receiving device 21 is within the normal range, the control unit 24 may have detected a foreign object between the receiving antenna 211 and the transmitting antenna 11 of the power receiving device 2 provided therein. It can be determined that there is no. However, the control unit 24 cannot determine which power receiving device 2 other than the power receiving device 2 provided therein has detected a foreign object between the receiving antenna 211 and the transmitting antenna 11.
  • control unit 24 cannot specify which of the transmitting antennas 11 has detected the foreign object, but causes the output unit 23 to output error information indicating that the foreign object has been detected.
  • control unit 24 determines that the voltage level supplied to the power receiving device 21 is below the normal range, the control unit 24 operates between the receiving antenna 211 and the transmitting antenna 11 of the power receiving device 2 provided therein.
  • the output unit 23 outputs error information indicating that a foreign object has been detected.
  • the control unit 24 determines which power receiving device 2 detects a foreign object between the reception antenna 211 and the transmission antenna 11 even when the voltage level supplied to the power reception device 21 is within the normal range. Can be specified. Further, the control unit 24 causes the error information to be temporarily output. It is assumed that the time during which the error information is output is set in advance.
  • the control unit 24 when the control unit 24 in the power receiving device 2 temporarily outputs the error information, the control unit 24 informs the communication unit 105 of each power transmission control device 10 that the error has occurred. To be sent. Specifically, the control unit 24 cannot identify which of the transmitting antennas 11 has detected the foreign object, but transmits information indicating that an error has occurred due to the detection of the foreign object to each power transmission control device 10. Is transmitted to the communication unit 105. Alternatively, the control unit 24 transmits information indicating that an error has occurred due to the detection of a foreign object between the reception antenna 211 and the transmission antenna 11 of the power receiving device 2 provided therein, by using the corresponding transmission antenna.
  • the power is output to the communication unit 105 of the power transmission control device 10 that supplies high-frequency power to the power transmission control device 11.
  • the power transmission control device 10 turns off the supply of the high-frequency power if the high-frequency power is supplied to the power transmission target transmission antenna.
  • the power transmission control device 10 determines that the voltage level of the power supplied to the power receiving device 21 is within the normal range.
  • the power transmission control device 10 the supply of the high-frequency power is turned off.
  • the transmission antenna 11 has already been determined as the power transmission target transmission antenna, the power transmission control device 10 does not turn off the supply of high-frequency power to the power transmission target transmission antenna.
  • the power receiving device 2 transmits information indicating that an error has occurred due to the detection of a foreign object between the receiving antenna 211 and the transmitting antenna 11 of the power receiving device 2,
  • the power transmission control device 10 that supplies high-frequency power to the transmission antenna 11 corresponding to the reception antenna 211 provided, the supply of the high-frequency power is turned off.
  • step ST407 if foreign object detecting section 103 does not detect any foreign object (in the case of “NO” in step ST407) and does not receive information indicating that an error has occurred from power receiving device 2, the process proceeds to step ST408. .
  • Antenna control section 1041 determines whether or not the power transmitting target transmitting antenna is performing non-contact power supply to power receiving device 21 (step ST408). In the second embodiment, when the corresponding transmitting antenna 11 is not the power transmitting target transmitting antenna, step ST408 is skipped and the process returns to step ST401.
  • step ST408 when the antenna control unit 1041 determines that the power transmitting target transmitting antenna is performing non-contact power supply to the power receiving device 21 (in the case of “YES” in step ST408), the process returns to step ST405 and returns to “steady power transmission”. Process ”is repeated. Therefore, the power transmission unit 1042 continues to supply high-frequency power to the transmission target transmission antenna if the corresponding transmission antenna 11 is the transmission target transmission antenna, and if the corresponding transmission antenna 11 is not the power transmission target transmission antenna, The suspension of the supply of the high-frequency power to the transmitting antenna 11 is continued ("NO" in step ST408). Then, the regular power transmission process from step ST405 is repeated.
  • step ST408 when the antenna control unit 1041 determines that the power transmitting target transmitting antenna is not performing non-contact power supply to the power receiving device 21 (in the case of “NO” in step ST408), the antenna control unit 1041 An error signal is output to communication section 105 (step ST410).
  • error notification section 1052 of communication section 105 transmits the error signal to power receiving device 2.
  • the error receiving unit 222 of the communication unit 22 receives the error signal and outputs the signal to the control unit 24.
  • the control unit 24 causes the error information to be temporarily output.
  • the specific operation in which the control unit 24 temporarily outputs the error information is the same as the above-described case where the error signal indicating that a foreign object has been detected is output from the antenna control unit 1041 of the power transmission control unit 104. A duplicate description will be omitted.
  • the control unit 24 transmits information indicating that an error has occurred to the communication unit 105 of each power transmission control device 10.
  • the specific operation in which the control unit 24 transmits information indicating that an error has occurred to the communication unit 105 is based on the above-described error that a foreign object is detected from the antenna control unit 1041 of the power transmission control unit 104. Since this is the same as the case where the signal is output, the duplicate description will be omitted.
  • the power transmission control device 10 When the communication unit 105 receives information indicating that an error has occurred from the power receiving device 2, the power transmission control device 10 turns off the supply of the high-frequency power if the high-frequency power is supplied to the power transmission target transmission antenna. To In power transmission control device 10, the specific operation of turning off the supply of high-frequency power is the same as the above-described case where an error signal indicating that a foreign object has been detected is output from antenna control unit 1041 of power transmission control unit 104. , Overlapping description will be omitted. When the power receiving device 2 cannot identify the power receiving device 2 to which the non-contact power supply to the power receiving device 21 is not performed, the supply of the high-frequency power is turned off in all the power transmission control devices 10.
  • the transmitting antenna for the receiving antenna 211 of the power receiving device 21 to which the non-contact power feeding is not performed is performed. Only in the power transmission control device 10 that supplies the high frequency power to the power supply 11, the supply of the high frequency power is turned off.
  • the power receiving device 2 is moved, so that the power transmitting target transmitting antenna cannot perform non-contact power supply to the power receiving device 21 of the power receiving device 2.
  • the voltage level of the power supplied to the power receiving device 21 becomes lower than the normal range, and the control unit 24 performs non-contact power supply by the power receiving device 2 provided therein.
  • the supply of the high-frequency power is turned off only in the power transmission control device 10 that supplies the high-frequency power to the transmission antenna 11 with respect to the reception antenna 211 of the power reception device 21 to which the non-contact power supply is not performed.
  • the operation of the power transmission control device 10 has been described above assuming that the power transmission control device 10 is started for the first time after installation.
  • an operation when the power transmission control device 10 is activated for the second time or more after installation will be described.
  • the antenna control unit 1041 of the power transmission control unit 104 When the power transmission control device 10 is activated for the second time or later after installation, the antenna control unit 1041 of the power transmission control unit 104 outputs an activation signal from the activation control unit 101, and transmits the corresponding transmission antenna 11 to the power transmission unit 1042.
  • the corresponding transmission antenna 11 When the corresponding transmission antenna 11 is already a power transmission target transmission antenna when the high-frequency power is supplied to the power transmission source, the power transmission target transmission antenna continues to be the power transmission target transmission antenna. Then, the power transmission control device 10 ends the “activation process”, skips steps ST403 to ST404, and proceeds to step ST405. If the corresponding transmission antenna 11 is not the power transmission target transmission antenna, the antenna control unit 1041 causes the power transmission unit 1042 to supply high-frequency power to the transmission antenna 11 (steps ST401 to ST402).
  • the power transmission device 1a includes the power transmission control device 10 corresponding to each of the plurality of transmission antennas 11.
  • the configuration of the power transmission device 1a is complicated, and the number of components is increased.
  • the operation characteristics of the power transmission control device 10 corresponding to the input impedance of each of the transmission antennas 11 can be configured. Properties can be obtained.
  • the non-contact power supply system 1000 includes the power transmission control device 10 corresponding to each of the plurality of transmission antennas 11. Therefore, in the non-contact power supply system 1000 that presupposes high-frequency power transmission, the operation characteristics of the power transmission control device 10 corresponding to the input impedance of each of the transmission antennas 11 can be configured. Can be obtained.
  • contactless power supply system 1000 employs a resonance-type contactless power supply method.
  • the present invention is not limited to this.
  • an electromagnetic induction method may be employed. Good.
  • the non-contact power supply system for example, when the electromagnetic induction method is adopted, power is not supplied from the power transmitting device unless a power receiving device is arranged facing the power transmitting device. Therefore, when the power transmission device is installed under the floor or the like, it is necessary to provide a display or the like indicating the installation position of the power transmission device on the surface of the floor so that the position of the power transmission device can be known.
  • the non-contact power supply system of the resonance type when the power transmitting device is not at a position facing the power receiving device, the relative position between the power transmitting device and the power receiving device is output, and the user can determine the power supply efficiency. It is possible to search for the installation position of the power receiving device in order to install the power receiving device at a position where the power is increased. For this reason, it is not necessary to provide a display or the like indicating the installation position of the power transmission device on the surface of the floor, so that the design of the floor is not affected.
  • the response signal received from the power receiving device 2 by the response receiving unit 1051 of the power transmission control device 10 is a response signal transmitted from any power receiving device 2. Cannot be identified. However, for example, the power receiving device 2 may transmit a response signal by adding a preset standard code to the power receiving device 2. In this case, the power transmission control device 10 can specify the power receiving device 2 that has transmitted the response signal based on the standard code. If the power transmission control device 10 can identify the power receiving device 2, the power transmission control device 10 can also determine the power typically consumed by the power receiving device 2.
  • the power transmission control device 10 determines which transmitting antenna 11 is a power transmitting target transmitting antenna corresponding to which power receiving device 2 based on the supply state of the high-frequency power to the transmitting antenna 11 and the power that is typically consumed. It can be determined whether to continue supplying the high-frequency power.
  • power transmission control device 10 includes activation control unit 101, high-frequency inverter circuit 102, foreign object detection unit 103, communication unit 105, and power transmission control unit 104. Although provided, the configuration is not essential.
  • the power transmission control device 10 only needs to include at least the power transmission unit 1042 and the antenna determination unit 1043. Further, in the above-described second embodiment, the power transmission device 1a includes the power transmission control device 10 as illustrated in FIG. 2B corresponding to each of the plurality of transmission antennas 11, but this is only an example. .
  • the high-frequency inverter circuit 102 in the power transmission device 1a, at least the high-frequency inverter circuit 102, the activation control unit 101, the power transmission unit 1042, the response reception unit 1051, the antenna determination unit 1043, and the It is only necessary that the antenna control unit 1041 be provided.
  • the power transmission control device 10 when the user turns on the switch 3, the power transmission control device 10 activates the transmission antenna 11 described above in conjunction with the operation of the switch 3. Is started.
  • the power transmission control device 10 when the user turns off the switch 3, the power transmission control device 10 activates the transmission antenna 11 in conjunction with the operation of the switch 3. May be started.
  • the power transmission control device is linked to the operation of the switch 3 both when the user turns on the switch 3 and when the user turns the switch 3 off. 10 may start processing such as activation of the transmission antenna 11.
  • any combination of the embodiments, a modification of an arbitrary component of each embodiment, or an omission of an arbitrary component in each embodiment is possible within the scope of the invention. .
  • the power transmission control device can reduce unnecessary electromagnetic wave radiation to an area where a power receiving device to be supplied with power from the power transmission device is not installed in a non-contact power supply system.
  • the present invention can be applied to a power transmission control device used in a non-contact power supply system in a structure where a power receiving device can be installed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

外部スイッチと連動し、外部スイッチが操作されると、複数の送信アンテナ(11)への電力供給を開始する送電部(1042)と、電力供給が開始された複数の送信アンテナ(11)のうち、送電部(1042)からの電力供給を継続させる送電対象送信アンテナを決定するアンテナ決定部(1043)とを備えた。

Description

非接触給電用の送電制御装置、非接触給電用の送電制御方法、および、非接触給電システム
 この発明は、送電制御装置、送電制御方法、および、非接触給電システムに関するものである。
 従来、非接触給電を行うための送電装置が複数の送信アンテナを備える場合に、当該複数の送信アンテナのうち受電機器が対向して配置されている送信アンテナを検出することができる技術が知られている。
 例えば、特許文献1には、通常の給電動作中に、一定時間毎に、建屋の壁等に複数配置された非接触給電部の一次コイルに定格電流を供給して高周波磁界を発生させ、非接触給電部から受電側を見たインピーダンスが変化した変化パターンによって、非接触受電部が当該非接触給電部に対向して配置されているか否かを検出する非接触給電システムが開示されている。なお、特許文献1に開示された複数の非接触給電部は、それぞれ一次コイルを有している。この1次コイルは、送信アンテナとして機能する。
特開2009-159685号公報
 特許文献1に開示されているような従来の技術では、通常の給電動作中に、一定時間毎に、順次、各送信アンテナからの給電のONおよびOFFを行う。そのため、非接触受電部を備える受電機器が送信アンテナと対向して配置されていないエリアにおいても、一定時間毎に給電が行われる。その結果、従来の技術には、受電機器が送信アンテナと対向して配置されていないエリアに、一定時間毎に不要な電磁波が放射されることになるという課題があった。当該電磁波は、当該電磁波の付近に設置されている受電機器に対して、妨害波として影響を及ぼす可能性がある。
 この発明は、上記のような課題を解決するためになされたもので、送信アンテナからの不要な電磁波の放射を低減することができる送電制御装置を提供することを目的とする。
 この発明に係る非接触給電用の送電制御装置は、外部スイッチと連動し、外部スイッチが操作されると、複数の送信アンテナへの電力供給を開始する送電部と、電力供給が開始された複数の送信アンテナのうち、送電部からの電力供給を継続させる送電対象送信アンテナを決定するアンテナ決定部とを備えたものである。
 この発明によれば、送信アンテナからの不要な電磁波の放射を低減することができる。
実施の形態1に係る非接触給電システムの構成のイメージの一例を説明するための図である。 実施の形態1に係る非接触給電システム全体の構成例を示す図である。 実施の形態1において、送電装置が備える送電制御装置の具体的な構成例を示す図である。 実施の形態1において、受電機器の具体的な構成例を示す図である。 実施の形態1において、異物検出部が変化を検出する対象となるパラメータと、当該パラメータの変化によって検出する異物との関係の一例を示す図である。 実施の形態1に係る送電制御装置の動作を説明するためのフローチャートである。 実施の形態1において、受信アンテナが送信アンテナを跨いで設置されている状態の一例のイメージを説明する図である。 図6A,図6Bは、実施の形態1に係る送電制御装置のハードウェア構成の一例を示す図である。 実施の形態2に係る非接触給電システムにおける送電装置および受電機器の構成例を説明するための図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 以下の実施の形態1では、一例として、非接触給電システムには、共振型の非接触給電方式が採用されているものとする。共振型の非接触給電方式の技術は、既存の技術であるため、詳細な説明を省略する。
 共振型の非接触給電方式では、送電装置から給電されて動作する受電機器が、当該送電装置に正確に対向して設置されていない状態でも、送電装置から受電機器への給電を行うことができる。受電機器が送電装置に対向して設置されていない状態とは、受電機器と送電装置の各面および各中心部が、重なり合うように対向していない状態をいう。
 図1は、実施の形態1に係る非接触給電システム1000の構成のイメージの一例を説明するための図である。
 以下に説明する実施の形態1では、非接触給電システム1000は、住宅等の建築物で用いられるものとする。
 送電装置1と受電機器2とで、非接触給電システム1000を構成する。
 非接触給電システム1000において、建築物の床または壁等、建築物を構成する構造物に設置された送電装置1は、受電機器2に対して、非接触で給電する。実施の形態1では、一例として、図1に示すように、送電装置1が設置される構造物を、床とする。
 また、実施の形態1では、受電機器2とは、家庭用電気機器とする。図1では、家庭用電気機器の一例として、テレビ2aおよび電気スタンド2bを示している。なお、本明細書において、「家庭用電気機器」とは、専ら一般家庭で使用される電気機器に限らず、種々の電気機器を広く含むものとする。
 ユーザは、受電機器2を、送電装置1が給電可能なエリアに適宜設置することができる。また、ユーザは、適宜、送電装置1が給電可能なエリアに設置されている受電機器2の当該エリア外への撤去、または、当該エリア内での移動を行うことができる。
 送電装置1は、送電制御装置10と複数の送信アンテナ11を備え、商用電源から供給される電力を受けて、給電可能なエリアに設置されている受電機器2に給電する。具体的には、送電制御装置10が電力を受けて、複数の送信アンテナ11のうちいずれかの送信アンテナ11に高周波の交流電力(以下「高周波電力」という。)を供給する。送電制御装置10から高周波電力の供給を受けた送信アンテナ11は、当該高周波電力の周波数と同一の周波数で共振し、空間に磁界を発生させる(以下、送信アンテナ11が高周波電力の供給を受けて空間に磁界を発生させている状態を「起動状態」という。)。受電機器2が送信アンテナ11から給電可能なエリアに設置されている場合、受電機器2に備えられた受電装置21に対し非接触での給電が行われる。これにより、送電装置1から受電機器2への非接触給電が行われる。なお、以下の説明において、複数の送信アンテナ11を、単に送信アンテナ11ともいう。
 送電制御装置10は、床の内部に設置される。送電制御装置10の詳細な構成例については後述する。
 複数の送信アンテナ11は、それぞれ、床面、床材の内部、または、床下に設置される。図1では、複数の送信アンテナ11が互いに狭い間隔で床に敷き詰めて設置されるものとしているが、送信アンテナ11は、このように床に敷き詰めて設置されることを必須としない。送信アンテナ11は、床に点在するように設置されてもよい。また、図1では、送信アンテナ11が設置されている状態のイメージを円で示しているが、これは設置の状態のイメージに過ぎず、送信アンテナ11の形状を示すものではない。
 送電制御装置10と送信アンテナ11とは、例えば、ケーブルで接続される。
 商用電源から送電装置1への電力の供給は、スイッチ3によって制御される。
 スイッチ3は、例えば、建築物に設置された照明をONまたはOFFするためのスイッチ3である。例えば、ユーザが、スイッチ3をONにすると、当該スイッチ3の動作に連動して、送電装置1の送電制御装置10が、以下に説明する送信アンテナ11の起動等の処理を開始する。
 受電機器2は、送電装置1から非接触で受電する。具体的には、受電機器2は、受信アンテナ211を備える受電装置21を搭載しており、受電装置21が、受信アンテナ211および送信アンテナ11を介して、送電制御装置10から非接触で受電する。
 受信アンテナ211は、起動状態の送信アンテナ11が発生させている磁界により、送信アンテナ11の共振周波数と同じ周波数で共振することで、送信アンテナ11から非接触で受電する。
 受電機器2は、受電装置21が受けた電力によって、動作可能となる。
 受電機器2の詳細な構成例については後述する。
 送電制御装置10と受電機器2とは、無線通信を用いて通信可能である。通信規格として、例えば、Bluetooth(登録商標。以下記載を省略する)、または、Zigbee(登録商標。以下記載を省略する)等が用いられる。
 送電制御装置10は、スイッチ3がOFFの状態からONされると、都度、起動信号を出力して送信アンテナ11への高周波電力の供給を開始することで、送信アンテナ11を起動状態とする。起動状態の送信アンテナ11から給電可能なエリアに受電機器2が設置されている場合、いずれかの送信アンテナ11により当該受電機器2に対する非接触給電が開始される。非接触給電が開始された当該受電機器2は、送電制御装置10に対して、非接触給電が開始されたことに対する応答信号を送信する。
 送電制御装置10は、受電機器2から受信した応答信号に応じて、起動状態にある送信アンテナ11のうち、高周波電力の供給を継続する必要がある送信アンテナ(以下「送電対象送信アンテナ」という。)を決定する。送電制御装置10は、送電対象送信アンテナに対する高周波電力の供給を継続することにより、当該送電対象送信アンテナに起動状態を継続させる。送電制御装置10は、送電対象送信アンテナ以外の送信アンテナ11に対しては、高周波電力の供給を停止する。高周波電力の供給が停止された送信アンテナ11は、再びスイッチ3がONされることで起動信号が出力されるまでは、起動状態となることはない。
 図2Aは、実施の形態1に係る非接触給電システム1000全体の構成例を示す図である。
 図2Bは、実施の形態1において、送電装置1が備える送電制御装置10の具体的な構成例を示す図である。
 図2Cは、実施の形態1において、受電機器2の具体的な構成例を示す図である。
 図2Aに示すように、送電装置1は、送電制御装置10と送信アンテナ11を備える。
 実施の形態1に係る送電装置1において、送電制御装置10は、スイッチ3がONにされる都度、送信アンテナ11を起動状態とする「起動処理」と、「起動処理」後、送電対象送信アンテナを決定し、当該送電対象送信アンテナに起動状態を継続させ、受電機器2への定常的な非接触給電を行わせる処理を含む「定常送電処理」とを行う。
 送電制御装置10は、起動制御部101と、高周波インバータ回路102と、異物検出部103と、送電制御部104と、通信部105を備える。
 送電制御部104は、アンテナ制御部1041と、送電部1042と、アンテナ決定部1043を備える。
 通信部105は、応答受信部1051とエラー通知部1052を備える。
 起動制御部101は、スイッチ3の操作に連動して起動信号を出力する。
 例えば、起動制御部101は、スイッチ3がOFFの状態からONにされた際に、送電制御部104に対して起動信号を出力する。
 また、起動制御部101は、商用電源から供給される電力を受ける。なお、実施の形態1において、商用電源は、例えば、50Hzまたは60Hzの商用交流電源を想定している。起動制御部101は、商用電源から供給された電力を高周波インバータ回路102に出力する。このとき、起動制御部101は、交流電力である商用電源を、直流電力に変換する変換部としても機能する。
 高周波インバータ回路102は、起動制御部101から出力された直流電力を高周波電力に変換する。高周波インバータ回路102は、当該高周波電力を異物検出部103および送電制御部104に出力する。
 送電制御部104は、高周波インバータ回路102から出力された高周波電力を送信アンテナ11へ供給する制御を行う。
 送電制御部104のアンテナ制御部1041は、送電部1042による送信アンテナ11への高周波電力の供給を制御する。
 具体的には、アンテナ制御部1041は、「起動処理」において、起動制御部101から起動信号が出力されると、送電部1042に、送信アンテナ11への高周波電力の供給を行わせることで、送信アンテナ11を起動状態とする。このとき、アンテナ制御部1041は、過去の「定常送電処理」時に送電対象送信アンテナとされ、起動状態が継続されている送信アンテナ11を除く、他の送信アンテナ11全てを起動状態とする。
 なお、実施の形態1では、上述のとおり、アンテナ制御部1041は、過去の「定常送電処理」時に送電対象送信アンテナとされ、起動状態が継続されている送信アンテナ11を除く、他の送信アンテナ11全てを起動状態とするものとするが、これは一例に過ぎない。アンテナ制御部1041は、起動制御部101から起動信号が出力されると、送電部1042に、全ての送信アンテナ11への高周波電力の供給を行わせることで、全ての送信アンテナ11を起動状態とするものとしてもよい。
 また、アンテナ制御部1041は、「起動処理」にて送信アンテナ11への高周波電力の供給を行わせて送信アンテナ11を起動状態にすると、送電装置1が正常に起動しているかを判定する。詳細は後述する。
 また、アンテナ制御部1041は、「定常送電処理」において、アンテナ決定部1043が送電対象送信アンテナを決定すると、送電部1042を制御し、送電対象送信アンテナへの高周波電力の供給を継続させ、送電対象送信アンテナ以外の送信アンテナ11への高周波電力の供給を停止させる。詳細は後述する。
 また、アンテナ制御部1041は、「定常送電処理」において、起動状態の送電対象送信アンテナについて、異物検出部103が異物を検出した場合、通信部105にエラー信号を出力するとともに、送電部1042に、送電対象送信アンテナへの高周波電力の供給の停止を行わせる。詳細は後述する。
 また、アンテナ制御部1041は、「定常送電処理」において、起動状態の送電対象送信アンテナが受電装置21への非接触給電を行っているか否かを判定し、受電装置21への非接触給電が行われていないと判定した場合、通信部105にエラー信号を出力するとともに、送電部1042に、送電対象送信アンテナへの高周波電力の供給の停止を行わせる。詳細は後述する。
 送電制御部104の送電部1042は、「起動処理」において、起動制御部101が起動信号を出力すると、アンテナ制御部1041の制御に基づき、送信アンテナ11への高周波電力の供給を開始する。
 また、送電部1042は、「定常送電処理」において、アンテナ制御部1041の制御に基づき、送電対象送信アンテナへの高周波電力の供給を継続し、送電対象送信アンテナ以外の送信アンテナ11への高周波電力の供給を停止する。
 送電制御部104のアンテナ決定部1043は、通信部105の応答受信部1051が「起動処理」の間に受電機器2から応答信号を受信した場合、「定常送電処理」において、当該応答信号に応じて、起動状態にある複数の送信アンテナのうち、送電対象送信アンテナを決定する。
 アンテナ決定部1043は、決定した送電対象送信アンテナの情報をアンテナ制御部1041に出力する。
 異物検出部103は、「定常送電処理」において、送電部1042が送電対象送信アンテナへ高周波電力の供給を行っている状態において、送電対象送信アンテナへの高周波電力の供給状態に基づいて、送電装置1と受電装置21との間に存在する異物を検出する。具体的には、異物検出部103は、送電対象送信アンテナと、受信アンテナ211との間に存在する異物を検出する。
 実施の形態1において、送信アンテナ11と受信アンテナ211との間とは、送信アンテナ11が起動状態で空間に発生させた電磁波における主に磁界が伝わることにより、受電機器2に対し非接触での給電が行われる範囲の空間のことをいう。
 異物検出部103は、パラメータの変化を検出し、検出したパラメータの変化に基づいて、異物の検出を行う。異物検出部103が変化を検出する対象となるパラメータは、高周波インバータ回路102の入力電圧または入力電流等である。
 図3は、実施の形態1において、異物検出部103が変化を検出する対象となるパラメータと、当該パラメータの変化によって検出する異物との関係の一例を示す図である。
 図3に示すように、異物検出部103は、例えば、高周波インバータ回路102の入力電圧または入力電流をパラメータとし、以下のように異物を検出する。
 ・電力または電流の減少が予め設定された閾値(第1の閾値)より大きい場合、アルミ、銅、または、ステンレス等の金属を異物として検出する。なお、異物検出部103は、入力電圧と入力電流とから、電力を算出する。
 ・電力または電流の増加が予め設定された閾値(第2の閾値)より大きい場合、DVD(Digital Versatile Disc)、フェライト、または、磁石等の磁性体を、異物として検出する。
 ・電力または電流の減少が予め設定された閾値(第3の閾値)より小さい場合、人体、動物、または、水等の誘電体を、異物として検出する。
 このように、異物検出部103は、パラメータの変化によって異物を検出する。また、異物検出部103は、パラメータの変化に応じて、異物の種類を特定することができる。また、異物検出部103は、図3に示したようなパラメータの組み合わせによって、複数の異なる種類の異物を検出することができる。検出するパラメータが多いほど異物検出精度は向上する。
 異物検出部103は、異物を検出すると、異物を検出した旨の情報を、送電制御部104に出力する。
 通信部105は、無線通信を用いて受電機器2との情報の送受信を行う。通信規格として、例えば、BluetoothまたはZigbee等が用いられる。
 通信部105の応答受信部1051は、「起動処理」において、受電機器2から送信される応答信号を受信する。
 起動状態の送信アンテナ11から給電可能なエリアに受電機器2が設定されている場合、受電装置21の受信アンテナ211が電力を受け、いずれかの送信アンテナ11により受電機器2に対する非接触給電が開始される。非接触給電が開始された受電機器2は、送電制御装置10に対して、非接触給電が開始されたことに対する応答信号を、通信部22により送信する。応答受信部1051は、非接触給電が開始された受電機器2が送信した応答信号を受信する。
 なお、給電される受電機器2が複数存在する場合、それぞれの受電機器2から応答信号が送信され、応答受信部1051は、各応答信号を受信する。応答受信部1051が受信する応答信号は、例えば、フラグであり、当該応答信号からは、当該応答信号が、どの受電機器2から送信されたものであるかまでは判断できない。
 応答受信部1051は、受信した応答信号を、送電制御部104に出力する。
 通信部105のエラー通知部1052は、「定常送電処理」において、送電制御部104からエラー信号が出力されると、当該エラー信号を受電機器2に送信する。
 図2Cに示すように、受電機器2は、受電装置21と、通信部22と、出力部23と、制御部24を備える。受電装置21は受信アンテナ211を備える。
 通信部22は、応答送信部221とエラー受信部222を備える。
 受電装置21は、受信アンテナ211を介して、送信アンテナ11からの電力を受ける。なお、受電装置21は、整流回路(図示省略)およびDC/DCコンバータ(図示省略)を備えており、受電装置21において、受信アンテナ211が受けた交流電力を直流電力に変換する。
 受電装置21は、受信アンテナ211が受けた電力を制御部24に出力する。制御部24は、受電装置21から出力された電力によって動作し、受電機器2の各構成部を制御する。
 通信部22は、無線通信を用いて送電制御装置10との情報の送受信を行う。通信規格として、例えば、BluetoothまたはZigbee等が用いられる。
 通信部22の応答送信部221は、受信アンテナ211および送信アンテナ11を介して送電制御装置10から受電装置21への非接触給電が開始された場合に、送電制御装置10の通信部105に対して応答信号を送信する。具体的には、制御部24が、受電装置21が受けた電力に基づき受電機器2を動作させると、応答送信部221に対して、応答信号を送信するよう制御する。なお、応答送信部221が送電制御装置10の通信部105に対して応答信号を送信する動作は、送電制御装置10において、スイッチ3がONにされる都度、送信アンテナ11を起動状態とする「起動処理」の際に行われる。送電制御装置10において、アンテナ決定部1043は、応答受信部1051が「起動処理」の間に当該通信部22から応答信号を受信した場合、「定常送電処理」において、当該通信部22から受信した応答信号に応じて、送電対象送信アンテナを決定する。
 通信部22のエラー受信部222は、送電制御装置10から送信されたエラー信号を受信する。なお、エラー受信部222が送電制御装置10から送信されたエラー信号を受信する動作は、送電制御装置10における「定常送電処理」の際に行われる動作である。
 エラー受信部222は、受信したエラー信号を制御部24に出力する。制御部24は、エラー受信部222からエラー信号が出力されると、出力部23にエラー情報を一時的に出力させる。
 出力部23は、ディスプレイまたはレベルメータ等であり、各種情報を出力する。
 例えば、出力部23は、受電機器2における、送電装置1からの給電状態を示す情報を出力する。具体的には、受電機器2は、受電装置21が、受信アンテナ211および送信アンテナ11を介して送電制御装置10から受けている電力(以下「電力計測値」という。)を計測する計測部(図示省略)を備える。制御部24は、電力計測値に応じて、出力部23を制御し、出力部23に、給電状態を示す情報の出力を行わせる。なお、計測部としては、例えば電力計が用いられる。
 制御部24は、電力計測値に基づき、種々の方法で、出力部23に、給電状態を示す情報の出力を行わせる。
 例えば、出力部23がディスプレイである場合、出力部23は、電力計測値を文字で表示する。また、例えば、出力部23がレベルメータである場合、出力部23は、電力計測値に応じた給電状態を光で表示する。また、例えば、出力部23を音声出力装置とし、電力計測値に応じた給電状態を音で出力するようにしてもよい。
 ユーザは、出力部23が出力した、給電状態を示す情報を確認することで、受電機器2と送電装置1の相対位置を把握することができる。受電機器2と送電装置1の相対位置とは、具体的には、受信アンテナ211と送信アンテナ11の相対位置である。
 また、出力部23は、制御部24の制御に基づき、エラー情報を出力する。
 例えば、出力部23がディスプレイである場合、出力部23は、エラーメッセージを表示する。
 制御部24は、受電機器2の各構成部を制御する。
 実施の形態1に係る送電制御装置10の動作について説明する。
 図4は、実施の形態1に係る送電制御装置10の動作を説明するためのフローチャートである。
 なお、図4を用いた以下の説明では、送電装置1が設置された後はじめて起動したものとして、送電制御装置10の動作を説明する。
 以下に説明するステップST401~ステップST404、および、ステップST409の動作が「起動処理」の動作であり、ステップST405~ステップST410の動作が「定常送電処理」の動作である。
 起動制御部101は、スイッチ3がOFFの状態からONにされるまで待機する(ステップST401の“NO”の場合)。起動制御部101は、スイッチ3がONにされると(ステップST401の“YES”の場合)、商用電源から供給された電力を高周波インバータ回路102に出力するとともに、送電制御部104に対して起動信号を出力する。
 送電制御部104のアンテナ制御部1041は、ステップST401にて起動制御部101から起動信号が出力されると、送電部1042に、全ての送信アンテナ11への高周波電力の供給を行わせる(ステップST402)。
 ここで、アンテナ制御部1041は、送電装置1が正常に起動しているかを判定する(ステップST403)。具体的には、アンテナ制御部1041は、高周波インバータ回路102から出力される高周波電力の電圧レベルまたは電流レベルが、予め設定された電圧レベルまたは電流レベルに達していれば、送電装置1が正常に起動していると判定する。
 アンテナ制御部1041は、送電装置1が正常に起動していると判定した場合(ステップST403の“YES”の場合)、ステップST404に進む。
 アンテナ制御部1041は、送電装置1が正常に起動していないと判定した場合(ステップST403の“NO”の場合)、送電部1042に対して、高周波電力の供給をOFFさせる(ステップST409)。
 なお、ステップST409では、送電部1042が行っている全ての送信アンテナ11への高周波電力の供給がOFFされる。
 その後、ユーザが、再び、OFFの状態のスイッチ3をONにするまで(ステップST401)、送信アンテナ11への高周波電力の供給はOFFされたままとなる。
 ステップST404において、通信部105の応答受信部1051は、ステップST402にて送電部1042が送信アンテナ11に高周波電力の供給を行った結果、受電機器2からの応答信号を受信したか否かを判定する(ステップST404)。
 ステップST404において、応答受信部1051が、応答信号を受信しない場合(ステップST404の“NO”の場合)、ステップST409に進む。
 ステップST404において、応答受信部1051が、応答信号を受信した場合(ステップST404の“YES”の場合)、応答受信部1051は、受信した応答信号を、送電制御部104に出力する。
 ステップST404において、応答受信部1051から応答信号が出力されると、アンテナ制御部1041は、「定常送電処理」を開始する。具体的には、アンテナ制御部1041は、複数の送信アンテナ11のうち、高周波電力の供給を継続する必要がある送信アンテナ11を決定し、当該送信アンテナ11に対し、ステップST402において送電部1042に行わせた高周波電力の供給を継続するための処理を開始する。
 送電制御部104のアンテナ決定部1043は、ステップST404にて応答受信部1051が受電機器2から受信した応答信号に応じて、送電対象送信アンテナを決定する(ステップST405)。
 ここで、アンテナ決定部1043が送電対象送信アンテナを決定する方法について、具体例を挙げて説明する。
 例えば、ステップST404において、応答受信部1051が、3台の受電機器2から応答信号を受信したとする。
 この場合、アンテナ決定部1043は、それぞれの送信アンテナ11による非接触給電の状態に基づき、全ての送信アンテナ11のうち、状態の良い順番に3つの送信アンテナ11を特定し、当該3つの送信アンテナ11を送電対象送信アンテナに決定する。
 アンテナ決定部1043は、高周波インバータ回路102から出力される高周波電力の電圧レベルまたは電流レベルに基づいて、非接触給電状態を判断すればよい。
 また、例えば、1つの受信アンテナ211が、複数の送信アンテナ11を跨いで設置されているとする。なお、実施の形態1において、1つの受信アンテナ211が複数の送信アンテナ11を跨ぐとは、1つの受信アンテナ211と複数の送信アンテナ11との位置関係が、当該1つの受信アンテナ211に対して、当該複数の送信アンテナ11のいずれからも非接触給電が行われるような位置関係にある状態をいう。
 図5は、実施の形態1において、受信アンテナ211が送信アンテナ11を跨いで設置されている状態の一例のイメージを説明する図である。
 図5では、受信アンテナX(211)が、送信アンテナA(11a)と送信アンテナB(11b)を跨いで設置されている一例のイメージを示している。
 この場合、アンテナ決定部1043は、送信アンテナ11による非接触給電の状態に基づいて、送電対象送信アンテナを決定する。
 図5の例でいうと、受信アンテナX(211)は、送信アンテナA(11a)と対向している範囲よりも送信アンテナB(11b)と対向している範囲のほうが大きい。よって、送電制御装置10が各送信アンテナ11に供給する高周波電力については、送信アンテナ11A(11a)に供給される高周波電力よりも、送信アンテナ11B(11b)に供給される高周波電力ほうが大きくなる。すなわち、受信アンテナX(211)への非接触給電の状態は、送信アンテナA(11a)よりも送信アンテナB(11b)のほうが、良い状態となる。
 アンテナ決定部1043は、非接触給電の状態が比較的良い、送信アンテナB(11b)を、送電対象送信アンテナに決定する。
 アンテナ決定部1043は、決定した送電対象送信アンテナの情報をアンテナ制御部1041に出力する。
 具体的には、例えば、アンテナ決定部1043は、送電制御装置10が内部に有している各送信アンテナ11の情報に、送電対象フラグを付与する。送電対象フラグによって、アンテナ制御部1041は、送信アンテナ11が送電対象送信アンテナであるか否かを判断する。
 アンテナ制御部1041は、送電部1042に対して、ステップST405にてアンテナ決定部1043が決定した送電対象送信アンテナへの高周波電力の供給を継続し、送電対象送信アンテナ以外の送信アンテナ11への高周波電力の供給を停止させる(ステップST406)。
 これにより、送電対象送信アンテナからは、実際に給電されるべき受電機器2に対して給電が行われ、一方、送電対象送信アンテナ以外の送信アンテナ11に対する高周波電力の供給は停止されるため、不要な電磁波が放射されることはない。
 異物検出部103は、送電部1042が送電対象送信アンテナへ高周波電力の供給を行っている状態において、送電対象送信アンテナへの高周波電力の供給状態に基づいて、送電装置1と受電装置21との間に存在する異物を検出する(ステップST407)。
 ステップST407にて、異物検出部103は、異物を検出すると(ステップST407の“YES”の場合)、異物を検出した旨の情報を、送電制御部104に出力する。
 送電制御部104のアンテナ制御部1041は、通信部105に対してエラー信号を出力し(ステップST410)、ステップST409に進む。
 通信部105のエラー通知部1052は、アンテナ制御部1041からエラー信号が出力されると、当該エラー信号を受電機器2に送信する。
 受電機器2では、通信部22のエラー受信部222がエラー信号を受信し、制御部24に出力する。制御部24は、エラー受信部222からエラー信号が出力されると、出力部23にエラー情報を出力させる。なお、制御部24は、エラー情報を、一時的に出力させる。エラー情報が出力される時間は、予め設定されているものとする。
 なお、アンテナ制御部1041は、異物検出部103から異物を検出した旨の情報が出力されると、受電装置21との間に異物あることが検出された送電対象送信アンテナに付与されている送電対象フラグを初期化するようにする。
 異物検出部103がステップST407にて異物を検出した場合に、アンテナ制御部1041が通信部105に対してエラー信号を出力すると、ステップST409では、アンテナ制御部1041は、送電部1042に対して、送電対象送信アンテナ以外の送信アンテナ11への高周波電力の供給をOFFさせるようにする。アンテナ制御部1041は、送信アンテナ11が、送電対象送信アンテナであるか否かを、送電対象フラグによって判断すればよい。
 ここで、ステップST407~ステップST410の動作について、具体例を挙げて説明する。
 例えば、床に、受電機器2が4台設置され、かつ、4台のうちの1台の受電機器2の下に異物であるDVDが挟まっていたとする。この場合、受電装置21からの応答信号は3台分しか送信されてこない。しかし、上述のとおり、応答受信部1051では、どの応答信号がどの受電機器2から送信された応答であるかまでは判断できない。すなわち、送電制御装置10では、DVDへの不要な非接触給電を、どの送電対象送信アンテナから行っているか判断できない。
 そこで、送電制御装置10は、「定常送電処理」を開始した後、ステップST407にて異物検出部103が異物検出を行い、異物を検出すると、送電制御部104が、送電対象送信アンテナ以外の送信アンテナ11への高周波電力の供給をOFFするようにする。なお、異物が検出された送信アンテナ11については、アンテナ制御部1041によって、送電対象フラグが初期化され、送電対象送信アンテナと判断されないようにされている。
 このとき、一時的に、受電機器2ではエラー情報が出力されるようにするため、ユーザは、エラーが発生して受電機器2への給電がされなくなったことを検知し、例えば、異物を除去する等して、再びスイッチ3をONにする。そうすると、再びステップST401以降の処理が行われる。
 このように、送電制御装置10は、「定常送電処理」の中で異物の検出を行うため、例えば、異物に給電がされ続けて当該異物が高温になることによる、ユーザの火傷、異物の変形、溶融、発火もしくは破損、または、異物の発火による火災の発生に至る可能性を低減することができる。
 一方、ステップST407にて、異物検出部103が異物を検出しない場合(ステップST407の“NO”の場合)、ステップST408に進む。
 非接触給電が行われた受電機器2では、制御部24が、送電装置1からの給電状態に応じて、当該給電状態を示す情報を、出力部23に出力させる。
 ここでは、例えば、出力部23を3つのLED(第1のLED、第2のLED、および、第3のLED)を備えたLEDレベルメータであるとすると、制御部24は、電力計測値に応じた給電状態に基づき、3つのLEDの点灯を制御する。
 例えば、送電装置1から給電される電力として1000Wが保証されているとすると、制御部24は、電力計測値が1000Wに達している場合(第1の状態とする)、電力計測値が500W以上1000W未満である場合(第2の状態とする)、電力計測値が200W以上500W未満である場合(第3の状態とする)、または、電力計測値が200W未満の場合(第4の状態とする)で、それぞれ異なるLEDを点灯させる。
 具体的には、制御部24は、第1の状態の場合は第1のLED~第3のLED全てを点灯させ、第2の状態の場合は第1のLEDおよび第2のLEDを点灯させ、第3の状態の場合は第1のLEDのみ点灯させ、第4の状態の場合はいずれのLEDも点灯させないようにする。
 上述の図5の例のように、受信アンテナ211が複数の送信アンテナ11を跨いで設置されている場合、受電機器2では、送電装置1から供給される電力として保証されている電力が供給されていないことになるため、例えば、第1のLED~第3のLEDのうち、1つまたは2つのLEDが点灯されるようになる。
 ユーザは、出力部23の点灯状態を見れば、電力が供給されているか、または、電力が供給されているものの十分ではないという給電状況を瞬時に把握することができる。
 また、ユーザは、出力部23の点灯状態によって、送電装置1と受電機器2との間の相対位置を把握することができる。
 ユーザは、例えば、出力部23の点灯状態を見て、受電機器2が、電力が供給されているものの十分ではないと判断すれば、受電機器2を移動させて、当該受電機器2を、電力が十分に供給される位置まで移動させる。
 図4のフローチャートに戻る。
 アンテナ制御部1041は、送電対象送信アンテナが受電装置21への非接触給電を行っているか否かを判定する(ステップST408)。
 アンテナ制御部1041は、高周波インバータ回路102から出力される高周波電力の電圧レベルまたは電流レベルに基づいて、送電対象送信アンテナが受電装置21への非接触給電を行っているか否かを判定すればよい。
 ステップST408において、アンテナ制御部1041が、送電対象送信アンテナが受電装置21への非接触給電を行っていると判定した場合(ステップST408の“YES”の場合)、ステップST405に戻り、「定常送電処理」を繰り返す。具体的には、アンテナ制御部1041は、送電部1042に、送電対象送信アンテナへの現在の高周波電力の供給を継続させる。
 よって、送電部1042は、送電対象送信アンテナへの高周波電力の供給を継続し、送電対象送信アンテナ以外の送信アンテナ11への高周波電力の停止を継続する。
 以降、送電対象送信アンテナへの高周波電力の供給が行われ、異物検出等の異常が発生しない間は、ステップST405以降の「定常送電処理」が繰り返される。
 一方、ステップST408において、アンテナ制御部1041が、送電対象送信アンテナが受電装置21への非接触給電を行っていないと判定した場合(ステップST408の“NO”の場合)、アンテナ制御部1041は、非接触給電の状況に異常が発生したと判断し、ステップST410に進む。なお、送電対象送信アンテナが複数存在する場合、アンテナ制御部1041は、どれか1つでも受電装置21への非接触給電が行われていないと判定すれば、送電対象送信アンテナが受電装置21への非接触給電を行っていないと判定する。
 このとき、アンテナ制御部1041は、受電装置21への非接触給電を行っていないと判定した送電対象送信アンテナに付与されている送電対象フラグを初期化するようにする。
 例えば、ユーザが受電機器2を移動させて、受電機器2の設置位置が変わったとする。そうすると、送電装置1と受電機器2との相対位置が変動し、送電装置1から受電機器2の受電装置21への非接触給電ができなくなることがある。アンテナ制御部1041は、このように、送電装置1から受電装置21への非接触給電が行われなくなったことを判定する。
 ステップST410に進むと、アンテナ制御部1041は、通信部105に対してエラー信号を出力する(ステップST410)。そして、アンテナ制御部1041は、送電部1042に、送電対象送信アンテナへの高周波電力の供給をOFFさせる(ステップST409)。
 ユーザは、エラーが発生して受電機器2への給電がされなくなったことを認識し、例えば、現在の受電機器2の位置が、いずれかの送信アンテナ11から給電可能なエリアの外にあれば当該受電機器2を当該エリア内に移動させた後、または、現在の受電機器2の位置が当該給電可能なエリア内にあるのであれば当該受電機器2をその位置においたまま、再びスイッチ3をONにする。そうすると、再びステップST401以降の処理が行われる。
 なお、以上の説明では、ステップST405~ステップST407の順で動作が行われるものとしたが、ステップST407の動作を、ステップST405およびステップST406よりも先に行うようにしてもよい。
 以上では、送電制御装置10が、設置後はじめて起動したものとして、送電制御装置10の動作を説明した。
 以下、送電制御装置10の起動が、設置後2回目以降であった場合の動作について説明する。
 送電制御装置10の起動が、設置後2回目以降であった場合、送電制御部104のアンテナ制御部1041は、起動制御部101から起動信号が出力され、送電部1042に、送信アンテナ11への高周波電力の供給を行わせる際に、既に、1つ以上の送電対象送信アンテナから非接触給電が行われている1つ以上の受電機器2が存在する場合は、当該送電対象送信アンテナは引き続き送電対象送信アンテナとし、送電部1042に、当該送電対象送信アンテナ以外の送信アンテナ11への高周波電力の供給を行わせる(ステップST401~ステップST402)。アンテナ制御部1041は、例えば、送電対象フラグに基づいて、送電対象送信アンテナを特定すればよい。
 図4を用いて説明したように、実施の形態1に係る送電制御装置10は、一度決定した送電対象送信アンテナについては、例えば、異物が検出される、または、受電機器2の移動によって受電装置21への非接触給電が不可となる等の異常事象が発生しない限り、高周波電力の供給を継続する。
 以上のように、非接触給電システム1000では、スイッチ3がOFFの状態からONにされた際に、一度、送電制御装置10が送信アンテナ11への高周波電力の供給を行い、当該高周波電力の供給が必要ではないと判断すると、以降、再び、OFFの状態のスイッチ3がONにされるまでは、不要な送信アンテナ11への高周波電力の供給は行われない。つまり、上述した従来技術のように、一定時間毎に、送電が行われる必要がない。その結果、受電機器2が設置されていないエリアに対して、定期的に不要な電磁波が放射されることを低減することができる。これにより、不要な電磁波によって、当該電磁波の付近に設置されている受電機器2に対して影響を及ぼす可能性を低減することができる。
 また、上述した従来技術では、非接触給電部に対向して、定常的に給電を必要とする受電機器2が設置されている場合には、当該受電機器2は、一定時間毎に給電がOFFされることに備え、バッテリを搭載しておく必要がある。
 これに対し、実施の形態1に係る送電制御装置10では、一度決定した送電対象送信アンテナに対しては、受電機器2への給電環境に異常が発生しない限り、高周波電力の供給が継続される。そのため、受電機器2は、バッテリを搭載していなくても、送電装置1からの給電により継続的な使用が可能となる。
 また、上述した従来技術では、通常の給電動作中において、一定時間毎に、非接触給電部から受電側への送電をONにし、当該送電をONにしたときのみ、非接触給電部から受電側を見たインピーダンスの変化によって、非接触受電部が当該非接触給電部に対向して配置されているか否かを検出するようにしている。
 この場合、通常の給電動作中に、例えば、非接触受電部と非接触給電部の間に異物が挟まった状態が発生しても、そのまま連続的に送電が継続される可能性がある。異物が挟まった状態で連続的な送電が継続されると、異物に磁力線が通過して過電流が流れ、当該異物が発熱する可能性がある。異物が高温になると、例えば、ユーザの火傷、異物の変形、溶融、発火もしくは破損、または、異物の発火による火災の発生に至る可能性もある。
 これに対し、実施の形態1に係る送電制御装置10は、定常送電処理の中で異物の検出を行うため、例えば、異物が高温になることによる、ユーザの火傷、異物の変形、溶融、発火もしくは破損、または、異物の発火による火災の発生に至る可能性を低減することができる。
 また、実施の形態1に係る送電制御装置10は、送電対象送信アンテナを決定する際に、受電側を見たインピーダンスの検出を行わないため、MHz帯以上の高周波伝送においても、回路規模が大きくなることはなく、装置の小型化、および、低コスト化が可能となる。
 また、実施の形態1に係る送電制御装置10は異物検出部103を備え、送電制御装置10内で異物検出動作を完結させるため、送電制御装置10が送信アンテナ11を介して給電可能なエリアに受電装置21が存在するか否かに関係なく異物の検出を行うことができる。
 また、例えば、従来、スマートフォンに非接触給電を行う技術は知られているが、当該技術において、スマートフォンが送電装置上に置かれた際に送電装置側でスマートフォンを認証する動作を、スマートフォンが搭載しているバッテリで行う必要があった。すなわち、従来の技術では、非接触給電を受けようとする受電機器自体にバッテリが必要であった。
 これに対し、実施の形態1に係る非接触給電システム1000では、送電制御装置10は、照明等のスイッチ3と連動して、受電機器2に非接触給電が開始され、当該非接触給電によって供給された電力によって受電機器2の認証を行うことができる。そのため、受電機器2側にバッテリを必要としない。
 さらに、実施の形態1に係る非接触給電システム1000では、照明機器のスイッチ3と送電制御装置10が連動する。照明機器のスイッチ3は、一般的に一日に数回ユーザが操作するため、非接触給電システム1000はユーザが特に意識することなく、「起動処理」を実行することができる。
 その上で、照明機器のスイッチ3は一般的にユーザの操作しやすい位置に存在するため、ユーザには意図的にも「起動処理」を非接触給電システム1000に実行させることが容易となる。
 図6A,図6Bは、実施の形態1に係る送電制御装置10のハードウェア構成の一例を示す図である。
 実施の形態1において、起動制御部101と、異物検出部103と、送電制御部104と、通信部105の機能は、処理回路601により実現される。すなわち、送電制御装置10は、スイッチ3がONにされると、受電機器2が備える受電装置21に対して高周波電力を供給するための送電対象送信アンテナを決定し、当該送電対象送信アンテナを介した給電を行い、当該送電対象送信アンテナ以外の送信アンテナ11については高周波電力の供給を停止させる制御を行うための処理回路601を備える。
 処理回路601は、図6Aに示すように専用のハードウェアであっても、図6Bに示すようにメモリ606に格納されるプログラムを実行するCPU(Central Processing Unit)605であってもよい。
 処理回路601が専用のハードウェアである場合、処理回路601は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。
 処理回路601がCPU605の場合、起動制御部101と、異物検出部103と、送電制御部104と、通信部105の機能は、ソフトウェア、ファームウェア、または、ソフトウェアとファームウェアとの組み合わせにより実現される。すなわち、起動制御部101と、異物検出部103と、送電制御部104と、通信部105は、HDD(Hard Disk Drive)602、メモリ606等に記憶されたプログラムを実行するCPU605、またはシステムLSI(Large-Scale Integration)等の処理回路により実現される。また、HDD602、またはメモリ606等に記憶されたプログラムは、起動制御部101と、異物検出部103と、送電制御部104と、通信部105の手順や方法をコンピュータに実行させるものであるとも言える。ここで、メモリ606とは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)等の、不揮発性もしくは揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)等が該当する。
 なお、起動制御部101と、異物検出部103と、送電制御部104と、通信部105の機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。例えば、起動制御部101については専用のハードウェアとしての処理回路601でその機能を実現し、異物検出部103と、送電制御部104と、通信部105については処理回路がメモリ606に格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。
 また、送電制御装置10は、スイッチ3または受電機器2等との通信を行う、入力インタフェース装置603、および、出力インタフェース装置604を有する。
 また、送電制御装置10は、高周波インバータ回路102を備える(図6Aおよび図6Bでは図示省略)。
 また、実施の形態1に係る受電機器2も、図6A,図6Bに示すようなハードウェア構成を有する。図6A,図6Bを用いて、実施の形態1に係る受電機器2のハードウェア構成の一例について説明する。
 実施の形態1において、通信部22と制御部24の機能は、処理回路601により実現される。すなわち、受電機器2は、送電装置1に対して、複数の送信アンテナ11への高周波電力の供給を行わせるための起動信号を送信させ、送電装置1から供給される電力によって動作する制御を行うための処理回路601を備える。
 処理回路601は、図6Aに示すように専用のハードウェアであっても、図6Bに示すようにメモリ606に格納されるプログラムを実行するCPU(Central Processing Unit)605であってもよい。
 処理回路601が専用のハードウェアである場合、処理回路601は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものが該当する。
 処理回路601がCPU605の場合、通信部22と制御部24の機能は、ソフトウェア、ファームウェア、または、ソフトウェアとファームウェアとの組み合わせにより実現される。すなわち、通信部22と制御部24は、HDD(Hard Disk Drive)602、メモリ606等に記憶されたプログラムを実行するCPU605、またはシステムLSI(Large-Scale Integration)等の処理回路により実現される。また、HDD602、またはメモリ606等に記憶されたプログラムは、通信部22と制御部24の手順や方法をコンピュータに実行させるものであるとも言える。ここで、メモリ606とは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)等の、不揮発性もしくは揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)等が該当する。
 なお、通信部22と制御部24の機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。例えば、通信部22については専用のハードウェアとしての処理回路601でその機能を実現し、制御部24については処理回路がメモリ606に格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。
 また、受電機器2は、送電装置1等の外部装置との通信を行う、入力インタフェース装置603、および、出力インタフェース装置604を有する。
 また、受電機器2は、受信アンテナ211を備える(図6Aおよび図6Bでは図示省略)。
 また、受電機器2は、出力装置(図6Aおよび図6Bでは図示省略)を備える。出力装置は、ディスプレイ、レベルメータ、または、音声出力装置等である。
 以上のように、実施の形態1によれば、送電制御装置10は、外部スイッチ(スイッチ3)と連動し、外部スイッチが操作されると、複数の送信アンテナ11への電力供給を開始する送電部1042と、電力供給が開始された複数の送信アンテナ11のうち、送電部1042からの電力供給を継続させる送電対象送信アンテナを決定するアンテナ決定部1043を備えるように構成した。そのため、送電装置1から給電される受電機器2が設置されていないエリアへの不要な電磁波の放射を低減することができる。これにより、不要な電磁波によって、当該電磁波の付近に設置されている受電機器2に対して影響を及ぼす可能性を低減することができる。
 また、送電制御装置10において、アンテナ制御部1041は、送電部1042に、送電対象送信アンテナへの電力供給を行わせると、再び外部スイッチが操作されるまで、送電対象送信アンテナへの電力供給を行わせる状態を継続するとともに、送電対象送信アンテナ以外の送信アンテナへの電力供給を停止させた状態を継続する。
 一度決定した送電対象送信アンテナに対しては、受電機器2への給電環境に異常が発生しない限り、高周波電力の供給が継続されるため、受電機器2は、バッテリを搭載していなくても、送電装置1からの給電により継続的な使用が可能となる。
 また、送電制御装置10の起動制御部101は、外部スイッチがONにされたことによって起動信号を出力する。スイッチ3と連動して受電機器2に非接触給電が開始され、当該非接触給電によって供給された電力によって受電機器2の認証を行うため、受電機器2側にバッテリを必要としない。
 また、送電制御装置10は、定常送電処理の中で異物の検出を行うため、例えば、異物が高温になることによる、ユーザの火傷、異物の変形、溶融、発火もしくは破損、または、異物の発火による火災の発生に至る可能性を低減することができる。
 また、送電制御装置10は、送電部1042が送電対象送信アンテナへの電力供給を行っている状態において、送電対象送信アンテナへの電力供給の状態に基づいて、送信アンテナと受電機器2が備える受信アンテナ211との間に存在する異物を検出する異物検出部103を備え、アンテナ制御部1041は、異物検出部103が異物を検出した場合、送電部1042に対して、送電対象送信アンテナへの電力供給を停止させる。
 送電制御装置10内で異物検出動作を完結させるため、送電制御装置10が送信アンテナ11を介して給電可能なエリアに受電装置21が存在するか否かに関係なく異物の検出を行うことができる。
 また、送電制御装置10は、送電対象送信アンテナを決定する際に、受電側を見たインピーダンスの検出を行わないため、MHz帯以上の高周波伝送においても、回路規模が大きくなることはなく、装置の小型化、および、低コスト化が可能となる。
実施の形態2.
 実施の形態1では、非接触給電システム1000において、送電装置1は、1つの送電制御装置10から、複数の送信アンテナ11に対して、高周波電力の供給を行うようにしていた。
 実施の形態2では、送電装置1において、複数の送信アンテナ11それぞれに対応した送電制御装置10を備えるようにした実施の形態について説明する。
 図7は、実施の形態2に係る非接触給電システム1000における送電装置1aおよび受電機器2の構成例を説明するための図である。
 実施の形態2に係る非接触給電システム1000は、実施の形態1に係る非接触給電システム1000とは、送電装置1aが、複数の送信アンテナ11それぞれに対応した送電制御装置10を備えるようにした点が異なる。送電制御装置10と送信アンテナ11とは、例えば、ケーブルで接続される。
 その他の構成については、実施の形態1に係る非接触給電システム1000と同様であるため、重複した説明を省略する。
 また、送電装置1aが備える各送電制御装置10の具体的な構成は、それぞれ、実施の形態1において図2Bを用いて説明した送電制御装置10の具体的な構成と同様であるため、重複した説明を省略する。
 なお、図7においては、各送電制御装置10が備える各構成部の記載を省略している。
 図7では、各送電制御装置10は、送信アンテナ11の外部に備えられ、対応する送信アンテナ11と接続されるものとするが、送信アンテナ11に送電制御装置10を組み込み、一体型の送信アンテナとしてもよい。
 実施の形態2に係る送電制御装置10の動作について説明する。
 実施の形態2に係る送電制御装置10の動作の流れは、実施の形態1において図4を用いて説明した送電制御装置10の動作の流れと、基本的には同じであるため、図4を用いて、実施の形態2に係る送電制御装置10の具体的な動作について説明する。
 なお、実施の形態2では、各送電制御装置10が、以下に説明する動作を行う。
 以下の説明では、送電装置1aが設置された後はじめて起動したものとして、送電制御装置10の動作を説明する。
 起動制御部101は、スイッチ3がOFFの状態からONにされるまで待機し(ステップST401の“NO”の場合)、スイッチ3がONにされると(ステップST401の“YES”の場合)起動信号の出力等を行う。具体的な動作は、実施の形態1で説明した動作と同様であるため、重複した説明を省略する。
 送電制御部104のアンテナ制御部1041は、ステップST401にて起動制御部101から起動信号が出力されると、送電部1042に、対応する送信アンテナ11への高周波電力の供給を行わせる(ステップST402)。
 ここで、アンテナ制御部1041は、送電装置1aが正常に起動しているかを判定する(ステップST403)。具体的な動作は、実施の形態1で説明した動作と同様であるため、重複した説明を省略する。
 アンテナ制御部1041は、送電装置1aが正常に起動していると判定した場合(ステップST403の“YES”の場合)、ステップST404に進む。
 アンテナ制御部1041は、送電装置1aが正常に起動していないと判定した場合(ステップST403の“NO”の場合)、送電部1042に対して、高周波電力の供給をOFFさせる(ステップST409)。
 なお、ステップST409では、送電部1042が行っている、対応する送信アンテナ11への高周波電力の供給がOFFされる。
 その後、ユーザが、再び、OFFの状態のスイッチ3をONにするまで(ステップST401)、送信アンテナ11への高周波電力の供給はOFFされたままとなる。
 ステップST404において、通信部105の応答受信部1051は、受電機器2から送信される応答信号を受信したか否かを判定する(ステップST404)。
 実施の形態2において、受電機器2は、全ての送電制御装置10に対して応答信号を送信する。
 したがって、ある送電制御装置10の応答受信部1051が応答信号を受信した場合であっても、当該応答信号は、ステップST402において当該送電制御装置10の送電部1042が高周波電力を供給した送信アンテナ11から受電機器2が非接触給電を受けたことによる応答信号とは限らない。
 ステップST404において、応答受信部1051が、応答信号を受信しない場合(ステップST404の“NO”の場合)、ステップST409に進む。
 ステップST404において、応答受信部1051が、応答信号を受信した場合(ステップST404の“YES”の場合)、応答受信部1051は、受信した応答信号を、送電制御部104に出力する。
 ステップST404において、応答受信部1051から応答信号が出力されると、アンテナ制御部1041は、「定常送電処理」を開始する。具体的には、アンテナ制御部1041は、対応する送信アンテナ11が、高周波電力の供給を継続する必要がある送信アンテナ11である場合、当該送信アンテナ11に対し、ステップST402において送電部1042に行わせた高周波電力の供給を継続するための処理を開始する。
 送電制御部104のアンテナ決定部1043は、ステップST404にて応答受信部1051が受電機器2から受信した応答信号に応じて、送電対象送信アンテナを決定する(ステップST405)。
 当該ステップST405の具体的な動作は、実施の形態1で説明したステップST405の具体的な動作とは異なる。
 実施の形態2では、送電制御装置10は、対応する1つの送信アンテナ11にしか高周波電力の供給を行わないため、アンテナ決定部1043は、複数の送信アンテナ11への高周波電力の供給状態と比較して、当該対応する送信アンテナ11が送電対象送信アンテナであるかどうかを判断することはできない。
 そこで、アンテナ決定部1043は、予め設定された閾値(第4の閾値)に基づき、対応する送信アンテナ11へ高周波電力を供給するための電圧レベルまたは電流レベルが、当該第4の閾値を超えているか否かによって、対応する送信アンテナ11が送電対象送信アンテナであるかどうかを判断する。電圧レベルまたは電流レベルが第4の閾値を超えているか否かの判断について、アンテナ決定部1043が、第4の閾値よりも大きいほうに超えているか否かを判断するか、第4の閾値よりも小さいほうに超えているか否かを判断するかは、ユーザが適宜設定することができる。
 なお、実施の形態2では、送電装置1aが備える各送電制御装置10が同時に起動されることを前提としている。当該前提においては、上述のとおり、複数の送信アンテナ11への高周波電力の供給状態と比較して送信アンテナ11が送電対象送信アンテナであるかどうかを判断することができず、アンテナ決定部1043が、第4の閾値に基づき、送電対象送信アンテナを判断する。しかし、これに限らず、送電装置1aにおいて、各送電制御装置10の起動に時間差を設けるようにすることもできる。この場合、送電装置1aにおいて、受電機器2に対応した送電状態を識別できる。
 アンテナ決定部1043が、対応する送信アンテナ11が送電対象送信アンテナと決定すると、アンテナ制御部1041は、送電部1042に対して当該送電対象送信アンテナへの高周波電力の供給を継続させる。一方、アンテナ決定部1043が、対応する送信アンテナ11が送電対象送信アンテナと決定しなかった場合は、アンテナ制御部1041は、送電部1042に対して、対応する送信アンテナ11への高周波電力の供給を停止させる(ステップST406)。
 異物検出部103は、送電部1042が送電対象送信アンテナへ高周波電力の供給を行っている状態において、送電対象送信アンテナへの高周波電力の供給の状態に基づいて、送電装置1と受電装置21との間に存在する異物を検出する(ステップST407)。
 ステップST407にて、異物検出部103は、異物を検出すると(ステップST407の“YES”の場合)、異物を検出した旨の情報を、送電制御部104に出力する。
 送電制御部104のアンテナ制御部1041は、通信部105に対してエラー信号を出力する(ステップST410)。
 通信部105のエラー通知部1052は、アンテナ制御部1041からエラー信号が出力されると、当該エラー信号を受電機器2に送信する。
 受電機器2では、通信部22のエラー受信部222がエラー信号を受信し、制御部24に出力する。実施の形態2では、受電機器2は、各送電制御装置10と通信を行う。受電機器2において、制御部24は、エラー受信部222が、各送電制御装置10から出力されたエラー信号を受信すると、受電装置21に供給されている電圧レベルが正常範囲であるか否かを判断する。制御部24は、受電装置21に供給されている電圧レベルが正常範囲である場合、自身が備えられている受電機器2の受信アンテナ211と送信アンテナ11との間に異物が検出されたのではないと判断できる。しかし、制御部24は、自身が備えられている受電機器2以外の、どの受電機器2において、受信アンテナ211と送信アンテナ11との間に異物が検出されたのかまでは判断できない。そこで、制御部24は、いずれの送信アンテナ11にて異物が検出されたのかは特定できないが、異物が検出された旨のエラー情報を、出力部23に出力させる。
 一方、制御部24は、受電装置21に供給されている電圧レベルが正常範囲を下回っていると判断した場合、自身が備えられている受電機器2の受信アンテナ211と送信アンテナ11との間に異物が検出された旨のエラー情報を、出力部23に出力させる。
 なお、上述したように、送電装置1aにおいて、各送電制御装置10の起動に時間差を設けるようにした場合には、受電機器2において、当該受電機器2に対応した送電装置1aからの送電状態を識別できるため、制御部24は、受電装置21に供給されている電圧レベルが正常範囲である場合でも、どの受電機器2において、受信アンテナ211と送信アンテナ11との間に異物が検出されたのかを特定可能とすることができる。
 また、制御部24は、エラー情報を、一時的に出力させる。エラー情報が出力される時間は、予め設定されているものとする。
 また、実施の形態2では、受電機器2において、制御部24は、エラー情報を一時的に出力させると、各送電制御装置10の通信部105に対して、エラーが発生している旨の情報を送信するようにする。具体的には、制御部24は、いずれの送信アンテナ11にて異物が検出されたのか特定できないが、異物が検出されたことによるエラーが発生している旨の情報を、各送電制御装置10の通信部105に対して送信する。または、制御部24は、自身が備えられている受電機器2の受信アンテナ211と送信アンテナ11との間に異物が検出されたことによるエラーが発生している旨の情報を、対応する送信アンテナ11への高周波電力の供給を行っている送電制御装置10の通信部105に対して出力する。このように、制御部24から各送電制御装置10の通信部105に対して送信される、エラーが発生している旨の情報には、2種類のケースがある。
 送電制御装置10は、通信部105が受電機器2からエラーが発生している旨の情報を受信すると、送電対象送信アンテナに高周波電力を供給していれば、当該高周波電力の供給をOFFするようにする。
 具体的には、受電機器2から、いずれの送信アンテナ11にて異物が検出されたのかは特定できないが、異物が検出されたことによるエラーが発生している旨の情報が送信された場合には、全ての送電制御装置10において、高周波電力の供給をOFFする。つまり、受電装置21に対して送信アンテナ11から非接触給電が行われていて、受電機器2側で、受電装置21に供給される電力の電圧レベルが正常範囲にあると判断された場合、全ての送電制御装置10において、高周波電力の供給をOFFする。但し、送電制御装置10は、既に送信アンテナ11が送電対象送信アンテナに決定されている場合は、当該送電対象送信アンテナに対しては、高周波電力の供給をOFFしないようにする。
 一方、受電機器2から、自身が備える受信アンテナ211と送信アンテナ11との間に異物が検出されたことによるエラーが発生している旨の情報が送信された場合には、当該受電機器2が備える受信アンテナ211に対応する送信アンテナ11への高周波電力の供給を行っている送電制御装置10において、当該高周波電力の供給をOFFする。
 ステップST407にて、異物検出部103が異物を検出しない場合(ステップST407の“NO”の場合)、かつ、受電機器2からエラーが発生している旨の情報を受信しない場合、ステップST408に進む。
 アンテナ制御部1041は、送電対象送信アンテナが受電装置21への非接触給電を行っているか否かを判定する(ステップST408)。
 なお、実施の形態2では、対応する送信アンテナ11が送電対象送信アンテナではない場合は、当該ステップST408はスキップしてステップST401に戻る。
 ステップST408において、アンテナ制御部1041が、送電対象送信アンテナが受電装置21への非接触給電を行っていると判定した場合(ステップST408の“YES”の場合)、ステップST405に戻り、「定常送電処理」を繰り返す。
 よって、送電部1042は、対応する送信アンテナ11が送電対象送信アンテナであれば、当該送電対象送信アンテナへの高周波電力の供給を継続し、対応する送信アンテナ11が送電対象送信アンテナでなければ、送信アンテナ11への高周波電力の供給の停止を継続する(ステップST408の“NO”の場合)。
 そして、ステップST405以降の定常送電処理が繰り返される。
 一方、ステップST408において、アンテナ制御部1041が、送電対象送信アンテナが受電装置21への非接触給電を行っていないと判定した場合(ステップST408の“NO”の場合)、アンテナ制御部1041は、通信部105に対してエラー信号を出力する(ステップST410)。
 通信部105のエラー通知部1052は、アンテナ制御部1041からエラー信号が出力されると、当該エラー信号を受電機器2に送信する。
 受電機器2では、通信部22のエラー受信部222がエラー信号を受信し、制御部24に出力する。制御部24は、エラー情報を、一時的に出力させる。制御部24が一時的にエラー情報を出力させる具体的な動作は、上述の、送電制御部104のアンテナ制御部1041から異物を検出した旨のエラー信号が出力された場合と同様であるため、重複した説明を省略する。
 また、制御部24は、エラー情報を一時的に出力させると、各送電制御装置10の通信部105に対して、エラーが発生している旨の情報を送信するようにする。制御部24が、通信部105に対して、エラーが発生している旨の情報を送信する具体的な動作は、上述の、送電制御部104のアンテナ制御部1041から異物を検出した旨のエラー信号が出力された場合と同様であるため、重複した説明を省略する。
 送電制御装置10は、通信部105が受電機器2からエラーが発生している旨の情報を受信すると、送電対象送信アンテナに高周波電力を供給していれば、当該高周波電力の供給をOFFするようにする。送電制御装置10において、高周波電力の供給をOFFする具体的な動作は、上述の、送電制御部104のアンテナ制御部1041から異物を検出した旨のエラー信号が出力された場合と同様であるため、重複した説明を省略する。
 受電機器2にて、受電装置21への非接触給電が行われていない受電機器2を特定できない場合には、全ての送電制御装置10において、高周波電力の供給がOFFされる。また、受電機器2にて、受電装置21への非接触給電が行われていない受電機器2が特定できる場合には、当該非接触給電が行われていない受電装置21の受信アンテナ211に対する送信アンテナ11への高周波電力の供給を行っている送電制御装置10においてのみ、当該高周波電力の供給がOFFされる。
 ここでは、例えば、受電機器2が移動される等して、送電対象送信アンテナが、当該受電機器2の受電装置21への非接触給電が行えないようになることが想定される。この場合、受電機器2側では、受電装置21へ供給される電力の電圧レベルが正常範囲を下回っていくようになり、制御部24は、自身が備えられている受電機器2にて非接触給電が行われなくなったと特定できる。よって、当該非接触給電が行われていない受電装置21の受信アンテナ211に対する送信アンテナ11への高周波電力の供給を行っている送電制御装置10においてのみ、当該高周波電力の供給がOFFされる。
 以上では、送電制御装置10が、設置後はじめて起動したものとして、送電制御装置10の動作を説明した。
 以下、送電制御装置10の起動が、設置後2回目以降であった場合の動作について説明する。
 送電制御装置10の起動が、設置後2回目以降であった場合、送電制御部104のアンテナ制御部1041は、起動制御部101から起動信号が出力され、送電部1042に、対応する送信アンテナ11への高周波電力の供給を行わせる際に、既に、対応する送信アンテナ11が送電対象送信アンテナである場合は、当該送電対象送信アンテナは引き続き送電対象送信アンテナとする。そして、送電制御装置10は「起動処理」を終了し、ステップST403~ステップST404はスキップして、ステップST405へ進む。
 アンテナ制御部1041は、対応する送信アンテナ11が送電対象送信アンテナではない場合、送電部1042に対して、当該送信アンテナ11への高周波電力の供給を行わせる(ステップST401~ステップST402)。
 以上のように、実施の形態2に係る非接触給電システム1000では、送電装置1aにおいて、複数の送信アンテナ11それぞれに対応した送電制御装置10を備える。
 実施の形態1に係る非接触給電システム1000の送電装置1に比べると、送電制御装置10を複数備える必要があるため、送電装置1aの構成が複雑になり、部品点数が増える。しかし、高周波での電力伝送を前提にしている非接触給電システム1000においては、送信アンテナ11それぞれの入力インピーダンスに対応した送電制御装置10の動作特性を構成できるため、電力ロスが少なくなる等の高周波特性を得ることができる。
 以上のように、実施の形態2によれば、非接触給電システム1000において、複数の送信アンテナ11それぞれに対応する送電制御装置10を備えた。そのため、高周波での電力伝送を前提にしている非接触給電システム1000において、送信アンテナ11それぞれの入力インピーダンスに対応した送電制御装置10の動作特性を構成できるため、電力ロスが少なくなる等の高周波特性を得ることができる。
 以上の実施の形態1および実施の形態2では、非接触給電システム1000は、共振型の非接触給電方式を採用するものとしたが、これに限らず、例えば、電磁誘導方式を採用してもよい。
 なお、非接触給電システムにおいて、例えば、電磁誘導方式を採用した場合、送電装置に対向して受電機器が配置されていないと送電装置からの給電が行われない。そのため、送電装置が床下に設置される場合等は、送電装置の位置がわかるように、床の表面に、送電装置の設置位置を示す表示等をしておく必要がある。
 これに対し、共振型の非接触給電方式では、上述のとおり、送電装置が受電機器と対向する位置にない場合に、送電装置と受電機器との間の相対位置を出力し、ユーザが給電効率を高くする位置に受電機器を設置すべく、受電機器の設置位置を探索できるようにすることができる。そのため、床の表面に送電装置の設置位置を示す表示等をしておく必要がなくなり、床の意匠性へ影響を与えないようにすることが可能となる。
 また、以上の実施の形態1および実施の形態2では、送電制御装置10の応答受信部1051が受電機器2から受信する応答信号からは、当該応答信号が、どの受電機器2から送信されたものであるかの特定ができないものとした。
 しかし、例えば、受電機器2は、当該受電機器2に予め設定されている規格コードを付与して応答信号を送信するようにすることもできる。この場合、送電制御装置10は、規格コードに基づけば、応答信号を送信した受電機器2を特定することができる。
 送電制御装置10は、受電機器2を特定することができれば、当該受電機器2で標準的に消費される電力も判断できる。
 そうすると、送電制御装置10は、送信アンテナ11への高周波電力の供給状態と、上記標準的に消費される電力とに基づき、どの送信アンテナ11を、どの受電機器2に対応する送電対象送信アンテナとして高周波電力の供給を継続させるかを、決定することができる。
 また、以上の実施の形態1および実施の形態2では、送電制御装置10は、起動制御部101と、高周波インバータ回路102と、異物検出部103と、通信部105と、送電制御部104とを備えるものとしたが、当該構成は必須ではない。送電制御装置10は、少なくとも、送電部1042と、アンテナ決定部1043を備えるようになっていればよい。
 また、以上の実施の形態2では、送電装置1aにおいて、複数の送信アンテナ11それぞれに対応して、図2Bに示したような送電制御装置10を備えるものとしたが、これは一例に過ぎない。実施の形態2では、送電装置1aにおいて、複数の送信アンテナ11それぞれに対応して、少なくとも、高周波インバータ回路102、起動制御部101、送電部1042、応答受信部1051、アンテナ決定部1043、および、アンテナ制御部1041が備えられるようになっていればよい。
 また、以上の実施の形態1および実施の形態2では、ユーザがスイッチ3をONにすると、当該スイッチ3の動作に連動して、送電制御装置10が、以上で説明した送信アンテナ11の起動等の処理を開始するものとした。しかしこれは一例に過ぎず、例えば、実施の形態1および実施の形態2において、ユーザがスイッチ3をOFFにすると、当該スイッチ3の動作に連動して、送電制御装置10が送信アンテナ11の起動等の処理を開始するようにしてもよい。また、例えば、実施の形態1および実施の形態2において、ユーザがスイッチ3をONにした場合、および、OFFにした場合の両方の場合に、当該スイッチ3の動作に連動して、送電制御装置10が送信アンテナ11の起動等の処理を開始するようにしてもよい。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る送電制御装置は、非接触給電システムにおいて、送電装置から給電される受電機器が設置されていないエリアへの不要な電磁波の放射を低減することができることができるため、例えば、複数の受電機器が設置され得る構造物における非接触給電システムで使用される送電制御装置に適用することができる。
 1,1a 送電装置、2 受電機器、2a テレビ、2b 電気スタンド、3 スイッチ、10 送電制御装置、11 送信アンテナ、101 起動制御部、102 高周波インバータ回路、103 異物検出部、104 送電制御部、1041 アンテナ制御部、1042 送電部、1043 アンテナ決定部、105 通信部、1051 応答受信部、1052 エラー通知部、21 受電装置、211 受信アンテナ、22 通信部、221 応答送信部、222 エラー受信部、23 出力部、24 制御部、601 処理回路、602 HDD、603 入力インタフェース装置、604 出力インタフェース装置、1000 非接触給電システム。

Claims (14)

  1.  外部スイッチと連動し、前記外部スイッチが操作されると、複数の送信アンテナへの電力供給を開始する送電部と、
     前記電力供給が開始された前記複数の送信アンテナのうち、前記送電部からの前記電力供給を継続させる送電対象送信アンテナを決定するアンテナ決定部
     とを備えた非接触給電用の送電制御装置。
  2.  前記外部スイッチの操作に連動して起動信号を出力する起動制御部を備え、
     前記送電部は、前記起動制御部が前記起動信号を出力すると、前記複数の送信アンテナへの前記電力供給を開始する
     ことを特徴とする請求項1記載の非接触給電用の送電制御装置。
  3.  前記電力供給が開始された前記複数の送信アンテナのうち、いずれかの送信アンテナによる非接触給電が開始された受電機器が送信した応答信号を受信する応答受信部を備え、 前記アンテナ決定部は、前記応答受信部が前記応答信号を受信した場合、当該応答信号に応じて、前記送電対象送信アンテナを決定する
     ことを特徴とする請求項1記載の非接触給電用の送電制御装置。
  4.  前記送電部に、前記アンテナ決定部が決定した前記送電対象送信アンテナへの前記電力供給を継続させ、前記送電対象送信アンテナ以外の送信アンテナに対する前記電力供給を停止させるアンテナ制御部
     を備えた請求項1記載の非接触給電用の送電制御装置。
  5.  前記起動制御部は、前記外部スイッチがONまたはOFFにされたことによって前記起動信号を出力する
     ことを特徴とする請求項2記載の非接触給電用の送電制御装置。
  6.  前記アンテナ決定部は、
     前記送電部による前記送信アンテナへの前記電力供給の状態に基づいて、前記送電対象送信アンテナを決定する
     ことを特徴とする請求項1記載の非接触給電用の送電制御装置。
  7.  前記送電部が前記送電対象送信アンテナへの前記電力供給を行っている状態において、前記送電対象送信アンテナへの前記電力供給の状態に基づいて、前記送信アンテナと、いずれかの送信アンテナによる非接触給電が開始された受電機器が備える受信アンテナとの間に存在する異物を検出する異物検出部を備え、
     前記アンテナ制御部は、
     前記異物検出部が前記異物を検出した場合、前記送電部に対して、前記送電対象送信アンテナへの前記電力供給を停止させる
     ことを特徴とする請求項4記載の非接触給電用の送電制御装置。
  8.  前記アンテナ制御部は、
     前記送電部に、前記送電対象送信アンテナへの前記電力供給を行わせると、
     再び前記外部スイッチが操作されるまで、前記送電対象送信アンテナへの前記電力供給を行わせる状態を継続するとともに、前記送電対象送信アンテナ以外の送信アンテナへの前記電力供給を停止させた状態を継続する
     ことを特徴とする請求項4記載の非接触給電用の送電制御装置。
  9.  前記アンテナ制御部は、
     前記送電部が前記複数の送信アンテナへの前記電力供給を開始する際、前記アンテナ決定部が既に前記送電対象送信アンテナに決定した送信アンテナが存在する場合、当該送電対象送信アンテナを除く送信アンテナへの前記電力供給を開始させる
     ことを特徴とする請求項4記載の非接触給電用の送電制御装置。
  10.  送電部が、外部スイッチと連動し、前記外部スイッチが操作されると、複数の送信アンテナへの電力供給を開始するステップと、
     アンテナ決定部が、前記電力供給が開始された前記複数の送信アンテナのうち、前記送電部からの前記電力供給を継続させる送電対象送信アンテナを決定するステップ
     とを備えた非接触給電用の送電制御方法。
  11.  受信アンテナに対して非接触で給電可能な複数の送信アンテナと、
    外部スイッチと連動し、前記外部スイッチが操作されると、前記複数の送信アンテナへの電力供給を開始する送電部と、
     前記電力供給が開始された前記複数の送信アンテナのうち、前記送電部からの前記電力供給を継続させる送電対象送信アンテナを決定するアンテナ決定部を有する送電制御装置
     とを備えた非接触給電用の送電装置。
  12.  前記複数の送信アンテナそれぞれに対応する前記送電制御装置を備えた
     ことを特徴とする請求項11記載の非接触給電用の送電装置。
  13.  受信アンテナを有する受電装置と、
     前記受信アンテナに対して非接触で給電可能な複数の送信アンテナと、
     外部スイッチと連動し、前記外部スイッチが操作されると、前記複数の送信アンテナへの電力供給を開始する送電部と、
     前記電力供給が開始された前記複数の送信アンテナのうち、前記送電部からの前記電力供給を継続させる送電対象送信アンテナを決定するアンテナ決定部を有する送電制御装置
     とを備えた非接触給電システム。
  14.  前記送信アンテナは、
     共振型非接触給電方式によって、受電機器に対する非接触給電を行うための送信アンテナである
     ことを特徴とする請求項13記載の非接触給電システム。
PCT/JP2018/030812 2018-08-21 2018-08-21 非接触給電用の送電制御装置、非接触給電用の送電制御方法、および、非接触給電システム WO2020039499A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880096542.XA CN112567593A (zh) 2018-08-21 2018-08-21 非接触供电用的送电控制装置、非接触供电用的送电控制方法及非接触供电系统
PCT/JP2018/030812 WO2020039499A1 (ja) 2018-08-21 2018-08-21 非接触給電用の送電制御装置、非接触給電用の送電制御方法、および、非接触給電システム
EP18930837.2A EP3826139A1 (en) 2018-08-21 2018-08-21 Power transmission control device for non-contact power supply, power transmission control method for non-contact power supply, and non-contact power supply system
SG11202101595RA SG11202101595RA (en) 2018-08-21 2018-08-21 Power transmission control device for non-contact power supply, power transmission control method for non-contact power supply, power transmission device for non-contact power supply, and non-contact power supply system
JP2019515669A JP6687294B1 (ja) 2018-08-21 2018-08-21 非接触給電用の送電制御装置、非接触給電用の送電制御方法、非接触給電用の送電装置、および、非接触給電システム
US17/162,898 US20210152029A1 (en) 2018-08-21 2021-01-29 Power transmission control device for non-contact power supply, power transmission control method for non-contact power supply, power transmission device for non-contact power supply, and non-contact power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/030812 WO2020039499A1 (ja) 2018-08-21 2018-08-21 非接触給電用の送電制御装置、非接触給電用の送電制御方法、および、非接触給電システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/162,898 Continuation US20210152029A1 (en) 2018-08-21 2021-01-29 Power transmission control device for non-contact power supply, power transmission control method for non-contact power supply, power transmission device for non-contact power supply, and non-contact power supply system

Publications (1)

Publication Number Publication Date
WO2020039499A1 true WO2020039499A1 (ja) 2020-02-27

Family

ID=69593191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030812 WO2020039499A1 (ja) 2018-08-21 2018-08-21 非接触給電用の送電制御装置、非接触給電用の送電制御方法、および、非接触給電システム

Country Status (6)

Country Link
US (1) US20210152029A1 (ja)
EP (1) EP3826139A1 (ja)
JP (1) JP6687294B1 (ja)
CN (1) CN112567593A (ja)
SG (1) SG11202101595RA (ja)
WO (1) WO2020039499A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006246633A (ja) * 2005-03-03 2006-09-14 Sony Corp 電力供給システム、電力供給装置および方法、受電装置および方法、記録媒体、並びにプログラム
JP2009159685A (ja) 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd 非接触給電システム
JP2011229265A (ja) * 2010-04-19 2011-11-10 Panasonic Electric Works Co Ltd 非接触電力伝送装置
JP2013243908A (ja) * 2012-04-26 2013-12-05 Semiconductor Energy Lab Co Ltd 給電システム及び給電方法
JP2015039271A (ja) * 2013-08-19 2015-02-26 パナソニック株式会社 非接触給電システム
JP2015537495A (ja) * 2012-09-07 2015-12-24 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 双方向無線電力伝送用のシステム及び方法
WO2017064955A1 (ja) * 2015-10-15 2017-04-20 ローム株式会社 送電装置及び非接触給電システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217826A (ja) * 1999-01-29 2000-08-08 Olympus Optical Co Ltd 手術装置
JP2007014169A (ja) * 2005-07-04 2007-01-18 Nippon Eco System Kk 配電システム
KR100792308B1 (ko) * 2006-01-31 2008-01-07 엘에스전선 주식회사 코일 어레이를 구비한 무접점 충전장치, 무접점 충전시스템 및 충전 방법
JP4413236B2 (ja) * 2007-02-16 2010-02-10 セイコーエプソン株式会社 受電制御装置、送電制御装置、無接点電力伝送システム、受電装置、送電装置および電子機器
US8624750B2 (en) * 2007-10-09 2014-01-07 Powermat Technologies, Ltd. System and method for inductive power provision over an extended surface
WO2012095896A1 (ja) * 2011-01-11 2012-07-19 パナソニック株式会社 無線電力伝送システム及び位置ずれ検知装置
US20140191586A1 (en) * 2011-09-21 2014-07-10 Toyota Jidosha Kabushiki Kaisha Wireless power transmission apparatus, wireless power reception apparatus, and wireless power transmission and reception system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006246633A (ja) * 2005-03-03 2006-09-14 Sony Corp 電力供給システム、電力供給装置および方法、受電装置および方法、記録媒体、並びにプログラム
JP2009159685A (ja) 2007-12-25 2009-07-16 Panasonic Electric Works Co Ltd 非接触給電システム
JP2011229265A (ja) * 2010-04-19 2011-11-10 Panasonic Electric Works Co Ltd 非接触電力伝送装置
JP2013243908A (ja) * 2012-04-26 2013-12-05 Semiconductor Energy Lab Co Ltd 給電システム及び給電方法
JP2015537495A (ja) * 2012-09-07 2015-12-24 アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー 双方向無線電力伝送用のシステム及び方法
JP2015039271A (ja) * 2013-08-19 2015-02-26 パナソニック株式会社 非接触給電システム
WO2017064955A1 (ja) * 2015-10-15 2017-04-20 ローム株式会社 送電装置及び非接触給電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3826139A4 *

Also Published As

Publication number Publication date
EP3826139A4 (en) 2021-05-26
JP6687294B1 (ja) 2020-04-22
EP3826139A1 (en) 2021-05-26
JPWO2020039499A1 (ja) 2020-09-10
US20210152029A1 (en) 2021-05-20
SG11202101595RA (en) 2021-03-30
CN112567593A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
EP3467997A1 (en) Wireless power transmission method and device therefor
KR102439878B1 (ko) 무선 전력 송신 장치, 무선으로 전력을 수신하는 전자 장치 및 그 동작 방법
JPWO2015097807A1 (ja) 共振型送信電源装置及び共振型送信電源システム
JP2014030349A (ja) 器具および機器のためのワイヤレス電力伝達
JP2011101524A (ja) 電子装置、設定診断装置、設定診断システム、空気調和機、センサ装置、計測器及び電気機器
WO2021161966A1 (ja) 送電装置、受電装置、それらの制御方法、およびプログラム
KR101826630B1 (ko) 사물인터넷 확장구현용 통합 네트워크 시스템
JP2015177738A (ja) 無線電力送信装置及び方法
US20220247223A1 (en) Power transmission apparatus, control method executed by power transmission apparatus, and storage medium
JPWO2015097810A1 (ja) 共振型電力伝送システム及び共振型電力送信装置
WO2016117241A1 (ja) 電子機器制御装置、電子機器制御システム、電子機器、および、その制御方法
WO2020039500A1 (ja) 非接触給電システム、非接触給電用の受電機器、および、非接触給電用の受電機器による起動信号送信方法
WO2020039499A1 (ja) 非接触給電用の送電制御装置、非接触給電用の送電制御方法、および、非接触給電システム
JP6661294B2 (ja) 受電装置、判定方法、プログラム
US20210175756A1 (en) Power receiving apparatus, power transmitting apparatus, method for controlling same, and computer-readable medium
US10978915B2 (en) Wireless power transmission apparatus and operating method thereof
JP6366334B2 (ja) 送電装置、送電装置の制御方法、プログラム
US10256672B2 (en) Power transfer system, power receiving apparatus, control method, and storage medium for determining when received power is deteriorated
JP6778005B2 (ja) 送電装置、その制御方法、およびプログラム
JP6939098B2 (ja) 非接触給電システムによる異物検知方法及び非接触給電システム
US10205352B2 (en) Power receiving apparatus, power transmitting apparatus, control method, and storage medium
JP2015082964A (ja) 非接触電力伝送システム及び受電装置
JP2017091347A (ja) 機器管理装置、機器管理方法および機器管理プログラム
JP2014103788A (ja) 充電器、制御プログラム
JP7449083B2 (ja) 送電装置、送信方法、およびプログラム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019515669

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018930837

Country of ref document: EP

Effective date: 20210222