WO2020038470A1 - 先导阀及其电磁四通阀 - Google Patents

先导阀及其电磁四通阀 Download PDF

Info

Publication number
WO2020038470A1
WO2020038470A1 PCT/CN2019/102319 CN2019102319W WO2020038470A1 WO 2020038470 A1 WO2020038470 A1 WO 2020038470A1 CN 2019102319 W CN2019102319 W CN 2019102319W WO 2020038470 A1 WO2020038470 A1 WO 2020038470A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve stem
flow passage
valve body
pilot
Prior art date
Application number
PCT/CN2019/102319
Other languages
English (en)
French (fr)
Inventor
陈建军
刘海波
Original Assignee
浙江盾安禾田金属有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江盾安禾田金属有限公司 filed Critical 浙江盾安禾田金属有限公司
Publication of WO2020038470A1 publication Critical patent/WO2020038470A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/085Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid

Definitions

  • the utility model relates to the technical field of air conditioning, in particular to a pilot valve and an electromagnetic four-way valve thereof.
  • the electromagnetic four-way valve is one of the important parts of the air conditioner.
  • the electromagnetic four-way valve is used to switch between the cooling state and the heating state in the air conditioner.
  • the electromagnetic four-way valve assembly generally includes an electromagnetic four-way valve, an external pipeline and a pilot valve.
  • the external pipeline and the pilot valve are installed on the electromagnetic four-way valve.
  • the pilot valve is used to control the electromagnetic four-way valve.
  • Existing pilot valves generally include structures such as a valve body, a capillary tube, a reed, and a slider, and the liquid flow path is switched by the reed and the slider, so as to switch between the cooling state and the heating state in the air conditioner.
  • the structure of such a pilot valve is complicated, and the processing is difficult, and because of the many parts, installation is inconvenient.
  • a pilot valve includes a valve body and a valve stem.
  • the valve body has a valve cavity.
  • the valve stem is housed in the valve cavity.
  • a plurality of reversing holes are provided on an outer wall of the valve body.
  • the axis of the direction hole is perpendicular to the axis of the valve body, and the axes of a plurality of the reversing holes are coplanar.
  • the valve stem is provided with a plurality of flow channels, and the valve stem moves in the valve cavity. The flow direction of the fluid medium between the plurality of reversing holes is switched through the flow channel.
  • a plurality of the reversing holes are evenly spaced on the valve body, and the axes of the plurality of reversing holes and the axis of the valve body intersect at the same point.
  • a plurality of the reversing holes are arranged on the valve body with the axis of the valve body as the axis array, so that when external components are installed in the reversing holes, each component can be minimized. Interference between them makes installation more convenient.
  • the plurality of flow channels are a first flow channel, a second flow channel, a third flow channel, and a fourth flow channel, and the first flow channel and the second flow channel are controlled by the valve.
  • the axis of the body is symmetrically disposed on the valve stem, and the third flow passage and the fourth flow channel are symmetrically disposed on the valve stem along the axis of the valve body.
  • a first connection portion is formed between the first flow channel and the second flow channel
  • a second connection portion between the third flow channel and the fourth flow channel is formed along the In the circumferential direction of the valve stem, the first connecting portion and the second connecting portion are mutually offset.
  • the first connecting portion adjacent to the second connecting portion is displaced by 90 degrees along the circumferential direction of the valve stem.
  • the flow passage is arc-shaped, and along the circumferential direction of the valve stem, the width of the flow passage in the axial direction of the valve stem changes from small to large and then small.
  • a plurality of mounting holes are provided on an outer wall of the valve body, and each of the mounting holes corresponds to one of the reversing holes, and the mounting holes communicate with the reversing holes.
  • a capillary tube is installed in each of the mounting holes, and the capillary tube is used for discharging the fluid medium in the reversing hole.
  • the pilot valve further includes a coil assembly mounted on the valve body, the coil assembly is energized to generate a magnetic field, and the valve rod is moved under the action of the magnetic field force .
  • the coil assembly includes a coil and an iron core, the coil is mounted on the valve body, the iron core cooperates with the valve stem, and the coil is energized to generate a magnetic field, and the magnetic field is generated in the magnetic field. Under the action of the iron core to attract the valve stem to drive the valve stem to move.
  • the coil assembly further includes an elastic member, and the elastic member is disposed between the valve stem and the iron core to reset the valve stem.
  • the valve body is provided with a connection hole, the connection hole communicates with the valve cavity, a step is formed in the connection hole, and the sleeve is installed in the connection hole and Abut against the steps.
  • a limited step is formed on the valve stem. When the air conditioner is in a cooling state, the limited step cooperates with the step.
  • a sleeve is installed on the valve body, the coil is sleeved on the sleeve, the iron core is provided in the sleeve, and one end of the valve stem is located on the valve. Lumen, the other end is located in the cannula.
  • An electromagnetic four-way valve includes the above-mentioned pilot valve.
  • the pilot valve and its electromagnetic four-way valve are provided with a flow passage on the valve stem, so that when the valve stem moves in the valve cavity, a plurality of the replacements can be switched directly through the flow passage.
  • the flow direction of the fluid medium between the holes not only has a simple structure and reduces the manufacturing cost; secondly, the axes of a plurality of the reversing holes are coplanarly arranged, thereby making the installation of external components more convenient.
  • FIG. 1 is a schematic structural diagram of an electromagnetic four-way valve provided by the present application.
  • FIG. 2 is a sectional view of a pilot valve provided by the present application.
  • FIG. 3 is a cross-sectional view of a valve body provided by the present application.
  • Fig. 4 is a sectional view at B-B in Fig. 3.
  • FIG. 5 is a perspective view of a valve stem provided by the present application.
  • Fig. 6 is a sectional view at A-A in Fig. 2.
  • FIG. 7 is a schematic diagram of a position of the valve stem in a heating state provided by the present application.
  • the pilot valve 100, 10 indicates the valve body
  • 11 indicates the valve cavity
  • 12 indicates the reversing hole
  • 121 indicates the first reversing hole
  • 122 indicates the second reversing hole
  • 123 indicates the third reversing hole
  • 124 indicates
  • 13 indicates a mounting hole
  • 131 indicates a capillary
  • 14 indicates a sleeve
  • 15 indicates a connection hole
  • 151 indicates a step
  • 20 indicates a valve stem
  • 21 indicates a flow channel
  • 211 indicates a first flow channel
  • 212 indicates a second flow Channel
  • 213 for the third channel
  • 214 for the fourth channel
  • 20c for the first section
  • 20d for the second section
  • 20f for the limit step
  • 30 for Coil components
  • 31 is a coil
  • 32 is an iron core
  • 33 is an elastic member
  • 200 is an electromagnetic four-way valve.
  • a component when a component is called “installed on” another component, it may be directly on another component or a centered component may exist. When a component is considered to be “set on” another component, it can be directly set on another component or a centered component may exist at the same time. When a component is considered to be “fixed” to another component, it may be fixed directly to another component or there may be centered components.
  • the present application provides an electromagnetic four-way valve 200.
  • the electromagnetic four-way valve 200 is installed in an air-conditioning system and is used for commutation of a refrigerant.
  • the electromagnetic four-way valve 200 is provided with the pilot valve 100, and the pilot valve 100 is used to control the operation of the electromagnetic four-way valve 200 so as to switch between cooling and heating in the air conditioner.
  • the pilot valve 100 includes a valve body 10 and a valve stem 20.
  • the valve stem 20 is disposed on the valve body 10 and can move relative to the valve body 10.
  • valve body 10 is substantially cylindrical, and the valve body 10 has a valve cavity 11 therein.
  • One end of the valve stem 20 is installed in the valve cavity 11, and Can move within the valve cavity 11.
  • a plurality of reversing holes 12 are provided on an outer wall of the valve body 10.
  • the axis of the reversing holes 12 is perpendicular to the axis of the valve body 10, and the axes of the plurality of reversing holes 12 are coplanar. That is, the axes of the plurality of reversing holes 12 are located on the same plane, and the valve rod 20 moves in the valve cavity 11, so as to switch the flow direction of the fluid medium between the plurality of reversing holes 12.
  • the movement of the electromagnetic four-way valve 200 is controlled.
  • the plurality of reversing holes 12 are evenly spaced on the outer wall of the valve body 10, and the axes of the plurality of reversing holes 12 and the axis of the valve body 10 intersect at the same point. It can be understood that, because the plurality of reversing holes 12 are coplanar and the axes of the plurality of reversing holes 12 intersect the axis of the valve body 10 at the same point, that is, the plurality of reversing holes 12 are The axis of the valve body 10 is arranged on the valve body 10 in an axial center array, so that when external components are installed in the reversing hole 12, interference between various components can be minimized, and installation is more convenient.
  • the number of the reversing holes 12 is four, so they are called four-way valves.
  • the number of the reversing holes 12 may also be 5, 6, etc.
  • the specific number of the reversing holes 12 may be set according to actual needs.
  • the four commutation holes 12 are divided into a first commutation hole 121, a second commutation hole 122, a third commutation hole 123, and a fourth commutation hole 124.
  • the first reversing hole 121 corresponds to the D port on the electromagnetic four-way valve
  • the second reversing hole 122 corresponds to the C port on the electromagnetic four-way valve
  • the fourth reversing hole 124 corresponds to the E port on the electromagnetic four-way valve.
  • the D port is the exhaust port of the compressor
  • the C port is an outdoor unit interface
  • the S port is an intake pipe interface
  • the E port is an indoor unit interface.
  • the valve rod 20 is in the valve cavity 11 The movement causes the first commutation hole 121, the second commutation hole 122, the third commutation hole 123, and the fourth commutation hole 124 to selectively communicate and switch.
  • the valve body 10 is also provided with a plurality of mounting holes 13.
  • Each of the mounting holes 13 corresponds to one of the reversing holes 12.
  • the mounting holes 13 communicate with the reversing holes 12.
  • the axis of the mounting hole 13 is coincident with the axis of the reversing hole 12, and a capillary tube 131 is installed in each of the mounting holes 13, and the capillary tube 131 is used to connect the Fluid medium export.
  • the axis of the mounting hole 13 and the axis of the reversing hole 12 may not be overlapped with each other. The specific relationship can be freely selected according to the actual installation environment.
  • the inner diameter of the mounting hole 13 is larger than the inner diameter of the reversing hole 12. It can be understood that a step is formed between the mounting hole 13 and the reversing hole 12, and one end of the capillary 131 abuts against the On the steps, installation of the capillary 131 is achieved.
  • the inner diameter of the capillary 131 is equal to the inner diameter of the reversing hole 12. Furthermore, in order to reduce the pressure loss of the fluid medium during the flow process.
  • the capillary 131 may be fixed to the valve body 10 by other methods, for example, the capillary 131 is welded to the valve body 10 by welding.
  • valve stem 20 is made of a ferromagnetic material, and the valve stem 20 is substantially cylindrical.
  • the valve stem 20 may be other than cylindrical. shape.
  • a plurality of flow passages 21 are provided on an outer wall of the valve stem 20, and the valve stem 20 moves in the valve cavity 11 to switch the fluid medium between the plurality of reversing holes 12 through the flow passage 21.
  • Flow direction is provided on an outer wall of the valve stem 20, and the valve stem 20 moves in the valve cavity 11 to switch the fluid medium between the plurality of reversing holes 12 through the flow passage 21.
  • Flow direction by opening the flow passage 21 on the valve stem 20, when the valve stem 20 moves in the valve cavity 11, a plurality of the replacements can be switched directly through the flow passage 21
  • the flow direction of the fluid medium between the holes 12 has a simple structure and reduces the manufacturing cost.
  • the plurality of flow channels 21 are a first flow channel 211, a second flow channel 212, a third flow channel 213, and a fourth flow channel 214, respectively.
  • the first flow channel 211 and the second flow channel 212 are The axis of the valve body 10 is symmetrically disposed on the outer wall of the valve stem 20, and the third flow passage 213 and the fourth flow passage 214 are symmetrically disposed on the valve stem 20 along the axis of the valve body 10. On the outer wall.
  • Two first connection portions 20a are formed between the first flow channel 211 and the second flow channel 212, and the two first connection portions 20a are symmetrically disposed along the axis of the valve stem 20; the third flow channel 213
  • Two second connecting portions 20b are formed between the fourth flow passage 214 and the two second connecting portions 20b.
  • the two second connecting portions 20b are symmetrically arranged along the axis of the valve stem 20; along the circumferential direction of the valve stem 20, the first The connection portion 20a and the second connection portion 20b are disposed offset from each other.
  • the first connecting portion 20a and the second connecting portion 20b are disposed at a 90-degree dislocation, that is, along the valve stem 20 In the axial direction, the two first connecting portions 20a are respectively located in the third flow channel 213 and the middle of the third flow channel 213; the two second connecting portions 20b are correspondingly located in the first flow channel 211 and the second flow channel 212, respectively.
  • the middle is the middle.
  • the fourth reversing hole 124 is passed through the third flow passage 213. It is in communication with the third reversing hole 123, that is, the E port is in communication with the S port, and the first reversing hole 121 and the second reversing hole 122 are communicated through the fourth flow channel 214, that is, The D port communicates with the C port to form a refrigeration cycle.
  • the valve rod 20 moves in the valve cavity 11, so that the fourth valve is changed through the first flow channel 211.
  • the directional hole 124 is in communication with the first directional hole 121, that is, the E port is in communication with the D port, and the second directional hole 122 and the third directional hole 123 are communicated through the second flow channel 212. That is, the C port and the S port communicate with each other to form a heating cycle.
  • first flow channel 211, the second flow channel 212, the third flow channel 213, and the fourth flow channel 214 are all arc-shaped, that is, the first flow channel 211, the second flow channel 212, and the third flow channel. 213 and the fourth flow path 214 are recessed portions provided on the valve stem 20.
  • first flow channel 211, the second flow channel 212, the third flow channel 213, and the fourth flow channel 214 may also have other shapes.
  • first flow passage 211, the second flow passage 212, the third flow passage 213, and the fourth flow passage 214 are all arc-shaped, and along the circumferential direction of the valve stem 20, the first flow passage 211, the second flow passage
  • the widths of the flow channel 212, the third flow channel 213, and the fourth flow channel 214 along the axis direction of the valve stem 20 change from small to large and then small. Therefore, during the movement of the valve stem 20, the cross-sectional areas of the first flow passage 211, the second flow passage 212, the third flow passage 213, and the fourth flow passage 214 gradually decrease or gradually increase.
  • the change process is relatively gentle, which makes the operation of the pilot valve 100 more stable.
  • the valve stem 20 includes a first section 20c and a second section 20d, and an outer diameter of the second section 20d is larger than an outer diameter of the first section 20c. It is understandable that the first section 20c A limiting step 20f is formed with the second section 20d. The flow passage 21 is opened on the first section 20c, and the second section 20d is used to cooperate with the power structure to drive the valve stem 20 to move.
  • the pilot valve 100 further includes a coil assembly 30 mounted on the valve body 10.
  • the coil assembly 30 is energized to generate a magnetic field, and the valve is driven by the magnetic field force.
  • the rod 20 moves.
  • the coil assembly 30 includes a coil 31 and an iron core 32, the coil 31 is mounted on the valve body 10, and the iron core 32 cooperates with the second section 20d of the valve stem 20, and the coil Electricity generates a magnetic field, and the iron core 32 attracts the second section 20d under the action of the magnetic field, so as to drive the valve rod 20 to move in the valve cavity 11.
  • the coil assembly 30 further includes an elastic member 33.
  • the elastic member 33 is disposed between the valve rod 20 and the iron core 32 to reset the valve rod 20.
  • the iron core 32 attracts the second section 20d under the action of the magnetic field to drive the valve rod 20 to move, and at the same time, the valve rod 20 compresses the elastic member 33;
  • the valve stem 20 is reset under the action of the restoring force of the elastic member 33.
  • the elastic member 33 is a spring or an element having elasticity.
  • a sleeve 14 is mounted on the valve body 10, and the inside of the sleeve 14 is in communication with the valve cavity 11.
  • the coil 31 is sleeved on the sleeve 14, the iron core 32 is provided in the sleeve 14, one end of the valve stem 20 is located in the valve cavity 11, and the other end is located in the sleeve Within 14.
  • the first section 20 c of the valve stem 20 is located in the valve cavity 11, and the second section 20 d of the valve stem 20 is located in the sleeve 14.
  • the sleeve 31 is used to isolate the coil 31 from components inside the valve body 10 so as to protect the sleeve 14 and components inside the valve body 10, such as a valve stem. Wait.
  • the valve body 10 is provided with a connection hole 15.
  • the connection hole 15 communicates with the valve cavity 11, and the sleeve 14 is installed in the connection hole 15.
  • An inner diameter of the connection hole 15 is larger than an inner diameter of the valve cavity 11, that is, a step 151 is formed between the connection hole 15 and the valve cavity 11.
  • the limiting step 20f abuts on the step 151 between the connection hole 15 and the valve cavity 11.
  • the working principle of the pilot valve 100 is as follows:
  • the air conditioner is in a cooling state, the coil assembly 30 is not energized, and the valve stem 20 is in an initial position, so that the fourth reversing hole 124 and the third reversing hole 123 are passed through the third flow passage 213 Communication, that is, the E port and the S port are communicated, and the first reversing hole 121 and the second reversing hole 122 are communicated through the fourth flow channel 214, that is, the D port communicates with the C port to form refrigeration cycle.
  • the air conditioner is in a heating state, and the coil assembly 30 is energized, thereby driving the valve rod 20 to move under the action of a magnetic field force, so that the fourth reversing hole 124 and the first A reversing hole 121 is connected, that is, the E port is connected to the D port, and the second reversing hole 122 and the third reversing hole 123 (S port) are communicated through the second flow channel 212, that is, the C port It communicates with the S port to form a heating cycle.

Abstract

一种先导阀,包括阀体(10)以及阀杆(20),阀体内具有阀腔(11),阀杆收容于阀腔内,阀体的外壁上开设有多个换向孔(12),换向孔的轴线垂直于阀体的轴线,且多个换向孔的轴线共面设置,阀杆上开设有多个流道(21),阀杆在阀腔内运动以通过流道切换多个换向孔之间流体介质的流动方向。还公开了一种包括上述的先导阀的电磁四通阀。通过在先导阀的阀杆上开设流道,从而当阀杆在阀腔内运动时,直接通过流道即可切换多个所述换向孔之间流体介质的流动方向,不仅结构简单且降低了制造成本;其次,将多个换向孔的轴线共面设置,从而使得外部元件的安装更加方便。

Description

[根据细则26改正24.10.2019] 先导阀及其电磁四通阀
相关申请
本申请要求2018年8月24日申请的,申请号为201821380587.3,名称为“先导阀及其电磁四通阀”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本实用新型涉及空调技术领域,特别是涉及一种先导阀及其电磁四通阀。
背景技术
电磁四通阀是空调机的重要部件之一,电磁四通阀用于空调机内制冷状态与制热状态之间的互相切换。
电磁四通阀组件一般包括电磁四通阀、外接管路以及先导阀。外接管路以及先导阀安装于电磁四通阀上,先导阀用以控制电磁四通阀动作。
现有先导阀一般包括阀体、毛细管、簧片和滑块等结构,通过簧片、滑块实现液体流动路径的切换,从而实现空调机内制冷状态与制热状态之间的互相切换。而这种先导阀的结构较复杂、加工难度大,并且,由于零部件较多,安装不方便。
发明内容
基于此,有必要针对上述技术问题,提供一种结构简单、安装方便的先导阀及其电磁四通阀。
一种先导阀,包括阀体以及阀杆,所述阀体内具有阀腔,所述阀杆收容于所述阀腔内,所述阀体的外壁上开设有多个换向孔,所述换向孔的轴线垂直于所述阀体的轴线,且多个所述换向孔的轴线共面设置,所述阀杆上开设有多个流道,所述阀杆在所述阀腔内运动以通过所述流道切换多个所述换向孔之间流体介质的流动方向。
在其中一个实施例中,多个所述换向孔间隔均匀地分布于所述阀体上,且多个所述换向孔的轴线与所述阀体的轴线相交于同一点。
可以理解的是,多个所述换向孔是以所述阀体的轴线为轴心阵列设于所述阀体上,从而在所述换向孔内安装外部元件时,可尽量减少各个部件之间的干涉,安装更加方便。
在其中一个实施例中,所述多个流道分别为第一流道、第二流道、第三流道以及第四流道,所述第一流道与所述第二流道以所述阀体的轴线对称设于所述阀杆上,所述第三流道与所述第四流道以所述阀体的轴线对称设于所述阀杆上。
在其中一个实施例中,所述第一流道与所述第二流道之间形成第一连接部,所述第三流道与所述第四流道之间第二连接部,沿所述阀杆的周向,所述第一连接部与所述第二连接部之间互相错位设置。
在其中一个实施例中,沿所述阀杆的周向,相邻的第一连接部与所述第二连接部之间呈90度错位。
在其中一个实施例中,所述流道呈弧形,且沿所述阀杆的周向,所述流道沿所述阀杆轴线方向的宽度一次由小变大再变小。
在其中一个实施例中,所述阀体的外壁上还开设有多个安装孔,每个所述安装孔对应于一个所述换向孔,所述安装孔与所述换向孔之间连通,每个所述安装孔内安装有毛细管,所述毛细管用以将所述换向孔内的流体介质导出。
在其中一个实施例中,所述先导阀还包括线圈组件,所述线圈组件安装 于所述阀体上,所述线圈组件通电产生磁场,并在该磁场力的作用下带动所述阀杆运动。
在其中一个实施例中,所述线圈组件包括线圈以及铁芯,所述线圈安装于所述阀体上,所述铁芯与所述阀杆配合,所述线圈通电产生磁场,并在该磁场的作用下使所述铁芯吸合所述阀杆,以带动所述阀杆运动。
在其中一个实施例中,所述线圈组件还包括弹性件,所述弹性件设于所述阀杆与所述铁芯之间,用以复位所述阀杆。
在其中一个实施例中,所述阀体上设有连接孔,所述连接孔与所述阀腔之间连通,所述连接孔内形成有台阶,所述套管安装于所述连接孔并与所述台阶抵靠。
在其中一个实施例中,所述阀杆上形成有限位台阶,在空调机处于制冷状态时,所述限位台阶与所述台阶配合。
在其中一个实施例中,所述阀体上安装有套管,所述线圈套设与所述套管上,所述铁芯设于所述套管内,所述阀杆的一端位于所述阀腔内,另一端位于所述套管内。
本申请还提供如下技术方案:
一种电磁四通阀,所述电磁四通阀包括上述的先导阀。
本申请的优点如下:
所述先导阀及其电磁四通阀通过在所述阀杆上开设流道,从而当所述阀杆在所述阀腔内运动时,直接通过所述流道即可切换多个所述换向孔之间流体介质的流动方向,不仅结构简单且降低了制造成本;其次,将多个所述换向孔的轴线共面设置,从而使得外部元件的安装更加方便。
附图说明
图1为本申请提供的电磁四通阀的结构示意图。
图2为本申请提供的先导阀的剖视图
图3为本申请提供的阀体的剖视图。
图4为图3中B-B处剖视图。
图5为本申请提供的阀杆的立体图。
图6为图2中A-A处的剖视图。
图7为本申请提供的制热状态下所述阀杆的位置示意图。
图中,表示先导阀100、10表示阀体、11表示阀腔、12表示换向孔、121表示第一换向孔、122表示第二换向孔、123表示第三换向孔、124表示第四换向孔、13表示安装孔、131表示毛细管、14表示套管、15表示连接孔、151表示台阶、20表示阀杆、21表示流道、211表示第一流道、212表示第二流道、213表示第三流道、214表示第四流道、20a表示第一连接部、20b表示第二连接部、20c表示第一段、20d表示第二段、20f表示限位台阶、30表示线圈组件、31表示线圈、32表示铁芯、33表示弹性件、200表示电磁四通阀。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当组件被称为“装设于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。当一 个组件被认为是“固定于”另一个组件,它可以是直接固定在另一个组件上或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示,本申请提供一种电磁四通阀200,所述电磁四通阀200安装于空调系统中,用于制冷剂的换向。所述电磁四通阀200设有所述先导阀100,所述先导阀100用以控制所述电磁四通阀200动作,以实现空调机中的制冷与制热的切换。
如图2所示,所述先导阀100包括阀体10以及阀杆20,所述阀杆20设于所述阀体10,并能够相对所所述阀体10运动。
进一步地,如图3及图4所示,所述阀体10大致呈圆柱状,所述阀体10内具有阀腔11,所述阀杆20的一端安装于所述阀腔11内,并能够在所述阀腔11内移动。
所述阀体10的外壁上开设有多个换向孔12,所述换向孔12的轴线垂直于所述阀体10的轴线,且多个所述换向孔12的轴线共面设置,即多个所述换向孔12的轴线位于同一平面上,所述阀杆20在所述阀腔11内运动,从而实现多个所述换向孔12之间流体介质的流动方向切换,以控制所述电磁四通阀200的运动。
多个所述换向孔12间隔均匀地分布于所述阀体10的外壁上,且多个所述换向孔12的轴线与所述阀体10的轴线相交于同一点。可以理解是,由于多个所述换向孔12共面且多个所述换向孔12的轴线与所述阀体10的轴线相交于同一点,即多个所述换向孔12是以所述阀体10的轴线为轴心阵列布设于所述阀体10上,从而在所述换向孔12内安装外部元件时,可尽量减少各个部件之 间的干涉,安装更加方便。
优选地,在本实施例中,所述换向孔12的个数为4个,因此被称为四通阀。当然,在其它实施方式中,所述换向孔12的个数也可以为5、6等,所述换向孔12的具体个数可以根据实际的需要而设置。
进一步地,4个所述换向孔12分被为第一换向孔121、第二换向孔122、第三换向孔123以及第四换向孔124。所述第一换向孔121对应于所述电磁四通阀上的D口,所述第二换向孔122对应于所述电磁四通阀上的C口,所述第三换向孔123对应于所述电磁四通阀上的S口,第四换向孔124对应于所述电磁四通阀上E口。
可以理解的是,D口即为压缩机的排气口,C口为室外机接口,S口为吸气管接口,E口为室内机接口,所述阀杆20在所述阀腔11内运动,从而使得所述第一换向孔121、第二换向孔122、第三换向孔123以及第四换向孔124之间选择性的进行连通及切换。
所述阀体10上还开设有多个安装孔13,每个所述安装孔13对应于一个所述换向孔12,所述安装孔13与所述换向孔12之间连通。优选地,所述安装孔13的轴线与所述换向孔12的轴线重合设置,每个所述安装孔13内安装有毛细管131,所述毛细管131用以将所述换向孔12内的流体介质导出。当然,在其他实施方式中,所述安装孔13的轴线与所述换向孔12的轴线也可以不重合设置,其具体的关系,可以根据实际的安装环境自由选择。
所述安装孔13的内径大于所述换向孔12的内径,可以理解的是,所述安装孔13与所述换向孔12之间形成台阶,所述毛细管131的一端抵靠于所述台阶上,从而实现所述毛细管131的安装。
进一步地,所述毛细管131的内径与换向孔12的内径相等。进而,以减少流体介质在流动过程中压力的损失。
当然,在其他实施例中,所述毛细管131也可以通过其他方式固定在所述阀体10上,例如,通过焊接将所述毛细管131焊接于所述阀体10上。
如图5所示,所述阀杆20由铁磁材料制成,所述阀杆20大致呈圆柱状,当然,在其他实施方式中,所述阀杆20还可以呈除圆柱状以外的其他形状。
所述阀杆20的外壁上开设有多个流道21,所述阀杆20在所述阀腔11内运动以通过所述流道21切换多个所述换向孔12之间流体介质的流动方向。在这里,通过在所述阀杆20上开设所述流道21,从而当所述阀杆20在所述阀腔11内运动时,直接通过所述流道21即可切换多个所述换向孔12之间流体介质的流动方向,不仅结构简单且降低了制造成本。
进一步地,多个所述流道21分别为第一流道211、第二流道212、第三流道213以及第四流道214,所述第一流道211与所述第二流道212以所述阀体10的轴线对称设于所述阀杆20的外壁上,所述第三流道213与所述第四流道214以所述阀体10的轴线对称设于所述阀杆20的外壁上。
所述第一流道211与所述第二流道212之间形成两个第一连接部20a,且两个第一连接部20a以所述阀杆20轴线对称设置;所述第三流道213与所述第四流道214之间形成两个第二连接部20b,两个第二连接部20b以所述阀杆20轴线对称设置;沿所述阀杆20的周向,所述第一连接部20a与所述第二连接部20b之间互相错位设置。
优选地,在本实施例中,沿所述阀杆20的周向,所述第一连接部20a与所述第二连接部20b之间呈90度错位设置,即沿所述阀杆20的轴线方向,两个所述第一连接部20a分别对应位于第三流道213和第三流道213的中部;两个第二连接部20b分别对应位于第一流道211和第二流道212的中部。
如图6所示,当所述空调机处于制冷状态时,所述阀杆20的位置处于初始状态,而在该状态下,通过所述第三流道213将所述第四换向孔124与所述第三换向孔123连通,即E口与S口连通,通过所述第四流道214将所述第一换向孔121与所述第二换向孔122之间连通,即D口与C口连通,形成制冷循环。
如图7所示,当所述空调机需要从制冷状态切换至制热状态时,所述阀杆20在所述阀腔11内运动,从而通过所述第一流道211将所述第四换向孔124 与所述第一换向孔121连通,即E口与D口连通,通过所述第二流道212将所述第二换向孔122与所述第三换向孔123连通,即C口与S口连通,形成制热循环。
进一步地,所述第一流道211、第二流道212、第三流道213以及第四流道214均呈弧形,即所述第一流道211、第二流道212、第三流道213以及第四流道214为设置在所述阀杆20上的凹部。当然,在其他实施方式中,所述第一流道211、第二流道212、第三流道213以及第四流道214还可以呈其他形状。
由于所述第一流道211、第二流道212、第三流道213以及第四流道214均呈弧形,且沿所述阀杆20的周向,所述第一流道211、第二流道212、第三流道213以及第四流道214沿所述阀杆20轴线方向的宽度一次由小变大再变小。从而在所述阀杆20移动的过程中,所述第一流道211、第二流道212、第三流道213以及第四流道214的横截面面积是逐渐减小或逐渐增大,此变化过程较为平缓,使得所述先导阀100的运行更加稳定。
可选地,所述阀杆20包括第一段20c以及第二段20d,所述第二段20d的外径大于所述第一段20c的外径,可以理解的,所述第一段20c与第二段20d之间形成限位台阶20f。所述流道21开设于所述第一段20c上,所述第二段20d用以与动力结构配合以带动所述阀杆20运动。
如图2所示,所述先导阀100还包括线圈组件30,线圈组件30安装于所述阀体10上,所述线圈组件30通电产生磁场,并在该磁场力的作用下带动所述阀杆20运动。
进一步地,所述线圈组件30包括线圈31以及铁芯32,所述线圈31安装于所述阀体10上,所述铁芯32与所述阀杆20的第二段20d配合,所述线圈通电产生磁场,并在该磁场的作用下使所述铁芯32吸合所述第二段20d,以带动所述阀杆20在所述阀腔11内运动。
所述线圈组件30还包括弹性件33,所述弹性件33设于所述阀杆20与所述铁芯32之间,用以复位所述阀杆20。当所述线圈通电产生磁场,并在该磁场的作用下使所述铁芯32吸合所述第二段20d,以带动所述阀杆20运动,同时所 述阀杆20压缩所述弹性件33,;当所述线圈断电,在所述弹性件33的回复力作用下,所述阀杆20复位。
优选地,所述弹性件33为弹簧或者具有弹性能力的元件。
进一步地,所述阀体10上安装有套管14,所述套管14的内部与所述阀腔11连通。所述线圈31套设与所述套管14上,所述铁芯32设于所述套管14内,所述阀杆20的一端位于所述阀腔11内,另一端位于所述套管14内。优选地,所述阀杆20的第一段20c位于所述阀腔11内,所述阀杆20第二段20d位于所述套管14内。可以理解的是,通过设置所述套管14将所述线圈31与所述阀体10内部的元器件隔离,从而保护所述套管14、所述阀体10内部的元器件,例如阀杆等。
如图3所示,所述阀体10上开设有连接孔15,所述连接孔15与所述阀腔11之间连通,所述套管14安装于所述连接孔15内。所述连接孔15的内径大于所述阀腔11的内径,即所述连接孔15与所述阀腔11之间形成台阶151。当所述空调机处于制冷状态时,所述限位台阶20f抵靠于所述连接孔15与所述阀腔11之间的台阶151上。
本先导阀100的工作原理如下:
空调机处于制冷状态,所述线圈组件30不通电,所述阀杆20处于初始位置,从而通过所述第三流道213将所述第四换向孔124与所述第三换向孔123连通,即E口与S口连通,通过所述第四流道214将所述第一换向孔121与所述第二换向孔122之间连通,即D口与C口连通,形成制冷循环。
空调机处于制热状态,所述线圈组件30通电,从而在磁场力的作下带动所述阀杆20运动,从而通过所述第一流道211将所述第四换向孔124与所述第一换向孔121连通,即E口与D口连通,通过所述第二流道212将所述第二换向孔122与所述第三换向孔123(S口)连通,即C口与S口连通,形成制热循环。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些 技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (14)

  1. 一种先导阀,包括阀体(10)以及阀杆(20),所述阀体(10)内具有阀腔(11),所述阀杆(20)收容于所述阀腔(11)内,所述阀体(10)的外壁上开设有多个换向孔(12),其特性在于,所述换向孔(12)的轴线垂直于所述阀体(10)的轴线,且多个所述换向孔(12)的轴线共面设置,所述阀杆(20)上开设有多个流道(21),所述阀杆(20)在所述阀腔(11)内运动以通过所述流道(21)切换多个所述换向孔(12)之间流体介质的流动方向。
  2. 根据权利要求1所述的先导阀,其特征在于,多个所述换向孔(12)间隔均匀地分布于所述阀体(10)的外壁上,且多个所述换向孔(12)的轴线与所述阀体(10)的轴线相交于同一点。
  3. 根据权利要求1所述的先导阀,其特征在于,所述多个所述流道(21)分别为第一流道(211)、第二流道(212)、第三流道(213)以及第四流道(214),所述第一流道(211)与所述第二流道(212)以所述阀体(10)的轴线对称设于所述阀杆(20)上,所述第三流道(213)与所述第四流道(214)以所述阀体(10)的轴线对称设于所述阀杆(20)上。
  4. 根据权利要求3所述的先导阀,其特征在于,所述第一流道(211)与所述第二流道(212)之间形成第一连接部(20a),所述第三流道(213)与所述第四流道(214)之间第二连接部(20b),沿所述阀杆(20)的周向,所述第一连接部(20a)与所述第二连接部(20b)之间互相错位设置。
  5. 根据权利要求4所述的先导阀,其特征在于,沿所述阀杆(20)的周向,相邻的第一连接部(20a)与所述第二连接部(20b)之间呈90度错位。
  6. 根据权利要求1所述的先导阀,其特征在于,所述流道(21)呈弧形,且沿所述阀杆(20)的周向,所述流道(21)沿所述阀杆(20)轴线方向的宽度一次由小变大再变小。
  7. 根据权利要求1所述的先导阀,其特征在于,所述阀体(10)的外壁上还开设有多个安装孔(13),每个所述安装孔(13)对应于一个所述换向孔(12), 所述安装孔(13)与所述换向孔(12)之间连通,每个所述安装孔(13)内安装有毛细管(131),所述毛细管(131)用以将所述换向孔(12)内的流体介质导出。
  8. 根据权利要求1所述的先导阀,其特征在于,所述先导阀还包括线圈组件(30),所述线圈组件(30)安装于所述阀体(10)上,所述线圈组件(30)通电产生磁场,并在该磁场力的作用下带动所述阀杆(20)运动。
  9. 根据权利要求8所述的先导阀,其特征在于,所述线圈组件(30)包括线圈(31)以及铁芯(32),所述线圈(31)安装于所述阀体(10)上,所述铁芯(32)与所述阀杆(20)配合,所述线圈(31)通电产生磁场,并在该磁场的作用下使所述铁芯(32)吸合所述阀杆(20),以带动所述阀杆(20)运动。
  10. 根据权利要求9所述的先导阀,其特征在于,所述线圈组件(30)还包括弹性件(33),所述弹性件(33)设于所述阀杆(20)与所述铁芯(32)之间,用以复位所述阀杆(20)。
  11. 根据权利要求9所述的先导阀,其特征在于,所述阀体(10)上安装有套管(14),所述线圈(31)套设与所述套管(14)上,所述铁芯(32)设于所述套管(14)内,所述阀杆(20)的一端位于所述阀腔(11)内,另一端位于所述套管(14)内。
  12. 根据权利要求11所述的先导阀,其特征在于,所述阀体(10)上设有连接孔(15),所述连接孔(15)与所述阀腔(11)之间连通,所述连接孔(15)内形成有台阶(151),所述套管(14)安装于所述连接孔(15)并与所述台阶(151)抵靠。
  13. 根据权利要求12所述的先导阀,其特征在于,所述阀杆(20)上形成有限位台阶(20f),在空调机处于制冷状态时,所述限位台阶20f与所述台阶(151)配合。
  14. 一种电磁四通阀,包括先导阀,其特征在于,所述先导阀采用如权利要求1所述的先导阀。
PCT/CN2019/102319 2018-08-24 2019-08-23 先导阀及其电磁四通阀 WO2020038470A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821380587.3U CN209180419U (zh) 2018-08-24 2018-08-24 先导阀及其电磁四通阀
CN201821380587.3 2018-08-24

Publications (1)

Publication Number Publication Date
WO2020038470A1 true WO2020038470A1 (zh) 2020-02-27

Family

ID=67357988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102319 WO2020038470A1 (zh) 2018-08-24 2019-08-23 先导阀及其电磁四通阀

Country Status (2)

Country Link
CN (1) CN209180419U (zh)
WO (1) WO2020038470A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209180419U (zh) * 2018-08-24 2019-07-30 浙江盾安禾田金属有限公司 先导阀及其电磁四通阀
CN113847450B (zh) * 2021-09-18 2022-08-16 珠海格力电器股份有限公司 四通阀、空调器及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104373627A (zh) * 2013-08-16 2015-02-25 浙江盾安人工环境股份有限公司 四通阀
CN104676043A (zh) * 2013-11-27 2015-06-03 浙江三花制冷集团有限公司 一种制冷系统及其四通换向阀
JP2016044777A (ja) * 2014-08-25 2016-04-04 三菱重工業株式会社 流路切換弁およびそれを用いた冷凍サイクル
JP2016205430A (ja) * 2015-04-16 2016-12-08 株式会社不二工機 流路切換弁
JP2017044266A (ja) * 2015-08-26 2017-03-02 株式会社不二工機 流路切換弁及びシール部材
CN107883019A (zh) * 2017-12-11 2018-04-06 珠海格力电器股份有限公司 一种回转式四通换向阀和空调器
CN209180419U (zh) * 2018-08-24 2019-07-30 浙江盾安禾田金属有限公司 先导阀及其电磁四通阀

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104373627A (zh) * 2013-08-16 2015-02-25 浙江盾安人工环境股份有限公司 四通阀
CN104676043A (zh) * 2013-11-27 2015-06-03 浙江三花制冷集团有限公司 一种制冷系统及其四通换向阀
JP2016044777A (ja) * 2014-08-25 2016-04-04 三菱重工業株式会社 流路切換弁およびそれを用いた冷凍サイクル
JP2016205430A (ja) * 2015-04-16 2016-12-08 株式会社不二工機 流路切換弁
JP2017044266A (ja) * 2015-08-26 2017-03-02 株式会社不二工機 流路切換弁及びシール部材
CN107883019A (zh) * 2017-12-11 2018-04-06 珠海格力电器股份有限公司 一种回转式四通换向阀和空调器
CN209180419U (zh) * 2018-08-24 2019-07-30 浙江盾安禾田金属有限公司 先导阀及其电磁四通阀

Also Published As

Publication number Publication date
CN209180419U (zh) 2019-07-30

Similar Documents

Publication Publication Date Title
EP1975480B1 (en) Motor-operated selector valve and refrigeration cycle device for refrigerators
US4139355A (en) Four wave valve for reversible cycle refrigeration system
WO2020038470A1 (zh) 先导阀及其电磁四通阀
JP6556000B2 (ja) 直動式電磁弁及びそれをパイロット弁として備えた四方切換弁
JP6530991B2 (ja) 直動式電磁弁及びそれをパイロット弁として備えた四方切換弁
WO2006023666A2 (en) Straight flow reversing valve
JPS5911231Y2 (ja) 可逆冷凍サイクル用逆転弁
CN107816561B (zh) 一种换向装置
CN104676043B (zh) 一种制冷系统及其四通换向阀
CN106286892A (zh) 三通电磁阀
CN215981078U (zh) 电磁阀及具有其的空调系统
US11383578B2 (en) Two-position eight-way valve and electric vehicle air conditioning system
CN206572041U (zh) 一种阀
CN212986123U (zh) 一种先导阀、四通阀及空调器
CN106286895B (zh) 三通电磁阀
JPH08219308A (ja) 四方弁
CN106286894A (zh) 三通电磁阀
CN105953482B (zh) 一种用于一拖多空调器的四通阀及一拖多空调器
CN211779281U (zh) 一种控制阀
CN216200948U (zh) 四通阀
JPH0562275B2 (zh)
JP3203262U6 (ja) 電磁パイロット三方弁及び空調システム
JP3203262U (ja) 電磁パイロット三方弁及び空調システム
JPS5947571A (ja) 流路切換弁装置
JP2001141080A (ja) 四方切換弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19851781

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19851781

Country of ref document: EP

Kind code of ref document: A1