WO2020037759A1 - 一种基于硅黄铜组织结构的微织构刀具及其加工方法和应用 - Google Patents

一种基于硅黄铜组织结构的微织构刀具及其加工方法和应用 Download PDF

Info

Publication number
WO2020037759A1
WO2020037759A1 PCT/CN2018/106848 CN2018106848W WO2020037759A1 WO 2020037759 A1 WO2020037759 A1 WO 2020037759A1 CN 2018106848 W CN2018106848 W CN 2018106848W WO 2020037759 A1 WO2020037759 A1 WO 2020037759A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
texture
cutting
cutting edge
microtexture
Prior art date
Application number
PCT/CN2018/106848
Other languages
English (en)
French (fr)
Inventor
杨超
杨玉川
梁良
丁言飞
Original Assignee
华南理工大学
广东华艺卫浴实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学, 广东华艺卫浴实业有限公司 filed Critical 华南理工大学
Priority to AU2018437433A priority Critical patent/AU2018437433B2/en
Publication of WO2020037759A1 publication Critical patent/WO2020037759A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F3/00Changing the physical structure of non-ferrous metals or alloys by special physical methods, e.g. treatment with neutrons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/12Brass

Definitions

  • the invention relates to the technical field of cutting processing of high-performance alloy materials, in particular to a micro-textured cutter based on a silicon brass structure, a processing method and application thereof.
  • lead brass As a typical representative of copper alloy, lead brass is widely used in the manufacture of electronic and electrical parts, instrumentation parts, bathroom products and children's toys with its excellent toughness, corrosion resistance, easy cutting and easy formability.
  • lead is a heavy metal element.
  • lead brass products are improperly handled during long-term use and scrap, it can easily affect human health and the natural environment. Therefore, the development of new free-cutting environmentally friendly brass has become an issue of increasing concern. In view of this, the development and application of silicon brass has gradually attracted people's attention.
  • Adding Si and Al to brass can greatly increase the zinc equivalent coefficient, thereby obtaining brass with a higher phase content, and even when the zinc equivalent exceeds a certain value, a hard and brittle phase will appear (see a lead-free disclosed in CN105274387A Free-cutting high-strength corrosion-resistant silicon-brass alloy and its preparation method and application); At the same time, ultra-fine intermetallic compounds with high hardness will be distributed in the silicon brass grains and grain boundaries, thereby forming an "uneven structure". Composition phase and intermetallic compounds have significant differences in elastic modulus, thermal expansion coefficient, and microhardness, so they can play a better role in chip breaking during cutting (References: C.Yang, Z.Ding, QCTao , L.
  • Cutting processing refers to a machining method that uses a cutting tool (including cutting tools, abrasive tools and abrasives) to cut excess material layers on a blank or a workpiece into chips, so that the workpiece can obtain the specified geometry, size and surface quality.
  • a cutting tool including cutting tools, abrasive tools and abrasives
  • the tool occupies a dominant position in this process.
  • the tool structure is critical to chip breaking ability during the cutting process.
  • the phase composition, phase size and hardness, grain size, and the mechanical properties of the microscopic region determined by the chipped alloy material significantly affect the wear of the tool and the chipbreaking or easy-cutting performance of the alloy material being cut. Therefore, we propose the following academic idea: design a composite microtexture on the tool based on the microstructure of the alloy material, so as to achieve the purpose of effectively improving chip breaking performance or free-cutting performance of the alloy material.
  • a micro-textured tool is an array of microstructures with a certain size and uniform distribution on the tool surface through a certain processing technology.
  • the surface microtexture processing technology mainly includes laser processing, micro-cutting processing, grinding processing, electric discharge machining, reactive ion etching, photolithography technology, ultrasonic processing, and surface embossing technology.
  • laser processing technology is considered to be one of the most successful processing methods in the surface texture field, mainly because it has no pollution to the environment and has excellent shape and size control capabilities.
  • bionic tribology have found that high-performance surface microtextures on tools can achieve good friction reduction and anti-adhesion properties, and promote chip curl and fracture.
  • the contact between the tool and the chip includes close contact and peak contact.
  • the frictional force of the chip contact in the close contact part is relatively large, which makes the chip easily adhere to the tool; the peak point contact gradually reduces the friction force as the chip slides out, and there is also partial bonding.
  • Such friction and bonding between the cuttings will slow down the flow rate of the cutting surface of the cuttings, which is not conducive to the deformation and fracture of the cuttings. Therefore, by designing the micro-texture of the tool to change the contact form between the chip and the tool, it is of great significance to improve the chip breaking performance or easy cutting performance of the alloy material.
  • the object of the present invention is to provide a micro-textured tool based on the structure of silicon brass, which can greatly improve the chip breaking performance or easy cutting performance of silicon brass, and its processing method and application. .
  • a micro-textured cutter based on a silicon brass structure A composite micro-texture is provided within a certain area of the cutting edge of the tool.
  • the composite micro-texture includes a convex texture array and a longitudinal texture array.
  • the convex texture array is located at Between the cutting edge and the longitudinal texture array;
  • the raised texture array includes a plurality of raised textures arranged in a rectangular array, the bottom of the raised texture is a cube, and the upper end is a trapezoidal table;
  • the longitudinal texture array includes a plurality of The longitudinal texture is arranged in rows along the width of the cutting edge.
  • the longitudinal texture is a cuboid, and the length direction is perpendicular to the width of the cutting edge.
  • the composite microtexture in a direction perpendicular to the cutting edge, is 10 to 30 ⁇ m away from the cutting edge, the length of the composite microtexture is 3 mm, the length of the convex texture array is 110 to 150 ⁇ m, and the distance of the longitudinal texture array is The raised texture array is 10-20 ⁇ m.
  • the side length of the cube of the bottom of the raised texture is 40-50 ⁇ m; the upper end surface of the raised texture is rectangular, and the length of the rectangle is the same as that of the bottom of the raised texture in a direction perpendicular to the cutting edge.
  • the sides of the cube are long, and the width of the rectangle is 10 to 20 ⁇ m in a direction parallel to the cutting edge.
  • the distance between adjacent longitudinal textures is 20 to 100 ⁇ m, which effectively reduces the friction and adhesion of the chips in the close contact and peak point contact areas, promotes the back flow of the chips, and facilitates the curling and breaking of the chips.
  • the raised texture of the raised texture array functions as a cutting edge; in a longitudinal texture array, when a chip passes through the longitudinal texture, a certain amount of longitudinal texture acts on one grain at the same time.
  • the range of sizes leads to easier deformation of the crystal grains and achieves the purpose of promoting chip deformation and fracture.
  • a method for processing a micro-textured tool based on a silicon brass structure includes the following steps: (1) tool preparation; (2) composite micro-texture design; (3) using a laser processing method on step (1) the tool The composite microtexture of processing step (2); (4) preparation of alloy material; (5) cutting tool obtained by step (3) on the alloy material of step (4).
  • step (1) is: selecting a YG8 carbide tool and determining the cutting edge position to be processed, grinding and polishing the rake face of the tool with 1500 # metallographic sandpaper, cleaning and blowing dry;
  • step (2) ): Place the polished tool in a laser processor, focus to focus the laser energy on the tool, and then design a composite microtexture on the tool surface;
  • step (3) is: laser processing near the cutting edge of the rake face of the tool, The specific parameters are: the number of processing is 80 to 150, the processing speed is 400 to 600mm / s, the processing power is 5 to 10W, the processing frequency is 10 to 50KHz, after processing the composite microtexture, the rake face of the raised melt is processed.
  • Step (5) Perform the cutting test on the designed micro-textured tool and non-textured tool under the same conditions.
  • the cutting parameters are: cutting speed is 80 ⁇ 100m / min, feed rate is 0.1 ⁇ 0.2mm / r, back feed is 0.1 ⁇ 0.6mm. After cutting is completed, chips are collected for analysis and comparison to evaluate chipbreaking performance of microtexture tools.
  • step (4) is: 58.5% to 60% Cu, 37% to 39% Zn, 0.7% to 1.11% Si, 0.5% to 1% Al, 0.01% to 0.1% Ti, 0 ⁇ 0.01% B is ready for pure metal materials, and silicon brass alloy is prepared by low-pressure casting process.
  • the low-pressure casting process parameters are: casting temperature 900 ⁇ 1100 °C, filling time 3 ⁇ 6s, holding pressure 0.01 ⁇ 0.04MPa. Press time is 10 ⁇ 15s.
  • the alloy material in step (4) is a brass alloy, a titanium alloy, or an iron alloy; when a brass alloy is used, the preparation process is low-pressure casting; when a titanium alloy is used, the preparation process is casting and plastic deformation.
  • the size of the alloy material can be adjusted according to the size of the engineering part.
  • micro-textured cutter based on a silicon brass tissue structure, used for cutting alloy materials in the aerospace, aviation, marine or medical fields, such as bathroom, hardware decoration, radiator, golf head, medical equipment, machinery manufacturing, etc.
  • a composite microtexture tool is designed that can greatly improve the chip breaking performance or easy cutting performance of silicon brass. From the cutting friction relationship in cutting experiments, it can be seen that for ⁇ + ⁇ or ⁇ + ⁇ two-phase silicon brass alloys with higher plasticity, there is a certain size of close contact area and peak point type between cutting edges during cutting. Contact area, this kind of chip contact surface will increase the friction and adhesion of the chip generation process, which is not conducive to chip breakage.
  • a composite microtexture including a tens of micrometers of raised texture array and a hundred micrometers of longitudinal texture array is designed within a certain area of the cutting edge of the tool, and its function can make the original cuttings tight.
  • the type contact becomes a peak point type contact, and the area of the original peak point type contact surface is reduced, and the friction between the cutting chips is reduced, which is conducive to increasing the curl of the chip and promoting the chip breaking, thereby improving the chip breaking performance of the alloy material or Free cutting performance.
  • the core of the design is to combine the raised texture array with the longitudinal texture array to form a composite microtexture.
  • the ⁇ or ⁇ phase is uniformly distributed in the grain boundaries or matrix of the ⁇ phase or the ⁇ phase, wherein the crystal grain size of the matrix phase is about 100 to 500 ⁇ m;
  • the ⁇ phase is uniformly distributed in the grain boundary or matrix of the ⁇ phase; at the same time, the ultrafine intermetallic compound particles are distributed in the ⁇ phase grain boundary.
  • the mechanism of the composite microtexture and brass structure is that the convex surface of the convex texture array in the composite microtexture has a smaller size and plays the role of a chip edge; the groove of the longitudinal texture in the composite microtexture.
  • the spacing is 20 ⁇ 100 ⁇ m, which is 1/5 ⁇ 1/4 of the average grain size of the silicon brass matrix phase.
  • the composite microtexture reduces the close contact area between the cuttings, changes the close contact between the cuttings into a peak point contact, and reduces the area of the peak point contact surface, which greatly reduces
  • the friction between the chip and the tool makes the chip flow faster in the back direction, effectively reduces the friction and adhesion between the chip and the tool, promotes the curl and fracture of the chip, and improves the chip breaking performance or easy cutting performance of the alloy material.
  • the blade-chip interface In the process of cutting metal alloys by traditional tools or other micro-textured tools, the blade-chip interface is generally divided into a close friction zone and a peak-point friction zone.
  • the tight friction zone the surface of the tool is susceptible to cold welding with metal materials.
  • the cold welding point shears and the shear resistance becomes a part of the friction force.
  • the peak-point friction zone As the chip slides out, the friction force gradually decreases.
  • a preliminary test for cutting silicon brass with carbide tools is performed.
  • the area of the blade-chip contact surface and the size of the two friction zones are analyzed. Based on this, the convexity of the tool surface is designed.
  • a composite microtexture combining a texture array and a longitudinal texture array is not available in the existing microtextures.
  • the invention aims to reduce the area of the actual knife-chip contact surface, and uses a convex texture array (width 10 to 20 ⁇ m) in the original tight friction area of the tool, so that the alloy material with a grain size of 100 to 500 ⁇ m is closely rubbed.
  • the size of the microtexture is designed according to the size of the silicon brass, and under certain strength, the blockage of the microtexture during the cutting process is reduced, so that the rake face microtexture continues to play a role.
  • a micro-textured tool based on the structure of a silicon brass material is a tool design that can effectively improve chip breaking performance or easy cutting performance of two-phase brass materials, thereby improving processing efficiency
  • the scheme has the advantages of improving product yield, energy saving, and time saving, and is suitable for industrialization promotion and application. It can be known from the examples that by comparing the cutting chips obtained from the cutting test of the composite microtextured tool and the non-textured tool, the chips obtained by the composite microtextured tool are more curly and fine, which indeed greatly improves the chip breaking performance of the alloy material.
  • FIG. 1 is a schematic diagram of the design of the present invention.
  • FIG. 2 is a partially enlarged view of the composite microtexture in FIG. 1.
  • Figure 3 is a schematic view of a raised texture.
  • Fig. 4 is a schematic diagram of a longitudinal texture.
  • FIG. 5 is a metallographic structure diagram of silicon brass prepared by a low-pressure casting process.
  • Fig. 6 is a chip morphology of silicon brass cut by a non-textured tool.
  • FIG. 7 is a chip morphology diagram of silicon brass cut by a texture tool under the same cutting parameters as FIG. 6.
  • 1 is a cutter
  • 2 is a rake face
  • 3 is a cutting edge
  • 4 is a cutting edge
  • 5 is a longitudinal texture
  • 6 is a convex texture
  • 7 is a convex
  • 8 is a depression.
  • a is the length of the composite microtexture in the direction perpendicular to the cutting edge
  • b is the distance from the composite microtexture to the tool tip in the direction parallel to the cutting edge
  • c is the distance between adjacent convex textures
  • d is The distance from the composite microtexture to the cutting edge
  • e is the length of the convex texture array in a direction perpendicular to the cutting edge
  • f is the distance between the longitudinal texture array and the convex texture array
  • g is parallel to the cutting
  • h is the distance between adjacent longitudinal textures
  • i is the cube side length of the bottom of the raised texture
  • j is the height of the raised texture
  • k is the upper end of the raised texture Width
  • l is the height of the longitudinal texture.
  • a method for processing a micro-textured tool based on a silicon brass structure includes the following steps:
  • Tool preparation First select the YG8 carbide tool and determine the cutting edge position to be processed. Polish and polish the rake face of the tool with 1500 # metallographic sandpaper, and wash and dry with alcohol.
  • Laser processing composite microtexture F-20 pulsed fiber laser is used to perform laser processing near the cutting edge of the rake face of the tool. The specific parameters are: processing number 100, processing speed 500mm / s, processing power 6W, Processing frequency is 20KHz. After the composite microtexture is processed, the rake face of the raised melt after processing is polished and polished with metallographic sandpaper, placed in alcohol for ultrasonic vibration cleaning, and taken out and blow dried.
  • FIG. 5 is a metallographic structure diagram of silicon brass prepared by low-pressure casting.
  • the bright white portion is the ⁇ phase
  • the black portion is the ⁇ phase.
  • the ⁇ phase is mainly distributed in the ⁇ phase matrix in the form of needles and particles.
  • a small amount of intermetallic compounds are also distributed in the grains and grain boundaries.
  • the content of ⁇ phase in the alloy structure is 12%, the content of ⁇ phase is 88%, and the average grain size of ⁇ phase is 400-500 ⁇ m.
  • Cutting test The designed composite micro-textured tool and non-textured tool were respectively subjected to cutting tests under the same conditions.
  • the cutting parameters were: cutting speed was 90 m / min, feed rate was 0.1 mm / r, and the back The cutting amount is 0.5mm.
  • the chips are collected for analysis and comparison to evaluate the chipbreaking performance of the composite microtexture tool.
  • Figure 6 and Figure 7 are chip morphology diagrams of non-textured tools and composite micro-textured tools under the same cutting parameters.
  • the chips produced by non-textured tools are spiral, and the average radius of curvature of the spiral chips is 3 mm.
  • the cutting chips obtained were C-shaped chips, and the average radius of curvature of the C-shaped chips was 2 mm.
  • a method for processing a micro-textured tool based on a silicon brass structure includes the following steps:
  • Tool preparation First select the YG8 carbide tool and determine the cutting edge position to be processed. Polish and polish the rake face of the tool with 1500 # metallographic sandpaper, and wash and dry with alcohol.
  • the width is 15 ⁇ m; in the area 15 ⁇ m away from the raised texture array, the vertical texture is designed perpendicular to the cutting edge, the raised texture reaches the tens of micrometers in the cutting and bonding wear area, and the groove spacing between the longitudinal textures It is only 60 ⁇ m, which can effectively reduce the friction and adhesion of the chips in the close contact and peak point contact areas, promote the back flow of the chips, and facilitate the curling and breaking of the chips.
  • Laser processing composite microtexture F-20 pulsed fiber laser is used to perform laser processing near the cutting edge of the rake face of the tool. The specific parameters are: processing number 100, processing speed 500mm / s, processing power 6W, Processing frequency is 20KHz. After processing the composite microtexture, the rake face of the raised melt after processing is polished and polished with metallographic sandpaper, put into ultrasonic cleaning in alcohol, taken out and dried.
  • alloy materials are prepared according to mass percentages of 59.5% Cu, 0.78% Si, 0.7% Al, 0.05% Ti, 0.005% B and the balance of Zn.
  • Silicon brass is prepared by low-pressure casting process. The casting process parameters are: casting temperature 1000 °C, filling time 4s, holding pressure 0.0395MPa, holding time 13s.
  • the ⁇ -phase content in the obtained silicon brass alloy structure was 92%, the ⁇ -phase content was 8%, and the ⁇ -phase was distributed at the ⁇ -phase grain boundaries in a network form.
  • a small amount of intermetallic compounds are also distributed in the grains and grain boundaries, and the average grain size of the ⁇ phase in the structure is 70-80 ⁇ m.
  • Cutting test The designed composite micro-textured tool and non-textured tool were respectively subjected to cutting tests under the same conditions.
  • the cutting parameters were: cutting speed was 90 m / min, feed rate was 0.1 mm / r, and the back The cutting amount is 0.5mm.
  • the chips are collected for analysis and comparison to evaluate the chipbreaking performance of the composite microtexture tool.
  • the chips produced by the non-textured tool are spiral, and the average radius of curvature is 2.8 mm.
  • the chips produced by the composite microtexture tool are C-shaped chips, and the average radius of curvature is 1.6 mm.
  • the chip produced by the composite microtexture tool is more curly and finer, which promotes the chip fracture and improves the chip breaking performance or easy cutting performance of the alloy material.
  • a method for processing a micro-textured tool based on a silicon brass structure includes the following steps:
  • Tool preparation First select the YG8 carbide tool and determine the cutting edge position to be processed. Polish and polish the rake face of the tool with 1500 # metallographic sandpaper, and wash and dry with alcohol.
  • the width is 20 ⁇ m; the longitudinal texture is designed perpendicular to the cutting edge in a region 10 ⁇ m away from the raised texture array, the raised texture reaches a few tens of micrometers in the cutting and bonding wear area, and the groove spacing between the longitudinal textures It is only 100 ⁇ m, which can effectively reduce the friction and adhesion of the chips in the close contact and peak point contact areas, promote the back flow of the chips, and facilitate the curling and breaking of the chips.
  • Laser processing composite microtexture F-20 pulsed fiber laser is used to perform laser processing near the cutting edge of the rake face of the tool. The specific parameters are: processing number 100, processing speed 500mm / s, processing power 6W, Processing frequency is 20KHz. After the composite microtexture is processed, the rake face of the raised melt after processing is polished and polished with metallographic sandpaper, put into ultrasonic cleaning in alcohol, and taken out and blow-dried.
  • alloy materials Prepare alloy materials according to the mass percentage of 58.5% Cu, 1.11% Si, 1.0% Al, 0.05% Ti, 0.005% B and the balance of Zn.
  • Low-pressure casting process is used to prepare silicon brass.
  • the casting process parameters are: casting temperature 1000 °C, filling time 4s, holding pressure 0.0395MPa, holding time 13s.
  • the ⁇ -phase content in the obtained silicon-brass alloy structure was 85% and the ⁇ -phase content was 15%.
  • the ⁇ -phase was mainly uniformly distributed on the ⁇ -phase grain boundaries and the matrix in a granular form. At the same time, a small amount of intermetallic compounds are distributed in the grains and grain boundaries.
  • the average grain size of the ⁇ phase in the structure is about 300-4000 ⁇ m.
  • Cutting test The designed composite micro-textured tool and non-textured tool were respectively subjected to cutting tests under the same conditions.
  • the cutting parameters were: cutting speed was 90 m / min, feed rate was 0.1 mm / r, and the back The cutting amount is 0.5mm.
  • the chips are collected for analysis and comparison to evaluate the chipbreaking performance of the composite microtexture tool.
  • the chips produced by the non-textured tool are longer band-shaped chips, and the chips produced by the composite micro-textured tool are C-shaped chips.
  • the chip morphology obtained by the composite microtexture tool is obviously more conducive to chip breaking, which effectively improves the chip breaking performance or easy cutting performance of the alloy material.
  • the alloy material in this embodiment is a Ti-6Al-4V titanium alloy having two phases of ⁇ + ⁇ , and the preparation method thereof is casting + plastic deformation; the parts not mentioned in this embodiment are the same as those in the first embodiment.
  • the preparation process of the Ti-6Al-4V titanium alloy in this embodiment is as follows:
  • the pure pure Ti (99.97%), Al (99.95%) and pure V (99.95%) element bar materials are weighed according to the mass ratio and placed in a melting furnace for multiple vacuum smelting until the components of each component are homogenized and cast to obtain Alloy ingot; and then plastically deforming the cast Ti-6Al-4V alloy ingot to obtain a cylindrical titanium alloy bar.
  • test results of the Ti-6Al-4V titanium alloy prepared in this embodiment are similar to those in the first embodiment.
  • the chip morphology obtained by processing the composite microtexture tool is significantly more conducive to chip breaking, which effectively improves the chip breaking performance of the titanium alloy.
  • the cutting performance is not repeated here.
  • the alloy material in this embodiment is 45 steel, and the parts not mentioned in this embodiment are the same as those in the first embodiment.
  • the test result of this embodiment is similar to that of the first embodiment.
  • the chip morphology obtained by processing the composite microtexture tool is obviously more conducive to chip breaking, which effectively improves the chip breaking performance or easy cutting performance of 45 steel, which is not repeated here.
  • a micro-textured cutting tool based on a silicon brass structure A composite micro-texture is provided within a certain area of the cutting edge of the cutting face of the tool.
  • the composite micro-texture includes a raised texture array and a longitudinal texture array.
  • the texture array is located between the cutting edge and the longitudinal texture array.
  • the raised texture array includes a plurality of raised textures arranged in a rectangular array.
  • the bottom of the raised texture is a cube and the upper end is a trapezoidal table.
  • the longitudinal texture array includes A plurality of longitudinal textures arranged in rows along the width of the cutting edge.
  • the longitudinal texture is a cuboid, and the length direction is perpendicular to the width of the cutting edge.
  • Tool 1 uses YG8 carbide triangular blade, a 3mm, b 5mm, c 20mm, d 20mm, e 100mm, f 20mm, g 100mm, h 20mm, i 50mm, j 80mm K is 10 ⁇ m, and l is 80 ⁇ m.
  • the upper ends of the raised texture and the longitudinal texture are flush with the surface of the cutter, and the recessed portions are processed by laser.
  • the composite microtexture is distributed in the range of about 3mm * 5mm between the cutting edge and the tip.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

一种基于硅黄铜组织结构的微织构刀具,在刀具(1)切削刃(4)一定区域范围内设置复合微织构,复合微织构包括凸起织构阵列和纵向织构阵列,凸起织构阵列位于切削刃和纵向织构阵列之间;凸起织构阵列包括多个呈矩形阵列排列的凸起织构(6),凸起织构(6)的底部为立方体,上端为梯形台;纵向织构阵列包括多个沿着切削刃宽度方向排列成行的纵向织构(5),纵向织构(5)为长方体,长度方向垂直于切削刃宽度方向。

Description

一种基于硅黄铜组织结构的微织构刀具及其加工方法和应用 技术领域
本发明涉及高性能合金材料的切削加工技术领域,具体涉及一种基于硅黄铜组织结构的微织构刀具及其加工方法和应用。
背景技术
铅黄铜作为铜合金的典型代表,以其优异的强韧性、耐腐蚀、易切削性及易成型性被广泛应用于制造电子电气零件、仪器仪表零件、卫浴产品及儿童玩具等产品。但是,铅是一种重金属元素,当铅黄铜产品在长期的使用过程中及报废后处理不当时,容易对人体健康和自然环境产生很大的影响。因此,研制新型的易切削环保黄铜成为人们越来越关注的问题。有鉴于此,硅黄铜的开发和应用逐渐受到人们的关注。在黄铜中添加Si和Al能够大幅提高锌当量系数,从而获得相含量更高的黄铜,甚至当锌当量超过一定值时,会出现硬而脆的相(参见CN105274387A公开的一种无铅易切削高强耐蚀硅黄铜合金及制备方法与应用);同时,在硅黄铜晶粒内及晶界处会分布高硬度的超细金属间化合物,从而形成“不均匀结构”,由于不同的组成相及金属间化合物的弹性模量、热膨胀系数及显微硬度的显著差异,因而在切削过程中能够起到较好地断屑作用(参考文献:C.Yang,Z.Ding,Q.C.Tao,L.Liang,Y.F.Ding,W.W.Zhang,Q.L.Zhu.High-strength and free-cutting silicon brasses designed via the zinc equivalent rule.Materials Science & Engineering A,723(2018)296–305)。对于一定Si含量范围的硅黄铜,其切削性能有较高的提升,最佳切削性能可达到铅黄铜的80-90%以上。然而,从合金材料成分与组织设计、以及切削参数优化等方面来看,提高合金材料断屑性能或易切削性能的能力是有限的。因此,能否从改进切削工具方面着手提高硅黄铜的断屑性能或易切削性能,成为了一个亟待解决的技术难题。
切削加工是指用切削工具(包括刀具、磨具和磨料)把坯料或工件上多余的材料层切去成为切屑,使工件获得规定的几何形状、尺寸和表面质量的加工方法。车削加工是机械切削加工的最主要工艺手段,刀具在这项工艺中占据主导地位,刀具结构在切削过程中对断屑能力至关重要。同时,被切屑合金材料的相组成、相尺寸与硬度、晶粒尺寸及其决定的微观区域力学性能,显著影响着刀具磨损 情况及其被切削合金材料的断屑性能或易切削性能。因此,我们提出了以下学术思想:基于合金材料组织结构在刀具上设计一种复合微织构,从而实现有效提高合金材料断屑性能或易切削性能的目的。
微织构刀具就是在刀具表面通过一定的加工技术加工出具有一定尺寸和均匀分布的微小结构阵列。表面微织构的加工技术主要包括激光加工、微切削加工、磨削加工、电火花加工、反应离子刻蚀、光刻技术、超声加工、表面压刻技术等。其中,激光加工技术被认为是表面织构领域颇为成功的加工方法之一,主要是由于其对环境无污染,并且具有优良的形状和尺寸控制能力。目前,大量关于仿生摩擦学的研究发现,刀具上高性能的表面微织构可以实现良好的减摩抗黏附性,促进切屑的卷曲和断裂,其应用前景非常广阔,同时也给刀具与工件表面间的减摩带来了新的研究方向和理论依据。理论上讲,在切削过程中,刀具与切屑接触过程中包括紧密型接触和峰点型接触。紧密型接触部分刀屑接触的摩擦力较大使得切屑容易在刀具上发生严重粘结;峰点型接触随着切屑的滑出,摩擦力逐渐减小,同时也存在着部分粘结。这种刀屑之间的摩擦力和粘结会使得切屑剪切面流动速度减慢,不利于切屑的变形和断裂。因此,通过设计刀具微织构改变切屑与刀具之间的接触形式,对于提高合金材料断屑性能或易切削性能有着非常重要的意义。
发明内容
针对现有技术中存在的技术问题,本发明的目的是:提供一种可大幅提高硅黄铜断屑性能或易切削性能的基于硅黄铜组织结构的微织构刀具及其加工方法和应用。
为了达到上述目的,本发明采用如下技术方案:
一种基于硅黄铜组织结构的微织构刀具,在刀具切削刃一定区域范围内设置复合微织构,复合微织构包括凸起织构阵列和纵向织构阵列,凸起织构阵列位于切削刃和纵向织构阵列之间;凸起织构阵列包括多个呈矩形阵列排列的凸起织构,凸起织构的底部为立方体,上端为梯形台;纵向织构阵列包括多个沿着切削刃宽度方向排列成行的纵向织构,纵向织构为长方体,长度方向垂直于切削刃宽度方向。
作为一种优选,在垂直于切削刃方向上,复合微织构距离切削刃10~30μm, 复合微织构的长度为3mm,凸起织构阵列的长度为110~150μm,纵向织构阵列距离凸起织构阵列10~20μm。
作为一种优选,凸起织构的底部的立方体边长为40~50μm;凸起织构的上端面为矩形,在垂直于切削刃方向上,该矩形的长度同凸起织构的底部的立方体边长,在平行于切削刃方向上,该矩形的宽度为10~20μm。
作为一种优选,相邻纵向织构的间距为20~100μm,有效减少切屑在紧密型接触及峰点型接触区域的摩擦和粘结,促进切屑背向流动,有利于切屑的卷曲和断裂。
作为一种优选,凸起织构阵列的凸起织构起切削刃刀尖的作用;纵向织构阵列中,在切屑划过纵向织构时,一定数量的纵向织构同时作用于一个晶粒尺寸的范围,从而导致晶粒更容易变形,达到促进切屑变形和断裂的目的。
一种基于硅黄铜组织结构的微织构刀具的加工方法,包括如下步骤:(1)刀具准备;(2)复合微织构设计;(3)采用激光加工方法在步骤(1)刀具上加工步骤(2)的复合微织构;(4)合金材料准备;(5)将步骤(3)所得刀具对步骤(4)的合金材料进行切削试验。
作为一种优选,步骤(1)为:选择YG8型硬质合金刀具并确定待加工的切削刃位置,将刀具的前刀面用1500#金相砂纸打磨并抛光,清洗吹干;步骤(2)为:将抛光的刀具置于激光加工器,对焦使激光能量聚焦于刀具,然后在刀具表面设计复合微织构;步骤(3)为:在刀具前刀面的切削刃附近进行激光加工,具体的参数为:加工数目80~150,加工速度400~600mm/s,加工功率5~10W,加工频率10~50KHz,加工出复合微织构后,将加工后凸起熔体的前刀面用金相砂纸打磨并抛光,超声震动清洗、吹干;步骤(5)为:将设计的微织构刀具与无织构刀具在相同条件下进行切削试验,切削参数为:切削速度为80~100m/min,进给量为0.1~0.2mm/r,背吃刀量为0.1~0.6mm,切削完成后收集切屑进行分析比较,以评估微织构刀具的断屑性能。
作为一种优选,步骤(4)为:按质量百分比为58.5%~60%Cu,37%~39%Zn,0.7%~1.11%Si,0.5%~1%Al,0.01%~0.1%Ti,0~0.01%B准备好纯金属材料,采用低压铸造工艺制备硅黄铜合金,低压铸造工艺参数为:浇铸温度900~1100℃,充型时间3~6s,保压压力0.01~0.04MPa,保压时间10~15s。
作为一种优选,步骤(4)中的合金材料为黄铜合金、钛合金或铁合金;当采用黄铜合金时,制备工艺为低压铸造;当采用钛合金时,制备工艺为铸造加塑性变形。可根据工程零件尺寸从而调整合金材料尺寸大小。
一种基于硅黄铜组织结构的微织构刀具的应用,用于航天、航空、船舶或医疗领域合金材料切割,如卫浴、五金装饰、散热器、高尔夫球头、医疗器械、机械制造等。
本发明的原理是:
在基于α+β或β+γ两相硅黄铜组织结构的基础上,设计了一种可大幅提高硅黄铜断屑性能或易切削性能的复合微织构刀具。由切削实验中刀屑摩擦关系可知,对于有较高塑性的α+β或β+γ两相硅黄铜合金,在切削过程中刀屑之间存在一定尺度的紧密型接触面积与峰点型接触面积,这种刀屑接触面会增加切屑产生过程的摩擦力及粘结,不利于切屑的断裂。有鉴于此,在刀具切削刃一定区域范围内设计了包括几十微米的凸起织构阵列与一百微米的纵向织构阵列的复合微织构,其作用能够使原来刀屑之间的紧密型接触变为峰点型接触,并且减少原有峰点型接触面的面积,减小刀屑之间的摩擦,有利于增加切屑的卷曲并促进切屑断裂,从而提高合金材料的断屑性能或易切削性能。
设计的核心为将凸起织构阵列与纵向织构阵列相结合,从而形成复合微织构。进而,基于α+β或β+γ两相硅黄铜的组织结构:α或β相均匀分布于β相或α相的晶界或基体中,其中基体相晶粒尺寸约为100~500μm;或者,γ相均匀分布于β相的晶界或基体中;同时,β相晶界分布着超细金属间化合物颗粒。复合微织构与黄铜组织结构的作用机理为,复合微织构中凸起织构阵列的凸面尺寸较小,起到了切屑刃刀尖的作用;复合微织构中纵向织构的凹槽间距为20~100μm,为硅黄铜基体相平均晶粒尺寸的1/5~1/4,在切屑划过纵向织构时,一定数量的织构可以同时作用于一个晶粒尺寸的范围,从而导致晶粒更容易变形,在宏观上达到促进切屑变形和断裂的目的。总之,复合微织构通过减小刀屑之间的紧密接触型面积,将刀屑之间的紧密型接触变为峰点型接触,同时减小峰点型接触面的面积,极大地减少了切屑与刀具之间的摩擦,使得切屑背向流动速度更快,有效减小切屑与刀具间摩擦及粘结,促进切屑的卷曲和断裂,从而提高合金材料断屑性能或易切削性能。
在传统刀具或其他微织构刀具切削金属合金过程中,刀-屑接触面一般分为紧密摩擦区和峰点型摩擦区。在紧密摩擦区,刀具表面易与金属材料发生冷焊,当切屑与刀具相对滑动时,冷焊点发生剪切破坏,所表现的剪切抗力成为摩擦力的一部分。而在峰点型摩擦区,峰点型接触随着切屑的滑出,摩擦力逐渐减小。这两部分摩擦力使得切屑在流出前刀面时,流动速度减慢,不利于切屑的卷曲和断屑。
因此,在通用的切削参数条件下,进行硬质合金刀具切削硅黄铜的预备试验,分析刀-屑接触面的面积和两个摩擦区的大小情况,以此为依据,设计刀具表面的凸起织构阵列与纵向织构阵列相结合的复合微织构,这是现有微织构所不具备的。本发明以减少实际刀-屑接触面的面积为目的,在刀具原本的紧密摩擦区采用凸起织构阵列(宽度为10~20μm),以使得晶粒尺寸在100~500μm的合金材料紧密摩擦转变成峰点摩擦;同时,在刀具原本的峰点型接触增加与切屑流动方向平行的纵向织构阵列(沟槽型织构),以进一步减小刀-屑接触面的摩擦力,减少生成切屑的卷曲半径,最终提高切削硅黄铜时的断屑性能。另外,根据硅黄铜的晶粒大小来设计微织构的尺度,在保证一定强度下,减少切削过程中微织构的堵塞,令前刀面微织构持续发挥效用。
总的说来,本发明具有如下优点:基于硅黄铜材料组织结构的微织构刀具,是一种能够有效提高两相黄铜材料断屑性能或易切削性能,进而提高加工效率的刀具设计方案,具有提高产品良品率、节能、节时等优点,适合工业化推广应用。由实施例可知,通过比较复合微织构刀具与无织构刀具切削试验所得的切屑,复合微织构刀具获得的切屑更加卷曲、细小,确实大幅提高了合金材料的断屑性能。
附图说明
图1是本发明的设计示意图。
图2是图1中,复合微织构的局部放大图。
图3是凸起织构的示意图。
图4是纵向织构的示意图。
图5是低压铸造工艺所制备的硅黄铜金相组织图。
图6是无织构刀具切削硅黄铜的切屑形貌图。
图7是与图6在相同切削参数下织构刀具切削硅黄铜的切屑形貌图。
其中,1为刀具,2为前刀面,3为刀尖,4为切削刃,5为纵向织构,6为凸起织构,7为凸起,8为凹陷。
a为在垂直于切削刃方向上复合微织构的长度,b为在平行于切削刃方向上复合微织构到刀尖的距离,c为相邻凸起织构之间的距离,d为复合微织构距离切削刃的距离,e为在垂直于切削刃方向上凸起织构阵列的长度,f为纵向织构阵列与凸起织构阵列之间的距离,g为在平行于切削刃方向上纵向织构的宽度,h为相邻纵向织构的间距,i为凸起织构的底部的立方体边长,j为凸起织构的高度,k为凸起织构的上端面的宽度,l为纵向织构的高度。
具体实施方式
下面将结合具体实施方式来对本发明做进一步详细的说明。
实施例一
一种基于硅黄铜组织结构的微织构刀具的加工方法,包括如下步骤:
(1)刀具准备:首先选择YG8型硬质合金刀具并确定需加工的切削刃位置,将刀具的前刀面用1500#金相砂纸打磨并抛光,用酒精清洗吹干。
(2)复合微织构设计:将抛光的刀具置于激光加工器,对焦使激光能量聚焦于刀具。然后在距切削刃20μm处设计凸起织构与纵向织构的复合微织构(图1和图2)。其中距切削刃140μm范围内为凸起织构阵列,包括边长50μm的立方体底部及其顶端的梯形台,单个凸起织构(图3)的上端面为矩形,长度与立方体的边长一致,宽度为10μm;在距凸起织构阵列20μm区域设计垂直于切削刃的纵向织构(图4),凸起织构在刀屑粘结磨损区域达几十微米尺寸,纵向织构之间的凹槽间距仅为20μm,能够有效减少切屑在紧密型接触及峰点型接触区域的摩擦和粘结,促进切屑背向流动,有利于切屑的卷曲和断裂。
(3)激光加工复合微织构:通过F-20型脉冲光纤激光器在刀具前刀面的切削刃附近进行激光加工,具体的参数为:加工数目100,加工速度500mm/s,加工功率6W,加工频率20KHz。加工出复合微织构后,将加工后凸起熔体的前刀面用金相砂纸打磨并抛光,置于酒精内超声震动清洗,取出吹干。
(4)合金材料准备:按质量百分比为60%Cu、0.7%Si、0.5%Al、0.05%Ti、0.005%B及余量的Zn准备好合金材料,采用低压铸造工艺制备硅黄铜,低压铸 造工艺参数为:浇铸温度1000℃,充型时间4s,保压压力0.0395MPa,保压时间13s。图5为低压铸造制备的硅黄铜金相组织图,亮白色部分为β相,黑色部分为α相。α相主要以针状和颗粒状分布于β相基体中,同时在晶内和晶界处还分布着少量的金属间化合物。合金组织中α相含量为12%,β相含量为88%,β相的平均晶粒尺寸为400~500μm。
(5)切削试验:将设计的复合微织构刀具与无织构刀具,分别在相同条件下进行切削试验,切削参数为:切削速度为90m/min,进给量为0.1mm/r,背吃刀量为0.5mm,切削完成后收集切屑进行分析比较,以评估复合微织构刀具的断屑性能。图6和图7为相同切削参数下无织构刀具与复合微织构刀具的切屑形貌图,无织构刀具加工所得的切屑为螺旋状,螺旋屑的平均曲率半径为3mm,织构刀具加工所得的切屑为C形屑,C形屑的平均曲率半径为2mm。比较两种切屑可知,复合微织构刀具加工后切屑的曲率半径更小,所得的切屑形貌更加卷曲、细小,极大地促进了切屑的断裂,提高了合金材料的断屑性能或易切屑性能。
实施例二
一种基于硅黄铜组织结构的微织构刀具的加工方法,包括如下步骤:
(1)刀具准备:首先选择YG8型硬质合金刀具并确定需加工的切削刃位置,将刀具的前刀面用1500#金相砂纸打磨并抛光,用酒精清洗吹干。
(2)复合微织构设计:将抛光的刀具置于激光加工器,对焦使激光能量聚焦于刀具。然后在距切削刃10μm处设计凸起织构与纵向织构的复合微织构(图1和图2)。其中距切削刃110μm范围内为凸起织构阵列,包括边长40μm的立方体底部及其顶端的梯形台,单个凸起织构(图3)的上端面为矩形,长度与立方体的边长一致,宽度为15μm;在距凸起织构阵列15μm区域设计垂直于切削刃的纵向织构,凸起织构在刀屑粘结磨损区域达几十微米尺寸,纵向织构之间的凹槽间距仅为60μm,能够有效减少切屑在紧密型接触及峰点型接触区域的摩擦和粘结,促进切屑背向流动,有利于切屑的卷曲和断裂。
(3)激光加工复合微织构:通过F-20型脉冲光纤激光器在刀具前刀面的切削刃附近进行激光加工,具体的参数为:加工数目100,加工速度500mm/s,加工功率6W,加工频率20KHz。加工出复合微织构后,将加工后凸起熔体的前 刀面用金相砂纸打磨并抛光,置于酒精内超声震动清洗,取出吹干。
(4)合金材料准备:按质量百分比为59.5%Cu,0.78%Si,0.7%Al,0.05%Ti,0.005%B及余量的Zn准备好合金材料,采用低压铸造工艺制备硅黄铜,低压铸造工艺参数为:浇铸温度1000℃,充型时间4s,保压压力0.0395MPa,保压时间13s。所得的硅黄铜合金组织中α相含量为92%,β相含量为8%,β相以网状的形式分布于α相晶界处。同时,在晶内和晶界处还分布着少量的金属间化合物,组织中α相的平均晶粒尺寸为70-80μm。
(5)切削试验:将设计的复合微织构刀具与无织构刀具,分别在相同条件下进行切削试验,切削参数为:切削速度为90m/min,进给量为0.1mm/r,背吃刀量为0.5mm,切削完成后收集切屑进行分析比较,以评估复合微织构刀具的断屑性能。无织构刀具加工所得的切屑为螺旋状,其平均曲率半径为2.8mm。复合微织构刀具加工所得的切屑为C形屑,其平均曲率半径为1.6mm。复合微织构刀具加工所得的切屑更加卷曲细小,促进了切屑的断裂,提高了合金材料的断屑性能或易切削性能。
实施例三
一种基于硅黄铜组织结构的微织构刀具的加工方法,包括如下步骤:
(1)刀具准备:首先选择YG8型硬质合金刀具并确定需加工的切削刃位置,将刀具的前刀面用1500#金相砂纸打磨并抛光,用酒精清洗吹干。
(2)复合微织构设计:将抛光的刀具置于激光加工器,对焦使激光能量聚焦于刀具。然后在距切削刃30μm处设计凸起织构与纵向织构的复合微织构(图1和图2)。其中距切削刃150μm范围内为凸起织构阵列,包括边长45μm的立方体底部及其顶端的梯形台,单个凸起织构(图3)的上端面为矩形,长度与立方体的边长一致,宽度为20μm;在距凸起织构阵列10μm区域设计垂直于切削刃的纵向织构,凸起织构在刀屑粘结磨损区域达几十微米尺寸,纵向织构之间的凹槽间距仅为100μm,能够有效减少切屑在紧密型接触及峰点型接触区域的摩擦和粘结,促进切屑背向流动,有利于切屑的卷曲和断裂。(3)激光加工复合微织构:通过F-20型脉冲光纤激光器在刀具前刀面的切削刃附近进行激光加工,具体的参数为:加工数目100,加工速度500mm/s,加工功率6W,加工频率20KHz。加工出复合微织构后,将加工后凸起熔体的前刀面用金相砂纸打磨 并抛光,置于酒精内超声震动清洗,取出吹干。
(4)合金材料准备:按质量百分比为58.5%Cu,1.11%Si,1.0%Al,0.05%Ti,0.005%B及余量的Zn准备好合金材料,采用低压铸造工艺制备硅黄铜,低压铸造工艺参数为:浇铸温度1000℃,充型时间4s,保压压力0.0395MPa,保压时间13s。所得的硅黄铜合金组织中β相含量为85%,γ相含量为15%,γ相主要以颗粒状形式均匀地分布于β相晶界及基体上。同时,在晶内和晶界处还分布着少量的金属间化合物,组织中β相的平均晶粒尺寸约为300-4000μm。
(5)切削试验:将设计的复合微织构刀具与无织构刀具,分别在相同条件下进行切削试验,切削参数为:切削速度为90m/min,进给量为0.1mm/r,背吃刀量为0.5mm,切削完成后收集切屑进行分析比较,以评估复合微织构刀具的断屑性能。无织构刀具加工所得的切屑为较长带状切屑,复合微织构刀具加工所得的切屑为C形屑。复合微织构刀具加工所得的切屑形态明显更有利于断屑,有效地提高了合金材料的断屑性能或易切削性能。
实施例四
本实施合金材料为具有α+β两相的Ti-6Al-4V钛合金,其制备方法为铸造+塑性变形;本实施例未提及部分同实施例一。
本实施例的Ti-6Al-4V钛合金的制备过程如下:
将纯纯Ti(99.97%)、Al(99.95%)和纯V(99.95%)元素棒料按质量比称量,置于熔炼炉进行多次真空熔炼,直至各组元成分均匀化,铸造得到合金锭;再对铸造的Ti-6Al-4V合金锭进行塑性变形处理,以得到圆柱状钛合金棒料。
本实施例制备的Ti-6Al-4V钛合金的测试结果与实施例一类似,复合微织构刀具加工所得的切屑形态明显更有利于断屑,有效地提高了钛合金的断屑性能或易切削性能,在此不再赘述。
实施例五
本实施例合金材料为45钢,本实施例未提及部分同实施例一。本实施例的测试结果与实施例一类似,复合微织构刀具加工所得的切屑形态明显更有利于断屑,有效地提高了45钢的断屑性能或易切削性能,在此不再赘述。
实施例六
一种基于硅黄铜组织结构的微织构刀具,在刀具前刀面切削刃一定区域范 围内设置复合微织构,复合微织构包括凸起织构阵列和纵向织构阵列,凸起织构阵列位于切削刃和纵向织构阵列之间;凸起织构阵列包括多个呈矩形阵列排列的凸起织构,凸起织构的底部为立方体,上端为梯形台;纵向织构阵列包括多个沿着切削刃宽度方向排列成行的纵向织构,纵向织构为长方体,长度方向垂直于切削刃宽度方向。
刀具1选用YG8型硬质合金三角刀片,a取3mm,b取5mm,c取20μm,d取20μm,e取100μm,f取20μm,g取100μm,h取20μm,i取50μm,j取80μm,k取10μm,l取80μm。
本实施例中,凸起织构和纵向织构的上端与刀具表面齐平,激光加工凹陷部分。复合微织构分布在切削刃和刀尖之间大约3mm*5mm范围内。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于硅黄铜组织结构的微织构刀具,在刀具切削刃一定区域范围内设置复合微织构,其特征在于:复合微织构包括凸起织构阵列和纵向织构阵列,凸起织构阵列位于切削刃和纵向织构阵列之间;凸起织构阵列包括多个呈矩形阵列排列的凸起织构,凸起织构的底部为立方体,上端为梯形台;纵向织构阵列包括多个沿着切削刃宽度方向排列成行的纵向织构,纵向织构为长方体,长度方向垂直于切削刃宽度方向。
  2. 按照权利要求1所述的一种基于硅黄铜组织结构的微织构刀具,其特征在于:在垂直于切削刃方向上,复合微织构距离切削刃10~30μm,复合微织构的长度为3mm,凸起织构阵列的长度为110~150μm,纵向织构阵列距离凸起织构阵列10~20μm。
  3. 按照权利要求2所述的一种基于硅黄铜组织结构的微织构刀具,其特征在于:凸起织构的底部的立方体边长为40~50μm;凸起织构的上端面为矩形,在垂直于切削刃方向上,该矩形的长度同凸起织构的底部的立方体边长,在平行于切削刃方向上,该矩形的宽度为10~20μm。
  4. 按照权利要求2所述的一种基于硅黄铜组织结构的微织构刀具,其特征在于:相邻纵向织构的间距为20~100μm,有效减少切屑在紧密型接触及峰点型接触区域的摩擦和粘结,促进切屑背向流动,有利于切屑的卷曲和断裂。
  5. 按照权利要求1所述的一种基于硅黄铜组织结构的微织构刀具,其特征在于:凸起织构阵列的凸起织构起切削刃刀尖的作用;纵向织构阵列中,在切屑划过纵向织构时,一定数量的纵向织构同时作用于一个晶粒尺寸的范围,从而导致晶粒更容易变形,达到促进切屑变形和断裂的目的。
  6. 按照权利要求1至5中任一项所述的一种基于硅黄铜组织结构的微织构刀具的加工方法,其特征在于:包括如下步骤
    (1)刀具准备;
    (2)复合微织构设计;
    (3)采用激光加工方法在步骤(1)刀具上加工步骤(2)的复合微织构;
    (4)合金材料准备;
    (5)将步骤(3)所得刀具对步骤(4)的合金材料进行切削试验。
  7. 按照权利要求6所述的一种基于硅黄铜组织结构的微织构刀具的加工方法, 其特征在于:
    步骤(1)为:选择YG8型硬质合金刀具并确定待加工的切削刃位置,将刀具的前刀面用1500#金相砂纸打磨并抛光,清洗吹干;
    步骤(2)为:将抛光的刀具置于激光加工器,对焦使激光能量聚焦于刀具,然后在刀具表面设计复合微织构;
    步骤(3)为:在刀具前刀面的切削刃附近进行激光加工,具体的参数为:加工数目80~150,加工速度400~600mm/s,加工功率5~10W,加工频率10~50KHz,加工出复合微织构后,将加工后凸起熔体的前刀面用金相砂纸打磨并抛光,超声震动清洗、吹干;
    步骤(5)为:将设计的微织构刀具与无织构刀具在相同条件下进行切削试验,切削参数为:切削速度为80~100m/min,进给量为0.1~0.2mm/r,背吃刀量为0.1~0.6mm,切削完成后收集切屑进行分析比较,以评估微织构刀具的断屑性能。
  8. 按照权利要求7所述的一种基于硅黄铜组织结构的微织构刀具,其特征在于:步骤(4)为:按质量百分比为58.5%~60%Cu,37%~39%Zn,0.7%~1.11%Si,0.5%~1%Al,0.01%~0.1%Ti,0~0.01%B准备好纯金属材料,采用低压铸造工艺制备硅黄铜合金,低压铸造工艺参数为:浇铸温度900~1100℃,充型时间3~6s,保压压力0.01~0.04MPa,保压时间10~15s。
  9. 按照权利要求7所述的一种基于硅黄铜组织结构的微织构刀具的加工方法,其特征在于:步骤(4)中的合金材料为黄铜合金、钛合金或铁合金;当采用黄铜合金时,制备工艺为低压铸造;当采用钛合金时,制备工艺为铸造加塑性变形。
  10. 按照权利要求1至5中任一项所述的一种基于硅黄铜组织结构的微织构刀具的应用,其特征在于:用于航天、航空、船舶、医疗或卫浴领域合金材料切割。
PCT/CN2018/106848 2018-08-22 2018-09-21 一种基于硅黄铜组织结构的微织构刀具及其加工方法和应用 WO2020037759A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2018437433A AU2018437433B2 (en) 2018-08-22 2018-09-21 Micro-textured cutter based on silicon brass structure and processing method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810960453.7 2018-08-22
CN201810960453.7A CN108856753B (zh) 2018-08-22 2018-08-22 一种基于硅黄铜组织结构的微织构刀具及其加工方法和应用

Publications (1)

Publication Number Publication Date
WO2020037759A1 true WO2020037759A1 (zh) 2020-02-27

Family

ID=64321460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106848 WO2020037759A1 (zh) 2018-08-22 2018-09-21 一种基于硅黄铜组织结构的微织构刀具及其加工方法和应用

Country Status (3)

Country Link
CN (1) CN108856753B (zh)
AU (1) AU2018437433B2 (zh)
WO (1) WO2020037759A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113523622A (zh) * 2021-08-10 2021-10-22 江苏理工学院 一种用于激光加工刀具表面微结构的夹具
CN114211004A (zh) * 2021-12-17 2022-03-22 北京工商大学 3d打印不锈钢工件表面的pva基复合膜层及制备方法
CN116106307A (zh) * 2023-03-31 2023-05-12 深圳上善智能有限公司 一种基于图像识别的智能兑金机的检测结果评估方法
CN116140938A (zh) * 2023-03-06 2023-05-23 广东工业大学 一种宏微复合阵列耐磨超疏水表面的加工方法和金属件
CN116150910A (zh) * 2023-02-28 2023-05-23 哈尔滨理工大学 一种铣削钛合金球头铣刀微织构设计方法及参数预测方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109482930A (zh) * 2019-01-07 2019-03-19 西安石油大学 一种微织构bta深孔钻头及其构制备工艺
CN109822290B (zh) * 2019-01-18 2021-05-07 广东工业大学 射流抛光微织构涂层刀具的制备方法及该涂层刀具配合微量润滑的切削方法
CN111250740A (zh) * 2019-10-10 2020-06-09 东南大学 一种防粘着刀具及其制备方法
CN112251628A (zh) * 2020-09-14 2021-01-22 华南理工大学 一种高强耐蚀高导热易切削无铅环保硅黄铜及其制备与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241202A (ja) * 2011-05-16 2012-12-10 Joetsu Bronz1 Corp 熱間加工用無鉛黄銅合金
CN103111819A (zh) * 2013-01-22 2013-05-22 江苏大学 一种刀具表面抗粘减摩微镶嵌复合织构的制备方法
CN103114221A (zh) * 2013-03-01 2013-05-22 南通大学 一种无铅易切削硅黄铜合金及其制备方法
CN104741673A (zh) * 2015-03-16 2015-07-01 哈尔滨理工大学 一种自润滑球头铣刀及加工方法
CN106270581A (zh) * 2016-08-30 2017-01-04 江苏大学 一种增强润滑和冷却的刀具及其用途、加工方法
CN106270582A (zh) * 2016-08-30 2017-01-04 江苏大学 一种形成切屑导流毛细管的刀具及其用途、加工方法
CN106956172A (zh) * 2017-05-08 2017-07-18 齐鲁工业大学 一种原位成型不同形貌微织构自润滑陶瓷刀具制备方法
CN107130137A (zh) * 2017-06-27 2017-09-05 华南理工大学 一种环保硅黄铜水龙头的低压铸造工艺

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3105377A1 (de) * 1981-02-14 1982-10-28 Karl Gustav Dipl.-Ing. 8500 Nürnberg Hertel jun. Schneideinsatz fuer schneidwerkzeuge
JPH01138505U (zh) * 1988-03-07 1989-09-21
JP3341536B2 (ja) * 1995-07-31 2002-11-05 三菱マテリアル株式会社 スローアウェイチップ
DE10319169A1 (de) * 2003-04-29 2004-12-02 Fette Gmbh Verfahren zur Herstellung gewünschter Oberflächen oder Oberflächenmuster für Schneidwerkzeuge
JP2007216327A (ja) * 2006-02-15 2007-08-30 Aisin Seiki Co Ltd チップブレーカの形成方法
US9731354B2 (en) * 2014-05-07 2017-08-15 Kennametal Inc. Cutting insert with micro-channels
KR20170052115A (ko) * 2015-11-03 2017-05-12 울산과학기술원 마이크로 패턴이 형성된 절삭 공구용 팁
US20170320142A1 (en) * 2016-05-06 2017-11-09 Jakob Lach Gmbh & Co. Kg Cutting tool with chip breaker as well as manufacturing process for production of this cutting tool
CN106077724B (zh) * 2016-07-01 2018-08-21 江苏大学 一种固体润滑的金属切削刀具及其加工方法
CZ30072U1 (cs) * 2016-07-22 2016-11-29 Hofmeister S.R.O. Břit ve tvaru klínu s povrchovou mikrostrukturou u řezného nástroje
CN208853739U (zh) * 2018-08-22 2019-05-14 华南理工大学 一种基于硅黄铜组织结构的微织构刀具

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012241202A (ja) * 2011-05-16 2012-12-10 Joetsu Bronz1 Corp 熱間加工用無鉛黄銅合金
CN103111819A (zh) * 2013-01-22 2013-05-22 江苏大学 一种刀具表面抗粘减摩微镶嵌复合织构的制备方法
CN103114221A (zh) * 2013-03-01 2013-05-22 南通大学 一种无铅易切削硅黄铜合金及其制备方法
CN104741673A (zh) * 2015-03-16 2015-07-01 哈尔滨理工大学 一种自润滑球头铣刀及加工方法
CN106270581A (zh) * 2016-08-30 2017-01-04 江苏大学 一种增强润滑和冷却的刀具及其用途、加工方法
CN106270582A (zh) * 2016-08-30 2017-01-04 江苏大学 一种形成切屑导流毛细管的刀具及其用途、加工方法
CN106956172A (zh) * 2017-05-08 2017-07-18 齐鲁工业大学 一种原位成型不同形貌微织构自润滑陶瓷刀具制备方法
CN107130137A (zh) * 2017-06-27 2017-09-05 华南理工大学 一种环保硅黄铜水龙头的低压铸造工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, XIN ET AL.: "Study on the Wear Behavior of Micro-Textured WC-10Ni3AI Tools in Ti6AI4V Machining", SCIENCE -ENGINEERING (A), CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 15 January 2016 (2016-01-15), ISSN: 1674-022X *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113523622A (zh) * 2021-08-10 2021-10-22 江苏理工学院 一种用于激光加工刀具表面微结构的夹具
CN114211004A (zh) * 2021-12-17 2022-03-22 北京工商大学 3d打印不锈钢工件表面的pva基复合膜层及制备方法
CN114211004B (zh) * 2021-12-17 2024-01-12 北京工商大学 3d打印不锈钢工件表面的pva基复合膜层及制备方法
CN116150910A (zh) * 2023-02-28 2023-05-23 哈尔滨理工大学 一种铣削钛合金球头铣刀微织构设计方法及参数预测方法
CN116150910B (zh) * 2023-02-28 2023-10-20 哈尔滨理工大学 一种铣削钛合金球头铣刀微织构设计方法及参数预测方法
CN116140938A (zh) * 2023-03-06 2023-05-23 广东工业大学 一种宏微复合阵列耐磨超疏水表面的加工方法和金属件
CN116140938B (zh) * 2023-03-06 2024-01-30 广东工业大学 一种宏微复合阵列耐磨超疏水表面的加工方法和金属件
CN116106307A (zh) * 2023-03-31 2023-05-12 深圳上善智能有限公司 一种基于图像识别的智能兑金机的检测结果评估方法

Also Published As

Publication number Publication date
CN108856753A (zh) 2018-11-23
AU2018437433A1 (en) 2020-08-27
AU2018437433B2 (en) 2022-01-06
CN108856753B (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
WO2020037759A1 (zh) 一种基于硅黄铜组织结构的微织构刀具及其加工方法和应用
Xinxin et al. Performance evaluation of creep feed grinding of γ-TiAl intermetallics with electroplated diamond wheels
JP5927685B2 (ja) 切削工具
Tascioglu et al. High speed machining of near-beta titanium Ti-5553 alloy under various cooling and lubrication conditions
Li et al. Mechanical behavior and modeling of grinding force: a comparative analysis
CN205167262U (zh) 应用于石墨高速加工中的金刚石涂层刀具
CN104227019A (zh) 一种薄壁钛合金零件的切削工艺
CN108032046A (zh) 一种pcd刀具加工工艺
CN109590475B (zh) 一种用于切割高硬度石材大锯片的大刀头及该大刀头的制备方法
Wu et al. Laser induced oxidation of cemented carbide during micro milling
CN110181060A (zh) 电脉冲调控激光直接成型β钛合金晶粒尺寸的实验方法
JP2016112678A (ja) ダイヤモンド焼結体ボールエンドミルとその製造方法
Gong et al. Experimental research on surface characteristics and subsurface damage behavior of monocrystal sapphire induced by helical micro abrasive tools
CN102950335A (zh) 一种金属陶瓷铰刀
CN208853739U (zh) 一种基于硅黄铜组织结构的微织构刀具
CN111497035A (zh) 一种实现以铣代磨加工的pcd刀具、其制备方法及应用
CN103042259A (zh) 一种内冷阶梯钻
JP2021530372A (ja) 硬脆性難削材加工用ダイヤモンド切削工具
CN215036607U (zh) 一种用于硬质合金的抛光刀具头及抛光刀具
Zhao et al. Influence of thermogenetic effect on machinability of IN718 alloy made by additive–subtractive integrated manufacturing
CN103071822B (zh) 高强度钢高性能切削用超硬刀具
Mohid et al. Chip pattern, burr and surface roughness in laser assisted micro milling of Ti6Al4V using micro ball end mill
CN103442835A (zh) 刮削工具
WO2018210000A1 (zh) 一种切削钛合金tc4的硬质合金微槽车刀
Chen et al. A hybrid process of raining co-deposition and rotary wire spark erosion in the development of a custom CBN tool for making a biochip injection mold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018437433

Country of ref document: AU

Date of ref document: 20180921

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930727

Country of ref document: EP

Kind code of ref document: A1